

This blank page was inserted to preserve pagination.

ID WORLD:
An Environment for the Development of
Dataflow Programs Written in ID

by

Dinarte R. Morais

Submitted in partial fulfillment
of the requirements for the
degree of

Bachelor of Science
in Electrical Engineering and Computer Science
at the
Massachusetts Institute of Technology
May 1986

© Dinarte R. Morais, 1986

The author hereby grants to M.I.T. permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature Of AuthorMQﬂMdA—

Department of Electrical Engineering and Comput&Science

18 May 1986

<
Certified by (/I lA rd A

~ Arvind

Thesis Supervisor

Accepted By

Dawvid Adler

Chairman, Department Committee

D WORLD:
An Environment for the Development of
Datallow Programs Written in 1)

by Dinartc R. Morais

Arvind, Associate Professor of Computer Science and Engincering
Thesis Supervisor

Abstract
The 1D WORIL.D project involves the interfacing of a compiler. interpreter. debugger
and cditor mode to create an environment for the development of dataflow programs
written in 1D, It replaces the Tagged-Token Dataflow Architecture (FTDA) Emulator as
the foundation for the Multiprocessor Emulation Facility at the Laboratory for Computer
Science, MLILT.

This thesis presents the design of 1D WORLD, noting the need for such a system, and
includes a delailed examination of cach subsystem. Special attention is paid to the problems
inhcrent in the old TTDA Emulator, and how they were solved in ID WORLD.

Acknowledgments

I would like to thank Protessor Arvind for the support and guidance he has given me
while writing this thesis. | would also like to thank all the members of the Computation
Structures Group. especially Ken Traub, Richard Mark Solecy. David Culler. Greg
Papadopoulos. Steve Heller, Bhaskar Guharoy, and Andrew Chien, for their invaluable
assistance in the design and implementation of 11D WORILD. and tremendous support they

have given me over the past two years as an undergraduate rescarcher.

Table of Contents

L. INLrOUUCEION eeveerreerrrecneessveseresonnasersasensneens

2. Graph Intcrpreter for the Tagged-Token Architecture

2.1 Background ceerernesnserenaranes

2.2 GITA vs. The TTDA Emulator..............

--

2.2.1 Data Structureseevveesseesseessos

2.2.2 Error Handlingcoeneveeereennene

--

2.2.3 The Basic TTDA Emulator Flaw

2.3 The Structurc of GITA ...

2.3.1 THe TOKCN QUEUE w....eeeeeeeeerenreerrrrearsanesessenessscssesssesesarsasssssssassessensasasasassasasss

2.3.2 The I-Structurce Requests Queue....

2.3.3 The Manager Requests Queue.....

2.3.4 Beginning and Fnding

3. The GITA Dchugger..............

3.1 The Error llandler

3.2 Invocation Treecveeeeeennne .
3.3 Moving around the Invocation Tree..

3.4 Dchugger Commands

3.4.1 Fxamining the Current Context
3.4.2 Backtrace Commands

3.4.3 Scarching

4. An Editor Mode for Devcloping ID Programs
5. 1D WORL.D on Multiple Machines

5.1 The GITA Server

5.2 GITA

5.3 The GITA Dcbugger
5.4 1D Mode

6. The ID WORL.D Abstract Machines

6.1 GITA-I

6.2 GITA-E

6.3 SITA

6.4 Collecting Statistics in ID WORLD

7. Conclusion

7.1 Future Directions

Appendix. ID WORLD Users Manual

l. Loading ID WORLD

SLRE

28

28
29

31
32
32

35

20 USINE [1) MOAE . veeererreacecenertetecnrisnrcssesissstesesissassesssesersssssssssassssasssssassesssssessasassransn
2.1 THE File ALEFBULE LISt .oveiceeeeeeerirtecrceeeeresesenesssessnessssssesossssssnsssssesesnessesess
2.2 Commands in) MOUC..... it sccensssessasisnesesresesasssssescsssessassanseses
2.3 ReStrictions in 1) MOUCveeeeecirciecnnnnessneseesesnenessrasessnsassasssssssasassesesasaense

l.oading Compiled Procedures from the 1D Compiler...ccececreceinnn

The Mapping of I PProcedures to LISP Proccdurcs ... veviccnssnnesnncennccanssenee

Testing 1) Procedures tesnesaessestessaresassntes ueratesateeesreesarearseanaebasteneesans anesaatenn

The GITA Frame...veereennernseraeineereens
6.1 Organization of the GITA FRAMC cvererierercnnireerenesscssssnsenseenssnesssssesssssssnssas
6.2 The GITA Frame MCnu TS .o eoiviicreceereeesenensssnesssisseesssanssssasssasnsssssssssssns
6.3 Collecting and Viewing Statistics eeaeseesteaesststatsesatesseaasessatsasstesenas
6.4 Idecalized vs. Emulated StatisticS e eeececcsesnenerseens erveneseessertesaassesnessestosasses
0.5 StatiStics i GITA .cocecerrerencseerienesnssnnsnnrsnesssssasessssassssssessrasnssasssnasssnse
0.6 VICWINE il SEALISEIC..ciucireerrrirreerseserrnesersesssssesssssssssssssesansnssssssessssnssssnsossanssnasssssases

7. Using the GITA Debugger

7.1 GITA Debugger Definitions . .
7.2 Invoking the GITA DCDUZECT ... viviiieiisecnnensastsnsiesacsessssionsscsonsssassssassasnsos
7.3 GI'TA Dehugger Command L.oop........ csnerimsacssasasseneneastsnarasansssasersaserensns
7.4 Dcbugger Commands for Error Handling
7.5 Dealing with Error objects
7.6 Backtrace COMMEANASc.cccvevcesesncoresreseruessossessasassssassosersssassssssssssssossssssasssasese
7.7 Examining the Current Context....
7.8 Movement Commands
7.9 Searching
7.10 Other Debugger Commands
8. Using GI'TA on Multiple Machines...cucecvceissssisnessessssssansinnsasassessssassrsesasanes
8.1 Sectting up Multiple Machines
8.2 Using the GITA Scrver

N s W

References

Chapter |

Introduction

The Computation Structures Group (CSG) at the Laboratory for Computer Scicnce
(1.CS) is currently building a Multiprocessor Emulation Facility (MEF [2]) to facilitate
rescarch and development in paralicl architectures and languages. ‘The first usc of the MEF
involves the cmulation of the Tagged-Token Dataflow Architecture (I'TDA[1]) to

demonstratce the [casibility of general purpose dataflow machines.

To support these cfforts, scveral programs have been written over the past several years
to support datallow software development. Unfortunately, these programs were not
designed to be dircctly interfaced to on¢ another. As a result, the software development
cycle for dataflow programs was very long. A typical cycle would begin with the usc of an
editor to cdit a file containing a picce of code written in a dataflow language. The file would
then be written to disk. and a compiler would be invoked and told to rcad the source tile,
outputting a file containing the compiled code. Finally, an interpreter would be told to load
the compiled file just produced, and only then would the original dataflow program be
exccuted. When the interpreter would dctect an error in the program, the user would have

no choice but to go back to editing the source file and start the whole cycle over again.

To somcone who devclops programs in, say. C or CLU, this may secm like a normal
cycle. A Lisp Machine programmer, however. has become accustomed to a very interactive
cnvironment where programs may be incrementally edited, compiled, cxccuted, and

debugged. without ever Icaving the editor.

The goal of ID WORLD is to provide such an intcractive environment for the
development of programs written in 1D [4]. the dataflow language used by the Computation
Structures Group. With 1D WORLD the typical software development cycle is as follows.

A user enters the editor and types in an ID procedure. With a single keystroke, the

procedure is sent to the 1D compiler. and the output of the compiler is automatically loaded
into the interpreter. Then, without leaving the editor, the user instructs the interpreter to
exccute the procedure. and when the interpreter detects an crror the uscr simply continucs
cditing the procedure until it is correct. Thus, with only a few keystrokes and without
writing a single file. 1D WORIL.D interfaces the cditor. compiler, and interpreter, making it

much quickcer to develop programs.

The remainder of this thesis is organized as follows. Chapter two presents the design of
GITA, the interpreter uscd in 1D WORILD to exccute dataflow programs. Chapter three
presents the GITA debugger, noting how it differs from normal debuggers for scquential
languages. In chapter Fouf I describe 11D Mode. a new cditor mode for the development of
ID programs. Chapter five discusses how cach of the subsystems in [D WORLD
generalizes when multiple machines are used. Chapter six presents the three abstract
machines supported by 11D WORLD. In chapter scven | presents conclusions and offer
suggestions for future improvements to 1D WORLD. Finally, the Appendix contains the
1D WORLD users manual.

Chapter 2

Graph Interpreter
for the Tagged-Token Architecture

GITA, the Graph Interpreter for the Tagged-Token Architecture, was designed by Ken
Traub and Richard Soley and was originally implemented by the author and Richard Soley.
Improvements to GITA have been made by by David Culler, Greg Papadopoulos. Andrew

Chicn, Steve Heller, and Bhaskar Guharoy.

2.1 Background

The first mcthod of exccuting 1D programs involved using a program called 1DSys
which took D programs. compiled them into Macl.isp. and cxecuted them. This 1D to
LISP compiler was followed by an 1D to Graph compiler. which compiled {D procedures
dircctly into dataflow graphs. A TIDA Simulator was then created to exccute these
dataflow graphs. At the time it was envisioned that ID programs would be debugged on

IDSys, and only working programs would be run on the TTDA Simulator.

