
MIT/LCS / T R-363

EXPLOITING P ARALLE LISM IN VLSI Cl\D

Joshua David Marantz

June 1986

This blank page was inserted to presenie pagination.

, .

f' ..

- · ... -~ ..

. Exploiting Parallelism In VLSI CAD

by

Joshua David Marantz

©Joshua David Marantz, 1986

June, 1986

The author hereby grants to M.I. T. and Digital Equipment Corporation permission to
reproduce and to distribute copies of this thesis document in whole or part.

The thesis research was conducted at Digital Equipment Corporation in Hudson, MA,
between February and August of 1985, as part of the MIT VI-A Internship Program.

1

2

Exploiting Parallelism In VLSI CAD

by

Joshua David Marantz

Submitted to the Department of Electrical Engineering and Computer Science
on June 3, 1986 in partial fulfillment of the requirements for

the Degrees of Bachelor· of Science aud Master of Science

Abstract

In the domain of computer science, particularly VLSI <CAD, an increasing amount of
engineering time is spent running compute-bound programs. Many of these programs have
an intrinsic parallelism that is externally accessible. Thia thesis describes a novel software
system that uses a small number of independent computers connected by a network to
exploit the parallelism inherent in existing software, and thereby reduce, its running time.
A dynamic task-scheduling algorithm hued on a static ·acyclic data dependency graph
is used to coµtrol the parallel execution. A network interprocess multi-client message­
passing system is developed and discU88ed. The syatem is applied to design rule checking
·by executing each rule on a separate processor, and the results are analyzed.

Name and Title of Thesis Supervisor:

Christopher J. Terman,
Assistant Professor of Computer Science and Engineering

Key Words and Phrases:

parallel processing, design rule checking, CAD tools

3

4

Acknowledgments

I would like to thank my DEC supervisor, Ed McGrath, and my thesis advisor,
Chris Terman, for the ideas, inspiration, support,· and encouragement which made this
thesis possible.

I would like to thank the past and present members of the VLSI Methodology
and Advanced Development Group and the VLSI Layout Verification Group at Digital
who helped provide a stimulating environment in which to do the thesis research. In
particular, Ed Prentice and Sam Levitin were both indispensable as sounding boards and
critics for my ideas. I would alao like to thank my first supervisor at DEC, Bob Gottlieb,
for teaching me system programming. .

Finally, I would like to thank my entire family for their love and support over the
years.

The thesis research was conducted at Digital Equipment Corporation in Hudson,
MA, between February and August of 1985, as part of the MIT VI-A Internship Program.

5

6

r

Contents

1 Introduction · 15
1.1 Accelerating CAD Tools· . 15
1.2 Parallelism in VLSI CAD . 17
1.3 A Software Methodol<>gy for Multiprocessing · 17
1.4 Chapter Outline . 18

2 Background 21
2.1 Previous Work in Parallelism for VLSI CAD 21
2.2 Previous Work in Accelerating DRC . 22
2.3 Motivation: Parallel DRC . 24
2.4 Scheduling strategies . 25

3 c P 1 C: A general method· of exploiting parallelism · 29
3.1 Dividing the job • . . • . . • 29
3.2
3.3
3.4
3.5

Multiprocessing on a Local Area Network 32
Software Architecture . 34
Task Scheduling . 36
Comm.unications .
3.5.1 Control Communication .
3.5.2 Control Communication Requirements

40
41
42

3.5.3 Data Communications . 44
3.6 Fault Tolerance .
3. 7 Error Recovery .
3.8 VAXcluster Support
3.9 Performance Monitoring
3.10 Reaul'tl .
3.11 Future Extensions

46
49
50
52
54
54

4 Applications 57
4.1 Design Rule Checking . 57

4.1.1 Predictions . 61
4.1.2 Testing . 62

4.2 Circuit Extraction . 68
4.3 Compiling and Linking Programs . 68

7

5 Conclusion '11
5.1 S11m!D8.rJ' • • • • • • • • • • • • • • • • • • • . • • • • • • • • . • • • • . • . . 71
5.2 DirectiODS For Future Research • . . • • • • • . . . • • 71

5.2.1 Other Applications . 72
5.2.2 Reducing the overhead . 73
5.2.3 Le11SOna Learned about Distributed Programming . . . ~,_ . . '13

5 .3 Conclusion . ·· . :· . ,.. . 1' 4

A t P 1 C /DliCULA User's Manual '1'1
A.1 How Parallel DRC Worb ••................ : . • 77
A.2 Potential Benefits From Rnnnin1 Par&llel DRC 78
A.3 Enviromnent For Runnin1 Parallel DRC · 79

A.3.1 Requirements For EPIC . • ·. 79
A.3.2 ECAD DRACULA Requirements • • • • • • • • • • • • . • . . . 80
A.3.3 Input Requirelnents • . . • . • • . • . • • • . . . • . . • . • . 80

A.4 Running A Parallel DRC . 80
A.4.1 Preproawing Steps . • 80
A.4.2 Running £ PI C • . . • • . • . • 82
A.4.3 Trigering The Parallel DRC • • • • . . . • • 85
A.4.4 Summa,ey Files . • • • • • 85

A.5 Appe11m • • • • • 87
A.5.1 Sample Run Of EPIC: FIXECAD . • . . • . . • • • • . . • • 87
A.5.2 Executi9n ~ File • • • . • . . . • • . • • • . . • . . • 88

88

B -Data Dependency Grapha 89

C Data from the testing of EPIC 93
C.1 DRACULA with DEC CMOS rules . . . • • . . • • . • • . . . • 94

C.1.1 Serial DUCUU an a VAX.11/780 computer • • • • • • • • • • . . . • 94
C.1.2 Parallel DUCUU on three V~ Vil 11/780 computers . . . 94
C.1.3 EPIC ming one VAX 11/780 computer • • • . . . • . . . • . 95
C.1.4 EPIC using two VAXclustered VAX 11/780 computers 97
C.1.5 EPIC ming three VAXcluatered VAX 11/'lfll) compuiera • 99
C.1.6 EPIC using two independent VAX 11/'180 computers • • • • • . • . 101
C.1. 7 EPIC using three independent VAX 11/780 computers • 103
C.1.8 EPIC ming four independent VAX 11/780 computers •••••.•• 1~
C.1.9 e P IC ming five independent VAX 11/780 computers 107
C.1.10 e P IC UBing six independent VAX 11/780 computers 109

C.2 Compiling and Linkin1 £ P 1 C ••••.•••••••••••••••••..•• 111
C.2.1 e P IC using one VAX 11/780 computer 112
C.2.2 e P IC using two VAXclustered VAX 11/780 computers 114
C.2.3 e P IC using three VAXclustered VAX 11/780 computers 116
C.2.4 E P 1 C using two independent VAX 11/780 compulers 118
C.2.5 e P 1 C using three independent VAX 11/780 computers 120

8

C.2.6 £ P 1 C using four independent VAX 11/780 computers

D £ P 1 C Messages
D .1 Messages sent from user to monitor .
D.2 Messages sent from monitor to master
D.3 Messages sent from master to monitor
D.4 Messages sent from master to slave
D.5 Messages sent from slave to master ..

9

. 122

125
125
126
126
126
126

10

List of Figures

2.1 Sectioned Data Dependency Graph ... ·. 26

3.1 Sample Task Description Lisi and Data Dependency Graph 30
3.2 A More Interesting Data Dependency Graph and its Execution 31
3.3 Star Network Topology . 32
3.4 Algorithm for Generating Data Dependency Graph 35
3.5 A Skeleton for a Taak Scheduling Alcorithm 36
3.6 Algorithm for computing height of all tub 38
3. 7 Algorithm for computing the sise of all tub . '· 39
3.8 A data dependency graph and its execution. uing height and aize 40
3.9 A task schedulin& trial simulation where height/aise heuristic is suboptimal 41
3.10 Algorithm for determining which tub have already been done 48

4.1 MOSIS CMOS DRC rules frapient, ECF fragment, and COM fragment . . 59
4.2 Optimistic analysis of DEC CMOS rul• bued on data dependency 61
4.3 Optimistic analysis of MOSIS CMOS rulel bued on data dependency . . . 62
4.4 Results and analysis of DEC CMOS DRC ~ 65
4.5 e PI C analyaia of Makefile simulation bued on data dependency 69
4.6 Results and analyais of Mb epic . . . • 69

11

12

Preface

The text of this thesis was formatted using ~TEX .. The more complex figures and

drawings were generated automatically by the software described in this thesis, using a

graphical description language called Postscript1 • The two forms of printed media were

merged together electronically (rather than photographically or with scissors and glue).

The capability of automatically merging text with graphics in this manner has made prac­

tical the inclusion of a ftipbook animation.

The animation is an attempt to show how the behavior of the multiprocessing task

scheduling algorithm changes according to the number of processors. The parallel execution

is simulated under the a.Ssumptions of zero communications overhead and unit execution

time for each task. The nth "frame" in the animation is a graphical representation of the

execution using n processors. The graph is composed of diamonds, which represent atomic

units of computation called tasks. Horizontally adjacent diamonds represent tasks that

are executed in parallel on different processors. The vertical axis represents time, with the

beginning of the computation at the top of the page.

Initially, each frame occupied a single page, and the effect of flipping through the

100 pages was aesthetically pleasing. Unfortunately, in terms of the thesis, it was not

justifiable as a 100 page appendix. So each frame was reduced so it would occupy the

top and right margins of an existing page. The first frame of the animation is visible at

the right edge of this page. It shows how when using one processor, no more than one

task can be processed at any given time, so they are all executed one after the other. The

next page shows the simulation using two processors. The meaning of the animation will

become clearer after reading Chapters 3 and 4, but it was necessary to include a word of

1 Postscript is a trademark of Adobe Systems

13

explanation here, since this is where the animation begins.

14

Chapter 1

Introduction

As the complexity of VLSI circuits increase1, IO does the running time of the CAD

tools we use to build thoee circuit1. At the current Rate of VLSI t49cbnology and CAD tool

performance, tasks such u layout verification, 1ill'iUIMion, ail4· lnuk-making have proven

to be expemive bottlenecks in the VLSI design proc:w. If the aclftncea in the complexity

and functionality of the VLSI chip1 Wf! build a.re to keep :PUe with advances made in VLSI

process technology, then we mut make aubataatial improvements to the .software tools

used to design and manufacture those chips.

1.1 Accelerating CAD Tools

There are several ways to accelerate CAD tools:

1. Developing more efficient software

2. Buying faster general purpose computers

3. Using special-purpose hardware accelerators

4. Exploiting the hierarchy inherent in the represention of VLSI circuits

5. Exploiting the parallelism inherent in many of the existing CAD tools

Developing more efficient software is alw8"& an attractive alternative. In indus­

trial design rule checking, ECAD's DRACULA2 offered an order of magnitude speed-up over

.what was previously available1 • However, significant runtime improvement through better

1 DRACULA2 ia a trademark of ECAD corporation

15

0

software is often limited by the computational complexity of the problem at hand. Ob­

servations in industry indicate that further improvements are needed in the time taken by

design rule checkers.

Buying faster general purpose computers is perhaps the lowest-risk option listed

above. H purchasing new hardware will increue both the proc.,Ung and the memory

speed, then it will certainly increase the speed of the CAD tools that run on it. This

strategy has the added advantage that it can be easily combined with any of the other

strategies. However, since monetary cost rises faster than COIJlPutational speed, it is not

a cost-effective solution. This ia evidenced by a comparison of Digital's VAX 8600 and

MicroVAX II computers2 • They were both introduced in early 1985, so they represent

roughly the same level of t.echnolou. The VAX MOO computer bu approximately 5 times

the procawing speed of the Miaovax II compu&er, bu aeta about 10 times as much.

Relying on faster computen is alao not likely io be a IQOd. · lone-term aolution, became

recently the complexity of VLSI ciKuita bu ll'OWJl much fNter Uaaa the cost of-processing

speed has fallen. Digital'• VAX 8800 compuw bu four U..-.·t!M! lpeed and twice the cost

of the VAX 11/780 comp1Mer {1977), while chipa of 1986 Jaaye twenty.Jive times as many

transistors as thOBe of 8 years ago [Allen 1983).

Developing special hardware accelerators offers the greatest potential of all the

solutions listed above. Runtime improvementa ofi orc1 .. of magnitude are not

uncommon. In design rule checking, speedup facton of up to 140 have been predicted

using small amounts of cuatom hardware [Seiler 1985). S"llllila.r improvements have been

achieved in circuit simuJation using the ZYCAD hardware accelerator3. Unfortunately,

the cost of theae devices, both in money and development time, is often prohibitive. In

the event of an algorithmic improvement that decreues the powth rate of a problem, the

hardware will lose its edge as the problem increuea in able, rendering it obaolete.

2VAX ud .MicroVAX are v.demarb of DiciAI Equipma& CarpcriUaa
3 ZYCAD is a &ndemark of ZVCAD cCll'pCll'Mioa

16

1.2 Parallelism in VLSI CAD

Exploiting the parallelism inherent in VLSI CAD tools is an attractive way to

accelerate them. The nature of VLSI lends itself to a high degree of parallelism. VLSI

chips are composed of several layers, which are often examined separately. Each layer is

composed of different blocks which exhibit a very high degree of functional locality. Each

block is composed of many polygons which exhibit some degree of geometric locality.

We observe that the parallelism inherent in VLSI is manifested in CAD tools in

several different ways. Logic simulators possess parallelism based on the locality of ac­

tivity in a digital circuit. [Arnold 1985] exploits this property in a multiprocessing logic

simulator based on RSIM [Terman 1983]. Design rule checking and circuit extraction can

be accelerated by taking advantage of the geometric locality of the polygons that consti­

tute the chip. [Levitin 1986] describes a system that uses this approach to accelerate a

VLSI circuit extractor called IV [Tarolli, Herman 1983]. Similarly, [Bier, Pleszkun 1985]

describes a system that divides a layout into separately checkable partitions, checks each

partition, examines the partition boundaries to eliminate false errors and catch missed er­

rors, and merges the resulting error reports together. In design rule checking, there is also

parallelism inherent in the set of design rules that guide the checking program. This thesis

describes a DRC accelerator that exploits the parallelism inherent in the design rules.

1.3 A Software Methodology for Multiprocessing

If an existing program can be partitioned into tasks that are each sufficiently time­

consuming compared to the time it would take to move the task's input and output data

between processors, then an existing local area network may be effectively used as a mul­

tiprocessor to run that program. This is the case with DRC, and is likely to be the case

with Digital's circuit extractor and mask-making software. If several processors share a

common file system, such as in VAXclusters, then the input/output size constraint can be

removed°'.

4 VAXcluster is a trademark of Digital Equipment Corporation

17

Parallelism is a coet-efl'ective strateg for -.cceleratinc VLSI CAD tools. No special­

purpose hardware is needed. It is pouible to use a small number of general purpose

computers as a multiprocemor. Thus the utillty·and·t'Jie eXpe!Ule of an n-proceaor system

can be shared with thoee who need more serial ptotflllling ma.chines. Parallelism can

be combined with higher-speed general purpoeee computers and with higher-performance

software.

Many CAD tools have 10me parallelism, due to the nature~ 9f VLSI. So a hard­

ware investment made toward Cuter DRCs may alao pay off by accelerating simulations,

mask preparations, and circuit extradions. Another mmple of exploitable parallelism is

compiling and Jinlring a large software system.

This thesis de1Cr1Dei a software system called t P 1 C (Exploiting Parallelism In

CAD) that controls the pa.rallel execution of any eoftwue 8ystem that exhibits a restricted

cla.ss of parallelism. The nec-ry charaderidica or· the cca.PUtational environment and

the program to be acceleratM are aa followa:

• The program must be partitioned into diacrete tub.

• Each task must be individually callable from the operating system.

• All communication between tub must be done fliroulh disk files.

ti Unless dHferent computen can share the anw•'~ the time it takes to execute
an individual taek· . ..- lie pater ~:the ~i\ ta••.....,.. the files that it
reads and writes.

1.4 Chapter Outline

Chapter 2 describes previous work in accelerating CAD tools. This includes ef­

fort.a to use parallelism and hardware acceleration to speed up design rule checking and

simulation. The primary motivation for this thesie, ~~AD D~C, is described.

Chapter 3 describes the theory and impleipentation of£ PI C. The more interesting

features, such as task scheduling, are described iq d~.
··: ' ~ . ~

Chapter 4 describes the application of£ PI C to various problems, such as d~gn rule

checking, circuit extraction, and compiling and)inking Prosmms· Optimistic predictions

are made for the speed-up of each application. The apeed-up factors are determined for

18

several experimental runs of each application. The experimental results are then compared

to the optimistic predictions.

Chapter 5 concludes the thesis with a summary of the work reported and suggestions

for future research.

Appendix A contains a user's manual for running £ P 1 C .with ECAD DRC.

Appendix B contains graphical representations for the data dependency graphs for

several applications.

Appendix C contains the raw data for the experimental runs, including a table of

statistics and a graphical repre&elltation of the task asaignments for each slave.

Appendix D contains all the messages £ P 1 C sends for control communication. They

effectively define the architecture of the software behind e p 1 c.

19

20

Chapter 2

Background

2.1 Previous Work in Parallelism for VLSI CAD

A substantial amount of research has recently been devoted to the area

of parallel simulation. Papers have been published Oil the parallel acceleration

of several classes of simulators, including relaxation based simulators such SPLICE

[Newton, Sangiovanni-Vmcentelli 1983,Deutech, Newton lOM}, and event based logic sim­

ulators such as RSIM [Terman 1983,Amold 1985].

Until very recently, not much had been publiehed on parallel design rule check­

ing. In the past year, there has been more activity (Bier, PIE!nkun 1985,Nielson 1986).

[Bier, Pleszkun 1985] seeks to exploit the geometric locality of VLSI layouts by dividing

the layout into vertical slices, checking each slice on a separ&iie processor, and merging the.

error reports together. This approach could suffer from a large number of missed errors

and false errors at the borders of the slices. At some cost in redundant computation, these

problems can be eliminated by dividing the chip into slices that overlap by at least one

mazimal design rule interadion tliatanee (DRID). Errors reported within one DRID of the

border of a slice are filtered out in the merge phase as potential false errors. If they are

real errors, they will be ftaaed during the check of the neighboring slice.

This strategy waa not tested on a real multlproceuor, but based on statistics gath­

ered during serial runs, a speedup of 8:1 was predicted for 14 processors. As communi­

cations costs are small, this figure may be realistic. It is not reasonable to expect this

21

algorithm to offer a linear speed-up factor, since the computational overhead of process­

ing overlapping slices and discarding errors at the borders will grow with the number of

processors.

