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Abstract

Compilation of-the programming language 1d Nouveau into machine code for the MIT
tagged-token dataflow architecture is thoroughly described.  Id Nouveau is a higher-order
functional language augmented with a novel data structure facility known as I-Structures. The
tagged-token dataflow architecture is a dataflow computer of the dynamic variety.

Compilation takes place in two steps.  In the first step, the 1d Nouveau program is
converted into an abstract dataflow graph called a program graph. Program graphs cmbody no
detatled knowledge of the target architecture, yet have a very precise operational scmantics. At
the same time, they represent data and control flow in a way very convenient for program
transformation. Scveral common oplimizing transformations are discussed.

The second step of compilation converts the program graph into machine code for the
tagged-token architecture, taking into account the machine’s finite resources.  Peephole
optimizations for muchine code are discussed, and a general-purpose optimization algorithm is
given.,
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. Intrsdaction

The scarch for a scakable parallel computer architecture has led the Computation
Structures Group of MIT's Laboratory for Computer Science into developments in two areas,
On once ront, a general purpose programming lanpnage suitable for exceution on parallcl
architectures has been developed; its present name is 1d Nouveau.  On the other front, a
dataflow architecture called the Tagged-Token Dataflow Architecture, or THDA for short, has
been designed and extensively simulated.  Id Nouveau can be described as a language
combining the features of functional, or applicative, ldnguagcs with a novel data structure
facility called /-Structures. The TTDA falls into the general category of dyvnumic dataflow
architectures, other examples of which include the Manchester Machine [Gurd 85} and F'TL's

Sigma-1 {Iiraki 84].

As always, the missing link between language and machine is the compiter,  In this
thesis we examine how functional cum I-structure languages can be translated into object code
for dynamic dataflow architectures.  While our discussion is bascd on Id Nouvcau and the
TTDA, most of what is said is applicable to other datallow languages and urchitectures. Two
requircments must be met: the dataflow graphs must correctly implement the semantics of the
language, and the graphs must conform to any constraints and peculiarities ol the target
architecture, Ticd intimatcly with the latter is a third requirecment that the resources required
for exccution of the program, of which only a finite quantity are available, be controlied in

certain ways.

The outline of the thesis is as follows, In Chapter 2, we briefly describe a minimal
subsct of 1d Nouveau called Id Kernel. Id Kernel is in not a "toy" language, howcever; cvery
construct in Id Nouveau has a counterpart in Id Kernel, though perhaps with small syntactic
modifications. A {ull description of Id Nouveau can be found in [Nikhil 86], where an

algorithm for conversion ol {d Nouveau programs into Id Kernel may also be found.

Chapter 3 begins the compilation process, by describing how an Id Kernel program is
converted into an abstract sort of dataflow graph which we term the program graph. There is an
approximately onc-to-one correspondence  between constructs in the source program and

instructions in the program graph, even though it may take many machine code instructions to
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implement a particnkar construct, 'The program graph is theretore not suitable for diredt
execution onany datallow architecture, although it beats a strong resemblance (o the datallow
graphs used by a wide varicty of datallow machines. In fact, the program graph is much closer
in spirit to the "data flow graphs” uscd by optimizing compilers for conventional languages.
Onc important difference is that a conventional compiler uses data Now graphs as an auxitiary
data structure to aid analysis, but for us the program graph is the only intcrmediate data
structure of any importance, and it captures everything we might want to know about the source
program. Consecquently, it is possible to give a rather precise operational interpretation of the

program graph,

The similarity between program graphs and the dataflow graphs used by conventional
compilers Icads naturally into Chapter 4, where we examine optinizing transformations that can
be performed on the program graph.  As it turns out, most it not all of the common
optimizations cmployed by conventional compilers have counterparts in the dataflow domain.
[n fact. the clegance of a datallow language combined with the program graph representation
allows many of thesc optimizations to be performed with greater case, cflectivencess, and

confidence.

The program graph is but an intermediate step on the way (o code generation for a
dataflow machine. In Chapter 5 we examine the architecture of one such maching, the MIT
Tagged-Token Dataflow Architecture. While we do not attempt (o give a description complete
to the last NAND gate, we present cnough detail to gain an understanding of the constraints on
the instruction set, and how the finite nature of the machine witl influcnce the translation of a
programming language in which resource management is totally the responsibility of the

compiler and machine,

One requircment that falls out of consideration of the machine is the need for additional
arcs in the dataflow graph called triggers and signals. In Chapter 6 an algorithm for their

introduction is presented; the resulting graph is called a Well-Connected program graph.

With the Tagged-Token Architecture in hand, Chapter 7 presents the translation from
Well-Connected program graph into machine graph, or object code for the TTDA. Because the

program graph already embraces the notion of data flow, translation from program graph to
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machine graph is even more straighttorward than from td Kemel to program graph. o fact,
translating to machine graph simply involves the contest-fiee substitution ol machine code tor
prograny graph constructs. The subtlety arises in the definttions of the substitutions, {or they
must heed the restrictions imposed by the architecture while still implementing the Tull

N

ecncrality of the program graph.

Peephole optimization is commonly cmployed by conventional compilers to improve
code generated from: straightforward translation of programs.  Dataflow compilers arc no
cxeeption, and in Chapter 8 we sce how peephole optimization applics to dataflow code. A

general purpose, pattern driven optimization algorithm is presented.  To the author’s

knowledge, this is the first discussion of pecphole optimization as it relates to datallow graphs.

Finally, we conclude in Chapter 9 with a summary, a look at the present state of

implementation, and some directions for future rescarch.
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2. id Mouyeau

[ Nouveau [Nikhil 86] is a programming tanguage developed by the Computation
Stractures Group at MIET's Faboratory for Computer Science. An evolutionary successot o the
fanguage 1d [Arvind 78], Id Nouaveau can be described as a functional language enhanced with a
data structuring factlity known as {-Structures [Avvind 86a, Nikhil 86]. With its functional core,
Id Nouveau is primarily concerned with expressions and abstractions of expressions (functions).
Functions arc first-class objects in Id Nouveau, and may be passed to and returncd from other
functions, stored in data structures, efe.. 1-Structures are a novel sort of data structure which lay
midway in power between purely functional data structurcs and storage as it is found in

imperative languages. More will be said about them momentarily,

We do not attempt to give a complete description of 1d Nouveau here, as this has
admirably been done in [Nikhil 86]. In fact, throughout the thesis we will restrict our attention
to o subset of Id Nouveau, referred to as 1d Kernelo 1d Kernel has the full expiessive power of
Id Nouveaw; it lacks only those constructs which can be syntactically converted (o other

consiructs that are retained in 1d Kernel.

2.1 xpressions, if, and let
The simplest Id pmgrams1 arc just expressions:
6.847 1+ 1 3*5 + 4~(78/6.023E-23)
Id possesses the usual complement of arithmetic, relational, and logical operators over
the usual integers, tloats, and booleans. A conditional, or i f, expression is also allowed:

if 1+ 1 =2 then 123 else 321 (if 1+1=2 then 123 else 321) * 34

Since the conditional is an expression, rather than a statcment, it must always have both
a then part and an else part. If one of these were missing, the expression would not always

have a value.

I'I'hroughout this thesis we will use the names "1d Nouveau" and "Id" interchangeably. Unless specifically stated,
we are never referring to the original language 1d as described in [Arvind 78]
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Names may be associated with expressions through use of the Tet construct:

let
a=>5*3;
c =2 + 1
in

The value of a Tet expression is the value of the expression following the in keyword,
1.5 in the example above. The variables defined in a 1et have a scope which extends over the
entire Tet expression, not just over the in cxprcssion2. A conscquence of this rule is that the
bindings may appear in any order, and thercfore the semicolon serves no sequencing role as it

does in imperative languages. The following expression evaluales to 12.

let

a = if ¢ = 2 then 10 else 3521;

c = (let a =5 * 3 in a * a) - 223
in

a+ c

This example also illustrates the lexical scoping ol identificrs; the a defined in the inner
let is a completely different variable from the a defined in the outei Tet., We can always
systematically rename identificrs so that no identifier appears on the left hand side of a binding

more than once. If we had donc so for the previous cxample, we would have:

let

a = 1f ¢ = 2 then 10 else 3521;

c = (let bh =5 * 3 din h * b) - 223
in

a + ¢C

We say an occurrence of an identifier is free within an expression if the expression does
not also contain the binding assigning that identificr its value. Hence, the right hand side of the
first binding above has one frce variable, c, the right hand side of the sccond has no free
variables, and the expression following the keyword in has two free variables, a and ¢. The

entire expression has no free variables.

Let us cmphasize that bindings in Id are not at all like assignment statcments in

2. ) . . , i
This scoping rule is sometimes referred to as “letrec” scoping.
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impetative lanpuages, despite the syntactic similarity, An Id identifier is simply a name given o
the value of an expression so that it may be used i several places. Consequently, the same
identificr may not appear on the teft hand side of more than one binding in a let. since cach
identificr must map to exactly one value. This is often called the "single assignment rule™.
although somewhat of a misnomer since a binding docs not necessarily entail assignment in the
sensc ol lilling in a storage location sct aside for a variable, In many dataflow implementations,

in fuct, there are no fixed locations corresponding to identiliers.

2.2 Geflinition and Application
Id Nouveau allows us to abstract over expressions, vielding functions, Functions are

defined with the keyword def

def mean?2 x y = (x + y) /7 2;

and invoked by juxtaposing the function namce with its arguments;

meanZ 30 40

The expression above returns 35, Id functions are "curried", which mcans that they can
take their arguments one at a time. Thercfore, mean2 0 is a perfectly valid Id expression, one
that returns a function which halves its argument.  The number of arguments to which a
function must be applied before its delinition is cvaluated is called the function’s arity; mean2
has an arity of 2. The arity of a (unction is determined syntactically as the number of identificrs
(formal parameters) that [ollow the function name on the left hand side of the def that defines

it.

All definitions in Id Kernel arc closed, meaning that the free variables of the right hand
side of a dcfinition must be a subsct of the formals. The full Id Nouveau language permits
definitions, not necessarily closed, within 1et expressions. These can be converted to closed Id

Kerncl definitions through Lambda Lifting [Johnsson 85].
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2.3 I-Structures

fhe Teatures of d Nouvean described so far are the same as those found i fimctional
languages. The term "functional™ arises because the value returned by a procedare application
depends only on its argunients; two calls o the same procedure with the same arguments are
guaranteed 1o return indistinguishable results.  This fact accounts for scveral desirable
propertics of functional languages. Functional languages possess referential transparency, or the
ability to have the expression defining a variable be substituted for occurrences of that variable
without changing the meaning of the program. They also possess the Church-Rosser property,
also called the confluence property, which guarantees that the answer computed is unaffected
by the choice of which subexpressions to evaluate first (although some orders of evaluation may
fail to produce an answer at all). This property is what interests architects of parallel machines,
for it insurcs overall program determinacy even if the machine cxhibits non-determinacy in
instruction scheduling. Of course, we cannot hope to evaluate a + 3 if we do not have a value

for a — the order of evaluation is still constrained by duta dependencies.

Data structures in functional languages are created by invoking a constructor function,
which takes as arguments the values with which to fill the components of the structure. A
familiar example of a functional constructor is Lisp's cons. Referential transparency demands
that the values returncd by two calls to the same constructor function with the same arguments
must never be distinguishable.  Thus, in a functional language, we can never alter a data
structure once it has been created, and conscquently we must specify the contents of all
clements of the structurc at creation time. Somc latitude cxists as to how we specily the
arguments; in particular, it is sufficicnt to supply an expression computing each component
without actually waiting for their values to have been computed. In that case, an altempt to
extract the value of a componcnt will be suspended until the component’s expression has
completed cvaluation. This sort of Fuhctional data structure is called non-strict, or lenient. A
variation on this is to prevent any evaluation of the expression computing a component’s value
until it is certain that value is needed, ie., until the first fetch of that component is attempted.
This kind of structure is called lazy, or demand-driven. Because these various Kinds of
functional data structures differ only in the ordering of subexpression evaluation, the Church-

Rosscr property implies that they are semanticatly equivalent (modulo termination propertics).
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I-Stractures, on the other hand, are not semantically cquivalent to functional data
structuies: in fact, a language that includes them is no longer functional. An 1-Structure s a
onc-dimensional array, or vector, which is completely empty when constructed. In td Nouveau,

the expression

array(1..10)
returns an empty I-structure whose clements are numbered consccutively 1 through 10, An

I-structure element may be filled in using an I-Structure Store construct within a let

expression:

Tet
a = array(1..3);
a[1] = 25;
af2j = 6;
a[3] = 4

in
a

This program creates and returns an F-structure whose three clements receive the values
25,6, and 4, 'There is no restriction on where an I-structure Store may appear in relation to the
array cxpression that constructs it.  Thus, we can write the following procedure, which

initializes the first and last clement of the I-structure it receives as argument,

def fill_ends a =

let
lower = lower_bound a;
upper = upper_bound a;

af lower] = 0;
afupper] = 0

()

in

Notice that this procedure docs not return any values, it simply has the side-effect of

filling in some slots ol its argument., We might usc this procedure in the following way:

def make_thing n =
let
s = array(l..n);
= fi11_ends s;
in
S,



Notice that Fil 1 _ends is invoked by placing it on the right hand side ol an equal sign.
This syntax is used to cause the evaluation of any expression solely for its side ctlects, and s

called a "command" rather than a binding.

I-structures certainly sacrifice the language's referential transparcncey property, since two
calls o array(1..10) return two diiferent I-structures that may be filled in differently. That

is, the following two programs are not cquivalent:

def progl n =

let
b = array(1l..n);
c = array(1l..n)
in

L)

def prog2 n =

let
a = array{t..n);
b = a;
c = a

in

In progt, flilling in an clement of b cannot affect any computation using ¢, while in
prog?, filling in an clement of b does affect computations using c, since b and ¢ refer to the

same structure.

We can accept a lack of referential transparency, but because we arc interested in
parallel implemcentations we still want to retain the Church-Rosser property, or the ability to
retain program dcterminacy without unnecessarily constraining order of evaluation. For this
rcason, [-Structures have two restrictions. First, an atterapt to fetch an empty [-Structure
element becomes suspended until that element is filled in by an I-structure Store, at which time
the fetch returns the newly stored value. 1t is thercfore impossible tell whether an I-structure
element is empty or not. Sccond, an attempt to writc an individual I-structure clement more
than once signals an error condition which voids the result of the entire program. No matter
how we interleave execution of reads and writes, therefore, every fetch to a given I-structure
element always returns the same value, namcly, the value written into that elecment by the single

I-structurc Store for that element. Determinacy has been preserved.
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In 1d Nouveau, the usual array syntan denotes Bstructure fetches:

def sum_ends a =

let
lTower = lower bound a;
upper = upper_bound a
in

al Yower] + afupper];

Id Nouveau with its I-structures represents a new class of languages having many of the
desirable features of purcly functional languages while offering potentially greater efficiency in
data structure manipulation. This is especially true in scientific computation, where functional
data structures often imply a great deal of copying, with a concomitant loss in available
parallclism, A typical example is a program in which the boundarics of a large matrix are
initialized, and then the inner elements progressively computed from the outer oncs.  Using

[-structures, only one matrix need ever be allocated.

