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Abstract 

This thesis presents an algorithm for one-dimensional compaction of VLSI lay­
outs. It differs from older methods in treating wires not as objects to be moved, but 
as constraints on the positions of other circuit components. These constraints are 
determined for each wiring layer using the theory of planar routing. Assuming that 
the wiring layers can be treated independently, the algorithm minimizes the width 
of a layout, automatically inserting as many jogs in wires as necessary. It runs in 
time 0 ( n 4 ) on input of size n. Several heuristics are suggested for improving the 
algorithm's practical performance. 

The compaction algorithm takes as input a data structure called a sketch, which 
explicitly distingushes between flexible components (wires) and rigid components 
(modules). The algorithm first finds constraints on the positions of modules that 
ensure enough space is left for wires. Next, it solves the system of constraints by a 
standard graph-theoretic technique, obtaining a placement for the modules. It then 
relies on a single-layer router to restore the wires to each circuit layer. An efficient 
single-layer router is already known; it is able to minimize the length of every wire, 
though not the number of jogs. 

As given, the compaction algorithm applies only to a VLSI model that requires 
wires to run a rectilinear grid. This restriction is needed only because the theory of 
planar routing (and single-layer routers) has not yet been extended to other models. 
The compaction algorithm's correctness proof elucidates the assumptions on which 
the algorithm depends, so that the algorithm is easily generalized once the necessary 
theoretical machinery is in place. 
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1. Introduction 

An automated compaction procedure is an effective tool for cutting the production 
costs of a VLSI circuit at low cost to the designer because the yield of fabricated 
chips is strongly dependent on the total circuit area. An effective compaction system 
also reduces design time by freeing the designer from continual concern over design 
rules. If excess layout space can be removed automatically, the designer can sketch 
a layout without making continual efforts to conserve area. For these reasons, 
compaction algorithms have gained widespread attention in the VLSI literature 
[4, 5, 9, 11], and have been incorporated into many recent computer-aided circuit 
design systems [2, 4, 10, 18]. 

Most compaction algorithms, including the one described here, compress a lay­
out in one dimension only. To reduce both dimensions, the layout is alternately 
compacted in x and y until no further improvement can be found. Compaction 
in two dimensions simultaneously is theoretically difficult (in fact, NP-complete), 
although it may work well in practice [5]. In this thesis, I assume for convenience 
that the direction of compaction is horizontal. 

1.1. Constraint-based compaction 

Many one-dimensional compaction systems [4,10] use a constraint-based tech­
nique. The program begins by assigning to each layout component i a variable Xi 

that represents the x-coordinate of the component's leftmost point. The design 
rules of the fabrication process are then used to derive constraints on the positions 
of the components. For example, if device i lies to the left of device j, and such 
devices must remain at least 2 units apart in order to function reliably, the com­
pactor generates a constraint x;-Xi ~ 2+wi, where wi is the width of component i. 
(We make the usual assumption that components are not allowed to jump over one 
another.) 

The design rules lead naturally to a set of constraints with nice properties. First 
of all, the constraints are not especially difficult to compute [9]. Second, they are 
sufficient to guarantee that the compacted layout is legal. Third, they are necessary 
if components cannot jump over one another. Fourth, the constraints are simple 
linear inequalities: they all can be represented in the form 

where Xi and x; are two of the variables assigned to layout components, and ai; is 
a constant. 

Because of the simple form of the inequalities, they can be solved efficiently 
by graph-theoretic techniques. One constructs an edge-weighted graph in which 
the ith vertex represents the variable Xi, and in which an edge of weight ai; from 
node Xi to node x; represents the constraint x; - Xi ~ ai;. An assignment to the 
variables Xi that satisfies all the constraints is then determined by a longest-path 
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computation on the graph. The resulting values specify the optimal positions of 
the components in the compacted layout. A good introduction to constraint-based 
compaction may be found in [5]; common algorithms for computing longest paths 
are discussed in [8]. (Most of the literature discusses the computation of shortest 
paths, but finding longest paths is equivalent to finding shortest paths when positive 
edge weights are replaced by negative, and vice versa.) 

In the course of my research I stumbled upon an improvement to constraint­
based compaction that deserves to be more widely known. If the initial layout 
satisfies the design rules, then Dijkstra's algorithm can be used to compute longest 
paths in the constraint graph. The trick is to write all the constraints in terms 
of displacements of components from their original positions, rather than absolute 
coordinates. If di and di represent the horizontal displacements of modules i and J 
from their original positions, and di - di 2: aii is a constraint, then the legality of 
the initial layout means that the inequality di - di 2: aii holds when di = di = 0. 
In other words, the constant aii is nonpositive. Thus all the edges in the constraint 
graph have nonpositive weight, which is precisely the precondition of Dijkstra's 
algorithm. (Usually Dijkstra's algorithm is used to find shortest paths, in which case 
the edge weights must be nonnegative, rather than nonpositive.) The improvement 
in worst-case performance is dramatic. To quantify it, I denote the size of a data 
structure D by IDI. If the constraint graph is (V, E), then Dijkstra's algorithm 
runs in time O(IEI + IVI log IVI) using Fibonacci heaps [3]. In contrast, the longest­
path algorithm of Bellman and Ford, which handles edge weights of both signs, can 
require 0 (IV 11 EI) time. 

1.2. Automatic Jog introduction 

In order to perform any sort of compaction, the components of the layout must 
be differentiated into modules, which are fixed in size and shape, and wires, which 
are flexible. Common procedures for generating design rule constraints [4,5,9] as­
sume that wires are simply rectangular regions of variable height or width, and 
otherwise identical to modules. A vertical wire, for example, would be assigned an 
x-coordinate during horizontal compaction, and could only be moved rigidly from 
side to side. But one would often like a previously straight wire to bend around an 
obstacle during compaction, if the area of the circuit could thereby be reduced. 

This problem is not easily overcome. Many systems [4,18] attempt to solve it 
by allowing the designer to specify Jog points at which wires may bend. In effect, 
the wires are broken into subwires at the jog points. Compaction then becomes 
an interactive procedure in which the designer repeatedly examines the compacted 
layout, adds more potential jog points, and retries the compaction operation. Other 
systems [4] attempt to insert jogs automatically, using ad hoc techniques which are 
not guaranteed to be effective. One technique that will work is to insert a jog point 
wherever a wire could possibly bend. If the wires are restricted to run in a grid, the 
number of such jog points can be made polynomial in the size of the input layout, 
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since no wire need bend at a point far from a layout component. This technique, 
however, consumes large amounts of time and memory, and it does not generalize 
well to situations in which the grid is absent. 

The polynomial-time algorithm presented in this paper has the capability to 
introduce every jog point that helps to reduce the layout width. It can thus be 
expected to produce high quality output with little designer intervention. Auto­
matic jog introduction is achieved by treating wires not as solid objects, but only as 
indicators of the topology of the layout. Constraints between modules no longer ex­
press design rules directly; instead, they ensure that there exist paths for the wires, 
having the given topology, that satisfy the design rules. The new constraints, called 
routability conditions, can be formulated as simple linear inequalities, and solved as 
usual. When the optimal module placements have been established, the new wire 
paths are determined by a single-layer router, such as that presented in [6]. That 
particular router has the advantage of generating no "empty U's," and therefore 
minimizes wire lengths in the given layout topology. 

We need consider only planar compaction problems, as long as wires on different 
layers can routed independently. Illegal layouts could be generated if there were 
design rule constraints between wires on different layers; fortunately, there are no 
problematic constraints in the most common VLSI technologies. In a standard 
nMOS process with one layer of metal, for example, the polysilicon and diffusion 
layers can be considered as one layer, or plane [14], for routing purposes, and metal 
the other plane. If transistors are considered to be modules, then the wiring in each 
plane contains no crossovers. Furthermore, wires on the two planes interact only 
at contact cuts, which are also represented as modules. Thus one can reduce the 
problem of layout compaction to a pair of single-layer compaction problems, and 
compute the constraint systems on each of the two planes. Since some modules 
extend into both planes, the resulting constraint systems are merged by choosing 
the most restrictive constraint between every pair of modules. The merged system 
is then solved normally to place the modules. 

The approach to compaction presented here depends on the ability to generate 
complete routability conditions for a planar layout. Until recently, such conditions 
were known only for certain channel routing problems [7,16]. The present work 
is made possible by the theory of planar routing developed in [1] and [6]. At the 
time of writing (April 1986), this theory considers only a VLSI model that restricts 
wires to a rectilinear grid. For this reason, I present the compaction algorithm in a 
grid-based VLSI model. My current research aims to generalize the theory of planar 
routing to a much larger class of models, including "octagonal" grid-based models 
as in [17], and models allowing wire segments of arbitrary slope. Once this work 
is complete, the compaction algorithm will generalize naturally to those models. 
In fact, my compaction algorithm is an implementation of a more abstract and 
general compaction technique that works in any model with the properties listed in 
Section 5. 
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1.3. Organization of the paper 

The remainder of this paper is organized as follows. Section 2 states the defini­
tions and theoretical results that underlie the new compaction method. Section 4 
details the top level of the compaction algorithm, using a subroutine described and 
justified in Section 3. The next two sections (5 and 6) prove the correctness of 
an abstract compaction technique, which is shown in Section 7 to contain my com­
paction algorithm as a special case. I conclude in Section 8 with some improvements 
of my compaction algorithm, and a discussion of its practical value. 

2. Sketches and planar routability 

The principal data structure used by the compaction algorithm is called a sketch. 
A sketch represents one plane of a VLSI circuit, including both rigid objects and 
flexible interconnecting wires. The algorithms in this paper process only one sketch 
at a time, without loss of generality. This section defines precisely what I mean by 
a sketch, and states the theorem from [6] that determines routability conditions for 
a sketch. 

2.1. Definition of a sketch 

A sketch is an ordered pair (F, W) consisting of a finite set F of features, which 
are points and straight line segments, and a finite set W of wires, which are simple 
paths in the plane. Figure 1 shows an example of a sketch. Modules are represented 
as collections of features, because for technical reasons, terminals must be separated 
from other features. The features and wires of a sketch must satisfy the following 
conditions: 

(1) Distinct components of the sketch (features and wires) may intersect only at 
their endpoints. 

