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Preface 

The text of this thesis was formatted using ~TEX .. The more complex figures and 

drawings were generated automatically by the software described in this thesis, using a 

graphical description language called Postscript1 • The two forms of printed media were 

merged together electronically (rather than photographically or with scissors and glue). 

The capability of automatically merging text with graphics in this manner has made prac­

tical the inclusion of a ftipbook animation. 

The animation is an attempt to show how the behavior of the multiprocessing task 

scheduling algorithm changes according to the number of processors. The parallel execution 

is simulated under the a.Ssumptions of zero communications overhead and unit execution 

time for each task. The nth "frame" in the animation is a graphical representation of the 

execution using n processors. The graph is composed of diamonds, which represent atomic 

units of computation called tasks. Horizontally adjacent diamonds represent tasks that 

are executed in parallel on different processors. The vertical axis represents time, with the 

beginning of the computation at the top of the page. 

Initially, each frame occupied a single page, and the effect of flipping through the 

100 pages was aesthetically pleasing. Unfortunately, in terms of the thesis, it was not 

justifiable as a 100 page appendix. So each frame was reduced so it would occupy the 

top and right margins of an existing page. The first frame of the animation is visible at 

the right edge of this page. It shows how when using one processor, no more than one 

task can be processed at any given time, so they are all executed one after the other. The 

next page shows the simulation using two processors. The meaning of the animation will 

become clearer after reading Chapters 3 and 4, but it was necessary to include a word of 

1 Postscript is a trademark of Adobe Systems 
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explanation here, since this is where the animation begins. 
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Chapter 1 

Introduction 

As the complexity of VLSI circuits increase1, IO does the running time of the CAD 

tools we use to build thoee circuit1. At the current Rate of VLSI t49cbnology and CAD tool 

performance, tasks such u layout verification, 1ill'iUIMion, ail4· lnuk-making have proven 

to be expemive bottlenecks in the VLSI design proc:w. If the aclftncea in the complexity 

and functionality of the VLSI chip1 Wf! build a.re to keep :PUe with advances made in VLSI 

process technology, then we mut make aubataatial improvements to the .software tools 

used to design and manufacture those chips. 

1.1 Accelerating CAD Tools 

There are several ways to accelerate CAD tools: 

1. Developing more efficient software 

2. Buying faster general purpose computers 

3. Using special-purpose hardware accelerators 

4. Exploiting the hierarchy inherent in the represention of VLSI circuits 

5. Exploiting the parallelism inherent in many of the existing CAD tools 

Developing more efficient software is alw8"& an attractive alternative. In indus­

trial design rule checking, ECAD's DRACULA2 offered an order of magnitude speed-up over 

.what was previously available1 • However, significant runtime improvement through better 

1 DRACULA2 ia a trademark of ECAD corporation 
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software is often limited by the computational complexity of the problem at hand. Ob­

servations in industry indicate that further improvements are needed in the time taken by 

design rule checkers. 

Buying faster general purpose computers is perhaps the lowest-risk option listed 

above. H purchasing new hardware will increue both the proc.,Ung and the memory 

speed, then it will certainly increase the speed of the CAD tools that run on it. This 

strategy has the added advantage that it can be easily combined with any of the other 

strategies. However, since monetary cost rises faster than COIJlPutational speed, it is not 

a cost-effective solution. This ia evidenced by a comparison of Digital's VAX 8600 and 

MicroVAX II computers2 • They were both introduced in early 1985, so they represent 

roughly the same level of t.echnolou. The VAX MOO computer bu approximately 5 times 

the procawing speed of the Miaovax II compu&er, bu aeta about 10 times as much. 

Relying on faster computen is alao not likely io be a IQOd. · lone-term aolution, became 

recently the complexity of VLSI ciKuita bu ll'OWJl much fNter Uaaa the cost of-processing 

speed has fallen. Digital'• VAX 8800 compuw bu four U..-.·t!M! lpeed and twice the cost 

of the VAX 11/780 comp1Mer {1977), while chipa of 1986 Jaaye twenty.Jive times as many 

transistors as thOBe of 8 years ago [Allen 1983). 

Developing special hardware accelerators offers the greatest potential of all the 

solutions listed above. Runtime improvementa of ... ..i orc1 .. of magnitude are not 

uncommon. In design rule checking, speedup facton of up to 140 have been predicted 

using small amounts of cuatom hardware [Seiler 1985). S"llllila.r improvements have been 

achieved in circuit simuJation using the ZYCAD hardware accelerator3. Unfortunately, 

the cost of theae devices, both in money and development time, is often prohibitive. In 

the event of an algorithmic improvement that decreues the powth rate of a problem, the 

hardware will lose its edge as the problem increuea in able, rendering it obaolete. 

2VAX ud .MicroVAX are v.demarb of DiciAI Equipma& CarpcriUaa 
3 ZYCAD is a &ndemark of ZVCAD cCll'pCll'Mioa 
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1.2 Parallelism in VLSI CAD 

Exploiting the parallelism inherent in VLSI CAD tools is an attractive way to 

accelerate them. The nature of VLSI lends itself to a high degree of parallelism. VLSI 

chips are composed of several layers, which are often examined separately. Each layer is 

composed of different blocks which exhibit a very high degree of functional locality. Each 

block is composed of many polygons which exhibit some degree of geometric locality. 

We observe that the parallelism inherent in VLSI is manifested in CAD tools in 

several different ways. Logic simulators possess parallelism based on the locality of ac­

tivity in a digital circuit. [Arnold 1985] exploits this property in a multiprocessing logic 

simulator based on RSIM [Terman 1983]. Design rule checking and circuit extraction can 

be accelerated by taking advantage of the geometric locality of the polygons that consti­

tute the chip. [Levitin 1986] describes a system that uses this approach to accelerate a 

VLSI circuit extractor called IV [Tarolli, Herman 1983]. Similarly, [Bier, Pleszkun 1985] 

describes a system that divides a layout into separately checkable partitions, checks each 

partition, examines the partition boundaries to eliminate false errors and catch missed er­

rors, and merges the resulting error reports together. In design rule checking, there is also 

parallelism inherent in the set of design rules that guide the checking program. This thesis 

describes a DRC accelerator that exploits the parallelism inherent in the design rules. 

1.3 A Software Methodology for Multiprocessing 

If an existing program can be partitioned into tasks that are each sufficiently time­

consuming compared to the time it would take to move the task's input and output data 

between processors, then an existing local area network may be effectively used as a mul­

tiprocessor to run that program. This is the case with DRC, and is likely to be the case 

with Digital's circuit extractor and mask-making software. If several processors share a 

common file system, such as in VAXclusters, then the input/output size constraint can be 

removed°'. 

4 VAXcluster is a trademark of Digital Equipment Corporation 
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Parallelism is a coet-efl'ective strateg for -.cceleratinc VLSI CAD tools. No special­

purpose hardware is needed. It is pouible to use a small number of general purpose 

computers as a multiprocemor. Thus the utillty·and·t'Jie eXpe!Ule of an n-proceaor system 

can be shared with thoee who need more serial ptotflllling ma.chines. Parallelism can 

be combined with higher-speed general purpoeee computers and with higher-performance 

software. 

Many CAD tools have 10me parallelism, due to the nature~ 9f VLSI. So a hard­

ware investment made toward Cuter DRCs may alao pay off by accelerating simulations, 

mask preparations, and circuit extradions. Another mmple of exploitable parallelism is 

compiling and Jinlring a large software system. 

This thesis de1Cr1Dei a software system called t P 1 C (Exploiting Parallelism In 

CAD) that controls the pa.rallel execution of any eoftwue 8ystem that exhibits a restricted 

cla.ss of parallelism. The nec-ry charaderidica or· the cca.PUtational environment and 

the program to be acceleratM are aa followa: 

• The program must be partitioned into diacrete tub. 

• Each task must be individually callable from the operating system. 

• All communication between tub must be done fliroulh disk files. 

ti Unless dHferent computen can share the anw•'~ the time it takes to execute 
an individual taek· . ..- lie pater ~:the ~i\ ta••.....,.. the files that it 
reads and writes. 

1.4 Chapter Outline 

Chapter 2 describes previous work in accelerating CAD tools. This includes ef­

fort.a to use parallelism and hardware acceleration to speed up design rule checking and 

simulation. The primary motivation for this thesie, ~~AD D~C, is described. 

Chapter 3 describes the theory and impleipentation of£ PI C. The more interesting 

features, such as task scheduling, are described iq d~. 
··: ' ~ . ~ 

Chapter 4 describes the application of£ PI C to various problems, such as d~gn rule 

checking, circuit extraction, and compiling and )inking Prosmms· Optimistic predictions 

are made for the speed-up of each application. The apeed-up factors are determined for 

18 



several experimental runs of each application. The experimental results are then compared 

to the optimistic predictions. 

Chapter 5 concludes the thesis with a summary of the work reported and suggestions 

for future research. 

Appendix A contains a user's manual for running £ P 1 C .with ECAD DRC. 

Appendix B contains graphical representations for the data dependency graphs for 

several applications. 

Appendix C contains the raw data for the experimental runs, including a table of 

statistics and a graphical repre&elltation of the task asaignments for each slave. 

Appendix D contains all the messages £ P 1 C sends for control communication. They 

effectively define the architecture of the software behind e p 1 c. 
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Chapter 2 

Background 

2.1 Previous Work in Parallelism for VLSI CAD 

A substantial amount of research has recently been devoted to the area 

of parallel simulation. Papers have been published Oil the parallel acceleration 

of several classes of simulators, including relaxation based simulators such SPLICE 

[Newton, Sangiovanni-Vmcentelli 1983,Deutech, Newton lOM}, and event based logic sim­

ulators such as RSIM [Terman 1983,Amold 1985]. 

Until very recently, not much had been publiehed on parallel design rule check­

ing. In the past year, there has been more activity (Bier, PIE!nkun 1985,Nielson 1986). 

[Bier, Pleszkun 1985] seeks to exploit the geometric locality of VLSI layouts by dividing 

the layout into vertical slices, checking each slice on a separ&iie processor, and merging the. 

error reports together. This approach could suffer from a large number of missed errors 

and false errors at the borders of the slices. At some cost in redundant computation, these 

problems can be eliminated by dividing the chip into slices that overlap by at least one 

mazimal design rule interadion tliatanee (DRID). Errors reported within one DRID of the 

border of a slice are filtered out in the merge phase as potential false errors. If they are 

real errors, they will be ftaaed during the check of the neighboring slice. 

This strategy waa not tested on a real multlproceuor, but based on statistics gath­

ered during serial runs, a speedup of 8:1 was predicted for 14 processors. As communi­

cations costs are small, this figure may be realistic. It is not reasonable to expect this 
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algorithm to offer a linear speed-up factor, since the computational overhead of process­

ing overlapping slices and discarding errors at the borders will grow with the number of 

processors. 

The data partitioning algorithm has the deairable property of having its potential 

parallelism scale as a function of complexity cl. the laJQUt. If th-. is no communications 

overhead, then we should then be able to me more proc-.on to hold the DRC execution 

time constant as the circuit growB. Unfort.unaiely, the overhad of checking overlapping . .~ 

regions of the chip and removing falee erron from the repoe1a may reduce the potential 

speedup significantly, and prevent the number of procellODI from being profitably scaled 

with the layout. Thia thesis presents an alternative IV&tegy that has no intrinsic compu­

tational overhead. UnfortunaWy, the pualWimn oL oar tec~e does not grow with. the 

complexity of the layout, but with the complexit7 cl. the ralea eet. Neverthelea, it promises 

to allow more eftlcient me of each ptoceaor, ancl tMrefore proride better speed-up factors 

for limited numbers of procl!lllon. 

2.2 Previous Work in Accelerating DRC 

Empirically, the time and space conaumed by a deaip rule check has been observed 

to be about O(nu) or O(n1.s) where n is tt.. nmMer of ·tnmiaton. As the number 

of features on a typical VLSI chip moves ia&o the milliou, DllC will become more of a 

bottleneck in the designers' loop. 

ffierarchical DRC is one poeaible aolatioa w the DRC problem, and 

has recently been studied extensively ((McGRdl, W-bl'8ef 1980j, (Whitney 1981), 

(Newell, Fitzpatrick 1982), (Smith, McDonald, Chana, Jerdonek,l91Mj). In a normal chip, 

many cells are defined in terms d odter cella, ud Wocb cl oelle are repeated (such as in 

a memory). Hierarchical DRC attempts to explob thia repetition by checking only one 

instance of a given cell or cell block, reprdleu of hew ~ .tilaes it occurs. This has the 

added advantage of only generating one error when a repeated cell is faulty, thus reducing 

the volume of error reports while mil conveyiq the ll&1ll8 information. 

In practical applications, however, the amount of reped&ion ia limited by various 
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factors, such as overlapping regions and globally routed conductivity [McGrath 1985]. Of­

ten, the advantage to be gained by exploiting the repetition is lost to the overhead of 

finding and re-checking the cases where a cell's boundaries are violated by other layout. 

Thus, while hierarchical DRC is profitable for certain chips, it is not yet a sufficiently 

general solution. When it is does become profitable, it can be combined with the multi­

processing DRC algorithm presented in [Bier, Pleszkun 1985], or the approach presented 

in this thesis. 

At Hewlett-Packard, hierarchical DRC has been successfully used in practice 

[Hammer 1986]. Using a core of checking routines based on NCA's VDRC1 , a methodol­

ogy was developed whereby the layout designer DRCs cells as they are initially layed out. 

The CAD system maintains a central database of cells, keeping track of whether any cell 

has been modified since it was last checked. When a cell is instantiated, only externally 

visible geometry is checked in subsequent DRCs. This system is especially effective be­

cause the cost of checking each cell is spread throughout the design process, rather than 

lumped together at the end. The disadvantage is that the designers must completely avoid 

overlapping cells with other cells and with routing. 

It has been suggested that the DRC bottleneck can be eliminated by "correctness by 

construction" [McGrath, Whitney 1980]. This involves using layout systems that enforce 

the design rules at the construction phase, making it impossible to violate a design rule. 

Such layout systems tend to use design rules that are too simplistic, resulting in poor layout 

density, and thus producing slow chips [McGrath 1985]. Specifically, the corner stitching 

structures of Magic do not provide for 45° angle geometries [Taylor, Ousterhout 1984]. 

Modern industrial design efforts require this capability. 

Advancements in the algorithms behind design rule checking have improved 

the overall performance ([Wilcox, Rombeek, Caughey 1978], [Arnold, Ousterhout 1982], 

[Chapman, Clark 1984]). For example, Chapman and Clark outline a method for im­

proving· the performance of IBM's Unified Shapes Checker by using scan lines. On chips 

with more than 50,000 transistors, they realized~ CPU-time reduction of more than 50%. 

This savings is substantial, but they predict that the improvement will not be sufficient to 

1 VDRC is a trademark of NCA corporation 

23 



swiftly check chips 88 tranaillior counts move inio the millions. 

Seiler describes a method for doina DB.C'ain laardware (Seiler 1985). This method 

has obvious advantqes. Dedicated and c•tom.-deaigned hardware can do a good job 

of exploiting "inner-loop• parallelism. However, a working prototype wu not produced. 

Until the introduction of a production quality hardware DRC accelerator, it may be more 

timely to increw performaace by aupneniina the a:ilRiaa CAD IOftware. 

2.3 Motivation: Parallel DRC 

Digital Equipment Corporation's primary motivation for supporting this project 

was to produce a system that runs parallel ECAD DB.Cs. The key observation that mo­

tivated our strategy is that a design rule check does not; entail the execution of a single 

algorithm, but instead involves the aequential execution of many. computationally inde­

pendent algorithms. More spec:ifkally, DB.C is a aequence of rules, mch as the following: 

1. POLY-DIFF SPACING> ll 

2. POLY-POLY SPACING> 2l 

3. POLY WIDTH > 2l 

4. GATE OVERLAP > 2l 

Conceptually, there is no data dependency between theee rules. Therefore, each 

rule can be executed independently by a Hp&r&te procellOr. That is not very efficient, 

because there are often intermediate computations which contn1>ute to the checking of a 

rule, and the results of theae computations are often ued in the checking of more than 

one rule. We would like to do these computations only once, and share the results among 

all those proceaors that need them. 

These intermediate computations are explicitly listed in the ECAD rules file that is 

used to control each DRC run. The rules file is essentially a computer program written in 

a language especially tailored for DRC. The language has statements that do operations on 

the various layers of the chip, such as polysilicon and diffusion. Some statements do logical 

operations such 88 the pixel-wise AND and Oll of two layers, producing new layers. Other 

statements do spacing or width checks on a given layer at a given tolerance, producing 
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error reports. A side effect of the execution of the program is that all the rules are checked. 

As a final step, all the error reports ,are appended into a summary file, and the geometry 

of the errors is depicted in an "error cell" layout that can be read into the layout editor. 

Each statement in the rules file can be mapPed directly onto a sequence of operating 

system commands that cause the statement to be executed. The input and output file 

names can be extracted from the text of the rules file statement. By comparing the input 

file names of one statement to the output file nameil of another statement, we ca.n determine 

whether there is a data dependency between the execution of thoae two statements. In this 

manner, we can build a data dependency craph from the rules file, with the information 

about how to execute each statement stored at each node. 

The data dependency graph has a set of f'CJDU, or .nodes whose input files are part 

of the input data to the whole task, rather than outputs of another node. The number of 

roots is generally equal to the number of different VtSI l&J*8 'for the particular process 

technology. The computation Ill1ist begin With the roota~··How the computation proceeds 

depends on the scheduling strategy, and greatly influences the performance of the whole 

parallel execution. 