I-structure languages are in their infancy, and their formal properties are still under
investigation, 'The most recent addition to our understanding of them is in the opcerational
semantics based on rewriting given for 1d Nouveau in [Nikhil 86]). Their translation into
dataflow graphs as given in this thesis is another form of operational semantics, albeit of a far
lcss abstract sort. A denotational semantics of Id Nouveau is under development [Pingali 36].
One difficulty in formulating the mathcmatical semantics is that I-structure languages are
non-sequential, in the sensc that it is not possible to give at compile time a total ordering on the

evaluation of subexpressions. A discussion of this point is outside the scope of this thesis.

2.4 Loops

The constructs described in the previous sections comprise the complete Id Kernel
subset of Id Nouveau, posscssing the {ull expressive power of the latter language. In this thesis,
however, we shall retain one additional Id Nouveau feature in Id Kernel: the loop construct.

The while form of an Id Nouveau loop is illustrated below:



def Till_ it a =

Tet
i = Tower_bound a;
sum = 0
in
while 1 <= upper_bound a do
val = (upper_bound a - lower_bound a) ~ 2 - i * 1i;
a[i] = val;
new sum = sum + val;
new i = 1 + 1

return sum

This program fills cach clement of its argument array with a value computed from the
element’s subscript, and rcturns the sum of the all elements. The body of the loop resembles
the body of a let: it contains ordinary bindings (like that for val) which name
subcomputations, I-structure stores which fill in I-structure elements, and although not shown,
it can also contain commands which specify computations to be performed for side ¢ffect. 1.oop
bodics can also contain new bindings, like that for sum and i above; identificrs appearing on the
left hand sides of new bindings arc called newified variables (for lack of a better name). 'The first
time the body is evaluated, the newificd variables assume the values they had outside the loop,
e.g., 0 for sum in the cxample. The new bindings describe how to compute the values the
newificd variables take on for the next iteration for the loop; in the example, therefore, i is
incremented each time through the loop. Finally, the expression following the keyword return
is evaluated in a context wherein the newified variables have the values computed during the

last itcration of the loop.

Two points worthy of mention: the new bindings only affect the values of the newificd
variables for appearances within the loop expression. For example, if there was a reference to
the variable sum appearing outside the loop, it would have the valuc zero. Second, while an
ordinary binding within a loop introduces a new variable name, a ncw binding must refer to a
variable already introduccd outside the loop, otherwise it would have no value for the first
itcration of the loop. One way to understand a loop as is an alternative syntactic formulation of

a tail-recursive procedure having one formal for each newified variable:
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def 911 4t a =
let
Fill L _iter 1 sum =
if i <= upper _bound a then

let
val = {upper_bound a - lower_bound a) ~ 2 - i * 1i;
ali] = val
in
Fill_dt_ater (i + 1) {sum + vatl)
else
sum;

in
fill_it_iter (lower_bound a) 0;

(In Id Kerncl, the internal definition of £i11_1it_iter would have to be lifted out via
lambda-lifting to top level, resulting in the addition of a formal parameter for a.) Thus, foops
are not an essential feature of 1d Nouveau, since they can be mechanically translated into tail-
recursion (an algorithm for this is given in [Nikhil 86]). Nevertheless, we will retain loops in this
thesis, and compile them differently from their tail-recursive equivalents. Our motivations arc
twofold.  First, explicit representation of loops in the abstract program graph will reveal
opportunitics for a wealth of optimizing transformations, such as hoisting loop invariants,
Sccond, the dataflow architecture provides mechanisms for executing loops more cfficiently

than recursive procedures,

Once caveat is in order: the dataflow translation of loops we give will have slightly
different termination propertics than for the translation of their tail-recursive equivalents. That
is, it is possible to write a loop program such that its transiation as a loop will deadlock while the
corresponding tail-recursive translation will run to complction. This is a direct consequence of
resource constraints imposcd on loops to maintain their efficiency. We note here that because it
is possible for a compiler to translate between tail-recursive and loop formulations, the choice of
exccution mechanism is decoupled from the programmer’s choice of syntactic representation.
The compiler is free to translate potentially deadlocking loops into tail recursion, although we

will not discuss incthods of determining when this is necessary or desirable.
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3. 'The Program Graph

The program graph is composed of a collection of instructions. cach with an opcode that
identifics its function, and some number of inputs and outputs. A dirceted are connecting an
output 1o an input allows a picce of data called a token 1o ow along that arc. For convenience,
we will assume that any particular output may be connected to an arbitrary number of inputs
(but not the reverse); the token emitted by an output is copicd and sent to all inputs to which

the output is connected.

A firing rule describes the behavior of instructions with a given opcode. The firing rule
explains, for each output, when a token may be emitted from that output, and how the value on
that token is to be computed. For some instructions, firing rules will also indicate side-cffects to
be brought about. The rules will generally be in terms of the tokens acriving on the instruction’s
inputs. For example, the familiar + instruction is defined by the following firing rule:

———— Qutput Quiput of + ———

Pre-Condition: In/zut[ present and Inputz Value Produced: Inputl + Inpuz‘2
present.

Program graph instructions differ from machine graph instructions in their complexity.
A single program graph instruction may have many inputs and outputs, and the firing rule may
stipulate that some outputs produce tokens even though no tokens arrive on some inputs,
‘These powerful instructions provide a concisc framework for expressing the dataflow
translation of Id Nouveau programs without considering dctails of the tagged-token dataflow

architecture.

The firing rules will clearly define the behavior of instructions when presented with no
more than one token on each of their inputs. On the other hand, we will be using instructions in
situations where they can conceivably receive several tokens on the same input, such as within
the body of a loop. For now, we shall not concern ourselves with rules for distinguishing among
multiple sets of tokens, relying instead on the reader’s intuition. Explicit attention to proper

matching will be given when we translate from program graph to machine graph.
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3.1 Basic Schemata

I'ranslations Trom Id Nouveau o program graphs are most casily

We will represent instructions as boxes, and arces as lines:

constant
(6847)

Quiput

3

I

Inpull lnpuI?

+
Qutput

When we need to indicate an entire subgraph, we use a "blob™:

.

SJ

I'ree Variables

Ixpression

avprossed pictoriathy.

The double line indicates a collection of arcs — a bus, if you will. We are always carcful

to account for all arcs entering and leaving a subgraph, so that all intcrconnections arc explicit.

Expressions involving the arithmetic, relational, and logical operators (+, <=, and, efc.)

are compiled in the straightforward way:



I'ree Variables

Jdo e
[ 1 By \]"l’kl

S 5

b

l//[)ull Inpu!z ]«l'l + [5'2
+ S
Quiput - ”‘

The arcs entering the subexpressions are preciscly their free variables, as ilustrated in

the following cxample.

Input ; Input 5
*
Qutput

I ‘ l
nput ; Input , X+ x *y
+

Ouiput l [

Constants in expressions are indicated by a special inputless constant instruction:
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X e Y
constant(b)
Qutput
fnput § Input , X + 5
+

Output &1

There are really an infinite number of constant opcodes, cne for every possible
constant, The firing rule for the constant(5) instruction is:
————— Qutput Output of Constant(5) ——

Pre-Coundition: OQuiputl needed. Value Produced: 5

The precondition here is a bit strange — the constant instruction magically emits a
token whencever one is needed by the instructions connected to it. As you might expect, we will

nced to be a little less vague about this when we convert to the machine graph.

We translate other constructs of Id Nouveau with the aid of a whole repertoire of

program graph instructions. [First, array expressions:



sl
N el g

1
% 1.8 % %i o

I F“J%

Lower Upper

array

Output

v

———— Side-Fffect of array

Pre-Condition: Lower and Upper present.

—— Quiput Quiput of array ——

Pre-Condition: Lower and Upper present and
new I-structure allocated.

I-structure fetch expressions:

Free Vinables

(érray( LB .. us {]

é:l:l

Effect: New emipty  Bstructare is allocated
from available t-structure memory,

Yalue Produced: (A descriptor for) the newly
atlocated I-structure.

Free Variables

Index

Structure

i-fetch

QOutput

The i-fetch instruction has an unusual firing rule, owing to the special nature of I-

structures:
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e Qutpul Quiputof 1 tetch —-— -

Pre-Condition: Structire and  fndey present, Value Produced: Plement Index of Structure.

and clement fndex ot Structure written.

The construct for storing into -structures is found in the next section,

3.2 Let Expressions
The simplest Tet expression introduces no new instructions of its own, but allows
outputs of expressions to be named and used in more than one place. Each "ordinary” binding

ofa let is compiled as follows:

I'ree Variables

Notice that the output arc has been labeled with the variable name appearing on the left

hand side. Labels on outputs are paired up with matching labels on inputs in the following

schema for 1et:

I'rec Variables J—
e )

L-l 1etVl _—; [;1 |

vV, through vV, l [




The fabeled ares supply some of the {ree variables off the bindings™ right hand sides as
well as those ot the in expression, This is consistent with the "letree” scoping rule for tet
expressions, Any [ree variables not corresponding to the ares labeled V', through p, are exactly

the free variables ol the Tet expression as a whole.,

Besides ordinary bindings. two other kinds of statements can appear in 1et cxpressions.
These do not bind variables, but indicate side-cffects to be brought about. The first of these

causes an I-structure clement 1o be written,

I'ree Vill‘if’lbl()ﬁ

.\j\’

Structure  Index Value T

i-store

Yet another program graph instruction makes its debut; this one acts entirely by side
effect:

——— Side-Effect of i-store —————

Pre-Condition: Structure, Index, and Value Effect: [t clement [ndex of Structure was not
prescent. yet written, Value is writlen there, otherwise
an error flag is raised.

The I-store statement is unusual in that variables on the left hand side contribute to the
frec variables of the statcment. This is because the left hand side serves not to name the
computations of the right hand side, as in the ordinary binding, but to indicatc how to obtain a
I-structure and its indices for writing. Since the I-store statement just indicates a side-effect, it

has no outputs of its own,

The final kind of statement that can appear in a 1et is the "side-effect”, or "command”

statement. Hcre, we just compile the right hand side, which ought not to produce a value.
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Free Varables

(-)

[ Ny

e

Putting it all togethcer gives the final schema for 1et expressions/commands:

t'ree Variables
e 2
Vy = Iy s
V=1,
v, through Vo A/ L AZ 1= 4 3
= ('I M
=C
m 4
in
L iL
\ \ ! bi
/% /'23 /‘33 N Y,

As a final notc, we point out that the blob for the in expression will be absent if the

symbol " ()" follows the keyword in. In that case, the Tet is a command, and may appear on

the right hand side of a command statement.
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3.3 I Eapressions
Now we tackle a more complicated prograny construct: the i f expression. The schema

for if is:

Free(Then) U Yree(itlsey 1'ree Variables B
A N . P
% L pred 3
. .
inpue g *°° Ylnpur Predicate
Thentnput p* = Thenlnput ) Elselnput ¢ =" Elselnput |,
‘ : :I l: it F pred then
: " then
if 1/10)1 I ofse
else
plso
L - __L
ThenQutpnt FlscOutput
IfOutput;

'

All the work is donc by a complicated program graph instruction called if. Basically,
the idea is that the if instruction diverts tokens to either the "then™ side or the "else” side
depending on the token it receives on its Predicate input. 1t also merges the results from the two
sides so that the value computed by the if cxpression flows along the single output arc. All of

this is summarized by the firing rules for if below:

——— Output Thenlnput of if ——

Pre-Condition: lj[nput present and true Yalue Produced: lf[nputi
presenton Predicate.
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———— Output I:"/.s-vlnpu/{. ol if —-—
Pre-Condition: [/Inpuli present and false Vitlue Produced: Uln/)ul{.

present on Predicate.

——= Qutput [fQuiput of if ——

Pre-Condition:  ThenQOutput. present when Value Produced: '/'/u'n()ul]m([ (Predicate
true present on Predicate or [{l‘s'c()ulpull. true)or [:'/.\'c()ulpull.(l’rwli('ulcfaIse)
present when False present on Predicate.

The inputs to the i f arc all variables that might be needed by cither the "then” side or

the "else” side — in other words, the union of the free variables of the two sides. Of course, not

all of these variables need be connected to both sides within the if. Hcere is an examplc of an

if expression:

pD— y
D> X Ado—- 2z )
Ytnput ; Ulnput 5 IfInput 3 Predicate

ThenInput ;o Thenlnput 3 Thenluput 3 Flselnput  Elselnput 3 Flselnput 3

| +I+ l l——+{—‘ T if x+=ythen

+ + else

if i i x +y
:—U—\
ThenOutput ) LlseQutput 1 )

IfOutput;

'

One thing the firing rule for it does not require is that all inputs arrive at the if before

being routed to the appropriate side. For example, if x were 3 and y were 4 in the example

above, a token carrying 7 can appear at the output even if the token for z had not yet arrived.
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X4 Procedures and Applications
Applications are simple in appearance, remembering that due to currying an eapression

like (F a b c¢) appears as three left-associated applications,

I'ree Variables

Procedure Argument

apply Iy k)

Qutput
& A;j:.l':l

The f{iring rule for apply:

——— Qutput Qutput of apply ———

Pre-Condition: Procedure present Value Produced: Result of applying Procedure
o Argument

The firing rule for apply is deceptively simple. If Procedure is a procedure of one
argument, then apply is fairly straightforward: it simply passes the argument to the procedure,
and sends the result along its Queput arc. If Procedure is a procedure of two arguments, say,
then we arc only applying the first argument here. In keeping with the curried definition of
procedures, then, we must return an object which when applied to another argument invokes
Procedure with both arguments. In short, we return a closure of Procedure over its first

argument. The Procedure input of app1y, therefore, cxpects a closure.