(2) Distinct wires may not intersect, and no wire may cross itself. 

(3) Each wire touches exactly two features, which are single points lying at the 
endpoints of the wire. They are called the terminals of the wire. 

( 4) Four of the features of the sketch form a bounding box around the other 
components. 

When referring to "points in the sketch," we will mean points lying on features 
in the sketch. Connected groups of features are called the obstacles of the sketch. 
The definitions imply that each terminal is its own obstacle. Features represent the 
rigid parts of the layout, the modules; wires represent the flexible interconnections. 
Clearly, a sketch whose wires are well behaved (e.g., consist of line segments) can 
easily be encoded in a data structure. 

2.2. Legality and routability 

I now define what it means to route a sketch, and what it means for a sketch 
to represent a legal layout. For more precise definitions, see [6]. A link in a sketch 
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Figure 1. A typical sketch. Dark points and line segments are features, grey lines 
are wires, and light lines are conceptual module boundaries. 

S = ( F, W) is a path in the plane that begins and ends on features in F, and 
intersects no features in between. For example, the wires in W are links in S. 
Two links in S are homotopic if they have the same endpoints, and one can be 
continuously deformed into the other without moving its endpoints or allowing its 
interior to touch a feature in F. A routing of S is a sketch (F, W') whose features 
are the same, and whose wires can be obtained by replacing each wire in W with 
a homotopic wire. A sketch is said to be legal if it represents a legal VLSI layout, 
which for our purposes means that the following conditions hold: 

(1) All obstacles and wires lie in the rectilinear grid of unit spacing. 

(2) The wires form vertex-disjoint paths in the grid . 

. . ' .... - .. : .. ~ .. : .. 

. -:- .. : ... , . __ __. ......... --; 

. . ... 
.. ··"'······-:······ .. 
.. .. . • ... · ... · ..... . 

...... ~~-----....-;-....,... ........ : .. : .. '. .. ~---:--

Figure 2. A legal routing of the sketch in Figure 1, using wires of minimum length. 
Dotted lines represent the routing grid. 

A sketch is routable if it has a legal routing. Using the algorithm in [6], a legal 
routing of a routable sketch can be found in polynomial time. Figures 1 and 2 
illustrate the concepts of legality and routability. The sketch in Figure 1 is illegal 
because it contains curved wires. Nevertheless, it is routable, and one of its legal 
routings is shown in Figure 2. 
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2.3. Routability conditions 

My compaction algorithm is based on a theorem from [6] that characterizes the 
routable sketches in terms of the following concepts. If p = (xp, Yp) and q = (xq, yq) 
are points in the sketch S, then pq denotes the open-ended line segment from p to q. 
Such a segment is called a cut if it intersects no features in S. The capacity of a 
cut pq is the maximum number of wires that can legally cross pq; in symbols, 

cap(pq) = max{Jxq - xPJ, Jyq - yPJ, 1} - 1 . 

The flow across pq, denoted fiow(pq), is the number of crossings of pq that are 
enforced by the topology of the sketch. (See Figure 3.) Crossings of pq that can be 
removed by deforming the wires W do not contribute to the fl.ow. More formally, 
fiow(pq) is the minimum, over all routings (F, W') of (F, W), of the number of times 
pq is crossed by wires in W'. 

Figure 3. A portion of a sketch with a cut pq. The flow across pq is 1. 

The routability of a sketch is completely determined by the flows and capacities 
of its cuts. Let us say that a cut is safe (1] if its fl.ow does not exceed its capacity. 
Then we have the following result. 

Lemma 1. [6] A sketch that contains an unsafe cut is unroutable. 

More significantly, the converse is true (except when the features of the sketch are 
illegally placed): a sketch that contains no unsafe cuts is routable. In fact, this 
statement may be strengthened. A critical cut pq is one such that pis the endpoint 
of a feature, and q is the closest point on its feature to p. The critical cuts are the 
only important ones. 

Theorem 2. [6] The sketch (F, W) is routable if and only if (F, 0) is legal 
and every critical cut in (F, W) is safe. 

The inequalities fiow(pq) ::::; cap(pq) for the cuts pq of a sketch are called routability 
conditions for the sketch. Constraints of this sort will be used by the compaction 
algorithm to determine the optimal positions for layout features. 

3. Computing flows in the sketch 

This section describes a procedure used to facilitate the computation of routabil­
ity conditions for a sketch. As suggested by Theorem 2, the important attributes 
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of a sketch are the flows and capacities of cuts. Capacities are purely geometric 
quantities, and can be computed from endpoint locations in constant time. In addi­
tion, they vary in a regular way with the movement of features during compaction. 
Flows, on the other hand, are topological quantities, and are relatively difficult to 
compute. Moreover, they depend in complex ways on the positions of features. 
Thus to compute flows, we require a data structure that captures the topology of 
the sketch and that is invariant under compaction. I begin by presenting such a 
structure. 

3.1. The adjacency graph 

The data structure we use is called the adjacency graph of the sketch. Its 
construction is straightforward, and is illustrated by Figure 4. From a point on the 
rightmost edge of each obstacle, except the bounding box, a line is drawn rightward 
until it hits another obstacle. These line segments and rays will be called hurdles. 
Now each wire is replaced by a homotopic wire that intersects as few hurdles as 
possible, making sure that no two wires cross. The resulting set of objects forms 
a planar graph: its nodes are obstacles and hurdle/wire crossings, and its edges 
are pieces of wires and hurdles. The planar dual of this graph, which is actually a 
multigraph, is the adjacency graph of the sketch. A node of the adjacency graph 
corresponds to a face of the original graph, and is said to border on the points 
forming the boundary of that face. The adjacency graph does not change during 
horizontal compaction because hurdles can only slide back and forth, and we will 
not allow wires or features to cross over one another. 

Figure 4. The adjacency graph of the sketch in Figure 1. Dashed lines are hurdles, 
and circles are nodes of the adjacency graph. Wherever two such nodes are adjacent 
across a wire or hurdle, there is a "wire edge" or "hurdle edge", respectively, in the 
adjacency graph. These edges are omitted for clarity. Adjacency across features is 
not represented in the adjacency graph. 

The purpose of the hurdles is to relate links in the sketch to the sketch topology. 
Consider the sequence of hurdles crossed by a link, in order, together with the 
directions of crossing. Such a hurdle sequence can be put into a canonical form 
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by removing all unnecessary crossings, that is, all places where the link crosses a 
hurdle and immediately crosses back in the other direction. One can show that two 
links with the same endpoints have the same canonical hurdle sequence if and only 
if they are homotopic. 

Constructing the adjacency graph of a sketch is not difficult. Let (F, W) be 
the sketch. One first computes the canonical hurdle sequence of each wire, and 
forms the graph whose nodes are the sketch obstacles and the necessary hurdle/wire 
crossings. Since every wire segment could cross every hurdle, this process might 
require 0(1FllWI) time and space, but will probably need much less. (Recall that 
IDI denotes the size of the data structure D. Thus IWI is not the number of wires, 
but rather the number of line segments that compose them.) Since the direction of 
each crossing is known, one has enough information about the embedding of this 
graph to construct its dual graph. Building the dual graph is straightforward; one 
simply walks around the faces of the original graph, creating dual nodes and edges 
as necessary. The time and space taken by this construction are both proportional 
to the size of the dual graph. 

3.2. Computation of flows 

An appropriate search through the adjacency graph can compute the flow across 
a cut. To see how, notice that there are two kinds of edges in the adjacency graph: 
"wire edges," which represent adjacency across a wire, and "hurdle edges," which 
represent adjacency across a hurdle. A path through the adjacency graph thus has 
a hurdle sequence determined by the hurdle edges it contains. The following lemma 
demonstrates the correspondence between the canonical hurdle sequence of a cut 
and hurdle sequences of paths. By the length of a path in the adjacency graph we 
mean the number of wire edges the path contains. 

Lemma 3. Suppose that a cut pq of sketch S has hurdle sequence H. Let 
Paths (pq) be the set of paths in the adjacency graph of S that begin at a node 
bordering on p, end at a node bordering on q, and have hurdle sequence H. 
Then flow(pq) is equal to the length of the shortest path in Paths(pq). D 

The proof of this lemma requires too much background material to be presented 
here. 

To make use of Lemma 3, we must be able to find shortest paths with given hur­
dle sequences in the adjacency graph. This involves searching through a subgraph 
of the adjacency graph. 

Definition. The skeleton of an adjacency graph G is the graph T consisting 
of the nodes and wire edges of G. 

Lemma 4. The skeleton T of an adjacency graph G is a tree, and it has the 
following properties. 

(1) If his a hurdle, the set of nodes bordering h from below (or above) is 
connected in T. 
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(2) If b and b' are two nodes bordering a hurdle h from below, and a and 
a' are adjacent to b and b', respectively, across h, then the distance 
between a and a' in T is equal to the distance between b and b' in T. D 

These properties help in proving the correctness the following algorithm, which 
computes the fl.ow across a cut pq. We may assume that each hurdle in the hurdle 
sequence of pq is to be crossed from bottom to top. 

Algorithm F. (Computes the fl.ow across a cut.) 
Input: a cut pq with hurdle sequence (hi, ... , hn), the adjacency graph G with 

skeleton T. 
Output: the fl.ow f across pq. 

Local variables: integers i and t, nodes u and v. 
1. f +- min{DIST-FROM(w) : w borders on p}; 
2. function DIST-FROM(w); 
3. t +- O; u +- w; 
4. for i +- 1 to n do 

begin 
5. v +- a node bordering hi from below that is closest to u in T; 
6. t +- t +the distance from u to v in T; 
7. u +- the node adjacent to v across hurdle hi; 

end; 
8. v +- a node bordering q from below that is closest to u in T; 
9. return t + the distance from u to v in T. 

In other words: for each node bordering on p, find the shortest path to the first 
hurdle, cross the first hurdle, find the shortest path from there to the second hurdle, 
and so on. Breadth-first search can be used to implement lines 5-6 and 8-9. This 
approach may work well in practice, but its worst-case behavior is poor; it could 
require O(nlTI) time on a hurdle sequence of length n. Later in this section, I show 
how to implement Algorithm F more efficiently. 