The TTDA Simulaior was followed by a TTDA Emulator, written in LISP for the
Multiprocessor Emulation Facility (MEF [S]), which was supposed to be a much faster
interpreter of dataflow graphs. The TTDA Emulator was eventually abandoned, however,
partially because it failed to perform as expected, and partially because the MEF was in the

process of changing over to using T.1. Lisp Machines instead of Symbolics Lisp Machines.

The 1D to Graph compiler was eventually ported to the Lisp Machine, but 1DSys was
not. The only way left to exccute D procedurcs was the TTDA Simulator. Dcbugging
programs on the TTDA Simulator was very dilTicult because both the ID to Graph compiler
and the TTDA Simulator were still rclatively untested and full of bugs. Gino Maa
eventually succeeded in debugging a 1200 line 1D program, but only aftcr many months of

effort. It was suggested that perhaps a version of the simulator which had only one fast

processing clement would simplify the debugging of programs. 1t was then suggested that
the TIDA Emulator could be resurrected and simplified. FFinaily, Ken Traub suggested

that it would be casicr to create a new interpreter, called GITA.

2.2 GITA vs. The TTDA Fmulator
GITA is an object-oriented dataflow interpreter. which replaces the Tagged-token
dataflow emulator on the MEF. In this scction | will point out some of the poor design

decisions in the TTDA Emulator. and show how they arc solved in GITA.

2.2.1 Data Structures

Onc of the biggest differences between GITA and the TTDA Emulator involves how

each implements the fundamental data structures necessary for exccuting dataflow graphs.

In the TTDA Emulator, tokens were represented as 32 contiguous bytes of data at some
offsct into a large array called the token store. Accordingly, whenever a part of the
Emulator had a refcrence to a token, all it really had was an integer specifying the olfsct into
the array. This made it very difficult to debug the TTDA Emulator because it was
impossible to tell if a variable was refcrencing a token by just looking at its value. The user
would have to somchow know that if the value was an intcger. then it might be referencing a
token. In addition, because the data inside a token was represented as a serics of bytes, it
was necessary to writc cncoding and decoding functions for each of the slots in the token
data structure. Furthermore. there needed to be debugging functions which would take an
ofTsct into the token store and print a human-rcadable representation of the contents of the

token.

These problems were avoided in GITA by simply representing a token as a structurc of
typc token. By making a token a distinct. recognizable object in GITA, it is much easier to
dcbug code since there is no longer any confusion about what a variable actually references.
Also, since a token is made up of several slots which can cach contain a refcrence to any

LISP object. there is no need to perform any encoding or decoding of data. GITA, in fact,

maps the data types in 1D directly into the primitive data types ol LISP, where possible. and
where not possible a new LISP data type is created to represent the 1D data type. For
cxample, the 1D data types boolean, integer. and real number, are directly represented in
LISP by boolcans (t and n11). intcgers, and Hoating-point numbers. Since 1-Structures
don’t map dircctly to any primitive LISP object, however, a new data type was defined to

represent them.,

Onc disadvantage of representing the data structures in GITA as objects is that the
object representation takes up considerably more storage than docs the scheme used by the
TIDA Emulator. For cxample, in the TTDA Emulator the instructions for a dataflow
graph were represented ;u{ an array of 8-bit bytes, and a single instruction was represented as
an offsct into this array. On average a single instruction was 8 bytes in the T'TDA Emulator.
In GITA. however, an instruction is an objcct of type instruction, and takes up about 48
bytes of'storage. a 600% increase. The reason for this large increase in size is that the 8 bytes
in the TI'DA Emulator actually encode about 12 diffcrent picces of information. In GITA
each picce of information is given its own slot in an instruction object, and each slot is large
enough to reference any other LISP object. On the LISP machine this translates into 4

bytes per slot, for a total of 48 bytes.

In GITA, this incfficient use of storage is justified for two reasons. First, GITA is
running on machines with large virtual address spaces. There is no need to waste a lot of
effort saving space if you have more than you can possibly use already. And second, as a
result of the inefficicnt use of storage, GITA can exccute dataflow graphs considerably
faster than the TTDA Emulator. At most, the TTDA Emulator could execute
approximately 250 dataflow instructions per second. GITA, on the other hand. currently
executes dataflow instructions at the rate of 2,500 per second.! This increase in spced is not
surprising since GITA has to do almost no encoding or decoding of data before using it
The TTDA Emulator needed to decode the bit patterns of each instruction each time it

interpreted it. In GITA, the bit patterns are decoded once at load time and are stored in a

1'lhese: rates are from each system running on a Symbolics 3600 Lisp Machine.

more casily accessible, albeit more verbose, format. In sum, a better time/space tradeolt

was made in GI'TA than in the TTDA Emulator.

2.2.2 Error tLandling

Another difference between GITA and the TTTDA Emulator involves how cach
approached the problem of crror handling. When cither interpreter is exceuting a dataflow
graph, it must make surc o catch any run-time errors, such as overflow, undcrflow,
division-by-zcro. ctc.. and report them to the user. There are essentially two ways 0

approach this problem: eager error handling or lazy error hundling.

The TTDA Emulator took the cager crror handling approach. What this means is that
before it would cxecute any instruction. it would make surc that no crrors were going to
happen. For cxample, before performing a division, the TTDA Emulator would check that
the denominator was non-zero. It would then check for the possibility of positive and
negative overflow, and positive and negative underflow. Only if it was sure that the division
would not cause any of these errors would it finally go ahead and perform the division. This
approach is analogous to the strategy of touching all the pages that an instruction in a virtual
memory system is going to access. and only after all the pages are guaranteed to be in

physical mcmory is the instruction actually executed.

In GITA, the lazy error handling approach is taken. What this means is that GITA does
not bother checking the arguments to an instruction before it interprets it. It just assumcs
that the arguments are of the correct types and that no error is going to happen. Most of the
time, this turns out to be a correct assumption. There are times, of course. when the
assumption is incorrect. such as when a dividc-by-zero error happens. But for this case
GITA just lets the Lisp Machine error handler catch the crror, and intcrcepts it before the
LISP debugger is invoked. It then figures out which part of the machine got the crror (the
ALU in this case). and rccords any relevant information (such as the arguments to the
instruction) so that it can explain and analyze the error at a later time. Finally, it causcs the
instruction to abort and goes on to the next one. This approach is analogous to being able to

- back out of the execution of any instruction when a page-fault occurs in a virtual memory

system. In GITA this is always possible because the commit point in the execution of
dataflow instructions occurs when a token carrying the answer is actually transmitted to the
next instruction, and this docesn’t happen until the answer is computed. Il an crror doesn’t
happen while the answer is being computed. then it isn’t going Lo huppcn.2

The advantages of lazy crror handling over cager error handling arc clearly
demonstrated by examining how the TTDA Emulator and GITA cach exccute a floating-
point multiplication instruction. In the TTDA Emulator. exccution of a single floating-
point multiplication instruction required 3 function calls. 4 floating-point relational
operations, 2 floating-point divisions, and 1 floating-point multiplication. The 4 rclational
operators and 2 floating-point divisions were done to make surc that the multiplication
would not overflow. GITA, however, exceutes the same instruction with just 1 function call
and 1 floating-point multiplication. Should the multiplication overflow the LISP system

would raisc an exception, which would be caught by GITA.

2.2.3 The Basic TTDA Fmulator Flaw

The previous two design flaws in the TTDA Emulator were actually a result of a more
fundamental problem in its design: it was designed to behave too much like a real Tagged-
Token dataflow machine. This is ironic since the TTDA Emulator was supposecd to be a
“soft” implementation of the machinc. It was hoped that by emulating the machine in
software, the flaws in the design of a real machine could be ironed out before it was actually
built. The problem, however, was that the Emulator became so unmanageable that cven the
smallest changes to it were extremely hard to make. In effect. the Emulator became almost

as unmodifiable as hardware would have been.

2Assuming. of course, that the transmission of the answer does not cause an crror. Unless GITA itself has a
bug in it, the transmission will always succeed.

10

2.3 The Structure of GITA
This scction presents the internal organization of GITA. It assumes the reader is

familiar with the Tagged-Token Dataflow Architecture, and the dataflow language 1D.

The internal organization of GITA is shown in figurc 2-1. GITA can receive three
different types of input, cach of which is placed in its own qucue. During cach cycle, GITA
removes and processes one entry from cach of these three qucues. We examine cach of

these qucues individually.

2.3.1 The Token Quecue

The token qucue contains tokens which have left the instruction which created them, but
have not yet arrived at their destinations. That is, it contains all the tokens still riding on the
arcs of the dataflow graph (but not including those which arc sitting in the waiting-matching

section).

GITA processes a token from the token queue as follows. It first looks to sec if the
instruction is unary. [f so, then it sends it directly on to the ALU section, bypassing the
waiting-matching section. Otherwise, the token is binary. In this case the waiting-matching
section is scarched for the partner of the token. If a partner is not found. the token stays in
the waiting-matching scction until his partner arrives. If a partner is found, then it is
removed from the waiting-matching section and both tokens are forwarded to the ALU

section.

The ALU section looks at the tags on the tokens to find out what operation must be
performed. This operation will cither be an arithmetic operation, an I-Structure opcration,
or a Manager operation. In the case of an arithmetic opecration, the ALU simply takes the
two data values riding on the tokens, computes a result, packages it into a token, and sends
the token to the destinations of the instruction it just executed. In the case of an I-Structure
operation, the ALU takes the nccessary information from the two tokens and outputs an
[-Structure request. A Manager operation is similar, except that the ALU outputs a

Manager request.

