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Preface

-

The text of this thesis was formatted using IATEX. The more complex figures and
drawings were generated automatically by the software described in this thesis, using a
graphical description language called Postscript’. The two forms of printed media were
merged together electronically (rather than photographically or with scissors and glue).
The capability of automatically merging text with graphics in this manner has made prac-
tical the inclusion of a flipbook animation.

The animation is an attempt to show how the behavior of the multiprocessing task
scheduling algorithm changes according to the number of processors. The parallel execution
is simulated under the assumptions of zero communications overhead and unit execution
time for each task. The nth “frame” in the animation is a graphical representation of the
exetgution using n processors. The graph is composed of diamonds, which represent atomic
units of computation called tasks. Horizontally adjacent diamonds represent tasks that
are executed in parallel on different processors. The vertical axis represents time, with the
beginning of the computation at the top of the page.

Initially, each frame occupied a single page, and the effect of flipping through the
100 pages was aesthetically pleasing. Unfortunately, in terms of the thesis, it was not
justifiable as a 100 page appendix. So each frame was reduced so it would occupy the
top and right margins of an existing page. The first frame of the animation is visible at
the right edge of this page. It shows how when using one processor, no more than one
task can be processed at any given time, so they are all executed one after the other. The
- next page shows the simulation using two processors. The meaning of the animation will

become clearer after reading Chapters 3 and 4, but it was necessary to include a word of

1Postscript is a trademark of Adobe Systems
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explanation here, since this is where the animation begins.
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Chapter 1

Introduction

As the complexity of VLSI circuits increases, so does the running time of the CAD
tools we use to build those circuits. At the current state of VLSI technology and CAD tool
performance, tasks such as layout verification, simulation, and mask-making have proven

to be expensive bottlenecks in the VLSI design process. If the advances in the complexity
and functionality of the VLSI chips we build are to keep pate with advances made in VLSI
process technology, then we must make substantial improvements to the software tools
used to design and manufacture those chips.

1.1 Accelerating CAD Tools
There are several ways to accelerate CAD tools:

Developing more efficient software

Buying faster general purpose computers

Using special-purpose hardware accelerators

Exploiting the hierarchy inherent in the represention of VLSI circuits
Exploiting the parallelism inherent in many of the existing CAD tools

g B

Developing more efficient software is always an attractive alternative. In indus-
trial design rule checking, ECAD’s DRACULA2 offered an order of magnitude speed-up over

what was previously available!. However, significant runtime improvement through better

1DRACULA2 is a trademark of ECAD corporation
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software is often limited by the computational complexity of the problem at hand. Ob-
servations in industry indicate that further improvements are needed in the time taken by
design rule checkers.

Buying faster general purpose computers is perhaps the lowest-risk option listed
above. If purchasing new hardware will increase both the processing and the memory
speed, then it will certainly increase the speed of the CAD tools that run on it. This
strategy has the added advantage that it can be easily combined with any of the other
strategies. However, since monetary cost rises faster than computational speed, it is not
a cost-effective solution. This is evidenced by a comparison of Digital’s VAX 8600 and
MicroVAX II computers’. They were both introduced in early 1985, so they represent
roughly the same level of technology. The VAX 8600 computer has approximately 5 times
the processing speed of the Microvax II computer, but costs about 10 times as much.
Relying on faster computers is also not likely to be a good long-term solution, because
recently the complexity of VLSI circuits has grown much faster than the cost of processing
speed has fallen. Digital’s VAX 8600 computer has four times the speed and twice the cost
of the VAX 11/780 computer (1977), while chips of 1985 have twenty-five times as many
transistors as those of 8 years ago [Allen 1983].

Developing special hardware accelerators offers the greatest potential of all the
solutions listed above. Runtime improvements of several orders of magnitude are not
uncommon. In design rule checking, speedup factors of up to 140 have been predicted
using small amounts of custom hardware [Seiler 1985]. Similar improvements have been
achieved in circuit simulation using the ZYCAD hardware accelerator®. Unfortunately,
the cost of these devices, both in money and development time, is often prohibitive. In
the event of an algorithmic improvement that decreases the growth rate of a problem, the
hardware will lose its edge as the problem increases in size, rendering it obsolete.

3VAX and MicroVAX are trademarks of Digital Equipment Ca-pontm
SZYCAD is a trademark of ZYCAD corporation
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1.2 Parallelism in VLSI CAD

Exploiting the parallelism inherent in VLSI CAD tools is an attractive way to
accelerate them. The nature of VLSI lends itself to a high degree of parallelism. VLSI
chips are composed of several layers, which are often examined separately. Each layer is
composed of different blocks which exhibit a very high degree of functional locality. Each
block is composed of many polygons which exhibit some degree of geometric locality.

We observe that the parallelism inherent in VLSI is manifested in CAD tools in
several different ways. Logic simulators possess parallelism based on the locality of ac-
tivity in a digital circuit. [Arnold 1985] exploits this property in a multiprocessing logic
simulator based on RSIM [Terman 1983]. Design rule checking and circuit extraction can
be accelerated by taking advantage of the geometric locality of the polygons that consti-
tute the chip. [Levitin 1986] describes a system that uses this approach to a.cceleraf;e a
VLSI circuit extractor called IV [Tarolli, Herman 1983]. Similarly, [Bier, Pleszkun 1985)
describes a system that divides a layout into separately checkable partitions, checks each
partition, examines the partition boundaries to eliminate false errors and catch missed er-
rors, and merges the resulting error reports together. In design rule checking, there is also
parallelism inherent in the set of design rules that guide the checking program. This thesis

describes a DRC accelerator that exploits the parallelism inherent in the design rules.

1.3 A Software Methodology for Multiprocessing

If an existing program can be partitioned into tasks that are each sufficiently time-
consuming compared to the time it would take to move the task’s input and output data
between processors, then an existing local area network may be effectively used as a mul-
tiprocessor to run that program. This is the case with DRC, and is likely to be the case
with Digital’s circuit extractor and mask-making software. If several processors share a
common file system, such as in VAXclusters, then the input/output size constraint can be

removed?*.

4VAXcluster is a trademark of Digital Equipment Corporation
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Parallelism is a cost-effective strategy for accelerating VLSI CAD tools. No special-
purpose hardware is needed. It is possible to use a small number of general purpose
computers as a multiprocessor. Thus the utilitj‘and‘t’he expense of an n-processor system
can be shared with those who need more serial processing machines. Parallelism can
be combined with higher-speed general purposes computers and with higher-performance
software.

Many CAD tools have some parallelism, due to the nature of VLSL. So a hard-
ware investment made toward faster DRCs imay also pay off by accelerating simulations,
mask preparations, and circuit extractions. Another mmple of explo:table parallelism is
compiling and linking a large software system.

This thesis describes a software system called £PIC (Exploiting Parallelism In
CAD) that controls the parallel execution of any software system that exhibits a restricted
class of parallelism. The necessary characteristics of the comﬁztitibm.l environment and
the program to be accelerated are as follows: ' “

e The program must be partitioned into discrete tasks.
e Each task must be individually callable from the operating system.
¢ All communication between tasks mmtbe done fhrough diak files.

¢ Unless different computers can share the samie fie system, the time it takes to execute
an individual task must be greater than the tispe it takes to transfer the files that it
reads and writes.

1.4 Chapter Outline

Chapter 2 describes previous work in accelerating CAD tools. This includes ef-
forts to use parallelism and hardware acceleration to speed dp design rule checking and
simulation. The primary motivation for this thesis, Parallel ECAD DRC, is described.

Chapter 3 describes the theory and lmplementatlon of E P I C The more interesting
features, such as task scheduling, are descnbed in detul

Chapter 4 describes the application of £ PJ C to various problems, such as design rule
checking, circuit extraction, and compiling and lmhng prolrlms Optimistic predictions
are made for the speed-up of each apphcatlon The speed-up factors are determined for

18



several experimental runs of each application. The experimental results are then compared
to the optimistic predictions.

Chapter 5 concludes the thesis with a summary of the work reported and suggestions
for future research.

Appendix A contains a user’s manual for running £ PIC with ECAD DRC.

Appendix B contains graphical representations for the data dependency graphs for
several applications.

Appehdix C contains the raw data for the experimental runs, including a table of
statistics and a graphical representation of the task assignments for each slave.

Appendix D contains all the messages £ P IC sends for control communication. They
effectively define the architecture of the software behind £ PIC.

19
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Chapter 2

Background

2.1 Previous Work in Parallelism for VLSI CAD

A substantial amount of research has recently been devoted to the area
of parallel simu!ation. Papers have been published on the parallel acceleration
of several classes of simulators, including relaxation based simulators such SPLICE
[Newton, Sangiovanni-Vincentelli 1983,Deutsch, Newton 1984], and event based logic sim-
ulators such as RSIM [Terman 1983,Arnold 1985].

“ Until very recently, not much had been published on parallel design rule check-
ing. In the past year, there has been more activity [Bier, Pleszkun 1985,Nielson 1986].
[Bier, Pleszkun 1985] seeks to exploit the geometric locality of VLSI layouts by dividing
the layout into vertical slices, checking each slice on a separate processor, and merging the
error reports together. This approach could suffer from a large number of missed errors
and false errors at the borders of the slices. At some cost in redundant computation, these
problems can be eliminated by dividing the chip into slices that overlap by at least one
mazimal design rule snteraction distance (DRID). Errors reported within one DRID of the
border of a slice are filtered out in the merge phase as potential false errors. If they are
real errors, they will be flagged during the check of the neighboring slice.

This strategy was not tested on a real multiprocessor, but based on statistics gath-
ered during serial runs, a speedup of 8:1 was predicted for 14 processors. As communi-

cations costs are small, this figure may be realistic. It is not reasonable to expect this
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algorithm to offer a linear speed-up factor, since the computational overhead of process-
ing overlapping slices and discarding errors at the borders will grow with the number of
processors.

The data partitioning algorithm has the desirable property of having its potential
parallelism scale as a function of complexity of the layout. If there is no communications
overhead, then we should then be able to use more processors to hold the DRC execution
time constant as the circuit grows. Unfortunately, the ovul}ea.d of checking overlapping
regions of the chip and removing false errors from the reports mly reduce the potential
speedup significantly, and prevent the number of processors from being profitably scaled
with the layout. This thesis presents an alternative strategy that has no intrinsic compu-
tational overhead. Unfortunately, the parallelism of our technique does not grow with the
complexity of the layout, but with the complexity of the rules set. Nevertheless, it promises
to allow more efficient use of each processor, and therefore provide better speed-up factors
for limited numbers of processors.

2.2 Previous Work in Accelerating DRC

Empirically, the time and space consumed by a design rule check has been observed
to be about O(n'?) or O(n!?®) where n is the number of transistors. As the number
of features on a typical VLSI chip moves into the millions, DRC will become more of a
bottleneck in the designers’ loop.

Hierarchical DRC is one possible solution to the DRC problem, and
has recently been studied extensively ([McGrath, Whitney 1980], [Whitney 1981],
[Newell, Fitzpatrick 1982], [Smith, McDonald, Chang, Jerdonek 1984]). In a normal chip,
many cells are defined in terms of other cells, and blocks of celis are repeated (such as in
a memory). Hierarchical DRC attempts to exploit this repetition by checking only one
instance of a given cell or cell block, regardless of how many times it occurs. This has the
added advantage of only generating one error when a repeated cell is fauity, thus reducing
the volume of error reports while still conveying the same information.

In practical applications, however, the amount of repetition is limited by various

22



factors, such as overlapping regions and globally routed conductivity [McGrath 1985]. Of-
ten, the advantage to be gained by exploiting the repetition is lost to the overhead of
finding and re-checking the cases where a cell’s boundaries are violated by other layout.
Thus, while hierarchical DRC is profitable for certain chips, it is not yet a sufficiently
general solution. When it is does become profitable, it can be combined with the multi-
processing DRC algorithm presented in [Bier, Pleszkun 1985|, or the approach presented
in this thesis. .

At Hewlett-Packard, hierarchical DRC has been successfully used in practice
[Hammer 1986]. Using a core of checking routines based on NCA’s VDRC!, a methodol-
ogy was developed whereby the layout designer DRCs cells as they are initially layed out.
The CAD system maintains a central database of cells, keeping track of whether any cell
has been modified since it was last checked.. When a cell is instantiated, only externally
visible geometry is checked in subsequent DRCs. This system is especially effective be-
cause the cost of checking each cell is spread throughout the design process, rather than
lumped together at the end. The disadvantage is that the designers must completely avoid
overlapping cells with other cells and with routing.

It has been suggested that the DRC bottleneck can be eliminated by “correctness by
construction” [McGrath, Whitney 1980]. This involves using layout systems that enforce
the design rules at the construction phase, making it impossible to violate a design rule.
Such layout systems tend to use design rules that are too simplistic, resulting in poor layout
density, and thus producing slow chips [McGrath 1985]. Specifically, the corner stitching
structures of Magic do not provide for 45° angle geometries [Taylor, Ousterhout 1984].
Modern industrial design efforts require this capability.

Advancements in the algorithms behind design rule checking have improved
the overall performance ([Wilcox, Rombeek, Caughey 1978], [Arnold, Ousterhout 1982],
[Chapman, Clark 1984]). For example, Chapman and Clark outline a method for im-
proving the performance of IBM’s Unified Shapes Checker by using scan lines. On chips
with more than 50,000 transistors, they realized a CPU-time reduction of more than 50%.

This savings is substantial, but they predict that the improvement will not be sufficient to

1VDRC is a trademark of NCA corporation
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swiftly check chips as transistor counts move into the millions.

Seiler describes a method for doing DRC’s in hardware [Seiler 1985]. This method
has obvious advantages. Dedicated and custom-designed hardware can do a good job
of exploiting “inner-loop” parallelism. However, a working prototype was not produced.
Until the introduction of a production quality hardware DRC accelerator, it may be more
timely to increase performance by augmenting the existing CAD software.

2.3 Motivation: Parallel DRC

Digital Equipment Corporation’s primary motivation for supporting this project
was to produce a system that runs parallel ECAD DRCs. The key observation that mo-
tivated our strategy is that a design rule check does not entail the execution of a single
algorithm, but instead involves the sequential execution of many computationally inde-
pendent algorithms. More specifically, DRC is a sequence of rules, such as the following:

1. POLY-DIFF SPACING > 1)
2. POLY-POLY SPACING > 2\
3. POLY WIDTH > 2A

4, GATE OVERLAP > 2)

Conceptually, there is no data dependency between these rules. Therefore, each
rule can be executed independently by a separate processor. That is not very efficient,
because there are often intermediate computations which contribute to the checking of a
rule, and the results of these computations are often used in the checking of more than
one rule. We would like to do these computations only once, and share the results among
all those processors that need them.