3.3. Correctness of Algorithm F 

The correctness of Algorithm F follows from Lemmas 3 and 4. 

Lemma 5. Let pq be a cut in a sketch S, let G be the adjacency graph of S, 
and let (h1 , ... , hn) be the hurdle sequence of pq. Then Algorithm F, when 
applied to pq and G, outputs fiow(pq). 

Proof. The function DIST-FROM computes the length of some path with hurdle sequence 
(h1 , •.. , hn) from w to a node bordering q. If w borders on p, then all such paths have length 
ftow(pq) or greater by Lemma 3. So it suffices to show that DIST-FROM(w) :<::: ftow(pq) 
for some w bordering on p. By Lemma 3, there exists a path 7r in G that begins at a node 
bordering p, ends at a node bordering q, and has hurdle sequence (h1 , ... , hn) and length 
flow (pq). Let 7ro be the portion of this path up to hurdle h1 ; for 0 < i < n, let 7r• be the 
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portion of 7r between hurdles hi and hi+ii let 'lrn be the portion of 7r beyond hurdle hn. 
Choose w to be the first node along 7r. 

We consider only the execution of DIST-FROM on w. Define ti and ui to be the values 
oft and u just after iteration i of the loop in lines 2-5; put t 0 = 0 and u0 = w. Denote the 
length of a path a in G by l( a). Algorithm F maintains the following invariant: 

i-1 

There is a path ai in G' from ui to the origin of 'lri such that l(pi) +ti :S L l(7r;). 
i=O 

In particular, after the loop completes, we have 

n-1 

l( an) + tn :S L l( 1r3-). 
i=O 

Let T be the skeleton of G. The concatenation of an and 'lrn, written an· 'lrn, is a path in 
T from Un to a node bordering q. Hence by Lemma 3, 

DIST-FROM(w) :S tn + l(an · 1rn) 

= (i(an) + tn) + l(7rn) 
n-1 

:S (2:t(7r,.n + t(7rn) 
i=O 

= l(7r) = ftow(pq). 

Thus the invariant implies the lemma. 

Ow 
Figure 5. The inductive step in proving the correctness of Algorithm F. 

It remains to prove the invariant, which we do by induction on i. The basis case i = 0 
is trivial. Now assuming the invariant for i, we prove it for i + 1. See Figure 5. The path 
Pi represents a shortest path in T from ui to a node bordering hi+ 1 from below, and the 
paths ai+i and a~+ 1 are the shortest paths in T between the indicated nodes. Since T is 
a tree, the shortest path between two nodes in T is the unique simple path between them. 
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In particular, a~+l is the unique simple path between its endpoints. Now by part (1) of 
Lemma 4, the nodes adjacent to hi+i from below are connected in T, and hence every node 
along a~+i is adjacent to hi+l from below. It follows that Pi · ai+1 is a simple path-the 
shortest path between u1 and the end of :ir1-and thus we have 

Combining this inequality with the induction hypothesis, we obtain 

i 

(ti+ l(pi)) + l(a~+l) ~ L l(:iri)· 
j=O 

The first term on the right is just ti+ 1 , and part (2) of Lemma 4 shows that£( a~+ 1 ) = l(ai+ 1 ). 

We conclude that the invariant holds for i + l. D 

3.4. Data structures for Algorithm F 

The most time-consuming steps of Algorithm F involve searching through the 
skeleton T of the adjacency graph. One can speed up these searches by taking 
advantage of the fact that T is a tree. The first task is to preprocess T so that one 
can quickly determine the distance between any pair of its nodes, and hence speed 
up lines 6 and 9 in Algorithm F. The second task is to preprocess T so that one 
can compute efficiently the closest node in a connected subset of T to a given node. 
This ability is sufficient to implement lines 5 and 8 of Algorithm F, because the set 
of nodes bordering a feature or bordering a hurdle from below is connected in T. 

This section shows how the adjacency graph G may be preprocessed so that Alg<>­
rithm F takes O(log2 !GI) time per iteration. The preprocessing requires O(ITI log2 IGI) 
time and creates data structures that occupy O(ITI log ITI) space. One could speed 
up Algorithm F even further by precomputing the distance between every pair of 
nodes in T, but only at the cost of O(ITl 2

) space. 

Figure 6. A tree, drawn with solid lines, and its decomposition tree. 

The idea is to decompose the graph T recursively, forming a decomposition tree 
D on the nodes of T. Figure 6 shows the construction. Let n be the number 
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of nodes in the graph T. The separator theorem for trees [12] implies that T 
contains a vertex r whose removal disconnects T into subtrees containing at most 
~n nodes each. Moreover, we can find the vertex r in linear time using depth­
first search to compute the sizes of subtrees. Now we decompose the subtrees of r 
recursively, obtaining a decomposition tree for each one. The roots of these trees 
become the children of r in the decomposition tree D for T. At each stage of the 
decomposition, the sizes of subtrees are reduced by a constant factor, so D has 
height 0(log ITI). The recursive construction of D takes 0(ITI log ITI) time because 
it examines each node and edge in T just O(log ITI) times. We store with each 
node of T its distance in T from each of its ancestors in D. These distances can 
be computed in 0(ITI log ITI) time during the construction of D, and their storage 
requires 0(ITI log ITI) space. 

This information allows one to compute quickly the distance between two nodes 
of T. One simply finds their lowest common ancestor (LOA) in D, and then adds 
their distances (in T) from that ancestor. This procedure takes at most O(log ITI) 
time; it works because the LOA in D of two nodes in T either equals one of them 
or separates them in T. 

Some extra preprocessing is needed before we can compute closest members of 
connected sets of T. Let D be the same decomposition tree as above. The LOA in 
D of a connected set C ~ T is a member of C, and we can compute in advance the 
LOA's of the connected sets that we care about, which are the following: 

• For each hurdle, the nodes in G adjacent to that hurdle from below. 

• For each feature, the nodes of G adjacent to that feature. 

There are O(IFI) such sets in the sketch (F, W). The LOA of each set C can be 
computed in O(log !GI log ITI) steps if some node of C is known, assuming that 
membership in C can be tested in O(log IGI) time.* Thus the preprocessing of the 
connected sets uses O(IFI log !GI log ITI) time and O(IFI) space. We also store, for 
each node y and for each of its ancestors x, the highest vertex in D that is interior 
to the to the path in T between x and y. In case x and y are adjacent in T, we 
store nil instead. To produce this information requires O(ITI log ITI) space and 
O(ITI log2 ITI) time. 

The following algorithm uses the data from preprocessing in lines 2 and 4. 

Algorithm V. (Finds the closest vertex in a connected set C ~ T to a node u.) 
Local variables: nodes v and z. 

* In practice, membership in C could probably be tested in 0(1) time, since each node of T 
would probably have bit-vector to specify which hurdles and features it borders. From a theoretical 
point of view, this approach is no good, because it requires O(IFllGI) bits of storage. If the edge 
list of each node of G is kept in an appropriate data structure, then it takes at most O(log IGI) time 
to determine whether a node is adjacent to a particular hurdle. Similarly, adjacency to features can 
be tested in logarithmic time. This method loses no asymptotic space efficiency. 

14 



1. if u E C then return u; 
2. v +- LCA(C); 
3. if v is not an ancestor of u then u +- LCA( u, v); 

repeat 
4. z +- the highest vertex in D on the path in T between u and v; 
5. if z = nil then return v; 
6. if z E C then v +- z else u +- z 

until false. 

We now check the correctness of Algorithm V. First we show that before every 
iteration of the loop, the following invariants hold: (a) v EC but u €/:. C; (b) one of 
u and v is an ancestor of the other; and ( c) the closest node in C to u is the closest 
node in C to the original input u. Lines 1-3 serve to establish these invariants. Line 
3 does not harm invariant ( c), for if v is not an ancestor of u, then the LCA of u and 
v is on every path between u and C. Hence the closest node in C to u is also the 
closest node in C to LCA( u, v). Now we check that the loop maintains the invariants. 
Invariant (a) is maintained by line 6. That line does not affect invariant (b) either, 
because z, u, and v are all on the same branch of D. Invariant (c) can only be 
affected if z E C. But in that case, every path from u to C passes through z, 
because C is connected. Hence the closest node in C to u is also the closest node in 
C to z. Finally, line 4 outputs the correct node; z being nil means that u and v are 
adjacent, which makes v is the closest node in C to u. Therefore when Algorithm V 
terminates, it produces the correct answer. 

It remains to bound the number of iterations of the loop. We bound it by the 
height of D, by showing that the height of the vertex z in D decreases by at least 
one at each step. Let u0 , v0 , and z0 be the values of u, v, and z at one iteration, and 
let ui, V1, and z1 be their values at the next iteration. The path between u 1 and v1 

is a subpath of the path between u0 and v0 , so z1 is no higher than Zo· Suppose they 
were the same height. Then LCA(z0 , z1) would be a higher node separating z1 from 
z0 • This node would be on the path between u0 and v0 , contradicting the definition 
of z0 • Therefore z1 is strictly lower than z0 • We conclude that Algorithm V runs in 
O(log ITI) iterations. Each iteration requires O(log !GI) time due to the membership 
test in line 6. Hence Algorithm V finishes in O(log !GI log ITI) time. 

4. The compaction algorithm 

This section defines mathematically the problem of compaction with automatic jog 
introduction, and presents a practical algorithm that solves this problem. Because 
the wiring planes can be treated independently, the compaction algorithm considers 
only a single plane. It assumes the input is available in the form of a sketch, and 
that the input sketch is routable. 

4.1. Configuration space 

Let the input sketch be denoted by S. For the purpose of compaction, the 

15 



obstacles of S must be grouped into modules: collections of features whose relative 
positions are fixed. The compactor is allowed to choose a horizontal displacement 
for each module. Such a vector of displacements is called a configuration of S. The 
configuration d = (di, ... , dn) corresponds to a sketch S(d) in which module i has 
been shifted right by a distance di (or left by a distance-~). Thus a configuration d 
determines how the features of S(d) are to be placed; we shall consider the wires 
of S(d) shortly. If the sketch S has n modules, then the set of all its configurations 
is the vector space Rn, and the origin 0 of this vector space corresponds to the 
original sketch. 

