
?H ID

ID WORLD:
An Environment for the Development of

Dataflow Programs Written in ID

by

Dinarte R. Morais

Submitted in partial fulfillment
of the requirements for the

degree of

Bachelor of Science

in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

May 1986

© Dinarte R. Morais, 1986

The author hereby grants to M.I.T. permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature Of Author ~ f}n<(T"ktl..d,4,
Department of Electrical Engine g and Compute Science

18 ay 1986

Thesis Supervisor

David Adler
Chairman, Department Committee

ID WOl~LD:
An Fnvironmenl for the Development of

Datanow Programs Written in ID

by Dinartc R. Morais

Arv ind. Associale Proressor of Comrrntcr Science and Engineering
Thesis Supervisor

Abstract

The I[) WORLD projccl involves Lhe interfacing of a compiler. interpreter. debugger

and editor mode to create an cnvironmcnl tor the development of datanow programs

written in ID. It replaces the Tagged-Token Datanow Archilccturc ("n'DA) Emulator as

Lhe foundation R>r the Mulliproccssor Emulation Frn.:ility at the Laboratory for Computer

Science. M.1.T.

This thesis presents the design of ID WORLD. noting the need for such a system. and

includes a detailed examination of each subsystem. Special attention is paid to the problems

inherent in the old CITDA Emulator. and how they were solved in ID WORLD.

Al'knowlcdgmcnls

I would like lo thank Professor ;\rvi11d IC.Jr the supporl and guidance he has given me

while writing Lhis thesis. I would also like to thank all the memhers of the Computation

Structures Group. especially Ken Trauh. Richard Mark Soley. David Culler. Greg

Papadoroulos. Steve Heller. Bhaskar Guharoy. and Andrew Chien. t<x their invaluable

assistance in Lhe design and i111plementatio11 of ID WORLD. and tremendous suprorl they

have givt:n me over the pasL two years as an undergraduate researcher.

Table of Contents

I. Introduction... 4

2. Graph Interpreter for the Tagged-Token Architecture.. 6

2.1
2.2

2.3

llackground .. .
GrrA vs. 'l'he i-rnA Eniulator .. .
2.2.1 l>ata Structures .. .
2.2.2 Error I land ling
2.2.3 The B•1sic Tl'DA Emulator Flaw .. .

·rhe Structure of G l'f'A
2.3.1 ·1·1ic ·roken Queue .. .
2.3.2 The I-Structure lk•1uests Queue .. .
2.3.3 'f 'he Manager nc•1ucsts Queue .. .
2.3.4 llcginning and Ending .. .

6
7
7
9

IO
II
11
13
14
14

3. ·rhe GIT A l)ehugger ... 16

3.1 'fhe Error I landler ... 16
3.2 Invocation l'ree .. 16
3_1 1\1oving around the Invocation 'free... 17
3.4 l>ehugger Commands... 18

3.4.1 Exantining the Current Context... 18
3.4.2 Backtracc Comniands ... 19
3.4.3 Sc,1rching ... ~................................ 20

4. An Editor Mode for Developing l D Programs.. 21

5. If} WORLD on Multiple 1\1achines .. 23

5.1 The G l'"f A Server.. 23
5.2GITA ... 24
5.3 The G rr A Debugger.. 25
5.4 ID Mode ... -........................... 26

6. The ID WORLD Abstract Machines.. 28

6.1 Gll1 A·I ... 28

6.2 GIT A· E ·················-·· 29
6.3 SIT A.. 30
6.4 Collecting Statistics in 10 WOllLD .. 31

7. Conclusion... 32

7.1 Future Directions... 32

Appendix. ID WOnLD Users Manual .. - 34

I. Loading ID WORLD .. -.. 35

I

2. Using II) Mode.. 36
2.1 'fhe File Attribute l.ist... 36
2.2 Con1mands in Ill :\tlode.. 38
2.3 l~estrictions in Ill Mode.. 39

3. Loading Compiled Procedures from the ID Compiler.. 41
4. The Mapping of ID Procedures to LISP Procedures.. 42
5. ·1·esting II> Procedures.. 44
6. ·1·1ie G 1·1·A Fran1e... 45

6.1 Organization of the GITA Frame... 45
6.2 'l'he Gl'l'A Frame iVlenu lten1s.. 45
6.3 Collecting ~ind Viewing St~ttistics :.. 46
6.4 Idealized vs. Emulated Statistics... 46
6.5 Statistics in c1·rA .. 47
6.6 Viewing a Statistic.. 49

7. Using the Gl'f'A llehugger ... 50
7.1 Gf'f'A l>ehugger l)cfinitions.. 50
7.2 Invoking the c;1·rA l>chugger.. 50
7.3 Gl'l'A l>ehugger (:on1nu111d 1.oop ~.. 51
7.4 Debugger Commands for Error I land ling.. 52
7 .5 Ilea ling with Error objects... 52
7.6 Backtrace Comntands .. 52
7.7 Exantining the Current Context.. 53
7.8 Movement Con1mands ... 53
7 .9 Searching.. 55
7.10 Other l>ehugger Con1mands.. 55

8. Using Gl'f'A on Multiple Machines... 57
8.1 Setting up Multiple Machines... 57
8.2 Using the Gl'l'A Server.. 58

References ... ·.. 60

2

""""", .-,,:_
-";,

12
17

e .-•,

('haptcr I

Introduction

The Compulalion Sln1<.:lurcs Group (CSG) al Lhe Lahoralory for Computer Science

(I.CS) is currently huilding a Multiprocessor Emulation F:1cility (M FF [2]) to facililale

research and developmenl in parallel architeclures and languages. The first use of the MEF

involves the emulation or tile Tagged-Token Datanow Architecture (ITDA [lj) to

demonstrate the feasibility of general purpose datallow machines.

To support these efforts. several programs have been written over the 1x1st several years

to support datallow software development Unfortunately. these programs were not

designed to be directly interfaced to one another. As a result. the software development

cycle IOr datallow programs was very long. A typical cycle would begin with the use of an

editor tu edit a lile containing a piece or code written in a datallow language. The lile would

then be written to disk. and a compiler would be invoked and told lo read the source tile.

outputting a file containing the compiled code. Finally. an interpreter would be told to load

the compiled file just produced. and only then would the original dataflow program be

executed. When the interpreter would detect an error in the program. the user would have

no choice but to go back to editing the source file and start the whole cycle over again.

To someone who develops programs in. say. C or CLU. this may seem like a normal

cycle. A Lisp Machine programmer. however. has become accustomed to a very interactive

environment where programs may be incrementally edited. compiled. executed. and

debugged. without ever leaving the editor.

The goal of ID WORLD is to provide such an interactive environment for the

development of programs written in ID [4]. the datanow language used by the Computation

Structures Group. With ID WORLD the typical software development cycle is as follows.

A user enters the editor and types in an ID procedure. With a single keystroke. the

4

procedure ·is senl lo the I[) compiler. and the oulpul of the compiler is a11lo111atically loaded

inlo Lile interpreter. Then. wilhoul leaving Lile editor. the user instrncls the interpreter to

execute the procedure. and when lhe interpreter delccls an error lhc user simply continues

editing Lhe procedure until it is correct. Thus. with only a few keystrokes and without

writing a single lile. ID WORLD interfoces lhe editor. compiler. and interpreter. making il

much quicker to develop programs.

The remainder of th is thesis is organ ited as follows. Chapter two presents tile design of

GITA. the irllerpreter used in ID WORLD to execute datanow programs. Chapter three

presents the GITA debugger. noting how it differs from normal debuggers ror sequential

languages. In chapter four I describe ID Mode. a new editor mode for the development of

ID programs. Chapter live discusses how each of the subsystems in ID WORLD

generalizes when multiple machines arc used. Chapter six presents the three abstract

machines supported by ID WORLD. In chapter seven I presents conclusions and offer

suggestions IC.>r future improvements lo ID WORLD. Finally, the Appendix contains the

ID WORLD users manual.

5

('haptcr 2

(;raph Interpreter
for the Tagged-Token Architecture

GITA. lhe Graph Interpreter for the Tagged-Token Architecture. was designed by Ken

Traub and Richard Soley and was originally implemented by the author and Richard Soley.

Improvements Lo GITA have been made by by David Culler. Greg Papadopoulos. Andrew

Chien. Steve Heller. and Bhaskar Guharoy.

2.1 Background

The first method or executing ID programs involved using a program called IDSys

which tcx>k ID programs. compiled them into MacLisp. and executed them. This ID to

LISP compiler was followed by an ID to Graph compiler. which compiled ID procedures

directly into datanow graphs. A TfDA Simulator was then created to execute these

datanow graphs. At the time it was envisioned that ID programs would be debugged on

IDSys. and only working programs would be run on the lTDA Simulator.

The TfDA Simulator was followed by a lTDA Emulator, written in LISP for the

Multiprocessor Emulation Facility (M EF [5]), which was supposed to be a much faster

interpreter of dataflow graphs. The ITDA Emulator was eventually abandoned, however,

partially because it failed to perform as expected. and partially because the MEF was in the

process of changing over to using T. I. Lisp Machines instead of Symbolics Lisp Machines.

The ID to Graph compiler was eventually ported to the Lisp Machine. but IDSys was

not. The only way left to execute ID procedures was the ITDA Simulator. Debugging

programs on the TIDA Simu1ator was very dimcult because both the ID to Graph compiler

and the TI'DA Simulator were still relatively untested <Uld full of bugs. Gino Maa

evcnLually succeeded in debugging a 1200 line ID program. but only after many months of

elTort. It was suggested that perhaps a version of the simulator which had only one fast

6

processing clcmcnl woulu simplify lhe debugging or programs. ll was lhen suggeslcJ Lhdt

the TIUA Emulalor could he resurrected anJ simplified. hn;1lly, Ken Trauh suggestcJ

lhat it would be easier to crcale a new inlerprctcr. calleJ GITA.