These intermediate computations are explicitly listed in the ECAD rules file that is
used to control each DRC run. The rules file is essentially a computer program written in
a language especially tailored for DRC. The language has statements that do operations on
the various layers of the chip, such as polysilicon and diffusion. Some statements do logical
operations such as the pixel-wise AND and OR of two layers, producing new layers. Other

statements do spacing or width checks on a given layer at a given tolerance, producing
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error reports. A side effect of the execution of the program is that all the rules are checked.
As a final step, all the error reports are appended into a summary file, and the geometry
of the errors is depicted in an “error cell” layout that can be read into the layout editor.

Each statement in the rules file can be mapped directly onto a sequence of operating
system commands that cause the statement to be executed. The input and output file
names can be extracted from the text of the rules file statement. By comparing the input
file names of one statement to the output file names of another statement, we can determine
whether there is a data dependency between the e:éecution of those two statements. In this
manner, we can build a data dependency graph from the rules file, with the information
about how to execute each statement stored at each node.

The data dependency graph has. a set of roots, .or nodes whose input files are part
of the input data to the whole task, rather than outputs of another node. The number of
roots is generally equal to the number of different VIS8T layers for the particular process
technology. The computation must begin with the roots. How the computa.tibn proceeds
depends on the scheduling strategy, and greatly influences the performance of the whole
parallel execution. o ‘

2.4 Scheduling strategies

The following approach is taken by ECAD in their marketed version of Parallel
DRACULA? [Nieison 1986]. It requires a multiprocessor with a shared filesystem, such a-
VAXcluster; it won’t run on a local area network. This implies that it won’t suffer file
transfer overhead. It also depends on the scheduling facilities built into the multiprocessor.
When submitting a non-interactive (batch mode) job to a VAXcluster, the VAX/VMS
operating system® determines which processor is most rdponsive, and assigns the job
accordingly.

The first step is to divide the data dependency graph into sections, as shown in
Figure 2.1. Each section contains all the nodes in the graph that have a given distance

" 2Parallel DRACULA is a trademark of ECAD corporation
SVMS is a trademark of Digital Equipment Corporation
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Figure 2.1: Sectioned Data Dependency Graph

from the roots of the graph, where distance is simply the number of nodes one must pass
through to arrive at the destination. For example, the roots comprise a section whose
distance is zero.

The approach proceeds by executing each section one at a time. Every node in
the current section must be completed before any node in the next section can start.
This guarantees that the data dependencies will not bonohted. It is also very easy to
implement. The parallel execution is controlled by a command file.

There are at least two substantial drawbacks to this method. At the end of the
execution of each section, the faster processors will remain idle while the slower processors
finish up their tasks. At best, this severely limits the number of processors that can be
profitably used. At worst, it implies that a processor that becomes severely overloaded or
hung (for example, due to another user) after a task bas been assigned to it is guaranteed
to block the execution of the DRC. Another drawback to ECAD’s method is that the
requirement that it be run on a VAXcluster is inconvenient; Digital would like to run
parallel DRCs on VAX computers that are not VAXclustered together.

By more cleverly using the data dependency graph, we can increase the potential
parallelism substantially, keeping each processor busy nearly all the time, thereby enjoying
increased performance compared with ECAI)’: method. Te do this, we need to layer a
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sophisticated parallel scheduling and execution system around ECAD DRC.

Unfortunately, ECAD DRC represents a true “black box” abstraction: the source
code is not for sale. Furthermore, its user interface was not designed to be used as an
interface to another program. Though the command interface to any given version of the
software may be sufficiently documented, it is not guaranteed to remain stable over time.

A system that is layered around such an inaccessible piece of software must be
written to be resilient to change in the interface to that software. Also, it must not depend
on specific restrictions that may only apply to tl;e current version of ECAD. One such
restriction is that that each line in the ECAD rules file corresponds to a task with no more
than two input and output files. It is conceivable that this restriction could disappear at
the whim of an ECAD engineer.

The way to achieve this resiliency is to try to choose a model for the computational
structure of ECAD’s DRC that is general enough to be adaptable to any conceivable change
that ECAD might make. The following chapter describes how this is done.
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Chapter 3

EPIC: A general method of exploiting

parallelism

This chapter describes the implementation of a software system called £ PIC (Ex-
ploiting Parallelism In Cad). £PIC provides a mechanism for chtroll'mg the parallel
execution of existing software that exhibits a specific class of intrinsic parallelism. £ PIC
was written in PL/I for the VAX/VMS operating system, and runs on any number of VAX
computers connected by DECnet or in a VAXcluster!. No special hardware configurations
are;equired. Between the £ P IC kernel and the preprocessors provided for running ECAD
DRCs and Makefiles, 8751 total lines containing 5548 PL/I source statements were writ-

ten.

3.1 Dividing the job

The system described here provides a mechanism for running Parallel DRC by solv-
ing the more general problem of how to control the parallel execution of any program that
can be externally divided into a finite set of tasks. We define task as a unit of computation
that can be executed using a sequence of standard operating systemn commands (such as
DCL commands, for the VAX/VMS operating system). Each task has a known, finite set
of inputs and outputs, each of which is a disk file. These tasks are explicitly specified in

!DECnet is a trademark of Digital Equipment Corporation
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the manner of Figure 3.1.

task "split®-
/input=(chip.data)-
/output=(left.data, right.data)-
/dcl=("$splitter chip left.right")

task "left"-
/input=(left.data)-
/output=(left.errors)-
/dcl=("$drc lefs")

task "right"-
/input=(right.data)-
/output=(right.errors)-
/dcl=("$drc right*)

task "merge"-
/input=(left.errors,.right.errors)-
/output=(chip.errors)-
/dcl=("$merge left,right chip")

Figure 3.1: Sample Task Description List and Data Dependency Graph

The strategy we will use for Parallel DRC involves distributing the design rules to
the various processors. Each processor applies its subset of the rules to the whole chip. But
€ PIC is not restricted to this form of parallelism, which is called instruction partitioning.
As hinted at in Figure 3.1, £ PIC is well suited to data partitioning. The multiprocessing
DRC scheme proposed by [Bier, Plesskun 1985] could easily have been implemented with
EPIC.

A simple way to determine whether or not we can expect £ PIC to be able to
enhance the performance of a given program is by comparing the sizes of the input and
output files of each of its tasks with the time it takes to execute those tasks. If the execution
‘time is far greater than the amount of time it takes to transfer the input and output
files between the various processors, then the potential exists for substantial throughput
improvements using £ PIC. Of course, if all of the processors share a single file system,
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then data communication becomes less of a bottleneck, and the restriction can be relaxed.
The extent of the parallelism, and hence the potential for throughput enhancement,
is further limited by the data dependencies within the task list. By comparing the inputs
and outputs of each task, we can generate a data dependency-graph, as shown in Figure
3.1 |
In Figure 3.1, the potential parallelism is limited to a maximum of two processors.
If we assume that each task takes one “tick”, then by using two processors we can do
the job in 3 ticks, whereas we would need 4 with a single processor. Due to the data-
dependencies, a third processor couldn’t be used at all. So we say the parallelism has a

mazimum extent of 2.

Y
Q¢ ¢
v

Figure 3.2: A More Interesting Data Dependency Graph and its Execution

The most obvious way to try to determine the extent of parallelism is to find the
width of the widest row in the graph. This worked in Figure 3.1, and clearly having that
many processors would yield the fastest possible execution time. However, by assuming
that each task executes in one tick, we can do just as well using fewer processors. Consider
the data dependency graph in Figure 3.2. The maximum extent of parallelism is now 3,
since we can keep 3 processors busy at tsme = 2. But the minimum extent of its parallelism
is 2, because “4” can be executed by the second processor dunng the third tick, while the
first processor is executing “5”. £ P IC tries to optimize task scheduling in this manner so

it can get the most performance out of the available processing power.
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3.2 Multiprocessing on a Local Area Network

The computational model I have selected for paraliel precessing is not unlike the
dataflow model. Of course, the sivse of each atomic computation is somewhat smaller in
dataflow, so the capacity for incurring overhead from controlling the computation is also
smaller. Hence, I use a significantly different approach to coditrollinig the computation in
EPIC. '

Figure 3.3: Star Network Topology

Ethernet? technology is used as the physical layer beneath the DECnet protocol
in DEC’s local area networks®, Ethernet is essentially a coaxial cable that connects each
node on the network. A processor sends a measage by broadcasting it over the cable.
Each processor receives all the messages and scans them for the ones that are addressed
to it. Conceptually, an Ethernet can provide the basis for a varigty of software network
topologies. The topology £PIC uses is a star network, as shown in Figure 3.3. The
processor at the center of the star, called the master, is responsible for controlling the

whole execution. One of the processors on the points of the star is used to provide a user

2Ethernet is a trademark of Xerox Corportion
3DEC is a trademark of Digital Equipment Corporation

32




interface for the master. An interactive program called MONITOR is run on this computer
to allow a human to control the execution. The remaining processors at the points of the
star, called slaves, are responsible for executing whatever tasks the master assighs, and for
transferring the appropriate input and output files.

There were several specific engineering factors considered in the decision to use a
star network topology. The programs we intend to run in parallel tend to have irregular
computational structures. Their data dependency graphs take on arbitrary shapes, forcing
us to spend considerable effort trying to keep each processor busy. This is further compli-
cated by the computational environment in which we run. Each processor is a time-sharing
computer, and while we expect that £ P IC would-only be run when it wouldn’t be compet-
ing for cycles, we can’t let a loaded processor slow down the rest of the computation. Thus
a fragile task scheduling strategy would involve allocating each task a to specific processor
before the computation begins. A more robust tukkehoéulmg strategy is to dynamically
assign computable tasks to available processors, Io a relatively slow processor will execute

_proportionally fewer tasks. Fortunately, since each task takes so much time, we can afford
to incur some computational overhead figuring out:-the best strategy for assigning tasks
to processors. A good way to do that is to have one processar running a master program
that has total control of the computation. -

As it turns out, the master does not take very much CPU time once some initial
preprocessing has been done. Most of the time, it’s just waiting for a slave to indicate that
it is finished with its task. The short burst of CPU time it needs to figure out which task
gets allocated to the free slave is small compared to the time it takes the slave to finish the
task. Experimentally, I have determined that the master can eﬁcigntly share a processor
with a slave. |

It is enlightening to look at an example which is not conducive to a star network
topology. In regular parallel structures, it is easy to predetermine the best way to allocate
processors to tasks. Systolic arrays are one way of executing such computations. Central
control of each processor in a systolic array is undesirable, since there is typically a large
amount of communication between neighboring processors, but very little other commu-
nication. It is better to have each processor know precisely how and when to talk to its
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neighbors than to have one processor take responsibility for relaying all communication
from the sender to the receiver. Due to the extreme volume of information passing through
it, that processor would then be a severe bottleneck in the computation.

Another class of applications that are not well suited to the £ P IC model of compu-
tation are those where it is not clear at the start of the program exactly what computation
will occur. The task breakdown is done at run time, rather than “compile” time. If this
is the case, £ PIC will not be able to efficiently schedule the tasks.

A good example of this is Parallel RSIN [Arnold 1985]. It uses a master-siave star
network configuration as its multiprocessor, but there is no finite set of tasks from which
to generate a data dependency graph, since RSIN is an event based simulator. A change in
the value of a node in the circuit causes a simulation of the surrounding devices. If this
simulation causes other node values to be changed, then the devices connected to those
nodes are simulated as well. This propagation continues until the network settles. There is
no way to predetermine exactly what computation will occur when a given node changes.
Instead, before any simulation occurs, Parallel RSIN exploits functional locality in the
circuit by partitioning it and sending one section to each processor. The various sections
are simulated independently until a value on a shared node changes. The processor that
cha;hged the node then sends a message to other processors that share the node indicating
the new value and the simulated time when the change occurred. £ P JC is not equipped
to deal with this sort of computation. It needs to know about each task in the problem
before it can begin. '

3.3 Software Architecture

& P IC is composed of three separate programs, MONITOR, MASTER, and SLAVE. Each
is run in a separate process. These processes can be on different computers. Normally,
one would run the MONITOR, MASTER, and one SLAVE all on one processor, since MONITOR
and MASTER take almost no CPU time during the computation.

The three programs communicate by passing messages. Using VAX/VMS mailboxes
and the DECnet interprocess communication protocol, a message passing subsystem was
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developed. It provides a uniform procedural interface to allow programs to easily handle
a variety of asynchronous events, such as subprocesses, timers, multi-client interprocess
communication, and terminal I/O.

The MONITOR is the only program with which the user interacts. It allows the user
to initiate and control the parallel execution, and provides a periodically updated display
of the status of each SLAVE’s process. For more information about the MONITOR, see the
& PIC/DRACULA User’s Manual in the Appendix..

The most interesting program is the MASTER. It is initiated by a user instruction to
the monitor. The monitor creates a remote process on the master’s processor, and opens
up a communication channel to it using the message passing system. From that point on,
the monitor is used essentially as a front end for the master.

f open execution control file \

task_list := empty-list()
while not(end-of-file) do

read task description

append task description to task_list
end while

for each element "ti" in task_list do
for each element "t2" after t in task_list do
if any of ti’s outputs match any of t2's inputs then do
t1 is a predecessor of t2 '
t2 is a successor of ti.
end if
end for

Kend for j

Figure 3.4: Algorithm for Generating Data Dependency Graph

The first thing the master does is read the ezecution control file, which contains
all of the task descriptions. This is all the master needs to know about the particular
‘application being run (e.g. DRC or Makefile). Recall that a task description indicates

all the input and output files, as well as the sequence of operating system commands that
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run that task. Completing each of the tasks in the execution control file is equivalent to
running the application. The master is charged with distributing those tasks among all
the available processors so as to minimise the total execution time. The strategy it uses
requires the generation of a data dependency graph from the execution control file. The
algoritbm used is presented in Figure 3.4. ’

The master maintains the database of slaves. A slave is created in response to a
request that the user gives to the monitor. The‘monitor relays the request to the master,
and just as the monitor created the master, the master uses the message passing package
to create a remote process on the slave’s processor, and estallish a communication channel
with it. The user can request a slave at any time after the riuster has been created. Fach
slave has the capacity to execute one task at a time. Hence each slave can be in one of
two states: “busy” or “idle”. Anidlcdcmﬁlttndabwskmﬂstmmﬁntﬁned
throughout the computation. |

The computation begins with the roots of the graph. A task is a root if it has no
predecessors. So initially, the roots are placed on a ready quene.: A task on the ready queue
is said to be computable. When all of a task’s predecessors are completed, it is placed on
the ready queue.

3.4 Task Scheduling

do while there are tasks left to exscute \
do while (the ready queue and the free slave list aren’t empty)
assign a slave to a task
end while
wait for a slave to finish or a "create slave™ message
end while

Figure 3.5: A Skeleton for a Task Scheduling Algorithm

With a list of free slaves and a ready queue, the master can begin the computation.
The basic structure of the algorithm used to control the execution is presented in Figure
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3.5.