Using configurations, we can describe how points on modules move during com­
paction. If p is a point in S, its x and y coordinates will be denoted Xp and Yp, 
respectively. The module in which p lies will be written µ(p), so the horizontal 
position of p in the configuration d is xP + dµ(p)· The notation p(d) stands for p 

shifted by d, that is, the point (xp + dµ(p),Yp)· We also let ~pq(d) be difference in 
x-coordinates between q(d) and p(d), namely 

~pq(d) = (xq + dµ(q)) - (xp + dµ(p)) . 

To disallow the possibility of modules crossing over during compaction, we re­
strict attention to a subset of configuration space. Suppose p and q are points in S 
having the same y-coordinate. If q lies to the right of p, then we only wish to con­
sider configurations din which q(d) lies to the right of p(d). So we let C(S) c Rn 
be the set of configurations d such that for all points p and q of S with p11 = q11 and 
Px < qx, we have ~pq(d) > 0. We call C(S) the configuration space of the sketch S. 
The configuration space of S is convex, because it is the intersection of convex sets 
of the form 

p,q ES. 

For every configuration d in C(S), the hurdles of S transform nicely to S(d). For 
if a hurdle h in S has endpoints p and q, then the line segment in S(d) between 
p(d) and q(d) is a hurdle, which we identify with h. Now we can finally make S(d) 
into a sketch: S(d) is well defined (up to wire homotopy) by requiring that its wires 
have the same canonical hurdle sequences they had in the original sketch S ( 0). 

4.2. Problem statement 

The compaction problem is to find a configuration d E C(S) such that S(d) 
is routable, and can be routed in minimal width. (The width of a sketch is the 
horizontal distance between the leftmost and rightmost points on its features or 
wires.) As we have stated it, the compaction problem is generally very difficult; 
in fact, it is NP-complete [11]. The reason is that the routability conditions may 
not define a convex region of configuration space, and hence the set of acceptable 
configurations {d E C(S) : S(d) is routable} can be very hard to search. For 
example, consider the sketch in Figure 7. The set of acceptable configurations 
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falls into two components: those in which the upper module lies entirely to the 
right of the lower module, and those in which the opposite is true. Intermediate 
configurations correspond to unroutable sketches, and thus the set of acceptable 
configurations is not convex. In most optimization problems, including compaction, 
one only expects to search a convex subset of the acceptable configurations in order 
to achieve a polynomial-time algorithm. The algorithm presented here searches the 
largest such region that contains the initial configuration, and thus finds the best 
configuration available to any algorithm of its type. 

Figure 7. How wires can prevent modules from sliding past one another. If the 
upper module is allowed to move to the left of the lower one, the set of acceptable 
configurations is not convex. 

4.3. Algorithm overview 

The basic notion underlying the compaction algorithm is that of a potential cut. 
For the purposes of this section, a potential cut is a continuous function that defines 
for each configuration d E C(S) a line segment between two features in S(d). The 
line segment may or may not be a cut, depending on the positions of the features 
in S(d). The configuration c is said to protect a potential cut 1/; if either 1/;(c) is not 
a cut, or 1/;(c) is a safe cut. (Recall that a cut is safe if its fl.ow does not exceed its 
capacity.) The significance of these definitions lies in a reformulation of Theorem 2 
in terms of potential cuts: 

Let S = (F, W) be a sketch, and let c E C(S) be a vector in its configuration 
space. For every endpoint p of a feature in F, and for every other feature 
Q in F, let XpQ ( c) denote the line segment from p( c) to the closest point 
on Q(c). Then XpQ is a potential cut for S, which we call critical. The 
sketch S(c) = (F(c), W(c)) is routable if and only if 

(1) the sketch (F(c), 0) is legal, and 
(2) the configuration c protects every critical potential cut of S. 

The compaction algorithm works by finding a subset of configuration space, 
determined by simple linear inequalities, whose configurations protect every crit­
ical potential cut. It thereby ensures that the configuration it chooses satisfies 
condition (2) above. Condition (1) can be ignored, because for all configurations 
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c E C(S), the wireless sketch (F(c), 0) is legal unless its features fail to lie in the 
grid. This never happens because the initial sketch (F, W) is assumed to be routable, 
and the compaction algorithm never considers nonintegral displacements for mod­
ules. The subspace searched is chosen so as to include the initial configuration. An 
overview of the compaction technique follows. 

The central problem is to find a simple linear inequality that ensures that a 
potential cut, say 1/J, is protected. One would like to use the routability condition 
cap(,P(d)) 2: fiow(,P(d)) as a constraint on the configuration d, but for most poten­
tial cuts 1/J, this constraint is not a simple linear inequality. The difficulty lies not 
with the capacity of 1/J(d), which is determined solely by the geometry of S(d), and 
depends in a simple way on the displacements di. Rather, the quantity flow ( 1/J ( d)) 
is hard to characterize, because it depends on the relation of the line segment 1/J( d) 
to the topology of the sketch S ( d). 

The solution is to find a specific configuration c such that whenever the potential 
cut 1/;(d) is unsafe, its flow is equal to flow(,P(c)). The constraint cap(,P(d)) 2: 
flow(,P(c)) is then sufficient to protect 1/J. Moreover, when this constraint is written 
in terms of the variables di, it becomes a simple linear inequality, because the 
right hand side is constant. To find c, the algorithm looks for a configuration that 
minimizes the capacity of 1/J, subject to the condition that all critical cuts of smaller 
vertical span are safe. These shorter cuts force the other features to the side of 1/J on 
which they must lie if 1/J is ever to become unsafe. If, in this way, the algorithm finds 
a configuration c that does not protect 1/J, then the routability condition for 1/J( c) is 
remembered. Otherwise, the potential cut 1/J is ignored. 

4.4. Description of the compaction algorithm 

Since critical cuts move in nontrivial ways during compaction, it turns out to 
be more convenient to consider two simpler types of potential cuts: 

• Horizontal cuts incident on feature endpoints. 

• Cuts between pairs of feature endpoints. 

The constraints generated from these potential cuts turn out to be sufficient to 
protect all the critical potential cuts. 

The horizontal potential cuts are particularly simple because their flows are 
independent of the configuration. These potential cuts are treated first in order to 
generate the constraints that prevent features from crossing over one another. A 
horizontal potential cut is a function </>pq of the form </>pq(d) = p(d)q(d), where p 
and q are points in the original sketch. Assuming without loss of generality that 
Xq > xP, Theorem 2 gives the routability condition 

~pq(d) 2: fiow(</>pq(d)) + 1, d E C(S). 

Since pq being horizontal implies that flow ( </>pq ( d)) = flow (pq) for all d E C ( S), 
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the constraint is a simple linear inequality 

(1) 

on the displacements of p and q. The flow across pq is easily computed by Algorithm 
F of the previous section. For each horizontal cut pq incident on a feature endpoint, 
the algorithm computes a constraint of the form (1). Of course, the constraints are 
maintained as a constraint graph I over the variables d1• 

The second stage of the algorithm concerns the cuts that are not horizontal. 
Let ~ be the set of potential cuts </>pq where p and q are feature endpoints with 
Yp =J. Yq· The height of an element </>pq of~ is the quantity IYP - Yql· This quantity 
is independent of configuration. Sort ~ in increasing order of height, forming a 
sequence in which flatter potential cuts precede taller ones. After </>pq E ~ has been 
processed, the algorithm can ensure that the output configuration protects </>pq· 

The algorithm examines the elements of ~ in sorted order, and for each one 
that proves important, it adds an appropriate constraint to the graph J. The 
constraint for a potential cut </>pq E ~' with Xq 2 xP, is computed thus. First, 
the algorithm solves the current constraint system I together with the temporary 
constraint .6.pq(d) 2 O, fixing dµ(p), and minimizing dµ(q)· Call the resulting config­
uration c. If c protects </>pq, then the constraint set is unchanged; otherwise, the 
constraint 

is added to I. The new constraint is a simple linear inequality derived from the 
routability condition cap ( </>pq ( c)) 2 flow ( </>pq ( c)) + 1. 

After all the potential cuts in t/J have been processed, the constraint system I is 
complete, and the algorithm solves it using a longest-path algorithm. The resulting 
configuration is used to build an output sketch, which is then routed using a single­
layer router such as Algorithm R in [6]. That particular router has the advantage 
of being able to minimize the lengths of the wires in the routing. 

The compaction algorithm is summarized below. We assume that the left and 
right edges of the sketch's bounding box compose modules 1 and n, respectively, 
and that the top and bottom edges of the box are ignored. 

Algorithm C. (Compacts a sketch horizontally.) 
Input: a sketch S = (F, W) with n modules specified. 
Output: the compacted sketch. 
Local variables: the points p and q, a configuration c, and the constraint graph I 

over variables d1 (1::; i::; n). 
Subroutines: Algorithm F is used to compute flows in lines 2 and 5; Dijkstra's 

algorithm is used in lines 4 and 7; a single-layer router is used in line 8. 
1. Preprocess S as described in Section 3; 
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2. Let I be the set of constraints { ~pq ( d) 2: flow (pq) + 1} where pq is a horizon­
tal cut with Xp < Xq and p or q is an endpoint of a feature in F. 

3. foreach pair of feature endpoints {p, q} with Xp :S Xq and Yp I- yq, in order of 
increasing height, do 

begin 
4. Find a configuration c that minimizes Cµ(q) - Cµ(p) while obeying the con-

straints I U {~pq(d) 2: O}; 
5. if p(c)q(c) is a cut in S(c) then 
6. if flow( </>pq ( c)) > cap( </>pq ( c)) 

then add to I the constraint ~pq(d) 2: fiow(</>pq(c)) + 1 
end; 

7. Find a configuration c satisfying I that minimizes c" - c1 ; 

8. Route the sketch S(c) and output the result. 

4.5. Details of the implementation 

• The computation of flows in line 2 is performed using Algorithm F of the 
previous section. The cuts themselves may be found by any straightforward method, 
as the algorithm's run time will be dominated by other factors. 