11

Input

L

— j— F—_—"‘—__._—:
[I:/lzmugcr I-RStruc(urc Token
quest : '
cquicsts cquests Queue
Qucue Qucue

S
System I-Structure Waiting-Matching
Manager Controller Scction
\. ALU /
Output

Figure 2-1: Organization of GITA

12

2.3.2 'T'he I-Structure Requests Queue

The [-Structure Requests Qucue contains unprocessed requests for the |-Suucture
controller. GITA processes a request from this queue as follows. It looks at the request-
type ficld of the I-Structure request object to ligure out what operation nceds to be
performed. This can be cither I-Feich, I-Store, Increment Reference Count, or Decrement

Reference Count.

In the case of an I-Fctch, the rest of the request will contain a reference to an -
Structure, an indcx. and a destination. The destination specifies where to send the token
containing the vatue to be read. The I-Structure controller first looks to see if the given slot
in the I-Structure has alrcady been written. If so, it takes the value stored there, packages it
into a token, and sends it to the destination. I the slot is empty. then the I-Fetch is said to
be deferred, and the request is suspended until a write of the slot occurs, at which time the

request will be satistied.

In the case of an I-Store. the rest of the request will contain a rcference to an I-Structure,
an index, a valuc to store, and a destination. The destination spcecifies where to send an
acknowlcdgment token, which declares that the 1-Store has taken place. The [-Structure
controller looks to sce if the given slot in the [-Structurc has already been written. If so, an
error is signalled since an [-Structure slot may be written only once. Otherwise, the
controller sces if there are any I-Fetches waiting for the value in the slot about to be written.
If so. it packages the data value into a token and sends it to the destinations given by each
deferrcd [-Fetch. Finally, the valuc is stored in the slot, and an acknowlcdgment token is

sent to the destination specificd by the current [-Store request.

In the case of Increment Reference Count, the rest of the request will contain a refcrence
to an |-Structure, a number specifying the amount by which to incremcent the reference
count, and a destination. The dcstination specifics where to scnd an acknowlcdgment token
after the reference count is adjusted. The I-Structure controller simply increments the
reference count by the given amount and sends the acknowledgment token to the

destination. Decrement Reference Count is done in cxactly the same way, cxcept that the

13

reference count is decremented.

2.3.3 The Manager Requests Queue

The Manager Requests Queue contains unprocessed requests for the System Manager.
GITA processes a request from this queue as follows. [t looks at the request-type ficld of
the Manager request object to figure out what operation needs to be performed. This can

be cither Invoke or Terminate.

[n the case of Invoke. the rest of the request will contain a referenee to a procedure
object, an I-Structure Descriptor (1SD) for the arguments, an ISD for the Results, and a
reference to the context which is invoking this procedure. The manager creates a new
context for the invocation of the procedure, fills it with the ISD’s for the arguments and
results, and stores the reference to the caller context in the new context. It then creates a
token and scnds it to the first instruction in the new procedure, causing the procedure to

begin execution.

[n the case of terminate, the rest of the request will contain a reference to the context to
be terminated. The manager then releascs any resources used by the context and sends a

signal to the caller telling it that one of its sub-procedures has terminated.

2.3.4 Beginning and Ending
The previous three sections describe what GITA is doing when it is running, but how

does the execution of a dataflow graph start and end?

To begin the execution of a procedure, GITA simply creates a manager request which
asks that the procedure be invoked with a certain set of arguments. This manager request is
simply placed into the manager request qucue and the main cycle of GITA is started. The
system manager will then process the request, pl:xcing the initial token to be dropped into
the dataflow graph of the proccdure into the token qucue. From then on GITA continues

processing cach queue until there is nothing left to do.

14

The interpretation of the dutallow graph is said to have ended when there are no more
entrics on any of the Manager Request, [-Structure Request, or ‘Token queucs. Normally
this mcans that there arc no more tokens in the waiting-matching scction, and no suspended
(i.c. delerred) requests left in the 1-Structure controller. However. if a run-time crror was
detected during cxecution. or if the dataflow graph was not well formed (because the
compiler generated bad code. for examplc), then there may still be tokens or suspended
I-Structure requests left around. When GITA finishes exccuting it will warn il the

cxecution did not end properly.

15

Chapter 3

The GITA Debugger

The GITA dcbugger is in many ways like the normal LISP dcbugger. The main
difference is that the LISP debugger allows you to look up and down a stack of frames,

whilc the GITA dcbugger allows you to ook around a tree of contexts.

3.1 ‘the Error Handler

When GITA deteets an crror during exccution of a procedure a message is printed
saying in which part of the machine the crror occurred. Exccution continues, however, until
there arc no more activitics rcady to fire. At the end of cxecution GITA reports the total

number of ¢crrors it encountered.

The GITA Debugger has commands which let you view the errors which occurred
during the last GITA run. To debug a particular error you would type a command to the
debugger tclling it that you arc intercsted in that error. The debugger will then set both the

current and anchor contexts to the context in which the error occurred.

3.2 Invocation Tree

In GITA. a context corresponds to a stack frame in scqucential languages. Whenever a
proccdure is invoked a contcxt is created to hold its arguments and results, and any other
information particular to the proccdurc’s invocation. Because a procedure can execute sub-

procedures in parallel, however, GITA must maintain a tree rather than a stack of contexts.

An example of an invocatjon trec is show in figure 3-1. The root context never changes
and is the one context which has no father. It corresponds to the top-level procedure
invocation made which started GITA running, and is shown in the figure as context 1. The

current context corresponds to the context which is currently being examined. As you move

16

Koot context

i
[
l
@ Anchor Context

Figure 3-1: An Invocation Tree

around the tree of contexts, the current context is changed to reflect your position in the
tree. In the figurc, context § is shown as the current context. Finally, the anchor context is a
context which usually corresponds to a context at which an error occurred, although is can
be changed to any context at all through a debugger command. This anchor context is used

in order to facilitate moving up and down the tree of contexts, as explained below.

3.3 Moving around the Invocation Tree

Moving around the tree of invocations in the GITA debugger is not quite as easy as
moving up and down the stack in the LISP debugger. A context will have at most one
father (the caller), but may have several sons (each corresponding to a procedure invocation

which has not yet terminated).

Moving “up™ the tree of invocations is straightforward, the current context simply gets
set to its father. Moving “down”, however, requires that a branch be selected from among

its sons. For example, in figure 3-1 the current context is S. Moving up the context tree

17

from context 5 would make the current context be 2. To move down, howcever, a choice
must be made between the three contexts which are the sons of context 5 -- contexts 6, 7,
and 8. Of the three possible choices., context 6 scems the “obvious™ choice. This is because
it is closcst to the anchor context. The uscr will probably wish to return to the anchor
context often since it is the one at which the crror being debugged occurred. Furthermore,
it is unlikely that the user will be intcrested in any contexts not on the path front the anchor
context to the root context (shown as dashed lines in figurc 3-1) since they probably had
little to do with the cause of the crror. In the GITA debugger, moving down the trec of
invocations implics moving down the “obvious™ choice. if therc is onc. This makes moving
around a tree of invocations in the GITA debugger just as casy as moving up and down a

stack in the LISP dcbugger.

3.4 Dchugger Commands

This scction bricfly describes some of the more important GITA debugger commands.,

Sce the Appendix for a more complete description along with a listing of all the commands.

3.4.1 Examining the Current Context

There are many commands in the GITA debugger designed to return information from
the current context. With a single keystroke you can get at any argument or result value, the
ISD used to hold the arguments, the ISD used to hold the results, a local value (token), the

current procedure object, or even the context itself.

As it happens, some of the information is not very helpful. To somcone who does not
understand the inner workings of GITA, looking inside the context or procedure object will
shed little light on what went wrong. In addition, all you sce when you look at the local
valucs in a context is a bunch of tokcns carrying data headed for different instructions. The
problem is that the current 1D compiler does not provide a mapping from arcs in the
dataflow graph to names in the source code. If it did. then it would be possible for the
GITA debugger to provide information such as "local variable X in procedure P has the

value Y". Instead, all that can be provided now is “some local variable in procedure P has

18

the value Y." A sccond version of the 1D compiler is currently being designed which will
output the mapping from arcs o names. As soon as it is complete. the GITA debugger will

b¢ much more informative.

Probably the most important picce of information provided by the GITA dcbugger is
the values of the arguments given to a procedure. I an crror occurred in procedure P which
was called rom procedure Q. you can usually debug procedure P independently by editing
it, compiling it, and then calling it dircctly (without going through procedure Q) with the
arguments which caused it to fail. until the procedure works as expected. This "bottom-up”
style of programming is facilitated by the rapid edit, compile, debug loop provided by 1D
WORI.D.

3.4.2 Backtrace Commands

A bucktruce is a listing of the contexts in reverse order starting from the current context
and cnding at the root context. There are two backtrace commands which differ only in
how much dctail they provide about each context. One shows only the name of the
procedure for cach context, while the other shows the name of the procedure along with its

arguments.

These commands are uscful for figuring out where in the execution of a large program
the error occurred. For example, suppose you were trying to debug a recursive procedure P,
and an error occurred in some call to the procedure. [f the backtrace shows that only one
call to procedure P has beecn made, then the procedure probably failed in the part which was
to do the recursion. On the other hand, if the backtrace shows many calls to procedure P,
then the procedure probably failed in the part which terminates the recursion (the base

case).

Even in the casc of non-recursive procedure invocations, the backtrace shows you the
particular scquence of procedure invocations which led to the current error. This

information is sometimes enough to tell you what went wrong.

19

3.4.3 Searching

There 1s a command which will scarch for a context with a procedure whose name
contains a given substring. The contexts are scarched starting {rom the father of the current
context toward the root context. This is uscful for quickly jumping to some context shown
in a backtrace. For cxample, if the backtrace is:
FOO [1] <- BAR [2] <- BAZ [3] <- QUUX [4]
Then scarching for "BA™ will make the current context be BAZ [2]. and scarching for “F”

will make the current context be FOO [1].