2.4 Scheduling strategies 

The following approadt is taken by ECAD m•tJieir marketed version of Parallel 

DRACULA2 {Nielaon 19861. It requins a multiproewor wit& a 8hared ftlesystem, such a· 

VAXcluster; it won't run on a local area aetWerk. Tlii8 impli• that it won't suffer file 

transfer overhead. It a.lao depends on thetchedulinsfacllitiel built into the multiprocessor. 

When submitting a non-interactive (batch mode) job to a ·VAXduster, the VAX/VMS 

operating system1 determinea which procwor ia meet relpOmive, and assigns the job 

accordingly. 

The first step is to divide the data clepeaclency grapll into sections, as shown in 

Figure 2.1. Each section contains all the noct. U. the~p-aph that have a given distance 

2Parallel DUCULA ia a trademark of ECAD corporatio!l 
3 VMS is a trademark of Djpal Equipment COl'pOl'Mion 
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Figure 2.1: Sectioned Data Depeadency Graph 

from the roots of the paph, where diatance i9 mimpb- the llamber of aodm one mu.st pass 

through to arrive at the ~on. For .aampl9, .U... mpi. compri8e a section whoee 

distance is zero. 

The approach proceeds by executing each aection one at a time. Every node in 

the current section must be completed before any node in the next section can start. 

ThiS guarantees that the data dependencifJI will not be ~ted. It ia alao very easy to 

implement. The parallel execution ia controllecl ht a mmmand tile. 

There are at leut We> 81lhltaJWa1 dra-.....to UM· method. At the end of the 

execution of each section, the Cuter pmc111 • will 1 c . ·micHe wllil6 the alower processors 

finish up their tub. At belt, this llfl'l'ftY lbalta.. tbe .......... of proc e•Ol'B that can be 

profitably used. At wont, it implies U..t a NOC•• tilla$ hecomm severely overloaded or 

hung {for example, due to anodaer mer) after a ~ Jau ._ ....,.eel to it is guaranteed 

to block the execution of Uae DB.C. Another 4fa,wMck to_ llCAD'• method is that the 

requirement that it be run on a VAXcluster is inconvenient; Digital would like to run 

parallel DRCs on VAX computers lhat are not V~ tap&her. 

By more cleverly ming the data depeadency arapla, we can inereue the potential 

parallelism substantially, keeping each proca1"9r bUSJ nearl7 all the time, thereby enjoying 

increased performance compared with ECAD's metJaod. To do this, we need to layer a 
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sophisticated parallel scheduling and execution system around ECAD DRC. 

Unfortunately, ECAD DRC r~presents a true "black box" abstraction: the source 

code is not for sale. Furthermore, its user interface was not designed to be used as an 

interface to another program. Though the command interface to any given version of the 

software may be sufficiently documented, it is not guaranteed to remain stable over time. 

A system that is layered around such an inaccessible piece of software must be 

written to be resilient to change·in the interface to that software. Also, it must not depend 

on specific restrictions that may only apply to the current version of ECAD. One such 

restriction is that that each line in the ECAD rules file corresponds to a task with no more 

than two input and output files. It is conceivable that this restriction could disappear at 

the whim of an ECAD engineer. 

The way to achieve this resiliency is to try .to choose a model for the computational 

structure of ECAD's DRC that is general enough to be adaptable to any conceivable change 

that ECAD might make. The following chapter describes how this is done. 
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Chapter 3 

£PI C: .A ·general method of exploiting 

parallelism 

This chapter describes the implementation of a software system called e P 1 C (Ex­

ploiting Parallelism In Cad}. e PI C provides a mechanism for controlling the parallel 

execution of existing softwve that exhibits a specific clasa of intrinsic parallelism. e P 1 C 

was written in PL/I for the VAX/VMS operating system, and runs on any number of VAX 

computers connected by DECnet or in a VAXclU8ter1. No special hardware configurations 

are required. Between the e PI C kernel and the preproceaora provided for running ECAD 

DRCs and Makefiles, 8751 total lines containiq 5i<l8 PL/I aeurce statements were writ­

ten. 

3.1 Dividing the job 

The system described here provides a mechanism for running Parallel DRC by solv­

ing the more general problem of how to control the parallel execution of any program that 

can be externally divided into a finite set of taab. We define task as a unit of computation 

that can be executed using a sequence of standard operating system commands (such as 

DCL commands, for the VAX/VMS operating system). Each task has a known, finite set 

of inputs and outputs, each of which is a disk file. These tasks are explicitly specified in 

1 DECnet is a trademark of. Digital Equipment Corporation 
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the manner of Fipre 3.1. 

taak •aplit•-
/input•(chip.data)­
/output•(left.data, rlght.data)­
/dcl•(•taplitter chip left.right•) 

taak "left•­
/input•(left.data)­
/output•(left.errora)­
/dcl•(••ctrc l•t••) 

taak •right•-
/input•(right .data)­
/output•(right.errora)­
/dcl•C••ctrc right•) 

taak "•rge•-
/input-(left.errora .right.errora)­
/output•(chip.errora)-
/dcl•(• ... rge left.right chip•) 

Figure 3.1: Sample Task Description List and Data Dependency Graph 

The strategy we will UR for Parallel DRC involves distributing the design rules to 

the various proceaora. Eachpl'OCellOl' applies it. au!.et of the rules to the whole chip._ But 

e p I c is not restricted to this form of parallelism, which is called inatnu:tion partitioning. 

As hinted at in Figure 3.1, £ P IC ii well suited to tlatlJ ,..,thionirt1• Tile' multiprocessing 

DRC scheme propoeed by (Bier, Pleakun 1985) could euily have been implemented with 

EPIC. 

A simple way to determine whether or not we can expect £PI C to be able to 

enhance the performance of a given program is by comparina the sizes of the input and 

output files of each of its tub with the time it takes to execute those tub. H the execution 

time is far greater than the amount of ti.me it takm to transfer the input and output 

files between the various proceuors, then the potential exists for aubatantial throughput 

improvements using £ P IC. Of course, if all of the procesaors share a single file system, 
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then data communication becomes less of a bottleneck, and the restriction can be relaxed. 

The extent of the parallelism, and hence the potential for throughput enhancement, 

is further limited by the data dependenciea.witlaia the iuk liat. By comparing the inputs 

and outputs of each task, we can generate a data Gependenq"lf'&ph, as shown in Figure 

3.1. 

In Figure 3.1, the potent.ial parallelism ia limited to a maximum of two processors. 

ff we assume that each task takes one "tick", then by uing two processors we can do 

the job in 3 ticks, whereas we would need 4 with a single processor. Due to the data 

dependencies, a third pr<>C41BBOr couldn'.t be used at all. So we say the parallelism has a 

mazimum utent of 2. 

Proce110n Two Three 

Proc•or 4, Bj "A B c .... ' 
time= 1 1 1 

time= 2 2 3 2 3 4 

time= 3 5 4 5 

Figure 3.2: A More Interesting Data Dependency Graph and its Execution 

The most obviou way to try io determine the extent of parallelism is to find the 

width of the widest row in the graph. This worked in Figure 3.1, and clearly having that 

many processors would yield the fastest pcjesible execution time. However, by assuming 

that each task executes in one tick, we can do jut as well uing fewer processors. Consider 

the data dependency graph in Figure 3.2. The maximum extent of parallelism is now 3, 

since we can keep 3 processors bUBy at time = 2. _But the minimum extent of its parallelism 

is 2, becaue "4" can be executed by the second processor during the third tick, while the 

first processor is executing "5". e,, 1 c tries to optimise task ached uling in this. manner so 

it can get the most performance out of the available processing power. 
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3.2 Multiprocessing on a Local Area Network 

The computational model I haw Mected 9 puallel prece-lng is not unlike the 

dataftow model. Of comw, the me of w:h atcmic c:ompatUion ia eomewhat smaller in 

dataflow, so the capacity for incurring Oftrb.eMI &om conkollina the computation is also 

smaJler. Bence, I me a sipilaiaily cli....._.,,...... -.~·~e computation in 

£PIC. 

Figure 3.3: Star Netwwk Topolcv 

Ethernet2 technology ia ued u the phyaical l&JV beneath the DECnet protocol 

in DEC's local ara. networks'. Ethernet ia alllelltially a couial cable that connects each 

node on the network. A proceaor aends a menace by broadcuting it over the cable. 

Each processor receives all the Dl8118aaee and 8C&D8 them for the ones that are addressed 

to it. Conceptually, an Ethernet can provide the buia for a variety of software network 

topologies. The topology e PI C uses is a atar network, u shown in Figure 3.3. The 

processor at the center of the star, called the mater, is responsible for controlling the 

whole execution. One of the processors on the points of the star is used to provide a user 

2 Ethemet ia a trademark of Xerox Corporiion 
3 DEC ii a trademark of Digital Equipment Corporation 
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interface for the master. An interactive program called NDMITOR is run on this computer 

to allow a human to control the execution. ·The remaining pmceesors at the points of the 

star, called alavu, are responsible for executing wkUever taaks the master assigns, and for 

transferring the appropriate input and outpai files. 

There were several specific engineering factors conaidered in the decision to use a 

star network topology. The progra.ma we intend to nm .ht }Mlallel tend to have irregular 

computational structures. Their dat&depeadenq.grapluttake on arbitrary shapes, forcing 

us to spend considerable effort trying to keep each· PfOCMBel' busy. This is further compli­

cated by the computational en~ronment in whidl we nm.. Each processor it a time-sharing 

computer, and while we expect .tha,t £ P IC would~o• IM! ran when it wouldn't be compet­

ing for cycles, we can't let a loaded proceaor slowdown tile rest of the computation. Thus 

a fragile task achedullilg ltrategy would involvecallocaiin1 ach t&ik a to specific processor 

before the computation begins. A more robuai bQ acllaluling nrategy is to dynamically 

assign computable taaka io available proceuon, to al'elati'MIJ slow processor will execute 

proportionally fewer ta.ab. Fortunately, aiaee eacll tuk tak9 m much time, we can afford 

to incur some computational o'Verhead figuring out:dMt·.best strategy for assigning tasks 

to processors. A good way to do that.is to have oae procelBGr·tmming a master program 

that has total control of the computation. 

As it turns out, Uie muter does not taka very much CPU time once some initial 

preprocessing has been done. Moet of the time, m's j1mt waitingior a slave to indicate that 

it is finished with its task. The short burst of CPU time it needs to fi~ out which task 

gets allocated to the free slave is small compared to the time it takes the slave to finish the 

task. Experimentally, I have determined that the master can eiiciently share a processor 

with a slave. 

It is enlightening to look at an example which is not conducive to a star network 

topology. In regular parallel •tructures, it is euy·· to predeMrmine the best way to allocate 

processors to tasks. Synolic arrays are one way of exetuting such computations. Central 

control of each processor in a systolic array is undelirable, since there is typically a large 

amount of communication between neighboring proe•ors, but very little other commu­

nication. It is better to have each proceuor know precieely how arid when to talk to its 
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. 
neighbors than to have one proceuor take NllpOD8ihility for relaying all communication 

from the aender to the receiftr. Dueto the extnme YOlume of information pa-ing through 

it, that proc:euor would then be a ..-ere bo"1enec:k ia the com.p1ltation. 

Another clua of applications that are not well nited to the t PI C model of compu­

tation are thoee where it i.e not clear at the lltari of the paqpam encdy what computation 

will occur. The task bnakdawn ill done at l'1IJl time, raths '1lan •compile• time. H this 

is the case, t PI C will not be able to elidea~ IChe4ule the tub. 

A good example of thia ia Pan!W ISDI [An.aid tila). Ii w a master-slave star 

network configuration u its multipmcemor,. but dme iB JIG fiai1e eel of tub from which 

to generate a data dependency paph, since MDI is an . ..,. ..._,simulator. A change in 

the value of a node in the cilait ca- a simulation of the aurroaacling devices. H this 

simulation cauaea other node Y&lum to be chanpd, th.en the dericm connected to thoee 

nodes are simulated u well. Thia propaption continnea until the network aeUles. There is 

no way to predetermine mc:tly what compuiaticm will occur wt.. a giTen node changes. 

Instead, before any simulation occura, ParaBel ISDI aploita functional locality in the 

circuit by partitioning it and tending one 1ection to .a procwor. The various sections 

are simulated independently until a value on a shared DCMle chanpa. The procesaor that 

changed the node then aendl a mesa.ge to other procm1on that ah.are the node indicating 

the new value and the llimlllated time when the change ocamed. t PI C is not equipped 

to deal with this aorl of comp11tation. ll n.eeda to bow about each task in the problem 

before it can begin. 

3.3 Software Architecture 

£ P 1 C is compoeed of three aeparate pmgra.ms, llJIITOI, MASTEi, and SLAVE. Each 

is run in a separate process.. Theee proce8ll8 can be on dilfenmt computers. Normally, 

one would run the MOIITOI, MASTEi, and one SLAVE all on one procemor, since MOIITOR 

and MASTD take alIDOllt no CPU time during the computation. 

The three programs communicate by paasiq JDe8A8e8e Using VAX/VMS mailboxes 

and the DECnet interprocess communication protocol, a meuage puaing subsystem was 
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developed. It provides a uniform procedural interface to allow programs to easily handle 

a variety of asynchronous events, such as subprocesees, timers, multi-client in'terprocess 

communication, and terminal I/ 0. 

The MOIITOR is the only program with which the user interacts. It allows the user 

to initiate and control the parallel execution, and p.ropj4• a perieiically updatal display 

of the status of each SLA VE'a proceu. Fol' mme iafermatioa about the MOHITOR, see the 

e PI C /DRACULA User's Manual in the Appendix.. 

The most interesting program ii the ~ti&. U ii initiated by a user instruction to 

the monitor. The monitor creates a remote~ on .the 111Uter'a processor, and opens 

up a communication channel to it uaing the memtage puaiJl&'.,.tem. From that point on, 

the monitor is used essentially as a front end for the muter. 

open execution control file 
task_list :• empty-list() 
while not(end-of-file) do 

read task description 
append taak deaeription to taak_liat 

end while 

for each element "t1" in taak_list do 
for each ele .. nt "t2" after t in taak_liat do 

if any of ti's output• 11&tch any of t2's inputs then do 
t1 is a predeceaaor of t2 
t2 ia a succeaaor of tt. 

end if 
end for 

end for 

Figure 3.4: Algorithm for Generating Data Dependency Graph 

The first thing the master does is read the eucution control file, which contains 

all of the task descriptions. This is all the master needs to know about the particular 

application being run (e.g. DRC or Makefile). Recall that a task description indicates 

all the input and output files, as well as the sequence of operating system commands that 
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run that iaak. Completing each of the tub in ~ aecutial control file is equivalent to 

running the application. The mrMer ia claa.rgM rill distributing thoae tub among all 

the available procellllOlB eo aa to minimise the total eDedtilon time. The strategy it uses 

requires the generation d a··clata ~ ...,. fmm tJie•aecuticm control file. The 

alaoritkm 1wd ia pr•1atecl in l'ip:re 3.4. 

The 1DUW mpjptaim Ute databue of-.... A Uve ia created in response to a 

request that the UHi' giv• to the monitor. Tlwmanitair ftll&Ja tile l:equest to the muter, 

and just aa the monitor aated the m.ter, tl.e meetr,....the mt 1.,e pa-ing pacb.ge 

to create a lWlllOte proe• GD the alaft'• ·proc•or~ and ..Witlh a ccwnJtmnication channel 

with it. The __.can nq.a a slaft at any tinlll after the _...baa been created. Each 

slave has the capacity to execute cne teak at a time. Race each· slave can be in one of 

two atates: "b_,- or 9idW'. An Ullc •vu Bat and a 6.., •va list are maintained 

throughout the computation. 

The computation beaina with the root. of the graph. A tut la a ·root if it has no 

predeceBIOlB. So initially, the rooMI are placed Oil a ...... ...-.. .. :A Wk oa &he nady queue 

is said to be computable. When all of a task'• pnclece•an are ~ it ia placed an 

the ready queue. 

3.4 Task Scheduling 

do while tmre are taab left to •XKU'te 
do while (the ready q•• and tM free alave liat aren't apty} 

aaaign a alave to a task 
end while 
wait for a alave to finiah or a •create alave• .. aaage 

end while 

Figure 3.5: A Skeleton for a Taak Schednling AJgorithm 

With a list of free slaves and a ready queue, the master ~an begin the computation. 

The basic structure of the algorithm wied to control the execution ia preaented in Figure 
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3.5. 

Each statement in the algorithm corresponda. to a substantial amount of program­

ming. For example, "wait for a •lave to f iniah" implies (among other things) check­

ing the finished slave's task's successors to see if they are now computable. One statement 

which implies a good deal more is ~aaaign a alave to a taak". H the number of free 

slaves is greater than or equal to the number of tasks on the ready queue, then we can 

assign any of the computable tasks to a slave, since.. each of the tassb will be assigned be­

fore the loop falls through to the "wait ... " statement. Unfortunately, we are not usually 

provided the luxury of being guaranteed more slaves than tub on the ready queue. The 

choice of which task to assign must be made carefully, because it can have fairly profound 

effects on the speed-up factor of the parallel execution. 

A bad algorithm for choosing tasks can result in data dependency bottlenecks. 

An optimal algorithm for choosing tasks is JI P-Complete [Mehrotra, Talukdar 1982]. We 

present here a heuristic for chooaing tasks that baa beeJ,J. ohlerved. to perform optimally 

under most conditions. It requires a preproceuing step that has time complexity O(n2
), 

where n is the number of tasks. 