The data partitioning algorithm has the deairable property of having its potential

parallelism scale as a function of complexity cl. the laJQUt. If th-. is no communications

overhead, then we should then be able to me more proc-.on to hold the DRC execution

time constant as the circuit growB. Unfort.unaiely, the overhad of checking overlapping . .~

regions of the chip and removing falee erron from the repoe1a may reduce the potential

speedup significantly, and prevent the number of procellODI from being profitably scaled

with the layout. Thia thesis presents an alternative IV&tegy that has no intrinsic compu­

tational overhead. UnfortunaWy, the pualWimn oL oar tec~e does not grow with. the

complexity of the layout, but with the complexit7 cl. the ralea eet. Neverthelea, it promises

to allow more eftlcient me of each ptoceaor, ancl tMrefore proride better speed-up factors

for limited numbers of procl!lllon.

2.2 Previous Work in Accelerating DRC

Empirically, the time and space conaumed by a deaip rule check has been observed

to be about O(nu) or O(n1.s) where n is tt.. nmMer of ·tnmiaton. As the number

of features on a typical VLSI chip moves ia&o the milliou, DllC will become more of a

bottleneck in the designers' loop.

ffierarchical DRC is one poeaible aolatioa w the DRC problem, and

has recently been studied extensively ((McGRdl, W-bl'8ef 1980j, (Whitney 1981),

(Newell, Fitzpatrick 1982), (Smith, McDonald, Chana, Jerdonek,l91Mj). In a normal chip,

many cells are defined in terms d odter cella, ud Wocb cl oelle are repeated (such as in

a memory). Hierarchical DRC attempts to explob thia repetition by checking only one

instance of a given cell or cell block, reprdleu of hew ~ .tilaes it occurs. This has the

added advantage of only generating one error when a repeated cell is faulty, thus reducing

the volume of error reports while mil conveyiq the ll&1ll8 information.

In practical applications, however, the amount of reped&ion ia limited by various

22

factors, such as overlapping regions and globally routed conductivity [McGrath 1985]. Of­

ten, the advantage to be gained by exploiting the repetition is lost to the overhead of

finding and re-checking the cases where a cell's boundaries are violated by other layout.

Thus, while hierarchical DRC is profitable for certain chips, it is not yet a sufficiently

general solution. When it is does become profitable, it can be combined with the multi­

processing DRC algorithm presented in [Bier, Pleszkun 1985], or the approach presented

in this thesis.

At Hewlett-Packard, hierarchical DRC has been successfully used in practice

[Hammer 1986]. Using a core of checking routines based on NCA's VDRC1 , a methodol­

ogy was developed whereby the layout designer DRCs cells as they are initially layed out.

The CAD system maintains a central database of cells, keeping track of whether any cell

has been modified since it was last checked. When a cell is instantiated, only externally

visible geometry is checked in subsequent DRCs. This system is especially effective be­

cause the cost of checking each cell is spread throughout the design process, rather than

lumped together at the end. The disadvantage is that the designers must completely avoid

overlapping cells with other cells and with routing.

It has been suggested that the DRC bottleneck can be eliminated by "correctness by

construction" [McGrath, Whitney 1980]. This involves using layout systems that enforce

the design rules at the construction phase, making it impossible to violate a design rule.

Such layout systems tend to use design rules that are too simplistic, resulting in poor layout

density, and thus producing slow chips [McGrath 1985]. Specifically, the corner stitching

structures of Magic do not provide for 45° angle geometries [Taylor, Ousterhout 1984].

Modern industrial design efforts require this capability.

Advancements in the algorithms behind design rule checking have improved

the overall performance ([Wilcox, Rombeek, Caughey 1978], [Arnold, Ousterhout 1982],

[Chapman, Clark 1984]). For example, Chapman and Clark outline a method for im­

proving· the performance of IBM's Unified Shapes Checker by using scan lines. On chips

with more than 50,000 transistors, they realized~ CPU-time reduction of more than 50%.

This savings is substantial, but they predict that the improvement will not be sufficient to

1 VDRC is a trademark of NCA corporation

23

swiftly check chips 88 tranaillior counts move inio the millions.

Seiler describes a method for doina DB.C'ain laardware (Seiler 1985). This method

has obvious advantqes. Dedicated and c•tom.-deaigned hardware can do a good job

of exploiting "inner-loop• parallelism. However, a working prototype wu not produced.

Until the introduction of a production quality hardware DRC accelerator, it may be more

timely to increw performaace by aupneniina the a:ilRiaa CAD IOftware.

2.3 Motivation: Parallel DRC

Digital Equipment Corporation's primary motivation for supporting this project

was to produce a system that runs parallel ECAD DB.Cs. The key observation that mo­

tivated our strategy is that a design rule check does not; entail the execution of a single

algorithm, but instead involves the aequential execution of many. computationally inde­

pendent algorithms. More spec:ifkally, DB.C is a aequence of rules, mch as the following:

1. POLY-DIFF SPACING> ll

2. POLY-POLY SPACING> 2l

3. POLY WIDTH > 2l

4. GATE OVERLAP > 2l

Conceptually, there is no data dependency between theee rules. Therefore, each

rule can be executed independently by a Hp&r&te procellOr. That is not very efficient,

because there are often intermediate computations which contn1>ute to the checking of a

rule, and the results of theae computations are often ued in the checking of more than

one rule. We would like to do these computations only once, and share the results among

all those proceaors that need them.

These intermediate computations are explicitly listed in the ECAD rules file that is

used to control each DRC run. The rules file is essentially a computer program written in

a language especially tailored for DRC. The language has statements that do operations on

the various layers of the chip, such as polysilicon and diffusion. Some statements do logical

operations such 88 the pixel-wise AND and Oll of two layers, producing new layers. Other

statements do spacing or width checks on a given layer at a given tolerance, producing

24

error reports. A side effect of the execution of the program is that all the rules are checked.

As a final step, all the error reports ,are appended into a summary file, and the geometry

of the errors is depicted in an "error cell" layout that can be read into the layout editor.

Each statement in the rules file can be mapPed directly onto a sequence of operating

system commands that cause the statement to be executed. The input and output file

names can be extracted from the text of the rules file statement. By comparing the input

file names of one statement to the output file nameil of another statement, we ca.n determine

whether there is a data dependency between the execution of thoae two statements. In this

manner, we can build a data dependency craph from the rules file, with the information

about how to execute each statement stored at each node.

The data dependency graph has a set of f'CJDU, or .nodes whose input files are part

of the input data to the whole task, rather than outputs of another node. The number of

roots is generally equal to the number of different VtSI l&J*8 'for the particular process

technology. The computation Ill1ist begin With the roota~··How the computation proceeds

depends on the scheduling strategy, and greatly influences the performance of the whole

parallel execution.

2.4 Scheduling strategies

The following approadt is taken by ECAD m•tJieir marketed version of Parallel

DRACULA2 {Nielaon 19861. It requins a multiproewor wit& a 8hared ftlesystem, such a·

VAXcluster; it won't run on a local area aetWerk. Tlii8 impli• that it won't suffer file

transfer overhead. It a.lao depends on thetchedulinsfacllitiel built into the multiprocessor.

When submitting a non-interactive (batch mode) job to a ·VAXduster, the VAX/VMS

operating system1 determinea which procwor ia meet relpOmive, and assigns the job

accordingly.

The first step is to divide the data clepeaclency grapll into sections, as shown in

Figure 2.1. Each section contains all the noct. U. the~p-aph that have a given distance

2Parallel DUCULA ia a trademark of ECAD corporatio!l
3 VMS is a trademark of Djpal Equipment COl'pOl'Mion

25

Figure 2.1: Sectioned Data Depeadency Graph

from the roots of the paph, where diatance i9 mimpb- the llamber of aodm one mu.st pass

through to arrive at the ~on. For .aampl9, .U... mpi. compri8e a section whoee

distance is zero.

The approach proceeds by executing each aection one at a time. Every node in

the current section must be completed before any node in the next section can start.

ThiS guarantees that the data dependencifJI will not be ~ted. It ia alao very easy to

implement. The parallel execution ia controllecl ht a mmmand tile.

There are at leut We> 81lhltaJWa1 dra-.....to UM· method. At the end of the

execution of each section, the Cuter pmc111 • will 1 c . ·micHe wllil6 the alower processors

finish up their tub. At belt, this llfl'l'ftY lbalta.. tbe of proc e•Ol'B that can be

profitably used. At wont, it implies U..t a NOC•• tilla$ hecomm severely overloaded or

hung {for example, due to anodaer mer) after a ~ Jau ._,.eel to it is guaranteed

to block the execution of Uae DB.C. Another 4fa,wMck to_ llCAD'• method is that the

requirement that it be run on a VAXcluster is inconvenient; Digital would like to run

parallel DRCs on VAX computers lhat are not V~ tap&her.

By more cleverly ming the data depeadency arapla, we can inereue the potential

parallelism substantially, keeping each proca1"9r bUSJ nearl7 all the time, thereby enjoying

increased performance compared with ECAD's metJaod. To do this, we need to layer a

26

sophisticated parallel scheduling and execution system around ECAD DRC.

Unfortunately, ECAD DRC r~presents a true "black box" abstraction: the source

code is not for sale. Furthermore, its user interface was not designed to be used as an

interface to another program. Though the command interface to any given version of the

software may be sufficiently documented, it is not guaranteed to remain stable over time.

A system that is layered around such an inaccessible piece of software must be

written to be resilient to change·in the interface to that software. Also, it must not depend

on specific restrictions that may only apply to the current version of ECAD. One such

restriction is that that each line in the ECAD rules file corresponds to a task with no more

than two input and output files. It is conceivable that this restriction could disappear at

the whim of an ECAD engineer.

The way to achieve this resiliency is to try .to choose a model for the computational

structure of ECAD's DRC that is general enough to be adaptable to any conceivable change

that ECAD might make. The following chapter describes how this is done.

27

28

Chapter 3

£PI C: .A ·general method of exploiting

parallelism

This chapter describes the implementation of a software system called e P 1 C (Ex­

ploiting Parallelism In Cad}. e PI C provides a mechanism for controlling the parallel

execution of existing softwve that exhibits a specific clasa of intrinsic parallelism. e P 1 C

was written in PL/I for the VAX/VMS operating system, and runs on any number of VAX

computers connected by DECnet or in a VAXclU8ter1. No special hardware configurations

are required. Between the e PI C kernel and the preproceaora provided for running ECAD

DRCs and Makefiles, 8751 total lines containiq 5i<l8 PL/I aeurce statements were writ­

ten.

3.1 Dividing the job

The system described here provides a mechanism for running Parallel DRC by solv­

ing the more general problem of how to control the parallel execution of any program that

can be externally divided into a finite set of taab. We define task as a unit of computation

that can be executed using a sequence of standard operating system commands (such as

DCL commands, for the VAX/VMS operating system). Each task has a known, finite set

of inputs and outputs, each of which is a disk file. These tasks are explicitly specified in

1 DECnet is a trademark of. Digital Equipment Corporation

29

the manner of Fipre 3.1.

taak •aplit•-
/input•(chip.data)­
/output•(left.data, rlght.data)­
/dcl•(•taplitter chip left.right•)

taak "left•­
/input•(left.data)­
/output•(left.errora)­
/dcl•(••ctrc l•t••)

taak •right•-
/input•(right .data)­
/output•(right.errora)­
/dcl•C••ctrc right•)

taak "•rge•-
/input-(left.errora .right.errora)­
/output•(chip.errora)-
/dcl•(• ... rge left.right chip•)

Figure 3.1: Sample Task Description List and Data Dependency Graph

The strategy we will UR for Parallel DRC involves distributing the design rules to

the various proceaora. Eachpl'OCellOl' applies it. au!.et of the rules to the whole chip._ But

e p I c is not restricted to this form of parallelism, which is called inatnu:tion partitioning.

As hinted at in Figure 3.1, £ P IC ii well suited to tlatlJ ,..,thionirt1• Tile' multiprocessing

DRC scheme propoeed by (Bier, Pleakun 1985) could euily have been implemented with

EPIC.

A simple way to determine whether or not we can expect £PI C to be able to

enhance the performance of a given program is by comparina the sizes of the input and

output files of each of its tub with the time it takes to execute those tub. H the execution

time is far greater than the amount of ti.me it takm to transfer the input and output

files between the various proceuors, then the potential exists for aubatantial throughput

improvements using £ P IC. Of course, if all of the procesaors share a single file system,

30

then data communication becomes less of a bottleneck, and the restriction can be relaxed.

The extent of the parallelism, and hence the potential for throughput enhancement,

is further limited by the data dependenciea.witlaia the iuk liat. By comparing the inputs

and outputs of each task, we can generate a data Gependenq"lf'&ph, as shown in Figure

3.1.

In Figure 3.1, the potent.ial parallelism ia limited to a maximum of two processors.

ff we assume that each task takes one "tick", then by uing two processors we can do

the job in 3 ticks, whereas we would need 4 with a single processor. Due to the data

dependencies, a third pr<>C41BBOr couldn'.t be used at all. So we say the parallelism has a

mazimum utent of 2.

Proce110n Two Three

Proc•or 4, Bj "A B c '
time= 1 1 1

time= 2 2 3 2 3 4

time= 3 5 4 5

Figure 3.2: A More Interesting Data Dependency Graph and its Execution

The most obviou way to try io determine the extent of parallelism is to find the

width of the widest row in the graph. This worked in Figure 3.1, and clearly having that

many processors would yield the fastest pcjesible execution time. However, by assuming

that each task executes in one tick, we can do jut as well uing fewer processors. Consider

the data dependency graph in Figure 3.2. The maximum extent of parallelism is now 3,

since we can keep 3 processors bUBy at time = 2. _But the minimum extent of its parallelism

is 2, becaue "4" can be executed by the second processor during the third tick, while the

first processor is executing "5". e,, 1 c tries to optimise task ached uling in this. manner so

it can get the most performance out of the available processing power.

31

I

3.2 Multiprocessing on a Local Area Network

The computational model I haw Mected 9 puallel prece-lng is not unlike the

dataftow model. Of comw, the me of w:h atcmic c:ompatUion ia eomewhat smaller in

dataflow, so the capacity for incurring Oftrb.eMI &om conkollina the computation is also

smaJler. Bence, I me a sipilaiaily cli....._.,,...... -.~·~e computation in

£PIC.

Figure 3.3: Star Netwwk Topolcv

Ethernet2 technology ia ued u the phyaical l&JV beneath the DECnet protocol

in DEC's local ara. networks'. Ethernet ia alllelltially a couial cable that connects each

node on the network. A proceaor aends a menace by broadcuting it over the cable.

Each processor receives all the Dl8118aaee and 8C&D8 them for the ones that are addressed

to it. Conceptually, an Ethernet can provide the buia for a variety of software network

topologies. The topology e PI C uses is a atar network, u shown in Figure 3.3. The

processor at the center of the star, called the mater, is responsible for controlling the

whole execution. One of the processors on the points of the star is used to provide a user

2 Ethemet ia a trademark of Xerox Corporiion
3 DEC ii a trademark of Digital Equipment Corporation

32

interface for the master. An interactive program called NDMITOR is run on this computer

to allow a human to control the execution. ·The remaining pmceesors at the points of the

star, called alavu, are responsible for executing wkUever taaks the master assigns, and for

transferring the appropriate input and outpai files.

There were several specific engineering factors conaidered in the decision to use a

star network topology. The progra.ma we intend to nm .ht }Mlallel tend to have irregular

computational structures. Their dat&depeadenq.grapluttake on arbitrary shapes, forcing

us to spend considerable effort trying to keep each· PfOCMBel' busy. This is further compli­

cated by the computational en~ronment in whidl we nm.. Each processor it a time-sharing

computer, and while we expect .tha,t £ P IC would~o• IM! ran when it wouldn't be compet­

ing for cycles, we can't let a loaded proceaor slowdown tile rest of the computation. Thus

a fragile task achedullilg ltrategy would involvecallocaiin1 ach t&ik a to specific processor

before the computation begins. A more robuai bQ acllaluling nrategy is to dynamically

assign computable taaka io available proceuon, to al'elati'MIJ slow processor will execute

proportionally fewer ta.ab. Fortunately, aiaee eacll tuk tak9 m much time, we can afford

to incur some computational o'Verhead figuring out:dMt·.best strategy for assigning tasks

to processors. A good way to do that.is to have oae procelBGr·tmming a master program

that has total control of the computation.

As it turns out, Uie muter does not taka very much CPU time once some initial

preprocessing has been done. Moet of the time, m's j1mt waitingior a slave to indicate that

it is finished with its task. The short burst of CPU time it needs to fi~ out which task

gets allocated to the free slave is small compared to the time it takes the slave to finish the

task. Experimentally, I have determined that the master can eiiciently share a processor

with a slave.

It is enlightening to look at an example which is not conducive to a star network

topology. In regular parallel •tructures, it is euy·· to predeMrmine the best way to allocate

processors to tasks. Synolic arrays are one way of exetuting such computations. Central

control of each processor in a systolic array is undelirable, since there is typically a large

amount of communication between neighboring proe•ors, but very little other commu­

nication. It is better to have each proceuor know precieely how arid when to talk to its

33

I

.
neighbors than to have one proceuor take NllpOD8ihility for relaying all communication

from the aender to the receiftr. Dueto the extnme YOlume of information pa-ing through

it, that proc:euor would then be a ..-ere bo"1enec:k ia the com.p1ltation.

Another clua of applications that are not well nited to the t PI C model of compu­

tation are thoee where it i.e not clear at the lltari of the paqpam encdy what computation

will occur. The task bnakdawn ill done at l'1IJl time, raths '1lan •compile• time. H this

is the case, t PI C will not be able to elidea~ IChe4ule the tub.

A good example of thia ia Pan!W ISDI [An.aid tila). Ii w a master-slave star

network configuration u its multipmcemor,. but dme iB JIG fiai1e eel of tub from which

to generate a data dependency paph, since MDI is an . ..,. ..._,simulator. A change in

the value of a node in the cilait ca- a simulation of the aurroaacling devices. H this

simulation cauaea other node Y&lum to be chanpd, th.en the dericm connected to thoee

nodes are simulated u well. Thia propaption continnea until the network aeUles. There is

no way to predetermine mc:tly what compuiaticm will occur wt.. a giTen node changes.

Instead, before any simulation occura, ParaBel ISDI aploita functional locality in the

circuit by partitioning it and tending one 1ection to .a procwor. The various sections

are simulated independently until a value on a shared DCMle chanpa. The procesaor that

changed the node then aendl a mesa.ge to other procm1on that ah.are the node indicating

the new value and the llimlllated time when the change ocamed. t PI C is not equipped

to deal with this aorl of comp11tation. ll n.eeda to bow about each task in the problem

before it can begin.

3.3 Software Architecture

£ P 1 C is compoeed of three aeparate pmgra.ms, llJIITOI, MASTEi, and SLAVE. Each

is run in a separate process.. Theee proce8ll8 can be on dilfenmt computers. Normally,

one would run the MOIITOI, MASTEi, and one SLAVE all on one procemor, since MOIITOR

and MASTD take alIDOllt no CPU time during the computation.