2.2 GITA vs. The ITIM Emulator

GITA is an ohject-orientcd daLallow interpreter. which replaces the Tagged-token

datallow emulator on the MEF. In this section I will point out some of the poor design

decisions in the "ITDA Emulator. and show how they arc solved in GITA.

2.2.1 Data Structures

One of the biggest differences between GITA and the Tl'DA Emulator involves how

each implements the fundamental data structures necessary for executing dataflow graphs.

In lhe lTDA Emulator. tokens were represented as 32 contiguous bytes of data al some

offset into a large array called the token store. Accordingly. whenever a part of the

Emulator had a reference to a token. all it really had was an integer specifying the offset into

the array. This made it very dimcult to debug the TfDA Emulator because it was

impossible to tell if a variable w;is referencing a tokt:n by just looking at its value. The user

would have to somehow know that if the value was an integer. then it might be referencing a

token. In addition. because the data inside a token was represented as a series of bytes. it

was necessary to write encoding and decoding functions for each of the slots in the token

data structure. Furthermore. there needed to be debugging functions which would take <Ul

offset into the token store and print a human-readable representation of the contents of the

token.

TI1Cse problems were avoided in GIT A by simply representing a token as a structure of

type token. By making a Loken a distinct. recognizable object in GITA. it is much easier to

debug code since there is no longer any confusion about what a variable actually references.

Also. since a token is made up of several slots which can each contain a reference to any

LISP object. there is no need to pcrfom1 any encoding or decoding of data. GITA. in fact.

7

maps 1he dala types in I[) uirccLly in lo the primiLive dala Lypes or I.ISP. where possible. anu

where nol possible a new LISP dala type is created to represenl lhe ID dala type. For

example. the ID data types boolean. integer. and real number. arc directly represented in

LISP by btxllcans (t and n11). integers. and floating-point numbers. Since I-Structures

don't map din:cLly lo any primitive LISP objecl. however. a new data type was defined to

represent them.

One dis..1dvantage or representing the data structures in GITA as objects is that the

object representation lakes up considerably more storage than docs the scheme used by the

Tl'DA Emulator. For example. in the TIDA Fmulator the instructions f(>r a datatlow

graph were represented ~L'i an array of 8-bit bytes. and a single instruction was represented as

an offset into this array. On average a single instruction was 8 bytes in the TIDA Emulator.

In GITA. however. an instruction is an object of type 1nstruct1on. and takes up about 48

bytes of storage. a 600% increase. The reason for this large increase in size is that the 8 bytes

in the TIDA Emulator actually encode about 12 different pieces of information. In GITA

each piece of information is given its own slot in an instruction object. and each slot is large

enough to reference any other LISP object. On the LISP machine this translates into 4

bytes per slot. for a total of 48 bytes.

In GITA. this inctTrcient use of storage is justified for two reasons. First. GITA is

running on machines with large virtual address spaces. There is no need to waste a lot of

effort saving space if you have more than you can possibly use already. And second. as a

result of the inefficient use of storage, GITA can execute datatlow graphs considerably

faster than the TfDA Emulator. At most. the lTDA Emulator could execute

approximately 250 datatlow instructions per second. GITA. on the other hand. currently

executes datatlow instructions at the rate of 2.500 per second.1 This increase in speed is not

surprising since GITA has to do almost no encoding or decoding of data before using it

The TIDA Emulator needed to decode the bit patterns of each instruction each time it

interpreted it In GITA. the bit patterns are decoded once at load time and are stored in a

1These rales are from each syslem running on a Symbolics 3600 Lisp Machine.

8

111orc easily acccssihlc. ;ilheil 111ore verbose. l'onnal. In sum. a helter lime/space lradeoff

was made in GITA than in the TIDA Emulator.

2.2.2 Error I lane.Hing

Another Jiffcrence between GITA and the TfDA Emulator involves how each

approached the problem of error handling. When either interpreter is executing a data flow

graph. it must make sure Lo catch any run-Lime errors. such as ovcrllow, undcrllow.

division-by-1ero. etc .. and rcpon them to the user. There arc essenLially two ways to

approach this prohlcm: eager error handling or lazy error handling.

The TIDA Emulator tlX)k the cager error handling approach. What this means is that

b1.:fore it would execute any instruction. it would make sure that no errors were going to

happen. For example. before performing a division, the lTDA Emulator would check that

the denominator was non-zero. It would then check for the possibility of positive and

negative overflow, and positive and negative underflow. Only if it was sure that the division

would not cause any of these errors would it finally go ahead and perform the division. This

approach is analogous to the strategy of touching all the pages that an instruction in a virtual

memory system is going to access. and only after all the pages are guaranteed to be in

physical memory is the instruction actually executed.

In GITA. the lazy error handling approach is taken. What this means is that GITA docs

not bother checking the argumenLs to an instruction before it interprets it It just assumes

that the arguments are of the correct types and that no error is going to happen. Most of the

time. this turns out to be a correct assumption. There arc times. of course. when the

assumption is incorrect. such as when a divide-by-zero error happens. 13ut for this case

GITA just lets the Lisp Machine error handler catch the error. and intercepts it before the

LISP debugger is invoked. It then figures out which part of the machine got the error (the

ALU in this case). and records any relevant information (such as the arguments to the

instruction) so that it can explain and analyze the error at a later time. Finally, it causes the

instruction to abort and goes on to the next one. This approach is analogous to being able to

back out of the execution of any instruction when a page-fault occurs in a virtual memory

9

syslcm. In GITA lhis is always possible hecause tile con1111il poinl 111 the execution of

dalanow inslruclions occurs when a token carrying Lhe answer is :1cl11ally lransrnilted lo the

next instruction. and Lhis docsn'l happen until Lhe answer is computed. Ir an error doesn't

happen while Lhe answer is being computed. then it isn't going lo happcn.2

The advantages or l~uy error handling over cager error handling arc clearly

demonstrated by examining how the 'ITDA Emulator and GITA each execute a lloating­

point multiplication instruction. In the TIUA Emulator. execution of a single lloating­

point multiplication instruction required 3 function calls. 4 noating-point relational

operations. 2 noating-point uivisions. and 1 lloaling-point multiplication. The 4 n.:lalional

operators and 2 noaling-poirll divisions were done to make sure tl1al the multiplication

would not overnow. GITA. however. executes the same instruction with just 1 runction call

and l lloating-point multiplication. Should the multiplication overflow the LISP system

would raise an exception. which would be caught by GITA.

2.2.3 The Basic Tf OA Emulator Flaw

The previous two design naws in the -nDA Emulator were actually a result of a more

rundamental problem in its design: it was designed to behave too much like a real Taggcd­

Token da1anow machine. This is ironic since the lTDA Emulator was supposed to be a

"soft" implementation of the machine. It was hoped that by emulating the machine in

software, the naws in the design of a real machine could be ironed out before it was adually

built. The problem. however. was that the Emulator became so unmanageable that even the

smallest changes to it were extremely hard to make. In efTcct. the Emulator became almost

as unmodifiable as hardware would have been.

2 Assuming. of course. Lhal Lhe transmission of lhe answer docs not cause an error. Unlcs..-; GITA itself has a
bug in iL the transmission will always succeed.

10

2.3 The Structure of GI TA

This section presents the internal organitation or GITA. It •L'isumcs the reader 1s

familiar with the Tagged-Token Datallow Architecture. and the dalallow language Ill

The internal organi1ation or GITA is shown in figure 2-1. GITA can receive three

different types of input. each of which is placed in its own queue. During each cycle.GITA

removes and processes one entry from each of these three queues. We examine each of

these queues individually.

2.3.1 The Token Queue

The token queue contains tokens which have left the instruction which created them. but

have not yet arrived at their destinations. That is. it contains all the tokens still riding on the

arcs of the datallow graph (but not including those which arc sining in the waiting-matching

section).

GITA processes a token from the token queue as follows. It first looks to sec if the

instruction is unary. If so. then it sends it directly on to the ALU section, bypassing the

waiting-matching section. Otherwise. the token is binary. In this case the waiting-matching

section is searched for the partner of the token. If a partner is not found. the token stays in

t11e waiting-matching section until his partner arrives. If a partner is found, then it is

removed from the waiting-matching section and both tokens are forwarded to the ALU

section.

The ALU section looks at the tags on the tokens to find out what operation must be

performed. This operation will either be an arithmetic operation, an I-Structure operation,

or a Manager operation. In the case of an arithmetic operation, the A LU simply takes the

two data values riding on the tokens. computes a result, packages it into a token. and sends

the token to the destinations of the instruction it just executed. In the case of an I-Structure

operation. the ALU takes the necessary information from the two tokens and outputs an

I-Structure request A Manager operation is similar. except that the ALU outputs a

Manager request

11

Manager
Requests
Queue

System
Manager

J
Input

1-Struclu re

Requests

Queue

I-Structure

Controller

Output

Figure 2· I: Organization of GIT A

12

Token

Queue

Wailing-Mat1.:hi;1g
Section

2.J.2 The !·Structure lkquests Queue

The 1-Slructure Requests Queue contains unprocessed requests for the I-Structure

controller. GITA processes a request from this queue as fr>llows. It ltx>ks at the request­

lype field of the I-Structure request object to ligure out what operation needs lo be

performed. This can be either I-Fetch. I-Store. Increment Reference Count. or Decrement

Reference Count

111 the case of an I-Fetch. the rest of the request will contain a reference to an 1-

StrucLure. an index. and a destination. The destination specilies where to send the token

containing the value to be read. The I-Structure controller first looks to sec if the given slot

in the I-Structure has already been written. If so. it takes the value stored there. packages it

into a token. and sends it to the destination. If the slot is empty. then the I-Fetch is said Lo

be deferred, and the request is suspended until a write of the slot occurs. at which time the

request will be satisfied.