Each statement in the algorithm corresponds. to a substantial amount of program-
ming. For example, “wait for a slave to finish” implies (among other things) check-
ing the finished slave’s task’s successors to see if they are now computable. One statement
which implies a good deal more is “assign a slave to a task”. If the number of free
slaves is greater than or equal to the number of tasks on the :eady queue, then we can

assign any of the computable tasks to a slave, since each of the tasks will be assigned be-

fore the loop falls through to the “wait...” sta.terhent. Unfortunately, we are not usually
provided the luxury of being guaranteed more slaves than tasks on the ready queue. The
choice of which task to assign must be made carefully, because it can have fairly profound
effects on the speed-up factor of the parallel execution.

A bad algorithm for choosing tasks can result in data dependency bottlenecks.
An optimal algorithm for choosing tasks is N P-Complete [Mehrotra, Talukdar 1982]. We
present here a heuristic for choosing tasks that has been observed to perform optimally
under most conditions. It requires a preprocessing step that has time complexity O(n?),
where n is the number of tasks. '

The first step toward discovering this heuristic is to identify the goals of the whole
parallel execution system, and how the task scheduling algorithm must try to help achieve
these goals at minimal cost. The main objective is to minimize the real time (as opposed
to the CPU time) needed to é;:ecute a set of tasks, given a finite number of processors. To

do this, the task scheduling strategy must keep all processors busy as much of the time as-

possible. Each processor will be always be busy as long as there are computable tasks. So
a good subgoal is to keep the ready queue as full as possible. Executing a task that has
no successors (called a leaf) will clearly make no progress toward replenishing the ready
queue. Executing a task that has many successors Will clearly make some progress towards

that goal, but it’s still not clear how one should measure the immediacy of the need to

execute a given task. What we do know is that we are interested in the characteristics of

the subgraph rooted at that task’s node in the data dependency graph.

To help focus our attention on the right characteristics of a task’s subgraph, we
observe that the limiting factor of a computation is the longest path through the data
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( for each task "T1" in task_roots do ' : \
compute height_of_task(T1)
end do

height_of_task(Ti):

if Ti.height is set then return(Ti.height)

sub_height := O

for all successors "T2" of task Ti do
sub_height := max(sub_height,height_of_task(12))
end for ’
T1i.height := estimated_exscution_time(T1) + sub_height
return(T1i.height)

\ ond height_of_task | W,

Figure 3.6: Algorithm for computing beight of all tasks

dependency graph. No matter how many pioce-orl are available, the overall execution
_ time will never be less than the sum of the execution times of all the tasks along the critical
path. This sum is called the height of the graph. As the computation progresses, we seek
to chip away at this critical path in support of our meta-goal, which is to minimize the
total execution time. So the conclusion of this intuitive argument is that we should give
top priority to tasks which lie on the critical path. The appropriate quantitative measure
is the height of the task’s subgraph. Using the algorithm presented in Figure 3.6, we can
compute the height of each of the n tasks in O(n) time.

Using the height as a priority scheme for each task does not provide very much
resolution. In the data dependency graph generated from a Mple design rule checker’s
execution control file, the estimated execution time of each task is 1, and the heights of
all the tasks are integer values between 1 and 8. But there is more information in a data
dependency graph that is intuitively related to how critical each particular task is. In
particular, the total number of tasks that directly or indirectly depend on a given task
is relevant. In a sense, it is the measure of the total fanout of a particular task. It is
equal to the size of the task’s subgraph. The algorithm in Figure 3.7 computes the size
of n tasks in O(n?) time. In practice, this has been an acceptable penalty to pay for the
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(/ for each task "Ti" in task._list do \

clear_examined(T1) ;
Ti.size := find size(T1)
end for

clear_examined(T1):
Ti.examined := FALSE
for each successor "T2" of Tl1 do
clear_examined(T2)
end for
end clear_examined

find_size(T1):
if T1.examined=TRUE then return(0)
Ti.examined := TRUE
gsize := O
for each successor "T2" of T1 do
size := size + find_size(T2)
end for _
return(size + estimated_execution_time(T1))

Kend find_size /

Figure 3.7: Algorithm for computing the sige of all tasks

more accurate scheduling capability. In the case of design rule checking, the penalty is
insignificant compared to the time spent doing the DRC.

Empirically, we verify our suspicion that the height of a task’s subgraph is a better
measure of its priority than the size of the subgraph. The way to compare the performance
of the heuristics is by simulating a parallel execution under the assumptions that each
task takes unit time and that there are no communication costs. We then depend on
real experiments to back up the results of the simulation. Figure 3.8 shows the parallel
execution simulations of a data dependency graph using four processors. While this is
only one example, by running the two simulations in your mind, hopefully you will gain
intuition that lends support to our empirical observa.tions.

Now we have two numbers associated with each task: a height and a size. We use
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Figure 3.8: A data dependency graph and its execution using height and size

these as keys to keep the ready queue sorted: first by height and then by size. With the
most crucial tasks at the front of the queue, the task scheduling strategy is complete. The
O(n?) operation to find the sises is run only once before the start of the run. Typically,
for design rule checker’s data dependency graphs, there are fewer than 200 nodes, and the
total time spent on the processing step in the beginning is less than 30 seconds. Once the
height and size of each node is computed, they are used to dynamically guide the scheduler
in assigning the most urgent task to a slave whenever that slave finishes its previous task.
The strategy performs optimally in most cases. After creating data dependency
graphs of various shapes and sizes and simulating each one with a varying number of
processors, only one example was found in which the height/size heuristic did not perform
optimally: it took seven time units instead of six. This is illustrated in Figure 3.9.

3.5 Communications

There are two major obstacles blocking us in our pursuit of a linear speed-up factor.

The first is the challenge of keeping each processor busy as much as possible. For the class
.of applications that we wish to accelerate, the task scheduling strategy introduced in the
previous section does an adequate job. While testing £ P J(’s application to an industrial
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Figure 3.9: ‘A task scheduling trial simulation where height/size heuristic is suboptimal

design rule checker, the task scheduling behaved well. This is discussed in more detail in
the following chapter.

The next challenge is that of minimizing the communications overhead. Since £ P I(C
was designed to run on a loosely coupled multiprocessor, communications is fairly expen-
sive. In £ PIC, there are two flavors of interprocessor communication: control and data.

The mechanism used for these two forms of communication is different.

3.5.1 Control Communication

Control communication is accomplished using the message passing package devel-
oped for £PIC. It is based on the VMS/DECnet task-to-task communications protocol
[VMS 1985]. From a programmer’s point of view, one simply opens a channel using a file

specification of the form:
node"username password"::"task=commandfile"

This causes a message to be sent on the Ethernet to node, requesting that a process
be created for username, and that that process ryn commandfile. The commandfile on

node should then open a channel (or invoke a program that opens a channel) using a file
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specification of the form SYS$NET:. By writing to and reading from these channels, the
processes can send messages to each other.

The above mechanism provides the necessary channels of interprocessor communi-
cation in the case where one process wanis to create a new process on another processor
and then talk to it. If two existing processes want to establish a channel of communication,
then another strategy is used. When an £ PJC program (MONKITOR, MASTER, or SLAVE) is
run, it creates a VAX/VMS maslboz [VMS 1985]. A mailbox contains a global buffer into
which any process that knows how to find the mailbox can write a message. When the
program creates the mailbox, it assigns a logical name to the mailbox so that other pro-
cesses can find it. By convention, MONITOR uses the logical name EPIC$MONITOR, MASTER
uses EPIC$MASTER, and SLAVE uses EPIC$slave-name. Therefore, within a single logical
name space, there can only be one monitor and one master, and each slave name must be
unique. Thus when one program wants to contact another, it opens up a channel to the
appropriate mailbox (for example, monitor opens up a chaanel to node: :EPIC$MASTER:)
and initiates a conversation. By reading to and writing from that channel, the two existing
programs can communicate. '

3.5.2 Control Communication Requirements

The MASTER program communicates with any number of slaves, in addition to the
monitor. The “wait for a slave to finish or a "create slave" message” line in
Figure 3.5 requires the use of an I/O subroutine that is not provided by VAX/VMS or
the PL/I run time library. At some level in the code, there must be some statement that
reads a record from any of several I/O channels, returning the message and the channel
number of the first channel to send a record. In order to provide this functionality, an
asynchronous read request is left pending on each channel using the VAX/VMS system
service SYS$QI0. When the channel responds, a subroutine specified as a parameter to
SYS$QIO is called at the interrupt level. This subroutine is called an asynchronous system
trap (AST). It is the AST’s responsibility to append the message that was received onto a
queue of messages, set a global event flag that indicates that a message was received, and
requeue the SYS$QIO0. |
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When designing a large, complex system such as £PJIC, the existence of ASTs
poses a tough software engineering problem. Since ASTs execute at a higher priority level
than mainline code, we cannot generally assume atomicity in a sequence of operations that
updates a data structure. For example, if one is in the process of deleting an element from
a doubly linked list, and an AST is triggered that modifies that list, the list could be left
in an inconsistent state. In short, ASTs are a power tool, and’ when power tools are used
carelessly, they can kill* (or at least cause endless hours of debugging).

There are two strategies for ensuring harmony in data structures that are shared
between mainline code and AST routines. The first is to disable. AST interrupts with a
system call wherever synchronous code accesses a data structure that it shares with AST
routines. The disadvantage of this approach is that while interrupts are disabled, the user
process can’t respond to messages it receives from other processes. If the sending process
uses asynchronous WRITEs, then it could queue up an arbitrary number of messages while
the receiving process remains in “disabled-interrﬁpts"’- mode. Depending on the buffer size
parameters selected by the system manager of the computer facilities, the buffer could
overflow. If the sending process uses synchronous WRITEs, meaning the WRITE statement
doesn’t return until the reader’s AST has been triggered, then the sender will be delayed
until the reader’s interrupts have been re-enabled. In this case, if the reader has interrupts
disabled while waiting for the “message-received” event flag to be set, a deadlock could

occur.

The other strategy is to carefully code the routines that access shared data struc-

tures so that they are never in an inconsistent state. It is possible to do this for singly
linked lists, but not doubly linked lists. This is a fairly serious restri.étion, since it is diffi-
cult to delete an arbitrary element from the middle of a singly linked list. One way around
this is to share only a singly linked list between mainline and AST-level code. The only
operation ASTs get to perform is appending to the tail of the list. All that the mainline
code does with that list is remove messages from the head of the list and place them in a
more versatile data structure that is safe from ASTs.

The message passing facility uses a compromise between these two approaches.

4=Power tools can kill” is a maxim credited to Brian Reid of Stanford University
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Since £ PIC requires both the capability of reading a message from the first channel and
the capability of reading a message from a specific channel, the shared list has to support
the ability to scan through the list and remove the appropriate message. This could
have been implemented using the latter strategy, but:the following strategy was more
convenient to code, and in practice did not suffer noticeable performance penalties. It
shares only one structure between AST-level routines and mainlisie routines: a doubly
linked list structure. Interrupts are only disabled for the time it takes to find and remove
the appropriate message. In practice, finding the appropriate message in the list was
not expensive, since the list generally had less than 10 miessages. ‘Removing the message
amounts to moving a few pointers. The key to making the “disable-interrupt” strategy
work is to avoid doing any I/O calls while interrupts are disabled.-

The primary motivation for writing the message passing package was to eliminate
all asynchronous code from the rest of £ PJ(. In addition, the inessage pamsing package
provides a uniform synchronous procedural interface for handling asynchronous communi-
cation between a process p, and the folowing entstics:

Independent processes that p; created on another node
The process that created p, from another node

An independent, already existing process on another node
Subprocesses created by p;

o The terminal attached to py

Timers created by p,

The single most significant function it provides is that of reading from the first of
any of the entities that sends a message.

3.56.3 Data Communications

Recall that £ P IC is a shell around an existing software system. £ PJC divides the
execution of that software into tasks. Each of these tasks communicates using disk files.
While the problems to which we are restricting ourselves do not use extremely large disk
files, experience has demonstrated that the performance improvements we reap through
parallelism are most severely limited by the speed with which we pass data between master
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and slave. The message passing facility described above is not as fast as it could be, since '
considerable effort is spent providing the functionality required by £ PIC. Hence, if we
were to use the message passing facility for data communication, we would suffer from
suboptimal performance. In addition, the data contained in the input and output files may
be represented using any of the file record structures available in VAX/VMS. The message
passing facility is restricted to dealing with character strings. The standard VAX/VMS
interprocessor file copying commands provide the appropriate functionality at the fastest
possible speed.

To copy a file from one VAX/VMS system to another, an interactive user would
type

$ COPY nodei"usernamel passwordi®::devicei:([directoryilfilei.exti -
$_ node2"username2 password2"::device2:[directory2]file2.ext2

Naturally, if you were typing this on nodei, you would omit the accounting infor-
mation for it. In general, VAX/VMS allows the inclusion of a node speciﬁcatién (with
accounting information) in any file specification. Openfhg a file with an account specifica-
tion causes a process to be created on the remote node tmng the suppiied username and
password. That process efficiently handles the I/O calls made to the channel. The re-
mote process creation is functionally transparent to the user, except for the time overhead
involved.

The way £PIC executes the VAX/VMS COPY command is by using the message
passing facility. The facility provides a call that creates a subprocess and keeps it around.
Sending a message to the subprocess causes the text of the message to be interpreted
as a VAX/VMS command. When the command finishes, a message is “sent” from the
subprocess to the main process. This way, the main process can be doing other things
while the subprocess is executing the command. |

Each slave is responsible for bringing its task’s input files from the master’s filesys-
tem f.o its own, and for sending back the output files when a task is completed. Buffering
all the data files on the master is obviously less efficient than having each slave trans-
fer its task’s input files directly from the slave that generated them. £ PI(C’s approach
has as much as twice the file transfer overhead has the optimal approach. The reason

45




RS R SIS S, S R FRE L

& PIC buffers all data files at the master is so that if a slave’s processor crashes, then its
work won't be lost. In the class of problems for which £PJC was designed, the cost of
re-executing one task may be greater than the total cost of all the file transfers for the
execution of every task.