Without giving away too many details of the implementation, we can say that a closure
has at least three components, First, it carrics the name of the procedure ultimately to be
invoked. Sccond, it indicates how many arguments remain before the procedure'’s arity is

satisfied. Third, it holds all arguments accumulated thus far; their number plus the number
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remaining always adds up to the arity ol the procedure. The action taken by app ly depends on
the number of arguments not yet collected. 1 one, then it invokes the procedure, sending
Argument and any arguments recorded in the closure to the procedure. 1 two or more, it
creates a new closure containing the new argument as well as any in the old closure, whose
" S AR Vg I " : ver " . . PO S N N
number of arguments remaining” ficld is onc less. Whenever a program refers to the name ol

a procedure, itis really referring to a closure for that procedure with no arguments collected.

We want procedures to be non-strict in that they can begin to execute cven though some
of their arguments have yct to be computed. This is expressed in the firing rulc by the absence
of a precondition requiring Argument to be present before 'producing an output. This means
that as soon as we have the Procedure argument and sce that its arity is not yet satislied, we
create a new closure which will eventually contain the new argument whenever it arrives, Or, if
its arity is satisfied, we invoke the function, and whenever the argument arrives it will
automatically be diverted o the procedure.  Exactly how we accomplish this feat will be

cxplained when we turn to the machine graph (hint: it involves the usc of E-structures).

All that remains is (0 describe how we represent procedure definitions themselves in the

program graph. Not surprisingly, we use a def instruction:

Argumcnl, th Argumcnln

V1 < 14

def(f) T F 3 @ef ty, ey, = k)

é

Result

Def is a bit tricky to explain by firing rule. Let it suffice to say that somctime after the
procedure is invoked an argument pops out of cach of the Argument; outputs, and when the
body sends a result to the Result input it is routed back to the app1ly instruction that triggered

the invocation.
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3.5 Loops

The schemata given in the preceding sections are sulficient to implement all of” 1d
Kernel, and therefore all of Id Nouveau, assuming we transform for and while loops into
recursive procedures.  In practice, however, there are two reasons for giving loops special
treatment.  First, the tagged-token dataflow architecture, like most dataflow architectures,
provides a particularly cfficient mechanism for executing loops.  Sccond, the program graph
representation of loops admits the possibility of several optimizing transformations, such as

invariant code motion.

In this section, therefore, we give a program graph schema for while loops (we assume
that for loops are converted Lo their while loop cquivalents). This does not imply, however,
that programmers who prefer expressing their programs as recutsion will obtain lower
performance than those who prefer the while and for constructs. In many cases it will be
possible for a good compiler to convert recursive programs into foops [Arsac 82). Conversely,
we may choose to retain loops in the program graph for purposcs of optimization, and then
convert them to recursion belore translating into machine code. Unfortunately, we will limit
our flexibility somewhat by assigning stightly different semantics to the program graph's loop

construct as compared to the corresponding recursion; this is discussed in detail betow.,

The program graph representation of loops is in the same spirit as that for conditionals:
we introduce a new instruction called 1oop which isolates the different components of the loop.
Recall that a while loop has three parts: a predicate that determines when the loop terminates,
a body that is evaluated each time the predicate is true, and a return expression that is
cvaluated after the predicate turns false. The body of a loop is a statement list that is similar to
the statement list in a 1et expression. In addition to all the statement types discussed for 1et,
however, a loop statement list can also contain bindings of the form new Variable = Expression,

we call these bindings "new bindings".

The variables used in the predicate and body of a loop can be classified into three
categories:

Newified variables Variables occurring on the left hand sides of new bindings in the body.
These variables pass information from one iteration of the loop to the next,
and from the final iteration to the return cxpression.
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(Although omitted from the figure for reasons of space. | structinne Stoee statemenis are
of course permitted in the loop's body.)  For cach newiticd variable, there are corresponding
Looplnput, Predicatelnput. PredicateQuiput, Bodylnput, BodyOutput, and LoopQutput potls,
through which the vartable is shuttled through the various components of the loop.  Bound
variables are treated just as they are in Tet expressions: they are led back to all statements in

the body. Loop constants arc wircd to special LoopConstant inputs; more on that later,

Tokens entering the Looplnput inputs of a Toop are first routed to the predicate, which
decides if the loop body is to be executed. If not, the tokens are diverted to the LoopQutput
outputs of the Toop where they are consumed by the return expression, If, on the other hand,
the predicate is true, the tokens are sent into the loop body, where they arc used as the values
of the ncwified variables. During execution of the body, values for bound variables are
computed and used in other body computations, The body may perform some side cffects, but
ultimately it computes new values for the newified variables; these are sent (o the BodyQutput
inputs of the toop. From there, they are once again fed to the predicate, and the process repeats
until the predicate evaluates false. When tokens finally leave the LoopQuiput outputs, the
predicate will have been cxccuted at Ieast once, and the body exactly one fewer time than the

predicate.

Loop constants arrive on the LoopConstant inputs of the 1oop. They are emitted at the
PredicateConstant and BodyConstant outputs cach time the predicate (body) executes. While
we could have circulated the loop constants the same way we did the newified variables, giving
them special status allows us to cxploit their constantness when translating to machine code and

during program optimization.

With this informal description of 1oop in mind, here are the firing rules for 1oop:

——— Qutput Predicate]nputl. of Toop ——

Pre-Coundition: All LoopConstant present and Value Produced: Loop[nputt. or BodyOulputl.
either all LoopInput present (first iteration) or as appropriate.
all BodyOutput present (succeeding iterations).

——— Output Pred[cateConstantl. of Toop ~—

Pre-Condition: All LoopConstant present and Yalue Produced: LoopConslantl.
either all Looplnput present (first ileration) or
all BodyOutput present (succeeding iterations).
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—-——— Quiput If()L()fI/l/)Llli of loop ———
Pre-Condition: AW PredicateOutput present Value Produced: PredicateOutput;
and true presenton Predicate.

———— Qutput BodyC onstunt of loop —
Pre-Condition: Al PredicateOuiput  present Value Produced: Loop( 70"-\'“1'”,-
and true presenton Predicate.

——— Qutput Loop()utpu[l. of 1oop ——

Pre-Condition:  All  PredicateQuiput  present Value Produced: Predt‘calcOurpull.
and false present on Predicate.

The astute reader will notice that according to the firing rules above, an itcration cannot
begin until the previous iteration is completed, nor can any iteration procced until all loop
constants have arrived. This is the secmantic diffcrence between loops and recursion that was
alluded to earlier, While this distinction is unsatisfactory from a purist standpoint, it is crucial
to the tagged-token dataflow architecture’s ability to exccute loops efficiently.  Current
expericnce shows that the restriction is fairly inconsequential, as it only tends to rule out

programs that most people would consider bizarre anyway, such as the following:

def backwards_fill (n) =
Tet
a = array(1l..n);
a[n] = n;
sum = 0;
i=1
in
while i < n do
val = a[i+1];

a[i] = val;
new sum = sum + val;
new i = i + 1

return a, sum

In any iteration, the value to be computed for val is data dependent on the value
computed in the succeeding iteration (except in the last iteration, where it depends only on the
value of n), and so this program will not exccute it we require one itcration to be processed at a

time,

From the foregoing, it might appcar that the dataflow implementation of loops will

exccute loops in a scquential fashion. On the contrary, in Section 7.4 we will show how several
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itcrations can be exceuted in paralfel. 'The key pointis that we will only alfow a fixed number of
iterations 1o be outstanding at any given time, whereas programs like backwards (i1 require
an arbitrary number ol concurrent iterations,  Furthermore, the deciston as to how many
concurrent iterations we allow will be deferred until run time, and their number might be as
small as one. Il program graphs arc to be uscful in proving correctness of compiler
optimizations, we must adopt the most stringent firing rules for Toop. Any program that
terminates with no concurrent itcrations is guarantced to terminate and produce the same

answer if more than onc concurrent iteration is allowed.
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YInput ¢ UYlnput » Predicate
Ty 11, oy KL =
def(f) % r ¢ { if X*-':yy then
X
‘ . / else
if # $ X /y
10 4 1o
IfOutput,
Result

This program has three basic blocks: the then side of the if, the else side of the if,
and the entire procedure body itself. Consider now the behavior of the procedure body basic
block. If we drop a token into cach of its two inputs we always get a token at the output. On
the other hand, it is not strictly true that all instructions execute, since either the * or the / will
not fire, depending on whether x equals y. Hence, the procedure body doesn’t quite meet our

definition of a basic block. A correct definition of basic blocks must treat encapsulators in a

special way.

The simplest basic block is an individual non-encapsulator instruction such as + or
i-store, since these possess the one-in-one-out property and (trivially) the complete unique
exccution property. Furthermore, it is easy to see that any composition of basic blocks is also a
basic block, as long as no cyclic dependencies are introduced. Finally, we obscrve that
encapsulators have the one-in-one-out property; in the previous example the if will always
produce an output when it receives a token on each of its three inputs. We can also attribute the
complete unique execution property to an encapsulator as long as we ignore its interior. In other

words, when viewing cncapsulators from the outside we will trcat them as if they were single

instructions.
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def(f)

Result

IL1s casy to sce that the entire body is indeed a basic block. In fact, basic blocks arisc in
five places within program graphs: the bodics of procedurcs, the then and else subgraphs of
ifs, and the predicate and body subgraphs of loops. Given that, it is clear that the def, if, and
Toop program graph instructions encapsulate basic blocks, and so we will collectively call them

encapsulators.

Here is a more complicated program:
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YInput ¢ UYlnput » Predicate
Ty 11, oy KL =
def(f) % r ¢ { if X*-':yy then
X
‘ . / else
if # $ X /y
10 4 1o
IfOutput,
Result

This program has three basic blocks: the then side of the if, the else side of the if,
and the entire procedure body itself. Consider now the behavior of the procedure body basic
block. If we drop a token into cach of its two inputs we always get a token at the output. On
the other hand, it is not strictly true that all instructions execute, since either the * or the / will
not fire, depending on whether x equals y. Hence, the procedure body doesn’t quite meet our

definition of a basic block. A correct definition of basic blocks must treat encapsulators in a

special way.

The simplest basic block is an individual non-encapsulator instruction such as + or
i-store, since these possess the one-in-one-out property and (trivially) the complete unique
exccution property. Furthermore, it is easy to see that any composition of basic blocks is also a
basic block, as long as no cyclic dependencies are introduced. Finally, we obscrve that
encapsulators have the one-in-one-out property; in the previous example the if will always
produce an output when it receives a token on each of its three inputs. We can also attribute the
complete unique execution property to an encapsulator as long as we ignore its interior. In other

words, when viewing cncapsulators from the outside we will trcat them as if they were single

instructions.
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Given the forepoing, we amend our definition of basic blocks as folows: a basic block is
a subgraph such that il one token is fed to cach input of the block, every instruction in the block
will eventually execute exactly once, and onc token will appear at cach output of the block,
where encapsulators within the block are viewed as "black box" instructions. from their exterior

only.

Encapsulators in program graphs play the same role as do control flow arcs in a
conventional compiler’s flow graphs: they regulate the initiation of basic blocks. Their power
lies in their ability to be treated in the same manner as individual instructions when only the
surrounding region of code is of interest; this makes it possible, for example, to move cntire
conditionals or loops in the same way that code motion is accomplished for ordinary
instructions.  ‘This capability was recognized in the work of Ottenstein [Ferrante 83], whose
"extended dataflow graphs™ reflect the encapsulator idea.  In Ottenstein’s scheme, however,
encapsulators arc not manifest but only implicd by control flow arcs which augment the data
flow arcs. Here, encapsulators encode control flow as data flow, lcading to a more consisient

trecatment of blocks.

4.2 Optimizations Within Basic Blocks

Basic blocks in program graphs are ncarly identical to the directed acyclic graph (dag)
representation of basic blocks used by conventional compilers [Aho 86]. Consequently, the
same optimization techniques a conventional compiler applies to dags can be applied to basic
blocks within a program graph. We are at an advantage, however, since any transformation of
the program graph is a transformation of the program itself. In a conventional compiler the dag
is usually an auxiliary data structure, which after optimization must be converted back to the
compiler’s intermediate program form (e.g. quadruples). We also benefit from the use of
encapsulators, since they allow us to treat whole regions of code as single instructions. Often we
never need to distinguish between instructions and encapsulators, save that broad characteristics
of an encapsulator will sometimes be determined by the characteristics of its interior. The lack
ol assignment and unrestricted control flow (indeced, of any control flow) in Id Nouvcau
contributes to the simplicity of the optimizations presented here compared to their counterparts
in conventional compilers. 1-structures make the problems somewhat more interesting than for

a purely functional language.



45

The applicability of many optimizations depends on whether the instructions involved
cause side-ceffects. The meaning of "side -cffects™ is very clear in the conteat ol a program
graph: an instruction causes a side-eftect if and only it its exccution can be detected by another
instruction even though no explicit data ow arc exists between them. There are only three
program graph instructions which can causc side-effects: i-store, array, and apply. 'The
side effect of i-store is quite clear: it writes an I-structure location. which can affect the
operation of other i-fetch instructions in the graph. The side effect of array is & bit subtler;
when an array instruction cxecutes, returning an empty I-structure, it also affects other array
instructions by preventing them from receiving the same I-structure. f this scems a bitstippery,
consider that two array instructions, both receiving the identical arguments 1 and 10, say, will
return different 1-structures. Clearly this could not be possible if array werce purcly functional
(side cffect free). Finally, appty causcs side-effects when it invokes a procedure whose body
has stde effects. From the caller’s point of view, any side cffects brought about by the invoked
procedure are due to the apply which caused the invocation. Interprocedural analysis is very
uscful in determining which applys cause side cffects and which don’t; such analysis is

explored in Section 4.4,

In addition to i-store, array, and apply, when we view an encapsulator as a single
instruction we must consider it to have side effects if it encapsulates any instructions which

causc side effects, at least in the worst case.

4.2.1 Constant Folding
A very simple optimization is constant folding [Aho 86, Allen 72], in which expressions
involving only constants arc evaluated at compile time. This is trivial in a dataflow compiler:

the basic block is simply searched for instructions all of whose inputs come from constant

instructions. An example:
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const const

(?2) (3)
Sy = [w
: ;
7

Of course, only sidc-effect free instructions are candidates for folding. An instruction
with side cflects such as array cannot be folded, since it may cxecute several times (if it were in

a loop, say), returning a different value cach time cven though its arguments remain unchanged.

Constant  folding is typically augmented  with  an assortment  of  algebraic
transformations, such as replacing x * 1 with x or taking advantage of associativity and

commutivity. All of these are cqually applicable to program graphs.