In the case of an I-Store. the rest of the request will contain a reference to an I-Structure.

an index. a value to store. and a destination. The destination specilies where Lo send an

acknowledgment token. which declares that the I-Store has taken place. The I-Structure

wntroller looks to sec if the given slot in the I-Structure has already been written. If so, an

error is signalled since an I-Structure slot may be written only once. Otherwise. Lhe

controller sees if there arc any I-Fetches waiting for the value in the slot about to be written.

If so. it packages the data value into a token and sends it to the destinations given by each

deferred I-Fetch. Finally. the value is stored in the slot. and an acknowledgment token is

sent to the destination specified by the current I-Store request

In the case of Increment Reference Count. the rest of the request will contain a reference

to an I-Structure. a number specifying the amount by which to increment the reference

count. and a destination. The destination specifics where to send an acknowledgment token

after the reference count is adjusted. The I-Structure controller simply increments the

reference count by the given amount and sends the acknowledgment token to the

destination. Decrement Reference Count is done in exactly the same way, except that the

13

reference count is decremented.

2.J.J The M:rn:1ger lkquests Queue

The Manager Requests Queue contains unprocessed requests fur Lhc SysLem Manager.

GITA processes a request from this queue as follows. IL looks al Lhe request-type licld of

the Manager request ohjccL to figure out what operation needs to be performed. This can

be either Invoke or Terminate.

In Lhe case of Invoke. Lhc resL of Lhe request will conLain a reference Lo a procedure

ohjecL. an 1-SLrucLure Descriptor (ISD) for the argumenLs. an ISD for the Results. and a

reference to Lhe context which is invoking this procedure. The manager creates a new

context fc>r the invocation of Lhc procedure. fills it with the ISD"s for the arguments and

results. and stores the reference to the caller context in the new context It then creates a

token and sends it lo the first instruction in the new procedure. causing the procedure to

begin execution.

In the case of terminate. the rest of the request will contain a reference to the context to

be terminated. The manager then releases any resources used by the context and sends a

signal to the caller telling it that one of its sub-procedures has terminated.

2.3.4 Beginning and Ending

The previous three sections describe what GITA is doing when it is running, but how

docs the execution of a datatlow graph start and end?

To begin the execution of a procedure, GITA simply creates a manager request which

asks that the procedure be invoked with a certain set of arguments. This manager request is

simply placed into the manager request queue and the main cycle of GITA is started. The

system manager will then process the request. placing the initial token to be dropped into

the datatlow graph of the procedure into the token queue. From then on GITA continues

processing each queue until there is nothing left to do.

14

The inierprelation of the tbtallow graph is s;.1id to have ended when l11cre arc 110 111orc

entries 011 any or t.he Man:1ger Request. I-Structure Request. or Token queues. Normally

this means lhal there arc no more tokens in the waiting-matching section. and no suspended

(i.e. deferred) requests ld't in the I-Structure controller. ~ lowever. if a run-time error was

detected during execution. or if the Jatallow graplt was not well rormed (because the

compiler generated bad code. for example). then there may still be tokens or suspended

I-Structure requests left around. When GITA finishes executing it will warn if the

execution did not end properly.

15

('h<11>tcr 3

The (;fTA Debugger

The GITA Jebugger is in many ways like the normal LISP debugger. The main

difference is that the USP debugger allows you to look up and down a stack or frames.

while lhe GITA debugger allows you to look around a tree of contexts. •

3.1 The Error I hmdlcr

When GITA detects an error during execution of a proceJure a message is printed

saying in which part of the machine Lhc error occurred. Execution continues. however, until

there arc no more activities ready to fire. Al the end of execution GIT A rcpons the total

number of errors it encountered.

The GITA Debugger has commands which let you view the errors which occurred

during the last GITA run. To debug a particular error you woul~ type a command to the

debugger telling it that you arc interested in that error. The debugger will then set both the

current and anchor contexts to the context in which the error occurred.

3.2 Invocation Tree

In GIT A. a context corresponds to a stack frame in sequential languages. Whenever a

procedure is invoked a context is created to hold its arguments and results. and ~Uly other

information particular to the procedure's invocation. Because a procedure can execute sub­

procedures in parallel. however.GITA must maintain a tree rather than a stack of contexts.

An example of an invocatjon tree is show in figure 3-1. The root con/ext never changes

and is the one context which has no father. It corresponds to the top-level procedure

invocation made which started GITA running. and is shown in the figure as context 1. The

current conlext corresponds to the context which is currently being examined. As you move

16

R our context

(J

Current Context

I

0 Anchor Context

Figure 3· l : An In vocallon T rec

around the tree of contexts. the current context is changed to reflect your position in the

tree. In the figure. context 5 is shown as the current context Finally, the anchor context is a

context which usually corresponds to a context at which an error occurred, although is can

be changed to any context at all through a debugger command. This anchor context is used

in order to facilitate moving up and down the tree of contexts. as explained below.

3.3 Moving around the Invocation Tree

Moving around the tree of invocations in the GITA debugger is not quite as easy as

moving up and down the stack in the LISP debugger. A context will have at most one

father (the caller). but may have several sons (each corresponding to a procedure invocation

which has not yet terminated).

Moving "up" the tree of invocations is straightforward, the current context simply gets

set to its father. Moving "down". however, requires that a branch be selected from among

its sons. For example, in figure 3-1 the current context is 5. Moving up the context tree

17

from context 5 would make the current context be 2. To move down. however. a choice

must be made between the three contexts which arc the sons of context 5 -- conlexl'i 6, 7,

and 8. Of the three possible choices. context 6 seems the "obvious" choice. This is because

it is closest lo the anchor context. The user will probably wish lo return lo the anchor

context often since it is the one at which the error being debugged occurred. Furthermore,

it is unlikely that the user will be interested in any contexts not 011 the path from the anchor

context to the root context (shown as dashed lines in figure 3-1) since they probably had

little to do with the cause or the error. In the GITA debugger. moving down the tree of

invocations implies moving down the "obvious" choice. if there is one. This makes moving

around a tree of invocations in the GITA debugger just as easy as moving up and down a

stack in the USP debugger.

3.4 Debugger Commands

This section briefly describes some of the more important GIT At debugger commands.

See the Appendix for a more complete description along with a listing of all the commands.

3.4.1 Examining the Current Context

There are many commands in the GITA debugger designed to return information from

the current context With a single keystroke you can get at any argument or result value, the

ISO used to hold the arguments. the ISD used to hold the results, a local value (token), the

current procedure object. or even the context itself.

As it happens, some of the information is not very helpful. To someone who does not

understand the inner workings of GITA, looking inside the context or procedure object will

shed little light on what went wrong. In addition. all you sec when you look at the local

values in a context is a bunch of tokens carrying data headed for different instructions. The

problem is that the current ID compiler does not provide a mapping from arcs in the

dataflow graph to names in the source code. If it did. then it would be possible for the

GIT A debugger to provide information such as "local variable X in procedure P has the

value Y". Instead. all that can be provided now is "some local variable in procedure P has

18

the value Y." A second versio11 or the ID cornpilcr is currently being dcsig11cd which will

output the mapping rrorn arcs to names. As soon as it is complete. the GITA debugger will

be 111 uch more in formative.

Probably the most important piece of in formation provided by the GITA debugger is

the values of the arguments given to a procedure. Iran error occurred in procedure P which

was calkd from procedure Q. you can usually debug procedure P independently by editing

it. compiling it. and then calling it directly (without going through procedure Q) with the

arguments which caused it to foil. until the procedure works ~Ls expected. This "bouom-up"

style or programming is facilitated by the rapid edit. compile. debug loop provided by ID

WORl.D.

3.4.2 Backtracc Commands

A backtmce is a listing of the contexts in reverse order starting from the current context

~md ending at the root context There are two backtrace commands which differ only in

how much detail they provide about each conLext One shows only the name of the

procedure for each context. while the other shows the nmnc of the prrn.:edure along with its

arguments.

These commands arc useful for figuring out where in the execution of a large program

the error occurred. For example. suppose you were trying to debug a recursive procedure P.

mid an error occurred in some call to the procedure. If the backtracc shows that only one

call to procedure P has been made. then the procedure probably failed in the pmt which was

to do the recursion. On the other hand. if the backtrace shows many calls to procedure P.

then the procedure probably failed in the part which terminates the recursion (the b:L'\e

case).

Even in the case of non-recursive procedure invocations. the backtrace shows you the

particular sequence of procedure invocations which led to the current error. This

information is sometimes enough to tell you what went wrong.

19

3.4.J Searching

There is a commanu which will search ror a context with a pnx:cJure whose name

rnnlains a given substring. Tile contexL.S arc searched starting rrom tile f~1ther of the current

context towarJ the root context. This is useful for quickly jumping to some context shown

in a back trace. For example, if the back trace is:

FOO [1] <- BAR [2] <- BAZ [3] <- QUUX [4]

Then searching for "BA .. will make the currcrll context be BAZ [2]. and searching for "F"

will make thecurrcntcorllcxt be FOO [1].

20

('h~1ptcr 4

An F<Jitor i\'lode for Developing ID Programs

Bolh the Symholics :111d Texas Instruments Lisp Machines have a buill-i11 euilor called

/.MACS. based on the EMACS editor. One of the features or bolh editors is that they have

the wncept of a major mode. A major mode tells lhe editor what kinu or document is being

edited. Every buffer has a major mode.

One of the most oflen used major modes on lhe Lisp Machine is. obviously. LISP mode.

When LISP code is being edited. LISP mode tells lhe editor how lo recognize LISP

procedures. how to move around LISP struclure quickly. how lo compile USP prcx:cdures.

Cle.

In ID WORLD there is a new major mode called ID Mode. which delines several

commands that recogni7e the struclure of ID procedures. and interfaces the ID Compiler

and GITA in order lo simplify program development. As of this writing, ID Mode

currenlly knows how lo do lhe following:

•It is able to move the cursor to the beginning and end of ID procedures.

• It understands about comments in ID. and can insert and remove them at the
end of lines of code.

• ll can send one. two. or up to an entire buffer full of ID procedures to the ID
compiler. and will automatically load the output of the compiler into GITA.