20

Chapter 4

An kEditor Mode for Developing 1D Programs

Both the Symbolics and Texas Instruments Lisp Machines have a built-in editor called
/MACS. bascd on the EFMACS cditor. Onc of the features of both cditors is that they have
the concept of a major mode. A major mode Lells the editor what kind of document is being

cdited. Every buffer has a major mode.

One of the most often used major modes on the Lisp Maching is, obviously, LISP mode.
When LISP code is being cdited, LISP mode tells the editor how to recognizc LISP
procedures, how to move around LISP structurce quickly. how to compile LISP procedures,

ctc.

In ID WORLD therc is a new major mode called |1D Modc. which defines several
commands that recognize the structure of ID procedures, and interfaces the ID Compiler
and GITA in order to simplity program development. As of this writing, ID Mode

currently knows how to do the following:

o [t is able to move he cursor to the beginning and end of ID procedures.

o It understands about comments in ID, and can insert and remove them at the
end of lines of code.

e It can send one, two, or up to an entire buffer full of ID procedures to the 11D
compiler, and will automatically load the output of the compiler into GITA.

In the future, the following commands wili be added to ID Mode:

e Indent for ID. By hitting the TAB key. the current line of code will
automatically be indented to the correct column.

e The ability to send a batch job to the TTDA Simulator on an IBM mainframe
dircctly from the cditor.

21

The major advantage of 1) Mode is that it provides a sort of "control pancl” o the rest
of 1) WORLD. Withowt cver leaving the oditor, it is passible 10 write. compile, crecute,
and debug 1D procedures. In addition, cven when the &}W is changed (to 1D/83s),
the commands in 11D Mode will mma&em Sae&cmam for a compicte
description of the 11 Mode communds, '

Chapter §

D WORL.D on Multiple Machincs

When writing code for a parallcl dataflow machine, one should not have to be concerned
with the number of physical processors which will ultimatcly be exceuting his program.
That is, il one doubles the number of processors on his dataflow machine, all programs
should run without change to the source code. Doubling the number of processors should

only have the cffect of speeding up the exccution of those programs.

Similarly. one of the design goals of 11D WORLD is that the user should not have to be
concerned with the actual number of machines cooperating in the cxecution of his
programs. Increasing or decreasing the number of physical processors should be
transparent to the user of ID WORLD in that whenever 1D WORLD is being used in
multiple machine mode, each of its subsystems should automatically gencralize to multiple

machines.

5.1 The GITA Server

In order for ID WORLD to be used on multiple machincs, the user requests that some

3

number of additional machines be allocated to him.” The user's machine is known as the

master machine, and the additional machines are known as server machines,

In order to allow for communication between the muaster machine and the secrver
machines, a GITA Server connection is made over the EtherNct to cach of the server
machines. The rest of this chapter describes how each of the subsystcms of ID WORLD use

the GITA Server when running on multiple machines.

3Currcnuy there is no good way (0 do this. In the future we envision an |D WORLD server running on some
machine which will be responsible for allocating and deallocating machines in the facility.

23

S2GITA

GITA can be extended to run on multiple machines in many different ways. One way is
to map the datallow graphs of procedures across several machines so that different parts of
the graph may be evaluated in parallcl. This is the approach taken by the TIDA Emulator.
Whilc it is believed that something like this will have to be donc cventually, it would have
required substantial changes to the single-machine version of GITA, and so a less desirable

but more casily implemented approach was taken.

It was decided that the procedure invocation would be the smallest unit of work shipped
to other machines. Thus, whenever procedure P called procedure Q. GI'TA would decide
where the invocation of Q should tike place. Currently cach machine performs round-
robin scheduling of procedure invocations among all the server machines. The first
procedure invocation is done on the local machine, the next on the first scrver machine, the
next on the sccond server machine, ctc. With cach muachinc doing its own round-robin
scheduling, the division of work tends to spread out over all of the machines in a fairly

uniform way.

One of the problems with having more than one machinc sharing in the execution of a
dataflow program involves the access to I-Structures. In the single-machine version. all
i-Structures were created on the local machine and access to them was easy -- just read the
nfslot. In the multiple machine version, however, it could be that an [-Structure passed in
as an argument to a procedure was actually crcated on some other machine. In this case a
request must be sent to the machine which created the structure and a reply must be sent
back. This information could be scnt over the EtherNet, but the EtherNet would quickly
become the bottleneck in the system. Instead. a high-speed circuit switch network is utilized
by GITA whenever communication of information between machincs cooperating in the

exccution of a program is required.

The multiple-machinc version of GITA uses the GITA Server only to start and stop each
of the server machines. That is, the user tells the local machine to execute a procedure. The

tocal machine then instructs cach of the server machines to get ready to cooperate in the

24

execution of the procedure. Fach of the server machines initializes internal data structures
and then listens to the circuit switch network for requests o invoke procedures or read
I-Structure slots. The local maching then exccutes the procedure, which will cause other
machines 1o receive requests Lo invoke procedures, which will in turn cause more machines
to reccive requests to invoke procedures, ete. Eventually, the Tocal machine deteets that the
initial procedure invocation has terminated. and uscs the GITA Scrver to tell cach of the

server machines to stop listening to the circuit switch and idle until they are necded next.

5.3 The GITA Dchugger

When GITA is run on multiple machines, crrors are trapped by cach machine involved
in the execution of the program. Whencever a machine detects an crror. it records enough
information to cxplain what went wrong, reports to the master machine that somcething went
wrong, and aborts the operation which caused the error. Because the operation was aborted
betore it could send its result to the next operation, the exccution of the entire program will
cventually come to a premature halt. At that point, cach machine will be lcft with a certain

number of proccdures which arc only partially exccuted.

When the user decides that enough errors have occurred, he enters the GITA debugger.
At that point, the local machine must do two things: collect all errors, and build an
invocation tree. To collect the crrors the local machine simply uses the GITA Server to
request from cach machine the errors that were trapped during the last program execution.
Later when the user picks one of these errors to debug. the current context will

automatically be changed to the context in which the chosen error occurred.

Building an invocation tree is a bit more tricky becausc the contexts still active are
spread out over the server machines. To simplify matters, the GITA dcbugger uses the
GITA Server to collect each of the active contexts on the remote machines and builds one
large invocation trce on the local machine. After doing this, it knows the context which
called cach context (the "up” links in the tree). as well as the active sub-contexts for cach
context (the "down™ links in the tree). Furthermore, it knows on which machine each

context was invoked.

25

Even when GITA s run in single machine mode. an invocation tree is butit when the
GITA debugger is entered. In this case all contexts in the tree will have been executing on
the local machine. The reason for doing this is to provide the GI'TA debugger commands a
uniform view of the world. Whencver a command requires information from a context in
the invocation tree, a tunction is called requesting the information. The job of the function
1s to get the requested information anyway it can. If the context is local, then it can simply
get the information from the data structures in the local machine. If the context is non-local
(i.e. it was running on some other machinge), then the GITA Server is used to request the
information from the scrver machine. When the information is rcturned. it is cached locally
so that it will not have to requested again, and is returned to the command which requested

the information.

Thus, not even the GITA dcbugger commands necd be concerned with the number of
machines involved in the exccution of a program. By scparating the rcquesting of
information from the obtaining of the information, the GITA dcbugger provides an

identical interface no matter how many machines are in use.

541D Mode

The only part of IID Mode which needs to be concerned with the number of server
machines in usc is the part which sends the object code from the ID Compiler to GITA for
loading. When running of multiple machines, each machine must be given the object code.
This is because, unlike the TTDA Emulator. GITA does not transmit programs to server
machines which do not have them loaded at run-time. Instead, [D Mode makes sure that all

machines always have the latest compiled version of any procedure.

The main reason for insisting that each machine always have the same procedures
loaded is that it minimized the changes to GITA nececssary to make it work on multiple

machines. In the future GITA may be changed to do dynamic loading of procedures.

Finally, a change was made to ID Mode not to support multiple machines but rather to

_ exploit them. Whenever several machines are being used, and more than one proccdure is

26

to be compiled (as, for ewnpk‘. when mmh@m

ited). the procedures are

farmed owt 1 cach of the server mudting for o ol

ing. Thus. the time mquind to

Chapter 6

The 1D WORLD Abstract Machines

1D WORLD currently supports three different abstract machines on which to cxccute
dataflow programs. Each of the machincs is similar in that they accept the same output
generated by the 1D Compiler, and. when told to exccute a procedure with a given sct of
arguments, will cach producc the same answer. The main difference involves how closcly

cach attempts to simulate the actual Tagged-Token Dataflow Machine.

The first two abstract machines. GITA-I and GITA-E. arc actually the same program,
GITA, being run in two different modes. GITA-1 is GITA running in idealized mode, and
GITA-E is GITA running in emuluation mode. We treat them as different abstract machines
because the statistics they generate differ radically and are based on two different dataflow
exccution modcls. The third abstract machine, called SITA (the Simulator for the Tagged-
Token Architecture) is implemented in PASCAL and runs on an IBM 4381. Euch of these

machines is cxamined individually in the remainder of this chapter.

6.1 GITA-1
GITA-1 is short for GITA-ldealized, and is realized in software by running GITA in

idealized mode. Of the three abstract machines, it does the poorest job of simulating the
Tagged-Token Dataflow Machine. [n fact, GITA-I makes no attempt to simulate any
realizable machine. It is best thought of as a machine which captures the abstract behavior

of the U-Interpreter [3].