4.2.2 Common Subexpression Elimination

A sccond intra-block optimization is common subexpression elimination, which trics to
avoid repecated computation of the same value. Again, this is quite simple in the program graph
representation: we scarch for groups of instructions bearing the same opcode and whose inputs
come from the same place, and for equivalent constant instructions. The scarch may be
performed cfficiently by hashing on a key derived from the opcode and inputs of each

instruction, Common subexpressions can propagate downward, as illustrated below.
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const cons
* (5) * (3) ;
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Again, our optimization is limited to those instructions that do not cause side-cffects; we
cannot collapse two array instructions, for example, as thcy must rcturn different I-structures

cven though their bounds arc the same.

[acking any evidence to the contrary, we must assume that apply instructions cause
side cffects, and arc thercfore not candidates for common subexpression elimination.  As
mentioned earlier, intcrprocedural analysis can sometimes supply the necessary information, It
should be noted, however, that even if a procedure f has side effects, only the last appiy in the
chain that collects its arguments need be treated as an instruction with side-effects. This is
because all applys save the last simply create a new closure given an old closure and a new
argument, which is a completely functional operation. The final appiy actually invokes the

procedure, and so it alone appears to cause the side effects. An example:
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f f
’ ) S When f
{7 \ 4 ‘ ¢ has ,
arit
apply apply y apply
L
Sy | 3y | =
apply apply apply
apply apply apply] lapply

v v v v

This optimization, of course, can only be attempted if it can be ascertained which apply
3

actually causcs invocation; ie., if the arity of £ is known,

Considcering encapsulators as single instructions, it is possible to combine two if or
Toop instructions as common subexpressions if all of their exterior inputs come from the same
sources. Of course, there is the additional proviso that the interiors be identical, and frec of
side-effects. To be truly cffective, we must also be prepared to consider encapsulators that are

the same but for permutations of their inputs and outputs.

The common subexpression elimination algorithm was also reported in [Skedziclewski

85al, although in that work side effects were not considered.

4.2.3 I-Fetch Elimination

I-fetch climination attempts to bypass fetching from an I-structure when it can be
determined that the data is already present on another arc within the block. If there is an
i-fetch instruction and an i-store instruction whose Structure and Index inputs are fed

from the same place and/or equivalent constant instructions, then the i-fetch is climinated

%M1mcomermmdjfmcaﬁwishmwnnismxckmwmuWCWOMdewm\wmtmcompﬂemeCthacthof
applys in the first place; see Section 7.6.
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and whatever was connected 1o its output is connected instead to whatever feeds the Value input

ofthe i-store. Thisis illustrated below.,

v v v v
array C?Z';?t const array C?Zit
(4)
C i \ I
Y3 & = a4l
i-store i-fetch i-store

v

Normally, we must retain the i-store instructions since the structure may be uscd
clsewhere, e.g. passcd outside the basic block. On the other hand, the i-stores may turn out
to be dead code, as explained in the next section. The combination of I-fetch Flimination and
Dead Code Elimination can yield efficient code for program [(ragments involving tuples, as in
the following (somcwhat trivial) expression, where all [-structures could be removed.

Tet
a, b = let

Further opportunities for such optimizations can be exposed by code motion across i fs,

as described in Section 4.3.1.

4.2.4 Dead Code Elimination

Any program graph instruction all of whose outputs arc unconnected can be considered
dead codc, since no part of the program depends on its results. As always, the exceptions are
instructions which cause side-effects; though its output be unconnected, an instruction causing a
side-effect contributes to the program’s computation. An unconnected array instruction,
however, can be eliminated as dead code, since its effects are not felt unless its output is used.

That is, an array instruction causes the side effect of allocating a region of I-structure memory,
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which is felt by other array instructions in that they can no longer obtain that particular region.
On the other hand, a program, cannot distinguish between regions of I-structure memory save
that it is possible to tell whether two I-structures are the same region or not. Since cxecution ol
an array instruction affects only which regions other array instructions will receive, an
unconnccted array can be climinated. This special treatment of allocation with respect to dead

code climination is also discussed in Steele [Steele 78].

An cncapsulator with all cxterior outputs unconnected can also be eliminated, provided

that the only side-effect causing instructions in its interior are array instructions.

Besides unconnected instructions and encapsulators, there is another situation which
can be considered dead code. If an array instruction is connected only to i-store
instructions, then the array and all the i-stores can be eliminated, since the structure is
uscless if not read.  This situation arises frequently if the I-fetch Elimination optimization

described above is applied.

4.3 Optimizations Across Encapsulators

The optimizations discussed in the preceding scction were all applied within a basic
block. We can also perform transformations which move code between basic blocks, across the
encapsulators which separate them. These kinds of transformations fall under thc general
category of code motion. Code motion is used to remove invariants from loops, and to bring
pieces of code into the same block so that they may be subject to intra-block optimizations. We
will concentrate on what kinds of code motion are possible and under what conditions it is safe;
strategies for determining when code motion is desirable are beyond the scope of this thesis.
We note in passing that the code motion algorithms of Ferrante and Ottenstein [Ferrante
83} should be directly applicable, since their representation is so similar to program graphs. Of
course, the single-assignment nature of Id Nouveau eliminates the need for live/dead variable
analysis and the other complications faced by their method and by compilers for imperative

languages in general.
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4.3.1 Code Motion Across ifs
If a subexpression appears in both arms of a conditional, and it depends only on
vartables computed outside the conditional, then the subexpression can be lifted out. In the

following cxample, the expression x + y is lifted from both sides ol an if:

X y X y
Iflnput ; Ifinput » Predicate +
Thenlnp y Thenlnp l:'lsclnp[ Lilselnp 5 % +
‘1 JJ Yinput ¢ Iflnput 5 Ifinput 3 Predicate
Theninp ¢ Thenlnp  Theninp 3 Plselnp / Elselnp 5 Llselnp 3
* * % 1 | T
if i ¢ i fl L___—‘
~, v ~
Xty y x Xty x+y ¥ X x+y

The benefits of this transformation include the usual ones; the size of the code is
reduced, and bringing the subexpression into the enclosing block may trigger further
optimizations within that block. An additional benefit may accruc if we reduce the number of
arcs which cross the if, for as we will see in a later chapter there is a certain amount of
overhead for each of these arcs. In the example abové, we eliminate one such arc if the only use
of x and y within the if were in the lifted expressions. On the other hand, the inverse of this
transformation — pushing instructions inside both arms of an if — can also reduce the number

of arcs crossing the if. Evaluating the trade-offs can be quite difficult.

Code motion is also possible at the opposite boundary of if. Instructions can be
pushed out the bottom of an if, for example, by adding additional outputs to the if

encapsulator:
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(We have introduced a new bit of notation here: an encircled value is shorthand for a
constant instruction bearing that value.) The figure shows how motion across the bottom of
an if can lead to [-fetch Elimination, as for the following Id fragment:

let
p, q = if x < y then x, y else y, x;

While it is always safe to move code containing side-cffects out of a conditional,
provided identical code is moved out of both branches, it is not always safe to move such code
into conditionals, Why? Because computation of the predicate may be contingent on the
execution of those side cffects, but neither side of the conditional can exccute if the predicate

has not been computed.
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4.3.2 Code Motion Across loops

Code motion across  Toop encapsulators is mainly done 1o remove  invariant
subexpressions.  The program graph form of loops makces it very easy to detect such
expressions: a subgraph is a loop invariant expression il its inputs only come from
PredicateConstunt or BodyConstant ports of the Toop. These subcxpressions can be lifted
outside the loop by adding additional LoopConstant, PredicateConstant, and BodyConstant

ports, as illustrated below.

X y
X y —————-—1
Im)()/)lrlpl_n LoopConsty LoopConst, +
Preding 1-n PredConsty PredConst ¢ +

LoopConsty LoopConsty LoopConsty

jﬂ}; P

1 00 p o ). M 3 2., APy P N o

R l l’/cdlnpl_n PredConst PredConst ) Pred( oust
I

PredOut 4, Pred RN ‘i-d"'»-i
1oo L p——>. -~
Bodylnp ;. BodyConst; BodyConst, é P \-L ;

PredOut y_p, Pred

U/ 6 Bodylnp,;_,  BodyConsty BodyConsty BodyConst

* T
¢ | v
~, X x+y v X X+y

Care must be taken when an expression is lifted from the loop body, since after lifting it
will always be executed, but before lifting it would not have executed if the initial evaluation of
the predicate returned false. This might result in an arithmetic overflow or division by zcro that
otherwise would have been prevented. Happily, dataflow systems generally handle such errors
by means of error tokens [Wetherell 82], so this would not crash the user’s program. On the
other hand, we might wish to avoid the computation if it is not necessary. In any case, we can

choose to fix this bug by enclosing the lifted code in a conditional.

We also point out that if there is a direct connection between a Bodylnput and a

BodyQutput, and another dircct connection between the corresponding Predicate/nput and
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PredicareQuiput, then the cireulating variable represented by that set ol ports is in fact invariant.
In that casc, it can be converted o a loop constant, and will then be subject 1o motion as

described above.
The lifting of loop invariants was also reported in [Skedziclewski 85a.

4.4 Interprocedural Side-Effects Analysis

Many of the program graph optimizations described earlier depend on knowing which
instructions can cause side-effects. In the case of the app1y instruction, that knowledge in turn
depends on the properties of the procedure being applicd, which depends on the properties of
any procedures it applies, and so on. Here we examine some ways of dctermining which

procedures can result in side-effects.

The analysis is fairly simiple if we restrict ourselves 1o the first order case, in which every
identificr which denotes a procedure is a constant, and is always applied to the correct number
of arguments (ie., the same number of arguments as its arity) at once. In that case, we can
definc a function 849 from procedure identificrs to booleans such that if §FF(r) is false then
application of f can never cause side effects, but if 85F(f) is true then such an application might

cause a side effect,

8F7 is computed in the following manner. We examine each procedure and note which
procedure identifiers appear within its body and whether or not the body contains a side effect
causing instruction (array or i-store). We then write a set of n cquations, one for each
procedure;

8FF(f) = LocalSideEffectsXf ) V 8°f°.]f(fl.‘ 1) \Y Sﬂfﬂ'(f[' AR
where LocalSideEffectsXt P is true if and only if f ; contains an array or i-store instruction,

f are those procedure identifiers which appear in ;s body, and V denotes the

LETCUR PRI
boolcan inclusive or operator. We now have a set of mutually recursive equations over the two
clement domain false C true, Since V is monotonic and continuous over this domain, the
equations have a solution (least fixpoint), which may be computed by a variety of methods such

as Kleene recursion.

Extending the analysis to handle proccdures passed as arguments and higher order

procedures is a subject for future research.
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5. The Tagged-Token Dataflow Architecture

The program graph conciscly expresses the computation implicd by an Id Nouveau
program, but doges litte good unless run on a rcal machine, Translating from program graph to
machine graph takes the program from the realm of the abstract to the reahm of the concrete, as
the machine graph is literally object code for a datatlow computer. In the program graph we
appealed to intuition as we glossed over details of matching tokens with one another, of
implementing unusual firing rules (e.g. that for constant), and of managing the finite

resources of a real machine. Our translation to machine graph must take all these into account.

To understand the machine graph, however, we must first become familiar with
dataflow architecturcs and sec just what constraints must be mct. Our discussion will be based
on the MIT Tagged-Token Dataflow Architecture [Arvind 83, Arvind 86b], but the features
important to us arc typical of most other dynamic dataflow architectures, such as the
Manchester Machine [Gurd 85] or Sigma-1[Hiraki 84]. Compilation for static dataffow
architectures presents a somewhat different set of problems, which we shall not address. They
arc adequately described elsewhere [Ackerman 84]. Since our primary concern is compilation
and not architecture, we will allow ourselves a little license in describing the tagged-token
architecture; the interested reader is invited to read [Arvind 85] and {Arvind 86b] for more

accurate information.

5.1 Machine Organization

A stylized block diagram of the tagged-token architecture is shown in Figure 5-1.

Instructions in the tagged-token dataflow architecture are restricted to having just one or
two inputs, and, with one exception, only one output. A single firing rule suffices for all
instructions: an instruction executes when all of its input tokens are available, removing the
input tokens and sending a result token to each of the instructions to which its output is
connected. In other words, all machine graph instructions behave pretty much like the program
graph’s + instruction. Instructions are grouped into code blocks, and are addressed by offset

from the beginning of a block.

The waiting-matching unit in the machine is responsible for routing tokens to the ALU
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Figure 5-1: 'The Tagged-Token Dataflow Architecture (Simplified)

for execution. The waiting-matching unit must determine to which instruction a token is
headed. If that instruction is a two-input instruction, then the waiting-matching unit must find
that token’s partner so that both can be presented to the ALU simultancously. This is the origin
of the unit's name: the first token to arrive for a two-input instruction weits for its partner to
arrive and match with it. There may be many independent sets of tokens headed for the same
instruction, either because a procedure is invoked more than once or because we allow several

iterations of a loop to procced in parallel.

Correct pairing of tokens is accomplished with a simple tagging scheme that puts some

extra bits on each token. Tokens take the following form:
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Tag

Each of the ficlds of a token is of fixed size, and their meanings are as follows:

Context

[teration

Offset

Position

Vulue

Serves to distinguish between sets of tokens that are sharing the same code
block; for cxample, two different invocations of a procedure. Two tokens are
part of the same invocation if and only if their context fields are the same. A
table indexed by context number associates a code block and a constant area
with cach context.

A retinement of the context ficld that serves to distinguish between sets of
tokens representing different iterations of a loop.

Iindicates to which instruction within the code block indicated by the context
the token is heading.

Indicates to which input of the instruction the token is heading if the
instruction has two inputs,

The actual data carried by the token.

(This is somewhat simplified; in the rcal machine there are a few more bits to simplify

routing and matching.) The context and iteration fields together are also called the color*, and

the context, iteration, and offset ficlds together are called the tag. The idea is that there are

cffectively many copies of cach code block, with the color field indicating to which copy a token

belongs.

The tag field is important because two tokens are to be consumed together by a

two-input instruction — they match — if and only if their tag fields are identical.

The ALU is responsible for execution of instructions. [t has access to two kinds of

4 .
Also called hue, or by somie other chromalic name.
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memory.  Program Memory contains the datatiow graph itselt] grouped wio code blocks as
mentioned carticr.  Constant Memory serves as a scratchpad tor holding things like loop
constants: it is divided into regions called Constant Areas. 'Vhe Context Map associates a code
block and constant arca with cach context number: instructions and constant arca clements are
addressed by conteat number and offset.  There are no restrictions on this mapping, and a
common occurrence is to have several contexts map to separate constant arcas but share the

same code block.