In the future. the following commands will be added to 10 Mode:

•Indent for ID. By hitting the TAB key. the current line of code will
autommically be indented to the correct column.

•The ability to send a batch job to the TIDA Simulator on an IBM mainframe
directly from the editor.

21

The major advan&agc of ID Mode is th.it it pruvicb a •Jl'l of "(..·ontrol panel .. to lhc n..~

of ID WORLD. W~ ever bvina the odimr" it is~ to wrile. a>mpHc. execute.

and debug· ID proceduq. In ~>n. cw:a dea dac· H>:'QllUQIC ildumged {k> fD/83s).

the t·omnwtds in ID Mode will R:maiA dle ..,._ SO. dtc appendix for a complete

description of lhe ID Mode a>mmunds.

22

(:lmptcr 5

ID WOHLD on Multiple Machines

When writing code ror a paralld dalallow machine. one should not have lo be corH.:erned

with the number of physical processors which will ultimately be executing his program.

Thal is. if one doubles the number or processors on his datatlow machine. all programs

should run without change to the source code. Doubling the number or processors should

only have the effect or speeding up the execution of those programs.

Similarly. one of the design goals or I[) WOR LO is that the user should not have to be

concerned with the actual number or machines cooperating in the execution of his

programs. Increasing or decreasing the number of physical processors should be

transparent to the user of ID WOR LO in that whenever ID WORLD is being used in

multiple machine mode. each of its subsystems should automatically generalize to multiple

machines.

5.1 The CIT A Server

In order for ID WORLD to be used on multiple machines. the user requests that some

number of additional machines be allocated to him.3 The user's machine is known as the

master machine. and the additional machines are known as server machines.

In order lo allow for communication between the master machine and the server

machines. a GITA Server connection is made over the EtherNet to each of the server

machines. The rest of this chapter describes how each of the subsystems of ID WORLD use

the GITA Server when running on multiple machines.

3currcnlly lhcre is no good way to do this. In the fulllre we envision an ID WORLD server running on some
machine which will be responsible for allocaling and dealloe<tling machines in lhe facilily.

23

5.2 GITA

GITA can be extended to run 011 multirk machines in 111a11y different ways. One way is

to mar the datallow gr:1phs or rnx:edures across several 111achines so that different rarts of

the graph may he evaluated in rarallel. This is the arproach taken hy the Tl'DA Emulator.

While it is believed that something like this will have to be done eventually, it would have

required suhstantial changes to the single-machine version or GITA. and so a less desirable

hut more easily implemented approach was taken.

It was decided that the procedure invocation would he the smallest unit of work shipped

to other machines. Thus. whenever procedure P called procedure Q. GITA would decide

where the invocation or Q should take place. Currently each machine performs round­

rohin scheduling of prcx:edure inv,x:ations among all the server machines. The first

procedure invocation is done on the local machine. the next on the first server machine. the

next on the second server machine. etc. With each machine doing its own round-robin

scheduling. the division of work tends to spread out over all of the machines in a fairly

uniform way.

One of the problems with having more than one machine sharing in the execution of a

dataflow program involves the access to I-Structures. In the single-machine version. all

I-Structures were created on the local machine and access to them was easy -- just read the

nth slot. In the multiple machine version, however. it could be that an I-Structure passed in

as an argument to a procedure was actually created on some other machine. In this case a

request must be sent to the machine which created the structure and a reply must be sent

back. This information could be sent over the EtherNet. but the ElherNet would quickly

become the bottleneck in the system. Instead. a high-speed circuit switch network is utilized

by GITA whenever communication of information between machines cooperating in the

execution of a program is required.

The multiple-machine version of GITA uses the GITA Server only to stan and stop each

of the server machines. That is, the user tells the local machine to execute a procedure. The

local machine then instructs each of the server machines Lo get ready to cooperate in the

24

cxcn1tion or the proceJure. Facli or tile server machines initiali1es internal Jata structures

and then listens to the circuit switch network for requesL'i Lo invoke pnx:edures or read

I-Structure slols. The local machine then executes the procedure. which will cause ol11cr

machines lo receive requests lO invoke procedures. which will in turn cause more machines

to receive requests Lo invoke procedures. clc. Eventually, Lile local machine detects that the

initial procedure invocation has terminated. and uses the GITA Server to tell each of the

server machines to stop listening to the circuit switch and idle until they arc needed next.

5.3 The GITA Debugger

When GITA is run on multiple machines, errors arc trapped by each machine involved

in the execution or the program. Whenever a machine detecL'i an error. it records enough

information to explain what went wrong. reports to the master machine that something went

wrong. and aborts the operation which caused the error. Because the operation was aborted

before it could send its result to the next operation. the execution or the entire program will

eventually come to a premature halt. At that point. ca<.:h machine will be left with a certain

number or procedures which arc only partially executed.

When the user decides that enough errors have occurred, he enters the GITA debugger.

At that point. the local machine must do two things: collect all errors. and build an

invocation tree. To collect Lhe errors the local machine simply uses the GITA Server to

request from each machine the errors that were trapped during the last program execution.

Later when the user picks one of these errors to debug. the current context will

automatically be changed to the context in which the chosen error occurred.

IJuilding an invocation tree is a bit more tricky because the contexts still active are

spread out over the server machines. To simplify matters. the GIT A debugger uses the

GITA Server to collect each of the active contexts on the remote machines and builds one

large invocation tree on the local machine. After doing this. it knows the context which

called each context (lhe "up" links in the tree). as well as the active sub-contexts for each

context (the "down" links in the tree). Furthermore, it knows on which machine each

context was invoked.

25

Even when GITA is run in single machine mode. an invocaLion tree is builL when the

GITA debugger is entered. In this case all contexts in the tree will have been executing 011

the local machine. The reason ll>r doing this is lo provide the GITA debugger commands a

uniform view of the world. Whenever a command requires information from a context in

the invocaLion Lrec. a f'uncLion is called requesting the information. The job of the function

is to gel Lhe requested information anyway it can. If the context is local, then it can simply

get the information from the data structures in the local machine. If the context is non-local

(i.e. it was running on some other machine), then the GITA Server is used to request the

information from the server machine. When the information is returned. it is cached locally

so that it will not have to requested again. and is returned to the command which requested

the information.

Thus. not even the GITA debugger commands need be concerned with the number of

machines involved in the execution of a program. By separating the requesting of

information from the obtaining of the information. the GITA debugger provides an

identical interface no matter how many machines arc in use.

5.410 Mode

The only part of ID Mode which needs to be concerned with the number of server

machines in use is the part which sends the object code from the ID Compiler to GITA for

loading. When running of multiple machines. each machine must be given the object code.

This is because. unlike the TTDA Emulator. GITA does not transmit programs to server

machines which do not have them loaded at run-time. Instead. ID Mode makes sure that all

machines always have the latest compiled version of any procedure.

The main reason for insisting that each machine always have the same procedures

loaded is that it minimized the changes to GITA necessary to make it work on multiple

machines. In the future GITA may be changed to do dynamic loading of procedures.

Finally. a change was made to ID Mode not to support multiple machines but rather to

exploit them. Whenever several machines are being used. and more than one procedure is

26

~lllill\111!!1 U•Nlllil44)1l4U4i'1.ll,$llllJ!l!IJt£~~Jl!#Q!iltp(V\li

I

i·
i-

to be: aJRtpibl (as. fhr ~ what au ~, is~). the pruc.'Cdurcs are

funned OU1. ro each et •wr ,_._'._. ca.-.11r•·· ,,,.._. dlc time. n:qWR:d to

compiJo il&NllP or,.,~

('haptcr 6

The ID WOnLD Ahstrnct Machines

ID WORLD currenlly supports three difTerent abstract machines on which Lo execute

datallow programs. Each of the machines is similar in that they accept the same output

generated by the ID Compiler. and. when told Lo execute a procedure with a given set of

arguments. will each produce the same answer. The main difference involves how closely

each attempts Lo simulate the actual Tagged-Token Dataflow Machine.

The first two abstract machines. GITA-I and GITA+:. arc actually the same program.

GITA. being run in two different modes. GITA-I is GITA running in idealized mode, and

GITA-Eis GITA running in emulation mode. We treat them as different abstract machines

because the statistics they generate diner radically and arc based on two difTerent dataflow

execution models. The third abstract machine. called SITA (the Simulator for the Tagged­

Tokcn Architecture) is implemented in PASCAL and runs on an I !3M 4381. Each of these

machines is examined individually in the remainder of this chapter.

6.1 GITA·I

GITA-I is short for GITA-Idealized, and is realized in software by running GITA in

idealized mode. Of the three abstract machines. it does the poorest job of simulating the

Tagged-Token Dataflow Machine. In fact. GITA-I makes no attempt to simulate any

realizable machine. It is best thought of as a machine which captures the abstract behavior

of the U-1 nterpreter (3].

The statistics collected for a program executed under GITA-I are based on the following

assumptions:

•All activities ready to tire arc tired in the same timestcp

• All activities take one time unit to execute

28

•There is zero co111111unicalions Jelay

• Unbounded resources arc available

In GITA-I a timestcp is defined to be the amounl of Lime it takes to process all activities

which arc ready to fire al the beginning of the timestep. Any aclivities which become ready

to fire as a result of the firing of an instruction during timcstep n will fire during timestep n

+ 1.

The statistics collected by G ITA-1 should be interpreted as measuring the inherenl

parallelism in a program. The ideali1ed statislics for a given program will not change when

more machines arc used lo help execute the program. nor will they be alTccted by real-world

problems such as poor load-balancing. or high communications overhead.

When a program has been debugged and is being used for experimentation it should be

run once on GITA-I in order to determine the ideal performance of the program. Should

this ideal performance show that little parallelism exists in the program. then one should not

be surprised to find that a more realistic machine faired poorly in executing the program.

On the other hand. if the ideal performance shows a great deal of inherent parallelism and

yet the realistic machine failed to exploit enough of it to keep it busy, it may indicate a

problem with the implementation of the realistic machine.