The first step toward discovering this heuristic is to ideJttify the goals of the whole 

parallel execution system, and how the task scheduli.Q.a al&orithm must try to help achieve 

these goals at minimal cost. The main objective is to minimise the real time (as opposed 

to the CPU time) needed to execute a set of tasks, given a fi.n,ite number of processors. To 

do this, the task scheduling strategy must keep all proceaora busy as much of the time as· 

possible. Each processor will be always be busy as long as there are computable tasks. So 

a good subgoal is to keep the ready queue as full as possible. Executing a task that has 

no successors (called a leaf) will clearly make no progress toward replenishing the ready 

queue. Executing a task that has many successors will clearly make some progress towards 

that goal, but it's still not clear how one should measure the immediacy of the need to 

execute a given task. What we do know is that we are interested in the characteristics of 

the subgraph rooted at that task's node in the data dependency graph. 

To help focus our attention on the right characteristics of a task's subgraph, we 

observe that the limiting factor of a computation is the longest path through the data 
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for each tut •t1• ill tuk_roota do 
compute height_of_tuk(T1) 

end do 

height_of_taak(T1): 
if Ti.Might l• Ht 'then retlml(T1.:beight) 
aub_IMtight :• 0 
for all aw:ceaaora •T2• of taak T1 do 

a11b_IMtigllt :• mx(aub_lleigln.lliaigll,_of_tuk('t2)) 
end for 
Ti.height :• eatiuted_encution_tiM(T1) + aub_height 
rebrn(Tl. Mip•) 

end height_of_tuk 

Figure 3.6: Algorithm for com.pum.& heicht of all tasb 

dependency graph. No matter haw many pJ0Ce801'9 &re aftil&ble, the overall execution 

. time will never be lems than the sum of the execution timm ·f!A all the tub along the critical 

path. This sum is called the heiflat of the graph. A.a the computation progreues, we seek 

to chip away at this critical path in support m oar ~ which is to minimize the 

total execution time. So the concluaion of tJUa intuitiw arpment is· that we should give 

top priority to tasb which lie on the critical path. The &pprQpriate quantitative measure 

is the height of the taak'a subgraph. Uaing the al&oritlun prmented in Figure 3.6, we can 

compute the height of each of the " tub in O(") time. 

Using the height as a priority scheme for each task does not provide very much 

resolution. In the data dependency graph generated from a sample design rule checker's 

execution control file, the estimated execution time of each Wk is 1, and the heights of 

all the tasb are integer values between 1 and 8. But there is more information in a data 

dependency graph that ia intuitively related to how critical each particular task is. In 

particular, the total number of tasb that directly or indirectly depend on a given task 

is relevant. In a sense, it is the meuure of the total fanout of a particular task. It is 

equal to the size of the task's subgraph. The algorithm in Figure 3. 7 computes the size 

of n tasks in O(n2) time. In practice, this has been an acceptable penalty to pay for the 
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for each taak "T1" in taak..liat do 
clear_exaained(T1) 
T1.aize :• find_aize(Tt) 

end for 

clear_examined(T1): 
T1.exaained :• FALSE 
for each auccuaor "T2" of Tl do 

clear_eX8.ldned(T2) 
end for 

end clear_examined 

find_aize(T1): 
if T1.exaained•TRUE then return(O) 
T1 . examined : • TRUE 
size :• 0 
for each aucceaaor "T2" of Tl do 

aize :• aize + fincLaize(T2) 
end for 
return(aize + eatimatecLexecution_ti•(Tl)) 

end f incLaiz• 

Figure 3.7: Algorithm for computiq the size of all tasks 

more accurate scheduling capability. In the cue of design rule checking, the penalty is 

insignificant compared to the time spent doing the DRC. 

Empirically, we verify our suspicion that the height of a task's subgraph is a better. 

measure of its priority than the size of the subgraph. The way to compare the performance 

of the heuristics is by simulating a parallel execution under the assumptions that each 

task takes unit time and that there are no communication costs. We then depend on 

real experiments to back up the results of the simulation. Figure 3.8 shows the parallel 

execution simulations of a data dependency graph using four processors. While this is 

only one example, by running the two simulations in your mind, hopefully you will gain 

intuition that lends support to our empirical observations. 

Now we have two numbers associated with each task: a height and a size. We use 
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Heu.rime Height Size 

Procemor A B c D A B c D 

time= 1 1 1 

time=2 2 4 5 6 2 3 4 5 

time =3 3 18 6 7 8 9 

time=-' 1 8 9 11 10 

time=5 12 11 

time= 6 12 

Figure 3.8: A data dependency graph and its execution using laeif#a.t and aize 

these as keys to keep the ready queue soried: flnt by height and then by size. With the 

m<>11t crucial tasb at the front of the queue, the task echedulina ltr&tegy is complete. The 

O(n2) operation to find the sises is run only once before the lltarl of the run. Typically, 

for design rule checker's data dependency graphs, there are fewer than 200 nodes, and the 

total time spent on the processing step in the beginning ill lea than 30 seconds. Once the 

height and size of each node is computed, they are .m to dynamic:ally guide the scheduler 

in assigning the most urgent task to a slave whenever that slave finiabee its previous task. 

The strategy performs optimally in moat C&tllL After crating data dependency 

graphs of various shapes and sises and ainmlatiq each one with a ftl'Jinl number of 

processors, only one example was found in which the heiaht/sise heuristic did not perform 

optimally: it took seven time units instead of six. This is illustrated in Figure 3.9. 

3.5 Communications 

There are two major obstacles blocking us in our pursuit of a linear speed-up factor. 

The first is the challenge of keeping each processor busy as much as poaible. For the class 

. of applications that we wish to accelerate, the task scheduling strategy introduced in the 

previous section does an adequate job. While testing £ P 1 C's application to an industrial 
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., 
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Figure 3.9: A task scheduling trial simulation where height/size heuristic is suboptimal 

design rule checker, the task. acheduling behaved well• This is discussed in more detail in 

the following chapter. 

The next challenge is that of minimizing the communications overhead. Since e P 1 C 

was designed to run on a looaely coupled multiprocessor, communications is fairly expen­

sive~ In e P 1 C, there are two ilavon of interproc1•or communication: control and data. 

The mechanism used for these two forms of communication is different. 

3.5.1 Control Communication 

Control communication is accomplished ming ~ .mre•age passing package devel­

oped for e PI C. It is based on the VMS/DECnet taak-to-task communications protocol 

[VMS 1985). From a programmer's point of view, one simply opem a channel using a file 

specification of the form: 

node"username paaaword"::"taak•commandfile" 

This causes a message to be sent on the Ethernet to node, requesting that a. process 

be created for usernau, and that that process Rn C·oaaandfile. The commandf ile on 

node should then open a channel (or invoke a program that opens a channel) using a file 
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specification of the form SYS.IET:. By writing to and reading from these channels, the 

proceaes can send mea11gea to each other. 

The above mechanism providee the neceaary cb&Dnela of interproceeeor communi­

cation in the cue where one proceea wants to create a MW procem on another processor 

and then talk to it. If two existing procw• want to eatabliU a channel of communication, 

then another strategy is uaed. When an t PI C propam (•ITO&, ldSTD., or SLAVE) is 

run, it creates a VAX/VMS mailb (VMS 1985]. A mailbox contains a global buffer into 

which any procem that knowll how to find the mailbox can write a meaage. When the 

program createe the mailbox, it ••p• a lofical name to the mailbox ao that other pro­

ceeaea can find it. By cmmmtion, ll>llTO& uea the J.ocical name EPIC$11JIITOR, MASTER 

UBe8 EPICeMASTER, and SLAY! 1111e1 EPictalave-nam. Therefore, within a single logical 

name space, there can only be one monitor and one muter, and each slave name must be 

unique. Thua when one program wantl to contact another, it opens up a channel to the 

appropriate mailbox (for enmple, monitor opw up a,ehe=nel to node: : EPIC$1USTEIL:) 

and initiates a conv~tion. By reading to and writinc from U.t chu•el1 the two existing 

prc>gra1m can commnnicate. 

3.5..2 Control Communication Requirement. 

The MASTE1l program communicatee with &nJ' number of slaves, in addition to the 

monitor. The "wait for a alave to finiah or a •create alave• •••age• line in 

Figure 3.5 requires the uae of an 1/0 subroutine that is not provided by VAX/VMS or 

the PL/I run time library. At 110111e lenl in the cocle, t.lme maat be aome statement that 

reads a record from any of aeveral 1/0 channels, returning U. m zp aad the claannel 

number of the tint channel to 8fllld a record. In Olllier' to proride this functionality, an 

asynchronous read request is left pending on each channel using the VAX/VMS system 

service SYS.QIO. When the channel responds, a subroutine specified as a parameter to 

SYS.QIO is called at the interrupt level. This subroutine is called an aa,ncl&ronoua srstem 

trap (AST). It is the AST's responsibility to append &he mew1ge that wu received onto a 

queue of mesaages, set a global event flat that iadiea&es that a me•aae wu received, and 

requeue the SYS•QIO. 
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When designing a large, complex system such as t P JC, the existence of ASTs 

poses a toughsoftwa.re engineering problem. Since ASTs execute at a higher priority level 

than mainline code, we cannot aenerally assume atomicity in· a sequence of operations that 

updates a data structure. Foruample, if one is in the-process of deleting an element from 

a doubly linked list, and an AST is trigered.that modifies that list, the list could be left 

in an inconsistent state. In short, ASTs are ·a power tool, and' When power tools are used 

carelessly, they can kill4 (or at least caue endlela·Jtoun ofdebuggin1). 

There are two strategies for ensuring harmony in data structures that are shared 

between mainline code and AST routines. The fim ii to disable. !\ST interrupts with a 

system call wherever synchronous code acceues a data structure that it shares with AST 

routines. The disadvantage of this approach is that while interrupts are disabled, the user 

process can't respond to mNMgea it receives from other processes. H the sending process 

uses asynchronoua BITEs, then it could queue up an arbitrary nUm.ber of messages while 

the receiving process remaina in "disabled-interrupts" mode. Depending on the buffer size 

parameters selected by the system manager of the computer facilities, the buffer could 

overflow. If the sending· process uses synchronous. 11\ITBa; meaning the RITE statement 

doesn't return until the reader's AST bas been trigered, then the sender will be delayed 

until the reader's interrupts haw been ~bled. In this case, if the teader has interrupts 

disabled while waiting for the "message-received" event flag to be set, a deadlock could 

occur. 

The other strategy is to carefully code the routines that access shared data struc-· 

tures so that they are never in an inconsistent state. It is p08Sible to do this for singly 

linked lists, but not doubly linked lists. This is a fairly seriOUi!I restriction, since it is diffi­

cult to delete an arbitrary element from the middle of a singly linked list. One way around 

this is to share only a singly linked list between mainline and AST-level code. The only 

operation ASTs get to perform is appending to the tail of the list. All that the mainline 

code does with that list is remove messages from the head of the list and place them in a 

more versatile data structure that is safe from ASTs. 

The message passing facility uses a compromise between these two approaches. 

'-Power tools can kiJ1• is a maxim credited to Brian Reid of Stuford UniYersity 
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Since t PI C requires both the capability of reacHng a .,....,e from the first channel and 

the capability of reading a 1W8ftP from a specik chf.Mel, ~ shared list lau to support 

the ability to scan throuah the Dai and __,.. the_~ mcmap. This could 

have been implemented 1llliDa the laUer ..._,~ .lndc .• foBcnring lltratesJ wu more 

convenient to code, and ia practice did D4K ...... aoticable pedOnnance penalties. It 

shares only one structure between AST'.'"level rfttiw aad mainline nsutiw: a doubly 

linked list structure. lntemlp&a an GJ:a1y •>w »r..tillil tia:a-it al•to Ind and remove 

the appropriate mea .. e. In practice, &adillc t.M appropriMe mm1ap in the list was 

not expensive, since the list g....Uy hacl lw·~ 10 m.a IC•• '•Bemcmrac the message 

amounts to moving a few poimer& The by to nallias tbe-m.&ble-iAterrupt• strategy 

work is to avoid doina &nJ 1/0 caUa while bdemlpta are diabled.-

The primary motiw.t.ion for writiq ~ m JJ1ee JMllZ"i• pacbp was to eliminate 

all asynchronous code from the ~ of e p 1 c. Ill eddititm, tlle mui1p peeing pedage 

provides a uniform ~-procedural iaterface for •wtHnc ..,.adlronou communi­

cation between a procw Pt and the folowbac eMitie.: 

• Independent proc••• that .Pt aeatecl • aaotllmr aocle 

• The process that crea.W .Pt &om ..... aodie 

• An independent, already exiatiog procw oa aaother aode 

• Subproceues created by .Pt 

• The terminal attached· to Pl 

• Timers created by Pl 

The single moat sipiflcant function it preTidea i9 t.hM of reeding from the first of 

any of the entities that aenda a memap. 

3.6.3 Data Communications 

Recall that t PI C is a lllaell around an a:llting software system. t PI C divides the 

execution of that aoftware into tub. Each ~ theie tub communicates using disk files. 

While the problems to which we are restricting oune1vel do not use extremely large disk 

files, experience has demonstrated that the performance improvements we reap through 

parallelism are moat aeverely limiW by ·the speed with which we pam data between master 



-and slave. The message passing facility described above is not as fast as it could be, since 

considerable effort is spent providiq the functionalily required ·by t PI C. Hence, if we 

were to use the message pwiq facility for data· communkation, we would suffer from 

suboptimal performance. In addition, the data contained in the input and output files may 

be represented using any of the file record structuna available in VAX/VMS. The message 

passing facility is restricted to dealing with dwacter atriaga. The standard VAX/VMS 

interprocessor file copying commands provide the appropriate functionality at the fastest 

possible speed. 

To copy a file from one VAX/VMS sptem to another, an· interactive user would 

type 

$COPY node1"uaerna•1 paaawordt•::clevice1:[directory1Jfile1.ext1 -
$_ node2"ua•rnaa2 pa1aword2": ·: ch:yic.'2: (dinctory2] f ile2 . ext2 

Naturally, if you were typing this on nocle1, you would omit the accounting infor­

mation for it. In general, VAX/VMS allowa the inclusion of a node specification (with 

accounting information) in any file specification. Opelimg a file with an account specifica­

tion causes a process to be created on the remote node using the supplied usemame and 

password. That process efficiently hand.lea the 1/0 calla made to the channel. The re­

mote process creation is functiOll&lly iranapar:ellt 10 the uer, except for the time overhead 

involved. 

The way t P 1 C executes the VAX/VMS COPY command is by using the message 

passing facility. The facility provides a call that create. a ~~ and keeps it around. 

Sending a message to the subprocess causes the text of the message to be interpreted 

as a VAX/VMS command. When the command finishes, a message is "sent" from the 

subprocess to the main process. This way, the main process can be doing other things 

while the subprocess is executing the command. 

Each slave is responsible for bringing its task's input files from the master's filesys­

tem to its own, and for sending back the output fll• when a taik is completed. Buffering 

all the data files on the master is obviously less efficient than having each slave trans­

fer its task's input files directly from the slave that generated them. t PI C's approach 

has as much as twice the file transfer overhead has the optimal approach. The reason 
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£PI C buft'era all data fi1el at the master is ao that If a llave's procellOr crashes, then its 

work won't be loet. In tlMt da89 ·of probl.ema for 1tlddr t P 1 C wu deeignect, the cost of 

re--executing one tut u.y be ar-ter than tile total c:mt·afall the &le traDifen for the 

execution of fl'f«y tut. 

£PI C spenda aome effort trying to minjmju tile number of file· transfers. The 

:master keepe a data.hue al all the lies daat .ftllide Oil wit slave's tDeeyatem. Whenever 

a task is aaaiped t.o a slaw, it ia told whicli of tJ&e.inpat; Ilea-it already has, so the slave 

can suppreaa the COPY command. The effectivene111 of thi8 atrategy is further enha.nced 

by modifying the tuk acheclaliq alpriUml·:tOltab into account what input files for each 

computable task are already resident on a free slave's fileayatem. Specifically, the ready 

queue is composed of a Im of IGM ,,.,,.,,._ ...,. .t.llk in a -liven task poup hu the same 

height, but varying aiw. The groups are arranpd In aea+•n1 order of height, and the 

tub within each aroup are IOrted in ~ Old.- of .me. When a slave becomes free, 

the tmt task aroup is IC&DDed to flDd the tut &hai .W nqaire ihe fewemt file transfers to 

execute. Thus the task echeduJina ma&eo ii b....t on 41d«dnc the rwiJ queue by three 

different characteriatica of each tuk: 

~-· The hei&ht of the tuk'a aubpaph (CNnP"tal ow) 

2. The number al input fila ~ t.be·-. Gl111 dr ... (computed on the fly) 

3. The me of the task'• aubsr&Ph (computed once) 

3.6 Fault Tolerance 

When the word "timellbarina" is mentioned to aomeone who bu recently aurvived 

an undergraduate Computer Science curriculwa, the-Ump that first eaten hia mind is 

that of an overloaded CPU. £ P !C's dynamic taat .eched.uliq alpiUun inaurea that a 

relatively heavily loaded proceaor will be •ni&D..t piQpQrtionally fewer tub. Another 

"timesharing" flashback is that of the downed computer. In thGle daJB, when the CPU was 

down, it was of course no longer pcaible to 1et ~ uefu1 work done (except maybe a trip 

to the vending machine). With distributed COJQ.pui.tiQJl, if one p:roce810l' 1oes down, the 

execution should gracefully continue with decrade<l petfon:nuice. By outlining a typical 
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scenario, the need for this requirement will gain more substance. Assume t P 1 C is being 

used to accelerate the DRC of a chip that might ordinarily take several days on a single 

VAX 11/780 computer. Ten VAX computers are being used to (hopefully) finish the DRC 

overnight. If one· of them crashes (or is brought dqwn for p~ventive maintenance), t P IC 

ought to continue the. computation .at 90% ~ its' former speed .. If e p 1 c gives up its 

unmanned computation, the layout designer t1Ja:J Wl l)ebbld a whole day, assuming the 

ten VAX computers will be far too loaded~ft»r long ~interactive jobs during working 

hours. 