The statistics collected for a program exccuted under GITA-1 are bascd on the following

assumptions:

e All activitics rcady to fire arc fired in the same timestep

o All activitics take onc time unit to execute

28

e There is zero communications delay

o Unbounded resources are available

In GITA-I a timestep is defined to be the amount of time it tukes o process all activitics
which arc ready to fire at the beginning of the timestep. Any activitics which become ready
to firc as a result of the firing of an instruction during timestep # will fire during timestep n

+ L

The statistics collected by GITA-I should be interpreted as mceasuring the inherent
paraliclism in a program. The idcalized statistics for a given program will not change when
morc machincs arc used to help exceute the program, nor will they be affected by real-world

problems such as poor load-balancing, or high communications overheuad.

When a program has been debugged and is being used for experimentation it should be
run once on GITA-I in order to determine the idcal performance of the program. Should
this idcal performance show that little parallclism exists in the program, then one should not
be surprised to find that a more realistic machine faired poorly in executing the program.
On the other hand. if the ideal performance shows a great deal of inherent parallelism and
yet the realistic machine failed to exploit enough of it to keep it busy, it may indicate a

problem with the implementation of the realistic machine.

In sum, then, statistics collected by GITA-I should be used as a control element when

experimenting with various parameters of the more realistic machines.

6.2 GITA-E

GITA-E is short for GITA-Emulation, and is realized in software by running GITA in
cmulation mode. Statistics collected by GITA-E come closer to describing how a real
dataflow machine would pcfform on a program. GITA-E differs from a real dataflow

machine in the following ways:

e The minimum amount or work which can be sent to another processor is an
entire proccdure. This sometimes causes a few processors to be busy executing

29

large. complex procedures. while other processors sit idle. In a real dataflow
machine the minimum amount ol work could be as fittle as a single instruction.

e |-Structurcs in GITA-E arc always mapped onto one processor. This sometimes
causes a single processor which just happened to create a structure which is
referenced very often (such as a table of values used by a table-lookup routine)
to be swamped with I-Structure requests. In a real dataltow machine I-Structure
could be mapped across several processors, such that the first processors
contains clement 1, the second clement 2, cle.

e GITA-E is not pipclined. whercas a rcal dataflow machine would be heavily
pipclined.

o [-Structure requests and ALU operations are processed scquentially, whereas a
real dataflow machine would process them in parallel.

Even with these differences, the statistics given by GITA-E can be used to get a fecl for
how the sctting of various parameclters in a rcal machine might affect its performance on
certain types of programs. For example, by changing the number of machinges participating
in the exccution of a program, onc can scc how well GITA-E was able to divide the work
among the machines. In addition, it is possible to get a fccl for how large certain parts of a
real dataflow machine might have to be in order to be able to run large programs. One of
these parts is the waiting-matching store. If the waiting-matching store is too small, certain
programs will not be able to run. By running many different programs on GITA-E it is
hoped that one will be able to get a better feel for the waiting-matching storage

requircments of a real machine.

6.3SITA

SITA, the Simulator for the Tagged-Token Architecture, is rcalized in softwarc by
running a PASCAL program on an I1BM 4381. SITA was designed to simulate to a very low
level the execution of a real dataflow machine. The statistics collected by SITA are very

detailed and can provide precise information on the dynamics of a real dataflow machine.

There are two main drawbacks with using SITA, however. The first is that, unlike all

other subsystems of ID WORLD, SITA docs not run of a Lisp Machine. In order to usc

30

SITA. a batch job must be submitted to the IBM 4381, and only some time later will the job
be finished and the results be ready to examine. 'This mode of operation doces not fit in too

well with the highly interactive environment ol 1D WORLD.

The sccond drawback is that SITA is very slow in exccuting programs. It currently
exceutes approximately 80 dataflow operations per second. compared 10 GITA-E which

cxccutes approximately 800 dataflow opcerations per sccond per processor.

The user of ID WORLD will have to decide for himself which is more important; faster
cxecution and less truc-to-life statistics (GI'TA-E), or stower exccution and very realistic

statistics (SITA).

6.4 Collecting Statistics in H) WORLD
Currently 1t is very casy to collect and view statistics generated by GITA-I or GITA-E.

1D WORL.D has yet to be interfaced to SITA, however.

Sce the appendix for a complete description of the statistics currently available, as well

as u listing of the commands used to view them,

31

Chapter 7

Conclusion

D WORL.D can currently be used on any Symbolics or T.1. Lisp Machine (standalone
configuration), or on the group of 32 T.1. Lisp Machines connected by a high-speed circuit
swilching nctwork which comprise the Multiprocessor Emulation Facility at the Laboratory

for Computer Scicnce, MLLT.

So far 1D WORLD has proven valuable to the members of the Computation Structures
Group who find that the highly interactive nature of 11D WORI.D greatly simplifics the task

of devcloping dataflow programs written in 1D,

7.1 Future Directions
ID WORLD is still a relatively new environment which is likely to change and evolve as
more people use it. There are two places where | fee!l that improvements should be made

soon.

The first involves the handling of statistics collccted by each of the threc abstract
machines. Currently there is only minor support for the viewing of statistics collected from
GITA-1 and GITA-E. and there is none for viewing statistics from SITA (at least not in ID
WORLD). A mechanism needs to be designed which will allow statistics from all three

abstract machines to be collected, stored, retrieved, and compared, in a consistent manner.

The second improvement which must take place soon involves the way ID WORLD
currently interfaces to the circuit switching network on the MEF. The problem with the
current interface is that there is none. When one subsystem of ID WORLD wishes to send a
message over the circuit switch it must use very low-level primitives to instruct the hardware
to send a number of words from the current machine to some other machine. The problem

with this approach, of course, is that there is no one uniform interface to the circuit switch

32

which cveryone can use. 1 cnvision a u !“‘;_, s o
top of the circuil swilch,

g ke the old MEF goneric

kation abstraction on

3

Appendix

ID WORL.D Users Manual

This appendix is a reference manual for 11D WORLD, currently being used by the
members of the Computation Structures Group in the Laboratory for Computer Science at

M.LT.

1D WORL.D interfaces the 1) Compiler Version 1. GITA, the GITA Dcbugger, and 1D
Mode. in order o simplify the development of datafllow programs written in 1. The 1D
Compiler Version 1 was written by Ken Traub and Steve Heller. and is basced in large part
on the 1D Compiler Version 0 by Vinod Kathail. GITA, the Graph Interpreter for the
Tagged-Token Architecture, was designed by Ken Traub and Richard Soley and was
originally implcmented by the author and Richard Soley. Improvements to GITA have
been madce by David Culler, Greg Papadopoulos, and Steve Heller. ‘The GITA Debugger
and 1D Mode were designed and implemented by the author.

34

Section |

Loading ID) WORL.D

In order to begin using 1D WORIL.D. you must make sure that the machine you are

using has loaded all of the programs which make up 1D WORLD. Currently these are:
e The Graph Interpreter for the Tagged-Token Architecture (GITA)
e The ID Compiler Version 1

o |D Mode

If you arc using one of the Lisp Machines belonging to the CSG group at the M.LT.

Laboratory for Computer Science, whether it be a Symbolics 3600 scrics or 'T.1. Explorer,

then 1D WORLD is already loadced into your environment.

If you are on a non-CSG Lisp Machine, you can load 1D WORILD by loading the file
OAK :>ID-WORLD>ID-WORLD.LISP. This file contains all the commands nccessary to load

all the parts of ID WORLD.

35

Section 2

Using 1) Mode

1) Modc is a new major mode for ZMACS, the cditor available on T.1. and Symbolics
Lisp Machines. [t defines several commands which understand about the structure of 1D
procedures, and interfaces the 1D Compiler and GITA in order to simplify program

development,

in the commands which follow, abbreviations arc used for the control and shift kcys.
‘They have the lollowing meanings: ‘¢’ mcans the control key, ‘m" mcans the meta key. 's’
micans the super kcy. "h’ mcans the Ayper key. and “sh™ mcans the shift key. A command
such as ¢-sh-C is typed by holding down the control and shift keys and typing the *C’ key.

‘The commuand ¢-m-A is typed by holding down the control and meta keys any typing "A".

Commands such as m=-X Compile File arc typed in as follows. First hold down the
meta key and type 'X'. In the small window at the bottom of the editor window you will be

promptcd with Extended Command:. Type in Compile File and hit CRETURND.

2.1 The File Attributc List
[t is a good idca to put the following line (called the attribute list) at the top of every file

containing 1D procedurcs that you will executing in ID WORLD:
| -*- Mode: ID; Package: GITA -*- |

Whencever a file which has this line at the top is loaded into the cditor. ZMACS will
automatically set the currcnt major mode to be 1D Mode. and the current package to be the
GITA package. If you load in a file containing 1D procedures which does not have this line
at the top. then you should add it and then type m-X Reparse Attribute List. This
will tell the editor to look at the attribute list and set the major mode and package to ID and

GITA, respectively.

36

Atternatively, the following two cditor commands can be used to construct the attribute

list at the top of a file, or correct it if it is wrong.

m-X ID Mode ZMACS Command
Scts the major mode for the current buffer to ID Mode. a mode for cditing 1)
programs.

m-X Set Package ZMACS Command

Prompts for the name of a package to become the default for the current butfer.
When cditing 11D programs you should answer the prompt with GITA.

Alter cach of these commands you will be asked if you want the attribute list at the top
of the buffer to be updated. You should answer Yes to the question. The attribute list will
cither be created if one docsn't exist. or the appropriate field will be updated with the
correct information. These two commands should be invoked whenever a ncw Hilc or a new

bufter is created in order to correctly set up 11 Mode.