In sum. then. statistics collected by GITA-I should be used as a control element when

experimenting with various parameters of the more realistic machines.

6.2 CITA·E

GITA-Eis short for GITA-Emulation. and is realized in software by running GITA in

emulation mode. Statistics collected by GITA-E come closer to describing how a real

datatlow machine would perform on a program. GITA-E differs from a real datatlow

machine in the following ways:

•The minimum amount or work which can be sent to another processor is an
entire procedure. This sometimes causes a few processors to be busy executing

29

large. complex procedures. while other processors sit idle. In a real Jalallow
machine the minimum amount of work could be as little as a single instrw.:Liun.

•I-Structures in GITA+: arc always mapped onto one processor. This sometimes
causes a single pnx:essor which just happened to create a structure which is
relcrenceJ very ol°Le11 (such as a table of values used by a table-lookup routine)
lo he swamped with I-Structure requests. In a real dalallow machine I-Structure
could he mapped across several processors. such that the lirsl processors
corllains element 1. the second clement 2. etc.

•GITA+: is nol pipelined. whereas a real datallow machine would be heavily
pipelined.

• I-Structure requests and ALU operations arc processed sequentially. whereas a
real dalallow machine would process them in parallel.

Even with these differences. the slalislics given by GITA-E can be used to gel a reel for

how the selling of various parameters in a real machine might affect its performance on

certain types of programs. For example. by changing the number of machines participating

in the execution of a program. one can sec how well GITA-E was able to divide the work

among the machines. In addition. it is possible to get a feel for how large certain parts of a

real dataflow machine might have to be in order to be able to run large programs. One of

these parts is the waiting-matching store. If the waiting-matching store is too small. certain

programs will not be able to run. By running many different programs on GITA-E it is

hoped that one will be able to get a better feel for the waiting-matching storage

requirements of a real machine.

6.3 SITA

SITA. the Simulator for the Tagged-Token Architecture. is realized in software by

running a PASCAL program on an IBM 4381. SITA was designed to simulate to a very low

level the execution of a real dataflow machine. The statistics collected by SITA arc very

detailed and can provide precise information on the dynamics of a real data flow machine.

There are two main drawbacks with using SITA. however. The first is that. unlike all

other subsystems of ID WORLD. SITA docs not run of a Lisp Machine. In order to use

30

SITA. a halch job musl he submilled Lo the IBM 4381. and only so111e lime laler will lhc joh

he finished anu the rcsulls be ready to examine. This mode or operation docs not fil in too

well wilh lhe highly interaclivi.: environment or ID WORLD.

The second drawback is that SITA is very slow in executing programs. It currently

c.'<ecutes approximately 80 d~1talluw operations per second. compared to GITA-I:: which

executes approximately 800 dalallow operations per second per processor.

The user of ID WORLD will have to decide for himself which is more important: faster

c:<ecution and less truc-to-lilc statistics (GITA-I::). or slower execution and very realistic

statistics (SITA).

6.4 Collecting Statistics in ID WOH 1,0

Currently it is very easy Lo collect and view statistics generated by GITA-I or GITA-E.

ID WORLD has yet to be interfaced to SITA. however.

See the appendix for a complete description of the statistics currently available, as well

as a listing of the commands used to view them.

31

Chapter 7

Conclusion

ID WORLD can currently be used on any Symbolics or Tl. Lisp Machine (standalone

configuration). or on the group of 32 T.I. Lisp Machines connected by a high-speed circuit

switching network which comprise the Multiprocessor Emulation Facility al the Laboratory

!Or Computer Science. M. l.T.

So far ID WORLD has proven valuable to the members of the Computation Structures

Group who find that the highly interactive nature of ID WORLD greatly simplifies the Lask

of developing data now programs wrillcn in ID.

7.1 Future Uircctions

ID WORLD is still a relatively new environment which is likely to change and evolve as

more people use it There are two places where I feel that improvements should be made

soon.

The first involves the handling of statistics collected by each of the three abstract

machines. Currently there is only minor support for the viewing of statistics collected from

GITA-I and GITA-E. and there is none for viewing statistics from SITA (at least not in ID

WORLD). A mechanism needs to be designed which will allow statistics from all three

abstract machines to be collected, stored. retrieved, and compared. in a consistent manner.

The second improvement which must take place soon involves the way ID WORLD

currently interfaces to the circuit switching network on the MEF. The problem with the

current interface is that lhere is none. When one subsystem of ID WORLD wishes to send a

message over the circuit switch it must use very low-level primitives Lo instruct the hardware

to send a number of words from the current machine to some other machine. The problem

with this approach, of course. is that there is no one unifonn interface to the circuit switch

32

-· -... -- . ~ ~

-- . ~ -. : ~ ~"" " '.. ~ -

'.
[.:

!
I,

whitb cvcryoae asn -. t "-nw.n a ••· ;lie •-· old MEt-· gctli.~
- . ·._ .,-~-~;~:. :::~:s;?l.-;~.~->_"I:,·,'·::~~-~-~· .. :\:~

S>Awarc ~,.;,.. •• _ ••• ~~-Oft
' ' ;!,:, ... ,

topofdw dlQaitswildt.

Jl

Appendix

ID WOHLD Users Manu~al

This arpcndix is a reference manual for ID WORLD. currenlly being used by Lhe

mc111bers of Lhc Compulalion SLnrctures Grour in Lhe Laboratory for ComruLer Science at

M.l.T.

ID WORLD inlerfaces Lhe ID Compiler Version l. GITA. the GITA Debugger. and ID

Mode. in order to simplify Lhe c.Jevelorment of c.JaLanuw programs wrillen in ID. The ID

Comriler Version l wa!!i wrillcn by Ken Traub and Steve Heller. and is based in large part

on the If) Compiler Version 0 by Vinod Kathail. GITA. the Graph Interpreter for the

'L1gged-Token Architecture. was designed by Ken Traub and Rkhard Soley and was

originally implcmenled by the author and Richard Soley. lmprovemellls to GITA have

been made by David Culler. Greg Papadopoulos. and Steve Heller. The GIT A Debugger

and ID Mode were designed and implemented by the author.

34

Section I

I .oading ID WOULD

In order to begin using ID WORLD. you must make sure that the machine you are

using has loaded all or the programs which make up ID WORLD. Currently these are:

•The Graph Interpreter for the Taggcu-Token Architecture (GITA)

•The ID Compiler Version 1

e ID Mode

If you arc using one of the Lisp Machines belonging Lo the CSG group al the M.1.T.

Laboratory for Computer Science. whether it be a Symbolics J600 series or T.I. Explorer.

then ID WORLD is alreauy loaded into your environment

If you are on a non-CSG Lisp Machine. you can load ID WORLD by loading the file

OAK:>ID-WORLD>ID-WORLD.LISP. This file contains all the commands necessary to load

all the parts of ID WORLD.

35

Section Z

Using Ill Mode

ID Mode is a new major mode for ZMACS. lhe et.lilor available on T.I. and Symboli<.:s

1.isp Machines. It uelines several commands which undcrsland ahout the struclure or ID

pnx:cdures. and interfaces the ID Compiler and GITA in order lo simplify prngr~1111

development.

In lhc commands whit:h follow. abhrevialions arc used for the control and shift keys.

They have lhc fl>llowing meanings: ·c· means lhe control key. ·m· means lhe meta key. ·s·

means the super key. 'h' means the hyper key. and 'sh' means the shift key. A command

such as c-sh-C is typed by holding down the control and shift keys and lyping the ·c· key.

The command c-m-A is typed by holding down the control and meta keys any typing 'A'.

Commands such as m-X Compile File arc typed in as follows. First hold down the

meta key and type 'X'. In the small window at the bottom of the ediLOr window you will be

prompted with Extended Command:. Type in Compile File and hit <RETURN>.

2.1 The file Attribute List

It is a good idea to put the following line (called the auribute list) at the top of every file

containing ID procedures that you will executing in ID WORLD:

-·- Mode: ID: Package: GITA -·- I

Whenever a tile which has this line at the top is loaded into the editor. ZMACS will

automatically set the current major mode to be ID Mode. and the current package to be the

GITA package. If you load in a lile containing ID procedures which does not have this line

at the top. then you should add it <md then type m-X Reparse Attribute L 1st. This

will tell the editor to look at the attribute list and set the major mode and package to ID and

GITA. respectively.

36

Alternatively, the following two editor commands c~111 be used lo construct the <1ltrihute

list at the top ofa lite. or correct it if it is wrong.

m-X ID Mode ZMACS Command
Sets the major mat.le for the current buffer tu ID Mode. a mode for editing ID

programs.

m-X Set Package ZMACS Command
Prompt.s for the name of a package to become the default for the current buffer.

When editing ID programs you should answer the prompt with GITA.

Arter each of these commands you will be asked if you want the allrihute list at the top

of the buffer lo be updated. You should answer Yes to the question. The allribulc list will

either be created if one doesn"t exist. or the appropriate field will be updated with the

correct information. These two commands should be invoked whenever a new file or a new

butler is created in order to correctly set up ID Mode.

You can tell if you arc in 10 mode because the editor mode line (the top most line in the

small window at the bouom of the screen) will say something like:

ZMACS (IO) SIMPLE.ID >ARVINO> OAK:

The symbol in parenthesis after the word ZMACS always specifics which major mode is

currently active. If you switch to another buffer containing LISP code. for ex.ample. the

major mode becomes LISP. However, it will revert back to ID mode whenever you go back

to editing a buffer containing ID.

You can also tell which package you arc currently in by looking down around the center

of the very bottom line on the screen. There you will find a symbol with a colon after it

This symbol tells you what the current package is. When you are editing ID programs and

are in ID mode you should sec GITA: down there. While a procedure is being compiled

you will see it change to IDVl:. What this means is that the ID Compiler Version l is busy

compiling the procedure. When it finishes. the package will automatically be reset to

GITA:.