Giving e P 1 C the capability to handle crasaed slaves is fairly atraightforward. The 

scheduler doesn't statically· prepartition the aet of ta.ks, it just usigns priorities to them 

so they can be easily wigned to slaves on the IJ. If ~he DMll•P paasing facility detects 

that a slave crashes while it is running a task, that tuk ia placed back in the ready queue 

according to its priorities. If the slave completed any tasb before crashing, the output 

files are buffered in the maater's file space, so the work won't have to be redone. 

At any time during the course of a parallel computation, the user can go into 

MONITOR and create another slave. Again the dynamic task scheduling algorithm makes 

it easy. The new slave is added to the master's slave database, and (recall Figure 3.5) is 

immediately assigned a new task. Thus if the user is watching when a slave crashes, then 

when the machine is brought back up, the user can~ the '1a.ve process. 

A predecessor to £ P 1 C called PDRC (Parallel o.ip.. R.ule Checker) experimented 

with a mechanism to periodically probe a crashed sla.veij)roceB8QI' to see if it had come back 

up (Marantz 1984]. When the processor responded, Pl>AC w~ aut0JI1&tically regenerate 

the slave. This worked well most of the time, but bee-a.me very .f,ustrating while debugging. 

If a slave was misbehaving for any reason, term,inatN. the ~ would be futile, since 

PDRC would immediately sense that the processor was still up, and would create the slave 

again. Nevertheless, this functionality should eventually be brought into e P IC. 

Currently, e P 1 C is not capable of continuing a computation if the master's pro­

cessor crashes. It is, however, capable of restarting the parallel execution where it left 

off. After the master first reads the execution control file, it goes through a process of 
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check_taaka :• taak_roota 

while •cuck..tuta• ia no• empty 
Tl :• firat ele•nt of check..tub 

· remon Tl froa c11eck..tub 
if all of Tl'a 0111q1U fil• ~t ~ 

if all of T1'• outpat fil•• wr• lut reviaed 
after each of Tl'• 1npa1r ttl•• then 

call 1iuk..fiai:abed(T1) 
end while 

tuk_finiaud(T1): 
for each aucceaaor •n• of taak Tl do 

T2.prec1eceaaora_coapleted :• 1 + T2.predaceaaora_coapleted 
if T2.preclitc•••••-C9.pl•tecl111 n.piredM .. aora then 

append T2 to chKk..tuka 
end for 

end tuk..f iniabed 

Figure 3.10: Algorithm for determinin& which \ub have already been done 

eliminating tub in a manner ftrY eimllar to that of Unix' llabfil•• (and VAX/VM.S 

MNS4S). The algorithm med is prwnted in Figure 3.10. 

For most applications, it would be sufllcient to merely check for the emtenee of a 

task's output film in order to mark it u complete. But llnce it wu not hard to compare 

the revision dates of the input and output Itel~ and since doing so gives t PI C the basic 

functionality of ab, it WU implemented. Thull amna e, I c the functionality of make 

was as euy u conftl'ting the 11J11t&x of tile MaUfile to that of the execution control file. 

6Un.ix ii a Vademark of AT•T Bell L&bontories 
8 MMS ii a U'ademark of DicSal Bqaipma' Ccirpora&ioa 
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S. 'I Error Recovery • 
e p 1 c tries to address the problem of how to proceed when a slave's subprocess 

fails to properly execute the task it is civen. A failure of this nature is detected in one 

of two ways. The message passing system will return the VAX/VMS error code if a 

problem was detected by the program run in the subprocess. H the program is not a 

VAX/VMS layered product, the error code may not aa.y very much, but hopefully even an 

independently written program will abort by aipaJliJJg an error rather than terminating 

normally. ECAD DRC, for example, behaves in this IJlA»ner while remaining portable to 

other operating systems by dividing by zero whenever a problem is detected. The other 

way an error is detected is by checking for the abaenae of any of the task's output files 

when the task's DCL commands are finished. 

In the past, the cause of an unsuccessful tuk execution has stemmed from a variety 

of sources. Sometimes the error is a reflection of the state of the computational environment 

of the slave's node. Specifically, a library file or executable image could be missing from 

a system directory. Sometimes the error is due to a poasibly transient condition on the 

slave's node, such as the lack of a resource needed to execute the task. Often, when one 

slave failed to execute a task, another was found to be capable of completing it. 

The strategy implemented by e P 1 C is to put a failed tuk back on the ready queue, 

and keep track of how many times it has failed. When this number reaches a certain 

threshold, currently defined to be 3, the task is deemed uncomputable, and is removed 

from the data dependency graph, along with all the tub in ita subgraph. 

For certain potential applications of e PI C_, the cause of failure for any task is 

be more likely to be illegal or erroneous input files. This is most likely the case when 

the application is to compile and link software. H e P IC detects a failure in a source code 

compilation, it is a waste of time to try it again three times before deeming it uncomputable. 

The right solution is then to reduce the task failure threshold to 1. The first time a task 

fails, it will be removed from the data dependency graph, and the rest of the tasks will be 

executed normally. 

Each slave also gets a counter, which is incremented whenever it fails its task and 
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decremented whenever it completes its tuk. H th.is cou.mer cm•• a threshold, currently 

defined as 2, then t PI C destroys the slaves on the grounds that it is a waste of time to 

be Ul!ligning tub to it if its going to fail more tub than it completes. 

This computer resource ma.nagement strategy is anaJC.ous to human resource man­

agement. A manager will a•gn the moat reapouibility to his moat productive employees. 

t PI C's strategy could be extended to UBe more reaolution in an attempt to imitate human 

managers. Currently, each alave is essentially treated u an equal. Slaves a.re picked from 

the "idle slaftll• list to execute the highest priority task. If there is more than one slave 

in this list, then the slave that bu cached the greatest percentage of the highest priority 

task's input files gets the job. It would be interelting to implement a scheme where the 

slaves were ordered according to their past productivity. When selecting a slave, weights 

would be placed on the number of files it already hu, the number of tub it bas completed 

so far, and the number of tub it baa failed eo far. 

3.8 VAXcluster Support 

A V AXclUS'ter is a group of up to sixteen VAX computers connected to a single 

file--system. Thus the file 8)'l\em loob exactly \he aame when you are logged into any 

VAXcluaier member. £ P IC supporta the uae Gf VAXcluUen. By imuing a command to 

NOIITOll, a Wle1' can specify a list of node namee to define a VAXcluter. A database is 

maintained to keep track of where all the relevant data files are in the network. The a~ruc­

ture of the databue reflects the file sharing between V AXduatered nodes, and provides 

for any number of di8crete VAXclusten: 

network-database • liat of Y.Aicluater-databaa•• 
Y.Aicluater-databaae • liat of file-11p9elficationa 

The file-specification in the V.Aicluater-databaa• cannot include a "node: : " 

specification, but can include a device or directory. Computers that a.re not VAXcluater 

members are represented in the database as aingl&-node VAXclmtera. Thus an arbitrary 

environment of VAXcluatered and independent nodes is supported. 
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• Each slave entry in the master's database contains a pointer to the slave's node's 

VAXcluster. So if the master and a slave are on the same VAXcluster.and are connected 

to the same device and directory, the master will know that the slave will never have to 

copy an input or output file. If they are on the same VAXcluster but connected to different 

devices or directories, the master will know to instruct the slave to use a local file transfer, 

and thereby save the overhead of creating the foreign -process and moving the file over the 

Ethernet. If two slaves on the same VAXcluster share, the same device and directory, the 

master will understand that they share the file space, and that one slave will never have 

to copy a file that was created or copied by the other. As of now, no advantage will be 

gained from two slaves on the VAXcluster with different devices or directories, unless the 

master is also on their VAXcluster. 

Thus it is highly advantageous to have each slave on a VAXcluster running out 

of the same directory. If the muter also uses that directory, then there will be no data 

transfer ouerhead for those slauea. This eliminat_es the single most significant bottleneck 

in the parallel execution. 

The only legitimate motivation for running VAXclustered slaves out of different 

directories is if the application software has naming conflicts with temporary files it uses. 

Two processes running the same application program may both be trying to read and write 

a temporary file of the same name. By running the two processes out of different default 

directories, the naming problem is resolved, and e PI C will still run, albeit with more data 

transfer overhead. Another motivation is as a workaround to a bug that may exist in the 

application software. If a single input file is used by two tasks, and both those tasks are 

executed at the same time by different CPUs in the same filespace, then the second process 

to open the file is subject to a file locking error. In VAX/VMS, any number of processes 

can open a file for read access. But if one process opens a file for read/write access, any 

other process attempting to access that file will get a "file locked" error. The problem 

occurs when a program that is only interested in reading the file erroneously opens it for 

read/write access. 
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3.9 Performance Monitoring 

In order to support the claiml made &boot the eftectivene1111 of the taak scheduling 

and file tr&Dlf'er optimip.tiom, it wu necemal'J to pnenie d&tiatias for each £PI C run 

concernina the b:rakdown of where each slave'• ijme wu spent. For the purpoeee of 

performance monitorins, each slave is ahn.11 in oae of. four dates, u deacribed below: 

EXEC: Executing a task. 

FILE: Transferring an input or output file. 

IDLE: Waiting for a tuk to become compuu.ble, but not FREE. 

FREE: 1. The execution is in its Int .tapm, -..t the •ta dependency graph hasn't 
widened enaqh to allow all sl&'fti ·.to 1MclJi .... u.etul work. 

2. The execution ia in its lut nae-, uad there.eno iDore tUb left to execute. 
The execution will be tbliahtd • aooa,•-illie ._ ._ tJIAi ia executing now 
finiahea its current tuk. Free .... are not killed became if an executing 
slave'• Pl'OC•• a-., a ftee tlllaWL......U be IWd&ble. to tab over the 
tuk. 

The distinction· between •FREE• and •mLE• ia motiT&ted out of fairness to the 

. taak scheduling aJaorithm. We are interenecl in id.mfJing thoee. ti.Jms when a slave 

remains idle due to an un1riae tuk tcheduJms Clecimion.. Tnici.Dy; data dependency graphs 

have a small number of roots, but widen out quite a bit to r--1 more parallelism. There is 

nothing a task scheduling aJcorithm can do to leip all the lla'ftB busy during the execution 

of the roots. Additionally, at the end of. the compatadon, it ia impmaible to keep each 

slave bWIJ if there are DO more tub to execute. Thu8 the ave ia claaitled u ·FREE· if 

the cause of its inactivity is not a achecluJins decilion. "IDLE" time is what we want to 

keep track of to judge the tuk ~uliag performance. 

Each slaw ia iwponlible for keeping track of. its own performance statistics. A 

performance monitoring nbroutine pacbp wu built ming VAX/VMS system services 

for keeping track of the varioua counters for CPU time and elapeed time. The slave uses 

the me1B&ge passing facffity to spawn a aubprocms to do the file transfers and execute 

the VAX/VMS commanda med to execute each tuk. Thm the SUYE program runs in a 

separate process from the slave's task, and is free to spend whatever time it needs to keep 

track of the subproceu. 
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-Periodically, the slave sends the master a one line summary of its progress. The 

master then relays this information to the monitor, which displays the information on the 

user's screen. The user can control the period at which each slave sends the information 

by issuing a command to the monitor. 

At the end of the computation, each slave sends a detailed summary of its statistics, 

including: 

• The total CPU time and elapsed time it spent in each of the four states. 

• The number of tasks it executed. 

• The number of tasks it failed to execute. 

• The number of files it transferred. 

• The number of files it avoided transferring due to file transfer optimization. 

• VAX/VMS Statistics such as virtual memory mage and page faults. 

The master takes each summary that the slave provides and formats it into a table. 

In addition, the master makes its own contribution to performance monitoring. Whenever 

a task is started or finished, the master notes the current time and the name of the task's 

slave. At the end of the run, it generates a graphical journal of how the run progressed. 

The graph is organized by asaigning a vertical colwnn to each slave. Each column contains 

a series of diamonds which represent the tasks executed by each machine. The height of 

each diamond is directly proportional to the time it took to execute the corresponding 

task. Arcs are drawn between diamonds wherever a data dependency exists between the 

diamond's tasks. The left edge of the graph is scored with labels indicati~ the elapsed 

time at that vertical poin~ on the page. 

There are two useful pieces of data to be gleaned from that graph. It gives us an 

intuitive feel for how the execution was distributed among the available processors. In 

addition, vertical space between the diamonds in any column indicates that that column's 

slave was either idle or transferring files during that time. The slope of the arcs ending 

at the lower diamond gives us intuition about the reason for the space in between the 

diamonds. A nearly horizontal line indicates that the slave was sitting idle waiting for 

a task to become computable. A line with a greater slope indicates that the slave was 

waiting for the input files to the task to be shipped over the network. 
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Appendix C contains eumples of 8UJXllD&lY tables and graphs for several runs of 

EPIC. 

3.10 Results 

No conclusions can be drawn about the overall performance of t PI C without ref­

erence to a specific application. The following chapter diacUlleS the application of t PI C 

to VLSI design rule checking, circuit extraction, and llakef il••· 

3.11 Future Extensions 

In this section, several exienaiona to £PI C are cont;empla&ecl. A fairly straight­

forward extension is to delete intermediate files as soon as they are not needed. This is 

not difficult to implement, except when it is combined with the another straightforward 

extension, which is to avoid butreriDg intermediate m. at the· muter. The buffering pro­

vides a redundancy that is needed to avoid repeating work that is lost due to a crashed 

slave. If both thel!e extensions are implemented, and if a slave crashes, we may find that 

we have "burned.our bridges behind us•: the &Jes needed to redo the slaves work may not 

exist anymore, pollllibly forcing us to pop back to the roota of the data dependency graph 

and effectively start over. The motivation for thel!e extensions is di8c:uued in the following 

chapter. 

Another extension is to bring more intelligence into the choice of which slave to 

assign to the highest priority task. Most of the time, there are plenty of tasks to execute, 

and the master is waiting for a slave to finish its current task. But data dependency graphs 

that have narrow sections, such as the initial aeparation stage of a "divide and conquer" 

application, may be run more efticiently if the mod powedul computer is used for the 

bottleneck task. 

One flashy feature that would be relatively easy to add is the ability to revive old 

slaves whose processors crashed and were then brought back up. As mentioned before, 

e P !C's predecessor, PDIC, had this capability. 
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-A more substantial extension addresses the problem of continuing the computation 

even if the master's proceuor crashes. It involves the use of shadows: A shadow runs on 

a different processor from the master, though it could share a proc~r \\'ith a slave. It 

maintains a database of slaves and tasks. Using the message passing facility, it monitors 

events as they happen on the master and updates its database accordingly. If the message 

passing facility detects that the master has crashed, the shadow contacts the slaves and 

takes over control of the computation, thus becoming the new master. If the master and 

shadow are VAXclustered together, then the transition is conceptually straightforward, 

since the master's buffered files are still accessible. If they do not share a VAXcluster, 

then the shadow must actively copy the master's buffered files as they are created. 

Shadows were not implemented in e PI C due to lack of time. However, it is unclear 

whether they would actually be used in practice if they existed. They help make e PI C 

fault-tolerant by adding redundancy, but in the case of VAX computers that are not 

VAXcluster members, they do this at a considerable cost of disk space. 

Another substantial extension attempts to reduce the penalty of data communica­

tion. The concept is analogous to that of inatruction pre/etch. Based on the observation 

that network file transfers are more 1/0 bound than compute bound, e P IC would attempt 

to predict what task a slave would execute before the slave finished its current task. The 

slave would then retrieve the next task's input files in a separate process. Presumably, the 

slave's execution process and file transfer processes would not detrimentally compete for 

cycles within the slave's processor, because they use ditrerent resources. 

Another related technique is dela11ed reporting. Currently, when a slave completes 

the execution of a task, it immediately proceeds to transfer the output files back to the 

master. Only when the transfer is complete does the slave notify the master that it is ready 

to execute another task. By notifying the master as soon as it is finished with the execution 

of its current task, the slave can be assigned a new task while it is still transferring the 

old output files. This approach is most effective if the slave already has the files it needs 

to execute the next task. Hence it is an ideal companion to data pre/etch. 

Data prefetch is difficult to implement because it involves predicting the best task 

to give to a machine when the execution is in some future state. The use of this technique 
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would most likely require altering the task scheduling strategy. While these enhancements 

are interesting topics for future research, the potential gains will diminish as VAXclusters 

become a more popular vehicle for coarse multiprocessing. 
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Chapter 4 

Applications 

ol:,J;t-.,.~. -'.< 

' 

This chapter discW1BeS several a.pplicationa of t PI C. Methodologies are presented 

for automatically genera.ting an execution controliBe for-eadtappllcation. Results are given 

for various cases of each application run on seve!V ctifferent imtltiproceasor configurations. 

A comparison is made between £PI C with ECAD's DUCULA serial DRC program 

and ECAD's Parallel DRACULA. 

4.1 Design Rule Checking 

The challenge of adapting DRACULA to be 4-.nbuted over a network of VAX com­

puters using e P 1 C lies in gentrUiq the exectaUon c°'*°1 file from the ECAD rules file. 

In order to do this, we have to uncl .... d the meoh•1dcs of .how DRACULA is normally run 

on a single VAX computer. The VLSI PtoeelS eagjMer defin•. the geometric design rules. 