EPIC spends some effort trying to minimize the number of file transfers. The
master keeps a database of all the files that reside on each siave’s filesystem. Whenever
a task is assigned to a slave, it is told which of the input files it already has, so the slave
can suppress the COPY command. The effectiveness of this strategy is further enhanced
by modifying the task scheduling algorithm to take into account what input files for each
computable task are already resident on a free slave’s filesystem. Specifically, the ready
queue is composed of a list of task groups. Eagh task in a given task group has the same
height, but varying sises. The groups are arranged in decréasing order of height, and the
tasks within each group are sorted in decreasing order of sise. When a slave becomes fres,
theﬁrstﬁskgroupismnedtoﬁhdthctukthawinmquireﬂmfewat file transfers to
execute. Thus the task scheduling strategy is based on ordering the ready queue by three
different characteristics of each task:

1. The height of the task’s subgraph (computed once)
2. The number of input files that the slave aloesdy has (computed on the fly)
3. The size of the task’s subgraph (computed once)

3.6 Fault Tolerance

When the word “timesharing” is mentioned to someone who has recently survived
an undergraduate Computer Science curriculum, the image that first enters his mind is
that of an overloaded CPU. £PIC’s dynamic task acheduling algorithm insures that a
relatively heavily loaded processor will be assigned proportionally fewer tasks. Another
“timesharing” flashback is that of the downed computer. In thase days, when the CPU was
down, it was of course no longer possible to get any useful work done (except maybe a trip
to the vending machine). With distributed computation, if one processor goes down, the
execution should gracefully continue with degraded performance. By outlining a typical
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scenario, the need for this requirement will gain more substance. Assume £ P IC is being
used to accelerate the DRC of a chip that might ordinarily take several days on a single
VAX 11/780 computer. Ten VAX computers are being used to (hopefully) finish the DRC
overnight. If one of them crashes (or is brought down for ymgv‘e.xitive maintenance), EPIC
ought to continue the computation at 90% of its former speed. If EPIC gives up its
unmanned computation, the layout designer my fall ‘behind a whole day, assuming the
ten VAX computers will be far too loaded for long non:interactive jobs during working
hours.

Giving € PIC the capability to handle crashed slaves is fairly straightforward. The
scheduler doesn’t statically prepartition the set of tasks, it just assigns priorities to them
so they can be easily assigned to slaves on the fly. If the message passing facility detects
that a slave crashes while it is running a task, that task is placed back in the ready queue
according to its priorities. If the slave completed any tasks before crashing, the output
files are buffered in the master’s file space, so the work won’t have to be redone.

At any time during the course of a parallel computation, the user can go into
MONITOR and create another slave. Again the dynamic task scheduling algorithm makes
it easy. The new slave is added to the master’s slave database, and (recall Figure 3.5) is
immediately assigned a new task. Thus if the user is watching when a slave crashes, then
when the machine is brought back up, the user can restart the slave process.

A predecessor to £ PIC called PDRC (Parallel Design Rule Checker) experimented
with a mechanism to periodically probe a crashed slave’s processor to see if it had come back
up [Marantz 1984]. When the processor responded, PDRC would automatically regenerate
the slave. This worked well most of the time, but became very frustrating while debugging.
If a slave was misbehaving for any reason, terminating the process would be futile, since
PDRC would immediately sense that the processor was still up, and would create the slave
again. Nevertheless, this functionality should eventually be brought into £ PIC.

Currently, £ PIC is not capable of continuing a computation if the master’s pro-
cessor crashes. It is, however, capable of restarting the parallel execution where it left

off. After the master first reads the execution control file, it goes through a process of
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/ check_tasks := task_roots \

while "check_tasks" is not empty

T1 := first element of check_tasks

" remove T1 from check_tasks
if all of Ti’s output files exist then
if all of Ti’'s output files were last revised
after each of Ti's input files then
call task.finished(T1)

end while

task_finished(T1):
for each successor "T2" of task T1 do
T2.predecessors_completed := 1 + T2.predecessors_completed
it T2.predecessors_complated = T2.predecessors then
append T2 to check_tasks

end for
\ end task_finished j

Figure 3.10: Algorithm for determining which tasks have already been done

eliminating tasks in a manner very similar to that of Unix* Makefiles (and VAX/VMS

MMS®). The algorithm used is presented in Figure 3.10.

For most applications, it would be sufficient to merely check for the ezistence of a
task’s output files in order to mark it as complete. But since it was not hard to compare
the revision dates of the input and output files, and since doing so gives £ PI(C the basic
functionality of make, it was implemented. Thus giving £ PIC the functionality of make

was as easy as converting the syntax of the Makefile to that of the execution control file.

5Unix is a trademark of AT&T Bell Laboratories
SMMS is a trademark of Digital Equipment Corporation
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3.7 Error Recovery

EPIC tries to address the problem of how to proceed when a slave’s subprocess
fails to properly execute the task it is given. A failure of this nature is detected in one
of two ways. The message passing system will return the VAX/VMS error code if a
problem was detected by the program run in the subprocess. If the program is not a
VAX/VMS layered product, the error code may not say very much, but hopefully even an
independently written program will abort by signalling an error rather than terminating
normally. ECAD DRC, for example, behaves in this manner while remaining portable to
other operating systems by dividing by zero whenever a problem is detected. The other
way an error is detected is by checking for the absense of any of the task’s output files
when the task’s DCL commands are finished.

In the past, the cause of an unsuccessful task execution has stemmed from a variety
of sources. Sometimes the error is a reflection of the state of | the computational environment
of the slave’s node. Specifically, a library file or executable image could be missing from
a system directory. Sometimes the error is due to a possibly transient condition on the
slave’s node, such as the lack of a resource needed to execute the task. Often, when one
slave failed to execute a task, another was found to be capable of completing it.

The strategy implemented by £ PIC is to put a failed task back on the ready queue,
and keep track of how many times it has failed. When this number reaches a certain
threshold, currently defined to be 3, the task is deemed uncomputable, and is remcved.
from the data dependency graph, along with all the tasks in ita subgraph.

For certain potential applications of £ PIC, the cause of failure for any task is
be more likely to be illegal or erroneous input files. This is most likely the case when
the application is to compile and link software. If £ PJC detects a failure in a source code
compilation, it is a waste of time to try it again three times before deeming it uncomputable.
The right solution is then to reduce the task failure threshold to 1. The first time a task
fails, it will be removed from the data dependency graph, and the rest of the tasks will be
executed normally.

Each slave also gets a counter, which is incremented whenever it fails its task and
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decremented whenever it completes its task. If this counter crosses a threshold, currently
defined as 2, then £ PIC destroys the slaves on the grounds that it is a waste of time to
be assigning tasks to it if its going to fail more tasks than it completes.

This computer resource management strategy is analogous to human resource man-
| agement. A manager will assign the most responsibility to his most productive employees.
& P1I(’s strategy could be extended to use more resolution in an attempt to imitate human
managers. Currently, each slave is essentially treated as an equal. Slaves are picked from
the “idle slaves” list to execute the highest priority task. If there is more than one slave
in this list, then the slave that has cached the greatest percentage of the highest priority
task’s input files gets the job. It would be interesting to implement a scheme where the
slaves were ordered according to their past productivity. When selecting a slave, weights
would be placed on the number of files it already has, the number of tasks it has completed
so far, and the number of tasks it has failed so far.

3.8 VAXcluster Support

A VAXcluster is a group of up to sixteen VAX computers connected to a single
file-system. Thus the file system looks exactly the same when you are logged into any
VAXcluster member. £ PI(C supports the use of VAXclusters. By issuing a command to
MONITOR, a user can specify a list of node names to define a VAXcluster. A database is
maintained to keep track of where all the relevant data files are in the network. The struc-
ture of the database reflects the file sharing between VAXclustered nodes, and provides
for any number of discrete VAXclusters:

network-database = list of VAXcluster-databases
VAXcluster-database = 1list of file-specifications

The file-specification in the VAXcluster-database cannot include a “node::”
specification, but can include a device or directory. Computers that are not VAXcluster
members are represented in the database as single-node VAXclusters. Thus an arbitrary
‘environment of VA Xclustered and independent nodes is supported.
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Each slav.e entry in the master’s database contains a pointer to the slave’s node’s
. VAXcluster. So if ‘the master and a slave are on the same VAXcluster.and are connected
to the same device and directory, tl;e master will know that the slave will never have to
copy an input or output file. If they are on the same VAXcluster but connected to different
devices or directories, the master will know to instruct the slave to use a local file transfer,
and thereby save the overhead of creating the foreign process and moving the file over the
Ethernet. If two slaves on the same VAXcluster share the same device and directory, the
master will understand that they share the file space, and that one slave will never have
to copy a file that was created or copied by the other. As of now, no advantage will be
gained from two slaves on the VAXcluster with different devices or directbries, unless the
master is also on their VAXcluster.

Thus it is highly advantageous to have each slave on a VAXcluster running out
~ of the same directory. If the master also uses that directory, then there will be no data
transfer overhead for those slaves. This eliminates the single most significant bottleneck
in the parallel execution.

The only legitimate motivation for running VAXclustered slaves out of diﬁ'erenf;
directories is if the application software has naming conflicts with temporary files it uses.
Two processes running the same application program may both be trying to read and write
a temporary file of the same name. By running the two processes out of different default
directories, the naming problem is resolved, and £ P IC will still run, albeit with more data
transfer overhead. Another motivation is as a workaround to a bug that may exist in the
application software. If a single input file is used by two tasks, and both those tasks are
executed at the same time by different CPUs in the same filespace, then the second process
to open the file is subject to a file locking error. In VAX/ VMS, any number of processes
can open a file for read access. But if one process opens a file for read/write access, any
other process attempting to access that file will get a “file locked” error. The problem
occurs when a program that is only interested in reading the file erroneously opens it for

read/write access.
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3.9 Performance Monitoring

In order to support the claims made about the effectiveness of the task scheduling
and file transfer optimisations, it was necessary to generate statistics for each £ PIC run
concerning fhe breakdown of where each slave’s time was spent. For the purposes of
performance monitoring, each slave is always in one of four states, as described below:
EXEC: Executing a task.

FILE: Transferring an input or output file.

IDLE: Waiting for a task to become computable, but not FREE.

FREE: 1. The execution is in its first stages, and the data dependency graph hasn’t
widened enough to allow all slaves t& begin déing useful work.

2. The execution is in its last stages, and thére are no more tasks left to execute.
The execution will be finished as soon as the last slave that is executing now
finishes its current task. Fnelhvumnotkilhdbeamexfmexecutmg
shvezproa-orauh-,afneihnwbe:nﬂtﬁetotakeom the
task.

The distinction between “FREE” and “IDLE"” is motivated out of fairness to the
task scheduling algorithm. We are interested in identifying those times when a slave
remains idle due to an unwise task scheduling decision. T'ypically, data dependency graphs
have a small number of roots, but widen out quite a bit to reveal more parallelism. There is
nothing a task scheduling algorithm can do to keep all the slaves busy during the execution
of the roots. Additionally, at the end of the computation, it is impossible to keep each
stave busy if there are no more tasks to execute. Thus the slave is classified as “FREE” if
the cause of its inactivity is not a scheduling decision. “IDLE® time is what we want to
keep track of to judge the task scheduling performance. |

Each slave is responsible for keeping track of its own performance statistics. A
performance monitoring subroutine package was built nnngVAX/VMS system services
for keeping track of the various counters for CPU time and elapsed time. The slave uses
the message passing facility to spawn a subprocess to dothe file transfers and execute
the VAX/VMS commands used to execute each task. Thus the SLAVE program runs in a
separate process from the slave’s task, and is free to spend whatever time it needs to keep

track of the subprocess.
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Periodically, the slave sends the master a one line summary of its progress. The
master then relays this information to the monitor, which displays the information on the
user’s screen. The user can control ihe period at which each slave sends the information
by issuing a command to the monitor.

At the end of the computation, each slave sends a detailed summary of its statistics,
including;:

The total CPU time and elapsed time it spent in each of the four states.
The number of tasks it executed.

The number of tasks it failed to execute.

The number of files it transferred.

The number of files it avoided transferring due to file transfer optimization.
VAX/VMS Statistics such as virtual memory usage and page faults.

The master takes each summary that the slave provides and formats it into a table.
In addition, the master makes its own contributién to performance monitoring. Whenever
a task is started or finished, the master notes the current time and the name of the task’s
slave. At the end of the run, it generates a graphical journal of how the run progressed.
The graph is organized by assigning a vertical column to each slave. Each column contains
a series of diamonds which represent the tasks executed by each machine. The height of
each diamond is directly proportional to the time it took to execute the corresponding
task. Arcs are drawn between diamonds wherever a data dependency exists between the
diamond’s tasks. The left edge of the graph is scored with labels indicating the elapsed
time at that vertical point on the page.

There are two useful pieces of data to be gleaned from that graph. It gives us an
intuitive feel for how the execution was distributed among the available processors. In
addition, vertical space between the diamonds in any column indicates that that column’s
slave was either idle or transferring files during that time. The slope of the arcs ending
at the lower diamond gives us intuition about the reason for the space in between the
diamonds. A nearly horizontal line indicates that the slave was sitting idle waiting for
a task to become computable. A line with a greater slope indicates that the slave was
waiting for the input files to the task to be shipped over the network.
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Appendix C contains examples of summary tables and graphs for several runs of
EPIC.

3.10 Results

No conclusions can be drawn about the overall performance of £ P IC without ref-
erence to a specific application. The following chapter discusses the application of EPIC
to VLSI design rule checking, circuit extraction, and Makefiles.

3.11 Future Extensions

In this section, several extensions to £ PJC are contemplated. A fairly straight-
forward extension is to delete intermediate files as soon as they are not needed. This is
not difficult to implement, except when it is combined with the another straightforward
extension, which is to avoid buffering intermediate files at the master. The buffering pro-
vides a redundancy that is needed to avoid repeating work that is lost due to a crashéd
slave. If both these extensions are implemented, and if a slave crashes, we may find that
we have “burned our bridges behind us”: the files needed to redo the slaves work may not
exist anymore, pouib]y forcing us to pop back to the roots of the data dependency graph
and effectively start over. The motivation for these extensions is discussed in the following
chapter.

Another extension is to bring more intelligence into the choice of which slave to
assign to the highest priority task. Most of the time, there are plenty of tasks to execute,
and the master is waiting for a slave to finish its current task. But data dependency graphs
that have narrow sections, such as the initial separation stage of a “divide and conquer”
application, may be run more efficiently if the most powerful computer is used for the
bottleneck task.

One flashy feature that would be relatively easy to add is the ability to revive old
slaves whose processors crashed and were then brought back up. As mentioned before,
& PIC’s predecessor, PDRC, had this capability.
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A more substantial extension addresses the problem of continuing the computation
even if the master’s processor crashes. It involves the use of shadows: A shadow runs on
a different processor from the master, though it could share a processor with a slave.. It
maintains a database of slaves and tasks. Using the message passing facility, it monitors
events as they happen on the master and up&atea its database accordingly. If the message
passing facility detects that the master has crashed, the shadow contacts the slaves and
takes over control of the computation, thus becoming the new master. If the master and
shadow are VAXclustered together, then the transition is conceptually straightforward,
since the master’s buffered files are still accessible. If they do not share a VAXcluster,
then the shadow must actively copy the master’s buffered files as they are created.