37

2.2 Commands in ID Mode

There arc a few special wn1111ands in ID Mode which "undcrslanJ" ID proccJurcs.

When the following commanJs lalk of Lhe current procedure whal Lhey mean is Lhc ID

procedure on which Lhe cursor is currenLly placed. If Lhc cursor is hetween Lwo proceJures.

then the earlier one is saiJ Lo he the currcnl one.

c-m-A Z/tl ACS Command
Moves the cursor to Lhe beginning of the current procedure. That is. the cursor is

moved so U1at it is on U1e 'p · of Lhc keyword ·procedure'.

c-m-E ZMACSCommand
Moves the cursor to the end of Lhe current ID procedure. That is. Lhe cursor is moved

just past Lhe last character in the current procedure.

c-m-H ZMACS Command

c-:

Sets the region to be the current procedure (marks the current procedure). That is.
the point is set to the beginning of Lhe current procedure. and the mark is set to the
end. Sec the ZM ACS manual for an explanation of points. marks. and regions.

The following commands are used to edit comments at the end of a line of code.

ZM ACS Command
If the current line contains a comment the cursor is moved to the beginning of the

text of the comment. Otherwise. a comment is started on the current line. When a
comment is started. the cursor is moved to the comment column (a horizontal position
where single-line comments are started by default), and beginning and ending
comment characters arc automatically added around the cursor.

c-m-: ZM ACS Command
If the current line contains a comment. this keystroke removes it Use this if you

accidently type c-: by mistake.

The following commands are used for compiling procedures. regions. buffers. or entire

files of ID code. Except for m-X Comp 11 e F 1 le the object code from the compiler is

automatically loaded into GITA. If the ID Compiler detects a syntax error while compiling

a procedure a message will be printed in the typeout window (a window which grows down

over the text in the buffer). and the compilation of the procedure with the error is aborted.

38

c-sh-C ZMACS Command
If lhere is a region. then e~1ch pro<.:euure in the region is sent to lhc ID compiler.

Otherwise the current prou:dure is senl to lhe ID Compiler. lhe ohjccl code for each
pro<.:cdure succcsslillly compiled is automatically loaded into GITA.

m-X Comp1le Buffer ZMACSCommand
Fad1 rnx:cdure in the currenl huffer is sent to lhe ID Compiler. The ohject code ror

c~1ch procedure successfully compiled is autrnnatically loaded into GITA.

m-X Compile File ZMACSCommand
Pro111pls !Or a file to compile. and sends the entire lilc to the ID Compiler. Unlike

the previous two commands. this command docs not automatically load lhe object
code into GITA. Instead. a .CMC lile is generated which contains the object code
outpul by the compiler. Use m-X Load Fi le to load the .CMC lile into GITA.

m-X Load File ZMACS Command
Prompts for a tile to load. If the file has a .NMC or .CMC extension it is given to

GITA li>r loading. Sec the function LOAD-NMC below.

2.J Hcstrictions in ID Mode

There are two restrictions imposed by ID Mode on the way ID code is organized in a

file. While the ID Compiler docs not care about either of these restrictions. they must be

adhered to whenever using ID Mode in order for it to work correctly.

The first restriction is that the keyword procedure at the beginning of each ID

procedure must be flush with the left margin. That is. the p in procedure must always be

in column 0. ID Mode uses this fact in order to find the beginning and end of ID

procedures without having lo perfom1 lexical or syntactic analysis.

The second restriction has to do with the way in which procedures may be commented

out As for as the ID Compiler is concerned the following is a correct way of commenting

out the procedure too:

procedure foo(x)
x • x

As a result of the first restriction. however. ID Mode sometimes gets confused as to

39

whether procedure foo is "inside" or "outside" or a comrnenl. The only way 10 know for

sure is lo scan forward from Lhe hcginning or the currenl hul'n.:r until you gel to the

procedure in question. But Lhis sc11ining can he very time-consuming. so instead ID Mode

requires thal the pnx:edurc be commented oul as follows:

procedure foo(x)
x • x I

The idea is to make sure Lhal the keyword procedure docs not begin in column 0 if il is

commented oul. When unc.:ommenling oul the procedure you muse remember to onc.:c

again position lhc keyword procedure so thal the p is in c.:olumn 0.

40

Section J

Loading Compiled Procedures from the JI) Compiler

Before you can execulc an ID procedure you must lirst compile it 11srng lhe ID

Compiler. and then lcll GITA lo load lhc outpul of the ID Compiler. This can be done in

several ways.

The easiest way is lo load a file corllaining ID procedures inlo ZMACS and use ID

Mode commands lo compile one. two. or even all of Lhe procedures in the buffer. As

C'l\plained ~1bovc. ID Mode will arrange for lhe given procedures to be sent to the ID

Compiler. and will automatically load Lhe output or the ID Compiler into GITA.

If you already have a tile which contains compiled ID procedures (which you can gel by

using the command m-X Compile F111 in ID Mode). then you can use the ID Mode

command m-X Load F11 e. described above. or the function load-nmc to load this file into

GITA.

(load-nmc pathname &optional silent?) Function
Tells GITA to load all of the compiled ID procedures in the tile pathname. palhname

should have a .CMC or .NMC extension. If no extension is provided. then a file with
extension .CMC is looked for. followed by a tile with extension .NMC. If silent? is
non-nil. then the ID procedure names contained in the file will not be printed out as
lhey arc loaded.

41

Section 4

The Vlappin~ of ID Prol·ccJurcs to I .ISP ProcccJurcs

When GITA is lold lo load a file containing compiled ID procedures. it creates a

slruclurc known as a POBJ (procedure ohject). which conlains all of the necessary

information to allow it lo inlerpret the procedure. In order to make it e~1sy lO execute these

procedures. GITA creates a USP procedure corresponding to each ID procedure loaded.

The I .ISP procedure has the same name and Lakes the same number of arguments as the

corresponding ID procedure. When called. the LISP procedure tells GITA to interpret the

ID procedure with the given arguments. and when GITA finishes executing. the LISP

procedure returns the results of the ID procedure as multiple values.

For example. suppose we wish to execute the following ID procedure:

procedure factorial(n)
(1f n • O then 1

else n • factor1al(n - 1))

One way to do this is to enter ZMACS. tell it to set the mode to ID Mode and the

Package to GITA (as described above). type in the above procedure. and use the ID Mode

command c-sh-C to compile and load this procedure into GITA. Afler doing this. GITA

will create an internal representation (a POBJ) of the ID procedure factor 1a l. along with

a LISP procedure like the following:

(defun factorial (n)
(g1ta:run-code-block 'factorial n))

You can then call the LISP procedure factorial with an argument. which will cause

GITA to interpret the ID procedure by pushing tokens around the datanow graph stored in

the POBJ. until the answers came out the bottom of the graph. The answers which come

out of the graph will be the values returned from the LISP procedure.

Note that this mapping of ID procedures to LISP procedures allows you to mix both ID

42

~u1d USP. For example. if you type:

(+ (factorial 3) (factorial 4))

to a Lisp Listener. you will cause GIT A to be run twice. once for each call to tac tor 1a1.

and then LISP will compute and return the sum of the results of the two ID procedures.

Furthermore. you can take the result of one ID procedure and use it as an argument to

another ID procedure. For example. the following is perfectly legal:

(factor1al (factor1al 6))

It will simply cause GITA to be run twice. lirst to compute the factorial of 5. and then again

to compute the factorial or 120.

You can even call ID procedures from LISP procedures (but not Lhc other way around!).

The bottom line is that you arc free to treat IH procedures just like LISP procedures. As far

as the user of ID WOR LO is concerned. there is no difTerencc.

43

Section 5

Testing II> Procct.lurcs

If the only reason you wish to execute an ID procedure is Lo know the result. then the

previous section has already explained how to do this. All you have to do is get lo a Lisp

Listener. call the LISP procedure corresponding lo lhe ID procedure. and wait for a result

to be relu rned.

When writing ID programs in ZMACS you will probably want lo he doing this quite

oncn to debug proce<.lurcs as you write them. Whenever you write an ID procedure and

wish Lo test il. you should use the ID Mode command c-sh-C lo compile and load lhe

current procedure into GITA. The next thing tu do is find a place where you can invoke Lhe

ID prtx:cdure via its LISP procedure. One place to do this is in a Lisp Listener. You can

select a Lisp Listener (by typing <SELECT>-L or <SYSTEM>-L on Symbolics or T.I. Lisp

Machines. respectively). execute lhe procedure. and then return to the editor.

If you arc already in Lhe editor. however. a convenient place to quickly tesl an ID

procedure is in the editor typcout window. The editor typeout window is a window which

"grows·· down over the text in the buffer. and behaves just like a Lisp Listener. On a

Symbolics Lisp Machine you can get to the editor typeout window by typing the

<SUSPEND> key. On a T.1. Lisp Machine you would use Lhe <BREAK> key. Once the editor

typeout window is exposed. you can type any LISP form. such as the LISP functions which

execute the ID procedures you have just written and compiled. When you wish to go back

to editing your programs. just type the <ABORT> key until Lhc typeout window goes away.

44

Section 6

The GITA Frame

Afler you have finished using ID Mode Lo wrilc. compile. and tesl your programs. you

should sclecl Lhe GITA Frame LO execule your ID programs. You can selecl the GITA

Frame hy lyring <SELECT>-G on a Symbolics Lisp Machine (<SYSTEM>-G on a 'f .I. Lisp

Machine).

6.1 Organi1.:1tion of the GIT A Frame

Wilen lhc GITA Frame firsl comes up. it is divided inlo lhrcc scclions. The Lop scclion

is Lhe profile pane. and is used to draw parallelism profiles (described below). About Lwo­

lhirds of Lhc way down the screen is a menu with ilems such as Load and Execule. Finally,

lhc boltom portion of Lhe screen is a Lisp Listener which you can use to execute ID

procedures via Lhcir LISP functions.