The VLSI layout designer lays out the chip according ~ the Gesip. rules, thus generating 

a file in some standard layo'1t deecripijon la..-.., audi aa·OD' (Mead, Conway 1980} or 

GDSII1• A programmer must then specify the, proc:em. ea1h>eer'a design rules in the Ian .. 

guage defined for that purpoee by ECAD. Theee nda ·are feel to ECA.D's preprocessor, 

PDRACULA, which generates the VAX/VMS ·coma:nand &le which runs all the VAX/VMS 

executables that implement t.he statements in the rulaJ file, hence running the DRC. Typ­

ically, the command file is submitted as a batch job. 

1GDSll ia a trademark of G.E. Calma CorpCll"ation 
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To maximize efficiency, ECAD rearranges the statements in the rules program. If 

any individual DRC program is called by more than one rules statement, then ECAD 's 

preprocessor tries to execute thoae statements together with one call to the program (while 

obeying data dependency conatraints) and thereby minimise imap:~tNdiou. Depending 

on the value of a switch set in the rules file, the preprocwor may attempt to rearrange the 

order of execution of the rules program statemenu and delete temporary files to minimize 

peak disk space usage. 

Unfortunately, all theae optimisatiom deplete the extent of the parallelism by in­

troducing new data dependencies. By deleting intermediate disk files after they are used, 

the preproceuor introdlJQI a new OOD11vaint ~tiaa tke ~-of the execution of the 

rules statements. But the. pbilG8oplq behia4 l PI C la to 11a whateYer hardware you have 

available to aolve a specific peobiem:M ~ •J'O'lcaL We-.-:willing to sacrifice disk 

SJ>'.Ce in order to achieYe mnimal sp11il. It ilr 'fl'Grfilt·....._:tlat IP IC may not be able 

to DRC large chips if there is jut enough diak apace te.46a llmial ran uing ECAD's 

optimized file deletiom. 

As mentioned in the previous chapter, it -.Id .-~ hard to modify £ P 1 C to 

optionally delete intermediate film once they are not aeed.t. This would bring e p 1 C's 

peak disk space ...._. down ~·· But ..... t·P'I'C lll:ltedules so u to minimize 

execution time, ratller tllan cliBk lp&Ce, it 8'iU wa"ll•llt .. "M litiiJ' u an optimised serial 

DRC. To further c:be the pp, l 11C coaW. IJe llMll8u·140aM4 9'oriDg every intermediate 

file on the master's . ...,..._ 1mtw1,. a._. wo1li¥e0pt it. ~. input files directly 

from the slaft that produced ··tlaem (or ftom tllie m•liei'lf tlle·tlll6 ia a root node in the 

data dependency graph). hlhs tm laa...,CM:.....,eepy·itar tlak'routput files back to 

the muter, the muter woahl jut·_.. ....... tile ·Sarlliae.~· l, IC coahl then copy the 

final output files (auch u tile DllC enor.........., aad ~ llhill) back to the master's 

filesystem. As mentioned ia the prwioas CM,_~ um woralil rit down· the 1lle transfer 

overhead by u much u a factor of two. The> ............. hti•'aulted slave's previons 

work would have to be redone. 

A more practical consideration about the preproceaar is that it'• rea.rra.ngem.ents 

of the command file make it mechanically difticult to identify the VAX/VM.S commands 
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Fragment from a DRC rules program: 

AND POLY DIFF GATE : Figure out the gate area 
WIDTH GATE LT 4.0 OUTPUT GWID 32 32 ; Gaitie wi11th >• 4u 

Corresponding execution control file fragment: 

task "AND POLY DIFF GATE : Figure out the gate area"­
/IHPUT •{POLY.DAT,-

DIFF.DAT)-
/OUTPUT•{GATE.DAT)-
/DCL• C"•GSTS.LOGil:MOSIS.COM 32") 

task "WIDTH GATE LT 4.0 OUTPUT GWID 32 32 Gate width >• 4u"­
/IIPUT •{GATE.DlT)-
/OUTPUT•(GWID32.DAT)-
/DCL• C"•GSYS.LOGil:NOSIS.COM 33") 

Corresponding execution command file fragment: 

$GOTO 'Pt' !Jump to the task number specified aa first parameter 
$ ! 
$32: !AND POLY l>IFF GATE : Figure out the gate area 
$RUN SEGCAD$ECAD:LOGICAL 

2 POLY DIFF GATE 1000 MIC 0 

$EXIT 
• ! 
$33: !WIDTH GATE LT 4.0 OUTPUT GWID 32 32 Gate width >• 4u 
$RUH SEGCAD$ECAD:SPACIIG 

1 GATE GATE 0.000 4.000 MIC 1000 OS 
00000000000 

lfOT-COIJUHCTED 
1 GWID32 GWID32 32 32 100 

$EXIT 

Figure 4.1: MOSIS CMOS DRC rules fragment, ECF fragment, and COM fragment 
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needed to execute any particular task in the rules tile.. For Ws reason, directly decomposing 

the preprocessor's command file was not a successful BtJMegy. 

A better approach is to decompoee tile rul• program and run the preprocessor 

separately on each statement. Every command file generated by the preprocessor is parsed 

to remove the extraneous initialization and error merging code. The remaining text from 

each command file is used to construct a single command file. To execute a single task in 

the execution control file, this command file is inVoted so as to execute the correct segment 

of code. A preprocessor was written to automatically convert a DRC rules program into 

an execution control file and an execution cowmand file. It ia called !CAD2ECF. Figure 4.1 

shows the output of ECAD2ECF for a fragment of a rules program written to design rule 

check VLSI designs layed out using the 4µ MOSIS CMOS PJ'()Ce88 (Mead, Conway 1980). 

Two stages of the DRC are not covered by the tub deHrihed in ECAJ>2ECF's ex­

ecution control file. It is not clear whether the initi&I aepap.tion of.~ layer from the 

layout file is an inherently parallel operation. This operation is Dl08t likely implemented 

by examining the whole layout in one pus, appeadiq io a p,,-~ layer file whenever it en­

counters geometry for that layer. One thing that ia clear about this initial stage is that the 

input file is large, since it contains the geometry for every layer. It would not be efficient 

for. a slave to move this ·file acrma the network, perfonn, the itdtm.l separation, and copy 

all the layer files back to the muter. Instead,~ .... cncuted by the master, using 

a subprocess. Further preparation of each layer ia deacribed in the execution control file, 

and executed normally by the lllavea. This preparation includes the full instantiation of 

the geometry in the la"91', a polygon aorting step, and the merging, together of overlapping 

polygons. 

Similarly, the final stage of the DRC is executed by the master's subprocess. This 

stage involves compiling the information generatej by the execution of each rule into a 

summary file and an error layout file. Conceptually, this step could be done in parallel 

by merging together the individual error rue. ia • biauy Uee. If each error file has to 

be shipped over the network to a slave, this would probably not save any time. Using 

a VAXcluster, there is more of a potential pin. Unfon11n&teiy, there ia no way to do a 

multi-stage merge using the DRACULA programs. The input files for the sllmmary programs 
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are data files with an unknown record structure, and the summary files can't be converted 

back to the input format. 

4.1.1 Predictions 

According to the data dependency graph (Appendix B) for Digital's CMOS process 

rules, the maximum extent of parallelism is very high. After the execution of the tasks 

in the top row of the graph, which do the initial preparation .of each VLSI layer, and 

the execution of the tasks in the second row of the graph, which mask out the geometry 

that is not to be checked, there are many tub whoee outputs_ &re not used as inputs by 

any other tasks. Those correspond to simple DRC rules such as single-layer width and 

spacing checks. We call them "terminal tasks". £PI C's task scheduler does very well in 

the presence of a large number of terminal. taaka. They. ~ ~utable early on in the 

computation, but their excution ca.n be delayed until .a proc:-.or has nothing else to do. 

They help "fill in the gape" of processor idleneu. 

Proceeeon 1 2 I • 6 • T • • 10 11 12 11 1 .. 16 11-11 20-oo 

Tlclr• 126 .. a 12 26 21 11 11 H 11 12 11 10 • I T 

Speedup la 2a ... I.ta 6a •• ..... T.la I.ta .... 10.u 11.u 12.6a 11.ta 16.la IT.ta 
-::-

Figure 4.2: Optimistic analysis of DEC CMOS rules based on data dependency 

There are 125 tasks in the CMOS data dependency graph. Assuming that each 

task executes in one tick of time, a serial DRC will run in 125 ticks. If there are no 

communication costs, then with two processors, the job can be run in 63 ticks. As the 

number of processors grows, the data dependency will begin to constrain the maximum 

speedup we can hope to achieve. This is illustrated in the graphs on the comer of each 

page of the thesis (see the Preface), and in Figure 4.2. 

The most striking feature of this chart is that it indicates that up to fourteen ma­

chines can be almost fully utilized in a parallel DRC. The analysis neglects communications 

overhead, but that is not why it is overly optimistic. The fault lies is in the assumption 

that each task takes unit time. Depending on the VLSI layout, the checking of rules that 

deal with active area or polysilicon might require the examinination of more complex geo-

61 



metrical structures than the checking of rule& that d-.1 with well a.tea or diffusion implant. 

t PI C's task acheduling algorithm is equipped to deal with nonuniform task execution 

estimates, but ECAD2ECF doee not provide the estimationa. It would be interesting to sta­

tistically determine good estimatee for the execution time of each tuk. UnlOrtunately, 

time did not permit this. 

Procemon 1 2 3 • 5 6 7 8 9-oo 

Ticks 58 29 20 15 12 10 9 8 7 

Speedup 1x 2x 2.9x 3.9x Ux 5.lx 6.4x 7.25x 8.3x 
~. -? -

Figure 4.3: Optimistic analysis of MOSIS CMOS rulm hued on data dependency 

The MOSIS CMOS deaign rule aet; ill much simpler than DEC's, and hence is imple­

mented in fewer rules file statements. Thus there ill not u much potelltial for parallelism. 

This is balanced by the fact that for a chip of aBJ giftll mmpJ.nity, it ill far easier to check 

the MOSIS rules than the DEC rules. The ana1J11is of the MQSIS ,rules is in Figure 4.3. 

4:.1.2 Testing 

Obtaining consistent results for ti' IC/DU.CUU bu been difficult. We are more 

interested in the elapeed time of a DRC run than we ue in the cnmulatiw CPU time. Since 

the "multiproceseor" Ulled for the test ruD11 is jmt a aet of timeehari.ng VAX computers 

which are all connected to Digital'• local Ethernet, the respome time of both the network 

and the syatem has been unpredictable. Even la&e.at nisht,. many of the systems are loaded 

with batch jobs and high priority file .,.tem b.ckup1. 

Several steps were taken toward minimiwing ~ factors that could alter the 

elapsed time for a t.est. Exploratory test nma were coaclucted at varioUB times during the 

day, indicating that the computers were 1POBt remponaiTe Terf early in the morning. Each 

result presented here wu taken from the best of aeveral rum on a particular multiprocessor 

configuration. In addition, we tried to make the test results at least partially immune to 

the timesharing competition of other batch jobs by runnins at a higher priority. 
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Nevertheless, the slaves typically received less than 80% of the CPU, as determined 

by the ratio of execution CPU time to elapsed execution time for every slave. Various 

factors contribute to this that may or may not be relatecl to the parallel processing scheme. 

Page faults, for example, can be caused by timelharing competition for physical memory, 

which is unrelated to t PI C. On the other band, pap Mita can also be caused by the 

increased number of image activationa incurred dve.·to tile suWivision of the DRC job. The 

runs on DECnet suffer even more, became DRC program mweations are·often interspersed 

with file transfer commands, pomibly ca.using the DRO l*OIJl'&1l1 pages to be swapped out. 

It should be noted that since the meuured CPU ~·· wu generally greatest for 

the serial runs, the observed speed-up factors may be emeler than those that might be 

achieved using t P IC on a single-uaer nmliiproceaor. 

The number of processors available for teating wu limited, since several of the 

group's computers were recently upgraded from VAX 11/TtoitoVil 11/785 computers. 

From a software point of view, the upgrade ill veq tramparent. The only noticeable change 

is the improved response time. But to make ~ meaninaful mtement about the speedup 

factor t PI C provides to DIACUL.l, we wd io. cempue· che· alaplecl.·· time for a pa.rallel run 

on a fixed number of identical procel80rs to tile elapee&l 'mne for a aerial run on one of 

those processors. 

Micro VAX computers provide one pmsible aUemative. They are starting to prolif­

erate in quantity throughout the Hudson plant .and lt ia parliible to get exclusive access 

to them at night. So aasuming they all have the.amec&ID01llkt of physical memory, their 

performance should be fairly predictable. Unfonuna111y,·mmt MicroVAX computers are. 

configured with far too little di.k space and pegin1•tle space to nm a substantial DRC. 

Small DRCa aren't very informatift, since t1MJ aaaou:zrt .. of time required to execute each 

task becomes small enough so th.at the COllllDUBicatiO ou•lnad is substantial. Since 

!, PI C is geared toward ·accelerating the veriftcaU. of ·much larpr chips, data gleened 

from DRCs run on the available MicroVAX computen will be OYeriy pessimistic. 

Sufficient resources were &eR available to fully.~ a1,PJ8lictions for the maximum 

extent of parallelism in DB.C. A VAXcluster with u machiJltlll wae available for testing 

during off hours, but it c0¥i8Hd of three V.AX U/1" 40al.puten, ~o VAX 11/785 com-
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puters, and one VAX 8600 computer. In addition, three VAX 11/780 computers connected 

by Ethernet were available. Six Micro VAX ll compuM!n were al80 available, but were not 

generally capable of DRCing my benchmark. 

The results preaented here comm of £PI C runs using up to three V AXclustered 

VAX 11/780 computers and up to six independent VAX 11/780 computers. The inde­

pendent VAX 11/780 computer tests were accompli.W by not iDformin& £PI C that the 

three VAXclustered compmen ahared the ame fileQwtem. File tramfera were made with 

DECnet protocol, so the teeta sul'ered the same Oftl'hlad that would have been incurred 

if the computers had not been VAXcluatered topiher. The elapeed time from these tests 

is compared to the elapeed time for a aerial run oa oae VAX 11/780 computer. By test­

ing how well t PI C performs using just one proce11m, we Mtem.pt to isolate the control 

communications overhead incurred due to EPIC. 

t PI C's raw elapeed thw are measured &om the time the MASTEll program is 

invoked to the point after the run when the laat lllaYe ia killed. We aJao give the average 

percentage of slave time dedicated to taak execution, &le uamfer, and idle time. As 

diac:U88ed in Chapter 3, the idle time does not iadmte the time at the beainning and end 

of each run when there ia ao work for the sla'ftS to do. Finally, we give the ratio of the 

slaves' total execution CPU time to elapaed execution time, which provides a measure of 

how much our results suffered due to competioa for the CPU. 

In additioa to analysing the raw elapead tiJme, we try to determine why the perfor­

mance didn't quite match the apeed-upe preclicYcl in Fipre 4.2. Thoee optimistic figures 

didn't take into account the time required to split UM daip into itl coaat.itv.ent layers or the 

time required to merge the error reports back together. Th- times are subtracted from 

the raw elapsed times a.nd the wJJBis ie repeated ·usiDc ~ D>Clified data. The remaining 

non-linearities are small enough to be accomaW for by £PI C's overhead, and by other 

facton that are diflicult to control, mch as competioa for U.. CPU, page faulting, and an 

increased number of image actiYationa. 

According to the tests in Figure 4.4, EPIC offers a significant performance en­

hancement over serial DRACULA. I was able'° try ECAD's Parallel DUCULA on three 

VAXclustered VAX 11/780 computers using the same benchmark. The tests indictated 
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11ml(Pm 
Control ECAD t PI C /V AXcluater ! PIC/DECnet 

Processors 1 3 1 2 3 2 3 4 5 6 

8-w ijmee (in .-r9"') 
Elapsed 18350 10371 19288 10270 1<116 ,. 1170- .Boig ~17:1 5158 4462 

Speedup lx 1.8x o.~x 1.8x 2.«Jx '"-~~~x- 2.3x 3.2x .3.6x 4.lx 
- ' c -~ ·, .. 

Mter aubtracmag iniUal la7er ~ and 8nal error merge 

Elapsed 17855 9876 18793 9848 6.M,1, ;\:1a.4': ,J~~5 5276 4663 3967 

Speedup lx 1.8x 0.95x 1.8x 2.7x 1.6x 2.4x ... 3.4x 3.8x 4.5x 
~ 

. .,_,_ .· 

% File 0% 0% 0% 0% °" 4.9% 
--- :°"' ----

6.3% 7.3% 8.9% 11% 

% Exec 100% ? gg% 99% 99% N% 93% 91% 90% 88% ...... _ 
•• ~ < 

- -=~~ 

% Idle 0% ? 0.56% 0.76" o.~ 0.95% o.~ 1.5% 0.95% 1.3% 
--

- .-
%CPU 79% ? 80% 79% "" 71% 74% 77" 74% 76% 
See Page 94 94 95 97 9D io1·- 103 106 107 109 

Figure 4.4: Reaulti and analyail of DEC CMOS DRC tests 

a speed-up of 1.8 using three IX*hinee. This is 1-. of a -•~-up than was reported in 

ECAD's article [Nielson 1986}, which reported a tpeed-up of 1~78 for two machines. This 

disparity may be due to ex:ceaive competition for ·UJ.e Q~U, & f¥tor that W&I difficult to 

determine because the ECAD controller runs -.ven.l job8 _ ~ql~usly on each proces­

sor. On the average, the ECAD jobs each got 43% of t)ie QPU,_but there w~e typically 

two or three jobs on each proceaor at any given time, so it '\'188 difficult to determine how_ 

much the DRC was slowed by timesharing overhead. 