The three programs communicate by paasiq JDe8A8e8e Using VAX/VMS mailboxes

and the DECnet interprocess communication protocol, a meuage puaing subsystem was

34

developed. It provides a uniform procedural interface to allow programs to easily handle

a variety of asynchronous events, such as subprocesees, timers, multi-client in'terprocess

communication, and terminal I/ 0.

The MOIITOR is the only program with which the user interacts. It allows the user

to initiate and control the parallel execution, and p.ropj4• a perieiically updatal display

of the status of each SLA VE'a proceu. Fol' mme iafermatioa about the MOHITOR, see the

e PI C /DRACULA User's Manual in the Appendix..

The most interesting program ii the ~ti&. U ii initiated by a user instruction to

the monitor. The monitor creates a remote~ on .the 111Uter'a processor, and opens

up a communication channel to it uaing the memtage puaiJl&'.,.tem. From that point on,

the monitor is used essentially as a front end for the muter.

open execution control file
task_list :• empty-list()
while not(end-of-file) do

read task description
append taak deaeription to taak_liat

end while

for each element "t1" in taak_list do
for each ele .. nt "t2" after t in taak_liat do

if any of ti's output• 11&tch any of t2's inputs then do
t1 is a predeceaaor of t2
t2 ia a succeaaor of tt.

end if
end for

end for

Figure 3.4: Algorithm for Generating Data Dependency Graph

The first thing the master does is read the eucution control file, which contains

all of the task descriptions. This is all the master needs to know about the particular

application being run (e.g. DRC or Makefile). Recall that a task description indicates

all the input and output files, as well as the sequence of operating system commands that

35

I

run that iaak. Completing each of the tub in ~ aecutial control file is equivalent to

running the application. The mrMer ia claa.rgM rill distributing thoae tub among all

the available procellllOlB eo aa to minimise the total eDedtilon time. The strategy it uses

requires the generation d a··clata ~ ...,. fmm tJie•aecuticm control file. The

alaoritkm 1wd ia pr•1atecl in l'ip:re 3.4.

The 1DUW mpjptaim Ute databue of-.... A Uve ia created in response to a

request that the UHi' giv• to the monitor. Tlwmanitair ftll&Ja tile l:equest to the muter,

and just aa the monitor aated the m.ter, tl.e meetr,....the mt 1.,e pa-ing pacb.ge

to create a lWlllOte proe• GD the alaft'• ·proc•or~ and ..Witlh a ccwnJtmnication channel

with it. The __.can nq.a a slaft at any tinlll after the _...baa been created. Each

slave has the capacity to execute cne teak at a time. Race each· slave can be in one of

two atates: "b_,- or 9idW'. An Ullc •vu Bat and a 6.., •va list are maintained

throughout the computation.

The computation beaina with the root. of the graph. A tut la a ·root if it has no

predeceBIOlB. So initially, the rooMI are placed Oil a-.. .. :A Wk oa &he nady queue

is said to be computable. When all of a task'• pnclece•an are ~ it ia placed an

the ready queue.

3.4 Task Scheduling

do while tmre are taab left to •XKU'te
do while (the ready q•• and tM free alave liat aren't apty}

aaaign a alave to a task
end while
wait for a alave to finiah or a •create alave• .. aaage

end while

Figure 3.5: A Skeleton for a Taak Schednling AJgorithm

With a list of free slaves and a ready queue, the master ~an begin the computation.

The basic structure of the algorithm wied to control the execution ia preaented in Figure

36

3.5.

Each statement in the algorithm corresponda. to a substantial amount of program­

ming. For example, "wait for a •lave to f iniah" implies (among other things) check­

ing the finished slave's task's successors to see if they are now computable. One statement

which implies a good deal more is ~aaaign a alave to a taak". H the number of free

slaves is greater than or equal to the number of tasks on the ready queue, then we can

assign any of the computable tasks to a slave, since.. each of the tassb will be assigned be­

fore the loop falls through to the "wait ... " statement. Unfortunately, we are not usually

provided the luxury of being guaranteed more slaves than tub on the ready queue. The

choice of which task to assign must be made carefully, because it can have fairly profound

effects on the speed-up factor of the parallel execution.

A bad algorithm for choosing tasks can result in data dependency bottlenecks.

An optimal algorithm for choosing tasks is JI P-Complete [Mehrotra, Talukdar 1982]. We

present here a heuristic for chooaing tasks that baa beeJ,J. ohlerved. to perform optimally

under most conditions. It requires a preproceuing step that has time complexity O(n2
),

where n is the number of tasks.

The first step toward discovering this heuristic is to ideJttify the goals of the whole

parallel execution system, and how the task scheduli.Q.a al&orithm must try to help achieve

these goals at minimal cost. The main objective is to minimise the real time (as opposed

to the CPU time) needed to execute a set of tasks, given a fi.n,ite number of processors. To

do this, the task scheduling strategy must keep all proceaora busy as much of the time as·

possible. Each processor will be always be busy as long as there are computable tasks. So

a good subgoal is to keep the ready queue as full as possible. Executing a task that has

no successors (called a leaf) will clearly make no progress toward replenishing the ready

queue. Executing a task that has many successors will clearly make some progress towards

that goal, but it's still not clear how one should measure the immediacy of the need to

execute a given task. What we do know is that we are interested in the characteristics of

the subgraph rooted at that task's node in the data dependency graph.

To help focus our attention on the right characteristics of a task's subgraph, we

observe that the limiting factor of a computation is the longest path through the data

37

I

for each tut •t1• ill tuk_roota do
compute height_of_tuk(T1)

end do

height_of_taak(T1):
if Ti.Might l• Ht 'then retlml(T1.:beight)
aub_IMtight :• 0
for all aw:ceaaora •T2• of taak T1 do

a11b_IMtigllt :• mx(aub_lleigln.lliaigll,_of_tuk('t2))
end for
Ti.height :• eatiuted_encution_tiM(T1) + aub_height
rebrn(Tl. Mip•)

end height_of_tuk

Figure 3.6: Algorithm for com.pum.& heicht of all tasb

dependency graph. No matter haw many pJ0Ce801'9 &re aftil&ble, the overall execution

. time will never be lems than the sum of the execution timm ·f!A all the tub along the critical

path. This sum is called the heiflat of the graph. A.a the computation progreues, we seek

to chip away at this critical path in support m oar ~ which is to minimize the

total execution time. So the concluaion of tJUa intuitiw arpment is· that we should give

top priority to tasb which lie on the critical path. The &pprQpriate quantitative measure

is the height of the taak'a subgraph. Uaing the al&oritlun prmented in Figure 3.6, we can

compute the height of each of the " tub in O(") time.

Using the height as a priority scheme for each task does not provide very much

resolution. In the data dependency graph generated from a sample design rule checker's

execution control file, the estimated execution time of each Wk is 1, and the heights of

all the tasb are integer values between 1 and 8. But there is more information in a data

dependency graph that ia intuitively related to how critical each particular task is. In

particular, the total number of tasb that directly or indirectly depend on a given task

is relevant. In a sense, it is the meuure of the total fanout of a particular task. It is

equal to the size of the task's subgraph. The algorithm in Figure 3. 7 computes the size

of n tasks in O(n2) time. In practice, this has been an acceptable penalty to pay for the

38

for each taak "T1" in taak..liat do
clear_exaained(T1)
T1.aize :• find_aize(Tt)

end for

clear_examined(T1):
T1.exaained :• FALSE
for each auccuaor "T2" of Tl do

clear_eX8.ldned(T2)
end for

end clear_examined

find_aize(T1):
if T1.exaained•TRUE then return(O)
T1 . examined : • TRUE
size :• 0
for each aucceaaor "T2" of Tl do

aize :• aize + fincLaize(T2)
end for
return(aize + eatimatecLexecution_ti•(Tl))

end f incLaiz•

Figure 3.7: Algorithm for computiq the size of all tasks

more accurate scheduling capability. In the cue of design rule checking, the penalty is

insignificant compared to the time spent doing the DRC.

Empirically, we verify our suspicion that the height of a task's subgraph is a better.

measure of its priority than the size of the subgraph. The way to compare the performance

of the heuristics is by simulating a parallel execution under the assumptions that each

task takes unit time and that there are no communication costs. We then depend on

real experiments to back up the results of the simulation. Figure 3.8 shows the parallel

execution simulations of a data dependency graph using four processors. While this is

only one example, by running the two simulations in your mind, hopefully you will gain

intuition that lends support to our empirical observations.

Now we have two numbers associated with each task: a height and a size. We use

39

•

Heu.rime Height Size

Procemor A B c D A B c D

time= 1 1 1

time=2 2 4 5 6 2 3 4 5

time =3 3 18 6 7 8 9

time=-' 1 8 9 11 10

time=5 12 11

time= 6 12

Figure 3.8: A data dependency graph and its execution using laeif#a.t and aize

these as keys to keep the ready queue soried: flnt by height and then by size. With the

m<>11t crucial tasb at the front of the queue, the task echedulina ltr&tegy is complete. The

O(n2) operation to find the sises is run only once before the lltarl of the run. Typically,

for design rule checker's data dependency graphs, there are fewer than 200 nodes, and the

total time spent on the processing step in the beginning ill lea than 30 seconds. Once the

height and size of each node is computed, they are .m to dynamic:ally guide the scheduler

in assigning the most urgent task to a slave whenever that slave finiabee its previous task.

The strategy performs optimally in moat C&tllL After crating data dependency

graphs of various shapes and sises and ainmlatiq each one with a ftl'Jinl number of

processors, only one example was found in which the heiaht/sise heuristic did not perform

optimally: it took seven time units instead of six. This is illustrated in Figure 3.9.

3.5 Communications

There are two major obstacles blocking us in our pursuit of a linear speed-up factor.

The first is the challenge of keeping each processor busy as much as poaible. For the class

. of applications that we wish to accelerate, the task scheduling strategy introduced in the

previous section does an adequate job. While testing £ P 1 C's application to an industrial

Heuristic Optimal Height/Size

Proceaac>r A B c A B c

time= 1 1 1

time =2 2 3 4 3 4 5

time= 3 5 6 ~ 7 2 12

time= 4 8 9 12 6 7 8

time= 5 10 11 13 9 10 11

time= 6
.,

14 13

time= 7 14

Figure 3.9: A task scheduling trial simulation where height/size heuristic is suboptimal

design rule checker, the task. acheduling behaved well• This is discussed in more detail in

the following chapter.

The next challenge is that of minimizing the communications overhead. Since e P 1 C

was designed to run on a looaely coupled multiprocessor, communications is fairly expen­

sive~ In e P 1 C, there are two ilavon of interproc1•or communication: control and data.

The mechanism used for these two forms of communication is different.

3.5.1 Control Communication

Control communication is accomplished ming ~ .mre•age passing package devel­

oped for e PI C. It is based on the VMS/DECnet taak-to-task communications protocol

[VMS 1985). From a programmer's point of view, one simply opem a channel using a file

specification of the form:

node"username paaaword"::"taak•commandfile"

This causes a message to be sent on the Ethernet to node, requesting that a. process

be created for usernau, and that that process Rn C·oaaandfile. The commandf ile on

node should then open a channel (or invoke a program that opens a channel) using a file

41

•

specification of the form SYS.IET:. By writing to and reading from these channels, the

proceaes can send mea11gea to each other.

The above mechanism providee the neceaary cb&Dnela of interproceeeor communi­

cation in the cue where one proceea wants to create a MW procem on another processor

and then talk to it. If two existing procw• want to eatabliU a channel of communication,

then another strategy is uaed. When an t PI C propam (•ITO&, ldSTD., or SLAVE) is

run, it creates a VAX/VMS mailb (VMS 1985]. A mailbox contains a global buffer into

which any procem that knowll how to find the mailbox can write a meaage. When the

program createe the mailbox, it ••p• a lofical name to the mailbox ao that other pro­

ceeaea can find it. By cmmmtion, ll>llTO& uea the J.ocical name EPIC$11JIITOR, MASTER

UBe8 EPICeMASTER, and SLAY! 1111e1 EPictalave-nam. Therefore, within a single logical

name space, there can only be one monitor and one muter, and each slave name must be

unique. Thua when one program wantl to contact another, it opens up a channel to the

appropriate mailbox (for enmple, monitor opw up a,ehe=nel to node: : EPIC$1USTEIL:)

and initiates a conv~tion. By reading to and writinc from U.t chu•el1 the two existing

prc>gra1m can commnnicate.

3.5..2 Control Communication Requirement.

The MASTE1l program communicatee with &nJ' number of slaves, in addition to the

monitor. The "wait for a alave to finiah or a •create alave• •••age• line in

Figure 3.5 requires the uae of an 1/0 subroutine that is not provided by VAX/VMS or

the PL/I run time library. At 110111e lenl in the cocle, t.lme maat be aome statement that

reads a record from any of aeveral 1/0 channels, returning U. m zp aad the claannel

number of the tint channel to 8fllld a record. In Olllier' to proride this functionality, an

asynchronous read request is left pending on each channel using the VAX/VMS system

service SYS.QIO. When the channel responds, a subroutine specified as a parameter to

SYS.QIO is called at the interrupt level. This subroutine is called an aa,ncl&ronoua srstem

trap (AST). It is the AST's responsibility to append &he mew1ge that wu received onto a

queue of mesaages, set a global event flat that iadiea&es that a me•aae wu received, and

requeue the SYS•QIO.

42

II
When designing a large, complex system such as t P JC, the existence of ASTs

poses a toughsoftwa.re engineering problem. Since ASTs execute at a higher priority level

than mainline code, we cannot aenerally assume atomicity in· a sequence of operations that

updates a data structure. Foruample, if one is in the-process of deleting an element from

a doubly linked list, and an AST is trigered.that modifies that list, the list could be left

in an inconsistent state. In short, ASTs are ·a power tool, and' When power tools are used

carelessly, they can kill4 (or at least caue endlela·Jtoun ofdebuggin1).

There are two strategies for ensuring harmony in data structures that are shared

between mainline code and AST routines. The fim ii to disable. !\ST interrupts with a

system call wherever synchronous code acceues a data structure that it shares with AST

routines. The disadvantage of this approach is that while interrupts are disabled, the user

process can't respond to mNMgea it receives from other processes. H the sending process

uses asynchronoua BITEs, then it could queue up an arbitrary nUm.ber of messages while

the receiving process remaina in "disabled-interrupts" mode. Depending on the buffer size

parameters selected by the system manager of the computer facilities, the buffer could

overflow. If the sending· process uses synchronous. 11\ITBa; meaning the RITE statement

doesn't return until the reader's AST bas been trigered, then the sender will be delayed

until the reader's interrupts haw been ~bled. In this case, if the teader has interrupts

disabled while waiting for the "message-received" event flag to be set, a deadlock could

occur.

The other strategy is to carefully code the routines that access shared data struc-·

tures so that they are never in an inconsistent state. It is p08Sible to do this for singly

linked lists, but not doubly linked lists. This is a fairly seriOUi!I restriction, since it is diffi­

cult to delete an arbitrary element from the middle of a singly linked list. One way around

this is to share only a singly linked list between mainline and AST-level code. The only

operation ASTs get to perform is appending to the tail of the list. All that the mainline

code does with that list is remove messages from the head of the list and place them in a

more versatile data structure that is safe from ASTs.

The message passing facility uses a compromise between these two approaches.

'-Power tools can kiJ1• is a maxim credited to Brian Reid of Stuford UniYersity

43

Since t PI C requires both the capability of reacHng a .,....,e from the first channel and

the capability of reading a 1W8ftP from a specik chf.Mel, ~ shared list lau to support

the ability to scan throuah the Dai and __,.. the_~ mcmap. This could

have been implemented 1llliDa the laUer ..._,~ .lndc .• foBcnring lltratesJ wu more

convenient to code, and ia practice did D4K aoticable pedOnnance penalties. It

shares only one structure between AST'.'"level rfttiw aad mainline nsutiw: a doubly

linked list structure. lntemlp&a an GJ:a1y •>w »r..tillil tia:a-it al•to Ind and remove

the appropriate mea .. e. In practice, &adillc t.M appropriMe mm1ap in the list was

not expensive, since the list g....Uy hacl lw·~ 10 m.a IC•• '•Bemcmrac the message

amounts to moving a few poimer& The by to nallias tbe-m.&ble-iAterrupt• strategy

work is to avoid doina &nJ 1/0 caUa while bdemlpta are diabled.-

The primary motiw.t.ion for writiq ~ m JJ1ee JMllZ"i• pacbp was to eliminate

all asynchronous code from the ~ of e p 1 c. Ill eddititm, tlle mui1p peeing pedage

provides a uniform ~-procedural iaterface for •wtHnc ..,.adlronou communi­

cation between a procw Pt and the folowbac eMitie.:

• Independent proc••• that .Pt aeatecl • aaotllmr aocle

• The process that crea.W .Pt &om aodie

• An independent, already exiatiog procw oa aaother aode

• Subproceues created by .Pt

• The terminal attached· to Pl

• Timers created by Pl

The single moat sipiflcant function it preTidea i9 t.hM of reeding from the first of

any of the entities that aenda a memap.

3.6.3 Data Communications

Recall that t PI C is a lllaell around an a:llting software system. t PI C divides the

execution of that aoftware into tub. Each ~ theie tub communicates using disk files.

While the problems to which we are restricting oune1vel do not use extremely large disk

files, experience has demonstrated that the performance improvements we reap through

parallelism are moat aeverely limiW by ·the speed with which we pam data between master

-and slave. The message passing facility described above is not as fast as it could be, since

considerable effort is spent providiq the functionalily required ·by t PI C. Hence, if we

were to use the message pwiq facility for data· communkation, we would suffer from

suboptimal performance. In addition, the data contained in the input and output files may

be represented using any of the file record structuna available in VAX/VMS. The message

passing facility is restricted to dealing with dwacter atriaga. The standard VAX/VMS

interprocessor file copying commands provide the appropriate functionality at the fastest

possible speed.

To copy a file from one VAX/VMS sptem to another, an· interactive user would

type

$COPY node1"uaerna•1 paaawordt•::clevice1:[directory1Jfile1.ext1 -
$_ node2"ua•rnaa2 pa1aword2": ·: ch:yic.'2: (dinctory2] f ile2 . ext2

Naturally, if you were typing this on nocle1, you would omit the accounting infor­

mation for it. In general, VAX/VMS allowa the inclusion of a node specification (with

accounting information) in any file specification. Opelimg a file with an account specifica­

tion causes a process to be created on the remote node using the supplied usemame and

password. That process efficiently hand.lea the 1/0 calla made to the channel. The re­

mote process creation is functiOll&lly iranapar:ellt 10 the uer, except for the time overhead

involved.