There arc actually two configurations which the GITA Frame can be in. The first. which

is what you sec when you first select lhe GIT A Frame. is called U1e profile conflguralion

because a large portion of lhc screen is reserved for lhe displaying of parallel ism profiles.

The second con figuration is called the debugger configuration. When lhc GIT A Frame

is in lhis con figuralion. lhe menu will be all the way at the top of Lhc frame. and lhe rest of

the frame will be lhe Lisp Listener. This configuration is used whenever lhe GITA

Debugger is entered. since it more convenient to use the debugger in a large window.

6.2 The GITA frame Menu Items

This section bricOy describes each of the items in lhe GITA Frame menu.

Load GITA Menu Item
Prompts for a file to load. lhcn calls lhe function load-nmc with that file.

45

Execute GITA Menu Item
Pops up a menu or all loaJed If) procedures. Click on one lo ex.ecute il. You will he

prompted in the I .isp I .istem.:r li.lr c~ich argu111c11l required hy the prou.:Jure. GITA
will then execute the procedure. and prilll Lhe results in the Lisp Listener.

GITA Debugger GITA Menu Item
Ch~111gcs the con ligu ration of the GIT A Frame to the dchuggcr con ligu r;1tion. and

stam up the GI' rA De hugger. Sec below lor a description of the GI IA Debuggcr.

Show Prof11 e GITA Menu Item
Changes the configuration of the GITA Frame to the prolilc conligur:1tio11. Then

pops up a menu or all the profiles which can he shown. Click on one to cause the
pro Ii le be Jrawn in the prolilc pane. Sec below for a description or pro tiles.

6.3 Collecting and Viewing Statistics

So far the only reason for using GITA was to execute an ID pnx:cdure. But GITA can

also be used to collect and view various statistics. This section describes how to tell GITA lo

collect these statistics.

6.4 Idealized vs. Emulated Statistics

When GITA collects statistics it docs so either in idealized mode or in emulation mode. It

is important lo understand the difference between these two modes since the same profile

can look very different depending on which mode was used to generate it

The main difference between idealized mode and emulation mode is in how each

ddincs the term timestep. In emulation mode a timestep is simply a certain fixed amount of

time. such as 2 seconds. In idealized mode. however, a timestep varies in the amount of

time it takes to complete. It is based on the following assumptions:

• All activities ready to fire arc fired in the same Limcstep.

•All acLivilics take the same amount of Lime to execute.

•There is zero communicalions overhead.

• Unbounded resources arc available.

46

Frnulation moue rnc:isures how GITA aL'lually performed in executing some ID

procedure. If Lhe timeslep wen: l seconJ. l(Jr e.,ample. then the first sample in the Al.U­

operaLions prolilc (described below) gives Lhe number or ALU operations which lired

during 1he first sec.:ond. The next sample gives the number of operations which tired during

the second second. etc.

For ideali1ed mode. however. the ALU-operations profile is interpreted as follows. The

lirst sample indicates how many ALU operations fired when the procedcire was first started.

(GITA arranges for there to be one operation ready to fire at the beginning -- it drops the

lirst token into the datallow graph to get things started.) The second sample indicates how

many Al.U operations fired during the second timestep. That is. all those operations which

became ready to fire as a result or operations firing in the first timcstep arc all fired in the

second timestcp. An informal definition ofa tinlCstep"in idealized mode is. Fire all and only

!hose operations which are ready to fire al !he beginning of each timeslep.

The following functions control which statistics mode GITA is in.

(emulation-mode) Fune lion
Tells GITA to collect statistics in emulation mode.

(1dea11 zed-mode) Function
Tells GIT A to collect statistics in idealized mode.

(no-stats) Function
Tells GIT A not to collect any statistics.

6.5 Statistics in GITA

This sections describes the statistics which can be collected while an ID procedure is

being executed by GITA. Note that the term timestep has a dilTerent me~ming depending

on which statistics mode GITA is in.

ALU Operations Profile Stalistic
Collects a profile of the number of ALU operations which were fired during each

timestcp.

47

Wait-Match Profile Stalislic
Collects a profile of the number of tokens which were in wailing-matching scclions al

Lhe end of each timesLcp.

Invocations Profile Slatistic
Collects a profile of Lhe number of procedure in vocations which occurred during each
Limcstcp.

Terminations Profile Statislic
Collects a profile of the number of procedures which tcrminaLcd during each

timeslep.

I-Fetch Prof i 1 e Statistic
Collet.:ts a profile of Lhe number of I-Structure fetches were done during each

timestep.

I-Stora Profile Statistic
Collects a profile of the number of I-Structure stores were done during each Limcstep.

Deferred-Reads Prof i 1 e Statistic
Collet.:ts a profile of the number of I-Structure fetches which were deferred during

each Limcstcp.

I-Structure Storage Profile Swt~tk

Collects a prolile of I.he amount of I-Structure storage in use at the end of each
timestcp.

The following statistics arc only collected when in emulation mode.

Queued Tokens Profile Statistic
Collects a profile of the number of tokens in the token queue at the end of each

timcstep.

Act iva Code-b 1 ocks Prof11 e Statistic
Collects a profile of the number of code-blocks which were active at the end of each
timestep.

The following statistic is only useful when in emulation mode and running on more than

one physical processor.

Idle Prof11• Statistic
Collects a profile of the amount of time each PE was idle per timcstep.

48

iWl'JIJJ,Qtl!JlM~JfR[i,Mll•tDl"f~l#illl.lllltlJJ.L MJll,!,IJIJ, ... _ a,~,,.~@t@tl@£ .. I~lll!·J•klj)LllJ9§PN-
i-;:':~~,:"·~- ~ ..:-· ,- .· ..
(':

6.6 Viewilsa Stntl lk

After _... a. •illics -* and ._. .. a pre r1fcre. you CQft view any of the

Uislk:s by dickiaa Gii .. 1'"'91f·in •.•••• {.ii{-- a ... • view.
The ptt>lile ,,

Section 7

Using the GITA Dchuggcr

The GIT A debugger is in many ways like Lhe normal l.ISP debugger. The main

difference is thal lhe I.ISP debugger allows you lo look up anu down a stack of frames.

1,vhilc Lhe GITA Jcbugger allows you lo look around a treeof co!llexts.

7.1 GITA Dchuggcr Definitions

In GITA. a context roughly corresponds to a stack frame. Whenever a procedure is

invoked a context is created to hold iL'i argumenls and.results. etc. Because a procedure can

c."<ccute sub-procedures in parallel, however. GITA must maintain a tree rather than a stack

of contexts.

In the description of the GITA Debugger which follows. the current context means the

context which is currently being examined. As you move around the tree of contexts, Lhe

current context is changing to reflect your position in the tree. The root context never

changes and is the one context which hJS no father. It corresponds to the top-level call you

made when you first told GITA to execute an ID procedure. Finally. the anchor context is a

context which usually corresponds to a context at which an error occurred. although is can

be changed by using the c-. debugger command. This anchor context is used in order to

facilitate moving up and down the tree of contexts. Sec the section on Movement

commands. below.

7.2 Invoking the GITA Debugger

There arc two ways to enter the GIT A Debugger. The first has already been described -­

when in the GITA Frame. you click on the menu item GITA Debugger. Alternatively. you

can use the following function from wherever you were when you execulCd an ID

procedure -- the editor typeout window. for example.

50

(g1ta-debugger) Function
Invokes lhe gila debugger. 111;1ki11g lht: current wnlcxl be lhe root contexL

7.3 GITA Debugger Comm~1ml Loop

After invoking the GITA Debugger the root contcx.t will be displayed. including Lhc

name of Lhc procedure and it.') arguments. and the cursor will be to the right of :i righl­

arrow. the GITA Debugger's prompt. Whenever the cursor is just lo the right of the righL­

arrow. you arc al top-level in the debugger. Whenever you arc al this level. there arc several

things you can do.

• You can hit the <ABORT> key to ex.it the debugger.

• You can type one of the GITA Debugger commands. described below.

• You can type in a form to evaluate. just as if you were typing to a Lisp Listener.
a

Whenever you type a form to evaluate. the command loop automatically sets the global

variable • to Lhe value returned from the evaluation of the fonn. Thus • can be thought of

as holding on to the last thing returned. Similarly. the global variable •• holds on to the

second to last thing returned. and •• • holds on to the third to last thing returned. In the

descriptions of debugger commands which follow. whenever a command says that it

"returns·· an object. the variable • can be used to refer to that object For example. after

typing the debugger command c-A. which returns the ISO for the arguments of the current

context. you can then type (setq foo-args •) to make the variable foo-args hold on to

the ISO.

Some of the commands which follow refer lo a numeric argument. A numeric argument

is a number which is typed just before a command is issued. usually specifying which of a

set of n things should be done. To type a numeric argument. you hold done one of the

control keys (either control. meta. super. or hyper) and type the digits of the number. You

then type the command. For example, to type the c-m-A command with a numeric

argument of 12. you could type c-1 c-Z c-m-A. The section on ID Mode explains how to

type commands such ~ c-m-A.

51

7.4 Debugger Commands for Error I landling

When GITA detects an error during e.,ecution of a procedure a message is printed

saying in which part of the machine the error occurred. Execution continues. however, until

lllere arc no more activities ready lo fire. AL the end of execution GITA reports lhe total

number of errors it encountered. The following function allows you view the errors.

(show-errors) Function
Prints a report for each error encountered during the last GITA run. The errors are

printed in reverse chronological order and include the time the en•or occurred and an
e.,planation of the error.

7.5 Dealing with frror objects

When lhe GITA debugger is active. the following commands let you deal with errors.

c- E GIT A Debugger Command
Prints a list of all errors encountered in lhc last GITA run. This command simply

executes the show-errors function.

c-m-E GITA Debugger Command
Without a numeric argument. this command returns lhe current error object.

Otherwise. the error object given by the numeric argument is returned. This is one
way to get your hands on the arguments to lhc ALU operation which failed.

c-m-G GITA Debugger Command
Causes the anchor context to become the one where a particular error occurred. You

must use a numeric argument to specify which error you are interested in.