• Line 3 requires that pairs of feature endpoints be enumerated in order of 
vertical separation. Writing down the pairs and sorting them would waste large 
amounts of space; the following approach is better. First sort the feature end­
points by y-coordinate, and associate with each endpoint the next higher endpoint. 
Place these pairs in a priority queue, and keep the queue sorted by difference in 
y-coordinates. At each iteration of the loop (lines 3-6), withdraw the best element 
{p, q} from the priority queue, and process the potential cut </>pq· Then find the next 
endpoint q' above q in y-coordinate, if one exists, and insert the pair {p, q'} into the 
priority queue. This method uses linear space, and no more time than other parts 
of Algorithm C. 

• To solve the constraint system in line 4, it suffices to compute longest paths 
from the vertex µ(p). Dijkstra's algorithm can be used for the purpose, because 
every edge in the graph has weight zero or less. (Normally, Dijkstra's algorithm is 
used to find shortest paths, and then the edge weights must be nonnegative.) To 
see why edge weights are nonpositive, consider the case when all the displacements 
di are zero. Using the assumption that the initial configuration is legal, one can 
prove that it obeys all constraints. Hence if d; - di 2: ai; is a constraint in I, then 
it holds under the assigment d = 0. The result is that 0 - 0 2: ai;, that is, aii is 
non positive. 

• Once the algorithm finds the key configuration c in line 4, line 5 must deter­
mine whether </>pq(c) is a cut. To do so it tests all features in S(c) for intersection 
with </>pq ( c). 
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• Line 6 invokes Algorithm F to calculate fiow(</>pq(c)). It requires as input 
the hurdle sequence of </>pq(c), which can be found by checking every hurdle that 
lies between Yp and Yq in altitude. Include only those hurdles of S ( c) that cross 
p(c)q(c). The hurdle sequence should, of course, be sorted by y-coordinate, and all 
crossings must be from bottom to top. Presorting all the hurdles by y-coordinate 
eliminates the need to sort each individual hurdle sequence. 

• In line 7, Dijkstra's algorithm should be used once again, this time computing 
longest paths in l from module 1, which is the left edge of the bounding box of 
the sketch. If desired, the designer or design system may add other simple linear 
inequalities to 1, provided that they are all satisfied by the initial layout S(O). 

• The configuration c found in line 7 specifies the optimal compacted sketch, 
but that sketch must still be constructed at line 8. For the purpose of applying 
Algorithm R, the single-layer wire-router of [6], it is not necessary to construct a 
complete sketch S ( c), but only to produce something called the rubber-band equiv­
alent (RBE) of S ( c). The features of the RBE are the same as those of S ( c), and 
can be located easily. The wires of the RBE can be found as follows. The set of 
points not lying on features or hurdles of S(c) is a simply connected region, and its 
boundary is polygonal (if we allow vertices at infinity). Hence it can be triangulated 
quickly, and the resulting set of triangles forms a tree under the obvious adjacency 
relation. We can therefore find for each wire w in S(c) the shortest sequence of 
triangles that a routing of w could pass through, and apply Algorithm W from [6] 
to find the wire in the RBE corresponding to w. 

4.6. Complexity analysis 

The worst-case time complexity of Algorithm C is O(ISl 4
). (Recall that ISi is 

the size of the data structure S. If S = (F, W), then ISi = IFI + IWI.) We can 
obtain a more precise bound, however, in terms of IGI and Ill. What follows is a 
line-by-line breakdown of time costs. 

(1) According to Section 3, the preprocessing phase takes time O(IFllWI + 
IGI log2 IGI), where G is the adjacency graph of the input sketch (F, W). 

(2) Computing constraints for horizontal cuts is no harder than computing them 
for the other cuts, so line 2 may be ignored. 

(3) Enumerating pairs of feature endpoints takes O(IFl 2 log IFI) time, O(log IFI) 
time per pair. This quantity is dominated by other terms. 

(4) Line 4 calls Dijkstra's algorithm, which runs in time O(IEI + IVI log IVI) on 
a graph (V,E) [3]. Since IEI is O(lll), and IVI is n, the number of modules, 
line 4 uses 0(111 + n log n) time in each of 0(IFl2

) iterations. 

(5) Line 5 takes O(IFI) time per potential cut, and hence line 6 dominates it. 

(6) Algorithm Fuses O(IFI log2 IGI) time, so line 6 costs O(IFl 3 log2 IGI) time in 
total. 
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(7) The call to Dijkstra's algorithm in line 7 contributes a neglible quantity to 
the running time. 

(8) Careful analysis shows that the construction and routing of the output sketch 
requires only O(IFllGI log IGI) time [6]. 

Thus the total running time of Algorithm C is 

O(IFllWI + IGI log2 IGI + IFl2 (IJI + nlog n) + IFl3 
log

2 IGI + IFllGI log IGI). 
Since III = O(IFl 2

) and IGI = O(IFllWI), this expression yields the claimed bound 
of O(ISl4

). The only term that exceeds O(ISl3 log2 ISi) is the term IFl2 III due to 
repeated constraint solving at line 4. 

Which part of Algorithm C will dominate in practice is not clear. In the worst 
case, IGI can be as high as O(IFllWI), if some O(IWI) wire segments intersect O(IFI) 
hurdles each, and the crossings are not redundant. In most situations, however, IGI 
should be closer to IFI· Making reasonable estimates about the average run time 
of Algorithm F and the density of the constraint graph I, one can predict that 
actual performance for the entire operation will probably approach 0(IFl3+f) for 
some small positive value of L 

Space usage is easier to evaluate: the main contributors are the graphs G and J, 
along with Algorithm R, which may use O(IFllGI) space in the worst case. Thus 
the worst case bound is O(IFl 2 IWI), but none of the data structures of Algorithm C 
or Algorithm R is likely to approach its maximum size. The actual figure will 
depend on the number of crossings between wires and certain cuts in the sketch 
(e.g., hurdles), and will probably look like 0(1Fll+a) for some constant a E (0, 1). 

5. The abstract compaction algorithm 

To prove the correctness of Algorithm C, the compaction algorithm, we proceed 
by way of an intermediate procedure called Algorithm A, the abstract compaction 
algorithm. The name derives from the fact that Algorithm A (which is not re­
ally an algorithm at all, but just a mathematical definition) abstracts the essential 
element of Algorithm C, namely the iterative definition of the subspace of configu­
rations to be searched for a minimum width sketch. Algorithm A defines a sequence 
A0 , Ai, ... , Am of increasingly restricted subsets of the configuration space. These 
sets will to correspond to sets of configurations satisfying the constraint system I 
at different stages of Algorithm C. 

This section is devoted to the statement of Algorithm A and its preconditions. 
The next section demonstrates its correctness by proving the following theorem. 

Theorem 6. The output Am of Algorithm A is the connected component 
of {c E C(S): S(c) is routable} that contains the initial configuration 0. 

Finally, Section 7 demonstrates the correspondence between Algorithms C and A, 
and in particular that Am is precisely the set of configurations that satisfy the final 
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constraint system I of Algorithm C. Together with Theorem 6, this implies that the 
constraints generated by Algorithm C are both necessary and optimal, if only convex 
constraints are allowed. Finally, because Algorithm C finds an optimal configuration 
among those satisfying the constraint system, it will follow that Algorithm C is 
correct, and that it finds the best solution available to any algorithm of its type. 

There are at least two reasons for taking this abstract approach. First of all, it 
simplifies the correctness proof by separating the mathematical from the algorithmic 
concerns. Second, and more important, it clarifies the assumptions on which the 
compaction algorithm relies. An understanding of these assumptions will allow 
Algorithm C to be easily generalized. 

5.1. Definitions and assumptions 

For the purpose of discussing Algorithm A, we must use a more technical defi­
nition of potential cut. Let P and Q be features in the original sketch S, and let 'I/; 
be a continuous function that defines, for each configuration d in C(S), a line seg­
ment between the features P(d) and Q(d) in the sketch S(d). The function 'I/; is a 
potential cut if the position of 1/;(d) relative to P(d) and Q(d) depends only on the 
displacement between P(d) and Q(d), namely ~PQ(d) = dµ(Q) - dµ(P) (stretching 
the notation slightly). In other words, 'I/; must satisfy the following condition. 

If d and d' are any two configurations such that ~PQ(d) = ~PQ(d'), then 
'I/; ( d') is equal to 'I/; ( d') shifted to the right by d~(P) - dµ(P) units. 

Following the terminology of the previous section, a configuration d is said to protect 
a potential cut 'I/; if 1/;(d) is not a cut, or if cap('l/;(d)) ~ fiow('l/;(d)). If p and q 
are points in the original sketch S, then a typical potential cut is the function </Jpq 
defined by </Jpq(d) = p(d)q(d). 

The input to Algorithm A is a legal sketch S together with a sequence w(S) = 
(1/;1 , •.• , 1/;m) of potential cuts of S; the output is a set of configurations Am. As a 
precondition of Algorithm A, the potential cuts w(S) must determine the routability 
of the modified sketches S(d). Specifically, they must have the following property: 

Routability property. If S(O) is routable, and for all A E [O, 1] the configura­
tion Ad protects every 'I/; E w(S), then S(d) is routable. 

The capacities of the potential cuts must also have a special property: 

Bitonic property. For each 'I/; E w(S), and each line L in configuration 
space, there is a point c of L at which the capacity cap('l/;(c)) is minimal, 
and cap('l/;(d)) is nondecreasing as d moves away from c along L. 

In principle, my compaction method depends on only one further fact: 

Ordering property. Suppose that the following statements hold. 
(1) The configuration d protects 1/;i for all i < k. 
(2) The configuration d lies on the boundary of the set {c E Rn: 1/;(c) is a cut}. 
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(3) The cuts is properly contained in the line segment ?fik(d). 
Thens is safe in S(d). 

In practice, of course, we also desire that the sequence (?/Ii) be computable in poly­
nomial time. As we show in Section 7, the sequence of potential cuts examined by 
Algorithm C has all these desirable properties. 