The way t P 1 C executes the VAX/VMS COPY command is by using the message

passing facility. The facility provides a call that create. a ~~ and keeps it around.

Sending a message to the subprocess causes the text of the message to be interpreted

as a VAX/VMS command. When the command finishes, a message is "sent" from the

subprocess to the main process. This way, the main process can be doing other things

while the subprocess is executing the command.

Each slave is responsible for bringing its task's input files from the master's filesys­

tem to its own, and for sending back the output fll• when a taik is completed. Buffering

all the data files on the master is obviously less efficient than having each slave trans­

fer its task's input files directly from the slave that generated them. t PI C's approach

has as much as twice the file transfer overhead has the optimal approach. The reason

45

£PI C buft'era all data fi1el at the master is ao that If a llave's procellOr crashes, then its

work won't be loet. In tlMt da89 ·of probl.ema for 1tlddr t P 1 C wu deeignect, the cost of

re--executing one tut u.y be ar-ter than tile total c:mt·afall the &le traDifen for the

execution of fl'f«y tut.

£PI C spenda aome effort trying to minjmju tile number of file· transfers. The

:master keepe a data.hue al all the lies daat .ftllide Oil wit slave's tDeeyatem. Whenever

a task is aaaiped t.o a slaw, it ia told whicli of tJ&e.inpat; Ilea-it already has, so the slave

can suppreaa the COPY command. The effectivene111 of thi8 atrategy is further enha.nced

by modifying the tuk acheclaliq alpriUml·:tOltab into account what input files for each

computable task are already resident on a free slave's fileayatem. Specifically, the ready

queue is composed of a Im of IGM ,,.,,.,,._ ...,. .t.llk in a -liven task poup hu the same

height, but varying aiw. The groups are arranpd In aea+•n1 order of height, and the

tub within each aroup are IOrted in ~ Old.- of .me. When a slave becomes free,

the tmt task aroup is IC&DDed to flDd the tut &hai .W nqaire ihe fewemt file transfers to

execute. Thus the task echeduJina ma&eo ii b....t on 41d«dnc the rwiJ queue by three

different characteriatica of each tuk:

~-· The hei&ht of the tuk'a aubpaph (CNnP"tal ow)

2. The number al input fila ~ t.be·-. Gl111 dr ... (computed on the fly)

3. The me of the task'• aubsr&Ph (computed once)

3.6 Fault Tolerance

When the word "timellbarina" is mentioned to aomeone who bu recently aurvived

an undergraduate Computer Science curriculwa, the-Ump that first eaten hia mind is

that of an overloaded CPU. £ P !C's dynamic taat .eched.uliq alpiUun inaurea that a

relatively heavily loaded proceaor will be •ni&D..t piQpQrtionally fewer tub. Another

"timesharing" flashback is that of the downed computer. In thGle daJB, when the CPU was

down, it was of course no longer pcaible to 1et ~ uefu1 work done (except maybe a trip

to the vending machine). With distributed COJQ.pui.tiQJl, if one p:roce810l' 1oes down, the

execution should gracefully continue with decrade<l petfon:nuice. By outlining a typical

46

111
scenario, the need for this requirement will gain more substance. Assume t P 1 C is being

used to accelerate the DRC of a chip that might ordinarily take several days on a single

VAX 11/780 computer. Ten VAX computers are being used to (hopefully) finish the DRC

overnight. If one· of them crashes (or is brought dqwn for p~ventive maintenance), t P IC

ought to continue the. computation .at 90% ~ its' former speed .. If e p 1 c gives up its

unmanned computation, the layout designer t1Ja:J Wl l)ebbld a whole day, assuming the

ten VAX computers will be far too loaded~ft»r long ~interactive jobs during working

hours.

Giving e P 1 C the capability to handle crasaed slaves is fairly atraightforward. The

scheduler doesn't statically· prepartition the aet of ta.ks, it just usigns priorities to them

so they can be easily wigned to slaves on the IJ. If ~he DMll•P paasing facility detects

that a slave crashes while it is running a task, that tuk ia placed back in the ready queue

according to its priorities. If the slave completed any tasb before crashing, the output

files are buffered in the maater's file space, so the work won't have to be redone.

At any time during the course of a parallel computation, the user can go into

MONITOR and create another slave. Again the dynamic task scheduling algorithm makes

it easy. The new slave is added to the master's slave database, and (recall Figure 3.5) is

immediately assigned a new task. Thus if the user is watching when a slave crashes, then

when the machine is brought back up, the user can~ the '1a.ve process.

A predecessor to £ P 1 C called PDRC (Parallel o.ip.. R.ule Checker) experimented

with a mechanism to periodically probe a crashed sla.veij)roceB8QI' to see if it had come back

up (Marantz 1984]. When the processor responded, Pl>AC w~ aut0JI1&tically regenerate

the slave. This worked well most of the time, but bee-a.me very .f,ustrating while debugging.

If a slave was misbehaving for any reason, term,inatN. the ~ would be futile, since

PDRC would immediately sense that the processor was still up, and would create the slave

again. Nevertheless, this functionality should eventually be brought into e P IC.

Currently, e P 1 C is not capable of continuing a computation if the master's pro­

cessor crashes. It is, however, capable of restarting the parallel execution where it left

off. After the master first reads the execution control file, it goes through a process of

47

check_taaka :• taak_roota

while •cuck..tuta• ia no• empty
Tl :• firat ele•nt of check..tub

· remon Tl froa c11eck..tub
if all of Tl'a 0111q1U fil• ~t ~

if all of T1'• outpat fil•• wr• lut reviaed
after each of Tl'• 1npa1r ttl•• then

call 1iuk..fiai:abed(T1)
end while

tuk_finiaud(T1):
for each aucceaaor •n• of taak Tl do

T2.prec1eceaaora_coapleted :• 1 + T2.predaceaaora_coapleted
if T2.preclitc•••••-C9.pl•tecl111 n.piredM .. aora then

append T2 to chKk..tuka
end for

end tuk..f iniabed

Figure 3.10: Algorithm for determinin& which \ub have already been done

eliminating tub in a manner ftrY eimllar to that of Unix' llabfil•• (and VAX/VM.S

MNS4S). The algorithm med is prwnted in Figure 3.10.

For most applications, it would be sufllcient to merely check for the emtenee of a

task's output film in order to mark it u complete. But llnce it wu not hard to compare

the revision dates of the input and output Itel~ and since doing so gives t PI C the basic

functionality of ab, it WU implemented. Thull amna e, I c the functionality of make

was as euy u conftl'ting the 11J11t&x of tile MaUfile to that of the execution control file.

6Un.ix ii a Vademark of AT•T Bell L&bontories
8 MMS ii a U'ademark of DicSal Bqaipma' Ccirpora&ioa

48

S. 'I Error Recovery •
e p 1 c tries to address the problem of how to proceed when a slave's subprocess

fails to properly execute the task it is civen. A failure of this nature is detected in one

of two ways. The message passing system will return the VAX/VMS error code if a

problem was detected by the program run in the subprocess. H the program is not a

VAX/VMS layered product, the error code may not aa.y very much, but hopefully even an

independently written program will abort by aipaJliJJg an error rather than terminating

normally. ECAD DRC, for example, behaves in this IJlA»ner while remaining portable to

other operating systems by dividing by zero whenever a problem is detected. The other

way an error is detected is by checking for the abaenae of any of the task's output files

when the task's DCL commands are finished.

In the past, the cause of an unsuccessful tuk execution has stemmed from a variety

of sources. Sometimes the error is a reflection of the state of the computational environment

of the slave's node. Specifically, a library file or executable image could be missing from

a system directory. Sometimes the error is due to a poasibly transient condition on the

slave's node, such as the lack of a resource needed to execute the task. Often, when one

slave failed to execute a task, another was found to be capable of completing it.

The strategy implemented by e P 1 C is to put a failed tuk back on the ready queue,

and keep track of how many times it has failed. When this number reaches a certain

threshold, currently defined to be 3, the task is deemed uncomputable, and is removed

from the data dependency graph, along with all the tub in ita subgraph.

For certain potential applications of e PI C_, the cause of failure for any task is

be more likely to be illegal or erroneous input files. This is most likely the case when

the application is to compile and link software. H e P IC detects a failure in a source code

compilation, it is a waste of time to try it again three times before deeming it uncomputable.

The right solution is then to reduce the task failure threshold to 1. The first time a task

fails, it will be removed from the data dependency graph, and the rest of the tasks will be

executed normally.

Each slave also gets a counter, which is incremented whenever it fails its task and

49

decremented whenever it completes its tuk. H th.is cou.mer cm•• a threshold, currently

defined as 2, then t PI C destroys the slaves on the grounds that it is a waste of time to

be Ul!ligning tub to it if its going to fail more tub than it completes.

This computer resource ma.nagement strategy is anaJC.ous to human resource man­

agement. A manager will a•gn the moat reapouibility to his moat productive employees.

t PI C's strategy could be extended to UBe more reaolution in an attempt to imitate human

managers. Currently, each alave is essentially treated u an equal. Slaves a.re picked from

the "idle slaftll• list to execute the highest priority task. If there is more than one slave

in this list, then the slave that bu cached the greatest percentage of the highest priority

task's input files gets the job. It would be interelting to implement a scheme where the

slaves were ordered according to their past productivity. When selecting a slave, weights

would be placed on the number of files it already hu, the number of tub it bas completed

so far, and the number of tub it baa failed eo far.

3.8 VAXcluster Support

A V AXclUS'ter is a group of up to sixteen VAX computers connected to a single

file--system. Thus the file 8)'l\em loob exactly \he aame when you are logged into any

VAXcluaier member. £ P IC supporta the uae Gf VAXcluUen. By imuing a command to

NOIITOll, a Wle1' can specify a list of node namee to define a VAXcluter. A database is

maintained to keep track of where all the relevant data files are in the network. The a~ruc­

ture of the databue reflects the file sharing between V AXduatered nodes, and provides

for any number of di8crete VAXclusten:

network-database • liat of Y.Aicluater-databaa••
Y.Aicluater-databaae • liat of file-11p9elficationa

The file-specification in the V.Aicluater-databaa• cannot include a "node: : "

specification, but can include a device or directory. Computers that a.re not VAXcluater

members are represented in the database as aingl&-node VAXclmtera. Thus an arbitrary

environment of VAXcluatered and independent nodes is supported.

50

• Each slave entry in the master's database contains a pointer to the slave's node's

VAXcluster. So if the master and a slave are on the same VAXcluster.and are connected

to the same device and directory, the master will know that the slave will never have to

copy an input or output file. If they are on the same VAXcluster but connected to different

devices or directories, the master will know to instruct the slave to use a local file transfer,

and thereby save the overhead of creating the foreign -process and moving the file over the

Ethernet. If two slaves on the same VAXcluster share, the same device and directory, the

master will understand that they share the file space, and that one slave will never have

to copy a file that was created or copied by the other. As of now, no advantage will be

gained from two slaves on the VAXcluster with different devices or directories, unless the

master is also on their VAXcluster.

Thus it is highly advantageous to have each slave on a VAXcluster running out

of the same directory. If the muter also uses that directory, then there will be no data

transfer ouerhead for those slauea. This eliminat_es the single most significant bottleneck

in the parallel execution.

The only legitimate motivation for running VAXclustered slaves out of different

directories is if the application software has naming conflicts with temporary files it uses.

Two processes running the same application program may both be trying to read and write

a temporary file of the same name. By running the two processes out of different default

directories, the naming problem is resolved, and e PI C will still run, albeit with more data

transfer overhead. Another motivation is as a workaround to a bug that may exist in the

application software. If a single input file is used by two tasks, and both those tasks are

executed at the same time by different CPUs in the same filespace, then the second process

to open the file is subject to a file locking error. In VAX/VMS, any number of processes

can open a file for read access. But if one process opens a file for read/write access, any

other process attempting to access that file will get a "file locked" error. The problem

occurs when a program that is only interested in reading the file erroneously opens it for

read/write access.

51

3.9 Performance Monitoring

In order to support the claiml made &boot the eftectivene1111 of the taak scheduling

and file tr&Dlf'er optimip.tiom, it wu necemal'J to pnenie d&tiatias for each £PI C run

concernina the b:rakdown of where each slave'• ijme wu spent. For the purpoeee of

performance monitorins, each slave is ahn.11 in oae of. four dates, u deacribed below:

EXEC: Executing a task.

FILE: Transferring an input or output file.

IDLE: Waiting for a tuk to become compuu.ble, but not FREE.

FREE: 1. The execution is in its Int .tapm, -..t the •ta dependency graph hasn't
widened enaqh to allow all sl&'fti ·.to 1MclJi u.etul work.

2. The execution ia in its lut nae-, uad there.eno iDore tUb left to execute.
The execution will be tbliahtd • aooa,•-illie ._ ._ tJIAi ia executing now
finiahea its current tuk. Free are not killed became if an executing
slave'• Pl'OC•• a-., a ftee tlllaWL......U be IWd&ble. to tab over the
tuk.

The distinction· between •FREE• and •mLE• ia motiT&ted out of fairness to the

. taak scheduling aJaorithm. We are interenecl in id.mfJing thoee. ti.Jms when a slave

remains idle due to an un1riae tuk tcheduJms Clecimion.. Tnici.Dy; data dependency graphs

have a small number of roots, but widen out quite a bit to r--1 more parallelism. There is

nothing a task scheduling aJcorithm can do to leip all the lla'ftB busy during the execution

of the roots. Additionally, at the end of. the compatadon, it ia impmaible to keep each

slave bWIJ if there are DO more tub to execute. Thu8 the ave ia claaitled u ·FREE· if

the cause of its inactivity is not a achecluJins decilion. "IDLE" time is what we want to

keep track of to judge the tuk ~uliag performance.

Each slaw ia iwponlible for keeping track of. its own performance statistics. A

performance monitoring nbroutine pacbp wu built ming VAX/VMS system services

for keeping track of the varioua counters for CPU time and elapeed time. The slave uses

the me1B&ge passing facffity to spawn a aubprocms to do the file transfers and execute

the VAX/VMS commanda med to execute each tuk. Thm the SUYE program runs in a

separate process from the slave's task, and is free to spend whatever time it needs to keep

track of the subproceu.

52

-Periodically, the slave sends the master a one line summary of its progress. The

master then relays this information to the monitor, which displays the information on the

user's screen. The user can control the period at which each slave sends the information

by issuing a command to the monitor.

At the end of the computation, each slave sends a detailed summary of its statistics,

including:

• The total CPU time and elapsed time it spent in each of the four states.

• The number of tasks it executed.

• The number of tasks it failed to execute.

• The number of files it transferred.

• The number of files it avoided transferring due to file transfer optimization.

• VAX/VMS Statistics such as virtual memory mage and page faults.

The master takes each summary that the slave provides and formats it into a table.

In addition, the master makes its own contribution to performance monitoring. Whenever

a task is started or finished, the master notes the current time and the name of the task's

slave. At the end of the run, it generates a graphical journal of how the run progressed.

The graph is organized by asaigning a vertical colwnn to each slave. Each column contains

a series of diamonds which represent the tasks executed by each machine. The height of

each diamond is directly proportional to the time it took to execute the corresponding

task. Arcs are drawn between diamonds wherever a data dependency exists between the

diamond's tasks. The left edge of the graph is scored with labels indicati~ the elapsed

time at that vertical poin~ on the page.

There are two useful pieces of data to be gleaned from that graph. It gives us an

intuitive feel for how the execution was distributed among the available processors. In

addition, vertical space between the diamonds in any column indicates that that column's

slave was either idle or transferring files during that time. The slope of the arcs ending

at the lower diamond gives us intuition about the reason for the space in between the

diamonds. A nearly horizontal line indicates that the slave was sitting idle waiting for

a task to become computable. A line with a greater slope indicates that the slave was

waiting for the input files to the task to be shipped over the network.

53

Appendix C contains eumples of 8UJXllD&lY tables and graphs for several runs of

EPIC.

3.10 Results

No conclusions can be drawn about the overall performance of t PI C without ref­

erence to a specific application. The following chapter diacUlleS the application of t PI C

to VLSI design rule checking, circuit extraction, and llakef il••·

3.11 Future Extensions

In this section, several exienaiona to £PI C are cont;empla&ecl. A fairly straight­

forward extension is to delete intermediate files as soon as they are not needed. This is

not difficult to implement, except when it is combined with the another straightforward

extension, which is to avoid butreriDg intermediate m. at the· muter. The buffering pro­

vides a redundancy that is needed to avoid repeating work that is lost due to a crashed

slave. If both thel!e extensions are implemented, and if a slave crashes, we may find that

we have "burned.our bridges behind us•: the &Jes needed to redo the slaves work may not

exist anymore, pollllibly forcing us to pop back to the roota of the data dependency graph

and effectively start over. The motivation for thel!e extensions is di8c:uued in the following

chapter.

Another extension is to bring more intelligence into the choice of which slave to

assign to the highest priority task. Most of the time, there are plenty of tasks to execute,

and the master is waiting for a slave to finish its current task. But data dependency graphs

that have narrow sections, such as the initial aeparation stage of a "divide and conquer"

application, may be run more efticiently if the mod powedul computer is used for the

bottleneck task.

One flashy feature that would be relatively easy to add is the ability to revive old

slaves whose processors crashed and were then brought back up. As mentioned before,

e P !C's predecessor, PDIC, had this capability.

54

-A more substantial extension addresses the problem of continuing the computation

even if the master's proceuor crashes. It involves the use of shadows: A shadow runs on

a different processor from the master, though it could share a proc~r \\'ith a slave. It

maintains a database of slaves and tasks. Using the message passing facility, it monitors

events as they happen on the master and updates its database accordingly. If the message

passing facility detects that the master has crashed, the shadow contacts the slaves and

takes over control of the computation, thus becoming the new master. If the master and

shadow are VAXclustered together, then the transition is conceptually straightforward,

since the master's buffered files are still accessible. If they do not share a VAXcluster,

then the shadow must actively copy the master's buffered files as they are created.

Shadows were not implemented in e PI C due to lack of time. However, it is unclear

whether they would actually be used in practice if they existed. They help make e PI C

fault-tolerant by adding redundancy, but in the case of VAX computers that are not

VAXcluster members, they do this at a considerable cost of disk space.

Another substantial extension attempts to reduce the penalty of data communica­

tion. The concept is analogous to that of inatruction pre/etch. Based on the observation

that network file transfers are more 1/0 bound than compute bound, e P IC would attempt

to predict what task a slave would execute before the slave finished its current task. The

slave would then retrieve the next task's input files in a separate process. Presumably, the

slave's execution process and file transfer processes would not detrimentally compete for

cycles within the slave's processor, because they use ditrerent resources.