You can tell if you arc in 1D mode because the editor mode line (the top most line in the
small window at the bottom of the screen) will say something like:
ZIMACS (ID) SIMPLE.ID >ARVIND> O0AK:

The symbol in parenthesis after the word ZMACS always spccifies which major mode is
currently active. If you switch to another buffer containing LISP code, for example, the
major mode beccomes LISP. However, it will revert back to 1[) mode whenever you go back

to cditing a buffer containing 1D.

You can also tell which package you are currently in by looking down around the center
of the very bottom line on the screen. There you will find a symbol with a colon alter it.
This symbol tells you what the current package is. When you are cditing 1D programs and
are in 1D mode you should sce GITA: down there. While a procedure is being compiled
you will see it change to IDV1:. What this mcans is that the D Compilcr Version 1 is busy

compiling the procedure. When it finishes. the package will automatically be resct to

GITA:.

37

2.2 Commands in 1D Mode

There are a few special commands in 1) Mode which "understand™ 1D procedures.
When the following commands talk of the current procedure what they mean is the 10D
procedurc on which the cursor is currcntly placed. [f the cursor is between two procedures,
then the earlier onc is said o be the current one.

c-m-A ZMACS Command
Moves the cursor to the beginning of the current procedure. That is. the cursor is
moved so that it is on the *p’ of the keyword “procedure’.

c-m-E ZMACS Commund
Moves the cursor to the end of the current 1D procedure. “That is, the cursor is moved
just past the last character in the current procedure.

c-m-H ZMACS Command
Sets the region to be the current procedure (marks the current procedure). That s,
the point is sct to the beginning of the current procedure, and the mark is sct to the
end. Scc the ZMACS manual for an explanation of points, marks, and regions.

The following contmands are used to cdit comments at the end of a line of code.

c-; ZMACS Command

If the current line contains a comment, the cursor is moved to the beginning of the

text of the comment. Otherwise, a comment is started on the current line. When a

comment is started. the cursor is moved to the comment column (a horizontal position

where single-line comments are started by default), and beginning and e¢nding
comment characters are automatically added around the cursor.

c-m-; ZMACS Command
[f the current linc contains a comment, this keystroke removes it. Use this if you
accidently type ¢~ by mistake.

The following commands are used for compiling procedurcs, regions. buffers, or entire
files of ID code. Except for m-X Compile File the objcct code from the compiler is
automatically loaded into GITA. Ifthe ID Compiler detects a syntax error while compiling
a procedure a message will be printed in the typeout window (a window which grows down

over the text in the buffer), and the compilation of the procedure with the error is aborted.

38

¢c-sh-C ZMACS Command

If there is a region, then cach procedure in the region is sent o the 1D compiler,

Otherwise the current procedurce is sent to the 1D Compiler. The object code for cach
procedure successiully compiied is automatically loaded into GITA,

m-X Compile Buffer ZMACS Command
Fach procedure in the current buffer is sent to the 1D Compiler. The object code lor
cach procedure successfully compiled is automatically louded into GITA.

m-X Compile File ZMACS Commuand
Prompts for a file to compile. and sends the entire file to the 1D Compiler. Unlike
the previous two commands. this command docs not automatically load the object
code into GITA. Instead. a .CMC file is generated which contains the object code
output by the compiler. Use m=-X Load File to load the .CMC filc into GITA,

m-X Load File ZMACS Command
Prompts for a file to load. If the filc has a .NMC or .CMC cxtension it is given to
GITA tor loading. Sce the function LOAD-NMC below,

2.3 Restrictions in 1) Mode
There are two restrictions imposed by 1D Mode on the way 1D codc is organized in a
file. While the ID Compiler docs not care about cither of these restrictions, they must be

adhered to whenever using 11D Mode in order for it to work correctly.

The first restriction is that the keyword procedure at the beginning of ciuch 1D
procedure must be flush with the left margin. That is, the p in procedure must always be
in column 0. [ID Mode uscs this fact in order to find the beginning and end of 1D

procedures without having to perform lexical or syntactic analysis.

The second restriction has to do with the way in which procedures may be commented
out. As far as the (D Compiler is concerncd the following is a correct way of commenting
out the proccdure foo:

!

procedure foo(x)
X *x

!

As a result of the first restriction, however, ID Mode sometimes gcts confused as to

39

whether broccdurc foo is “inside” or Coutside” of u comment. The only way (o know for
sure is to scan forward from the beginning of the current buffer until you get to the
procedurc in question. But this scanning can be very time-consuming, so instcad (D Mode
requircs that the procedure be commented out as [ollows:
| procedurs foo(x)

x * x|

The idea is to make surc that the kcyword procedure docs not begin in column 0 if it is
commented out. When uncommenting out the proccdure you must remember o once

again position the keyword procedure so that the p is in column 0.

Section 3

Loading Compiled Procedures from the 1) Compiler

Before you can cexceute an 1D procedure you must first compile it using the (D
Compiler, and then tell GITA to load the output of the H) Compiler. This can be done in

several ways.

The casiest way is 1o load a file containing 1) procedures into ZMACS and use 1D
Mode commands to compile one, two, or ¢ven all of the procedures in the bulter. As
cxplained above, 1D Mode will arrange for the given procedures o be sent to the 1D

Compiler, and will automatically load the output of the 11D Compiler into GITA.

If you alrcady have a file which contains compiled 1D procedures (which you can get by
using thc command m-X Compile File in ID Mode), then you can use the ID Mode
command m-X Load F1le, dcscribed above, or the function 1oad-nme to load this filc into
GITA,

(load-nmc¢ pathname &optional silent?) Function
Tells GITA to load all of the compiled 1D procedures in the file pathname. pathname
should have a .CMC or NMC extension. If no extension is provided. then a file with
cxtension .CMC is looked for. followed by a file with extension .NMC. If silent? is
non-nil, then the ID procedure names contained in the file will not be printed out as
they are loaded.

41

Scction 4

‘The Viapping of 1) Procedures to 1.ISP Procedures

When GITA s told to load a file containing compiled 11D procedures, it creates a
structure known as a POBJ (procedure object). which contains all of the necessary
information to allow it to interpret the procedure. In order to make it casy o exccute these
procedures, GITA creates a 1ISP procedure corresponding to cach 1D procedure loaded.
The LISP procedure has the same name and takes the same number of arguments as the
corresponding 11D procedure. When called. the LISP procedure tells GITA to interpret the
1D proccdurc with the given arguments. and when GITA finishes exccuting, the LISP

procedure returns the results of the 1D procedure as multiple valucs.

For cxample, supposc we wish to cxeculte the following [procedure:

procedure factorial(n)
(if n = 0 then 1
else n * factorial(n - 1))

One way to do this is to enter ZMACS, tell it to sct the mode to ID Mode and the
Package to GITA (as described above), type in the above procedurc, and use the ID Mode
command c-sh-C to compile and load this procedure into GITA. After doing this, GITA
will create an internal represcntation (a POBJ) of the ID procedurc factorial, along with
a LISP proccdure likc the following:

(defun factorial (n)
(gita:run-code-block 'factorial n))

You can then call the LISP procedure factorial with an argument, which will cause
GITA to interpret the 1D procedure by pushing tokens around the dataflow graph stored in
the POBJ, until the answers came out the bottom of the graph. The answers which come

out of the graph will be the values returncd from the LISP procedure.

Note that this mapping of 1D procedures to LISP procedurcs allows you to mix both 1D

42

and LISP. For ¢xample, if you type:
(+ (factorial 3) (factorial 4))

to a Lisp Listener, you will cause GITA to be run twice. once for cach call to factorial,

and then LISP will compute and return the sum of the results of the two [D procedures.

Furthcrmore, you can take the result of onc 1D procedure and use it as an argument to
another 1D procedure. For example, the following is perfectly legal:
(factorial (factorial 6))
ft will stimply causc GITA to be run twice, first to compute the factorial of 5. and then again

to computc the factorial of 120.

You can even call 1D procedures from LISP procedures (but not the other way around!).
The bottom line is that you are frec to treat 1D procedures just like LISP procedures. As far

as the user of 1D WORILD is concerned. there is no difference.

43

Section §

Testing 11 Procedures

If the only reason you wish to exccute an 1D procedure is 10 know the result, then the
previous section has alrcady explained how to do this. All you have to do is get to a Lisp
Listencer. call the LISP procedure corresponding to the 1D procedure, and wait for a result

o be returned.

When writing 1D programs in ZMACS you will probably want to be doing this quite
often to debug procedures as you write them. Whenever you write an 1D procedure and
wish to (cst it. you should usc the 11D Mode command c-sh-C to compile and load the
current procedurc into GI'TA. The next thing to do is find a place where you can invoke the
1D procedure via its ISP proccdure. One place to do this is in a Lisp Listener. You can
sclect a Lisp Listener (by typing <SELECT>~L or <SYSTEM>~-L on Symbolics or T.I. Lisp

Muchines, respectively), exccute the procedure. and then return to the cditor.

If you are alrcady in the editor, however, a convenient place to quickly test an 1D
procedure is in the editor typcout window. The cditor typeout window is a window which
“grows” down over thc text in the bufTer, and behaves just like a Lisp Listener. On a
Symbolics Lisp Machine you can gect to the editor typecout window by typing the
<{SUSPEND> key. On a[.1. Lisp Machine you would use the <BREAK> key. Once the editor
typeout window is exposed. you can type any LISP form. such as the LISP functions which
cxecute the 1D procedures you have just writtcn and compiled. When you wish to go back

to cditing your programs, just type the <ABORT) kcy until the typcout window goes away.