Each instruction in a code block carries its opcode and a list of destinations, one
destination for cach input to which the instruction’s output is connected. A destination contains
the appropriate offset and position field for sending a token to a particular input of a particular
instruction. Most instructions form output tokens by combining the offsct and position from
cach destination with the context and iteration from the input tokens: thus, most instructions
keep tokens within a given color, There are a small number of instructions which use different
rules for constructing their outputs’ tags, and these instructions are uscd for transpoiting tokens

between contexts or iterations.

Most tokens in the machine follow the waiting-matching-A LU path, but there is another
path through I-structure memory. As the name suggests, I-structure memory is responsible for
maintaining and manipulating any I-structures used by a program. An I-structurc location may
be rcad by sending a special I-STR-FETCI1 token to [-structurc memory. This token contains the
address of the location to be fetched, and a context, iteration, offsct, and position. If the desired
location has already been written, the I-structure memory responds to the fetch request by
sending back an ordinary token whose context, iteration, offset, and position ficlds are taken
from the I-STR-FETCH token, and whose value field contains the value fetched from the I-
structure. If the location had not yet been written when the fetch request was received, the
request is recorded in a deferred-read list for that location. When the location is finally written,
by sending I-structure memory a I-STR-STORE token containing the address and value to be
stored, tokens are sent back for cvery deferred read in the deferred-read list, and subsequent
reads proceed normally. To the program, there is no difference between a deferred read and a
normal read, other than the time it takes for the result to arrive. On the other hand, the ALU is
free to execute other instructions once it has sent the I-STR-FETCH token; it need not wait for the

result to arrive. This accounts for the dataflow machine’s ability to tolerate memory latency.
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How does Tstructure memory differ from constant arca menmory?  For one thing. an
individual constant arca is accessible only to instructions exccuting in a particular context. This
is clearly not suitable for -structures as they exist in Id Nouveau, for I-structures may be passed
far and wide among procedures, yet correct matching requires different context numbers be
assigned to different invocations, Another diflerence: unlike I-structure memory, constant arca
has no built-in synchronization mechanism, and so we must arrange for our code never to read
from constant arca location until it is known that that location has been written. On the other
hand, the proximity to the ALU and the absence of possibility of deferred reads allows constant
arca to be accessed as rapidly as program memory. This makes it suitable for holding loop
constants, as long as we withhold loop execution until the constants are stored, and are able to
detect termination of the loop so that the constant area can be reclaimed. We are relying here

on the known lifetime of loop constants,

Figure 5-1 shows only onc I-structure memory and only onc processing clement (i.e.,
waiting-matching-AL.U path). Of course, a complete dataflow machine is composed of many
such I-structure memories and processing clements, in cqual or unequal numbers as desired.
This assumes some mapping scheme for distributing I-structure addresses among the various
[-structure memories and context numbers among the various processing elements. Developing

clfective mapping schemes is a topic of current research and will not be considered here.

Even though there are many I-structure memories and many processing clements, there
is logically a single agent for allocating I-structures and contexts. We say "logically” because
each request to allocate an I-structure or context must receive a globally unique answer. On the
other hand, we are not ruling out a distributed implementation of this agent, able to service
many requests simultancously. In fact, we will treat this agent as a black box, called the
"Manager", without saying whether its implementation is localized or distributed, in hardware
or in softwarc. Parcnthetically we note that even a dataflow implementation of the manager is

not impossible; see [Arvind 84] for details.
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5.2 Implications for Machine Code
A realistic dataflow architecture such as the tagged-token architecture just described is
powcerlul, but incapable ol directly cxccuting the program graphs we have presented.  Its
restrictions give rise to the following considerations in translation to machine code.
1) Maching instructions are limited to (wo inputs and one output, and have a fixed

firing rulc. Complex program graph instructions like if and 1oop will have to be
implemented by collections of machine graph instructions.

2) Instructions must exccutc in a constant (and hopefully small) amount of time,
precluding the use of instructions that do unbounded computation or waiting.

3) Certain program graph instructions have "intelligent” firing rules, an cxample being
the constant instruction which emits a token whenever necded. A more causal
implementation must be found for the machine graph.

4) The tagging mechanism must be brought to bear on the problem of keeping
independent sets of tokens from being confused.

5) The finite number of context numbers requires the reclamation of contexts when no
longer in use. This in turn requires the ability to detect termination of regions of
code.

6) The finite number of iteration numbers requires clever control of loops to prevent
exhausting this resource while still altowing a sufficient amount of parallelism,

7) The operational semantics implied by the program graph’s firing rules must be
preserved.

Careful attention to these points, especially numbers 3, 5, and 6, arc what scparate a

hypothetical implementation from a practical one.
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6. ‘Trigeers and Signals

In the last chapter we noted that in the machine graph all instructions must fire because
they receive some input, but that this is not quite true of the program graph because of
instructions like constant. Furthermore, it was noted that we must be able to deteet when all
instructions in a given region of code have fired. We mect these two requirements through

triggers and signals.

Triggers are extra arcs added to a dataflow graph to make sure that all instructions that
are supposced to fire do in fact firc. Signals are cxtra arcs added to facilitate the detection of
termination.  Both arc necessary features of the machine graph.  As it turns out, howcver,
triggers and signals make as much sense in the program graph as they do in the machine graph.
Morcover, it is far casicr 1o introduce them into the program graph, where more of the structure
of the original Id Nouveau program is preserved. In this chapter we describe how a program
graph without triggers and signals is transformed into an equivalent program with triggers and
sighals. The resulting graph is called a well-connected program graph, and its construction is the

first step in the conversion to machine graph.

0.1 Triggers

Our program graphs contain a few instructions, such as constant, whosc firing rulcs
require them to produce an output "whenever necded”. In the machine graph, of course, these
instructions will have to be fired by the arrival of a "trigger" (oken, which indicates that the
output is in fact needed. The constant(5) machine graph instruction, therefore, emits a token

carrying 5 whenever it receives an input token. The value on the input token is ighored.

In a basic block, it is known that each instruction must cxecute exactly once whencver a
set of tokens appears at the block’s inputs. Therefore, we conclude that any instructions in the
block which require triggers should ecach receive one trigger token when inputs arrive for the
block. The algorithm for adding triggers to basic blocks is simply to add a ncw input to the
block and wire it to all instructions in the block that require triggers; that is, to any unconnected

input of an instruction. It is up to the encapsulator that encloses the block to provide a token
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We now know how to add triggers to basic block, and so we now must show how
triggers arc propagated across encapsulators. The simplest encapsulator is the de f instruction,
The def instruction must provide a trigger to its enclosed block as soon as the procedure which
it represents is invoked. Because our procedures are non-strict, however, we are not guaranteed
that any of the argument tokens are available at invoke time, This precludes deriving the trigger
as a function of any of the arguments, as for example by always using the first argument as the
trigger. Instead, we change the definition of def so that in addition to its Argument outputs, it
also has a special Trigger output which emits a token whenever the procedure is invoked. The
valuc of this token is unimportant since it will only be used as a trigger.

——— Output Trigger of def ————

Pre-Condition: Procedure invoked. Value Produccd: Anything

Our scheme for translating def into machine code must now be sure to provide this
trigger token. The rule for triggering the enclosed block of a def is expressed in the following

figure:

This is a simplification; as we will see in Chapter 8, we will somectimes obtain the trigger for constant
instructions from a different source.
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Argument y *** Argument Trigger

def(F)

Result

The if instruction contains two basic blocks, the then block and the else block. A
trigger must be provided to the appropriate side as soon as it is known which block will execute.
Again, it is not safe to use an existing Thenlnput or Elselnput as the trigger, since the arrival of
any or all of these may depend on instructions within the if being triggered. Instead, we add
an additional Ifinput, ThenInput, and Elselnput port to the if specifically for the trigger, as

shown below.
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Since the trigger is derived from the predicate, it is delivered to the then or e1se side as
soon as that side is selected, regardless of which other inputs to the if have arrived. Notice that
in the figure we have not shown a trigger for the predicate expression; if it requires onc, it will

be added when the block in which it is enclosed is processed.

The last case to consider is the 1oop instruction, Here we need to provide a trigger to
the predicate block every time the predicate is to execute, and to the body block every time the

body is to execute. Onc easy way to accomplish this is to circulate a trigger around the loop:
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The initial token for this circulating trigger is the trigger for the block of which the 1o0p

is a part; that way, we are assured of receiving a trigger for the first execution of the predicate,

We can eliminate the overhead of an additional circulating variable, however, by
exploiting the propertics of the 1oop instruction. Specifically, we recall that the definition of
loops is such that no predicate or body instruction need exccute until all predicate or body
inputs are present. This is in contrast to if, where we must be prepared to exccute instructions

in the then or e1se blocks even if some of their inputs are not yct available, Since in the loop
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we know that all inputs to a block will be present before we have to start exeanting the block. we
can choose any of the existing, circulating variables to serve as the trigger without changing, the
meaning ol the program. In practice we want to overfap some number ol iterations. and so it is
advantageous Lo choose a circulating variable that we belicve will be computed laster than any
of the others, such as the index of a for loop. Then again, to increase exposced parallelism even
further we may wish to retain the separate circulating trigger, thus triggering things as fast as

possible.

To summarize, the algorithm for trigger addition is to begin with the innermost basic
blocks, adding trigger arcs if needed. These triggers are then connected o the encapsulators
enclosing their blocks, and the algorithm is repeated on the next innermost sct of basic blocks.

The process is complete when the outermost encapsulator (the de f) is processed.

6.2 Signals

Whereas triggers arc concerned with making surc all instructions are capable of firing,
signals are concerned with ascertaining when all instructions have indeed fired. The definition
of basic blocks guarantees that if a token arrives at every input of a block, then cventually every
instruction in the block will execute and a token will be produced at every output of the block.
Unfortunately, just becausc a token has appcared at cvery output does not mcan that all
instructions in the block have executed. In the following basic block, for example, a token may

appcar at the output even though the i-store instruction has not yet fired.

v b Yo

i-store »

We would like to add additional outputs to basic blocks such that if a token arrives at all



67

outputs of the block, including the additional outputs, then every instruction in the block has
fired. These additional outputs are calted signals. Keep in mind that the signals do not imply

termination by themselves, but onty when accompanicd by the other, non-signal, outputs.

No signals are necded to detect the execution of side-cffect free instructions such as +,
for they alrcady produce a token as cvidence of their exccution. On the other hand, when an
instruction acts only through side-effect, as does i-store, there is no token produced to
indicatc that the side-cffect has taken place. So we must modify these instructions to produce a

signal token when they have completed their side-cffect. Our cxample then becomes:

a —<_1_> X —<> Ql.)w QL)— z

y
+
Y\ Y
Stre Idxe Val
*
i-store
Signal

v

The data carried on the signal token is unimportant. The new firing rules for app1y are:

—— Side-Fffect of i-store

Pre-Condition: Structure, Index, and Value Effect: If element Index of Structure was not
present. yel wrilten, Value is written there, otherwise
an error flag is raised.
—— Qutput Signal of i-store ——

Pre-Condition: Structure[ Index] written. Value Produced: [Anything]

The only other program graph instruction that needs a signal output is apply. We need
a signal out of app1y in addition to its regular output for two reasons. First, the regular output
can be produced even if no token has yet been received on input Argument, and so without the
signal we do not know whether the instructions that compute Argument have fired. Second, if

the apply actually caused the invocation of a procedure (as opposed to the creation of a
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closure). then we are interested in detecting when the invoked procedure terminates. The
appearance of a token at the regular output does not inply that all instructions in the invoked
procedure have exccuted, for the same reason that a data value appearing at the output of a
basic block docs not imply that all its instructions have exccuted. apply. therefore, produces a
signal when the argument is received and stored in the closure or sent to the invoked procedure
and the invoked procedure terminates. The updated firing rule for apply is:

——— Output Output of apply ——

Pre-Condition; Procedure present. Value Produced: Result of applying Procedure
o Argument

———— Qutput Signal of apply ———

Pre-Condition:  Procedure and  Argument Value Produced: [Anything]
present, and Argument written o closure or

sent to invoked procedure, which must have

terminated.

Given these modifications to program graph instructions, we define the signals for a
basic block as all of the unconnected outputs of instructions within the block. This includes the
signal outputs of i-stores and applys, as well as unusced outputs of i fs and 1oops. The latter

might arise, for example, if a newificd variable of a loop is not uscd in the return expression.

Given the rules for constructing the signals of basic blocks, we now examine how they
propagate across encapsulators. An if instruction encloses two basic blocks, exactly one of
which is executed once each time the block enclosing the if instruction executes. So if the
predicate is true, for example, the then block executes, possibly producing a set of signals. But
there is an additional source of signals for the then side besides those of the then basic block.
Any Thenlnput outputs of the if that are not connected to the then block (becausc the
variables they represent are needed only by the e1se block, for example) are also signals for the
then side, since there is no other way to detect that the instructions feeding the corresponding

IfInput have executed. The analogous situation holds for the e1se side.

With the signals for each side of the if at hand, it is necessary to propagate them across
the bottom of the if. First, we collect the signals from cach side into a single signal per sidc by
wiring each set to a signal-tree instruction. A signal-tree instruction simply produces a

token when it receives a token on each of its inputs:
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——— Output Output of signal-tree

Pre-Condition: All Iu/)ull. present Value Produced: {Anything]

Neat, we add another [fQutput (o the if, along with a corresponding ThenOuiput and
IlseOutput. Finally, we wire the output of the then’s signal-tree instruction to the new
ThenQutput, and the else’s signal-tree to the new IlseQuiput. Vhe new [fOutput becomes
astgnal for the block enclosing the + £, since it is now an unconnected output (recall that signal
and trigger generation proceeds from the innermost blocks outward). All of this is summarized

in the figure below,

1 !

Ulnput ¢ *** flnput Predicate
Thendnput p 00 Thenlnput Flselnput ) = Elselnput
! put ! put y
B J L N I RN

Unused

Unused _
T Liselnput s

- Thewlnput s

if

Signals

Signals

Input - lnputq

signal-tree
Ourput

Input g lnputp

signal-tree
Cutput

Y
ThenOutput;  ThenQOutput FElseQutput 4 ElseOntput,

{fOurput {fOutputy
\L <i% Signal

In 1o00p instructions, either the predicate block or the body block can produce signals.