Another related technique is dela11ed reporting. Currently, when a slave completes

the execution of a task, it immediately proceeds to transfer the output files back to the

master. Only when the transfer is complete does the slave notify the master that it is ready

to execute another task. By notifying the master as soon as it is finished with the execution

of its current task, the slave can be assigned a new task while it is still transferring the

old output files. This approach is most effective if the slave already has the files it needs

to execute the next task. Hence it is an ideal companion to data pre/etch.

Data prefetch is difficult to implement because it involves predicting the best task

to give to a machine when the execution is in some future state. The use of this technique

55

would most likely require altering the task scheduling strategy. While these enhancements

are interesting topics for future research, the potential gains will diminish as VAXclusters

become a more popular vehicle for coarse multiprocessing.

56

Chapter 4

Applications

ol:,J;t-.,.~. -'.<

'

This chapter discW1BeS several a.pplicationa of t PI C. Methodologies are presented

for automatically genera.ting an execution controliBe for-eadtappllcation. Results are given

for various cases of each application run on seve!V ctifferent imtltiproceasor configurations.

A comparison is made between £PI C with ECAD's DUCULA serial DRC program

and ECAD's Parallel DRACULA.

4.1 Design Rule Checking

The challenge of adapting DRACULA to be 4-.nbuted over a network of VAX com­

puters using e P 1 C lies in gentrUiq the exectaUon c°'*°1 file from the ECAD rules file.

In order to do this, we have to uncl d the meoh•1dcs of .how DRACULA is normally run

on a single VAX computer. The VLSI PtoeelS eagjMer defin•. the geometric design rules.

The VLSI layout designer lays out the chip according ~ the Gesip. rules, thus generating

a file in some standard layo'1t deecripijon la..-.., audi aa·OD' (Mead, Conway 1980} or

GDSII1• A programmer must then specify the, proc:em. ea1h>eer'a design rules in the Ian ..

guage defined for that purpoee by ECAD. Theee nda ·are feel to ECA.D's preprocessor,

PDRACULA, which generates the VAX/VMS ·coma:nand &le which runs all the VAX/VMS

executables that implement t.he statements in the rulaJ file, hence running the DRC. Typ­

ically, the command file is submitted as a batch job.

1GDSll ia a trademark of G.E. Calma CorpCll"ation

57

To maximize efficiency, ECAD rearranges the statements in the rules program. If

any individual DRC program is called by more than one rules statement, then ECAD 's

preprocessor tries to execute thoae statements together with one call to the program (while

obeying data dependency conatraints) and thereby minimise imap:~tNdiou. Depending

on the value of a switch set in the rules file, the preprocwor may attempt to rearrange the

order of execution of the rules program statemenu and delete temporary files to minimize

peak disk space usage.

Unfortunately, all theae optimisatiom deplete the extent of the parallelism by in­

troducing new data dependencies. By deleting intermediate disk files after they are used,

the preproceuor introdlJQI a new OOD11vaint ~tiaa tke ~-of the execution of the

rules statements. But the. pbilG8oplq behia4 l PI C la to 11a whateYer hardware you have

available to aolve a specific peobiem:M ~ •J'O'lcaL We-.-:willing to sacrifice disk

SJ>'.Ce in order to achieYe mnimal sp11il. It ilr 'fl'Grfilt·....._:tlat IP IC may not be able

to DRC large chips if there is jut enough diak apace te.46a llmial ran uing ECAD's

optimized file deletiom.

As mentioned in the previous chapter, it -.Id .-~ hard to modify £ P 1 C to

optionally delete intermediate film once they are not aeed.t. This would bring e p 1 C's

peak disk space_. down ~·· But t·P'I'C lll:ltedules so u to minimize

execution time, ratller tllan cliBk lp&Ce, it 8'iU wa"ll•llt .. "M litiiJ' u an optimised serial

DRC. To further c:be the pp, l 11C coaW. IJe llMll8u·140aM4 9'oriDg every intermediate

file on the master's,..._ 1mtw1,. a._. wo1li¥e0pt it. ~. input files directly

from the slaft that produced ··tlaem (or ftom tllie m•liei'lf tlle·tlll6 ia a root node in the

data dependency graph). hlhs tm laa...,CM:.....,eepy·itar tlak'routput files back to

the muter, the muter woahl jut·_.. tile ·Sarlliae.~· l, IC coahl then copy the

final output files (auch u tile DllC enor.........., aad ~ llhill) back to the master's

filesystem. As mentioned ia the prwioas CM,_~ um woralil rit down· the 1lle transfer

overhead by u much u a factor of two. The> hti•'aulted slave's previons

work would have to be redone.

A more practical consideration about the preproceaar is that it'• rea.rra.ngem.ents

of the command file make it mechanically difticult to identify the VAX/VM.S commands

58

Fragment from a DRC rules program:

AND POLY DIFF GATE : Figure out the gate area
WIDTH GATE LT 4.0 OUTPUT GWID 32 32 ; Gaitie wi11th >• 4u

Corresponding execution control file fragment:

task "AND POLY DIFF GATE : Figure out the gate area"­
/IHPUT •{POLY.DAT,-

DIFF.DAT)-
/OUTPUT•{GATE.DAT)-
/DCL• C"•GSTS.LOGil:MOSIS.COM 32")

task "WIDTH GATE LT 4.0 OUTPUT GWID 32 32 Gate width >• 4u"­
/IIPUT •{GATE.DlT)-
/OUTPUT•(GWID32.DAT)-
/DCL• C"•GSYS.LOGil:NOSIS.COM 33")

Corresponding execution command file fragment:

$GOTO 'Pt' !Jump to the task number specified aa first parameter
$!
$32: !AND POLY l>IFF GATE : Figure out the gate area
$RUN SEGCAD$ECAD:LOGICAL

2 POLY DIFF GATE 1000 MIC 0

$EXIT
• !
$33: !WIDTH GATE LT 4.0 OUTPUT GWID 32 32 Gate width >• 4u
$RUH SEGCAD$ECAD:SPACIIG

1 GATE GATE 0.000 4.000 MIC 1000 OS
00000000000

lfOT-COIJUHCTED
1 GWID32 GWID32 32 32 100

$EXIT

Figure 4.1: MOSIS CMOS DRC rules fragment, ECF fragment, and COM fragment

59

needed to execute any particular task in the rules tile.. For Ws reason, directly decomposing

the preprocessor's command file was not a successful BtJMegy.

A better approach is to decompoee tile rul• program and run the preprocessor

separately on each statement. Every command file generated by the preprocessor is parsed

to remove the extraneous initialization and error merging code. The remaining text from

each command file is used to construct a single command file. To execute a single task in

the execution control file, this command file is inVoted so as to execute the correct segment

of code. A preprocessor was written to automatically convert a DRC rules program into

an execution control file and an execution cowmand file. It ia called !CAD2ECF. Figure 4.1

shows the output of ECAD2ECF for a fragment of a rules program written to design rule

check VLSI designs layed out using the 4µ MOSIS CMOS PJ'()Ce88 (Mead, Conway 1980).

Two stages of the DRC are not covered by the tub deHrihed in ECAJ>2ECF's ex­

ecution control file. It is not clear whether the initi&I aepap.tion of.~ layer from the

layout file is an inherently parallel operation. This operation is Dl08t likely implemented

by examining the whole layout in one pus, appeadiq io a p,,-~ layer file whenever it en­

counters geometry for that layer. One thing that ia clear about this initial stage is that the

input file is large, since it contains the geometry for every layer. It would not be efficient

for. a slave to move this ·file acrma the network, perfonn, the itdtm.l separation, and copy

all the layer files back to the muter. Instead,~ cncuted by the master, using

a subprocess. Further preparation of each layer ia deacribed in the execution control file,

and executed normally by the lllavea. This preparation includes the full instantiation of

the geometry in the la"91', a polygon aorting step, and the merging, together of overlapping

polygons.

Similarly, the final stage of the DRC is executed by the master's subprocess. This

stage involves compiling the information generatej by the execution of each rule into a

summary file and an error layout file. Conceptually, this step could be done in parallel

by merging together the individual error rue. ia • biauy Uee. If each error file has to

be shipped over the network to a slave, this would probably not save any time. Using

a VAXcluster, there is more of a potential pin. Unfon11n&teiy, there ia no way to do a

multi-stage merge using the DRACULA programs. The input files for the sllmmary programs

60

are data files with an unknown record structure, and the summary files can't be converted

back to the input format.

4.1.1 Predictions

According to the data dependency graph (Appendix B) for Digital's CMOS process

rules, the maximum extent of parallelism is very high. After the execution of the tasks

in the top row of the graph, which do the initial preparation .of each VLSI layer, and

the execution of the tasks in the second row of the graph, which mask out the geometry

that is not to be checked, there are many tub whoee outputs_ &re not used as inputs by

any other tasks. Those correspond to simple DRC rules such as single-layer width and

spacing checks. We call them "terminal tasks". £PI C's task scheduler does very well in

the presence of a large number of terminal. taaka. They. ~ ~utable early on in the

computation, but their excution ca.n be delayed until .a proc:-.or has nothing else to do.

They help "fill in the gape" of processor idleneu.

Proceeeon 1 2 I • 6 • T • • 10 11 12 11 1 .. 16 11-11 20-oo

Tlclr• 126 .. a 12 26 21 11 11 H 11 12 11 10 • I T

Speedup la 2a ... I.ta 6a •• T.la I.ta 10.u 11.u 12.6a 11.ta 16.la IT.ta
-::-

Figure 4.2: Optimistic analysis of DEC CMOS rules based on data dependency

There are 125 tasks in the CMOS data dependency graph. Assuming that each

task executes in one tick of time, a serial DRC will run in 125 ticks. If there are no

communication costs, then with two processors, the job can be run in 63 ticks. As the

number of processors grows, the data dependency will begin to constrain the maximum

speedup we can hope to achieve. This is illustrated in the graphs on the comer of each

page of the thesis (see the Preface), and in Figure 4.2.

The most striking feature of this chart is that it indicates that up to fourteen ma­

chines can be almost fully utilized in a parallel DRC. The analysis neglects communications

overhead, but that is not why it is overly optimistic. The fault lies is in the assumption

that each task takes unit time. Depending on the VLSI layout, the checking of rules that

deal with active area or polysilicon might require the examinination of more complex geo-

61

metrical structures than the checking of rule& that d-.1 with well a.tea or diffusion implant.

t PI C's task acheduling algorithm is equipped to deal with nonuniform task execution

estimates, but ECAD2ECF doee not provide the estimationa. It would be interesting to sta­

tistically determine good estimatee for the execution time of each tuk. UnlOrtunately,

time did not permit this.

Procemon 1 2 3 • 5 6 7 8 9-oo

Ticks 58 29 20 15 12 10 9 8 7

Speedup 1x 2x 2.9x 3.9x Ux 5.lx 6.4x 7.25x 8.3x
~. -? -

Figure 4.3: Optimistic analysis of MOSIS CMOS rulm hued on data dependency

The MOSIS CMOS deaign rule aet; ill much simpler than DEC's, and hence is imple­

mented in fewer rules file statements. Thus there ill not u much potelltial for parallelism.

This is balanced by the fact that for a chip of aBJ giftll mmpJ.nity, it ill far easier to check

the MOSIS rules than the DEC rules. The ana1J11is of the MQSIS ,rules is in Figure 4.3.

4:.1.2 Testing

Obtaining consistent results for ti' IC/DU.CUU bu been difficult. We are more

interested in the elapeed time of a DRC run than we ue in the cnmulatiw CPU time. Since

the "multiproceseor" Ulled for the test ruD11 is jmt a aet of timeehari.ng VAX computers

which are all connected to Digital'• local Ethernet, the respome time of both the network

and the syatem has been unpredictable. Even la&e.at nisht,. many of the systems are loaded

with batch jobs and high priority file .,.tem b.ckup1.

Several steps were taken toward minimiwing ~ factors that could alter the

elapsed time for a t.est. Exploratory test nma were coaclucted at varioUB times during the

day, indicating that the computers were 1POBt remponaiTe Terf early in the morning. Each

result presented here wu taken from the best of aeveral rum on a particular multiprocessor

configuration. In addition, we tried to make the test results at least partially immune to

the timesharing competition of other batch jobs by runnins at a higher priority.

62

llOOOOOOOOOOOOO

1111 ...

Nevertheless, the slaves typically received less than 80% of the CPU, as determined

by the ratio of execution CPU time to elapsed execution time for every slave. Various

factors contribute to this that may or may not be relatecl to the parallel processing scheme.

Page faults, for example, can be caused by timelharing competition for physical memory,

which is unrelated to t PI C. On the other band, pap Mita can also be caused by the

increased number of image activationa incurred dve.·to tile suWivision of the DRC job. The

runs on DECnet suffer even more, became DRC program mweations are·often interspersed

with file transfer commands, pomibly ca.using the DRO l*OIJl'&1l1 pages to be swapped out.

It should be noted that since the meuured CPU ~·· wu generally greatest for

the serial runs, the observed speed-up factors may be emeler than those that might be

achieved using t P IC on a single-uaer nmliiproceaor.

The number of processors available for teating wu limited, since several of the

group's computers were recently upgraded from VAX 11/TtoitoVil 11/785 computers.

From a software point of view, the upgrade ill veq tramparent. The only noticeable change

is the improved response time. But to make ~ meaninaful mtement about the speedup

factor t PI C provides to DIACUL.l, we wd io. cempue· che· alaplecl.·· time for a pa.rallel run

on a fixed number of identical procel80rs to tile elapee&l 'mne for a aerial run on one of

those processors.

Micro VAX computers provide one pmsible aUemative. They are starting to prolif­

erate in quantity throughout the Hudson plant .and lt ia parliible to get exclusive access

to them at night. So aasuming they all have the.amec&ID01llkt of physical memory, their

performance should be fairly predictable. Unfonuna111y,·mmt MicroVAX computers are.

configured with far too little di.k space and pegin1•tle space to nm a substantial DRC.

Small DRCa aren't very informatift, since t1MJ aaaou:zrt .. of time required to execute each

task becomes small enough so th.at the COllllDUBicatiO ou•lnad is substantial. Since

!, PI C is geared toward ·accelerating the veriftcaU. of ·much larpr chips, data gleened

from DRCs run on the available MicroVAX computen will be OYeriy pessimistic.

Sufficient resources were &eR available to fully.~ a1,PJ8lictions for the maximum

extent of parallelism in DB.C. A VAXcluster with u machiJltlll wae available for testing

during off hours, but it c0¥i8Hd of three V.AX U/1" 40al.puten, ~o VAX 11/785 com-

63

puters, and one VAX 8600 computer. In addition, three VAX 11/780 computers connected

by Ethernet were available. Six Micro VAX ll compuM!n were al80 available, but were not

generally capable of DRCing my benchmark.

The results preaented here comm of £PI C runs using up to three V AXclustered

VAX 11/780 computers and up to six independent VAX 11/780 computers. The inde­

pendent VAX 11/780 computer tests were accompli.W by not iDformin& £PI C that the

three VAXclustered compmen ahared the ame fileQwtem. File tramfera were made with

DECnet protocol, so the teeta sul'ered the same Oftl'hlad that would have been incurred

if the computers had not been VAXcluatered topiher. The elapeed time from these tests

is compared to the elapeed time for a aerial run oa oae VAX 11/780 computer. By test­

ing how well t PI C performs using just one proce11m, we Mtem.pt to isolate the control

communications overhead incurred due to EPIC.

t PI C's raw elapeed thw are measured &om the time the MASTEll program is

invoked to the point after the run when the laat lllaYe ia killed. We aJao give the average

percentage of slave time dedicated to taak execution, &le uamfer, and idle time. As

diac:U88ed in Chapter 3, the idle time does not iadmte the time at the beainning and end

of each run when there ia ao work for the sla'ftS to do. Finally, we give the ratio of the

slaves' total execution CPU time to elapaed execution time, which provides a measure of

how much our results suffered due to competioa for the CPU.

In additioa to analysing the raw elapead tiJme, we try to determine why the perfor­

mance didn't quite match the apeed-upe preclicYcl in Fipre 4.2. Thoee optimistic figures

didn't take into account the time required to split UM daip into itl coaat.itv.ent layers or the

time required to merge the error reports back together. Th- times are subtracted from

the raw elapsed times a.nd the wJJBis ie repeated ·usiDc ~ D>Clified data. The remaining

non-linearities are small enough to be accomaW for by £PI C's overhead, and by other

facton that are diflicult to control, mch as competioa for U.. CPU, page faulting, and an

increased number of image actiYationa.

According to the tests in Figure 4.4, EPIC offers a significant performance en­

hancement over serial DRACULA. I was able'° try ECAD's Parallel DUCULA on three

VAXclustered VAX 11/780 computers using the same benchmark. The tests indictated

64

11ml(Pm
Control ECAD t PI C /V AXcluater ! PIC/DECnet

Processors 1 3 1 2 3 2 3 4 5 6

8-w ijmee (in .-r9"')
Elapsed 18350 10371 19288 10270 1<116 ,. 1170- .Boig ~17:1 5158 4462

Speedup lx 1.8x o.~x 1.8x 2.«Jx '"-~~~x- 2.3x 3.2x .3.6x 4.lx
- ' c -~ ·, ..

Mter aubtracmag iniUal la7er ~ and 8nal error merge

Elapsed 17855 9876 18793 9848 6.M,1, ;\:1a.4': ,J~~5 5276 4663 3967

Speedup lx 1.8x 0.95x 1.8x 2.7x 1.6x 2.4x ... 3.4x 3.8x 4.5x
~

. .,_,_ .·

% File 0% 0% 0% 0% °" 4.9%
--- :°"' ----

6.3% 7.3% 8.9% 11%

% Exec 100% ? gg% 99% 99% N% 93% 91% 90% 88% _
•• ~ <

- -=~~

% Idle 0% ? 0.56% 0.76" o.~ 0.95% o.~ 1.5% 0.95% 1.3%
--

- .-
%CPU 79% ? 80% 79% "" 71% 74% 77" 74% 76%
See Page 94 94 95 97 9D io1·- 103 106 107 109

Figure 4.4: Reaulti and analyail of DEC CMOS DRC tests

a speed-up of 1.8 using three IX*hinee. This is 1-. of a -•~-up than was reported in

ECAD's article [Nielson 1986}, which reported a tpeed-up of 1~78 for two machines. This

disparity may be due to ex:ceaive competition for ·UJ.e Q~U, & f¥tor that W&I difficult to

determine because the ECAD controller runs -.ven.l job8 _ ~ql~usly on each proces­

sor. On the average, the ECAD jobs each got 43% of t)ie QPU,_but there w~e typically

two or three jobs on each proceaor at any given time, so it '\'188 difficult to determine how_

much the DRC was slowed by timesharing overhead.