5.2. The abstract algorithm 

Before plunging into the algorithm, I shall provide a brief overview. Algorithm A 
computes a sequence of polytopes in configuration space, each one contained in 
the last. The configurations in the kth polytope will protect the first k potential 
cuts in w(S). To process ?fik, the kth potential cut, the algorithm first determines 
whether ?fik is unsafe in any configuration in the current polytope. If not, the 
algorithm ignores ?fik· Otherwise, it defines a set of unacceptable configurations 
in which the capacity of ?fik falls below some critical value. This set contains all 
configurations in the current polytope that fail to protect ?fik. Its complement 
consists of two half-spaces: one in which the lower endpoint of ?fik is far to the right 
of the upper endpoint, and one in which the situation is reversed. Because the initial 
configuration is always acceptable, it must fall into one half-space or the other; the 
kth polytope is determined by intersecting the (k-l)st polytope with the half-space 
that contains 0. Thus Algorithm A only considers configurations reachable from 
the initial one; just as in Figure 7, one is not allowed to pass through a region of 
unacceptable configurations to reach a safe configuration on the other side. 

Algorithm A. (Finds the set of acceptable modifications of a sketch.) 
Input: a legal sketch S with n modules specified, and a sequence (?/11 , ••• , ?/Im) of 

potential cuts of S with the routability, bitonic, and ordering properties. 
Output: the configuration set Am. 
Local variables: an integer k, polytopes Ak of acceptable configurations, sets Uk 

of unacceptable configurations, and inequalities Bk. 
1. A 0 +-- C(S); 
2. for k +-- 1 to m do 

3. 

4. 
Note: 

5. 

6. 

'T. 

begin 
if some c E Ak-l does not protect ?fik then 

begin 
Uk+-- {d E Rn: cap(?fik(d)) < flow(?fik(c))}; 

If the endpoints of ?/ik lie on the features Pk and Qk, then Uk has the form 
{d: A-< ApkQk(d) <A+}, and either 0 E (-oo,A-] or 0 E [A+,oo). 

Bk+-- { ApkQk(d) ~A~, ~f O ~A~; 
ApkQk ( d) :S A , 1f O :::; A ; 

Ak +-- { d E Ak-l : d satisfies Bk} 
end 

else Ak +-- Ak-1; Uk +-- 0 
end. 
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Some remarks about Algorithm A are in order. 

• The set Uk is defined in terms of an arbitrary configuration c E Ak-l that 
fails to protect tPk· In the next section, we show that Uk is independent of 
the choice of c . 

• Observe that ak is a simple linear inequality between dµ(P1:) and dµ(Q1:)' and 
hence defines a closed half-space in Rn. Since Ao is convex, the set Ak is 
therefore convex for each k. 

• In the light of the following results, the definition of Ak in lines 5-6 may be 
read "Ak is the component of Ak-l - Uk that contains O." 

6. Correctness of the abstract algorithm 

This section proves the correctness of Algorithm A, by which we mean the following 
theorem. 

Theorem 6. The output Am of Algorithm A is the connected component 
of {c E C(S): S(c) is routable} that contains the initial configuration 0. 

In other words, Algorithm A above defines precisely the set of routable configura­
tions that are reachable from the initial one. In the process of proving Theorem 6, 
we develop some results that will be very useful later on, both in proving Algo­
rithm C correct and in finding correct extensions of it. 

6.1. Body of the correctness proof 

The following lemma is fundamental to the correctness proof. Its proof is lengthy 
and fairly deep, so we defer it to the end of this section. 

Definition. Two configurations, d and d', are equivalent with respect to a 
potential cut t/J if the hurdle sequences of t/J(d) in S(d) and t/J(d') in S(d') 
are identical. This relation is written "d ~ d' with respect to t/J". 

Lemma 7. Let d and d' be configurations in C(S), let L be {(1->.)d+>.d': 
>. E [O, 1]}, and let t/J be a potential cut whose capacity has at most one local 
minimum on L. Suppose also that whenever b E L lies on the boundary of 
{c E C(S) : t/J(c) is a cut}, all the cuts contained in the line segment t/J(b) 
are safe. Then: 

(1) If d' protects t/J but d does not, then cap(t/J(d')) ~ flow(t/J(d)). 
(2) If neither d nor d' protects t/J, then d ~ d' with respect to t/J. 

Lemma 7 provides us with the following lemma, our main tool for proving The­
orem 6. We shall use this lemma frequently. 

Lemma 8. (Potential Cut Lemma) Suppose 1 ~ k ~ m, and let d and d' 
be configurations in Ak-l· 

(1) If d' protects tPk but d does not, then cap(t/Jk(d')) ~ flow(t/Jk(d)). 
(2) If neither d nor d' protects tPk, then d ~ d' with respect to tPk· 
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According to Lemma 3 of Section 3, the flow across a cut depends only upon the 
cut's hurdle sequence. Therefore, configurations that are equivalent with respect 
to tPk have equal flow across tPk· Statement (2) of Lemma 8 thus implies that any 
two configurations d,d' E Ak-l that fail to protect tPk must satisfy fiow(t/Jk(d)) = 
flow ( tPk ( d')). Thus Lemma 8 fulfills a promise made in the previous section, to show 
that the sets Uk defined in lines 4 and 7 of Algorithm A are uniquely determined. 

The proof of Lemma 8 depends on several facts about the set Ak-l· In particular, 
the lemma makes no sense unless Ak-l is well defined. On the other hand, Ak is 
well defined only if the Potential Cut Lemma holds for Ak-l· We must therefore 
prove Lemma 8 in parallel with the following claim. 

Lemma 9. For 1 S k S m, the following statements hold: 
(3) The set Ak is well defined by Algorithm A. 
( 4) The point 0 lies in Ak. 
(5) Every configuration in Ak protects the potential cuts t/;1 through tPk· 

Proof of Lemmas 8 and 9. The proof proceeds by induction on k, with the inductive 
hypothesis being the conjunction of (3), (4), and (5). A basis for this hypothesis is easily 
established at k = 0: the set A 0 is obviously well defined, 0 E A 0 by definition, and 
condition (5) is vacuously true. So assume k ~ 1. The key step is the proof of (1) and (2), 
in Lemma 8, from the inductive hypothesis. 

(1,2) We apply Lemma 7 to the configurations d and d' and the potential cut 1/Jk· By 
the bitonic property, the capacity function of 1/Jk is minimal on at most one interval of L. 
And since Ak-l is a convex set, the inductive hypothesis implies that every configuration 
c E L protects the potential cuts 1/;1 through 1/Jk-l· This fact, combined with the ordering 
property, demonstrates the final assumption of Lemma 7. The conclusion of that lemma is 
identical to the conclusion of Lemma 8. 

(3) For Ak to be well defined, the set Uk defined in line 4 of Algorithm A must have the 
specific form {d E C(S): .6.- < .6.pkQk(d) < .6_+}, for some .6.- and .6_+. Recall that Uk 
includes a point d if and only if the capacity cap(1/Jk(d)) of 1/Jk(d) is less than the constant 
f =flow( 1/Jk( c )) . But by the definition of a potential cut, 1/Jk( d) depends only on .6.PkQk ( d). 
Hence it suffices to show that the set 

{.6.PkQk(d): d E Rn and cap(1/Jk(d)) < !} 

is a nonempty open interval (.6.-,.6.+). Choose a line L through con which .6.PkQk(d) is 
not constant. The bi tonic property of 1/Jk implies that the set { d E L : cap( 1/Jk( d)) < !} is a 
open interval of L; it is nonempty because it contains c. Since .6.PkQk(d) is a nonconstant 
linear function on L, the set 

is also a nonempty open interval. This is enough, because every value .6.pkQk ( d) is repre­
sented by some d EL. 

(4) By the induction hypothesis, 0 E Ak-l· If every c E Ak-l protects 1/Jk, then 0 E Ak 
trivially. Otherwise, apply (1) to 0 and c. (Because S(O) is routable, 0 protects 1/Jk by 
Lemma 1.) So cap(1/Jk(O)) ~ ftow(1f;k(c)), whence 0 ¢. Uk. Because .6.pkQk(O) = 0, by 
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definition, we have 0 ¢::_ (A - , A+). Thus 0 satisfies the constraint Bk defined at line 5, and 
so 0 E Ak. 

(5) Since Ak ~ Ak_1, every configuration d E Ak protects t/;1 through tPk-l• by the 
induction hypothesis; it remains to show that every d E Ak protects tPk· Suppose that 
d E Ak-1 fails to protect tPk· Then Uk is nonempty, and is defined in terms of some 
configuration c. By part (2), d ~ c with respect to t/Jk, and in particular flow(,Pk(d)) = 
flow(t/Jk(c)). Because d does not protect tPk, certainly cap(t/Jk(d)) < flow(t/Jk(d)), and it 
follows that d E Uk. But the constraint Bk excludes all members of Uk from Ak. Therefore 
d¢::_Ak. D 

From the above lemma, most of Theorem 6 follows quickly. First of all, the 
initial configuration 0 is a member of Am by claim (4). Second, if d E Am, then for 
all .X E [O, 1], the configuration .Xd lies in Am, and hence protects every t/J E w(S) by 
claim (5). Therefore by the routability property, S(d) is routable for all d E Am· 
It remains to argue that Am is a single connected component of { d E C(S) : 
S(d) is routable}. To do so, we make use of an elementary topological result. A 
subset X of a topological space is said to surround another subset Y if Y lies in the 
interior of X, and the closure of Y is contained in X. If X surrounds the nonempty 
set Y, then Y is a connected component of the complement of X - Y. 

Lemma 10. For 0 ::::; k ::::; m, the set Am is surrounded by the region 

X, ~ A, u ( ~ A,_, n U,) . 

Proof. It suffices to show that Am is closed and Xk is open, because clearly Am ~ Xk. First 
the former: consider the boundary of Am. It must be contained in the boundary of A0 , 

together with the set of points that satisfy some constraint Bk with equality. If a point 
d lies on the boundary of Ao, then two distinct modules in S ( d) intersect, and hence any 
configuration sufficiently close to d does not correspond to a routable sketch. Therefore d 
cannot lie on the boundary of Ao, and as a consequence, Am is just the set of configurations 
that satsify the inequalities Bk: a closed, convex polytope in Rn. 