Section 6

The GI'TA IF'rame

Afler you have finished using 1D Mode to write, compilc. and test your programs, you
should sclect the GITA Frame to exccute your 1D programs. You can sclect the GITA
Frame by typing <SELECT>-G on a Symbolics Lisp Machine (<SYSTEM>-G on a '[.1. Lisp

Muachine).

6.1 Organization of the GITA Frame

When the GITA Frame first comes up, it is divided into three sections. The top section
is the profile pane. and is uscd to draw parallclism profiles (described below). About two-
thirds of the way down the screen is a menu with items such as Load and Execute. Finally,
the bottom portion of the scrcen is a Lisp Listener which you can usc to cxecute D

proccdures via their LISP functions.

There are actually two configurations which the GITA Frame can be in. The first, which
is what you sce when you first select the GITA Frame, is called the profile configuration

- because a kirge portion of the screen is reserved for the displaying of parallelism profiles.

The second configuration is called the debugger configuration. When the GITA Frame
is in this configuration, the menu will be all the way at the top of the frume, and the rest of
the frame will be the Lisp Listencr. This configuration is uscd whenever the GITA

Dcbugger is entered. since it more convenient to use the debugger in a large window.

6.2 The GITA Frame Mecnu Items
This section bricfly describes each of the items in the GITA Frame menu.

Load GITA Menu Item
Prompts for a file to load, then calls the function 1oad-nme with that file.

45

Exacute GITA Menu ltem
Pops up a menu ol all Toaded 11D procedures. Click on once to cxecute it. You will be
prompted in the Lisp Listencer for cach argument required by the procedure. GITA
will then execute the procedure, and print the results in the Lisp Listener.

GITA Debugger GITA Menu ltem
Changes the configuration of the GITA Frame to the debugger conliguration, and
starts up the GITA Debugger. Sce below for a description of the GITA Debugger.

Show Profile GITA Menu Item
Changes the configuration of the GI'TA Frame to the profile configuration. ‘Then
pops up a menu of all the profiles which can be shown. Click on onc to cause the
profile be drawn in the profile panc. Sce below for a description of profiles.

6.3 Collecting and Vicwing Statistics

So far the only rcason for using GI'TA was to exccute an 1D procedure. But GITA can
also be usced to collect and view various statistics. This section describes how to tell GITA to

collect these statistics.

6.4 Idcalized vs. Emulated Statistics

When GITA collects statistics it does so cither in idealized mode or in emulation mode. It
is important to understand the difference between these two modes since the same profile

can look very differcnt depending on which mode was used to generate it.

The main diffcrence between idealized mode and emulation mode is in how each
definces the term timestep. In emulation mode a timestep is simply a certain fixed amount of
time. such as 2 seconds. In idealized mode, however, a timestep varics in the amount of

time it takes to complete. It is bascd on the following assumptions:

o All activities ready to fire arc fired in the same timestep.
o All activitics take the same amount of time to executc.
e There is zero communications overhead.

o Unbounded resources are available.

Fmulation mode measures how GITA actually performed in executing some 1D
procedure. 1 the timestep were 1 second. for example, then the first sample in the ALU-
operations profile (described below) gives the number ot ALU operations which fired
during the first sccond. The next sample gives the number of operations which fired during

the second second., cte.

For idealized mode. however, the ALU-opcrations profile is interpreted as follows. The
first sample indicates how many ALU operations fircd when the procedare was first started.
(GITA arranges for there to be one operation ready to fire at the beginning -- it drops the
first token into the dataflow graph to get things started.) The sccond sample indicates how
many AlL.U operations fired during the sccond timestep. That is, all those opcrations which
became ready to fire as a result of operations firing in the first timestep arc all fired in the
sccond timestep. An informal definition of a timestep'in idcalized modc is. Fire all and only

those operations which are reudy lo fire at the beginning of each timestep.

The following functions control which statistics mode GITA is in.

(smulation-mode) Function
Tells GITA to collect statistics in ecmulation mode.

(idealized-mode) Function
Tells GITA to collect statistics in idealized mode.

(no-stats) Function
Tells GITA not to collect any statistics.

6.5 Statistics in GITA

This sections describes the statistics which can be collected while an ID procedure is
being executed by GITA. Note that the term timestep has a different mecaning depending

on which statistics mode GITA is in.

ALU Operations Profile Statistic
Collects a profile of the number of ALU operations which were fired during each
timestep.

47

Wait-Match Profile Statistic
Collects a profile of the number of tokens which were in waiting-matching scctions at

the end of cach timestep.

Invocations Profile Statistic
Collects a profile of the number of procedure invocations which occurred during cach
timestep.

Terminations Profile Statistic
Collects a profile of the number of procedures which terminated during cach
timestep.

I-Fetch Profile Statistic
Collcets a profile of the number of I-Structure fetches were done during cach
timestep.

I-Store Profile Statistic

Collects a profile of the number of I-Structure stores werc done during cach timestep.

Deferred-Reads Profile Statistic
Collccts a profile of the number of I-Structure fetches which were deferred during

cach timestep.

I-Structure Storage Profile Statistic
Coliccts a profile of the amount of [-Structure storage in use at the end of each
timestep.

The following statistics arc only collected when in emulation mode.

Queued Tokens Profile Statistic
Collects a profile of the number of tokens in the token queue at the end of each
timestep.

Active Code-blocks Profile Statistic
Collects a profile of the number of code-blocks which were active at the end of each
timestep.

The following statistic is only useful when in emulation mode and running on more than
one physical processor.

Idle Profile Statistic
Collects a profile of the amount of time each PE was idle per timestep.

43

uvm.w

| Ammmwmwmam youcaawcwanyofthe
Statistics by clicking on Skow Prafile in the GITA menu i s

mmﬂemuumimem&m S

Scction 7

Using the GITA Dchugger

The GITA dcbugger is in many ways like the normal LISP debugger. ‘The main
difference is that the LISP debugger allows you to look up and down a stack of frames,

while the GITA debugger allows you to look around a tree of contexts.

7.1 GI'TA Dchugger Definitions

In GITA. a context roughly corresponds to a stack frame. Whenever a procedure is
invoked a context is created o hold its arguments and results. ctc. Because a procedure can
cxecute sub-procedures in parallel, howcvcr.gGlTA must maintain a tree rather than a stack

of contexts.

In the description of the GITA Debugger which follows, the current context means the
context which is currcntly being examined. As you move around the tree of contexts, the
current context is changing to rcflect your position in the tree. The root context never
. changes and is the one contcxt which has no father. [t corresponds to the top-level call you
made when you first told GITA to execute an ID procedure. Finally, the anchor context is a
context which usually corresponds to a context at which an crror occurred, although is can
be changed by using the ¢~. dcbugger command. This anchor context is used in order to
lacilitate moving up and down the trce of contexts. Sec the section on Movcement

commands, below.

7.2 Invoking the GITA Debugger

There are two ways to enter the GITA Dcbugger. The first has already been described --
when in the GITA Frame, you click on the menu item GIT'4 Debugger. Alternatively, you
can use the following function from wherever you wcre when you executed an ID

procedure -- the editor typeout window, for example.

50

(gita-debugger) l'unction
Invokes the gita debugger. making the current context be the root context

7.3 GI'TA Debugger Command Loop

Alter invoking the GITA Dcbugger the root context will be displayed. including the
namc of the procedure and its arguments, and the cursor will be to the right of a right-
arrow, the GITA Dcbugger's prompt. Whenever the cursor is just to the right of the right-
arrow, you are at top-level in the debugger. Whencver you are at this level, there are several
things you can do.

e You can hit the <CABORT) key to exit the debugger.

e You can type onc of the GI'TA Dcbugger commands, described below.

e You can type in a form to cvaluate, just as if you were typing to a Lisp Listener.

. s

Whenever you type a form to cvaluate, the command loop automatically sets the global
variable * to the value returned from the evaluation ot the form. Thus ® can be thought of
as holding on to the last thing returned. Similarly, the global variable ** holds on to the
second to last thing rcturned, and *** holds on to the third to last thing returned. In the
descriptions of debugger commands which follow. whcnever 4 command says that it
“returns” an object. the variable * can be used to refer to that object. For example, after
typing the debugger command ¢-A, which returns the ISD for the arguments of the current
context, you can then type (setq foo-args *®) to make the variable foo-args hold on to
the ISD,

Some of the commands which follow refer to a numeric argument. A numeric argument
is a number which is typed just before a command is issued, usually specifying which of a
set of n things should be done. To type a numeric argument, you hold done one of the
control keys (either control, meta, super, or hyper) and type the digits of the number. You
then type the command. For example, to type the c-m~-A command with a numeric
argument of 12, you could type c-1 ¢-2 c¢-m-A. The section on 1D Mode explains how to

~ type commands such as c-m-A.

51

7.4 Debugger Commands for Frror Handling

When GITA dctects an crror during exccution of a procedure a message is printed
saying in which part of the machine the error occurred. Exccution continues, however, until
there are no more activitics ready to fire. At the end of exccution GITA reports the total

number of crrors it cncountered. The following function allows you vicw the crrors.

(show-arrors) Function
Prints a report for cach error encountercd during the last GITA run. The errors are
printed in reverse chronological order and include the time the crror occurred and an
cxplanation of the crror.

7.5 Dealing with Error objects
When the GITA debugger is active. the following commands lct you dcal with errors.

c-E GITA Debugger Command
Prints a list of all errors encountercd in the last GITA run. This command simply
cxccultes the show-errors function. "

c-m-E GITA Debugger Command
Without a numeric argument, this command retumns the currcnt error object.
Otherwise, the error object given by the numeric argument is rcturned. This is one

way to get your hands on the arguments to the ALU opcration which failed.

c-m-G GITA Debugger Command
Causes the anchor context to become the one where a particular crror occurred. You
must use a numeric argument to specify which error you are interested in.