7.6 Had.trace Commands

A backtrace is a listing of the contexts in reverse order starting from the current context

and ending at lhe root context There are two backtrace commands which ditTer only in

how much detail lhey provide about each context

c-8 GIT A Debugger Command
Displays a brief back trace, showing the name of lhe procedure for each context

m-B GIT A Debugger Command
Displays a verbose backtrace. showing lhe name of the procedure and its arguments

for each context

52

7.7 Examining the Current Context

There arc many co111111a11ds in Lhc GITA 1.khuggcr designed to relllrn information from

Lhe cu rren L context

c-m-A GITA Dehugger Command
Returns Lhc nt.h argument in Lhc current context. Use a numeric argumcnl to specify

n.

c-A GITA DebuggerCommand
Returns the ISD used Lo hold Lhe arguments for the current context

c-m-V GITA Debugger Command
Returns Lhe nth value being returned from Lhe current context. Use a numeric

argument to specify n.

c-V GITA Dehugger Command
Returns the ISD used to store the return values of the current context

c-m-L GITA Debugger Command
Returns the nlh local variable (token) from the current context Use a numeric

argument Lo specify n.

c-m-F G !TA Debugger Command
Return the procedure object from the current context

c-m-C GITA Debugger Command
Returns the current context object. an object of type dbg-context. Note Lhat this is

not the same as the actual context object--a dbg-context only refers to the actual
context object through its PE and INDEX slots. The GITA debugger uses this object
to store the replies from remote servers so that it won't have to ask again.

7.8 Movement Commands

Moving around the tree of invocations in the GITA debugger is not quite as easy as

moving up and down the stack in the LISP debugger. A context will have at most one

father (the caller), but may have several sons (each corresponding to a procedure invocation

which has not yet terminated).

Moving "up" the tree of invocations is straightforward. the current context gets set to its

father. Moving "down" the tree of invocations. however. requires that a branch be selected

from among its sons. To make moving down the invocation tree easier, the GITA debugger

53

will sometimes pick Lhe bran<.:h which is rnnsiders the "obvious"' d10ice. Taking the

"obvious" choice is done by using the c-N rnmmand without any numeric argument. If I.he

GITA debugger cannot determine an "obvious" choice. then a numeric argument

specifying which branch to go down must be given. The GITA debugger determines the

"obvious" choice as follows:

•If the current context has no sons. then there is no way lo go down. and thus no
"obvious choice".

• If the current context has only one son. then the "obvious" (and only) choice is
to go down to the son.

• If the current context has more than one son. then the "obvious" choice is the
son which is closest Lo the anchor context If none of the sons arc in the path to
the am;hor context. then there is no "obvious" choice.

By defaulting the "obvious" choice. you should be able tn stick with using c-P and c-N

and never have to specify a branch unless you want to go off and inspect a context at some

other part of the tree.

c-P GIT A Debugger Command
Goes up one context towards the caller. With a numeric argumenL. goes up that

many contcxt'i towards the caller.

m-P GITA DebuggerCommand
Like c-P except that detailed information about the target context is displayed.

m-< GIT A Debugger Command
Goes to the root context (the oldest in the invocation tree).

m-> GITA DebuggerCommand
Goes lo the anchor context

c-N GITA Debugger Command
With no numeric argument. goes down the "obvious" branch of the invocation tree.

Otherwise goes down the nUt branch. where n is specified by the numeric argument

m-N GIT A Debugger Command
Like c-N except that detailed information about the target context is displayed.

c-. GIT A Debugger Command
Sets the anchor context to the current context

54

7.9 Searching

The following commands search for a context with a procedure whose name contains a

given substring. The contexts are searched starting from the father of the current context

toward the root context. This is useful for quickly jumping to some context shown in a

back trace. For example. if you type c-8 and the backtrace is:

FOO (1) <- BAR [381) <- BAZ(8) <- QUUX (683]

Then searching for "BA" will make the current context be BAZ [8]. and searching for "F'

will make the current context be FOO (1].

c-S GITA Debugger Command
Prompts for a substring and searches up from the current context for one whose

procedure name contains Lhe substring. If it finds one. then that context becomes the
current one.

m-S GITA DebuggerCommand
Like c-S except that detailed information about the target context is displayed.

7.10 Other Debugger Commands

An invocation tree shows the full tree of invocations still active at the time the last GITA

nm finished executing. The sons of a context are all indented to the same column

underneath the father.

c-T GITA Debugger Command
Shows an invocation tree of all known contexts.

Use these next two commands to clear the screen. in one of two ways.

c-L GITA Debugger Command
Clears the screen and displays the current error mes.sage along with the procedure

nan1e and arguments of the current context

m-L GITA DebuggerCommand
Clears the screen and displays detailed information about the current context.

including the procedure name. its arguments. results, and locals (tokens).

These next few commands let you look inside of various objects.

c-m-D
Describes the last thing printed out

(DESCRIBE •).

55

GIT A Debugger Command
This keystroke is equivalent to typing

c- I G tl'A IJ<'bugt;er Command
Prelty-print.s Lhe lasl Lhing rrintcd out This command is csrccially usd"ul l()r vicwing
ISLJs. When an ISO is rm:tly-printcd Lhe contcnls of Lhe I-Structure it rcfcrences is

printed out

c-m-I GITA Debugger Command
Typing this command toggles the ISD preuy-prinl flag. Whcn the flag is scl all ISDs

arc aulOmatically preuy-printed.

Finally, you can gel online help by typing Lhe <HELP> key.

<HELP> GITA Debugger Command
Prinl5 a concise dcscriplion or each of Lhc debugger commands.

56

Section 8

Using GITA on Multiple 1\fachincs

GITA can be made lo run on multiple machines. One of Lhc design goals of ID

WOR l.ll however. was Lhal the user should not be concerned with Lhe numhcr of machines

which arc in use. Accordingly. ID Mode. Lhe GITA Debugger. and Lfic slatislks have all

been designed to be used in exactly the same way no matter how many machines arc

participating in the execution of an ID prcx:cdure.

8.1 Setting up Multiple Muchincs

Note that this section is likely lo change in the near future. The interface to multiple

machines at the moment is neither very robust nor general. and is being redesigned.

Thcrcfbre. this section will provide only a quick introduction to some of the functions which

are currently used to nm experiments on multiple machines.

•defaul t-proceuors• Variable
This variable contains a list of the machines. including the local machine. which may
be used by the local machine to execute ID procedures.

(select-f1rstn-processors n) Function
Sets the variable •default-processors• to the names of the first n proces.sors in

the MEF.

(select-processors &rest machines) Function
Sets the variable •default-processors• to the list of machines given as arguments
to this function.

(1n1t1a 11ze-g1ta-servers) f'unclion
Starts up a GITA-Server processes on each of the machines in

•default-processors•.

(reset-g1 ta-servers) Function
Makes sure that the GITA-Server proce~ is still running on each of the machines in

•default-processors•. Will reestablish a connection to any of the machines if it
has failed.

57

(1n1t1a11za-natwork) Function
Causes each of lhc machines in •default-processors• to derive the connedivily

of Lhc Circuit Switch network. This must be done once before GITA can execute ILJ
procedures on all the machines.

(show-netstate) Function
PrinL'i out a lc.~tual representation of the connectivity of Lhc Circuit Switch for each of

the machines in •defaul t-procassors•.

(draw-netstate) Function
Draws n pictorial representation of the connectivity of the Circuit Switch for each of

Lhc machines in •default-processors•.

(pas n) Function
Selects the lir.it n prcx:cssor.i in •default-processors• to participate in the nexl

execution of an ID procedure. Setting n Lo l will force Lhe local machine to be the
only one involved in the execution.

8.2 Using the GITA Server

The following functions may be used to force some or all of the machines in

•default-processors• to perfonn some action.

(all form) . Macro
Causes all processors. including the local machine. to evaluate form. The results are

discarded. Docs not wait tbr the servers to finish evaluating/arm before returning.

{all-eval form) Macro
Causes all processors. including the local machine, to evaluate form. The results from
each machine are collected and returned.

(others form) Macro
Causes all processors except the local machine to evaluate form. The results are

discarded. Does not wait for I.he servers to finish evaluating form before returning.

(others-eval form) Macro
Causes all processors except the local machine, Lo evaluate form. The results from

each machine arc collected i.utd returned.

(execute-on peform) Macro
Cnuscsform to be evaluated on the~ machine in •default-processors•. The

results are discarded. Doc-s not wait for the server to finish executing form before
returning.

58

(1val•0tt ,_/amt) Macro
Caua ... to be C¥41uated OH dta ~ ,...,_tt·•oeqffrs•. The _ ...

(108'·• ,_..,

C-Jl'-&ollre klldiclon dle,J'I _.._.,...,.Jt•tr ... awa•.
(•ll-1.U Ji#)

c)II& Mac"'

lkfcrcnccs

I. Arvind. D. E. Culler. R. A. Iannucci. V. Kalhail. K. Pingali and R. E. Thomas. The
Tagged Token Data now Archilccture. Laboratory for Computer Science, MIT, Cambridge,
MA. July. 1983. (Prepared for MIT Subject 6.83s)

2. Arvind. M. L. Dertouzos and R. A. Iannucci. A MulLiproccssor Emulation Facility.
Tech. Rep. TR-302. Laboratory for Computer Science. MIT. Cambridge, MA. October,
1983.

3. Arvind. and K. P. Gostclow. The U-interpreter. Computer 15. 2 (February 1982). 42-49.

4. Heller. Steve and Ken Traub. ID Compiler User's Manual. Tech. Rep. TR-248,
Computation Structures Group, Laboratory for Computer Science, MIT. Cambridge, MA.
February, 1986.

5. Soley. Richard M. Generic Soll ware for the Emulation of Multiprocessor Architectures.
Master Th., MIT Laboratory for Computer Science. June, 1985.

60