Now we prove by induction on k that Xk is open. The basis case, X 0 = A0 , is left 
to the reader. Let k > 0, and consider the nontrivial case when Uk is nonempty. From 
the definition of Xk we derive Xk = (Xk-l - Ak-1) u Ak u (Ak-l - Uk), which reduces to 
Xk-1 - (Ak-1 - Uk - Ak)· The set B = Ak-l - Uk - Ak is the intersection of Ak-1 with one 
of the closed half-spaces forming the complement of Uk; it remains to show that B is closed 
in Xk-l· But Ak-l is just the subset of Xk-l satisfying the constraints B.:, for all i < k, so 
B is Xk-l intersected with finitely many closed half-spaces. Therefore Xk = Xk-l - B is 
open. D 

Setting k =min Lemma 10, we find that LJ~1 (Ai-l n Ui) disconnects Am from 
the rest of Rn. Hence the connected component of {d E C(S) : S(d) is routable} 
that contains Am cannot be a proper superset of Am, unless it also contains a point 
in Ai-l n Ui for some i. But if d E Ai-l corresponds to a routable sketch, then it 
protects tPi, and statement (1) of the Potential Cut Lemma applies to d and the 
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Figure 8. The line segment sA = ,P(bA) just as it ceases to be a cut. 

configuration c E Ai-l used to define Ui. It shows that cap(t/Ji(d)) ~ ftow(t/Ji(c)), 
which means that d f/:. Ui. Therefore d E Ai-l nUi implies that S(d) is not routable. 
So Am is precisely equal to the component of {d E C(S) : S(d) is routable} that 
contains 0. This completes the proof of Theorem 6, except for Lemma 7. 

6.2. Core of the correctness proof 

We now justify the lemma upon which Theorem 6 is ultimately based. Its proof 
explains the purpose of the bitonic and ordering properties. 

Lemma 7. Let d and d' be configurations in C(S), let L be {(1->.)d+>..d': 
>. E [O, 1]}, and let t/J be a potential cut whose capacity has at most one local 
minimum on L. Suppose that whenever b E L lies on the boundary of 
{c ER": t/J(c) is a cut}, all the cuts contained in the line segment t/J(b) are 
safe. Then: 

( 1) If d' protects t/J but d does not, then cap ( t/J ( d')) ~ flow ( t/J ( d)). 
(2) If neither d nor d' protects t/J, then d ~ d' with respect to t/J. 

Proof. For>. E [O, 1], let bA represent (1 - >.)d + >.d'. As>. varies from 0 to 1, S(bA) varies 
from S( d) to S( d'), and the line segment BA = tfi(bA) is sometimes a cut, and sometimes 
it crosses features. Denote the flow across BA by /A = ftow(,P(bA)), and the capacity (or 
"length") of BA by IA = cap( tfi(bA)). 

We first argue that the set Z = {A E [O, 1] : BA is a cut}, considered as a subspace of 
the unit interval, is open. Let BA be a cut; say it connects the features P and Q. Because 
S(bA) is compatible with 80 , there is some positive distance between BA and every feature 
but P and Q; no other features can touch the endpoints of BA. And since BA and the module 
positions in S(bA) are all continuous functions of>., there is some neighborhood of>. whose 
points all correspond to cuts. So Z is open, and hence it consists of disjoint intervals, each 
one open in [O, 1 J. We now focus attention on one of these intervals, call it A. If a lies on 
the boundary of A, then Ba is not a cut. The following claim is the crux of the argument. 

Claim: For all>. E A, and all a on the boundary of A, the configuration bA protects t/J 
unless IA < la. 

First note that the flow h does not vary as>. moves through A. The motion of S(bA) is 
continuous, and ,P is a continuous function, so no features can jump across BA while >. E A. 
Therefore any configuration bA, for >. E A, is equivalent to any other with respect to t/J. 
Hence by Lemma 3, /A is a constant /A for all >.EA. 
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Now consider the sketch Sa. At this point, one or more features have just contacted line 
segment Ba, and hence Ba is broken up into a series of cuts p0 q0 , ••• ,piqi. (See Figure 8.) 
Because ba is on the boundary of the set of configurations that make t/J a cut, all the cuts 
piqi are safe in configuration ba. Adding up the inequalities that define safety, we find that 

i i 

L cap(piqi) 2 Lflow(piqi) . 
i=O 

Compared to the flow /A, the right-hand sum cannot be deficient by more than j. Even if 
each of the j intervening features were terminals, they could only contribute j extra wires 
to /A. And by the definition of capacity, the left-hand sum is bounded by la - j. The result 
is that la 2 /A. By definition, if b>. fails to protect t/J then l>. < /A, sol>. <la. 

We now prove the lemma. Both parts of the lemma assume that d fails to protect t/J, so 
we may assume that s0 = 1/;(d) is a cut, and that 10 < lo· Suppose first that d and d' are 
equivalent with respect to t/J. Then ftow(t/J(d')) = ftow(t/J(d)). If d' protects 1/;, then also 
cap(t/J(d')) 2 ftow(t/;(d')), and the two inequalities together establish (1). Conclusion (2) 
is trivial if d ~ d'. Now suppose that d and d' are not equivalent with respect to t/J. 
Then there exists >. E (0, 1] such that B>. is not a cut. Let a be the smallest such value, 
and consider the interval A = [O, a). Since d = b 0 does not protect 1/;, the claim implies 
10 <la. Now by assumption, l>. as a function of>. has at most one local minimum in [O, 1]. 
Because 10 < la, the minimum value of l>. must occur in the interval (-oo, a). Hence l>. is 
nondecreasing on [a, 1], and we have 11 2 la 2 lo· This proves conclusion (1), because 11 

is cap(t/J(d')) and lo is ftow(t/J(d)). Now we prove (2) by showing that d' protects t/J. If s 1 

is a cut, let /3 be the largest value such that s~ is not a cut. (One must exist, for we are 
assuming d ~ d'.) Applying the claim to the interval A = (/3, 1], we find that b 1 protects t/J 
because 11 2 l~. Since b 1 = d', this proves statement (2). D 

1. Correctness of the implementation 

In this section, we build upon the results of Sections 3 and 6 to prove the correctness 
of Algorithm C, the concrete compaction algorithm. The hard part of the proof is 
over: Algorithm A, which is an abstract description of the compaction algorithm, 
is proven correct by Theorem 6 of the previous section. It remains to show that 
Algorithm C is just a special case of Algorithm A. There are two steps to this pro­
cess: first, to identify the potential cuts that Algorithm C uses, and show that they 
satisfy the preconditions of Algorithm A; and second, to prove an explicit corre­
spondence between the quantities computed by the two algorithms. The correctness 
of the compaction algorithm will then follow from the correctness of its subroutines 
(Algorithms F and R) along with Theorem 6. 

7.1. Preconditions of Algorithm A 

Our first task is to show that the potential cuts used by Algorithm C satisfy 
the requirements of Algorithm A, namely the routability, bitonic, and ordering 
properties. The potential cuts in question are the following. 

(1) Horizontal potential cuts 1/;11 .•• , 1/Jh, each of the form </>pq where either p or 
q is a feature endpoint. 
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(2) Diagonal potential cuts tPh+l, ... , t/Jm, each of the form </Jpq where both p and 
q are feature endpoints. 

We may assume that the potential cuts are numbered in the order that Algorithm C 
examines them, because we know it checks the horizontal ones first. Denote the 
input sketch by S, and the sequence ( t/J1, ... , t/Jm) by W ( S). 

Lemma 11. The sequence w(S) has the ordering, bitonic, and routability 
properties. 

Proof. The sequence w(S) is easily seen to have the ordering property. Let k satisfy 1 S 
k 5 m, and suppose that 1/Jk( d) contains a smaller cut. For d to lie on the boundary of the 
set { c E Rn : 1/Jk ( c) is a cut} means that the features interrupting 1/Jk { d) must do so at their 
endpoints, and furthermore that 1/Jk{d) is not horizontal. Therefore all the cuts contained 
in 1/Jk{d) are cuts between feature endpoints, and they have smaller height than 1/Jk· Hence 
they appear in the list 1/11 , ... , 1/Jk- l · 

The bitonic property is also easy to verify, because any potential cut of the form <f>vq 
has a convex capacity function. The reason is that cap( <f>vq( d)) is essentially the norm of a 
vector that is linear in the components of d, namely (p- q) + (dµ(v) -dµ(q))i, where i is the 
unit vector (1, 0). Convexity now follows from elementary properties of norms. 

Verifying the routability property is somewhat more difficult. Let d be a configuration 
such that >.d protects all 1/J E w(S) for all>. E [O, 1]. By Theorem 2, the Planar Routability 
Theorem, it suffices to show that d protects every critical potential cut of S. Consider an 
arbitrary feature endpoint p of S and another feature Q. The critical potential cut XvQ 
between them is defined by Xvdd) = p(d)q(d) where q(d) is the closest point on the 
feature Q(d) to the point p(d). If the horizontal line drawn through p intersects Q, then 
XvQ is always horizontal because Q is either a horizontal or vertical line segment. In this 
case, XvQ is equal to one of the potential cuts ,p, with 1 S i :::::; h, so that d automatically 
protects XvQ. If Q is a vertical line segment, then its closest point to p is always the same 
endpoint of Q, and XvQ = 1/J, for some i > h. So we may assume that Q is horizontal and 
is displaced vertically from p. Furthermore, we may assume that XvQ ( d) does not share an 
endpoint with Q(d). Then XvQ(d) must be a vertical line segment. Now either XvdO) is 
also vertical, or there is some configuration ad such that XvQ(ad) is vertical and shares an 
endpoint with Q(ad). In either case, we have a configuration ad that protects XvQi and 
such that cap(XvQ(>.d)) is minimal at >. = a. 