Shadows were not implemented in £ PIC due to lack of time. However, it is unclear
whether they would actually be used in practice if they existed. They help make £ PIC
fault-tolerant by adding redundancy, but in the case of VAX computers that are not
VAXcluster members, they do this at a considerable cost of disk space.

Another substantial extension attempts to reduce the penalty of data communica-
tion. The concept is analogous to that of instruction prefetch. Based on the observation
that network file transfers are more I/O bound than compute bound, £ P I C would attempt
to predict what task a slave would execute before the slave finished its current task. The
slave would then retrieve the next task’s input files in a separate process. Presumably, the
slave’s execution process and file transfer processes would not detrimentally compete for
cycles within the slave’s processor, because they use different resources.

Another related technique is delayed reporting. Currently, when a slave completes
the execution of a task, it immediately proceeds to transfer the output files back to the
master. Only when the transfer is complete does the slave notify the master that it is ready
to execute another task. By notifying the master as soon as it is finished with the execution
of its current task, the slave can be assigned a new task while it is still transferring the
old output files. This approach is most effective if the slave already has the files it needs
to execute the next task. Hence it is an ideal companion to data prefetch.

Data prefetch is difficult to implement because it involves predicting the best task

to give to a machine when the execution is in some future state. The use of this technique

55




would most likely require altering the task scheduling strategy. While these enhancements
are interesting topics for future research, the potential gains will diminish as VAXclusters

\
become a more popular vehicle for coarse multiprocessing.
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Chapter 4
Applications

This chapter discusses several applications of £ PIC. Methodologies are presented
for automatically generating an execution control file for each application. Results are given
for various cases of each application run on several different multiprocessor configurations.

A comparison is made between £ PJC with ECAD’s DRACULA serial DRC program
and ECAD’s Parallel DRACULA.

4..1 Design Rule Checking

The challenge of a&apting DRACULA to be distributed over a network of VAX com-
puters using £ P IC lies in generating the execution control file from the ECAD rules file.
In order to do this, we have to understand the mechanics of how DRACULA is normally run
on a single VAX computer. The VLSI process engineer defines the geometric design rules.
The VLSI layout designer lays out the chip according to the design rules, thus generating
a file in some standard layout description language, such as CIF [Mead, Conway 1980} or
GDSII!. A programmer must then specify the process engineer’s design rules in the lan-
guage defined for that purpose by ECAD. These rules are fed to ECAD’s preprocessor,
PDRACULA, which generates the VAX/VMS command file which runs all the VAX/VMS
executables that implement. the statements in the rules file, hence running the DRC. Typ-
ically, the command file is submitted as a batch job.

1GDSII is a trademark of G.E. Calma Corporation
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To maximize efficiency, ECAD rearranges the statements in the rules program. If
any individual DRC program is called by more than one rules statement, then ECAD’s
preprocessor tries to execute those statements together with one call to the program (while
obeying data dependency constraints) and thereby minimise image activations. Depending
on the value of a switch set in the rules file, the preprocessor may attempt to rearrange the
order of execution of the rules program statements and delete temporary files to minimize
peak disk space usage.

Unfortunately, all these optimisations deplete the extent of the parallelism by in-
troducing new data dependencies. By deleting intermediate disk files after they are used,
the preprocessor introduces a new constraint restricting the order of the execution of the
rules statementa. But the philosophy behind £ P IC is to use whatever hardware you have
available to solve a specific problem as quickly as you can. We are willing to sacrifice disk
space in order to achieve maximal speed. It is: worth neting that £ PJC may not be able
to DRC large chips if there is just enough disk space te.d6 a serial run using ECAD’s
optimized file deletions.

As mentioned in the previous chapter, it wauld not be hard to modify £PIC to
optionally delete intermediate files once they are not needed. This would bring £ P IC’s
peak disk space usage down comsiderably. But since & PI'C schedules s0 as to minimize
execution time, rather than disk space, it still wouldi?s be #s Rifigy as an optimized serial
DRC. To further close the gap, £ P J€ could be modified 1o avoid storing every intermediate
file on the master’s filesystem. Instead, a slave would:copy its task’s input files directly
from the slave that produced them (or from the insstes if the:task is a root node in the |
data dependency graph). Rather than having the alive copy ity task’s output files back to
the master, the master would just note where the file resides. £ IC could then copy the
final output files (such as the DRC error summary and layout Bles) back to the master’s
filesystem. As mentioned in the previous chapter, this would ¢cut down the file transfer
overhead by as much as a factar of two. The disadvantage is that & crashed slave’s previous
work would have to be redone. ' ; '

A more practical consideration about the preprocessor is that it’s rearrangements
of the command file make it mechanically difficult to identify the VAX/VMS commands
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Fragment from a DRC rules program:

AND POLY DIFF GATE ; Figure out the gate area
WIDTH GATE LT 4.0 OUTPUT GWID 32 32 ; Gate width >= du

( Corresponding execution control file fragment: \

task "AND POLY DIFF GATE ; Figure out the gate area"-
/INPUT =(POLY.DAT,- ‘ ‘
DIFF.DAT)-
/OUTPUT=(GATE.DAT) -
/DCL= ("$QSYS$LOGIN:MOSIS.COM 32")

task "WIDTH GATE LT 4.0 OUTPUT GWID 32 32 ; Gate width >= 4u"-
/INPUT =(GATE.DAT)-
/OUTPUT=(GWID32.DAT) -
/DCL= ("$0SYS$LOGIN:MOSIS.COM 33%) j

/ Corresponding execution command file fragiment: \

$GOTO °*P1’ !Jump to the task number specified as first parameter
$ !
$32: !AND POLY DIFF GATE ; Figure out the gate area
$RUN SEGCAD$ECAD:LOGICAL
2 POLY DIFF GATE 1000 MIC O

$EXIT
$!
$33: !WIDTH GATE LT 4.0 OUTPUT GWID 32 32 ; Gate width >= 4u
$RUN SEGCAD$ECAD:SPACING
1 GATE GATE 0.000 4.000 MIC 1000 0S
00000000000
NOT-CONJUNCTED
1 GWID32 GWID32 32 32 100

szn /

Figure 4.1: MOSIS CMOS DRC rules fragment, ECF fragment, and COM fragment
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needed to execute any particular task in the rules file. For this reason, directly decomposing
the preprocessor’s command file was not a successful strategy.

A better approach is to decompose the rules program and run the preprocessor
separately on each statement. Every command file generated by the preprocessor is parsed
to remove the extraneous initialization and error merging code. The remaining text from
each command file is used to construct a sﬁgle command file. To execute a single task in
the execution control file, this command file is invoked so as to execute the correct segment
of code. A preprocessor was written to automatically convert a DRC rules program into
an execution control file and an execution command file. It ls called ECAD2ECF. Figure 4.1
shows the output of ECAD2ECF for a fragment of a rules program written to design rule
check VLSI designs layed out using the 4 MOSIS CMOS process [Mead, Conway 1980].

Two stages of the DRC are not covered by the tuh described in ECADQECF 8 ex-
ecution control file. It is not clear whether the initial sepa.ra.txon of each layer from the
layout file is an inherently parallel operation. This operatlon is most hkely implemented
by examining the whole layout in one pass, appendmg toa pven hyer file whenever it en-
counters geometry for that layer. One thing that is clear gbout this initial stage is that the
input file is large, since it contains the geometry for every hye;. It would not be efficient
for a slave to move this file across the network, perform themftlal separation, and copy
all the layer files back to the master. Instead, this slage is mted by the master, using
a subprocess. Further preparation of each layer is described in the execution control file,
and executed normally by the slaves. This preparation includes the full instantiation of
the geometry in the layer, a polygon sorting step, and the merglng{together of overlapping
polygons.

Similarly, the final stage of the DRC is executed by the master’s subprocess. This
stage involves compiling the information generated by the execution of each rule into a
summary file and an error layout file. Conceptually, this step could be done in parallel
by merging together the individual error files in & binary tree. If each error file has to
be shipped over the network to a slave, this would probably not save any time. Using
a VAXcluster, there is more of a potential gain. Unfortunately, there is no way to do a
multi-stage merge using the DRACULA programs. The input files for the summary programs




are data files with an unknown record structure, and the summary files can’t be converted
back to the input format.

4.1.1 Predictions

According to the data dependency graph (Appendix B) for Digital’s CMOS process
rules, the maximum extent of parallelism is very high. After the executioil of the tasks
in the top row of the graph, which do the initial preparation of each VLSI layer, and
the execution of the tasks in the second row of the graph, which mask out the geometry
that is not to be checked, there are many tasks whose outputs are not used as inputs by
any other tasks. Those correspond to simple DRC rules such as single-layer width and
spacing checks. We call them “terminal tasks®. £PI(’s tukk uMﬂu does very well in
the presence of a large number of terminal tasks. They are computable early on in the
computation, but their execution can be delayed until a processor has nothing else to do.
They help “fill in the gaps” of processor idleness.

[l Processors 1] 3] » ] 5] s 7 [ » 10 11 13 18 | 14-18 | 16-19 | 20-00 ||
0 Ticxe 126 | es | a3 32 [as | 18 18 16 13 12 1 10 ° s 7 |l
“ Speedup ix | 3x | 8x | 8.9x | 6x | 6x | 6.0x | T.0x | 8.8x | O.6x 10.4n 11.4x 13.5x 18.9x 18.6x 17.9x "

Figure 4.2: Optimistic analysis of DEC CMOS rules based on data dependency

There are 125 tasks in the CMOS data dependency graph. Assuming that each
task executes in one tick of time, a serial DRC will run m 125 ticks. If there are no
communication costs, then with two processors, the job can be run in 63 ticks. As the
number of processors grows, the data dependency will begin to constrain the maximum
speedup we can hope to achieve. This is illustrated in the grapi:s on the corner of each
page of the thesis (see the Preface), and in Figure 4.2. k

The most striking feature of this chart is that it indicates that up to fourteen ma-
chines can be almost fully utilized in a parallel DRC. The analysis neglects communications
overhead, but that is not why it is overly optimistic. The fault lies is in the a.ssumpﬁon
that each task takes unit time. Depending on the VLSI layout, the checking of rules that

deal with active area or polysilicon might require the examinination of more complex geo-
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metrical structures than the checking of rules that deal with well area or diffusion implant.
EPIC’s task scheduling algorithm is equipped to deal with nonuniform task execution
estimates, but ECAD2ECF does not provide the estimations. It would be interesting to sta-
tistically determine good estimates for the execution time of each task. Unfortunately,
time did not permit this.

Processors | 1| 2 3 4] & 6 7 8| 900
Ticks 58 20| 20} 15 12] 10 9] 8 7
Speedup |1x|2x |2.9x |3.9x | 4.8x | 5.8x | 6.4x | 7.25x | 8.3x

Figure 4.3: Optimistic analysis of MOSIS CMOS rules based on data dependency

The MOSIS CMOS design rule set is much simpler than DEC’s, and hence is imple-
mented in fewer rules file statements. Thus there is not as much potential for parallelism.
This is balanced by the fact that for a chip of any given complexity, it is far easier to check
the MOSIS rules than the DEC rules. The analysis of the MOSIS rules is in Figure 4.3.

4.1.2 Testing

Obtaining consistent results for £ 7 JC/DRACULA has been difficult. We are more
interested in the elapsed time of a DRC run than we are in the cumulative CPU time. Since
the “multiprocessor” used for the test runs is just a set of tlmesha.nng VAX éomputers
which are all connected to Digital’s local Ethernet, the response time of both the network
and the system has been unpredictable. Em late at mgbt, many of the systems are loaded
with batch jobs and high priority file system bu:knp_l.

Several steps were taken toward minimizing external factors that could alter the
elapsed time for a test. Exploratory test runs were oondncted at various times during the
day, indicating that the computers were most responsive veiy early in the morning. Each
result presented here was taken from the best of several runs on a particular multiprocessor
configuration. In addition, we tried to make the test results at least partially immune to
the timesharing competition of other batch jobs by running at a higher priority.
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Nevertheless, the slaves typically received less than 80% of the CPU, as determined
by the ratio of execution CPU time to elapsed execution time for every slave. Various
factors contribute to this that may or may not be related to the parallel processing scheme.
Page faults, for example, can be caused by timesharing competition for physical memory,
which is unrelated to £ PIC. On the other hand, page faults can also be caused by the
increased number of image activations incurred dueto the subdivision of the DRC job. The
runs on DECnet suffer even more, because DRC program invocations are often interspersed
with file transfer commands, possibly causing the DRC program pages to be swapped out.
It should be noted that since the measured CPU percentage was generally greatest for
the serial runs, the observed speed-up factors may be smaller than those that might be
achieved using £ PIC on a single-user multiprocessor.

The number of processors available for testing was limited, since several of the
group’s computers were recently upgraded from VAX 11/780'te VAX 11/785 computers.
From a software point of view, the upgrade is very transparent. The only noticeable change
is the improved response time. But to make & mnanwnl statement about the speedup
factor £ PIC provides to DRACULA, we need to compare the slapsed time for a parallel run
on a fixed number of identical processors to the elapsed time for a serial run on one of
those processors.

MicroVAX computers provide one possible alternative. They are starting to prolif-
erate in quantity throughout the Hudson plant and it is possible to get exclusive access
to them at night. So assuming they all have the same amount of physical memory, their
performance should be fairly predictable. Unfortunately, most MicroVAX computers are.
configured with far too little disk space and paging file space to run a substantial DRC.
Small DRCs aren’t very informative, since the amount of time required to execute each
task becomes small enough so that the communications overhead is substantial. Since
EPIC is geared toward accelerating the verification of much larger chips, data gleened
from DRCs run on the available MicroVAX computers will be overly pessimistic.

Sufficient resources were not available to fully test my predictions for the maximum
extent of parallelism in DRC. A VAXcluster with six machines was available for testing
during off hours, but it consisted of three VAX 11/780 computers, two VAX 11/785 com-
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puters, and one VAX 8600 computer. In addition, three VAX 11/780 computers connected
by Ethernet were available. Six MicroVAX II computers were also available, but were not
generally capable of DRCing my benchmark.

The results presented here consist of £ PJC runs using up to three VAXclustered
VAX 11/780 computers and up to six independent VAX 11/780 computers. The inde-
pendent VAX 11/780 computer tests were accomplished by not informing £ PIC that the
three VAXclustered computers shared the same filesystem. File transfers were made with
DECnet protocol, so the tests suffered the same overhead that would have been incurred
if the computers had not been VAXclustered together. The elapsed time from these tests
is compared to the elapsed time for a serial run on one VAX 11/780 computer. By test-
ing how well £ PIC performs using just one processor, we attempt to isolate the control
communications overhead incurred due to £ PIC.