If either produces signals, we must collect those signals for all iterations, so that the final sct of
tokens emitted from the loop implies that all executions of the encapsulated blocks have

finished. We do this by creating a circulating signal, which essentially acts as a signal for all
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previous iterations, By combining it with the signals from the current teration, we obtain its

value for the nextiteration. This is depicted in the tigure below.

l
>—- Trigger
Looplnput ;= Looplnput ,  Looplnput , , 1 LoopConst g " LoopConst
Predlnput § **° Predinput ,  Predlnput 1 PredConst p°° " PredConst
N ‘ I
I’m/i(/l?
loop Signals
\/ /
PredQuiput y * = PredOutput ;- PredOuiput 4 Predicate
Bodylnput y *** Bodylnput ,, Budylnput o,y BodyConst; " * Body(,'ouslk
» I
Signals
signatl-
tree
BodyQuiput ;* ** BodyQuiput BodyQutput, ; 1
LoopQutput ;0 LoopQutput n Laop()utput" o1

\ivL/ <i?~—-SMnm

The initial token for the circulating signal is the trigger for the enclosing block, and the
final value of the circulating signal becomes a signal for the enclosing block by virtue of the

corresponding LoopOutput being unconnected. As with 1 fs, there are two sources of signals for
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the predicate and body:  the signals from the basic block itsell” as well as any unconnected
Predicatelnput ov Bodylnput uulpuls(’. An important property of this signalling scheme is that
when all PredicateQuiput or BodyQOutput inputs have received a token for a given iteration, all
instructions in the predicate or body for that iteration have cxecuted. Our signal, therefore,
serves as the signal (or individual iterations as well as the signal for the entire Toop instruction.

This is critical to the recycling of iteration identifiers,

Finally, we take care of signals for the body of def instructions. The def instruction is
responsible for sending a signal back to the apply that invoked it to indicatc that all
instructions within the def have executed. We therefore collect all signals from the de f’s body

into a single signal, which we wire to a special Signal input of the def,

Argumen!l ot Argum(’nln

def( F ﬁ

Result Signal

Signal addition, like trigger addition, proceeds from the innermost basic blocks outward,
since the addition of signals to an inncr block can create a signal in the enclosing block. Trigger
addition must precede signal addition, since the former can introduce unconnected outputs
which become signals (for cxample, if only one side of an if needed a trigger, an unconnected

output is created on the other side). Rather than compute all triggers and then all signals, it is

6Our schema for whi1e expressions, however, will never leave unconnected Predicatelnput ports since each one is
wired Lo the corresponding PredicateQutput port regardiess of whether it is used by the predicate.
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7. The Machine Graph

Now we show how o systeniatically translate a program graph into a machine graph
which contains only instructions suitable for exccution on the tagged-token dataflow
architecture and which takes into account the finite resources of this machine. Once we have
added signals and triggers to the program graph to obtain a well-connected program graph,
translation to machine code is accomplished by substituting groups of machine instructions for
cach of the program graph instructions. This phasc is therefore a kind of graphical macro

cxpansion,

7.1 Instruction Set

We can describe the instruction sct of the dataflow machine by expressing the output
token of each instruction in terms of its input tokens. Remember that all instructions have the
same firing rule, namely, an instruction fires when all of its inputs have received tokens bearing

the same tag.

We will use the following notation for tokens:

<DATA, context, iteration. offset, position, value>
An "ordinary” token, as what normally flows along arcs of the dataflow
graph. The meanings of the fields were described earlier.

<I-SSTR-FETCH, address, context, iteration, offset, position>
A request to fetch the contents of I-structure location address.

{I-STR-STORE, address, value>
A request to store value into 1-structure location address.

A typical two-input instruction is +, which we describe as follows:

Machine Instruction +

Inputs: Output:
<DATA, ¢, i, q, 1, v> <DATA, ¢, i, Dest(g), Pos(q), v, + vp
<DATA, ¢, i, g, 2, v2>

Dest(g) and Pos(qg) refer to the instruction offsct and input position in the destination list

of instruction g; output tokens are sent for each offset/position pair in the destination list.
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Notice that both input tokens have the same value for ¢, i and ¢. as this is a consequence of the

firing rule.

An example of a onc-input instruction is identity:
Machine Instruction identity

Input: Output:
<DATA, ¢, 6, q, L, w <DATA, ¢, i, Dest(g), Pos(q), w

As we describe the translation to machine code, we will introduce additional machine

instructions as needed.

7.2 Basic Program Graph Translations
The arithmelic, relational, and logical progranm graph instructions (+, <=, or, etc.) have
cxact cquivalents in the machine instruction set, since they cach have two inputs and one

output. Their definitions arc analogous to that of + given in the previous section.

Similarly, the constant instructions as found in the well-connected program graph arc
machine instructions, as they have one input (the trigger) and onc output. The dcfinition of a
typical conslant instruction is:

Machine Instruction constant(5)

Input: Output: \
<DATA, ¢, i,q, 1, W {DATA, ¢, i, Dcst(q), Pos(q), 5>

In the MIT tagged-token architecture, the instruction set actually allows constants (0 be
madec part of other instructions, e.g., a + instruction whose second input is always the constant 1

is represented as a single instruction. We will defer discussion of this feature until the next

chapter.

The i-fetch program graph instruction is also a primitive machine instruction, as it fits
the two-input paradigm. It operates in two steps, however, owing to the nature of I-structure

memory. The actual i-fetch ALU instruction operates as follows:
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—— — Machine Instruction i-fetch ——

lLiputs: QOutput:
<DATA, ¢, 1, g, 1,5 STR-FETCH, Org(S) + idx. ¢, £, Dest(y). Pos(g)>
<DATA, ¢, i, q. 2, idx>

Here S is an I-structure descriptor, and Org(S) refers to the address in [-structure
memory of the first element of S, All the ALU doces is compute the address of the desired
location by adding the given index to the origin of the given I-structure, and send a request
token to the I-structure memory. When the I-structure memory is able to fetch the focation, it

responds with an ordinary token:

I-Structure Operation I-STR-FETCH

fnput: Output:
I-STR-FETCU, addr, ¢, i, q, p> <DATA, ¢, i, q. p, Contents(addr)>

The net effect of an i-fetch is like that of an ordinary two-input instruction: two
DATA tokens are consumed, and a DATA token carrying the result is produced. But while the
cntire operation may take an arbitrary amount of time depending on when the corresponding

storc happens, the ALU's role of sending the I-STR-FETCH instruction takes constant time,

The i-store instruction is similar to i-fetch: it sends a special I-STR-STORE token to
the I-structure memory, It also nceds to send a signal token for termination detection. One
might expect that the signal is generated by I-structure memory upon completion of the store,
In fact, we arc generally not interested in making sure the store has taken place, but only that
the i-store instruction itself has fircd, and that the I-STR-STORE token is on its way. Hence,

the signal is generated immediately by the ALU.

The i-store program graph instruction has three inputs: an I-structure, a subscript,
and a value. Because machine instructions are limited to two inputs, we must use two machine
instructions to implement i-store, one called form-address which computes the address of
the I-structure location from the I-structure descriptor and the index, and one called i-store

which forwards the address and the value to the I-structure memory and generates the signal.
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S N U S

Structure  Index  Value

v 4

form-
address

3 ¢

1

i-store

Signal

8 - -

———— Machine Instruction form-address

Inputs: Qutput: _
<DATA, ¢, i g, 1, <DATA, ¢, i, Dest(g), Pos(q), Org(S) + idx>
<DATA, ¢, i, q, 2, idx>

Machine Instruction i-store

Inputs: Outputs:
<DATA, ¢, i, q, 1, addr> {I-STR-STORE, addr, v>
<DATA, ¢, i, q,2, v <{DATA, ¢, i, Dest(g), Pos(g), [Anything]>

The implementation of the array instruction must invoke the resource manager. We
can imagine a allocate-array machine instruction for that purpose; its two-step operation is

not unlike that of i-fetch.

Machine Instruction allocate-array

Inputs: Output:
<DATA, ¢, i, q, 1, Ib> {MGR-ALLOC, Ib, ub, ¢, i, Dest(q), Pos(q)>
<DATA, ¢, i, q, 2, ub>

The token emitted by this instruction gocs not to the processing element but to the

manager, which allocates the token and sends the descriptor back:

Manager Operation MGR-ALLOC

Input: Output:
{MGR-ALLOC, /b, ub, ¢, i, q. p> {DATA, ¢, i, q, p, >



71
Here, S is the deseriptor tor the newly allocated I-structure which has lower bound /b
and upper bound wub.

As with i-feteh, the ALU's role of Torwarding the request takes
constant time even though the manager may take u long time to respond with the result,. While

this scheme or implementing array is completely gencral, we arc not ruling out more

several machine instructions.

sophisticated methods that avoid having to contact the global manager on every allocation,
Such other methods may entail expanding the program graph apply instruction into a group of

We implement signal-tree instructions by a trec of machine instructions called gate.

Inputy  Input ) lrz])f;r—j_l;r—[)uz;-— N /71/)11! o nput,., | T
\

ney  dnput,,
\

Input 4 ln/)z;l ,7 7
4 ——

< e e
\

J \ 2
! Input

!

ces |

\ .

\

\

Inpur ,
gate
Output
i

y
R

i

sccond input is ignored.

The gate instruction is sort of a two-input version of identity: it passes its first input
unchanged, but only after both its first and its second inputs have arrived. The value of the

Machine Instruction gate
Inputs:

Output:
<DATA, ¢, i, q. 1, vp>

{DATA, ¢, i, q,2, v2>

<{DATA, ¢, i, Dest(q), Pos(q), 9%

Our translation for signal trees implies that the signal produced at the output will carry
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the same value as the leftmost input. This is of little conscquence, since signals are always

"don't care"” values.

7.3 Translation of if

The translation of 3 f is as [ollows:

,’_ ST I?Input—l cT T T Ij_TInput; T —ITFP(Iil’(I;?I
! 144 | | !
. 27 |
| v v__v .
: Input ; Input 5 Input ; Input i
| switch o o switch |
| Outputy: Quiput ;; Outputy Output . :
!
| < | |
I !
| Y | \
| Thenlnput p == * Thenlnput Elselnput §°* * Elselnput r
I - - - - - — - -/ T = — - == = - = = - _ == -
: N | - Lo
\ ThenQutput 4 ' Ihcn()utpu{m LlseQutput ; *°* Izlsc()u(putm |
<q ] |
! 7
] << |
o) |
' I
|
| i
!
| {/Output ]ﬂ')ulpu!m _,I

We have used two unusual machine instructions, switch, and the non-detcrministic
merge, which is indicated by a circle and cross. The switch instruction is unusual because it
has not one but two outputs; this instruction is the sole exception to the rule that all machine
instructions have onc output. switch instructions must therefore have two destination lists

instead of just one. The definition of switch is as expected:

—— Machine Instruction switch

Inputs: Output:
<DATA, ¢, i, q. 1, w» <DATA, ¢, i, Dest (D), Pos . (), v
<{DATA, ¢, i, q,2, true>
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= Machine lustruction switch ———-

Inputs: Output:
<OATA, ¢, 6 g 1w <DATA, ¢, i Desty, (). Pos (g), v>
<DATA. ¢ i, g, 2, false>

We have shown two rules for switch, one for when the control input is true, and one
for when it is false. 'The only difference is in which destination list is used for gencerating the

ouiput tokens,

The non-deterministic merge takes a token from either input and passcs it to its output,
This is difterent than a typical two-input instruction, which waits for both inputs and computes
its output as a function of the two. In fact, the merge is not really an instruction at all, but is
implemented by playing with the destination lists of the instructions that fced it. For example,

i we had the following machine graph fragment:

5

There would be no merge instruction in the code block at all; rather, the destination lists
of both instructions 1 and 2 would have a destination indicating /nput, of instruction 3. Hence,
when either instruction 1 or instruction 2 fired, instruction 3 would receive a token on Inputl.
We must insure, of course, that we never send a tokens with the same tag to both sides of the

merge, and our translation for i f satisfies this requirement,
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7.4 Translation of loop
The Toop instruction is complicated, and has a complicated translation.  First, et us
assume that the foop has no loop constants, and that the iteration ficld of tags is infinite. In that

case, a loop would be translated as:

L gl ,
| Loopinpur ,, |
‘ |
|

[ : «* :
: |
' |
| Predlnpur y - " Predinput ) |
' Y
! |

| [ I _

! PredQuiput y - " PredQuiput ) Predicate )
{ ‘ | |
| g—ﬂ T ‘ !
| v v |
! switch| ® * * |switch :
|

| e T |
1 S !
| !
. Dodstmput 1 Bodplputy |
| R v

|

| R R B .
| BodyOutputy  ***  BodyOutput |
l ] | i
! D L] D I
' [
1 || e [
} _ —_ . |
| —kd I
! (— . |
| . ) I
! N [
| l A 4 |
' D-invf e e s ID-inv |
I | T |
| LoopOQuiput ;0 LoopQutput n |

The initial tokens fall in through the merges to the row of switches and to the predicate.
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‘The predicate decides whether the loop body is to exceute. 10 so, then the predicate produces
the value true, and the switches allow the loop variables to proceed (o the loop body.  As they
leave the loop body, they pass through D instructions. A D instruction is a onc-input instruction

that increments the iteration ficld of the input lug7:

————— Machine lastruction n

Input: Output:
<DATA, ¢ i, g, 1, w <DATA, ¢, i + 1, Dest(q), Pos(g), v

In this way, the tokens for the next iteration will have different tags than for previous
iterations, and will therefore not be confused even if we allow several iterations to proceed
concurrently.  After passing Lhrdugh the D instructions they pass through the merges, and the
cntire process repeats. When the predicate finally returns false, the latest values for the loop
variables will exit the loop after passing through D-inverse instructions. A D-inverse

instruction, as the name suggests, undocs the cffects ot D instructions:

-———— Machine Instruction D-inverse

Input: Output:
<DATA, ¢, i, q, 1, v <DATA, ¢, 0, Dest(g), Pos(q), w

Why must we reset the iteration ficld of tokens leaving the loop? Because they will be
used in computations involving tokens that were produced outside the loop. Only if the tokens
leaving the loop have zero in their iteration field will they correctly match with the tokens

outside the loop.

In the previous scheme, the iteration field on tokens could grow arbitrarily large: if the
loop body exccuted n times, then the final set of tokens had » in their iteration field. [n a
practical machine, unfortunately, the iteration field must be of fixed size, requiring us to recycle
iteration numbers. We can easily keep the iteration numbers within bounds by making the D
instructions increment the iteration number modulo K, where K is the number of possible

iteration numbers we wish to accommodate. We will call such a D instruction a D-K instruction.