On the same benchmark, with the same hard~ configuration, e PI C demon­

strated a speed-up of 2.6. This is not conclusive, however, ~ we suspect this data 

doesn't tell the whole story for two reasom. ECAD's r•W.ta were most likely based on 

the DRC of a larger chip than the one used for thia ben.chmark, wJtlch reduces the relative 

overhead of submitting a new batch job for each task. The competition for the CPU was 

possibly an important issue, but it is difficult to determine the extqt of its effect. 

In addition to the difference in runtimes between the e P 1 C and ECAD benchmarks, 
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the tests indicate the relative versatility of e P 1 C's approach. Only three homogeneous 

VAXclustered processors were available, but six homogeneous processors were available 

through DECnet. Since e P IC is capable of using DECnet without VAXclusters, we were 

able to perform tests using more processors. The relative availability of VAXclustered ver­

sus independent computers at DEC may indicate that e P 1 C is more generally useful than 

Parallel ECAD. This may become less important if VAXclusters become more prevalent 

in the future. 

There are several more interesting pieces of information that can be gleaned from 

the data in Figure 4.4. First, we mention that since we ran the master and one slave on 

a single processor, there was a nonlinearity in the DECnet tests. e P IC notices when the 

master and a slave are running on the same processor and :!S this knowledge to "short­

circuit" that slave's DECnet file transfers with a local $COPY command. The impact of 

this short circuiting can be seen by comparing SLA VEl 's file transfer times with those of 

any other slave, on all the charts of e PI C /DECnet tests in Appendix C. 

For all the DECnet tests, the file transfer time rQSe with the number of processors. 

Not enough data is present to determine the relationship between the file transfer overhead 

and the number of processors (i.e. linear, polynomial, or exponential). 

A definite pattern was not observed for the the idle time overhead, but it never 

exceeded 1.5%. In the tests made here, no slave was ever idle for lack of work to do. 

Idle time accumulated due to network message passing latencies. We would expect the 

absolute message passing time to remain unaffected by the number of processors, since 

the number of tasks remains constant. Naturally, since the elapsed time of the DRC 

shrinks as the number of processors grows, we would expect the relative overhead of the 

message passing latency to increase. But the dominant factor in message passing latency 

is probably network congestion, which varies greatly over time. As discussed in Chapter 

3, the VAXcluster runs use DECnet for control communication, so they are also affected. 

The tests run here indicate that the speed-up factor was beginning to fall off as the 

number of processors increased to five or six. This is expected in the DECnet tests, since 

the data communication overhead increases with the number of processors. It is likely 

that the we will not be able to use fourteen independent processors to achieve our goal of 
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completing a DRC as fast as the data dependency will allow. Nevertheless, the results are 

good enough to justify the additional hardware e;¥penae in a production environment. On 

the other hand, the three processor·VAXcluster test results were sufficiently promising to 

warrant additional exp~tation. It would bein~ tQsee hoW many VAXclustered 
. ·,.-_ .. 

processors we can use before the speed-up factor bqins to fall off. 

Both the DECnet and VAXcluster results may have been mpre optimistic if the test 

case used a larger chip. Since the execution time of the DRC tends to grow faster than the 

size of the files, the data communication overhead, ~o,uld probably become less significant. 

The control communication overhead would ~ quickly, $nee it grows with the size of 

the design rule set, not the chip size. 

So far, with up to six processors, t P !C's task scheduling strat~gy has been es­

sentially optimal. Has we increase then~ of processors, inefli~ent task scheduling 

becomes a bottleneck, we will probably be able to improve the ta#· scheduling by supplying 
~.: ' ,. + < 

statistical estimations of the length of each task, b....p on, Rn,wious runs. 
; ~ . ; . . 

Thus t P 1 C potentially offers the mecha.nism to ?1lD.c D)lCs as fast as the critical 

path through the data dependency p-aph will allow. To achieve~~ goal, we need to do. 

the following: 

• Use more VAXclustered proceaaon. 

• Obtain exclusive access to them, so the test results will be repeatable. 

• Develop statistical eatimations for the execution. time of each task, so task scheduling 
will (hopefully) not be a baedenck. 

The difficulties I encountered while rumriag D:&Ce on Miao VAX computers do not 

represent an UJU10lvable problem. By confipring ti- wtdl enoath ·ph.yaical memory and 

disk space, a group of Micro VAX II computers connected by a dedicated Ethernet would 

work well as a low-coat, laigb-performance DRC ..,..... If ten.· MicroVAX ll computers 

can offer an 7x speedup for DBC ~the optimiaik: .... iaticated 9.6), then they offer a 

faster turnaround time than om VAX MOO ~:(WJdc;h:nms·rodlhJy 5 times as fast 

as the MicroVAX II computer}, for roughly $hew JllQDe$ary coet. 



4.2 Circuit Extraction 

Digital's circuit extractor (Tarolli, Herman 1983) hu been adapted for parallel ex­

ecution using EPIC in a 11JBtem called NACE (a Multiproceaing Approach to Circuit Ex­

traction) [Levitin 1986}. NACE attempts to take adw.nt&ge of the geometric locality of VLSI 

by dividing the layout into awatlaa (stripe) which &rep~ 1n parallel. Unfortunately, 

this is a much more diflicult task than it is for d.ign rule -cheeking (:gier, Pleszkun 1985J. 

It is not clear how to correctly handle the cue wlleD'a .W.til's border C?Oll8eS a transistor. 

However, by carefully chooling the swath boUDdarim, it i8 ~ possible to avoid this 

case. For a chip of sufficient size, it may not oe'Pc-1>1e to draw a straight line across it 

without hitting a transistor. For this niuon, NACE bu only been tested with relatively 
.~ ' < 

small cells. As stated before, EPIC is geared for la.rpr scale problems so that the overhead 

of control communication becon:m neglip1>1e. - --

The results as of this writing have not indicated a aipiflcant speed-up. The layouts 

were partitioned into two 8W&'th8. The mraetion WU perforllled 'aeparately on each swath 

using two slaves, and the two resulting clrcUita were ~· '°iether afterwards. In 

practice, the speed pined through paianeBam bi tile ~ phaae was overwhelmed 

by the cost of merging the circuits together. The aerial extraction actually took leas elapsed 

time than the parallel extraction and merp [Letilin:-H991.-

4.3 Compiling and Linking P...,•ma 

The autom&Qc tramlatioa m aDfil• flo.umtioa coaUol m. ia fairly straight­

forward. Writing NalldlOF WM limply a mdter of clmnain1 the . .,max of each task 

description. 

Since --WU 1ll8d to conUol pneraticm.af.tlae e p I c ~lea, and since e p I c 
is compoeed of mauy dUfereat modules, it was NU1111t,iM cfrvta for a benchmark. The 

data dependency pph for c»mpilins--1Jinldnec£PlC aia-Appeadix B. 

The chart in Fipre 4.5 8hOWll t:Jae 199.lta t* liaml&~ t1le exee11tion based on unit 

task length and zero communications cost. The shape of the data dependency graph is far 
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Proceaon 1 2 3 4 M T-9 10-18 l~oo 

Ticks 25 13 9 7 5 4 3 2 

Speedup lx l.9x 2.8x 3.6x 5x 6.3x 8.3x 12.5x 

Figure 4.5: £ P IC analysis of Makefile simulation based on data dependency 

more regular than that of either DRC rules set. Due to .the relative absence of terminal 

nodes, it was not always poeaible to "fill in the gape" of proceasor idleness. Therefore, the 

processors were not well utilized if there were more than seven of them, even though the 

minimum (and maximum) extent of parallelism. is 19. 

Control u.ke EPIC /V AXcluster EPIC/DECnet 

ProceMOrs 1 1 2 3 2 3 4 

Raw statistics (eecoade) 

Elapsed 619 630 340 253 477 392 332 

Speedup lx .98x l.8x 2.5x l.3x l.6x l.9x 

% File 0% 0% 0% °" 19% 25% 34% 

% Exec 100% 91% 96% 95% 79% 71% 62% 

% Idle 0% 3.2%' 3.9% 4.8% 2.2% 3.9% 4.2% 

%CPU 66% 69% 68% 69% 59% 57% .61% 

See Page 111 112 114 11& 118 120 122 

Figure 4.6: Results and analysis of :make epic 

Figure 4.6 shows the results of£ P IC compilation tests run on a VAXCluster with 

up to 3VAX11/780 computers and on DECnet with up to 4VAX11/780 computers. The 

VAXclustered run showed a reasonable speedup with up to three processors, but more 

tests will have to be run to see how well these results will scale. 

The tests run with independent VAX computers indicate that the compilation of 

e PI C is not sufficiently compute-bound to allow it to be efficiently distributed over an 

Ethernet. As the chart shows, the file transfer overhead grew rapidly as the number of 
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processors increased. Running parallel make over DECnet may become profitable if the 

data pre fetch and delayed reporting extensions of Chapter 3 are applied to c PI C. 
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Chapter 5 

Conclusion 

5.1 Summary 

In this thesis we have presented t PI C, the implementation of a software method­

ology for coarse grained parallel processing. It is based on a computational model that is 

applicable to a variety of different problems. We have described the characteristics that a 

program must possess in order to be accelerated by t PIC. In addition, we have described 

the adaptation of several existing applie&tiona to paralfel ccapmation 11Sing e P IC, with 

varying degrees of success. 

Parallel DRC was particularly succemful. The testa run indicate a performance 

increase that justifies the uaa.ge of the extra huclwan. Tile hue DRC program used in this 

thesis was ECAD's DRACULA, but any design rule ~that uw intermediate files could 

have been used. The stratea for running DRCs in paralW prMented here is only one of 

two promising approaches. We divided the DB.C by allocatmc ctift'erem rules in the design 

rule set to each proceuor. Also, the data partitioniq scheme of [Bier, Pleszkun 1985] will 

work with any design rule checker, and can be readily adapted to e p 1 c. 

5.2 Directions For Future Research 

The results presented in this thesis did not fully test tJ\e claims made about the 

extent of parallelism of either DRC or Makef ilea. With more time and resources, it would 
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be interesting tO try to execute a DRC as quickly as the critical path will allow. This would 

also give the task scheduling algorithm a more a substantial workout. The five and six 

machine tests showed optimal performance from the tut scheduler, but that was too easy. 

To better support the claims made here about the acheduler's near-optimality in most real 

data dependency graphs, we need to run more teats with more machipea. 

One way to further increase the extent of parallelism in VLSI design rule checking 

is to combine rule partitioning with data partitioning. Easentially, once the chip is divided 

into separate slices, several proce880rs could be allocated to each~ and each slice«>uld 

be be checked by exploiting rule-baaed parallelism. The whole computation could be con­

trolled by t PI C using a single execution control file. Another strategy would be to use a 

two-level hierarchy of star networks, with each muter reporting to the grandmater. The 

single-master approach requires a bit of effort to prevent naming confticts with interme­

diate layer and error files, but offers the advaniap of automatically load-balancing the 

computation if any of the slices finish before any « the others. 

5.2.1 Other Applications 

t PI C provides tile basis for the acceleratima tluoqla parallelism of a potentially 

wide variety of existing software. Any computation controlled with Unix Jlabfil•• can be 

automatically converted to be ran ill parallel witla. t PlC. ADD$ber VLSI CAD application 

that has the poteniial for acceleratioa via l PI C ia muk pattern generation aoftware. 

In particular, ECAD'a NDP1 eoftware w &he.w rulel Ile format and preprooeasor as 

DRACULA, ao it may wort wi'11. the ezietin1 F.CAD21Cf prepmamorwith only minor syntactic 

additions. Thia wu not explored further d• to lack of time. 

Using l P 1 C on VAXd•tem, the data commmdcatiom overhead· becomes negligi­

ble, and the set of programs that can be profitably acce1ented thtough parallelism mcpands 

greatly. One application that comes to mind is merge-aortiDg. This classic binary divide­

and-conquer algorithm is ideal for £PI C. It would be fairb' euy to adapt aa existing 

merge-sort program for use with t PI C. The constraining factor is the time required to 

1 NDP is a b'ademark r#. ECAD c:orporadoa 
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write the partial lists into disk files. But this overllead i& also incurred in serial merge-sorts 

if the list being sorted is too large to fit into phyaic:al memory. 

5.2.2 Reducing the overhead 

The disk file overhead issue .brings to light another issue. e P 1 C addr.esses a very 

coarse parallelism. The control communications overhead forces us to apply the constraint 

that a problem must be subdivided into tasb that each task a "long time" to execute. 

But E P 1 C's model of parallelism doesn't require the loose coupling of the Ethernet envi­

ronment. A more tightly coupled multiproceuorwould be able to accelerate a wider range 

of applications. The concepts used in E P 1 C cowd be applied to a controller on such a 

processor. It would be interesting to see how such a system might develop. 

5.2.3 Lessons Learned about Distributed Programming 

In the past twenty years, there have been dramatic improvements in the quality of 

the tools used for programming. In particular, the ~t advent of source line debugging 

for high level programming languages on the VAX/VMS opera~iag system has allowed the 

programmer to more fully concentrate 011 the most iAterestmg atJpects of hia task. U nfortu­

nately, this capability is often lea. acceaaible to thole. wzitiDg distributed or asynchronQus 

programs. If a program is invoked by creating a proc-on a l"em9te processor, how will the 

debugger interact with the terminal? It is p~ible to work around this problem.by having 

the remote process allocate a terminal t.bat ia directly cmmected to the remote processor. 

That is not very helpful if there are many Pl'QC-.or& or if they aM physically inaccessible. 

Much work needs to be done in the area of distributed progpuumiug environments. 

Similarly, software engineering baa advanced ~derably from the days of FOR­

TRAH and COBOL. The concepts of structured P~ll8• data abstraction, object ori­

ented program.ming, data driven programming, and so OJ1 are w~ documented, publicized, 

and lectured about in our undergraduate halls. In the course of implementing the mes­

sage passing facility of e p 1 c' less familiar methodolegies had to be adopted to insure 

consistent data structures within a single processor, and to avoid deadlocks between two 
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communicating procemon while guaranteeing nwge deliverJ. If parallel processors are 

to become a popular hardware platform, we muai learn· Jiow to program them as well as 

we know how to program serial machines. 

5.3 Conclusion 

Several factors affect how well the potential for acceleration of CAD tools through 

parallelism will scale with time. >..the complexity of VLSI circuits riaes, the extent of par­

allelism will rise due to geometric locality in the layouts, the constant overhead of e P !C's 

control communication will become negliaible, a,nd the overhead of data communication 

will most likely become less significant. Data communication will almost certainly not be­

come more significant u the complexity of the chips rises. This is baaed on the assumption 

that CAD tools have time complexity > O(n) where n repreaenta the size of the input files, 

since they must at least examine all their input. ffierarchical CAD tools are included in 

this assumption, becaue the file representation. ia hierarchical u well Empirically, the 

time complexity for flat DRC1 has been observed to be roughly O(nU) with n being the 

number of transiston [McGrath 1985). 

Another factor that wiD determine how much extra speed we can squeeze out of 

parallelism is the power ·of the proceaon on which we nm the CAD tools. The VAX 

8600 computer will nm roughly four times u fut u the VAX 11/'180 computer. Since 

Ethernet technology is used u the control COllJlllUJlications medium for both processors, 

the control communications OW!l'head on VAX ~ computen may be as much as· four 

times as significant u the tmts presented here indicate. 

This statistic is best put into perspective by com:pari.ng it to the difference between 

the complexity of circui1is being fabricated in urn, when the VAX 11/780 computer WaS 

introduced, and the complexity of the circuits of 1985, when the VAX 8600 computer was 

introduced. While procemor speed may have impnwed by a factor of four, VLSI circuit 

complexity has increued by a factor of about twenty-five (Allen 1983). 

Thus we predict that pa.rallelism will continue to be a viable means for accelerating 

layout verification of VLSI circuits in years to come. £PI C provides an inexpensive means 
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of substantially improving the throughput of existing software. As advances are made i.n 

both processor speed and the exploitation of hierarchy in CAD tools, parallelism can still 

be used to further reduce the execution time. 
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Appendix A 

l'PIC/DRACULA User's· Manual 

Parallel DRC is a method for running the ECAD's VLSI design rule checker (DRAC­

ULA). By dividing the run into separate portions to be run on several computers, Parallel 

DRC reduces the amount of time required for a DRC run. A DRC using the standard 

method of running on one computer may require several days to run on a large chip. This 

time can be reduced to an overnight run U8ing Parallel DRC. 

This appendix describes the following aspects of Parallel DRC: 

• How Parallel DRC works 

• Potential Benefits from running Parallel DRC 

• Environment for running Parallel DRC 

• How to run Parallel DRC 

A.1 How Parallel DRC Works 

The program used to run Parallel DRC is called e P IC (Exploiting Parallelism In 

CAD). This program sets up processes on several computers to run portions of the DRC. 

The computers are logically arranged in a star network. The central computer, called the 

master, manages the work of all the other computers, called slaves. The entire design 

rule check is broken into separate tasks, with each task roughly corresponding to a single 

DRC rule. The master dynamically assigns tasks to the slaves, telling them what files are 
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needed to run the task. The slaws copy the files to their own directories and run the tasks. 

The master keepa a record of the filea each slave hu. As each ta.sk is compl~ the slave 

notifies the master and aenda the DRC output files to the master's directory. The master 

then assigns another task to the alaft. The execution proceeds in this manner until all the 

tasks are completed. The last step is for the muter to combiae all the eepara&e .-ro,r files 

(.ERR) into one file and append it to the summary ( .stlt) file. 