7.6 Backtrace Commands

A backtrace is a listing of the contexts in rcverse order starting from the current context
and ending at the root context. There are two backtrace commands which differ only in
how much detail they provide about each context.

c-B GITA Debugger Command
Displays a brief backtrace, showing the name of the procedure for cach context.

m-B GITA Debugger Command
Displays a verbose backtrace, showing the name of the procedurc and its arguments
for each context.

52

7.7 Examining the Current Context
There are many commands in the GITA debugger designed to return information from

the current context,

c-m-A GIT A Debugger Command
Returns the n argument in the current context. Use & numeric argument to specify
n.

c-A GITA Debugger Command

Returns the 1ISD used to hold the arguments for the current context.

c-m-V GITA Debugger Command
Returns the n™ value being returncd from the current context. Use a numeric
argument to specify a.

c-V GITA Debugger Command
Returns the 1ISD used to store the return values of the current context,

c-m-L GITA Debugger Command
Returns the n™ local variable (token) from the current context. Use a numeric
argument to specify a.

c-m-F GITA Debugger Command
Return the procedure object from the current context.

c-m-C GITA Debugger Command
Returns the current context object. an object of type dbg-context. Notc that this is
not the same as the actual context object--a dbg-context only refers to the actual
context object through its PE and INDEX slots. 'The GITA dcbugger uscs this object
to store the replies from remote servers so that it won't have to ask again,

7.8 Movement Commands

Moving around the tree of invocations in the GITA debugger is not quite as easy as
moving up and down the stack in the LISP debugger. A context will have at most one
father (the caller), but may have several sons (cach corresponding to a procedure invocation

which has not yet terminated).

Moving “up” the tree of invocations is straightforward. the current context gets sct to its
father. Moving “down" thc tree of invocations. however. requires that a branch be selected

from among its sons. To make moving down thc invocation tree easicr, the GITA debugger

53

will sometimes pick the branch which is considers the “obvious™ choice. Taking the
“obvious” choice is donc by using the ¢-N command without any numcric argument. (f the
GITA dcbugger cannot deternmine an “obvious™ choice. then a numceric argument
specifying which branch to go down must be given. The GITA debugger determines the

“obvious” choice as follows:

o If the current context has no sons, then there is no way to go down, and thus no
“obvious choice”.

o If the current context has only one son, then the “obvious™ (and only) choice is
to go down to the son.

e If the current context has more than one son. then the “obvious™ choice is the
son which is closest to the anchor context. I nonc of the sons arc in the path to
the anchor context, then there is no “obvious™ choice.

By dcfaulting the “obvious™ choice, you should be able o stick with using c-P and ¢-N
and never have to specify a branch unless you want to go off and inspect a context at some

other part of the tree.

c-P GIT A Debugger Command
Goes up one context towards the caller. With a numeric argument, gocs up that
many contexts towards the caller.

m-p GITA Debugger Command
Like ¢c-P except that detailed information about the target context is displayed.

m=-< GITA Debugger Command
Goces to the root context (the oldest in the invocation tree).

m-> GITA Debugger Command
Gocs to the anchor context.

c-N GITA Debugger Command
With no numeric argument, goes down the “obvious™ branch of thc invocation tree.
Otherwise goes down the a branch, where n is spccified by the numeric argument.

m-N ' GITA Debugger Command
Like c-N except that detailed information about the target context is displayed.
c-. GITA Debugger Command

Sets the anchor context to the current context.

54

7.9 Scarching

The following commands scarch for a context with a procedure whose name contains a
given substring. The contexts are scarched starting from the father of the current context
toward the root context. This is uselul for quickly jumping to some context shown in a
backtrace. For example, if you typc c¢-8 and the backtrace is:
FOO [1] <- BAR [3@1] <- BAZ[8] <- QUUX [683]
Then searching for "BA™ will make the current context be BAZ [8]. and scarching for “F”
will make the current context be F00 [1].

c-S GITA Debugger Command

Prompts for a substring and scarches up from the current context for one whose

procedure name contains the substring. If it finds onc. then that context becomes the
currcnt one.

m-S GITA Debugger Command
Like ¢-$ cxcept that detailed information about the target context is displayed.

7.10 Other Dcbugger Commands

An invocation tree shows the full tree of invocations still active at the time the last GITA
run finished executing. The sons of a context are all indenfcd to the same column
underneath the father.

c-T GITA Debugger Command
Shows an invocation tree of all known contexts.

Use these next two commands to clear the screen, in one of two ways.

c-L - GIT A Debugger Command
Clears the screen and displays the current error message along with the procedure
name and arguments of the currcnt context.

m-L GITA Debugger Command
Clears the screcen and displays detailed information about the current context.
including the procedure name. its arguments, rcsults, and locals (tokens).

These next few commands let you look inside of various objects.

c-m-D GITA Debugger Command
Describes the last thing printed out. This keystroke is equivalent to typing
(DESCRIBE *).

55

c-1 GITA Debugger Command
Pretty-prints the last thing printed out. This command is especially usctul for viewing
ISOs. When an ISD is pretty-printed the contents of the I-Structure it references is
printed out.

c-m-1I GITA Debugger Command
Typing this command toggles the ISD pretty-print flag. When the flag is set all ISDs
arce automatically pretty-printed.

Finally, you can get online help by typing the <HELP> kcy.

<HELP> GITA Debugger Command
Prints a concisc description of cach of the debugger commands.

56

Section 8

Using GI'TA on Multiple Machines

GITA can be made to run on muitiple machines. One of the design goals of 1D
WORL.D. however. was that the user should not be concerned with the number of machines
which arc in use. Accordingly, 11D Mode, the GITA Debugger, and tie statistics have all
been designed to be used in cxactly the same way no matter how many machines arc

participating in the cxccution of an ID procedure.

8.1 Setting up Multiple Machinecs

Note that this section is likely to change in the ncar future. The interface to muitiple
machines at the moment is ncither very robust nor general, and is being redesigned.
Therefore, this section will provide only a quick introduction to some of the functions which

are currently used to run experiments on multiple machines.

*default-processors® Variable
This variable contains a list of the machincs, including the local machinc, which may
be used by the local machine to exccute 1D procedures.

~ (select-firstn-processors 7n) Function
Sets the variable *default-processors® to the names of the first » processors in

the MEF.
(select-processors &rest machines) Function

Sets the variable *default-processors® to the list of machines given as arguments
to this function.

(initialize-gita-servers) Function
Starts up a GITA-Server processes on each of the machines in
*default-processorse®.

(reset-gita-servers) | Function

Mukes sure that the GITA-Server process is still running on cach of the machines in
sdefault-processors®. Will recstablish a connection to any of the machincs if it
has failed.

57

(initialize-network) Function
Causcs cach of the machines in *default-processors® (o derive the conncectivity
of the Circuit Switch network. This must be done once before GITA can execute (D

procedures on all the machings.

(show-netstate) Function
Prints out a textual representation of the connectivity of the Circuit Switch for cuch of

the machines in *default-processors®.

(draw-netstate) Function
Draws a pictorial represcntation of the connectivity of the Circuit Switch for each of

the machines in *default-processors®.

(pes n) Function
Sclects the first 7 proccssors in *default-processors® o participate in the next
cxccution of an 1) procedure. Sctting n to 1 will force the local machine to be the
only onc involved in the execution.

8.2 Using the GITA Server
The following functions may be used to force some or all of the machines in

sdefault-processors® to perform some action.

(a1l form) . Macro
Causes all processors. including the local machine. to evaluate form. The results are
discarded. Does not wait for the servers to finish evaluating form before returning.

(raH-eval Jorm) Macro
Causes all processors, including the local machine, to evaluate form. The results from
cach machine are collected and rcturned.

(others form) Macro
- Causes all processors except the local machine to evaluate form. The results are
discarded. Does not wait for the scrvers to finish evaluating form before returning.

(others-eval form) Macro
Causes all processors except the local machine, to evaluate form. The rcsults from
each machine arc collected and returned.

(execute-on pe form) Macro
Causcs form to be cvaluated on the pe”' machine in *default-processors®. The
results are discarded. Does not wait for the server to finish executing form before
rcturning,

58

(oval-on pe form) ‘ o " Macro
Causcs forme 10 he evaluated on the pe‘" machine in- ‘mn-wamnnf. The

mmmwm
(load-on pefiie) Macro
Causos file 1o be loaded on &em“I mh 'mmlt-'nmamo'
(a11-10a¢ file) Macro

mwmmmwmnmm

References

I. Arvind. D. E. Culler, R. A. lannucci, V. Kathail, K. Pingali and R. E. Thomas. The
Tagged Token Dataflow Architecture. Laboratory for Computer Science, MI'T, Cambridge,
MA_ July. 1983. (Preparcd for MI'T Subject 6.83s)

2. Arvind, M. L. Dertouzos and R. A. lannucci. A Multiprocessor Emulation Facility.
Tech. Rep. TR-302, Laboratory for Computer Science, MIT, Cambridge, MA, October,

1983.
3. Arvind, and K. P. Gostclow. The U-interpreter. Computer 15, 2 (February 1982), 42-49,

4. Hcller, Steve and Ken Traub. 1D Compiler User's Manual. Tech. Rep. TR-248,
Computation Structures Group, Laboratory for Computer Science, MIT, Cambridge, MA,

Fcbruary, 1986.

5. Soley. Richard M. Generic Software for the Emulation of Multiprocessor Architcctures.
Master Th., MIT Laboratory For Computer Science, June, 198S.