7 . .
The name D is used for historical reasons.
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———— Machine Instruction n-K

Input; Output:
<DAIA e, Log L, w <DATA, ¢. (i + 1)y mod A, Dest(q), Pos(g). v

But replacing Ds by D Ks causes other problems, as iltustrated by the following program:

I R Iy

<
I vy v
switch switch while j < x do
il | new x = j -.f x;
new j = j + 1
apply return -
Pl —
k4
+ -
D-k D-k
I

(The triggers for the constant instructions and the signal output from the application of
f have been omitted for clarity.) Supposc that the + executes quickly, but that procedure f
takes a long time. The initial tokens for j and x would enter the loop body with iteration {ield
zero. While f is computing the first value of (f x) the - instruction cannot execute, since it
depends on the value of (f x). On the other hand, nothing prevents new values of j from
bcing computed, and so newer and newer values for j will rapidly be injected into the loop
body, where they accumulate at the input of the -. Each of these values of j will carry a
diffcrent iteration ficld — that is, until X iterations have unfolded and the D-K instructions start
recycling the iteration numbers. At that time, more than one token with the same tag appears at

the input of the -, and the data for separate iterations is confused.
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I we want to have only A possible values for the iteration number, then we must restrict
the Toop so that at most A iterations are in progress at a time. The idea is that we prevent an
iteration from procecding until we are sure that there exist no tokens from another ilcration
with the same iteration number.  We can do this without peril to the our translation’s
correctness. for we reserved the right to exceute the loop one iteration at a time, i necessaty.
Bounded toops were first discussed in [Culler 85]; the following schema is due to Arvind and

Culler [Arvind 86b]:

d_ L
I Looplnput ,, i
! 1
' |
' . 1
' l
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I
|
| e governory
: I
: \ < ees ? |
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| i e H
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! BodyQutputy ***  BodyOutput 1|
| | | |
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I |
| |
| |
I |
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The governor box can prevent iterations {rom proceeding by preventing the predicate

il there is no predicate value, no tokens can enter the body

value from reaching (he switches
block. The governor is also informed when an iteration number becomes free by means ol the
signal tree derived from the outputs of the D-ks.  Our algorithm tor providing signals
guarantees that when a token is received by cach of the D-Ks for a given iteration, then all body
instructions, and therefore all predicate instructions and switches, for that iteration have
exccuted. When a token has exited from each p-K, thercfore, we conclude that no tokens exist

with the previous iteration number, and it can therefore be recycled.

The simplest implementation of the governor box is simply as an arc, initialized with K

tokens having different iteration numbers. This allows K itcrations to proceed immediatcly,

8 Realistically, we must

and additional iterations to begin as tokens arrive [rom the signal trce
provide a way to initialize these tokens, and a way to clean them up when the loop finishes.
These refinements, however, arc complex, not very enlightening, and beyond the scope of this

thesis.

We now [inish the implementation of Toop by including loop constants. As we stated
before, we wish to use constant arca for holding loop constants. Two instructions manipulate
the constant area: constant-store (/) writes location j, and constant-fetch () reads it.

Machine Instruction constant-store(/)

Input: Outputs:
{DATA,c, i,q, 1, W <DATA, ¢, i, Dest(g), Pos(g), [Anything)]>,
and vis written into location jof ¢’s constant area

———— Machine Instruction constant-fetch(j) ——

Input: Output:
<DATA, ¢, i, q, 1, w <DATA, ¢, i, Dest(q), Pos(qg), Constant p>

The constant-store instruction produces a signal when it has written the indicated
location. Because of the proximity of constant arca to the ALU, this operation takes no more
time than any other instruction. The constant-fetch instruction behaves much like the

constant instruction, ignoring its input (trigger) value, except that its output value is taken

SBecuuse the predicate for an iteration j has already executed before the governor allows iteration j o proceed, the
actual number of tokens preset on the governor arcis K- 1.
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In the tagged-token architecture,

references (o constant arca can be pushed into other instructions in the same way that ordinary

constants can; again, we will ignore this fact here.

The full translation lor Toop with constants is shown below,

Looplnput ;

** Looplnput

LoopConst ;

LoopConst

v

constant-
store(1}

constant-

signatl-

store(k)
j

Trigger T_‘_ T ‘———l

Predinput ¢ = PredInput

constant-

constant-

fetch(1)
i

PredConst /

fetch(k)
1

PredConst

L o Lo _
PredOutput PredQurput Predicate
i R
s a @ :/42 .

Trigger ¢ l
constant- constant-
fetch(1) ] * ** | fetch(k)

! I
Bodylnput § Bodylnput , BodyConsyy BodyConsty

“lf'“ L P

vy

- ﬁ___¢_____~

Notice that we prevent the loop from executing until the foop constants have all been

stored; this is nccessary to prevent premature fetches from constant area. In practice we can

usually eliminate a few of these gates by analysis of the predicate. In practice we also push

constant-fetch instructions through any ifs contained in the body in order to save switches.
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7.5 Switching Contexts

The alert reader will notice that nested loops cannot be accommodated by the
translation given in the previous scetion, The problem is this: suppose we have an outer loop
which exccutes { iterations, and its body contains an inner loop which executes jiterations cach
time it is invoked. Each instruction in the body of the inner loop thercfore executes a total of i
times. How are we to assign unique tags to the iterations of the inner loop? A more scrious
problem is constant area: the outer loop requires just one constant arca, but the inner loop
requires / constant areas, onc for cach time it is invoked by the outer loop. The valucs of the
inner loop’s constants arc likely Lo vary from ong iteration of the outer loop to the next, as they

are generally functions of the outer loop’s newified variables,

We apparcntly nced to obtain a new constant arca cach time we begin cxecuting the
inner loop, but the outer loop's context maps to only one constant arca.  Thercfore, cach
exccution of the inner loop must take place in a new context. This solves not only the constant
area problem, but also the tagging problem, for in cach new context we are free to use the
iteration ficld to distinguish the inner loop’'s itcrations.  [f we had tried to keep the inner loop in
the old context we probably would have tried to use the same sct of iteration numbers for
different instances of the inncr loop, leading to clashes since the context ficlds would also have

been the same.

Every context has associated with it a constant arca and a code block. As we stated
before, each inner loop context requires its own constant area, mutually distinct as well as
distinct from the outer loop’s constant area. On the other hand, all inncr loop contexts cxecute
the same dataﬂow code, and so they will all share the same code block. The inner loop
instructions are disjoint from the surrounding outer loop instructions, however, so we have two
code blocks: one for the inner loop and one for what remains of the outer loop along with its

surrounding code’. This division into two code blocks is illustrated below:

9In principle, there is no reason why we could not have them shure the same code block, by assigning disjoint sets
of offscts. There scems Lo be no advantage in doing this, though.
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fastcall-def(1.1)

l y_ v
| fastcall-

| apply ‘

‘\ {I __{__ ;
1

In the figure only the 1Toop instruction and its interior has been split into the new code
block, but we can also choosce to include a small amount of the surrounding cade, cspecially if
this reduces the number of arcs crossing the dotted line. Each arc crossing the dotted line
represents a token traveling between contexts, this transport being supervised by two new
program graph instructions, fastcall-apply and fastcall-def. Fastcall-apply obtains
anew context, and sends tckens flowing on arcs entering the split region. It also receives tokens
that cxit the split region, and deallocates the new context when all of these have been received.
Fastcall-def performs the complementary function of fastcalli-apply; it reccives the

tokens sent by fastcall-apply and sends back results.

The names fastcall-apply and fastcall-def were chosen for these instructions
becausc the process of switching contexts resembles a procedure call. The "arguments"” passed
arc the inputs to the loop, some of which will be stored in constant area as loop constants, and
some of which become the initial values for newificd variables. The "results” returned are the
outputs ol the loop; ie., the final values for the newified variables. (This description might be
less accurate if we include some surrounding code in the split region.) Fastcall can be
~ considercd as a bare-bones method of obtaining a new context for executing a code block and
transporting tokens to and from the new context. The full procedure call mechanism, as

described in the next scction, uses fastcall as its core.



Possible mechanisms for obtaining and initializing a new conlext are a topic ol current
rescarch, but all share a few common characteristics. 'The object code produced by the compiler
has alrcady been partitioned into code blocks, cach with a unique name,  Fach code block
carrics an indication of how much program memory and constant memory it requires.  For
example, if"a code block contains a loop with five loop constants, then it needs a constant arca of
size 5. When a code block is to be invoked, the caller supplies the name of the code block, as
determined at compile time.  The context allocator then finds a free context number, and
initializes the context map so that it points to the correct code block and to a fresh constant arca
of the appropriate size. The allocator returns to the caller a tag containing the new context
number, iteration number zcro, and the offset of the code block’s cntry point (usually
instruction zero). One possible strategy for allocating contexts is to query a central manager
each time a code block is invoked. Another strategy is to have the central manager supply a
group of contexts to a procedure invocation, and let the procedure manage these contexts as it
chooscs for its interior loops. As Arvind and Culler point out [Arvind 86b]. we can compute the
minimum number of contexts required for deadlock-free exccution of a procedure and its loops
as a function of the K parameters — the number of concurrent iterations — we choose for cach

loop.

In the schema below we will assume a machine instruction get-context, which takes
as input a code block name and returns a tag bearing the new context for exccution of that code
block. Like allocate-array, get-context sends a token to the manager. The manager
obtains a new context and empty constant arca, makes the appropriate entrics in the context
map, and finally sends the tag to the destination of the get-context instruction. We will also
assume a return-context instruction, which informs the manager that it can recycle a
context, and returns a signal token indicating that the instruction has executed. Again, it should
be remembered that get-context and return-context might actually be a collection of
instructions that manipulates a previously obtained set of contexts, rather than instructions

which query the manager.

The implementation of fastcall-apply is shown below:
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A trigger from the current block causes a constant identifying the called region to be
sent to a conteit allocator. By convention, we send the return address to the called code block’s
entry point, and the arguments to consecutive locations following the entry point. Sending the
arguments is facilitated through the adjust-offset instruction which adds a given number to
the offset field of a given tag, and the change-tag instruction which takes a value and a tag and
combines the two into a token, effcctively sending the value to the context and instruction

denoted by thc tag,

Muachine Instruction adjust-offset

Inputs: Output:
<DATA, ¢, i, q, 1,LC, [, O>> <DATA, ¢, i, Desl(q), Pos(g), <C, I, Q + v>»>
{DATA, ¢, i,¢q,2, W
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-—— Machine Instruction change-tag

inputs: Output:
OATA, ¢, 6 1.<C L (O DATA, C L O L w
<DATA, ¢, i, ¢, 2, W

The return address is a tag containing the current context and iteration numbers, and
the offsct of the first of a sct of consccutive identity instructions that will receive the results.
We crecate the return address with the aid of the form-tag instruction, which combines the

offsct (computed at compile time) with the current color.

———— Machine Instruction form-tag

Input: Output:
<DATA, ¢, i, q, 1, OO <DATA, ¢, i, Dest(q), Pos(g), <c, i, O>>

By convention, the first of the identities will receive a signal token, and any results
rcturned by the called region will arrive on consecutive instructions following this identity.
When we receive a token on cach of the result identities as well as the signal idcntily. therefore,
we can conclude that all instructions in the called code block have completed execution. By
induction, this also implics that any calls the callee may have made have also terminated. A
signal tree detects the reception of all returned tokens, triggering the rclease of the context
previously obtained. The output of the return-context instruction becomes a signal for the
current block, not only because the return-context would be otherwise unconnected, but

also because its cxecution implies that the change-tag instructions have all exccuted!?,

The implementation of fastcall-def is complementary to that of fastcall-apply:

m"l‘his implics that splitting regions must precede generation of signals and triggers.
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One important feature of the fastcall mechanism is that it is non-strict, in the sense that
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tokens are transported as soon as they arrive, no matter what their order.

7.6 Procedure Calls

The fastcall mechanism we used to invoke loop "procedures” forms the basis of how we
invoke procedures as visible to the 1d Nouveau programmer. 1d procedures have the additional

wrinkle that arguments are accumulated one at a time, because of the curried interpretation of

multiple arguments,

implementation of closures.

Supposc we have a procedure of five arguments, f, and the compiler has named the

code block containing f's def instruction f-cb. Then a closure representing f applied to two

arguments is represented as:

1

I
|
!
!
|
|
|
|
|
|
|
1
|

Before discussing procedure linkage, therefore, we will explain the
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The closure has four fields: a code block name, the arity (5, in the example). the number
of arguments not yet specified (5 = 2, or 3, in the cxample), and a pointer (o a linked list of
accumulated arguments.  We must represent the arguments in a chain because the lower
numbcred arguments may be shared between different closures.  For cxumple, the closure
depicted in the figure could be passcd to two diflcrent apply instructions, and the resulting
closures would share the first and second arguments but not the third. A procedure with no
accumulated arguments, which in the Id program appears as simply the name of the procedure,

is represented by a closure whose chain field contains the end-of-chain indicator ni1.

The implementation of app1y must first examine the number of remaining arguments
required by the incoming closure. If the closure needs only one more argument, then the arity
is satisficd, the final argument being the one received by the apply. In that case, the apply
must obtain a context for the exccution of the procedure, send the arguments, and rcceive the
results. If, on the other hand, the arity is not yet satisficd, app1y must allocate a new 2-tuple,
add it to thc front of the closure’s argument chain, and return a ncw closure with the

appropriate components,

When apply actually invokes a procedure, all arguments save the last have bcen
collected in a chain, the final argument being directly available to the apply. The simplest
approach, therefore, it to have app1y send the chain along with the {inal argument directly into
the called procedure, which unpacks the chain into individual arguments. The called procedure
reccives only two tokens (the chain and the final argument), and rcturns only onc token (since

Id procedures return only one result).
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The mechanisny for obtaining the new context and transporting the tokens was already
delined in the ast section: this s the fasteall mechanism. The implementations of apply and
def. (he instructions representing  Id o procedure  linkage, are  defined in terms of
fastcall-appty and fastcall-def, the instructions handling conteaxt management and

token transport. 'The translation of de £ is shown below.

- - - -~ - -"-"—-"-"-"-"-"-" - - - - - - - - == == 77 71
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} e e X e e Y L
| Result Signal —:
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As the figure shows, def is no morc than a fastcall-def, augmented with somc code

for unpacking the incoming chain into individual arguments.