The llJIITOR program allows the uer to initiate and control the parallel execution, 

and provides a~ up&ie.i diaplar .. of tM atm of wll ala.•!a·proceas. 

A.2 Potential Benefits From Running Parallel DRC 

To evaluate whether or not 70u want to uae £P JC to run ECAD DRC, you must 

understand the basic principle belUad it. nae ia aot reaDJ. a siJlgle program that must 

be run from start to finish by a aiqle CPU. It is a ~-- of telated pragrams, which 

are typically run one after another. Each prapam •ommumc:atea' to tJae others simply 

by reading and writing clilk 61-. 

! PI C provides a mechanimt to .distribute the execution of theae programs over 

several computers on a network. Thia distribution. ill ftrJ eMdmt in that almost no work 

is duplicated by the extra computers. 11ae _ _. .._ -wark ilnoh9Cl is the Ile transfers 

needed to move the input and output me. to the ....,.,nu. .CPUa. 

Preliminary tests of Parallel DRC have dmawtratecl, a speedup of 4.5x using 6 

computers to check a medium me chip. The speedup ratio will approach the number of 

computers as the chip gets larpr, since the time required to ruD the DRC rises faster than 

the Bise of the data files. 

The greatest practical adftll'9p of Parallel DRC occun with chips that take serial 

DRCs several days to run on a loaded VU computer~ Durinc working houn, the DRC has 

to fight for CPU time with interactiw pmce• H, theseby r.iuc:bag eYerJone elae'a efficiency 

while further delaying the completion of. the DRC. Uai.ng £ P 1 C, it will be pOllBible to 

complete the DRC overnight. That tr&nalat.ea into • r.ter turnaround tUne for the layout 

designers, and less aggravation for the other 1l8erB m the computer facility. 
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A.3 Environment For Running Parallel DRC 

A.3.1 Requirements For e PI C 

e PI C requires no special hardware configurations. It runs on any number of VAX 

computers, each running VAX/VMS Version 4 or later, and all connected by DECnet. The 

system runs in a heterogeneous environment of VAXd~tered and unVAXclustered nodes. 

Informing e P IC which nodes are VAX-clustered results in increased performance, due to 

the decrease in file transfer overhead. Running on Microvax,.computers is possible if there 

is enough disk space. to hold the ECAD software and the chip data. 

e PI C requires that on each system, you have an account with the following char­

acteristics: 

Proxy: * : : USERIANE -> USDl·AME 

Privileges: HETN8X. TllPlaX. GIPl-AM 

Buffered I/ 0 Byte Count Quota: 13000 

Timer entry queue quota: 10 

Open file quota: 100 

Subprocess quota: 5 

You should define a logical l PI C to point to the area where the l PI C programs 

reside on your system. In addition, you need to set up two command files in your SYS$LOGIN 

area: MASTER. COM and SLAVE. COM. You can copy examples of_ th.eae ftles from the e PI C 

distribution area. 

You will want to run the parallel DRC using a different subdirectory for each slave. 

This is obvious for un VAXclustered computers, but even when two nodes share a file 

system, their slaves should be provided with separate subdirectories. This is due to a 

restriction in the ECAD DRACULA system that causes input files to be read-locked even 

if they will not be rewritten. This eliminates the possibility of file-sharing, even on a 

VAXcluster, because if a process tries to open a file that a parallel process has already 

locked, a fatal error will be signalled. VAXclusters are still helpful, provided the master is 

running on the VAXcluster, since l P IC is smart enough to use local file transfers rather 

than DECnet file transfers between VAXclustered nodes. 
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e PI C allows you to map your slaves to your proceaors any way you want. In 

other words, you can haft any number of slaves on each CPU. For Parallel DRC, the most 

efficient strategy is to asaign only one slave for each prc>(e98Qt. You can run the master on 

a processor that is already mnning a sla"Ve, since muter doesn't comnune very much CPU 

time. 

A.S.2 ECAD DRACULA Requirements 

You must have the ECAD system imtalled Qll eacli tileQBtem. VAXclll8ters only 

need it installed once, rather than once for each CPU •. 

A.3.3 Input Requirements 

The input requir-..mtll are enctly the a.me u thoee for serial ECAD DRC. You 

must have a layout file in mme formM undel'ldlOOi by ECAD, and you must bow the 

primary cell name. You must also haft a rulea tie (.DRC) deacribing tile geometric tol­

erances for the appropriate proceu technology. The rules file is used to generate control 

files that allow £PI C to run the Parallel DRC. 

A.4 Running A Parallel DRC 

A.4.1 Preproceealnc ·St.pa 

The l PI C kernel bu no knowledge of DRC. It can run DRC only by providing 

with it a parameter file, called an escclltion eontrol file (with extension .ECF). This file 

can be generated directly from the DRC rules file uaing the program ECAD2ECF. EIE. This 

program also generates a command file that contains the DCL code that directly drives 

ECAD DRC. EC.AD2ECF. EIE is euy to run, though it may take over an hour on a well­

loaded VAX 11/780 computer. The following ia an example o~ its use. We assume that 

CMOS . DRC is a rules file in the current default directory. 

$ RUl/IODEBUG EPIC:EC.AD2ECF 
Ecad file naae: Cll>S.DRC 
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ECF file name: CMOS.ECF 
COM file name: CMOS.CON 
IDELETE-W-SEA.RCHFAIL, error searching for !AS 

• 
CMOS . ECF must then be placed in the master's subdirectory. It contains information 

about each task needed to control the parallel execution. Specifically, for each task, it 

indicates all of tha input files, all of the output files, and all of the DCL commands needed 

to generate those output files. 

CMOS • CON must be placed in the STS$LOCII: area of each slave. We place it in 

SYS$LOGIR rather than in the slave subdirectory ao that we olily have to store this rather 

large file once per VAXcluster (see the diacUS8ion above about' Ille sharing on VAXchISters). 

Generally, the rules file for- a given teehnoloa will remain fairly stable throughout 

time. The only information that cha.tages more often are the description para.meters at the 

top of the rules file. These might change with each run. We Want io avoid running the 

preprocessor as much as poeaible, since it is fairly time comnJming. The best approach 

is to run it once for each generation of the process technok>O', using generic description 

parameters. Then, for each new set of description parameters, JOU must generate a new 

• ECF and a new . COM file by doing the appropriate global string replacements in the generic 

• ECF and . CON files. A program, FIXECAD. EXE, is provided for this purpose. It is fairly easy 

to use, and doesn't take very much time (typically lea than a minute). It prompts for the 

old and new . ECF and . CON fHe names, and for the old and tte\V description parameters. 

Since the program does unintelligent global string replacements, you must choose your 

generic description parameters so they will be uniqu. The appendix contains an example 

of the use of FIIECAD that aJso demonstrates appropriate generic description parameters. 

Sample . DIC, • !CF and . COM files for several technologies are provided in the t PI C 

distribution. You may want to 111e these if they are mfftciently up-to-date. You will still 

need to use FIXECAD to update the description parameters. 
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A.4.2 Rmining £PIC 

All user interaction with the E P 1 C 8JBte1n is through the MOIITOI. EXE program. 

It is recommended that you run this program on the ame processor as the master, though 

it is not required. tilllITOIL UHB the VAX/VMS 8creea Managesnent facility (SMG), so 

you must run it from a DEC supported lerminal auch u a VTlOO or a VT200 series 

terminal. You can also run llJIITOIL ia batch mode or from a command file. Normally 

you will want to initiate the program interactively, since the Mtwo.rk connections that will 

be made occasionally fail oa the tint try d1ae to mneo.ta ar network flakiness. To save 

typing, you have the option of initiating the 8*art-up flOID a command file and continuing 

or fixing any problems in~tiwly. 

To start MOIITOIL, uae "$ IUl/IODll £1»IC:llQJ,lf01•. Your screen will then be 

divided into three secmenta. The top u.ird CQDW. P10GS1 ·moaitorin& information. Each 

row in the display correapoada to a alave's au~ u,d .ia periodically updated M> 

display a variety of statiatica includiq CPU time, ela.,_t Qare, lhe name of the current 

program, and the number of tub it bu completiecl. T)le,~ third ia for error "DeS"ages, 

status messages, and other diapostics. The ~M>Dl \hini.i.a; for your input. 

The normal state of the program ia ~ no.piroarpt ie oft'ered. This is so that 

the monitor can re&p(>nd to any me naps it .receiT:es ftom Qe aaester. There is no master 

initially, so this may seem confusing. Aa 100D u Ula wr-qpea 88J!M'$bing, monitor provides 

a prompt in the bottom window and echoes what waa qped thm far. While in this "read 

line" mode, the monitor cannot react to m•••P' &om die •ster, eo the normal state is 

not to provide the prompt. If you type at moaitor aad it doea't echo, that means it isn't 

finished doing what you lut told it to do. If you~ to type ~ to monitor and 

decide not to issue a command, juai tJpe Cl'JU;/V ~·to get rid of the prompt. 

Normally, the first Wna to do ia to c:reat. a ...-. Uae Ute command 

CREATE/MASTER/PROXY DOde eomflla ..... ftle-preftx cluter-U.t 

ff you do not type in the a.rgumenta, you will be prompted for them. The standard 

DCL parser and line editor are used, so you will be able to use the arrow keys to edit 

your input. Two special purpose keys are also wiped. PFl terminates the current line 

(executes it) and clears the bottom two thirds of the screen. PF2 terminates the current 
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line and repaints the entire screen. 

The first argument, node, is tl~e name of the node on which the master will be run. 

Don't put the double colon(::) in here, just the name of the node. The second argument, 

comfile, is usually MASTER, though you may have more than one. version of this file that 

does different things with default directories and renaming of METSERVER. LOG. Don't bother 

to specify the file extension, and don't include a dmce or directory specification; the file 

must reside in SYS$LOGIN. The third argument, ecftlle, is the "name of the Execution 

Control File {for example CMOS.ECF), only don't bother to include the extension when you 

type it here. You can specify a device and directory, but you don't need to if it is the 

same as file-prefix, the fourth argument. File-pi'eftx is the master's subdirectory. It can 

include a device and directory specification. The initial input file must be in this directory, 

and all intermediate files and the error summary file will be placed there, so there must be 

enough room on the disk. The last argument, cluater-U.t, is a list of machines that share 

the same filesystem as the MASTER's node. Include node in this list. This information 

is used to optimize file transfers by using local tCOPYa rather than decnet transfers when 

appropriate. 

The PROXY qualifier is used because in some future version of e PI C, we may 

support password access. 

After pressing carriage return, the MONITOR causes a process to be created on 

node. This process executes comftle, which ahould run EPI.C: MASTEi. EXE, which will 

acknowledge communication with monitor. It will then try to read in ecfBle. You will be · 

told the outcome of this attempt, and that will be your cue to begin creating slaves. 

CREATE/SLAVE/PROXY name node comfile file-prefix 

The only new parameter is the name parameter. This is used because more than 

one slave per machine is supported by e P IC {though not recommended for DRACULA). 

The name is used as a substring in file names, proce11 names and in the group logical 

name table. It should contain only alphanumerics, and be no more than eight characters 

long. One would generally include the node name ~ part of this name when running on a 

VAXcluster, so the log files will be identifiable. 

CREATE/SLAVE is not really executed by the monitor. The text of the command 
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is sent to the master, and the master executes the commaad. T1Ua allows you to queue up 

several CREATE/SLAVE cow11n~nck without waitinf for tile awnmand to finish. Diagnos­

tic messages will indicate the aaccw or failure ..,._ the Uafcmaation becomes available. 

Success will also be indicated by a new 11etive line ia the upper dlird (procw monitoring 

section) of the screen. 

l PI C supports the ,me al more tlwl oae VAXd.w. Tile Wlowing command 

tells t, P IC about a VAXd-. .._ lhaa die me aperiW in the CREATE/MASTER 

SET /CLUSTER=aodel., nodd, nod.a, nocN4 ••• 

The refresh cycle far procma dilplay is initiaD,- • to oae mimde. You can reset it 

to (for example) liw W"mda wWa the fallowia& cam.....t: 

SET /JlEFRESH=O 0:80:05.00 

If for U7 IW JOB aeed to kill a slave, W die follawiq mmmand: 

KILL/SLAVE sbmt'.....ie ...._,._.._ 

Again UUsccmmwocl ia natrallywatecl 11,dae mmiter. Thetextof theconnnand 

is sent to the muter, and it doea the dirty work.. The nnlt ahoald be eviden\ from the 

diagnostic me .. ge a.nd pma• dillplay. Yoa caaalmdodle diRJwmkyHiaelfbystopping 

the slave's proceaa on its node. In &DJ cue, l PI C will ree-ign U.U llaYe'• task to another 

slaYe, and the compatatiaa wiU CCllldliame. If a•• Wkd• tea ..-n cnsh, £PI C will 

behave eimilarly. The mmputadaa wiD go • witla die .,....i degraded pedormance. 

You caa alilo add a slaw· at a117 paint in the mu pa&atiaa .wifil \he CUATE/SLAVE 

COJD1'11AM. 

You can kill the wide competaticm, jrhecl~tlle es &m, witlt the KILL command. 

Thia is a c1eaa wq to aDori ti.~ n.tosamd a• ·,..,.,.tiles ferihe procews, 

though not for the DRC, will lte gmerated. Y011 can.._...,.,....._,. proa!88 yomself, 

and the sla'ftB will terminate th:mu 1h• 10ma ~-

You can uae the mcmitor'a BXIT connMad•&et Md to DCL. It is OK to do this 

while a computation is rnn•mc. To get~ ·ia to.di wida a eeetwdat J01l have left on 

its own for a while, get back into the monitor, ad - the eomnand 

MONITOR/PROXY m.-ter'...aode 



.. ·- ; .. ~~.:"· ,>.....'.O~-""-'."'~·_,~;~-~~~~~~~Jti<:~-*""~~~~·:!'•'1f~'>!;·~""· ~<~~-~: .--;,· . . . 

Performance will be much better if you do this while logged into master's-node. 

A.4.3 Triggering The Pai-allel DRC 

This is essentially automatic. As soon aa the CREATE/MASTER completes, the 

master begins an initial step in the DRC in a subprocess. This is a task that must be 

completed before any of the slave11 can be given any work. Normally, you will have created 

all the slaves before the MASTER finishes this step, but you can create slaves at any time, 

and they will be put to work if there is work to be done. 

For completenaa, we mention that the subprocesses in which the actual DRC 

is run do not inherit any process logical names or symbols you may have defined 

in your LOGIN. COM. This should not affect an ECAD DRC, but if you create a file 

SYS$LOGII: EPICIIIT. CON, it will be executed by the each subprocess before it starts 

running the DCL commands specified in the . !CF file. 

A.4.4 Summary Files 

In addition to the DRC summary file that is created in the master's subdirectory, 

e P 1 C leaves several other files in various places &ro11J1d your file system. Two summary 

files will be created in SYBtLOGIJJ on the master's computer. IPICSTATUS. LOG will contain 

a chart indicating the cpu time, the real time, and eome other parameters for each slave. 

EPICEXEC • PS is a Poatacript file that can be printed on an Apple Luerwriter1. It contains 

a graphical representation of the parallel execution. The leftmost column indicates the· 

elapsed time at several points on the Y-uia. Each vertical column represents the activity 

of a slave. Each diamond ia the execution of a tut or rule. The height of the diamond is 

proportional to the amount c4 time it took to execute it. Each line segment between two 

tasks represents a data dependency between tholle tub, and roughly correeponds to a file 

transfer. System . LOC files documentina the actual VAX/VMS programs run to execute 

the DRC are generated in whatever directory was the default directory when EPIC: SLAVE 

and EPIC:NASTD were initially run. MASTER.LOO and SLAVE.LOG are generated according 

1 Luerwriter ill a tract.mark of Apple Computer Corpon&ion 
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to the contents of MASTER. COM and SLAVE. COM. MASTER. LOG contains all the diagnostic 

messages sent to the middle screen of the monitor. 
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A.5 Appendix 

A.5.1 Sample Run Of EPIC: FIXECAD 

Note: You don't have to specify anything. for the,old and new versions of a field if 

you don't want to change that field. Every time a substitution is made, the old line and 

the new line are printed out. Much of this was editted out of the example below. 

$ run epic:fixecad 
Old COM: cm.oa 
Old ECF: cm.oa 
New COM: field 
New ECF: field 
Old Indiak: infile .gda 
New Indisk: field.gda 
Old Outdiak: outf ile. err 
New Outdiak: outfield.err 
Old Print: 
New Print: 
Old Primary: 
New Primary: 
Old System.: 
New System: 
Old Dir: 
New Dir: 

1 TREEMAIN 
1 TREEFIEL 

summary 
summary 
:maincell 
field 
gda2 
gda2 
aegcad•ecad: 
aegcad•ecad: 

•ASSIGN INFILE.GDS FOI009 
•ASSIGN FIELD.GDS FOI009 

O TREEMAilf 
0 TREEFIEL 

1000 1 MAINCELL 
1000 1 FIELD 

$ASSIGN OUTFILE.ERI FOROOQ 
$ASSIGlf OUTFIELD.ERi P01009 

0 TREEMAIN OUTMAINCELL 
0 TREEFIEL OUTFIELD 

,TREEMAIN.DAT­
.TREEFIEL.DAT-

/DCL• (".GSYS.LOGilf :CMOS.COM 
/DCL• ("•OSYS.LOGIN:FIELD.COM 
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A.5.2 Execution Control File 
The following is an example of one task in the ECF file created a.hove. 

task " ROT TOTHWL MASICLJL IWELL•-
/IIPUT •(TOTIWL.DAT-

.NASICLa.DAT-
)-

/OUTPUT•(IWELL.DAT-
)-

/DCL• C••GSYS.LOGil:FIELD.CON 
) 

A.5.3 Command File 

Each pa.ge of the . CON file corresponds to an • ECF tuk, such as the one above. At 

the beginning of the . CON file, there is a • GOTO •Pt ' ; which explains how the correct step 

gets executed . 