EPI(C’s raw elapsed times are measured from the time the MASTER program is
invoked to the point after the run when the last slave is killed. We also give the average
percentage of slave time dedicated to task execution, file transfer, and idle time. As
discussed in Chapter 3, the idle time does not include the time at the beginning and end
of each run when there is no work for the slaves to do. Finally, we give the ratio of the
slaves’ total execution CPU time to elapsed execution time, which provides a measure of
how much our results suffered due to competion for the CPU.

In addition to analyxing the raw elapsed times, we try to determine why the perfor-
mance didn’t quite match the speed-ups predicted in Figure 4.2. Those optimistic figures
didn’t take into account the time required to split the chip into its constituent layers or the
time required to merge the error reports back together. These times are subtracted from
the raw elapsed times and the analysis is repeated using the modified data. The remaining
non-linearities are small enough to be accounted for by £ PJI(C’s overhead, and by other
factors that are difficult to control, such as competion for the CPU, page faulting, and an
increased number of image activations.

According to the tests in Figure 4.4, £ PIC offers a significant performance en-
hancement over serial DRACULA. I was able to try ECAD’s Parallel DRACULA on three
VAXclustered VAX 11/780 computers using the same benchmark. The tests indictated




Control | ECAD | €PIC/VAXcluster

Processors

Elapsed | 18350
Speedup ‘ |

Elapsed 17855 4663 | 3967
Speedup 1x 38x | 4.5x
% File 0% 8.9% | 11%
% Exec 100% 90% | 88%
% Idle 0% | 0.95% | 1.3%
%CPU | 79% © 74% | 76%
See Page 94 | 107 | 109

Figure 4.4: Results and analysis of DEC CMOS DRC tests

a speed-up of 1.8 using three machines. This is less of a speed-up than was reported in
ECAD’s article [Nielson 1986], which reported a speed-up of 1.78 for two machines. This
disparity may be due to excessive competition for the CPU, a factor that was difficult to
determine because the ECAD controller runs several jobs simultaneously on each proces-
sor. On the average, the ECAD jobs each got 43% of the CPU, but there were typically
two or three jobs on each processor at any given time, so it was diiﬁcult to determine how
much the DRC was slowed by timesharing overhead.

On the same benchmark, with the same hardware configuration, £ PIC demon-
strated a speed-up of 2.6. This is not conclus;ve, however, and we suspect this data
doesn’t tell the whole story for two reasons ECAD’s results were most likely based on
the DRC of a larger chip than the one used for this benchmatk which reduces the relative
overhead of submitting a new batch job for each task. The competition for the CPU was
possibly an important issue, but it is difficult to determine the extent of its effect.

In addition to the difference in runtimes between fhe € PIC and ECAD benchmarks,
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the tests indicate the relative versatility of £ PI(C’s approach. Only three homogeneous
VAXclustered processors were available, but six homogeneous processors were available
through DECnet. Since £ PIC is capable of using DECnet without VAXclusters, we were
able to perform tests using more processors. The relative availability of VAXclustered ver-
sus independent computers at DEC may indicate that £ P IC is more generally useful than
Parallel ECAD. This may become less important if VAXclusters become more prevalent
in the future.

There are several more interesting pieces of information that can be gleaned from
the data in Figure 4.4. First, we mention that since we ran the master and one slave on
a single processor, there was a nonlinearity in the DECnet tests. £ PIC notices when the
master and a slave are running on the same processor and s this knowledge to “short-
circuit” that slave’s DECnet file transfers with a local $C0FY command. The impact of
this short circuiting can be seen by comparing SLAVE1’s file transfer times with those of
any other slave, on all the charts of £ PJC/DECnet tests in Appendix C.

For all the DECnet tests, the file transfer time rose with the number of processors.
Not enough data is present to determine the relationship between the file transfer overhead
and the number of processors (i.e. linear, polynomial, or exponential).

A definite pattern was not observed for the the idle time overhead, but it never
exceeded 1.5%. In the tests made here, no slave was ever idle for lack of work to do.
Idle time accumulated due to network message passing latencies. We would expect the
absolute message passing time to remain unaffected by the number of processors, since
the number of tasks remains constant. Naturally, since the elapsed time of the DRC
shrinks as the number of processors grows, we would expect the relative overhead of the
message passing latency to increase. But the dominant factor in message passing latency
is probably network congestion, which varies greatly over time. As discussed in Chapter
3, the VAXcluster runs use DECnet for control communication, so they are also affected.

The tests run here indicate that the speed-up factor was beginning to fall off as the
number of processors increased to five or six. This is expected in the DECnet tests, since
the data communication overhead increases with the number of processors. It is likely

that the we will not be able to use fourteen independent processors to achieve our goal of



completing a DRC as fast as the data dependency will allow. Nevertheless, the results are
good enough to justify the additional hardware expense in a production environment. On
the other hand, the three processor VAXcluster test results were sufficiently promising to
warrant additional expenmentatmn It would be 1ntn¢umg 10 see how many VAXclustered
Processors we can use before the speed-up factor beg;nn to fall off.

Both the DECnet and VAXcluster results may have been more optimistic if the test
case used a larger chip. Since the execution tnme ef the DRC tends to grow faster than the
size of the files, the data communication overheegi, vgquld probably become less significant.
The control communication overhead would va.msh qmckly, gince it grows with the size of
the design rule set, not the chip swe | |

So far, with up to six processors, £ PI(C’s task scheduling strategy has been es-
sentially optimal. If as we increase the number of processors, meiﬁaent task scheduling
becomes a bottleneck, we will probably be able to improve the task scheduling by supplying
statistical estimations of the length of each task, bued onv previous runs.

Thus EPIC potentxa.lly offers the mes:hamsm to run DRCs as fast as the critical
path through the data dependency graph wxll allow. To achieve this goal, we need to do
the following:

o Use more VAXclustered processors.
e Obtain exclusive access to them, so the test results will be repeatable.

e Develop statistical estimations for the execution time of each task, so task scheduling
will (hopefully) not be a bottleneck.

The difficulties I encountered while running DRCs on MicroVAX computers do not
represent an unsolvable problem. By configuring them with encugh physical memory and
disk space, a group of MicroVAX II computers connected by a dedicated Ethernet would
work well as a low-cost, high-performance DRC server. K ten MicroVAX II computers

can offer an 7x speedup for DRC (the optimistic analysis indicated 9.6), then they offer a
faster turnaround time than one YAX 8600 computer: (which runs roughly 5 times as fast
as the MicroVAX II computer), for roughly the same monetary cost.



4.2 Circuit Extraction

Digital’s circuit extractor [Tarolli, Herman 1983] has been adapted for parallel ex-
ecution using £ PIC in a system called MACE (a Multiprocessing Approach to Circuit Ex-
traction) [Levitin 1986]. MACE attempts to take ldva.ntage of the geometric locality of VLSI
by dividing the layout into swaths (strips) which are proceued in pa.ra.llel Unfortunately,
this is a much more difficult task than it is for design rule chechng [Bler, Pleszkun 1985].
It is not clear how to correctly handle the case when a swath’s border crosses a transistor.
However, by carefully choosing the mth bounda.nes, it is sometimes possible to avoid this
case. For a chip of sufficient size, it may not be po-ible to draw a stmght line across it
without hitting a transistor. For this reason, MACE has only been tested with relatively
small cells. Asstated before, £ P IC is geared for h.rm scale problexm 8o that the overhead
of control communication becomes neghgib[e.

The results as of this writing have not indicated a m;mﬁunt speed-up. The layouts
were partitioned into two swaths. The extraction was performed aepu:tely on each swath
using two slaves, and the two resu!tmg circuits were mérgod together afterwards. In
practice, the speed gained throngh paralleliam in the extraction phase was overwhelmed
by the cost of merging the circuits together. The serial extraction actually took less elapsed
time than the parallel extraction and merge [Levitin 19688].

4.3 Compiling and Linking Programs

The automatic transiation of makefiles toexecution control files is fairly straight-
forward. Writing Nake3ECF was simply a matter of changing the syntax of each task
description.

Since make was used to control generation of the £ P I C executables, and since EPIC
is composed of many different modules, it was reasomable cheice for a benchmark. The
data dependency graph for compiling and linking £ PIC is in Appendix B.

The chart in Figure 4.5 shows the results of simulating the execution based on unit
task length and zero communications cost. The shape of the data dependency graph is far




Processors | 1 2 3 4{56| 7911018 | 19-00
Ticks 25 13 . 9 7 5 4 3 2
Speedup 1x | 1.9x | 2.8x | 3.6x | 5x | 6.3x | 8.3x | 12.5x

Figure 4.5: £ PIC analysis of Makefile simulation based on data dependency

more regular than that of either DRC rules set. Due to the relative absence of terminal
nodes, it was not always possible to “fill in the gaps” of processor idleness. Therefore, the
processors were not well utilized if there were more than seven of them, even though the

minimum (and maximum) extent of parallelism is 19.

Control make || £PIC/VAXcluster £ PIC/DECnet

Processors 1

Raw statistics (seconds)
Elapsed 619 630 | 340 253 E 477 | 392 | 332
Speedup Ix ] 98x | 18x | 25x §| 1.3x | 1.6x | 1.9x
% File 0% 0% 0% 0% | 19% | 25% | 34%
% Exec 100% || 97% | 96% | 95% || 79% | 71% | 62%
%Idle | 0% | 3.2% |3.9% |4.8% | 2.2% | 3.9% | 4.2%
% CPU 66% || 69% | 68% | 69% | 59% | 57% | 61%
See Page 111 112 | 114 | 116 118 | 120} 122

Figure 4.6: Results and analysis of make epic

Figure 4.6 shows the results of £ PJC compilation tests run on a VAXCluster with
up to 3 VAX 11/780 computers and on DECnet with up to 4 VAX 11/780 computers. The
VAXclustered run showed a reasonable speedup with up to three processors, but more
tests will have to be run to see how well these results will scale.

The tests run with independent VAX computers indicate that the compilation of
EPIC is not sufficiently compute-bound to allow it to be efficiently distributed over an
Ethernet. As the chart shows, the file transfer overhead grew rapidly as the number of
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processors increased. Running parallel make over DECnet may become profitable if the

data prefetch and delayed reporting extensions of Chapter 3 are applied to £ PIC.
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Chapter 5

Conclusion

5.1 Summary

In this thesis we have presented £ PIC, the lmplementatxon of a software method-
ology for coarse grained parallel processing. It is based on a computational model that is
applicable to a variety of different problems. We have described the characteristics that a
program must possess in order to be accelerated by £ PIC. In Sﬁ&ition, we have described
the adaptation of several existing applications to paraliel computation using £ PIC, with
varying degrees of success.

Parallel DRC was particularly successful. The tests run indicate a performance
increase that justifies the usage of the extra hardware. The base DRC program used in this
thesis was ECAD’s DRACULA, but any design rule checker that uses intermediate files could
have been used. The strategy for running DRCs in parallel presented here is only one of
two promising approaches. We divided the DRC by allocating different rules in the design
rule set to each processor. Also, the data partitioning scheme of [Bier, Pleszkun 1985] will
work with any design rule checker, and can be readily adapted to £PIC.

5.2 Directions For Future Research

The results presented in this thesis did not fully test the claims made about the

extent of parallelism of either DRC or Makefiles. With more time and resources, it would
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be interesting to try to execute a DRC as quickly as the critical path will allow. This would
also give the task scheduling &lgorifhm a more a substantial workout. The five and six
machine tests showed optimal performance from the task scheduler, but that was too easy.
To better support the claims made here about the scheduler’s near-optimality in most real
data dependency graphs, we need to run more tests with more machines. 7 _

One way to further increase the extent of parallelism in VLSI design rule checking
is to combine rule partitioning with data partitioning. Essentially, once the chip is divided
into separate slices, several processors could be allocated to each slice, and each slice could
be be checked by exploiting rule-based parallelism. The whole computation could bé con-
trolled bjr & P IC using a single execution control file. Another strategy would be to use a
two-level hierarchy of star networks, with each master reporting to the grandmaster. The
single-master approach requires a bit of effort to prevent naming conflicts with interme-
diate layer and error files, but offers the advantage of automatically load-balancing the
computation if any of the slices finish before any of kthe others.

5.2.1 Other Applications

EPIC provides the basis for the acceleration through parallelism of a potentially
wide variety of existing software. Any computation controlled with Unix Makefiles can be
automatically converted to be run in parallel with £ 2JC. Another VLSI CAD application
that has the potential for acceleration via £PJC is mask pattern generation software.
In particular, ECAD’s NDP! software uses the same rules file format and preprocessor as
DRACULA, so it may work with the existing ECAD2ECF preprocessor with only minor synﬁctk
additions. This was not explored further due to lack of time.

Using £ PIC on VAXclusters, the data communications overhead becomes negligi-
ble, and the set of programs that can be profitably accelerated through parallelism expands
greatly. One application that comes to mind is merge-sorting. This classic binary divide-
and-conquer algorithm is ideal for £ PIC. It would be fairly easy to adapt an existing
merge-sort program for use with £ PIC. The constraining factor is the time required to

INDP is a trademark of ECAD corporation
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write the partial lists into disk files. But this overhead is also incurred in serial merge-sorts
if the list being sorted is too large to fit into physical memory.

5.2.2 Reducing the overhead

The disk file overhead issue brings to light another issue. £ PJ(C addresses a very
coarse parallelism. The control communications overhead forces us to apply fhe constraint
that a problem must be subdivided into tasks that each task a “long time” to execute.
But £ PIC’s model of parallelism doesn’t require the lbose‘éoupling of the Ethernet envi-
ronment. A more tightly coupled tmﬂtiprocessor'ywm)ll‘d be able to accelerate a wider rénge
of applications. The concepts used in £ PIC could be applied to a controller on such a
processor. It would be interesting to see how such a system mlght develop.

5.2.3 Lessons Learned about Distributed Programming

In the past twenty years, there have been dramatic improvements in the quality of
the tools used for programming. In particular, the recent advent of source line debugging
for high level programming languages on the VAX/VMS operating system has allowed the
programmer to more fully concentrate on the most interesting aspects of his task. Unfortu-
nately, this capability is often less accessible to those writing distributed or asynchronous
programs. If a program is invoked by creating a process on a remote processor, how will the
debugger interact with the terminal? It is possible to work around this problem by having
the remote process allocate a terminal that is directly connected to the remote processor.
That is not very helpful if there are many processors or if they are physically inaccessible.
Much work needs to be done in the area of distributed programming environments.

Similarly, software engineering has advanced considerably from the days of FOR-
TRAN and COBOL. The concepts of structured programming, data abstraction, object ori-
ented programming, data driven programming, and 80 on are well documented, publicized,
and lectured about in our undergraduate halls. In the course of implementing the mes-
sage passing facility of £ PIC, less familiar methodologies had to be adopted to insure

consistent data structures within a single processor, and to avoid deadlocks between two
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communicating processors while guaranteeing message delivery. If parallel processors are
to become a popular hardware platform, we must learn how to program them as well as
we know how to program serial machines.