On the same benchmark, with the same hard~ configuration, e PI C demon­

strated a speed-up of 2.6. This is not conclusive, however, ~ we suspect this data

doesn't tell the whole story for two reasom. ECAD's r•W.ta were most likely based on

the DRC of a larger chip than the one used for thia ben.chmark, wJtlch reduces the relative

overhead of submitting a new batch job for each task. The competition for the CPU was

possibly an important issue, but it is difficult to determine the extqt of its effect.

In addition to the difference in runtimes between the e P 1 C and ECAD benchmarks,

65

0

the tests indicate the relative versatility of e P 1 C's approach. Only three homogeneous

VAXclustered processors were available, but six homogeneous processors were available

through DECnet. Since e P IC is capable of using DECnet without VAXclusters, we were

able to perform tests using more processors. The relative availability of VAXclustered ver­

sus independent computers at DEC may indicate that e P 1 C is more generally useful than

Parallel ECAD. This may become less important if VAXclusters become more prevalent

in the future.

There are several more interesting pieces of information that can be gleaned from

the data in Figure 4.4. First, we mention that since we ran the master and one slave on

a single processor, there was a nonlinearity in the DECnet tests. e P IC notices when the

master and a slave are running on the same processor and :!S this knowledge to "short­

circuit" that slave's DECnet file transfers with a local $COPY command. The impact of

this short circuiting can be seen by comparing SLA VEl 's file transfer times with those of

any other slave, on all the charts of e PI C /DECnet tests in Appendix C.

For all the DECnet tests, the file transfer time rQSe with the number of processors.

Not enough data is present to determine the relationship between the file transfer overhead

and the number of processors (i.e. linear, polynomial, or exponential).

A definite pattern was not observed for the the idle time overhead, but it never

exceeded 1.5%. In the tests made here, no slave was ever idle for lack of work to do.

Idle time accumulated due to network message passing latencies. We would expect the

absolute message passing time to remain unaffected by the number of processors, since

the number of tasks remains constant. Naturally, since the elapsed time of the DRC

shrinks as the number of processors grows, we would expect the relative overhead of the

message passing latency to increase. But the dominant factor in message passing latency

is probably network congestion, which varies greatly over time. As discussed in Chapter

3, the VAXcluster runs use DECnet for control communication, so they are also affected.

The tests run here indicate that the speed-up factor was beginning to fall off as the

number of processors increased to five or six. This is expected in the DECnet tests, since

the data communication overhead increases with the number of processors. It is likely

that the we will not be able to use fourteen independent processors to achieve our goal of

66

--= ~

completing a DRC as fast as the data dependency will allow. Nevertheless, the results are

good enough to justify the additional hardware e;¥penae in a production environment. On

the other hand, the three processor·VAXcluster test results were sufficiently promising to

warrant additional exp~tation. It would bein~ tQsee hoW many VAXclustered
. ·,.-_ ..

processors we can use before the speed-up factor bqins to fall off.

Both the DECnet and VAXcluster results may have been mpre optimistic if the test

case used a larger chip. Since the execution time of the DRC tends to grow faster than the

size of the files, the data communication overhead, ~o,uld probably become less significant.

The control communication overhead would ~ quickly, $nee it grows with the size of

the design rule set, not the chip size.

So far, with up to six processors, t P !C's task scheduling strat~gy has been es­

sentially optimal. Has we increase then~ of processors, inefli~ent task scheduling

becomes a bottleneck, we will probably be able to improve the ta#· scheduling by supplying
~.: ' ,. + <

statistical estimations of the length of each task, b....p on, Rn,wious runs.
; ~ . ; . .

Thus t P 1 C potentially offers the mecha.nism to ?1lD.c D)lCs as fast as the critical

path through the data dependency p-aph will allow. To achieve~~ goal, we need to do.

the following:

• Use more VAXclustered proceaaon.

• Obtain exclusive access to them, so the test results will be repeatable.

• Develop statistical eatimations for the execution. time of each task, so task scheduling
will (hopefully) not be a baedenck.

The difficulties I encountered while rumriag D:&Ce on Miao VAX computers do not

represent an UJU10lvable problem. By confipring ti- wtdl enoath ·ph.yaical memory and

disk space, a group of Micro VAX II computers connected by a dedicated Ethernet would

work well as a low-coat, laigb-performance DRC ..,..... If ten.· MicroVAX ll computers

can offer an 7x speedup for DBC ~the optimiaik: iaticated 9.6), then they offer a

faster turnaround time than om VAX MOO ~:(WJdc;h:nms·rodlhJy 5 times as fast

as the MicroVAX II computer}, for roughly $hew JllQDe$ary coet.

4.2 Circuit Extraction

Digital's circuit extractor (Tarolli, Herman 1983) hu been adapted for parallel ex­

ecution using EPIC in a 11JBtem called NACE (a Multiproceaing Approach to Circuit Ex­

traction) [Levitin 1986}. NACE attempts to take adw.nt&ge of the geometric locality of VLSI

by dividing the layout into awatlaa (stripe) which &rep~ 1n parallel. Unfortunately,

this is a much more diflicult task than it is for d.ign rule -cheeking (:gier, Pleszkun 1985J.

It is not clear how to correctly handle the cue wlleD'a .W.til's border C?Oll8eS a transistor.

However, by carefully chooling the swath boUDdarim, it i8 ~ possible to avoid this

case. For a chip of sufficient size, it may not oe'Pc-1>1e to draw a straight line across it

without hitting a transistor. For this niuon, NACE bu only been tested with relatively
.~ ' <

small cells. As stated before, EPIC is geared for la.rpr scale problems so that the overhead

of control communication becon:m neglip1>1e. - --

The results as of this writing have not indicated a aipiflcant speed-up. The layouts

were partitioned into two 8W&'th8. The mraetion WU perforllled 'aeparately on each swath

using two slaves, and the two resulting clrcUita were ~· '°iether afterwards. In

practice, the speed pined through paianeBam bi tile ~ phaae was overwhelmed

by the cost of merging the circuits together. The aerial extraction actually took leas elapsed

time than the parallel extraction and merp [Letilin:-H991.-

4.3 Compiling and Linking P...,•ma

The autom&Qc tramlatioa m aDfil• flo.umtioa coaUol m. ia fairly straight­

forward. Writing NalldlOF WM limply a mdter of clmnain1 the . .,max of each task

description.

Since --WU 1ll8d to conUol pneraticm.af.tlae e p I c ~lea, and since e p I c
is compoeed of mauy dUfereat modules, it was NU1111t,iM cfrvta for a benchmark. The

data dependency pph for c»mpilins--1Jinldnec£PlC aia-Appeadix B.

The chart in Fipre 4.5 8hOWll t:Jae 199.lta t* liaml&~ t1le exee11tion based on unit

task length and zero communications cost. The shape of the data dependency graph is far

68

000010000000000

1111~
*or

Proceaon 1 2 3 4 M T-9 10-18 l~oo

Ticks 25 13 9 7 5 4 3 2

Speedup lx l.9x 2.8x 3.6x 5x 6.3x 8.3x 12.5x

Figure 4.5: £ P IC analysis of Makefile simulation based on data dependency

more regular than that of either DRC rules set. Due to .the relative absence of terminal

nodes, it was not always poeaible to "fill in the gape" of proceasor idleness. Therefore, the

processors were not well utilized if there were more than seven of them, even though the

minimum (and maximum) extent of parallelism. is 19.

Control u.ke EPIC /V AXcluster EPIC/DECnet

ProceMOrs 1 1 2 3 2 3 4

Raw statistics (eecoade)

Elapsed 619 630 340 253 477 392 332

Speedup lx .98x l.8x 2.5x l.3x l.6x l.9x

% File 0% 0% 0% °" 19% 25% 34%

% Exec 100% 91% 96% 95% 79% 71% 62%

% Idle 0% 3.2%' 3.9% 4.8% 2.2% 3.9% 4.2%

%CPU 66% 69% 68% 69% 59% 57% .61%

See Page 111 112 114 11& 118 120 122

Figure 4.6: Results and analysis of :make epic

Figure 4.6 shows the results of£ P IC compilation tests run on a VAXCluster with

up to 3VAX11/780 computers and on DECnet with up to 4VAX11/780 computers. The

VAXclustered run showed a reasonable speedup with up to three processors, but more

tests will have to be run to see how well these results will scale.

The tests run with independent VAX computers indicate that the compilation of

e PI C is not sufficiently compute-bound to allow it to be efficiently distributed over an

Ethernet. As the chart shows, the file transfer overhead grew rapidly as the number of

69

processors increased. Running parallel make over DECnet may become profitable if the

data pre fetch and delayed reporting extensions of Chapter 3 are applied to c PI C.

70

Chapter 5

Conclusion

5.1 Summary

In this thesis we have presented t PI C, the implementation of a software method­

ology for coarse grained parallel processing. It is based on a computational model that is

applicable to a variety of different problems. We have described the characteristics that a

program must possess in order to be accelerated by t PIC. In addition, we have described

the adaptation of several existing applie&tiona to paralfel ccapmation 11Sing e P IC, with

varying degrees of success.

Parallel DRC was particularly succemful. The testa run indicate a performance

increase that justifies the uaa.ge of the extra huclwan. Tile hue DRC program used in this

thesis was ECAD's DRACULA, but any design rule ~that uw intermediate files could

have been used. The stratea for running DRCs in paralW prMented here is only one of

two promising approaches. We divided the DB.C by allocatmc ctift'erem rules in the design

rule set to each proceuor. Also, the data partitioniq scheme of [Bier, Pleszkun 1985] will

work with any design rule checker, and can be readily adapted to e p 1 c.

5.2 Directions For Future Research

The results presented in this thesis did not fully test tJ\e claims made about the

extent of parallelism of either DRC or Makef ilea. With more time and resources, it would

71

be interesting tO try to execute a DRC as quickly as the critical path will allow. This would

also give the task scheduling algorithm a more a substantial workout. The five and six

machine tests showed optimal performance from the tut scheduler, but that was too easy.

To better support the claims made here about the acheduler's near-optimality in most real

data dependency graphs, we need to run more teats with more machipea.

One way to further increase the extent of parallelism in VLSI design rule checking

is to combine rule partitioning with data partitioning. Easentially, once the chip is divided

into separate slices, several proce880rs could be allocated to each~ and each slice«>uld

be be checked by exploiting rule-baaed parallelism. The whole computation could be con­

trolled by t PI C using a single execution control file. Another strategy would be to use a

two-level hierarchy of star networks, with each muter reporting to the grandmater. The

single-master approach requires a bit of effort to prevent naming confticts with interme­

diate layer and error files, but offers the advaniap of automatically load-balancing the

computation if any of the slices finish before any « the others.

5.2.1 Other Applications

t PI C provides tile basis for the acceleratima tluoqla parallelism of a potentially

wide variety of existing software. Any computation controlled with Unix Jlabfil•• can be

automatically converted to be ran ill parallel witla. t PlC. ADD$ber VLSI CAD application

that has the poteniial for acceleratioa via l PI C ia muk pattern generation aoftware.

In particular, ECAD'a NDP1 eoftware w &he.w rulel Ile format and preprooeasor as

DRACULA, ao it may wort wi'11. the ezietin1 F.CAD21Cf prepmamorwith only minor syntactic

additions. Thia wu not explored further d• to lack of time.

Using l P 1 C on VAXd•tem, the data commmdcatiom overhead· becomes negligi­

ble, and the set of programs that can be profitably acce1ented thtough parallelism mcpands

greatly. One application that comes to mind is merge-aortiDg. This classic binary divide­

and-conquer algorithm is ideal for £PI C. It would be fairb' euy to adapt aa existing

merge-sort program for use with t PI C. The constraining factor is the time required to

1 NDP is a b'ademark r#. ECAD c:orporadoa

72

~

8~
T

write the partial lists into disk files. But this overllead i& also incurred in serial merge-sorts

if the list being sorted is too large to fit into phyaic:al memory.

5.2.2 Reducing the overhead

The disk file overhead issue .brings to light another issue. e P 1 C addr.esses a very

coarse parallelism. The control communications overhead forces us to apply the constraint

that a problem must be subdivided into tasb that each task a "long time" to execute.

But E P 1 C's model of parallelism doesn't require the loose coupling of the Ethernet envi­

ronment. A more tightly coupled multiproceuorwould be able to accelerate a wider range

of applications. The concepts used in E P 1 C cowd be applied to a controller on such a

processor. It would be interesting to see how such a system might develop.

5.2.3 Lessons Learned about Distributed Programming

In the past twenty years, there have been dramatic improvements in the quality of

the tools used for programming. In particular, the ~t advent of source line debugging

for high level programming languages on the VAX/VMS opera~iag system has allowed the

programmer to more fully concentrate 011 the most iAterestmg atJpects of hia task. U nfortu­

nately, this capability is often lea. acceaaible to thole. wzitiDg distributed or asynchronQus

programs. If a program is invoked by creating a proc-on a l"em9te processor, how will the

debugger interact with the terminal? It is p~ible to work around this problem.by having

the remote process allocate a terminal t.bat ia directly cmmected to the remote processor.

That is not very helpful if there are many Pl'QC-.or& or if they aM physically inaccessible.

Much work needs to be done in the area of distributed progpuumiug environments.

Similarly, software engineering baa advanced ~derably from the days of FOR­

TRAH and COBOL. The concepts of structured P~ll8• data abstraction, object ori­

ented program.ming, data driven programming, and so OJ1 are w~ documented, publicized,

and lectured about in our undergraduate halls. In the course of implementing the mes­

sage passing facility of e p 1 c' less familiar methodolegies had to be adopted to insure

consistent data structures within a single processor, and to avoid deadlocks between two

73

communicating procemon while guaranteeing nwge deliverJ. If parallel processors are

to become a popular hardware platform, we muai learn· Jiow to program them as well as

we know how to program serial machines.

5.3 Conclusion

Several factors affect how well the potential for acceleration of CAD tools through

parallelism will scale with time. >..the complexity of VLSI circuits riaes, the extent of par­

allelism will rise due to geometric locality in the layouts, the constant overhead of e P !C's

control communication will become negliaible, a,nd the overhead of data communication

will most likely become less significant. Data communication will almost certainly not be­

come more significant u the complexity of the chips rises. This is baaed on the assumption

that CAD tools have time complexity > O(n) where n repreaenta the size of the input files,

since they must at least examine all their input. ffierarchical CAD tools are included in

this assumption, becaue the file representation. ia hierarchical u well Empirically, the

time complexity for flat DRC1 has been observed to be roughly O(nU) with n being the

number of transiston [McGrath 1985).

Another factor that wiD determine how much extra speed we can squeeze out of

parallelism is the power ·of the proceaon on which we nm the CAD tools. The VAX

8600 computer will nm roughly four times u fut u the VAX 11/'180 computer. Since

Ethernet technology is used u the control COllJlllUJlications medium for both processors,

the control communications OW!l'head on VAX ~ computen may be as much as· four

times as significant u the tmts presented here indicate.

This statistic is best put into perspective by com:pari.ng it to the difference between

the complexity of circui1is being fabricated in urn, when the VAX 11/780 computer WaS

introduced, and the complexity of the circuits of 1985, when the VAX 8600 computer was

introduced. While procemor speed may have impnwed by a factor of four, VLSI circuit

complexity has increued by a factor of about twenty-five (Allen 1983).

Thus we predict that pa.rallelism will continue to be a viable means for accelerating

layout verification of VLSI circuits in years to come. £PI C provides an inexpensive means

74

of substantially improving the throughput of existing software. As advances are made i.n

both processor speed and the exploitation of hierarchy in CAD tools, parallelism can still

be used to further reduce the execution time.

75

76

Appendix A

l'PIC/DRACULA User's· Manual

Parallel DRC is a method for running the ECAD's VLSI design rule checker (DRAC­

ULA). By dividing the run into separate portions to be run on several computers, Parallel

DRC reduces the amount of time required for a DRC run. A DRC using the standard

method of running on one computer may require several days to run on a large chip. This

time can be reduced to an overnight run U8ing Parallel DRC.

This appendix describes the following aspects of Parallel DRC:

• How Parallel DRC works

• Potential Benefits from running Parallel DRC

• Environment for running Parallel DRC

• How to run Parallel DRC

A.1 How Parallel DRC Works

The program used to run Parallel DRC is called e P IC (Exploiting Parallelism In

CAD). This program sets up processes on several computers to run portions of the DRC.

The computers are logically arranged in a star network. The central computer, called the

master, manages the work of all the other computers, called slaves. The entire design

rule check is broken into separate tasks, with each task roughly corresponding to a single

DRC rule. The master dynamically assigns tasks to the slaves, telling them what files are

77

needed to run the task. The slaws copy the files to their own directories and run the tasks.

The master keepa a record of the filea each slave hu. As each ta.sk is compl~ the slave

notifies the master and aenda the DRC output files to the master's directory. The master

then assigns another task to the alaft. The execution proceeds in this manner until all the

tasks are completed. The last step is for the muter to combiae all the eepara&e .-ro,r files

(.ERR) into one file and append it to the summary (.stlt) file.

The llJIITOR program allows the uer to initiate and control the parallel execution,

and provides a~ up&ie.i diaplar .. of tM atm of wll ala.•!a·proceas.

A.2 Potential Benefits From Running Parallel DRC

To evaluate whether or not 70u want to uae £P JC to run ECAD DRC, you must

understand the basic principle belUad it. nae ia aot reaDJ. a siJlgle program that must

be run from start to finish by a aiqle CPU. It is a ~-- of telated pragrams, which

are typically run one after another. Each prapam •ommumc:atea' to tJae others simply

by reading and writing clilk 61-.

! PI C provides a mechanimt to .distribute the execution of theae programs over

several computers on a network. Thia distribution. ill ftrJ eMdmt in that almost no work

is duplicated by the extra computers. 11ae _ _. .._ -wark ilnoh9Cl is the Ile transfers

needed to move the input and output me. to the,.,nu. .CPUa.

Preliminary tests of Parallel DRC have dmawtratecl, a speedup of 4.5x using 6

computers to check a medium me chip. The speedup ratio will approach the number of

computers as the chip gets larpr, since the time required to ruD the DRC rises faster than

the Bise of the data files.

The greatest practical adftll'9p of Parallel DRC occun with chips that take serial

DRCs several days to run on a loaded VU computer~ Durinc working houn, the DRC has

to fight for CPU time with interactiw pmce• H, theseby r.iuc:bag eYerJone elae'a efficiency

while further delaying the completion of. the DRC. Uai.ng £ P 1 C, it will be pOllBible to

complete the DRC overnight. That tr&nalat.ea into • r.ter turnaround tUne for the layout

designers, and less aggravation for the other 1l8erB m the computer facility.

78

A.3 Environment For Running Parallel DRC

A.3.1 Requirements For e PI C

e PI C requires no special hardware configurations. It runs on any number of VAX

computers, each running VAX/VMS Version 4 or later, and all connected by DECnet. The

system runs in a heterogeneous environment of VAXd~tered and unVAXclustered nodes.