• 16: 
$ ! NOT TOTIWL MASKLll IWELL 
• ! 
$SET PROCF.SS/1.AJIE• 16GDSII 
$RUB SEGCAD.ECAD:LOGICAL 

3 TOTDL MASKLll DELL 

•IF .NOT. $STATUS THEI GOTO LQUIT 
.OUTPUT: 
$IF P2 .EQS. •OUTPUT• TREI GOTO LQUIT 
$EXIT 

88 
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Appendix B 

Data Dependency G-:apps 

This appendix contaim printed repre11aatiou of the data dependency graphs used 

in the testing of E P 1 C. Included are exam.pl• fe.r DEC CMOS design rules, MOSIS CMOS 

design rules, and the compilation and linldq cA £ P IC. 
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DEC CMOS DRC Data Dependency Graph 
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UIDlll~ 
MOSIS CMOS DRC Data Dependency Graph . 
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"make EPIC" Data Dependency Graph 



Appendix C 

Data from the testing of e PI C 

mmm~um~ 
~ 

This appendix contains raw statistics generated bye P IC for the test runs with a 

varying number of processors. Each section consi8U of all Uie data for a single application. 

Each subsection has a table of statistics and a graphical log for a single run. The leftmost 

column of the graphical log indicates the elapeed time at several points on the Y-axis. Each 

vertical column represents the activity of a single slave. Each diamond is the execution 

of a task. The height of the diamond is· proportional to the amount of time it took to 

execute the corresponding task. Each line segment between two tasks represents a data 

dependency between those tasks, and roughly corresponds to a file transfer. 
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C.1 DRACULA with DEC CMOS rules 

C.1.1 Serial DRACULA on a VAX ll/"180 computer 

Buffered I/0 count: 883g Peak working Mt size: 8060 
Direct I/0 count: ee12g Peak page fil• aize: 1Q636 
Page faults: 23mo1 Moun"tied volumea: 0 
Charged CPU time: 04:00:11.84 Elapsed ti.M: 06:06:60.41 

C.1.2 Parallel DRACULA on three VAXcluatered VAX 11/"180 
computers 

9-APR-1986 07:22:43.28 

Accounting inforaation (for the •MASTEi• proceaa): 
Buffered I/0 count: 6728 Peak 110rking ••t aize: 
Direct I/0 count: 1282Q Peak rlrtual aize: 
Page faulta: 80986 ~ YOl-•: 
Image• activated: 644 
Elapaed CPU tiae: 0 00:23:23.61 
Connect tiM: 0 02:62:61.89 

Elapsed aeconda: 
CPU aeconda : 

32717 
14210 

8000 
18898 

0 



C.1.3 e P IC using one VAX 11/180 computer 

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF 
EPIC Version V1.0 
29-MAR-1986 18:45:38.06 
ELAPSED: 06:21:28.13 
CPU: 0:01:13.19 

BUFFIO: 3549 
DI&IO: 487 
FAULTS: 720 

Subprocess statistic• (all times in seconds) 
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DECCMOS.ECF run on 29-MAR-1986 18:45:45 

o Hours 

1 Hours 

2Hours 

3Hours 

4Hours 

5 Hours 

5 Hours 
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C.1.4 c P IC using two VAXclustered VAX 11/'TSO computers 

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF 
EPIC Version V1.0 
28-MAR-1986 07:21:18.96 
ELAPSED: 
CPU: 

02:51:09.61 
0:01:07.09 

BUFIO: 3170 
DIIUO: 858 
FAULTS: 702 

Subprocess statistics (all ti .. • in seconds) 
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DECCMOS.ECF run on 28-MAR-1986 07:21 :27 

O Minutes 

10 Minutes 

20 Minutes 

30 Minutes 

40 Minutes 

50 Minutes 

60 Minutes 

70 Minutes 

80 Minutes 

90 Minutes 

100 Minutes 

110 Minutes 

120 Minutes 

130 Minutes 

140 Mirotes 

150 Minutes 

1~~~= 
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C.1.5 € P IC using three VAXclustered VAX 11/780 computers 

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF 
EPIC Version V1.0 
27-MAR-1ga6 06:28:09.76 
ELAPSED: 
CPU: 

01 :67:66.11 
0:01:06.27 

BUFIO: 
DIRIO: 

3179 
899 

FAULTS: 7og 

Subprocess statistics (all tiaea in aecon~a) 
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DECCMOS.ECF run on 27-MAR-1986 06:28:18 

0 Minutes 

10 Minutes 

20Minutes 

30 Minutes 

40 Minutes 

so Minutes 

60 Minutes 

70 Minutes 

80 Mit'IJtes 

90 Mit'IJtes 

100 Minutes 

109 Minutes 

100 



cccnmmm1~ • C.1.6 e PIC using two independent VAX 11/T80 computers 

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF 
EPIC Version V1.0 

g-APR-1986 03:31:27.82 BUFIO: 3434 
ELAPSED: 
CPU: 

03:16:42.65 
0:01:23.19 

DIRIO: 608 
FAULTS: 830 

Subprocess statistics (all time• in seconda) 
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DECCMOS.ECF run on 9-APR-1986 03:31 :36 

o Minutes 

10 Minutes 

20 Minutes 

30 Minutes 

40 Minutes 

50 Minutes 

60 Minutes 

70 Minutes 

80 Minutes 

90 Minutes 

100 Minutes 

110 Minutes 

120 Minutes 

130 Minutes 

140 Minutes 

150 Minutes 

160 Minutes 

170 Minutes 

180 Minutes 

188 Minutes 
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C.1.7 e P IC using three independent VAX 11/780 computers 

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF 
EPIC Version V1.0 
7-APR-1086 06:43:13.96 
ELAPSED: 
CPU: 

02: 13:40.10 
0:01:18.17 

BUFIO: 3478 
DIRIO: 602 
FAULTS: 827 

Subprocess statistics (all ti... in seconds) 
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DECCMOS.ECF run on 7-APR-1966 06:43:21 

o Minutes 

10 Miootes 

20 Mit'IJtes 

30 Minutes 

40 Miootes 

50 Minutes 

60 Miootes 

70 Mlootes 

80 Miootes 

90 Miootes 

100 Miootes 

110 Miootes 

120 Minutes 

126 Minutes 

UK 
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0000~11111a1~ • C.1.8 €PI C using four independent VAX 11/780 computers 

MASTER Statistics for EPIC run using ECF file DECCNOS.ECF 
EPIC Version V1.0 

6-.APR-1986 02:12:26.93 
ELAPSED: 
CPU: 

01:36:10. 71 
0:01 :20.47 

BUFIO: 3379 
DIRIO: 398 
FAULTS: 837 

Subprocess statistics (all times in seconds) 
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DECCMOS.ECF run on 6-APR-f986 02:12:44 

O Minutes 

10 Miootes 

20 Minutes 

30 Miootes 

40 Miootes 

50 Mlootes 

60 Miootes 

70 Miootes 

80 Miootes 

88 Miootes 
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C.1.9 €PI C using five independent VAX 11/7'80 computers 

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF 
EPIC Version V1.0 

12-APR-1986 06:22:44.11 
ELAPSED: 01:26:68.26 
CPU: 0:01:10.61 

BUFIO: 
DIRIO: 
FAULTS: 

3606 
418 
861 

Subprocess statiatica (all times in aecon4a) 
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DECCMOS.ECF run on 12-APR-1986 06:22:51 

O Minutes 

10 Mirutes 

20Mirues 

30 Mirutes 

40 Mirutes 

50 Minutes 

60 Mirutes 

70 Mirutes 

78 Mil'l.ltes 
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~ • C.1.10 £PI C using six independent VAX 11/780 computers 

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF 
EPIC Version V1.0 

10-APR-1986 06:12:36.06 
ELAPSED: 
CPU: 

01:14:21.67 
0:01: 14.69 

BUFIO: 
DIRIO: 
FAULTS: 

Subprocess statistics (all times in seconds) 
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3629 
406 
879 



DECCMOS.ECF run on 1 O-APR-1986 06:12:43 

O Minutes 

10 Minutes 

20 Minutes 

30 Minutes 

40Minutes 

50 Minutes 

60 Minutes 

67 Minutes 
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C.2 Compiling and Linking e PI C 
The following statistics were generated by VMS after compiling and linking c P 1 C and 
its preprocessors. 

Accounting information: 
Buffered I/0 count: 962 Peak working aet size: 3886 
Direct I/0 count: 2699 Peak virtual aize: 7904 
Page faults: 31011 Mounted volumes: 0 
Images activated: 26 
Elapsed CPU time: 00:06:48.74 
Connect time: 00: 10: 19.12 
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C.2.1 e PI C using one VAX ll/'180 computer 
MASTER Statistic• for EPIC run •in& ECF file llAIEEPIC.ECF 
EPIC Veraion Yl.O 
30-M0-1g&e 13:60:40.42 
ELAPSED: 00: 10:30.09 
CPU: 0:00:14.42 

BUFIO: 732 
DllIO: 81 
FmLTS: 231 

Subprocess atatiatica (all timaa in aec:GD!la) 

Ii Ii I~ Ii Ii Ii I 13 I °1 Ii I fitrill Ii Fil: I 
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00100010111111111~ • MAKEEPIC.ECF run on 30-MAR-198613:50:48.10 

O Minutes 

1 Minutes 

2Minutes 

3 Minutes 

4 Minutes 

5 Minutes 

&Minutes 

7 Minutes 

8 Minutes 

9 Minutes 

~8 MiAUtn 
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C.2.2 t P iC using two VAXcluatered VAX ll/'780 computers 

MASTER Statistica for EPIC run uaing ECF file IWCEEPIC.ECF 
EPIC Version V1.0 

1-APl-1986 02:66:69.84 
ELAPSED: 00:06:39.64 
CPU: 0:00: 16.24 

BUFIO: 
DIJUO: 101 
FAULTS: 248 

Subprocesa statiatica (all ti .. • in .. conda) 
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MAKEEPIC.ECF run on l~APR-1986 02:56:17 

O Seconds 

10 Seconds 

20 Seconds 

30 Seconds 

40 Seconds 

50Saconds 

60Saconds 

70Seconds 

80 Seconds 

90 Seconds 

100 Seconds 

110 Seconds 

120 Seconds 

130 Seconds 

140 Seconds 

150 Seconds 

160 Seconds 

170 Seconds 

180 Seconds 

190 Seconds 

200 Seconds 

210 Seconds 

220 Seconds 

230 Seconds 

240 Seconds 

250 Seconds 

260 Seconds 

270 Seconds 

280 Seconds 

290 Seconds 

300 Seconds 

309 Seconds 
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C.2.3 tPIC using three VAXclustered VAX 11/780 computers 

MASTER Statiatica for EPIC run using ECF file IUJCE!PIC.ECF 
EPIC Veraion V1.0 
6-APR-1986 23:27:38.08 
ELAPSED: 00: 04: 12. 70 
CPU: 0:00:18.:IG 

BUFIO: 
DIIIO: 1845 
FAULTS: 25g 

Subproceaa atatiatic• (all ti .. • in ••conda) 
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occmcoc1cum1m.llim:ooc-

MAKE EPIC.EC F run on 6-APR-1986 23:27:45 ooro 

O Seconds 

10 Seconds 

20 Seconds 

30 Seconds 

40 Seconds 

50 Seconds 

60 Seconds 

70 Seconds 

80 Seconds 

90 Seconds 

100 Seconds 

110 Seconds 

120 Seconds 

130 Seconds 

140 Seconds 

150 Seconds 

160 Seconds 

170 Seconds 

180 Seconds 

190 Seconds 

200 Seconds 

210 reconds 
213 econds 
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C.2.4: t P IC using two independent VAX 11/180 computers 

MASTER Statiatica for EPIC run uaing ECF file MAKEEPIC.ECF 
EPIC Version V1.0 

3-APR-1Q86 02:27:38.02 BUFIO: 
ELAPSED: 00: 07: 67. 36 DI&IO: 
CPU: 0:00:18.33 FAULTS: 

Subprocess statistic• (all ti.119a in aeconda) 

118 

1028 
61 
288 
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MAKE EPIC. ECF run on 3-APR-1986 02:27:46 · 

o Seconds 

100 Seconds 

200 Seconds 

300 Seconds 

400 Seconds 

447 Seconds 
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C.2.5 EPIC using three independent VAX 11/'180 computers 

MASTER Statiatica for EPIC run uaing ECF file MAKEEPIC.ECF 
EPIC Veraion V1.0 
3-APl-1986 02:06:48.W 
ELAPSED: 00: 06: 32. 76 
CPU: 0:00:18.26 

BUFIO: 
DIIIO: 
FAULTS: 

Subproceaa statistic• (all ti .. a in aeconda) 

120 

1067 
M 
294 
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MAKEEPIC.ECF run on 3~APR-l986 02:06:57 

O Seconds 

10 Seconds 

20 Seconds 

30 Seconds 

40 Seconds 

50 Seconds 

60 Seconds 

70 Seconds 

80 Seconds 

90 Seconds 

100 Seconds 

110 Seconds 

120 Seconds 

130 Seconds 

140 Seconds 

150 Seconds 

160 Seconds 

170 Seconds 

180 Seconds 

190 Seconds 

200 Seconds 

210 Seconds 

220 Seconds 

230 Seconds 

240 Seconds 

250 Seconds 

260 Seconds 

270 Seconds 

280 Seconds 

290 Seconds 

300 Seconds 

310 Seconds 

320 Seconds 

330 Seconds 

340 Seconds 

350 Seconds 
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C.2.6 tPIC using four independent VAX 11/780 computers 

MASTER Statistics for EPIC run using ECF file MAKEEPIC.ECF 
EPIC Veraion V1.0 
3-APR-1986 02:16:04.72 
ELAPSED: 00: 06: 32. 38 
CPU: 0:00:17.96 

BUFIO: 
DIRIO: 
FAULTS: 

Subprocess atatiatica (all ti .. • in aeconda) 
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1086 
44 
311 
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MAKEEPIC.ECF run on 3-APR-1986 02:16:12 

O Seconds 

10 Seconds 

20 Seconds 

30 Seconds 

40 Seconds 

50 Seconds 

60 Seconds 

70 Seconds 

80 Seconds 

90 Seconds 

100 Seconds 

110 Seconds 

120 Seconds 

130 Seconds 

140 Seconds 

150 Seconds 

160 Seconds 

170 Seconds 

180 Seconds 

190 Seconds 

200 Seconds 

210 Seconds 

220 Seconds 

230 Seconds 

240 Seconds 

250 Seconds 

260 Seconds 

270 Seconds 

llt lloondl 
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Appendix D 

e PI C Messages 

This Appendix contains all the messages sent as control communication. They 

effectively define the architecture of the software behind e PI C. 

D.1 Messages sent from user to monitor 

EXIT 
Terminate the MONITOR program. This does not affect the operation of the 
master. 

CREATE/MASTER node com-file ec:f-flle worJdng-dlrectory cluster-list 
Create a master 

CREATE/SLAVE name node com-file working-directory 
Tell the master to create a slave and put it in the database 

MONITOR master's-node 
Establish communication with an already..existing ~ter 

KILL 
Tell the master to terminate the computation and generate the log files 

KILL/SLAVE slave-node slave-name 
Tell the master to terminate the slave and insert its task {if any) into the ready 
queue 

SET/CLUSTER= (nodel, node2 ... ) 
Tell the master to define a set of nodes to be clustered together 

SET /REFRESH = time interval 
Tell the master to set the interval at which the process rate is refreshed 
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D.2 Messages sent from monitor to master 

SET/CLUSTER= (nodel, node2 ... ) 
Define a set of nodes to be clustered together 

SET /REFRESH = time Interval 
Set the interval at which the process rate is refreshed 

EXIT 
Terminate the computation and generate the log files 

KILL/NAME= slave's name /NODE= slave's node 
Terminate the slave and insert its task (if any) into the ready queue 

CREATE/SLAVE name node command-81e worJdng-dlnct6ry 
Create a slave and put it in the databue 

D.3 Messages sent from master to monitor 

MESSAGE IDBg 
Allows the master to put an arbitrary message on the monitor's screen 

STATUSllne-numberconttnta 

DONE 

Send statistics Iine dfJICribing slaw's subproceu' CPU usage to the monitor's 
process display 

Indicates to the monitor that the whole computation has completed. 

D.4 Messages sent from master to slave 

START task-name /INPUT=(lnl, ba2 ... ) /OUTPUT=( oatl, ouU ... ) /DCL=( dell, dcl2 ... ) 

start the task with the specified inputs, output. and dd commands 

EXIT 
Terminate the slaw aubproc- and exit 

FREE 
Charge elapeed time to the FREE counw, rather than the IDLE counter 

SET/REFRESH = time bdenU 
Set the interval at which the slave 8'1lde proct11 li1M information 

D.5 Messages sent from slave to master 

COMPLETED 
The slave completed its task 



............... ,111 .. -

FAILED reason 
The slave failed its task 

STARTED 
The slave has retrieved the input files and started the task 

MESSAGE mag 
Allows the slave to put an arbitrary textual message into the master's log file 

STATUS status line 
Send statistics line describing slave's subprocess' CPU usage to the master for the 
monitor's process display 

FINAL statistics 
Send final statistics about the slave's subprocess' CPU usage, etc., to the master. 
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