5.3 Conclusion

Several factors affect how well the potential for acceleration of CAD tools through
parallelism will scale with time. As the complexity of VLSI circuits rises, the extent of par-
allelism will rise due to geometric locality in the layouts, the constant overhead of £ PI(’s
control communication will become negligible, and the overhead of data. communication
will most likely become less mgmﬁcant Data communication will almost certainly not be-
come more significant as thé complexity of the chips rises. This is based oh the assumption
that CAD tools have time complexity > O(n) where n represents the size of the input files,
since they must at least examine all their input. Hierarchical CAD tools are included in
this assumption, because the file repreoentatxon is hierarchical as well. Empirically, the
time complexity for fiat DRCs has been observed to be roughly O(n'?) with n being the
number of transistors [McGrath 1985].

Another factor that will determine how much extra speed we can squeeze out of
parallelism is the power of the processors on which we run the CAD tools. The VAX
8600 computer will run roughly four times as fast as the VAX 11/780 computer. Since
Ethernet technology is used as the control communications medium for both processors,
the control communications overhead on VAX 8600 computers may be as much as four
times as significant as the tests presented here indicate.

This statistic is best put into perspective by comparing it to the difference between
the complexity of circuits being fabricated in 1977, when the VAX 11/780 computer was
introduced, and the complexity of the circuits of 1985, when the VAX 8600 computer was
introduced. While processor speed may have improved by a factor of four, VLSI circuit
complexity has increased by a factor of about twenty-five [Allen 1983].

Thus we predict that parallelism will continue to be a viable means for accelerating

layout verification of VLSI circuits in years to come. £ PIC provides an inexpensive means
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of substantially improving the throughput of existing software. As advances are made in
both processor speed and the exploitation of hierarchy in CAD tools, parallelism can still

be used to further reduce the execution time.

75



76



Appendix A
£PI1C/DRACULA User’s Manual

Parallel DRC is a method for running the ECAD’s VLSI design rule checker (DRAC-
ULA). By dividing the run into separate portions to be run on several computers, Parallel
DRC reduces the amount of time required for a DRC run. A DRC using the standard
method of running on one computer may require several days to run on a large chip. This
time can be reduced to an overnight run using Parallel DRC.

This appendix describes the following aspects of Parallel DRC:

How Parallel DRC works

Potential Benefits from running Parallel DRC

Environment for running Parallel DRC
How to run Parallel DRC

A.1 How Parallel DRC Works

The program used to run Parallel DRC is called £ P IC (Exploiting Parallelism In
CAD). This program sets up processes on several computers to run portions of the DRC.
The computers are logically arranged in a star network. The central computer, called the
master, manages the work of all the other computers, called slaves. The entire design
rule check is broken into separate tasks, with each task roughly corresponding to a single

DRC rule. The master dynamically assigns tasks to the slaves, telling them what files are
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needed to run the task. The slaves copy the files to their own directories and run the tasks.
The master keeps a record of the files each slave has. As each task is completed, the slave
notifies the master and sends the DRC output files to the master’s directory. The master
then assigns another task to the slave. The execution proceeds in this manner until all the
tasks are completed. The last step is for the master to combine all the separate error files
(.ERR) into one file and append it to the summary (.SUM) file.

The NONITOR program allows the user to initiate and control the parallel execution,
and provides a periodically updated display of the status of each slave's process.

A.2 Potential Benefits From Running Parallel DRC

To evaluate whether or not you want to use £ PJC to run ECAD DRC, you must
understand the basic principle behind it. DRC is not really a single program that must
be run from start to finish by a single CPU. It is a collection of related programs, which
are typically run one after another. Each program “communicates’ to the others simply
by reading and writing dnk files.

EPIC provides a mechanism to distribute the execution of these programs over
several computers on a network. This distribution is very efficient in that almost no work
is duplicated by the extra computers. The only extra work involved is the file transfers
needed to move the input and output files to the appropriate CPUs.

Preliminary tests of Parallel DRC haveduxmtr&tqd_aspgedup of 4.5x using 6
computers to check a medium sise chip. The speedup ratio will approach the number of
computers as the chip gets larger, since the time required to run the DRC rises faster than
the size of the data files. .

The greatest practical advantage of Parallel DRC occurs with chips that take serial
DRCs several days to run on a loaded VAX computer. During working hours, the DRC has
to fight for CPU time with interactive processes, thereby reducing everyone else’s efficiency
while further delaying the completion of the DRC. Using £PIC, it will be possible to
complete the DRC overnight. That translates into a faster turnaround time for the layout
designers, and less aggravation for the of.het users of the computer facility.
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A.3 Environment For RunningvParallel DRC

A.3.1 Requirements For £PIC

& P IC requires no special hardware configurations. It runs on any number of VAX
computers, each running VAX/VMS Version 4 or later, and all connected by DECnet. The
system runs in a heterogeneous environment of VAXclustered and unVAXclustered nodes.
Informing £ PIC which nodes are VAXclustered results in increased performance, due to
the decrease in file transfer overheid. Running on Microvax:computers is possible if there
is enough disk space to hold the ECAD software and the chip data.

& P IC requires that on each system, you have an account with the following char-

acteristics:

Proxy: *: ;USERNAME ==> USERNAME
Privileges: NETMBX, TNPMBX, GRPNAM
Buffered 1/0 Byte Count Quota: 13000 '

Timer entry queue quota: 10

Open file quota: 100

Subprocess quota: 5

You should define a logical £ P IC to point to the area where the £ P IC programs
reside on your system. In addition, you need to set up two command files in you1,' SYS$LOGIN
area: MASTER.COM and SLAVE.COM. You can copy examples of these files from the £ PJC
distribution area. ‘ |

You will want to run the parallel DRC using a different subdirectory for each slave.
This is obvious for unVAXclustered computers, but even‘ ivhen two nodes share a file
system, their slaves should be provided with separate subdirectories. This is due to a
restriction in the ECAD DRACULA system that causes input files to be read-locked even
if they will not be rewritten. This eliminates the possibility of file-sharing, even on a
VAXcluster, because if a process tries to open a file that a pé.rallel process has already
locked, a fatal error will be signalled. VAXclusters are still helpful, provided the master is
running on the VAXcluster, since £ PIC is smart enough to use local file transfers rather
than DECnet file transfers between VAXclustered nodes.
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EPIC allows you to map your slaves to YOUur processors any w#y you want. In
other words, you can have any number of slaves on each CPU. For Parallel DRC, the most
efficient strategy is to assign only one slave for each processor. You can run the master on
a processor that is already running a slave, since master doesn’t consume very much CPU

time.

A.3.2 ECAD DRACULA Requirements

You must have the ECAD system installed on each filesystem. VAXclusters only
need it installed once, rather than once for each CPU.

A.3.3 Input Requirements

The input requirements are exactly the same as those for serial ECAD DRC. You
must have a layout file in some format understosd by ECAD, and you must know the
primary cell name. You must also have a rules fle (.DRC) deacribing the geometric tol-
erances for the appropriate process technology. The rules file is used to generate control
files that allow £ PIC to run the Parallel DRC. "

A.4 Runniﬁg A Parallel DRC

A.4.1 Preprocessing Steps

The £PIC kernel has no knowledge of DRC. It can run DRC only by providing
with it a parameter file, called an ezecution control file (with extension .ECF). This file
can be generated directly from the DRC rules file using the program ECAD2ECF .EXE. This
program also generates a command file that contains the DCL code that directly drives
ECAD DRC. ECAD2ECF.EXE is easy to run, though it may take over an hour on a well-
loaded VAX 11/780 computer. The following is an example of its use. We assume that
CMOS .DRC is a rules file in the current default directory.

$ RUN/NODEBUG EPIC:ECAD2ECF
Ecad file name: CMOS.DRC
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ECF file name: CMOS.ECF

COM file name: CMOS.COM
%DELETE-W-SEARCHFAIL, error searching for !AS
s .

CMOS . ECF must then be placed in the master’s subdirectory. It contains information
about each task needed to control the parallel execution. Specifically, for each task, it
indicates all of the input files, all of the output files, and all of the DCL commands needed
to generate those output files.

CMOS.COM must be placed in the SYS$LOGIN: area of each slave. We place it in
SYS$LOGIN rather than in the slave subdirectory so that we only have to store this rather
large file once per VAXcluster (see the discussion above about file sharing on VAXclusters).

Generally, the rules file for a given technology will remain fairly stable throughout
time. The only information that changes more often are the description parameters at the
top of the rules file. These might change with each run. We want to avoid running the
preprocessor as much as poesible, since it is fairly time consuming. The best approach
is to run it once for each generation of the process technology, using generic description
parameters. Then, for each new set of description parameters, you must generate a new
.ECF and a new .COM file by doing the appropriate global string replacements in the generic
.ECF and .COM files. A program, FIXECAD.EXE, is provided for this purpose. It is fairly easy
to use, and doesn’t take very much time (typically less than a minute). It prompts for the
old and new .ECF and .COM file names, and for the old and new description parameters.
Since the program does unintelligent global string replacements, you must choose your
generic description parameters so they will be unique. The appendix contains an example
of the use of FIXECAD that also demonstrates appropriate generic description parameters.

Sample .DRC, .ECF and .COM files for several technologies are provided in the P IC
distribution. You may want to use these if they are sufficiently up-to-date. You will still
need to use FIXECAD to update the description parameters.
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' A.4.2 Running £PIC

All user interaction with the £ PIC system is through the MONITOR. EXE program.
It is recommended that you run this program on the same processor as the master, though
it is not required. MONITOR uses the VAX/VMS Screen Management facility (SMG), so
you must run it from a DEC supported terminal such as a VT100 or a VT200 series
terminal. You can also run MONITOR in batch mode or from a command file. Normally
you will want to initiate the program interactively, since the network connections that will
be made occasionally fail on the first try due to timeouts or network flakiness. To save
typing, you have the option of initiating the start-up from a command file and continuing
or fixing any problems interactively.

To start NONITOR, use “$ RUN/NODEB EPIC:MORITOR". Your screen will then be
divided into three segments. The top third contains process moaitoring information. Each
row in the display corresponds to a slave’s subprocess, and .is periodically updated to
display a variety of statistics including CPU time, elapsed time, the name of the current
program, and the number of tasks it has completed. The middle third is for error messages,
status messages, and other diagnostics. The bottom third is for your input.

The normal state of the program is that no prompt is offered. This is so that
the monitor can respond to any messages it receives from the master. There is no master
initially, so this may seem confusing. As soon as the user types something, monitor provides
a prompt in the bottom window and echoes what was typed thus far. While in this “read
line” mode, the monitor cannot react to messagas from the master, so the normal state is
not to provide the prompt. If you type at monitor and it doean’t echo, that means it isn’t
finished doing what you last told it to do. If you start to type something to monitor and
decide not to issue a command, just type CTRL/U RETURN to get rid of the prompt.

Normally, the first thing to do is to create a master. Use the command

CREATE/MASTER/PROXY node comfile ecflile file-prefix cluster-list

If you do not type in the arguments, you will be prompted for them. The standard
DCL parser and line editor are used, so you will be able to use the arrow keys to edit
your input. Two special purpose keys are also assigned. PF1 terminates the current line
(executes it) and clears the bottom two thirds of the screen. PF2 terminates the current
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line and repaints the entire screen.

The first argument, node, is the name of the node on which the master will be run.
Don’t put the double colon (::) in here, just the name of the node. The second argument,
comfile, is usually MASTER, though you may have more than one version of this file that
does different things with default directories and renaming of NETSERVER. LOG. Don’t bother
to specify the file extension, and don’t include a device or directory specification; the file
must reside in SYS$LOGIN. The third argument, ecflile, is the name of the Execution
Control File (for example CMOS.ECF), only don’t bother to include the extension when you
type it here. You can specify a device and directory, but you don’t need to if it is the
same as file-prefix, the fourth argument. File-prefix is the master’s subdirectory. It can
include a device and directory specification. The initial input file must be in this directory,
and all intermediate files and the error summary file will be placed there, so there must be
enough room on the disk. The last argument, cluster-list, is a list of machines that share
the same filesystem as the MASTER’s node. Include node in this list. This information
is used to optimize file transfers by using local $COPYs rather than decnet transfers when
appropriate.

The PROXY qualifier is used because in some future version of £ PI(C, we may
support password access.

After pressing carriage return, the MONITOR causes a process to be created on
node. This process executes comfile, which should run EPIC:MASTER.EXE, which will
acknowledge communication with monitor. It will then try to read in ecfile. You will be -
told the outcome of this attempt, and that will be your cue to begin creating slaves.

CREATE/SLAVE/PROXY name node comfile file-prefix

The only new parameter is the name parameter. This is used because more than
one slave per machine is supported by £ PIC (though not recommended for DRACULA).
The name is used as a substring in file names, process names and in the group logical
name table. It should contain only alphanumerics, and be no more than eight characters
long. One would generally include the node name ag part of this name when running on a
VAXcluster, so the log files will be identifiable.

CREATE/SLAVE is not really executed by the monitor. The text of the command



is sent to the master, and the master executes the command. This allows you to quene up
several CREATE/SLAVE commands without waiting for the command to finish. Diagnos-
tic messages will indicate the success or failure when the information becomes available.
Success will also be indicated by a new active line in the upper third (process monitoring
section) of the screen.

€ PIC supports the use of more than one VAXcluster. The following command
tells £PJIC about a VAXcluster other than the ome specified in the CREATE/MASTER
command:

SET/CLUSTER=nodel, node3, nodeS, node4 ...

The refresh cycle for process display is initially set to one minute. You can reset it
to (for example) five seconds with the following command:

SET/REFRESH=0 0:00:05.00

K for any reason you need to kill a slave, use the following command:

KILL/SLAVE slave’s-node slave’s-name

Again this command is not really executed by the monitor. The text of the command
is sent to the master, and it does the dirty work. The result should be evident from the
diagnostic message and process display. You can also do the dirty work yourself by stopping
the slave’s process on its node. In any case, £ P JC will reassign that slave’s task to another
slave, and the computation will continue. If a siave fails due to a system crash, £ PIC will
You can also add a slave at any point in the computation with the CREATE/SLAVE
command.

You can kill the whole computation, including the master, with the KILL command.
This is a clean way to abort the computation. The log and summary files for the processes,
though not for the DRC, will be generated. You can aleo stop the master’s process yourself,
and the slaves will terminate themselves soon thereafier.

You can use the monitor’s EXIT commund to get back to DCL. It is OK to do this
while a computation is running. To get back in touch with a master that you have left on
its own for a while, get back into the monitor, and use the command

MONITOR/PROXY master’s-node




T = L

Performance will be much better if you do this while logged into master’s-node.