We now suppose that d does not protect XvQ, and apply Lemma 7 to the potential cut 
XvQ and the configurations d and ad. The capacity cap(XvQ( d)) is a convex function of d, as 
one may check. Hence it has at most one local minimum on the line segment L between ad 
and d. Furthermore, if >.d lies on the boundary of { c E Rn : XvQ ( c) is a cut}, then Xvd >.d) 
intersects feature endpoints only, and hence the cuts contained in XvQ(>.d) are instances of 
the potential cuts 1/Jh+1 through 1/Jm· Since we are assuming that >.d protects every potential 
cut in w(S), the cuts in XvQ(>.d) are safe. Thus ad and d satisfy part (1) of Lemma 7; we 
conclude that cap(XvQ(ad)) ~ flow(XvQ(d)). But cap(XvQ(ad)) 5 cap(xvdd)), because 
the capacity of Xvd>.d) is minimal at ). = a. Combining these inequalities, we find that 
flow (XvQ ( d)) S cap (xvd d)): the configuration d protects XvQ. Therefore the potential 
cuts w(S) have the routability property. 0 
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7 .2. Correspondence between the algorithms 

The final phase of our proof strategy involves showing that the constraints com­
puted by the concrete algorithm define the same space as the constraints Bk defined 
abstractly. This fact will imply that the compaction algorithm searches precisely 
the set Am of acceptable configurations, and correctness will follow quickly. In or­
der to state the correspondence, let G0 denote the set of configurations satisfying 
the constraint system I defined at line 2 of Algorithm C, and let Ck denote those 
configurations satisfying I after the kth iteration on the loop in lines 3-6. 

Lemma 12. For all k satisfying h :::;; k :::;; m, the sets Gk-h and Ak are 
identical. 

Proof. Recall that h is the number of horizontal cuts in the sequence \lf(S). We prove 
the lemma by induction on k, the basis case being k = h. Any configuration in Ah is 
in C(S), because Ah ~ A0 , and also protects the horizontal potential cuts, according to 
part (5) of Lemma 9. Therefore Ah ~ C0 • On the other hand, you may check that when 
the constraint Bk exists, for k :::; h, it corresponds to the potential cut in ! 0 induced by 1/Jk· 
(Here we Lemma 5, which shows the correctness of Algorithm F.) Therefore C 0 ~Ah. 

For the inductive step, suppose that Ck-h-l = Ak-l· We first draw a correspondence 
between the configurations c found by Algorithms A and C. The key observation is that the 
configuration c found by Algorithm Cat line 4 minimizes the capacity cap('l/Jk(c)) over all 
t E ck-h-1 = Ak-1· It does so by minimizing the horizontal separation 16.pq(c)I between 
the points p( c) and q( c), since their vertical separation is fixed. (Dijkstra's algorithm is 
applicable here, because according to Lemma 9, the initial configuration 0 satisfies the 
constraint system.) We wish to argue that if any d E Ak-l fails to protect 1/Jk, then 
neither does c. Suppose to the contrary that c protects 1/Jk but d E Ak-l does not. Then 
by the Potential Cut Lemma, statement (1), we have cap('l/Jk(c)) ~ flow('l/Jk(d)). But 
cap ( 1/Jk ( c)) :::; cap ( 1/Jk ( d)) by the choice of c, so cap ( 1/Jk ( d)) ~ flow ( 1/Jk ( d)), and d protects 1/Jk 
after all. Thus line 4 of Algorithm C correctly implements line 3 of Algorithm A. 

There are now two cases to consider. If the configuration c does protect 1/Jk, then so 
do all configurations in Ak-l· Therefore Algorithm A sets Ak to Ak-l, and Algorithm C 
does not change I, so we have Ck-h = Ak as desired. On the other hand, if c does not 
protect 1/Jk, then Algorithm C adds the constraint 

to I, where p and q are defined by 1/Jk = cppq and Xq ~ Xp· It remains to show that the above 
inequality is the constraint Bk defined by Algorithm A. We first evaluate Uk: 

Uk= {d E C(S): cap(</Jpq(d)) < flow(cppq(c))} 

= {d E C(S): max{l6.pq(d)I, IYq - YPI} - 1 < flow(</Jpq(c))}. 

Since cap(cppq(c)) < flow(cppq(c)), it follows that IYq - YPI - 1 < flow(cppq(c)), and so 

Uk= {d E C(S): 16.vq(d)I < flow(<Pvq(c)) + 1}. 

For brevity, we consider only the case where p lies on Pk and q lies on Qk, and not the 
reverse. A little algebra then shows that 6. + = (xv - Xq) + flow ( cppq ( c)) + 1 and that 
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0 2 ~ +. Hence Bk is the desired constraint 

We conclude that the configurations that obey the final constraint system I in 
Algorithm C are precisely those in Am. (If the design system adds extra constraints 
to I, some configurations in Am may be excluded.) Theorem 6, which character­
izes Am, now implies that every configuration obeying I is routable, and that the 
constraints I are optimal, unless the constraints are allowed to define a disconnected 
region of configuration space. Finally, line 7 of Algorithm C finds an optimal con­
figuration obeying the constraint system I. The resulting sketch is guaranteed to 
be routable, and hence Algorithm R, the single-layer router from [6], can regenerate 
the layout. This completes the proof of correctness of the compaction algorithm. 

8. Extensions and discussion 

The purpose of this section is to suggest several ways in which the compaction al­
gorithm can be improved, and to discuss its practical value. I regret that I cannot 
report here on any generalizations of Algorithm C to wiring models involving mul­
titerminal nets, wires of different widths, or sketches with nonrectilinear features 
and design rules. The reason is that such generalizations would require extending 
Theorem 2 and Lemmas 1 and 3 to other wiring models, and the theory of planar 
routing is not yet sufficiently advanced. Nevertheless, preliminary results indicate 
that many natural extensions of Algorithm C are possible. I hope to report these 
results, along with the mathematics that justifies them, in my Ph.D. dissertation. 

8.1. Optimizations of Algorithm C 

Both the time and space performance of Algorithm C can be improved by re­
ducing the size of the adjacency graph. One therefore wishes to choose hurdles 
in such a way as to minimize the number of crossings between wires and hurdles. 
Although we defined hurdles so that every obstacle has only one hurdle incident on 
its right, this property is unimportant. The hurdles can be chosen to be any set of 
horizontal cuts such that the set of points inside the bounding box, but not lying on 
a hurdle or a feature, is simply connected. Equivalently, if obstacles and hurdles are 
considered as the nodes and edges, respectively, of a graph, then this graph must 
be a tree. 

A minimum-cost spanning tree algorithm can be used to find a set of hurdles 
that cross as few wires as possible. Every horizontal cut between different obstacles 
is a potential hurdle, but we may restrict our attention to horizontal cuts that are 
incident on feature endpoints. There are at most O(IFI) such cuts, and they can be 
thought of as the edges of a graph H over the obstacles. The cost of an edge will 
be the number of crossings of the cut by wires in the original sketch; costs can be 
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computed efficiently using a scanning algorithm as in [6]. The hurdles are chosen 
to be the edges in a minimum-cost spanning tree of the graph H. 

Another way to speed up Algorithm C is to ignore potential cuts that cannot 
generate constraints. For example, if a potential cut </>pq has minimal capacity in 
the initial configuration, it cannot generate a constraint. We have noticed this 
already in the proof of Lemma 12; it follows from statement (1) of the Potential 
Cut Lemma. Therefore, the algorithm need only check potential cuts </>pq for which 
lxq - xPI > IYq - Ypl· Second, the lower endpoint of a feature need not be considered 
in conjunction with feature endpoints above it, and symmetrically for the upper 
endpoint. Similarly, potential cuts whose position in the initial configuration travels 
right from the left endpoint of a horizontal feature need not be considered, and 
symmetrically for right endpoints. The correctness of these optimizations can be 
proven using the techniques of Lemma 12. Finally, a potential cut </>pq with Xq > xP 
need not be checked if in all configurations d E C(S) with ~pq(d) > IYq - Ypl, the 
line segment </>pq(d) is not a cut. 

None of these improvements affect the fact that Algorithm C requires O(IFl 3
) 

time, not just in the worst case, but in almost every case. To reduce this amount, 
one must avoid considering most of the potential cuts. Most constraints in practice 
are likely to be local, so one can try to ignore all potential cuts of sufficiently large 
height. If one solves the constraint system before evaluating all the potential cuts, 
and the routing algorithm succeeds, then compaction may be terminated. If the 
routing algorithm fails, more potential cuts must be considered. 

8.2. Summary and conclusion 

The main theoretical contribution of this paper is a polynomial-time algorithm 
that compacts IC (or PCB) layouts while introducing jogs into wires in an optimal 
fashion. The power of Algorithm C comes from the elimination of wires as hard 
objects in the layout, and their replacement by constraints between modules. The 
use of routability conditions to solve placement problems is not new [7,13,16], but 
until now, only channel routing problems had been considered. The reason is that 
the routability of general planar layouts was not adequately understood until very 
recently [1,6]. To characterize planar routability requires a robust model of a circuit 
layer, such as the sketch, and a fair amount of theory. In addition, some care is 
needed to apply routability conditions to the compaction of general sketches; the 
correctness of Algorithm C is nontrivial. 

On the practical side, my compaction method can be expected to produce high­
quality layouts with little designer intervention, saving both in chip area and design 
time. Its primary drawback lies in its use of computational resources. Although 
there are good reasons to believe that its worst-case performance bounds will not 
be approached in practice, resource limitations may prevent it from being used to 
compact large layouts all at once. Algorithm C is amenable to use at all levels of the 
design, however, so that hierarchical compaction can alleviate much of the resource 
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problem. It also may be suited to use in channel routing, where the number of 
components is not too great. The idea, which was implemented at Bell Labs (see 
Acknowledgements) is as follows: the channel is artificially inflated, so that an 
an ordinary channel routing algorithm, which may have difficulty with crowded 
channels, may succeed; then a compactor like Algorithm C, with the ability to 
insert arbitrarily complex jogs, is applied in order to compact the channel back to 
the proper size. 

One important question left open by my research is whether the compaction 
method embodied in Algorithm C is more efficient in practice than the straightfor­
ward algorithm, namely, inserting jog points into each wire where it crosses each 
horizontal gridline, and solving the resulting constraint system normally. This tech­
nique is evidently simpler than that of Algorithm C, and may be more efficient in 
practice. On the other hand, it should be possible to extend Algorithm C to sit­
uations where wires and modules may contain diagonal segments, and grid-based 
algorithms break down. 
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