Informing e P IC which nodes are VAX-clustered results in increased performance, due to

the decrease in file transfer overhead. Running on Microvax,.computers is possible if there

is enough disk space. to hold the ECAD software and the chip data.

e PI C requires that on each system, you have an account with the following char­

acteristics:

Proxy: * : : USERIANE -> USDl·AME

Privileges: HETN8X. TllPlaX. GIPl-AM

Buffered I/ 0 Byte Count Quota: 13000

Timer entry queue quota: 10

Open file quota: 100

Subprocess quota: 5

You should define a logical l PI C to point to the area where the l PI C programs

reside on your system. In addition, you need to set up two command files in your SYS$LOGIN

area: MASTER. COM and SLAVE. COM. You can copy examples of_ th.eae ftles from the e PI C

distribution area.

You will want to run the parallel DRC using a different subdirectory for each slave.

This is obvious for un VAXclustered computers, but even when two nodes share a file

system, their slaves should be provided with separate subdirectories. This is due to a

restriction in the ECAD DRACULA system that causes input files to be read-locked even

if they will not be rewritten. This eliminates the possibility of file-sharing, even on a

VAXcluster, because if a process tries to open a file that a parallel process has already

locked, a fatal error will be signalled. VAXclusters are still helpful, provided the master is

running on the VAXcluster, since l P IC is smart enough to use local file transfers rather

than DECnet file transfers between VAXclustered nodes.

79

e PI C allows you to map your slaves to your proceaors any way you want. In

other words, you can haft any number of slaves on each CPU. For Parallel DRC, the most

efficient strategy is to asaign only one slave for each prc>(e98Qt. You can run the master on

a processor that is already mnning a sla"Ve, since muter doesn't comnune very much CPU

time.

A.S.2 ECAD DRACULA Requirements

You must have the ECAD system imtalled Qll eacli tileQBtem. VAXclll8ters only

need it installed once, rather than once for each CPU •.

A.3.3 Input Requirements

The input requir-..mtll are enctly the a.me u thoee for serial ECAD DRC. You

must have a layout file in mme formM undel'ldlOOi by ECAD, and you must bow the

primary cell name. You must also haft a rulea tie (.DRC) deacribing tile geometric tol­

erances for the appropriate proceu technology. The rules file is used to generate control

files that allow £PI C to run the Parallel DRC.

A.4 Running A Parallel DRC

A.4.1 Preproceealnc ·St.pa

The l PI C kernel bu no knowledge of DRC. It can run DRC only by providing

with it a parameter file, called an escclltion eontrol file (with extension .ECF). This file

can be generated directly from the DRC rules file uaing the program ECAD2ECF. EIE. This

program also generates a command file that contains the DCL code that directly drives

ECAD DRC. EC.AD2ECF. EIE is euy to run, though it may take over an hour on a well­

loaded VAX 11/780 computer. The following ia an example o~ its use. We assume that

CMOS . DRC is a rules file in the current default directory.

$ RUl/IODEBUG EPIC:EC.AD2ECF
Ecad file naae: Cll>S.DRC

80

ECF file name: CMOS.ECF
COM file name: CMOS.CON
IDELETE-W-SEA.RCHFAIL, error searching for !AS

•
CMOS . ECF must then be placed in the master's subdirectory. It contains information

about each task needed to control the parallel execution. Specifically, for each task, it

indicates all of tha input files, all of the output files, and all of the DCL commands needed

to generate those output files.

CMOS • CON must be placed in the STS$LOCII: area of each slave. We place it in

SYS$LOGIR rather than in the slave subdirectory ao that we olily have to store this rather

large file once per VAXcluster (see the diacUS8ion above about' Ille sharing on VAXchISters).

Generally, the rules file for- a given teehnoloa will remain fairly stable throughout

time. The only information that cha.tages more often are the description para.meters at the

top of the rules file. These might change with each run. We Want io avoid running the

preprocessor as much as poeaible, since it is fairly time comnJming. The best approach

is to run it once for each generation of the process technok>O', using generic description

parameters. Then, for each new set of description parameters, JOU must generate a new

• ECF and a new . COM file by doing the appropriate global string replacements in the generic

• ECF and . CON files. A program, FIXECAD. EXE, is provided for this purpose. It is fairly easy

to use, and doesn't take very much time (typically lea than a minute). It prompts for the

old and new . ECF and . CON fHe names, and for the old and tte\V description parameters.

Since the program does unintelligent global string replacements, you must choose your

generic description parameters so they will be uniqu. The appendix contains an example

of the use of FIIECAD that aJso demonstrates appropriate generic description parameters.

Sample . DIC, • !CF and . COM files for several technologies are provided in the t PI C

distribution. You may want to 111e these if they are mfftciently up-to-date. You will still

need to use FIXECAD to update the description parameters.

81

A.4.2 Rmining £PIC

All user interaction with the E P 1 C 8JBte1n is through the MOIITOI. EXE program.

It is recommended that you run this program on the ame processor as the master, though

it is not required. tilllITOIL UHB the VAX/VMS 8creea Managesnent facility (SMG), so

you must run it from a DEC supported lerminal auch u a VTlOO or a VT200 series

terminal. You can also run llJIITOIL ia batch mode or from a command file. Normally

you will want to initiate the program interactively, since the Mtwo.rk connections that will

be made occasionally fail oa the tint try d1ae to mneo.ta ar network flakiness. To save

typing, you have the option of initiating the 8*art-up flOID a command file and continuing

or fixing any problems in~tiwly.

To start MOIITOIL, uae "$ IUl/IODll £1»IC:llQJ,lf01•. Your screen will then be

divided into three secmenta. The top u.ird CQDW. P10GS1 ·moaitorin& information. Each

row in the display correapoada to a alave's au~ u,d .ia periodically updated M>

display a variety of statiatica includiq CPU time, ela.,_t Qare, lhe name of the current

program, and the number of tub it bu completiecl. T)le,~ third ia for error "DeS"ages,

status messages, and other diapostics. The ~M>Dl \hini.i.a; for your input.

The normal state of the program ia ~ no.piroarpt ie oft'ered. This is so that

the monitor can re&p(>nd to any me naps it .receiT:es ftom Qe aaester. There is no master

initially, so this may seem confusing. Aa 100D u Ula wr-qpea 88J!M'$bing, monitor provides

a prompt in the bottom window and echoes what waa qped thm far. While in this "read

line" mode, the monitor cannot react to m•••P' &om die •ster, eo the normal state is

not to provide the prompt. If you type at moaitor aad it doea't echo, that means it isn't

finished doing what you lut told it to do. If you~ to type ~ to monitor and

decide not to issue a command, juai tJpe Cl'JU;/V ~·to get rid of the prompt.

Normally, the first Wna to do ia to c:reat. a ...-. Uae Ute command

CREATE/MASTER/PROXY DOde eomflla ftle-preftx cluter-U.t

ff you do not type in the a.rgumenta, you will be prompted for them. The standard

DCL parser and line editor are used, so you will be able to use the arrow keys to edit

your input. Two special purpose keys are also wiped. PFl terminates the current line

(executes it) and clears the bottom two thirds of the screen. PF2 terminates the current

82

~

!!llillllfllllllll~
T

line and repaints the entire screen.

The first argument, node, is tl~e name of the node on which the master will be run.

Don't put the double colon(::) in here, just the name of the node. The second argument,

comfile, is usually MASTER, though you may have more than one. version of this file that

does different things with default directories and renaming of METSERVER. LOG. Don't bother

to specify the file extension, and don't include a dmce or directory specification; the file

must reside in SYS$LOGIN. The third argument, ecftlle, is the "name of the Execution

Control File {for example CMOS.ECF), only don't bother to include the extension when you

type it here. You can specify a device and directory, but you don't need to if it is the

same as file-prefix, the fourth argument. File-pi'eftx is the master's subdirectory. It can

include a device and directory specification. The initial input file must be in this directory,

and all intermediate files and the error summary file will be placed there, so there must be

enough room on the disk. The last argument, cluater-U.t, is a list of machines that share

the same filesystem as the MASTER's node. Include node in this list. This information

is used to optimize file transfers by using local tCOPYa rather than decnet transfers when

appropriate.

The PROXY qualifier is used because in some future version of e PI C, we may

support password access.

After pressing carriage return, the MONITOR causes a process to be created on

node. This process executes comftle, which ahould run EPI.C: MASTEi. EXE, which will

acknowledge communication with monitor. It will then try to read in ecfBle. You will be ·

told the outcome of this attempt, and that will be your cue to begin creating slaves.

CREATE/SLAVE/PROXY name node comfile file-prefix

The only new parameter is the name parameter. This is used because more than

one slave per machine is supported by e P IC {though not recommended for DRACULA).

The name is used as a substring in file names, proce11 names and in the group logical

name table. It should contain only alphanumerics, and be no more than eight characters

long. One would generally include the node name ~ part of this name when running on a

VAXcluster, so the log files will be identifiable.

CREATE/SLAVE is not really executed by the monitor. The text of the command

83

is sent to the master, and the master executes the commaad. T1Ua allows you to queue up

several CREATE/SLAVE cow11n~nck without waitinf for tile awnmand to finish. Diagnos­

tic messages will indicate the aaccw or failure ..,._ the Uafcmaation becomes available.

Success will also be indicated by a new 11etive line ia the upper dlird (procw monitoring

section) of the screen.

l PI C supports the ,me al more tlwl oae VAXd.w. Tile Wlowing command

tells t, P IC about a VAXd-. .._ lhaa die me aperiW in the CREATE/MASTER

SET /CLUSTER=aodel., nodd, nod.a, nocN4 •••

The refresh cycle far procma dilplay is initiaD,- • to oae mimde. You can reset it

to (for example) liw W"mda wWa the fallowia& cam.....t:

SET /JlEFRESH=O 0:80:05.00

If for U7 IW JOB aeed to kill a slave, W die follawiq mmmand:

KILL/SLAVE sbmt'.....ie_,._.._

Again UUsccmmwocl ia natrallywatecl 11,dae mmiter. Thetextof theconnnand

is sent to the muter, and it doea the dirty work.. The nnlt ahoald be eviden\ from the

diagnostic me .. ge a.nd pma• dillplay. Yoa caaalmdodle diRJwmkyHiaelfbystopping

the slave's proceaa on its node. In &DJ cue, l PI C will ree-ign U.U llaYe'• task to another

slaYe, and the compatatiaa wiU CCllldliame. If a•• Wkd• tea ..-n cnsh, £PI C will

behave eimilarly. The mmputadaa wiD go • witla die .,....i degraded pedormance.

You caa alilo add a slaw· at a117 paint in the mu pa&atiaa .wifil \he CUATE/SLAVE

COJD1'11AM.

You can kill the wide competaticm, jrhecl~tlle es &m, witlt the KILL command.

Thia is a c1eaa wq to aDori ti.~ n.tosamd a• ·,..,.,.tiles ferihe procews,

though not for the DRC, will lte gmerated. Y011 can.._...,.,....._,. proa!88 yomself,

and the sla'ftB will terminate th:mu 1h• 10ma ~-

You can uae the mcmitor'a BXIT connMad•&et Md to DCL. It is OK to do this

while a computation is rnn•mc. To get~ ·ia to.di wida a eeetwdat J01l have left on

its own for a while, get back into the monitor, ad - the eomnand

MONITOR/PROXY m.-ter'...aode

.. ·- ; .. ~~.:"· ,>.....'.O~-""-'."'~·_,~;~-~~~~~~~Jti<:~-*""~~~~·:!'•'1f~'>!;·~""· ~<~~-~: .--;,· . . .

Performance will be much better if you do this while logged into master's-node.

A.4.3 Triggering The Pai-allel DRC

This is essentially automatic. As soon aa the CREATE/MASTER completes, the

master begins an initial step in the DRC in a subprocess. This is a task that must be

completed before any of the slave11 can be given any work. Normally, you will have created

all the slaves before the MASTER finishes this step, but you can create slaves at any time,

and they will be put to work if there is work to be done.

For completenaa, we mention that the subprocesses in which the actual DRC

is run do not inherit any process logical names or symbols you may have defined

in your LOGIN. COM. This should not affect an ECAD DRC, but if you create a file

SYS$LOGII: EPICIIIT. CON, it will be executed by the each subprocess before it starts

running the DCL commands specified in the . !CF file.

A.4.4 Summary Files

In addition to the DRC summary file that is created in the master's subdirectory,

e P 1 C leaves several other files in various places &ro11J1d your file system. Two summary

files will be created in SYBtLOGIJJ on the master's computer. IPICSTATUS. LOG will contain

a chart indicating the cpu time, the real time, and eome other parameters for each slave.

EPICEXEC • PS is a Poatacript file that can be printed on an Apple Luerwriter1. It contains

a graphical representation of the parallel execution. The leftmost column indicates the·

elapsed time at several points on the Y-uia. Each vertical column represents the activity

of a slave. Each diamond ia the execution of a tut or rule. The height of the diamond is

proportional to the amount c4 time it took to execute it. Each line segment between two

tasks represents a data dependency between tholle tub, and roughly correeponds to a file

transfer. System . LOC files documentina the actual VAX/VMS programs run to execute

the DRC are generated in whatever directory was the default directory when EPIC: SLAVE

and EPIC:NASTD were initially run. MASTER.LOO and SLAVE.LOG are generated according

1 Luerwriter ill a tract.mark of Apple Computer Corpon&ion

85

to the contents of MASTER. COM and SLAVE. COM. MASTER. LOG contains all the diagnostic

messages sent to the middle screen of the monitor.

86

A.5 Appendix

A.5.1 Sample Run Of EPIC: FIXECAD

Note: You don't have to specify anything. for the,old and new versions of a field if

you don't want to change that field. Every time a substitution is made, the old line and

the new line are printed out. Much of this was editted out of the example below.

$ run epic:fixecad
Old COM: cm.oa
Old ECF: cm.oa
New COM: field
New ECF: field
Old Indiak: infile .gda
New Indisk: field.gda
Old Outdiak: outf ile. err
New Outdiak: outfield.err
Old Print:
New Print:
Old Primary:
New Primary:
Old System.:
New System:
Old Dir:
New Dir:

1 TREEMAIN
1 TREEFIEL

summary
summary
:maincell
field
gda2
gda2
aegcad•ecad:
aegcad•ecad:

•ASSIGN INFILE.GDS FOI009
•ASSIGN FIELD.GDS FOI009

O TREEMAilf
0 TREEFIEL

1000 1 MAINCELL
1000 1 FIELD

$ASSIGN OUTFILE.ERI FOROOQ
$ASSIGlf OUTFIELD.ERi P01009

0 TREEMAIN OUTMAINCELL
0 TREEFIEL OUTFIELD

,TREEMAIN.DAT­
.TREEFIEL.DAT-

/DCL• (".GSYS.LOGilf :CMOS.COM
/DCL• ("•OSYS.LOGIN:FIELD.COM

87

1"-
1"-

A.5.2 Execution Control File
The following is an example of one task in the ECF file created a.hove.

task " ROT TOTHWL MASICLJL IWELL•-
/IIPUT •(TOTIWL.DAT-

.NASICLa.DAT-
)-

/OUTPUT•(IWELL.DAT-
)-

/DCL• C••GSYS.LOGil:FIELD.CON
)

A.5.3 Command File

Each pa.ge of the . CON file corresponds to an • ECF tuk, such as the one above. At

the beginning of the . CON file, there is a • GOTO •Pt ' ; which explains how the correct step

gets executed .

• 16:
$! NOT TOTIWL MASKLll IWELL
• !
$SET PROCF.SS/1.AJIE• 16GDSII
$RUB SEGCAD.ECAD:LOGICAL

3 TOTDL MASKLll DELL

•IF .NOT. $STATUS THEI GOTO LQUIT
.OUTPUT:
$IF P2 .EQS. •OUTPUT• TREI GOTO LQUIT
$EXIT

88

1000 MIC 0

Appendix B

Data Dependency G-:apps

This appendix contaim printed repre11aatiou of the data dependency graphs used

in the testing of E P 1 C. Included are exam.pl• fe.r DEC CMOS design rules, MOSIS CMOS

design rules, and the compilation and linldq cA £ P IC.

89

DEC CMOS DRC Data Dependency Graph

90

UIDlll~
MOSIS CMOS DRC Data Dependency Graph .

91

"make EPIC" Data Dependency Graph

Appendix C

Data from the testing of e PI C

mmm~um~
~

This appendix contains raw statistics generated bye P IC for the test runs with a

varying number of processors. Each section consi8U of all Uie data for a single application.

Each subsection has a table of statistics and a graphical log for a single run. The leftmost

column of the graphical log indicates the elapeed time at several points on the Y-axis. Each

vertical column represents the activity of a single slave. Each diamond is the execution

of a task. The height of the diamond is· proportional to the amount of time it took to

execute the corresponding task. Each line segment between two tasks represents a data

dependency between those tasks, and roughly corresponds to a file transfer.