The schema for apply is a bit more complicated, since it must check the number of
arguments remaining for the incoming closure. If more than one, app1y builds a new closure
whose chain contains the new argument. Otherwise, fastcall-apply is used to obtain a

context and send the chain and final argument to the called procedure.
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We've introduced a few instructions for manipulating closurcs:
Machine Instruction closure-chname
Input: Output:
<DATA, ¢, i,q.1,<n,a, r, > <DATA, ¢, i, Dest(g), Pos(q), n>
Machine Instruction closure-chain —
Input: Output:

<DATA,c, i,q,1,<n, a, r, S

<DATA, ¢, i, Dest(q), Pos(g), 5>
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——— Machine lnstruction closure ready?

lnput: Output:
<OATA e, g L <nya, r 5 <OATA, ¢, i, Dest{g), Pos(g). true
ilr- 1 clse false>

———— Muachine lnstraction dec-r-new- ¢ ——

Input: QOutput:
DATA ¢ iog. L<n a r. S>> <DATA, ¢, i, Dest(y). Pos(g). <n, a, r=1,5,>>

Careful consideration will confirm the use of I-structures allows apply to create a new
closure or invoke a code block even if not all arguments are present; application is therctore
non-strict, as desired. When the argument list is unpacked, some fetches may be deferred until

arguments arrive.

In closing. we note that sometimes a procedure of known arity is applied to all of its
arguments at once. In that case, we want 10 avoid the overhead of collecting the argumentsin a
chain, only to have the chain unpacked immediately thereafter. To take advantage of such
situations, we need only modify the apply, not the def. The modified apply takes all n
arguments at once — #n being the arity of the called procedure -— and sends them directly into
the body of the called procedure, bypassing the unpacking code imbedded in the called
procedure’s def. This modificd appiy, therefore, is exactly like fastcall-apply, except that
it scnds tokens to different offsets within the called procedure. Not having to modify def
means that the same procedure can be called via both ordinary apply and modified apply

from within the same program.

We now summarize the various linkage mechanisms:
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8. Machine Graph Optinizations

Just as a conventional compiler performs optimizations both on the intermediate
program form and on the object code, so does our dataflow compiler perform optimizations
both on the program graph and on the machine graph. 1o both cases, (he latter opumization
phase takes the form of "peephole™ optimizations, in which small regions ol code are replaced
by more cfficient cquivalents which take advantage of instruction set peculiaritics.  In a
conventional compiler, this entails recoghizing sequences of consecutive instructions which fit
certain patterns, while for us it means rccognizing certain combinations of adjacent nodes in the
machine graph. Belore looking at what kinds of peephole optimizations are profitable, we

describe some aspects of the tagged-token dataflow architecture’s instruction sct in more detail.

8.1 More Instruction Set Details

In Secciion 5.1, we were a little vague about how constants are indicated in machine
instructions and how the gate instruction is implemented. As it turns out, just about all of the
peephole optimizations we will discuss take advantage of these two mechanisms,  They are

described in full detail here.

In Scction 5.1, it was noted that tokens have a ficld called Position, indicating which
operand of a binary instruction a token represents. On the other hand, it was never stated how
tokens destined for unary instructions arce distinguished from those heading for binary
instructions — a necessary distinction, because the former bypass the Waiting-Maltching unit.
In fact, tokens carry an additional bit called Partner*P”, which indicates whether the token
must pass through the waiting-matching unit. A token for a unary instruction, therefore, has

this bit sct to zero, while both tokens for a binary instruction have this bit set to one.

Having separatc Position and Partner-P ficlds decouples whether matching takes place
from the number of operands an instruction requircs. Consider the unary identity
instruction.  'This instruction normally receives a token with Position set to one (since the
identity operation nceds only onc operand) and the Partner- P bit set to zero. Now suppose we

send two tokens to this instruction, both with Partner-P sct to one, and one with Position set to

”Thc "P" at the end stems from a Lisp convention wherein predicate functions are suffixed witha "P".
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one and the other with Position set (o zcro. By convention. a Position ficld of zero indicates that
the data carried by a token is 1o be ignored. "These tokens will match in the waiting-matching
unit. and the first will be used as input to the identity. Thus. we have actually implemented

the gate instruction!

We can use this trick for any unary instruction, allowing us to obtain synchronization
without the need for an explicit gate instruction. We will use the graphical convention that an
arc drawn to the side of an instruction is being used as a trigger only, its value being ignored.

For example:

Operand | “{i-‘ Ck Operand 2 <> Trigger

+ ,‘__H

v

The other aspect of machine instructions glossed over earlier is the inclusion of

constants. We stated that there is a special constant(v) instruction, but this is not quite the
case. In actualily, any instruction may have a constant as onec of its inputs; an instruction
contains two extra fields, one for a constant, and one to indicate for which operand the constant
is intended. If the constant position ficld is zero, then the instruction has no constant. For
example, a / instruction whose constant field is 10 and whose constant position field is 2 is
effectively a unary instruction which divides its input by 10. The constant ficld can contain two
types of values: a literul constant, which gives the actual value to be used, and a constant area

pointer, which gives the offsct into constant area from which the constant is to be fetched.

Given the foregoing, it is apparent that the constant( v) instruction as it was presented
in Scction 5.1 is rcally just an identity instruction, with constant v, constant position 1, and
whose trigger token has position 0 and partner-p 0. The constant-fetch instruction is
implemented in the same way, except that the constant field of the instruction carries a constant

arca pointer rather than a literal constant. Finally, the constant-store is really a two operand
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instruction whose sceond operand indicates which constant is 1o be stored. this operand always

bemg a constant in the translation schemata deseribed here.

Summarizing, we can say that an instruction can take its inputs from two sources,
incoming tokens and constants contained within the instruction, as long as it receives exactly
one or two tokens and exactly zero or onc constants, ‘This implics that three-input instructions
are possible, as long as (wo inputs come from tokens and one input comes from a constant. We
cannot accept three tokens, because the waiting-matching unit only handles pairs. Likewise, we
cannot have two constants. because the instruction format accommodates only one. Despilte the
restrictions, we can often combine a form-address and an i-store instruction into a single,
three-input form-address-i-store. Likewise, adjust-offset and change-tag can

almost always be combined into a ad just-offset-change-tag instruction.

8.2 Peephole Optimizations
The features of the architecture discussed in the last section provide the opportunity for
a varicty of uscful peephole optimizations. One of the simplest, 1-Store Elision, has alrcady

been alluded to:

Ll

form-

address ;
Ll v Vv ¥

form-address-
i-store

v v

i-store

To conform to the machine’s constraints, this optimization can only be performed if two
of the inputs are tokens and the third is a constant (this is not to say that the constant must be in
position three, of course). Experience shows that the optimization is successful in a high
percentage of the cases, due to the frequency of stores where the index is a constant, as when a

tuple construct is translated, and stores where the structure is a loop constant.
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In the remaining deseriptions of optimizations, we assume that the optimization is only
performed when the inal resalt mects the machine constraints vis « vis numbcer ol loken inputs

and number ol constant inputs, since these constraints are always present.

Often we can climinale identity instroctions scrving the role of gates by taking
advantage of the fact that any synchronization can be performed for any instruction.  'The

folfowing transformation is called Trigger Propagation:
£8

—

In addition to the casc shown in the figure, there are analogous symmetrical and unary
cases as well. A less obvious variation of this is called Trigger Back-Propagutionlz: :

This, too. has an analogous unary case. In addition to the usual machine constraints,
Trigger Back-Propagation has the additional constraint that the upper instruction must be side-

effect free, since the arrival of the trigger could be contingent on that side-cffect’s execution. In

12Thc Trigger Propagation and Trigger Back-Propagation optimizations were suggested by David Culler.
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that case, the transformation could result in deadlock. It should also be noted that it the op
instruction fed other instructions besides the identity shown, these destinations must still receive

their input from the untriggered version of the top instruction. More on this later.

Onc ol the most important peephole optimizations are the ‘Trigger Elimination

transformations, onc ol which is shown below.

Vi

N

v v

This most commonly ariscs due to expressions in the Id program like x + 1, which

would be compiled and optimized as {ollows:

X — X—<> Trigger X —<{> X —<>
constant constant
(1) (1)
I = 4 I =, 1= 1
+ + + +
Optimized
Program Well-Connected Machine Machine
Graph Program Graph Graph Graph

(Again we've introduced some new notation: a value enclosed in a diamond indicates a
constant imbedded in a machine instruction.) The triggering shown in the figure is not quite

what was described in Section 6.1. The discussion in that scction was in fact simplified;
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constant instructions which feed arithmelic, i-store, or i- fetch instructions and which
have at least one non-constant input arce in fact triggered from one of the non-constant inputs to
the latter instruction. 'This trigpering strategy is used specifically to expose the opportunity for

Trigger Elimination,

The last example of a peephole optimization we consider itlustrates that compilation

issues for dataflow machines arc often quite different than for conventional architectures:

v \ &
N ':_—_:‘7—)’ .

This is exactly the opposite of "reduction in strength™ performed by conventional
compilers. For them, the left-hand form is more desirable because + is presumably faster than
*In a dataflow machine, the right-hand form is probably more desirable because it reduces the
number of tokens passing through the waiting-matching unit by two and the total number of

tokens by one.

8.3 A General Peephole Optimization Algorithm

Several attempts to produce specification driven pcephole optimizers for conventional
compilers have been made. Some rely on attribute grammars [Ganapathi 82], some on other
specification techniques [Gicgerich 82). A very simple pattern-directed technique can be used
for optimizing machine graphs in a dataflow compiler, onc which can handle all of the peephole
optimization mentioned in the previous section. As with most datallow optimizations, the
effectiveness as compared to conventional compilers is greatly enhanced by the simplicity of the

safety criteria.

Our approach is to specify a pecphole optimization by a pattern, which specifics a

configuration of machine instructions suitable for optimization, and a replacement, which gives
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the more cfficient equivalent. A simple functional notation suffices for specifying the pattern
and replacement. For example, the Trigger Elimination optimization described in the fast
scction can be speciticd as

ITidentity] A, triggeved by B}, B} — A, 5]

Here the capital letters, which we will call "pattern variables”, represent arbitrary
opcodes or arcs, as appropriate. Given a one or more such descriptions. the following algorithm
can be used to apply an optimization,

1) Find a collection of instructions that matches the pattern.

2) Verify that the replacement would meet the machine constraints regarding number
of token/constant inputs. If not, give up, otherwise proceed to the next step.

3) Instantiate the replacement, making use of the correspondences between pattern
variables and their values as determined in Step 1.

4) Move arcs emanating from the output of the pattern to the output of the
replacement.

5) Eliminate dead code. If this step fails, restore the graph to its original state,
otherwise the optimization is complete.

These steps arc illustrated for Trigger Elimination below.

A ]
<7
— X
L LA
v I

®_,_,, + + + + L‘ﬁ-Jl +
I I e

After After After After
Step 1 Step 3 Step 4 Step 5

Step 5, dead code climination, involves removing instructions that no longer have any
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arcs ecmanating from their outputs, the act of which can turn other instructions into dead code,
An instruction which causes side-clfects is not dead code. however. even il its oulputs are
unconnected. We cannot climinate such an instruction, but we cannot leave it unconnected
cither, for that would destroy our ability to detect the termination of the instruction’s code
block. Dead code climination fails il we reach such a situation, and we must surrender our

intention to carry out the optimization,

The following algorithm is used to systematically attempt all optimizations on an entire

code block.

1) Initialize a list of candidates to a list of all instructions in the code block.

2) If the candidate list is cmpty, we arc finished. Otherwise, remove an instruction
from the candidate list, call it x.

3) Select an optimization from the list of all optimizations, and try to apply it to x,
where x is to be matched with the output of the optimization’s pattern.  The
optimization may fail because x does not match the patiern, because the
replacement would violate machine constraints, or because dcad code elimination
failed. If the optimization succceded, proceed to Step 4, otherwise try another
optimization, going back to Step 2 when all optimizations have becn tried.

4) Add to thc candidate list all instructions crcated when the replacement was
instantiated, as well as all instruction’s connected to the replacement’s output. Go
back to Step 2.

Step 4 is needed because the application of an optimization can create new
opportunities for optimization. We have not specified the order in which optimizations should
be considered in Step 3, nor have we given a rule for sclecting an instruction in Step 2.
Unfortunately, varying these can affect the numbers of optimizations successfully performed.
Currently under investigation arc ways of determining and/or specifying the most advantageous

orderings.
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9. Conclusions

A geuaeral purpose programming language. 1d Nouveau. was presented. in the form of a
syntactic sugar-free subset Id Kernel, We then gave schemalta for the translation ot Id Kemnel
into program graphs, an abstract sort of dataflow graph in which all control and data flow are
encoded as data dependencics. The program graph form is reminiscent of Livermore’s 11
format [Skedzielewski 85b]. "The program graph was also considered as an abstract intermediate
program form that scrves as a framework for program optimization. After examining the MI'T
Tagged-Token Dataflow  Architecture, we then completed the compilation process by
describing the transtation from program graph to well-connected program graph, and from
there to machine graph, or object code. Finally, machine-dependent peephole optimizations on

the machine graph were discussed.

The author has recently completed a compiter based on the concepts presented here.
The compiler implements all of the program graph and machine graph schemata presented
nere, and includes a pattern-dirccted peephole optimizer as described in Chapter 8. Results
from the peephole optimizer are quite encouraging: it reduced the static code size of a 1000 line
program by about 20%. Few of the program graph optimizations have been put in place, the
cxception being constant folding.  Implementation of other program graph optimizations is

expected within a year,

There are many dircctions for future work in this arca. Certainly the topic of compiler
optimizations can be explored in greater depth, and algorithms and heuristics can be developed
for the detection of opportunities for code motion.  All optimization algorithms will bencfit
from a more thorough inquiry into intra- and inter-procedural analysis, particularly side-effect,

strictness, and data typc analysis.

One very exciting avenue lcads from the firing rule description of program graphs. In
[Nikhil 86}, an opcrational semantics is given for Id Nouveau in terms of rewrite rules. This
semantics can be taken as a definition of the language. On the other hand, the firing rules given
for program graph instructions togcther with the translation schemata form the beginnings of
another kind of operational semantics. The machine code produced by the compiler can be

rcadily verified against the latter semantics, since all that needs to be done is verify that the
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collection of machine graph operators implementing a particular program graph instruction
satisty its firing rule. Given that, it is reasonable to pursuc a proof” that the rewrite seimantics
and the firing rule semantics are consistent. 1 such a proot is tound, then we have the first
known provably correct datallow implementation of an I-structure Tanguage, and probably the

first provably correct dataflow implementation of any programming language.

Finally, the non-scquential aspect of I-structure languages leads one to consider how
one can compile cfficient code for conventional, scquential architectures from these languages.
This not a contradiction; the non-scquential nature of I-structure languages docs not preclude
scquential implementation, but only demands that a scquential implementation simulate
parallelism to some degree. To what degree a simulation is necessary, or in other words what is
the maximum scquential thread size allowable, is a topic of rescarch, This work would have
significance not merely for sequential architectures, but also for any architecture that allempts
to combine the parallclism of dataflow machines while avoiding the extremely fine grain of

parallclism thosc machines support.
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