A.4.3 Triggering The Parallel DRC

This is essentially automatic. As soon as tﬂe CREATE/MASTER completes, the
master begins an initial step in the DRC in a subprocess. This is a task that must be
completed before any of the slaves can be given any work. Normally, you will have created
all the slaves before the MASTER finishes this step, but you can create slaves at any time,
and they will be put to work if there is work to be done.

For completeness, we mention that the subprocesses in which the actual DRC
is run do not inherit any process logical names or syzixbols you may have defined
in your LOGIN.COM. This should not affect an ECAD DRC, but if you create a file
SYS$LOGIN:EPICINIT.COM, it will be executed by the each subprocess before it starts
running the DCL commands specified in the .ECF file.

A.4.4 Summary Files

In addition to the DRC summary file that is ciu.ted in the master’s subdirectory,
& PIC leaves several other files in various places around your file system. Two summary
files will be created in SYS$LOGIN on the master’s computer. EPICSTATUS.LOG will contain
a chart indicating the cpu time, the real time, and some other parameters for each slave.
EPICEXEC.PS is a Postscript file that can be printed on an Apple Laserwriter'. It contains
a graphical representation of the parallel execution. The leftmost column indicates the
elapsed time at several points on the Y-axis. Each vertical column represents the activity
of a slave. Each diamond is the execution of a task or rule. The height of the diamond is
proportional to the amount of time it took to execute it. Each line segment between two
tasks represents a data dependency between those tasks, and roughly corresponds to a file
transfer. System .LOG files documenting the actual VAX/VMS programs run to execute
the DRC are generated in whatever directory was the default diréctory when EPIC:SLAVE
and EPIC:MASTER were initially run. MASTER.LOG and SLAVE.LOG are generated according

1Laserwriter is a trademark of Apple Computer Corporition
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to the contents of MASTER.COM and SLAVE.COM. MASTER.LOG contains all the diagnostic

messages sent to the middle screen of the monitor.
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A.5 Appendix

A.5.1 Sample Run Of EPIC:FIXECAD

Note: You don’t have to specify anything for the old and new versions of a field if
you don’t want to change that field. Every time a substitution is made, the old line and
the new line are printed out. Much of this was editted out of the example below.

$ run epic:fixecad

014 COM: cmos

0ld ECF: cmos

New COM: field

New ECF: field

01d Indisk: infile.gds
New Indisk: field.gds

01d Outdisk: outfile.err
New Outdisk: outfield.err

0ld Print: summary
New Print: summary
0ld Primary: maincell
New Primary: field
0ld Systen: gds2
New Systenm: gds2
0ld Dir: segcad$ecad:
New Dir: segcad$ecad:
1 TREEMAIN
1 TREEFIEL

$ASSIGN INFILE.GDS FOROO9
$ASSIGN FIELD.GDS FOROO9

O TREEMAIN

O TREEFIEL
1000 1 MAINCELL
1000 1 FIELD

$ASSIGN OUTFILE.ERR FOROO®
$ASSIGN OUTFIELD.ERR FOROO9

O TREEMAIN OUTMAINCELL
0 TREEFIEL OUTFIELD

» TREEMAIN.DAT-

» TREEFIEL.DAT-
/DCL=  ("$0SYS$LOGIN:CMOS.COM in-
/DCL=  ("$QSYS$LOGIN:FIELD.COM in-

87




A.5.2 Execution Control File
The following is an example of one task in the ECF file created above.

task " NOT TOTNWL MASKLR NWELL"-
/INPUT =(TOTNWL.DAT-

,MASKLR.DAT-
)~
/OUTPUT=(NWELL .DAT-
)-
/DCL=  ("$@SYS$LOGIN:FIELD.COM . 16%-

)

A.5.3 Command File

Each page of the .COM file corresponds to an .ECF task, such as the one above. At
the beginning of the .COM file, thereisa $ GOT0 °*P1°’, which explains how the correct step
gets executed.

$ 16:
$ ! NOT TOTNWL MASKLR NWELL
$!
$SET PROCESS/NAME= 16GDSIN
$RUN SEGCADS$ECAD:LOGICAL
3 TOTNWL MASKLR NWELL 1000 HIC 0

$IF .NOT. $STATUS THEN GOTO LQUIT
$OUTPUT:

$IF P2 .EQS. "OUTPUT" THEN GOTO LQUIT
$EXIT
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Appendix B
Data Dependency (raphs

This appendix contains printed representations of the data dependency graphs used
in the testing of £ PJC. Included are examples for DEC CMOS design rules, MOSIS CMOS
design rules, and the compilation and linking of £PIC.
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DEC CMOS DRC Data Dependency Graph




MOSIS CMOS DRC Data Dependency Graph |

[ L7
7S

e yaw
o wﬂiq"\m«“\‘“.‘\\

25y

pad

et

¢ 9

1

\:,t:-\ pay_

91



"make EP IC" DataDependenéy Graph




Appendix C

Data from the testing of £PIC

This appendix contains raw statistics generated by £ PIC for the test runs with a
varying number of processors. Each section consists of all the data for a single application.
Each subsection has a table of statistics and a graphical log for a single run. The leftmost
column of the graphical log indicates the elapsed time at several points on the Y-axis. Each
vertical column represents the activity of a singlé slave. Each diamond is the execution
of a task. The height of the diamond is proportional to the amount of time it took to
execute the corresponding task. Each line segment between two tasks represents a data
dependency between those tasks, and roughly correspond’s to a file transfer.




C.1 prAcULA with DEC CMOS rules
C.1.1 Serial DRACULA on a VAX 11/780 computer

Buffered I/0 count: 8839 Peak working set size: 8060
Direct I/0 count: 66129 Peak page file size: 19635
Page faults: 239201 Mounted volumes: o

Charged CPU time: 04:00:11.84  Elapsed time: 05:06:50.41

C.1.2 Parallel DRACULA on three VAXclustered VAX 11/780
computers '

9-APR-1986 07:22:43.28

Accouﬁting information (for the "MASTER" process):

Buffered I/0 count: 6728 Peak working set size: 8000
Direct I/0 count: 12620 Peak virtual size: 18808
Page faults: 80965 Mounted volumes: o
Inages activated: 544

Elapsed CPU time: 0 00:23:23.61

Connect time: 0 02:52:61.39

Total "SLAVE" statistics:

Elapsed seconds: 32717
CPU seconds: 14210



C.1.83 £PIC using one VAX 11/780 computer
MASTER Statistics for EPIC run using ECF file DECCMOS.ECF

EPIC Version V1.0 .
29-MAR-1986 18:45:38.056 BUFFIQO: 3549

ELAPSED: 05:21:28.13 DIRIO: 487
CPU: 0:01:13.19 FAULTS: 720

Subprocess statistics (all times in seconds)
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DECCMOS.ECF run on 29-MAR-1986 18:45:45
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C.1.4 EPIC using two VAXclustered VAX 11/ 780-computers

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF
EPIC Version V1.0

28-MAR-1986 07:21:18.95 BUFIO: 3170
ELAPSED: 02:51:00.61 DIRIO: 858
CPU: 0:01:07.09 FAULTS: 702

Subprocess statistics (all times in seconds)
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DECCMOS.ECF run on 28-MAR-1986 07:21:27
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C.1.5 €&PIC using three VAXclustered VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF
EPIC Version V1.0

 27-MAR-1986 06:28:09.75 " BUFIO: 3179
ELAPSED:  O1:57:56.11 DIRIO: 899
CPU: 0:01:06.27 FAULTS: 709

Subprocess statistics (all times in seconds)

ode File | File Exec . m tal | Tasks ” Dnnet Vire | Wkgset Page

CPU Time CPU ‘l‘l-. OPU 0.- 1 mwd Peak Peak Faults
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DECCMOS.ECF run on 27-MAR-1986 06:28:18
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C.1.6 E£PIC using two independent VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF
EPIC Version V1.0 :

9-APR-1986 03:31:27.82 BUFIOD: 3434

ELAPSED: 03:15:42.65 DIRIO: 508

CPU: 0:01:23.19 FAULTS: 830

Subprocess statistics (all times in seconds)

Node ﬂlo 14103 Exec c 0 Files m Direct Virt
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DECCMOS.ECF run on 9-APR-1986 03:31:36
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C.1.7 &EPIC using three independent VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF
EPIC Version V1.0 :
7-APR-1986 06:43:13.96 BUFIO: 3478

ELAPSED: 02:13:40.10 DIRIO: 502
CPU: 0:01:18.17 FAULTS: 827

Subprocess statistics (all times in seconds)
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DECCMOS.ECF run on 7-APR-1986 06:43:21
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C.1.8 £PIC using four independent VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF
EPIC Version V1.0

6-APR-1986 02:12:26.93 BUFIO: 3379
ELAPSED: 01:36:10.71 DIRIO: 398
CPU: 0:01:20.47 FAULTS: 837

Subprocess statistics (all times in seconds)
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DECCMOS.ECF run on 6-APR-1986 02:12:44
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C.1.9 €PIC using five independent VAX 11 /T80 computers
MASTER Statistics for EPIC run using ECF file DECCMOS.ECF

EPIC Version V1.0 \
12-APR-1986 06:22:44.11 BUFIO: 3506

ELAPSED: 01:25:58.26 DIRIO: 418
CPU: 0:01:10.51 FAULTS: 865

Subprocess statistics (all times in seconds)
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DECCMOS.ECF run on 12-APR-1986 06:22:51
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C.1.10 £ PIC using six independent VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file DECCMOS.ECF
EPIC Version V1.0 :
10-APR-1986 06:12:36.06 BUFIO: 3529

ELAPSED: 01:14:21.67 DIRIO: 405
CPU: 0:01:14.59 FAULTS: 879

Subprocess statistics (all times in seconds)
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DECCMOS.ECF run on 10-APR-1986 06:12:43
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C.2 Compiling and Linking £PIC

The following statistics were generated by VMS after compiling and linking £ PIC and
its preprocessors. *

Accounting information:

Buffered I/0 count: 962 Peak working set size: 3886
Direct I/0 count: 2599 Peak virtual size: 7904
Page faults: 31011 Mounted volumes: 0
Images activated: 26 :

Elapsed CPU time: 00:06:48.74

Connect time: 00:10:19.12
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C.2.1 £PIC using one VAX 11/780 computer

MASTER Statistics for EPIC run using ECF file MAKEEPIC.ECF
EPIC Version V1.0

30-MAR-1986 13:50:40.42 BUFIO: 732
ELAPSED: 00:10:30.09 DIRIO: 81
CPU: 0:00:14.42 FAULTS: 231

Subprocess statistics (all times in seconds)
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MAKEEPIC.ECF run on 30-MAR-1986 13:50:48.10
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C.2.2 £PIC using two VAXclustered VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file MAKEEPIC.ECF
EPIC Version V1.0

1-APR-1986 02:55:59.84 | BUFIO: 923
ELAPSED: 00:05:39.54 DIRIO: 101
CPU: 0:00:16.24 FAULTS: 248

Subprocess statistics (all times in seconds)
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C.2.3 £PIC using three VAXclustered VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file MAKEEPIC.ECF
EPIC Version V1.0 '

6-APR-1986 23:27:38.08 BUFIO: 926
ELAPSED: 00:04:12.70 DIRIO: 166
CPU: 0:00:16.29 FAULTS: 259

Subprocess statistics (all times in seconds)
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C.2.4 EPIC using two independent VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file MAKEEPIC.ECF
EPIC Version V1.0 :

3-APR-1986 02:27:38.02 BUFIO: 1028
ELAPSED: 00:07:57.36 DIRIO: b1

CPU: 0:00:18.33 FAULTS: 288

Subprocess statistics (all times in seconds)
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MAKEEPIC.ECF run on 3-APR-1986 02:27:46
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C.2.5 £PIC using three independent VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file MAKEEPIC.ECF
EPIC Version V1.0

3-APR-1966 02:06:48.99 BUFIO: 1067
ELAPSED: 00:06:32.75 DIRIO: 64
CPU: 0:00:18.26 FAULTS: 294

Subprocess statistics (all times in seconds)
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C.2.6 ¢EPIC using four independent VAX 11/780 computers

MASTER Statistics for EPIC run using ECF file MAKEEPIC.ECF
EPIC Version V1.0 :
3-APR-1986 02:16:04.72 BUFIO: 1086

ELAPSED: 00:05:32.38 DIRIO: 44
CPU: 0:00:17.956 FAULTS: 311

Subprocess statistics (all times in seconds)
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Appendix D

EPIC Messages

This Appendix contains all the messages sent as control communication. They

effectively define the architecture of the software behind £ PIC.

D.1 Messages sent from user to monitor

EXIT
Terminate the MONITOR program. This does not affect the operation of the
master. '

CREATE/MASTER node com-file ecf-file working-directory cluster-list
Create a master

CREATE/SLAVE name node com-file working-directory
Tell the master to create a slave and put it in the database

MONITOR master’s-node
Establish communication with an already—e:dsting master

KILL
Tell the master to terminate the computation and generate the log files

KILL/SLAVE slave-node slave-name
Tell the master to terminate the slave and insert its task (if any) into the ready
queue

SET/CLUSTER = (nodel, node2 ...)
Tell the master to define a set of nodes to be clustered together

SET/REFRESH = time interval
Tell the master to set the interval at which the process rate is refreshed

125



D.2 Messages sent from monitor to master

SET/CLUSTER = (nodel, node3 ...)
Define a set of nodes to be clustered together

SET/REFRESH = time interval
Set the interval at which the process rate is refreshed

EXIT
Terminate the computation and generate the log files

KILL/NAME = slave’s name /NODE = slave’s node
Terminate the slave and insert its task (if any) into the ready queue

CREATE/SLAVE name node command-file working-directéry
Create a slave and put it in the database

D.3 Messages sent from master to monitor
MESSAGE msg
Allows the master to put an arbitrary message on the monitor’s screen

STATUS line-number contents 4
Send statistics line describing slave’s subprocess’ CPU usage to the monitor’s
process display

DONE
Indicates to the monitor that the whole computation has completed.

D.4 Messages sent from master to slave

START task-name /INPUT=(inl, in3 ...) /OUTPUT=(outl, out3 ...) /DCL=(dcl1, dcl2 ...

start the task with the specified inputs, outputs and dcl commands

EXIT :
Terminate the slave subprocess and exit

FREE
Charge elapeed time to the FREE counter, rather than the IDLE counter

SET/REFRESH = time interval
Set the interval at which the slave sends process line information

D.5 Messages sent from slave to master
COMPLETED '

The slave completed its task
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FAILED reason
The slave failed its task

STARTED |
The slave has retrieved the input files and started the task

MESSAGE msg
Allows the slave to put an arbitrary textual message into the master’s log file

STATUS status line
Send statistics line describing slave’s subprocess’ CPU usage to the master for the

monitor’s process display

FINAL statistics
Send final statistics about the slave’s subprocess’ CPU usage, etc., to the master.
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