93

C.1 DRACULA with DEC CMOS rules

C.1.1 Serial DRACULA on a VAX ll/"180 computer

Buffered I/0 count: 883g Peak working Mt size: 8060
Direct I/0 count: ee12g Peak page fil• aize: 1Q636
Page faults: 23mo1 Moun"tied volumea: 0
Charged CPU time: 04:00:11.84 Elapsed ti.M: 06:06:60.41

C.1.2 Parallel DRACULA on three VAXcluatered VAX 11/"180
computers

9-APR-1986 07:22:43.28

Accounting inforaation (for the •MASTEi• proceaa):
Buffered I/0 count: 6728 Peak 110rking ••t aize:
Direct I/0 count: 1282Q Peak rlrtual aize:
Page faulta: 80986 ~ YOl-•:
Image• activated: 644
Elapaed CPU tiae: 0 00:23:23.61
Connect tiM: 0 02:62:61.89

Elapsed aeconda:
CPU aeconda :

32717
14210

8000
18898

0

C.1.3 e P IC using one VAX 11/180 computer

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF
EPIC Version V1.0
29-MAR-1986 18:45:38.06
ELAPSED: 06:21:28.13
CPU: 0:01:13.19

BUFFIO: 3549
DI&IO: 487
FAULTS: 720

Subprocess statistic• (all times in seconds)

95

DECCMOS.ECF run on 29-MAR-1986 18:45:45

o Hours

1 Hours

2Hours

3Hours

4Hours

5 Hours

5 Hours

96

11111111111111•===0

C.1.4 c P IC using two VAXclustered VAX 11/'TSO computers

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF
EPIC Version V1.0
28-MAR-1986 07:21:18.96
ELAPSED:
CPU:

02:51:09.61
0:01:07.09

BUFIO: 3170
DIIUO: 858
FAULTS: 702

Subprocess statistics (all ti .. • in seconds)

97

DECCMOS.ECF run on 28-MAR-1986 07:21 :27

O Minutes

10 Minutes

20 Minutes

30 Minutes

40 Minutes

50 Minutes

60 Minutes

70 Minutes

80 Minutes

90 Minutes

100 Minutes

110 Minutes

120 Minutes

130 Minutes

140 Mirotes

150 Minutes

1~~~=

98

001111mmm11i11~
oogoo

C.1.5 € P IC using three VAXclustered VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF
EPIC Version V1.0
27-MAR-1ga6 06:28:09.76
ELAPSED:
CPU:

01 :67:66.11
0:01:06.27

BUFIO:
DIRIO:

3179
899

FAULTS: 7og

Subprocess statistics (all tiaea in aecon~a)

99

DECCMOS.ECF run on 27-MAR-1986 06:28:18

0 Minutes

10 Minutes

20Minutes

30 Minutes

40 Minutes

so Minutes

60 Minutes

70 Minutes

80 Mit'IJtes

90 Mit'IJtes

100 Minutes

109 Minutes

100

cccnmmm1~ • C.1.6 e PIC using two independent VAX 11/T80 computers

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF
EPIC Version V1.0

g-APR-1986 03:31:27.82 BUFIO: 3434
ELAPSED:
CPU:

03:16:42.65
0:01:23.19

DIRIO: 608
FAULTS: 830

Subprocess statistics (all time• in seconda)

101

DECCMOS.ECF run on 9-APR-1986 03:31 :36

o Minutes

10 Minutes

20 Minutes

30 Minutes

40 Minutes

50 Minutes

60 Minutes

70 Minutes

80 Minutes

90 Minutes

100 Minutes

110 Minutes

120 Minutes

130 Minutes

140 Minutes

150 Minutes

160 Minutes

170 Minutes

180 Minutes

188 Minutes

102

~

oco=mm~
ooro

C.1.7 e P IC using three independent VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF
EPIC Version V1.0
7-APR-1086 06:43:13.96
ELAPSED:
CPU:

02: 13:40.10
0:01:18.17

BUFIO: 3478
DIRIO: 602
FAULTS: 827

Subprocess statistics (all ti... in seconds)

103

DECCMOS.ECF run on 7-APR-1966 06:43:21

o Minutes

10 Miootes

20 Mit'IJtes

30 Minutes

40 Miootes

50 Minutes

60 Miootes

70 Mlootes

80 Miootes

90 Miootes

100 Miootes

110 Miootes

120 Minutes

126 Minutes

UK

OOCCOCIOOIOCCOC

0000~11111a1~ • C.1.8 €PI C using four independent VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file DECCNOS.ECF
EPIC Version V1.0

6-.APR-1986 02:12:26.93
ELAPSED:
CPU:

01:36:10. 71
0:01 :20.47

BUFIO: 3379
DIRIO: 398
FAULTS: 837

Subprocess statistics (all times in seconds)

105

DECCMOS.ECF run on 6-APR-f986 02:12:44

O Minutes

10 Miootes

20 Minutes

30 Miootes

40 Miootes

50 Mlootes

60 Miootes

70 Miootes

80 Miootes

88 Miootes

106

000000000000000
0000001m1n1111~

C.1.9 €PI C using five independent VAX 11/7'80 computers

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF
EPIC Version V1.0

12-APR-1986 06:22:44.11
ELAPSED: 01:26:68.26
CPU: 0:01:10.61

BUFIO:
DIRIO:
FAULTS:

3606
418
861

Subprocess statiatica (all times in aecon4a)

107

DECCMOS.ECF run on 12-APR-1986 06:22:51

O Minutes

10 Mirutes

20Mirues

30 Mirutes

40 Mirutes

50 Minutes

60 Mirutes

70 Mirutes

78 Mil'l.ltes

108

~ • C.1.10 £PI C using six independent VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF
EPIC Version V1.0

10-APR-1986 06:12:36.06
ELAPSED:
CPU:

01:14:21.67
0:01: 14.69

BUFIO:
DIRIO:
FAULTS:

Subprocess statistics (all times in seconds)

109

3629
406
879

DECCMOS.ECF run on 1 O-APR-1986 06:12:43

O Minutes

10 Minutes

20 Minutes

30 Minutes

40Minutes

50 Minutes

60 Minutes

67 Minutes

110

-0000000~
oogoo

C.2 Compiling and Linking e PI C
The following statistics were generated by VMS after compiling and linking c P 1 C and
its preprocessors.

Accounting information:
Buffered I/0 count: 962 Peak working aet size: 3886
Direct I/0 count: 2699 Peak virtual aize: 7904
Page faults: 31011 Mounted volumes: 0
Images activated: 26
Elapsed CPU time: 00:06:48.74
Connect time: 00: 10: 19.12

111

C.2.1 e PI C using one VAX ll/'180 computer
MASTER Statistic• for EPIC run •in& ECF file llAIEEPIC.ECF
EPIC Veraion Yl.O
30-M0-1g&e 13:60:40.42
ELAPSED: 00: 10:30.09
CPU: 0:00:14.42

BUFIO: 732
DllIO: 81
FmLTS: 231

Subprocess atatiatica (all timaa in aec:GD!la)

Ii Ii I~ Ii Ii Ii I 13 I °1 Ii I fitrill Ii Fil: I

112

00100010111111111~ • MAKEEPIC.ECF run on 30-MAR-198613:50:48.10

O Minutes

1 Minutes

2Minutes

3 Minutes

4 Minutes

5 Minutes

&Minutes

7 Minutes

8 Minutes

9 Minutes

~8 MiAUtn

113

C.2.2 t P iC using two VAXcluatered VAX ll/'780 computers

MASTER Statistica for EPIC run uaing ECF file IWCEEPIC.ECF
EPIC Version V1.0

1-APl-1986 02:66:69.84
ELAPSED: 00:06:39.64
CPU: 0:00: 16.24

BUFIO:
DIJUO: 101
FAULTS: 248

Subprocesa statiatica (all ti .. • in .. conda)

114

OOll,1100 ooooooooHHlllHltlll J1UHllnioacooooooo

MAKEEPIC.ECF run on l~APR-1986 02:56:17

O Seconds

10 Seconds

20 Seconds

30 Seconds

40 Seconds

50Saconds

60Saconds

70Seconds

80 Seconds

90 Seconds

100 Seconds

110 Seconds

120 Seconds

130 Seconds

140 Seconds

150 Seconds

160 Seconds

170 Seconds

180 Seconds

190 Seconds

200 Seconds

210 Seconds

220 Seconds

230 Seconds

240 Seconds

250 Seconds

260 Seconds

270 Seconds

280 Seconds

290 Seconds

300 Seconds

309 Seconds

115

C.2.3 tPIC using three VAXclustered VAX 11/780 computers

MASTER Statiatica for EPIC run using ECF file IUJCE!PIC.ECF
EPIC Veraion V1.0
6-APR-1986 23:27:38.08
ELAPSED: 00: 04: 12. 70
CPU: 0:00:18.:IG

BUFIO:
DIIIO: 1845
FAULTS: 25g

Subproceaa atatiatic• (all ti .. • in ••conda)

116

occmcoc1cum1m.llim:ooc-

MAKE EPIC.EC F run on 6-APR-1986 23:27:45 ooro

O Seconds

10 Seconds

20 Seconds

30 Seconds

40 Seconds

50 Seconds

60 Seconds

70 Seconds

80 Seconds

90 Seconds

100 Seconds

110 Seconds

120 Seconds

130 Seconds

140 Seconds

150 Seconds

160 Seconds

170 Seconds

180 Seconds

190 Seconds

200 Seconds

210 reconds
213 econds

117

C.2.4: t P IC using two independent VAX 11/180 computers

MASTER Statiatica for EPIC run uaing ECF file MAKEEPIC.ECF
EPIC Version V1.0

3-APR-1Q86 02:27:38.02 BUFIO:
ELAPSED: 00: 07: 67. 36 DI&IO:
CPU: 0:00:18.33 FAULTS:

Subprocess statistic• (all ti.119a in aeconda)

118

1028
61
288

. '"""""'lllllll~lll=r--
MAKE EPIC. ECF run on 3-APR-1986 02:27:46 ·

o Seconds

100 Seconds

200 Seconds

300 Seconds

400 Seconds

447 Seconds

119

. .

C.2.5 EPIC using three independent VAX 11/'180 computers

MASTER Statiatica for EPIC run uaing ECF file MAKEEPIC.ECF
EPIC Veraion V1.0
3-APl-1986 02:06:48.W
ELAPSED: 00: 06: 32. 76
CPU: 0:00:18.26

BUFIO:
DIIIO:
FAULTS:

Subproceaa statistic• (all ti .. a in aeconda)

120

1067
M
294

. ''"'"'""'11111~
MAKEEPIC.ECF run on 3~APR-l986 02:06:57

O Seconds

10 Seconds

20 Seconds

30 Seconds

40 Seconds

50 Seconds

60 Seconds

70 Seconds

80 Seconds

90 Seconds

100 Seconds

110 Seconds

120 Seconds

130 Seconds

140 Seconds

150 Seconds

160 Seconds

170 Seconds

180 Seconds

190 Seconds

200 Seconds

210 Seconds

220 Seconds

230 Seconds

240 Seconds

250 Seconds

260 Seconds

270 Seconds

280 Seconds

290 Seconds

300 Seconds

310 Seconds

320 Seconds

330 Seconds

340 Seconds

350 Seconds

121

C.2.6 tPIC using four independent VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file MAKEEPIC.ECF
EPIC Veraion V1.0
3-APR-1986 02:16:04.72
ELAPSED: 00: 06: 32. 38
CPU: 0:00:17.96

BUFIO:
DIRIO:
FAULTS:

Subprocess atatiatica (all ti .. • in aeconda)

122

1086
44
311

. OOOOOOOOOOOOl~QOOOOOQOQOOOO

MAKEEPIC.ECF run on 3-APR-1986 02:16:12

O Seconds

10 Seconds

20 Seconds

30 Seconds

40 Seconds

50 Seconds

60 Seconds

70 Seconds

80 Seconds

90 Seconds

100 Seconds

110 Seconds

120 Seconds

130 Seconds

140 Seconds

150 Seconds

160 Seconds

170 Seconds

180 Seconds

190 Seconds

200 Seconds

210 Seconds

220 Seconds

230 Seconds

240 Seconds

250 Seconds

260 Seconds

270 Seconds

llt lloondl

123

124

ccocococoocaoo~'

oogoo

Appendix D

e PI C Messages

This Appendix contains all the messages sent as control communication. They

effectively define the architecture of the software behind e PI C.

D.1 Messages sent from user to monitor

EXIT
Terminate the MONITOR program. This does not affect the operation of the
master.

CREATE/MASTER node com-file ec:f-flle worJdng-dlrectory cluster-list
Create a master

CREATE/SLAVE name node com-file working-directory
Tell the master to create a slave and put it in the database

MONITOR master's-node
Establish communication with an already..existing ~ter

KILL
Tell the master to terminate the computation and generate the log files

KILL/SLAVE slave-node slave-name
Tell the master to terminate the slave and insert its task {if any) into the ready
queue

SET/CLUSTER= (nodel, node2 ...)
Tell the master to define a set of nodes to be clustered together

SET /REFRESH = time interval
Tell the master to set the interval at which the process rate is refreshed

125

D.2 Messages sent from monitor to master

SET/CLUSTER= (nodel, node2 ...)
Define a set of nodes to be clustered together

SET /REFRESH = time Interval
Set the interval at which the process rate is refreshed

EXIT
Terminate the computation and generate the log files

KILL/NAME= slave's name /NODE= slave's node
Terminate the slave and insert its task (if any) into the ready queue

CREATE/SLAVE name node command-81e worJdng-dlnct6ry
Create a slave and put it in the databue

D.3 Messages sent from master to monitor

MESSAGE IDBg
Allows the master to put an arbitrary message on the monitor's screen

STATUSllne-numberconttnta

DONE

Send statistics Iine dfJICribing slaw's subproceu' CPU usage to the monitor's
process display

Indicates to the monitor that the whole computation has completed.

D.4 Messages sent from master to slave

START task-name /INPUT=(lnl, ba2 ...) /OUTPUT=(oatl, ouU ...) /DCL=(dell, dcl2 ...)

start the task with the specified inputs, output. and dd commands

EXIT
Terminate the slaw aubproc- and exit

FREE
Charge elapeed time to the FREE counw, rather than the IDLE counter

SET/REFRESH = time bdenU
Set the interval at which the slave 8'1lde proct11 li1M information

D.5 Messages sent from slave to master

COMPLETED
The slave completed its task

............... ,111 .. -

FAILED reason
The slave failed its task

STARTED
The slave has retrieved the input files and started the task

MESSAGE mag
Allows the slave to put an arbitrary textual message into the master's log file

STATUS status line
Send statistics line describing slave's subprocess' CPU usage to the master for the
monitor's process display

FINAL statistics
Send final statistics about the slave's subprocess' CPU usage, etc., to the master.

127

128

Bibliography

[Allen 1983) J. Allen, Introduction to VLSI Duiff&, M.I.T.·Video Course Study Guide,
Cambridge, MA, August 1983

[Arnold 1985] J.M. Arnold, Parallel Simulation of Digital LSI Circuits, MIT Laboratory
for Computer Science, TR.-333, 1986

[Arnold, Ousterhout 1982] M.H. Arnold, J.K. Ousterhout, "Lyra: A New Approach to
Geometric Layout Rule Checking"; ·l'roecldi"'Jll of the 19th Duign Au­
tomation Conference, June 1082 ·

[Bier, Pleszkun 1985] G.E. Bier, A.ll. PhluJtun, "'AnAlgorilhm for Design Rule Checking
on a Multiprocessor", Pr'1Cflllfllia,. oftM 'llfitl Dcaign Automation Con­
ference, July 1985

[Chapman, Clark 1984] P.T. Chapman, K. Clark, Jr., "The Scan Line Approach to De­
sign Ruis ClwcJring: Computaticmal Experi~~' Proceedings of the 1!1 st
Duign Automation Conferencc,·hne 19H·

[Deutsch, Newton 198-') J.T. Deu*h, A.a. Newton, "A Multiprocessor Implementation
of Relaxation-Based EleetrlcJ.l ~~Qlrn~..:', PFOcudings of the !!1st
Duign Automation Conference, June 198-'

[Hammer 1986} M.E. Hammer, private communk.atipn, Hewlett Packard Corporation,
February 1986

[Kung 1976)

[Lee 1978)

Kung, H.T., S,,nchronized and A.,nclwonou Parallel Algorithms /or Mul­
tiproeusoq, CMU-OS~ 76-150, June 1976

Lee, R.B., Performance CAaraetuirotion of Parallel Computations;
STAN-CSL-TR-158, September 1978

[Levitin 1986] S. Levitin, A Multiproeusing Aproach to Circuit Eztraction, MIT Master's
Thesis in prepaq.ti<>n, 1986

[Marantz 1984] J.D. Maranu, A Parallel Duign Rule Olaccloer, DEC Internal Memo May,
1984

[McGrath 1985] E.J. McGrath, private communieation, n-.w Equipment Corporation

[McGrath, Whitney 1980] E.J. McGrath, T. Whitney, "Deaip lntegritY a.nd Immunity
Checking: a New Look at Layout Verification and Design Rule Checking",
Proceedings of the .17th Design Automation Conference, June 1980

[Mead, Conway 1980] C. Mead, L. Conway, l,.troduction to VLSI Systems, Addison
Wellesley, October 1980

129

(Mehrotra, Talukdar 1982) R. Mehrotra, S.N. Talukdar, Taai Sel&e4uling on Multiproces­
aora, Carnegie Mellon Univenity DRC-18-55-82, December 1982

[Nagel 1975) L. Nagelt SPIC~~ A Computer Pr..,,. to Sim.late S~rnicondudor Cir­
cuit., ERL Memo No. ER.lrM520, Univenity of California, Berkeley, May
1975.

[Newton, Sangiovanni-Vmcentelli 1983} A.R.
Newton, A. SangioYanni-Vmcentelli, Rela:otion-6uetl Electrical Simula­
tion, University of California, Berkeley, 1983

[Newell, Fitspairick 1982) M.B. Newell. J).'l\. ,.....~-•. ~xploi~ Structure in Inte­
grated Circuit Deaign ~ .,_;~~ ... of ... c.n/erenee on Ad­
wmced .Ramre/a in VLSI, Janll&rJ 19a

'· .- ~· ~ . _,

[Nie'Ison 1986) R.D. Nielson, • AlgorillunicallJ 4ce .. tecl CAQ", VLSI SJ18tems Design,
February 1986

[Pfister 1982] G.i'. Plater, -Tae Yorbowa Siamla&ioa.Evsiae•, PJW«tlinga of the 19th
Duip Atdomation Con/entlJI!&; 1812.

[Seiler 1985) L.D. Seiler, A .,,..,.. A..-al ArctlaiMdw• for VLSI Daifn Rule
<Jl&aiirtf, Mir Doc:tanl Tllllia,.'111U'

[Smith, McDonald, Chang, Jerdonet 1984) W .D. Smith, 1.- Md>onald, C. Chang, R. Jer­
donek, lfJllOOl: A Bieruciak:al 1...,.. Yailr:Mim Sy.._. far VLSI",
Ptaraetli•,.•/*IBBB Jlr&'ct. til...,10as .. i:1n• O.Cempvter Design:
VLSI in Co1111ndw1, October l1IM

[Taylor, Ounerhout 1984) a.s. Taylor, J.K. Oamrhoin, -Macie'• IncNmmtal Design­
Rule C~~ IWc_,i,.,. fl/ a. t:lllt Duifa· :Ald1mation Conference,
June19M

[Tarolli, Herman 1983} G.M. Tuolli, W .J. lleilmllt' •Bierardtical Cimdt Extraction with
Detailed Parasitic Capacitaac:e", Procrfllir¥E'f411M ml Duip Automa-
tNn Cort/ ·Juel883 - .

(Terman 1983} C.J. Terman, st.n.r..a.. T_,. FOr Dl,;t.l £81·1JMffl, MIT Laboratory
for Comp1tter ·Sdeam, TLllM, 1111

[Whitney 1981) T. Whitney, •A llienrddcal Dmip-lluleCJwtin& Algorithm", Lam6da,
U•l

[Wilcox, Rombeek, Caughey 1978) P. W"dcm, H._.,,'D.IL Caughey, •Design Rule
Veri&ca&ioa'BwiOa 0-,Dimeui 1 sf.._,, ftec111fi.,. of U.. Daip
AtdonMdion Conference, June 19'18

[VMS 1985) Digital lqaipmen& Ootp., VAX/n#B V -I·• 8pCern Scrvicu Rc/a~nu
11 .. -.1.

130

