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Abstract

Distributed computing systems are becoming commonplace and offer interesting
opportunities for new applications. In a practical system, the problems of
synchronizing concurrent computations and recovering from failures must be dealt
with effectively. Atomicity has been suggested as a tool that masks concurrency and
failures from the users of a system. With synchronization and recovery mechanisms,
atomic computations appear to execute indivisibly. This dissertation addresses the
issues in implementing long atomic computations, such as computations that last for
hours or even days. Long computations make synchronization more difficuit
because their execution is more overiapped. They are also more likely to encounter
failures in their execution.

Three issues are raised:

1. Should long computations be executed atomically? Or should atomicity
be replaced with other correctness criteria to increase the concurrency
of a system?

2. If long atomic computations can be implemented practically, are there
implementation paradigms that application programmers can follow to
simplify the programming effort?

3. How can long atomic computations be made resment to transient
failures?

This dissertation shows that by using the semantics of an application, a system that
supports atomic computations can be made as concurrent as other systems that do
not. Since atomicity is easier to understand than other correctness criteria, systems
that support long atomic computations are preferable.

Using the semantics of an application requires application-dependent
synchronization and recovery code, which can be complicated and introduce subtle



errors easily. Several synchronization and recovery paradigms are investigated in
this dissertation. The paradigms divide synchronization and recovery into levels so
that the task at each level is simpler. A programming interface that hides the
concurrency control algorithm used by a system implementation is also presented.

Finally, this dissertation discusses the use of checkpoints and buffered messages to
increase the resilience of long atomic computations.

Thesis Supervisor: David D. Clark
Title: Senior Research Scientist

Keywords: Distributed Systems, Atomicity, Concurrency Control, Long
Computations, Recovery, Fauit Tolerance, Reliability, Programming Methodology.
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Chapter One

Introduction

Distributed systems have become a reality with the increasing employment of
~ workstations, home computers, and different types of .computer communications
equipment. Distributed computing has offered many opportunities to build new types
of applications. These applications are characterized by activities that span multiple
sites of a distributed system. For example, a travel agent may make several
reservations in different airline, hotel, and car rental reservation systems. A bank
customer may withdraw money from his account over a geographically distributed
banking network. An employee in an office may schedule a meeting with several of
his colleagues using a calendar system that runs on multiple workstatidns and
" portable computers. .

However, as the number of sites connected in a distributed system grows, it aiso
becomes increasingly likely that some components of the system are broken at any
given time. Furthermore, the job of synchronizing concurrent activities becomes
more difficult. It is unrealistic to use any centralizbd scheduler when many users may
~ be initiating activities at the same time.

Atomicity [17, 28] has been suggested as a useful tool that alleviates these
synchronization and reliability problems. Under the atomicity model, the activities in
a distributéd system are modelled as a collection of atomic computations. A
computation is a unit of work initiated by a user or by the system itself. Atomic
computations are computations that appear to execute serially in a certain
serialization order. This éerializability property frees the programmer from worrying
about concurrent computations interleaving with one another In addition to the
serial behavior, an atomic computation is either committed or aborted. The effects of
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| a committed computation become visible to all computations executed subsequently.
The effects are also permanent so that they are not lost with transient failures such
as power oUtages. When a computation is aborted, any work performed by the
computation is undone and the computation appears never to have executed. This
all-or-nothing property is called failure atomicity. It lessens the burden on application
programmers by undoing computations that are partially done.

in this dissertation we consider how /ong atomic computations can be supported in a
distributed system. As the size of a distributéd system becomes larger, it is inevitable
that the lengths of computations also increase. With a large system, it is unrealistic _
to expect every component to be highly reliable given the high cost of such
components. As a result, communication delays, network partitions, and
unavailability of critical resources due to site crashes, are just some of the reasons
why computations may execute for a long time. In fact, long computations can be
created simply because there is much work to be done as a single unit, or because a
computation requires human interaction. Consequently, iong computations are not
limited to distributed systems. |

The increase in computation lengths exacerbates the synchronization and reliability
problems. As each computation executes for a longer period of time, there is more
overlapping of execution, which increases the likelihood of some of the computations
being delayed. It also becomes more likely to encounter a failure during the
execution of a long computation. Current distributed systems supporting atomic
computations [31, 56] do not provide adequate support to long atomic computations.
These systems do not provide any facilities for a computation to make its
intermediate state resilient to transient failures. Aiso, because of an implicit model of
short computations, it is considered acceptable to delay one computation pendihg
the completion of another. In a system with long computations, such delays are
usually unacceptabie.

The rest of this chapter is divided in the following way. Section 1.1 describes our
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definition of long computation more carefully and gives examples of such
computations. Section 1.2 discusses the majbr problems in supporting long atomic
computations. Section 1.3 summarizes our solutions and contributions toward
solvmg these problems. Section 1.4 presents a roadmap for the thesis. Section
1.5 gwes an overview of related work.

1.1 Long Atomic Computations

A computation may execute for a long time because of extensive computing or
waiting for 170 events (e.g., waiting for input from keyboard or network). For
example, a computation that requires human interaction can last for minutes or even
hours. Clearly, the length of a computation is a relative measure. Instead of using an
absolute numerical definition for long cdmputations, we concentrate on
computations that may require special support due to their iength. Whether such
support is needed depends on the length of computations and on the characteristics
of the system on which they are executed. For example, the concurrency control
algorithms, the system usage characteristics, and the mean-time-between-failure -
characteristics of the hardware are some of the factors that affect the response time
and resilience of a system. In a typical distributed system that supports atomic
computations [31, 56], computations that last hours or days can be considered long
because they are prone to be aborted and induce long delays in concurrent
computations. Shorter computations that last minutes or even seconds can aiso be
considered long if the hardware is unreliable or the system is heavily used.

In our discussions we will focus on long computations whose lengths can be
attributed to. long delays in network communication. Several factors can contribute
to these long delays:

- mobility of sites, such as disconnection of portable computers,

- unreliable links in the network causing partitions,
- slow links or switches,
- economic reasons: sending messages batched is les expensive,
- security that is enforced by isolation.
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We believe that our work is also applicable to other types of long computations
because of the similarity of the problems encountered in supporting them.

Many applications require long computations. For example, a computation that
schedules a meeting among several personal calendar servers can last for hours or
days because some of the calendars reside on portable computers and are
disconnected from the system. A replicated database[11] may propagate the
updates to a replicated data object over a Iohg period of time. A computation making
several airline, hotel, and car rental reservations may last too long compared to the
concurrency requirements of an airline reservation system. ‘

1.2 Concu rrency and Resilience Problems

In the previgus section we alluded to a concurrency problem and a resilience
problem with long atomic computations. Intuitively, a system is bound to create a
concurrency problem when it is trying to maintain an image of substantially
overlapped computations executing serially. A resilience probiem is also to be
expected because it is more likely to encounter a transient failure in the execution of
a long computation than in a short computation. This section describes these
problems more concretely by describing how some systems [31, 48, 56] implement
atomicity. We argue that a long atomic computation causes long delays in
~ concurrent computations and is prone to be aborted in these implementations.

1.2.1 Concurrency Problem

In most earlier work [46, 40, 48, 26, 7], a (distributed) system is modelled as a
collection of objects with read/write operations. A computation is modelled as a
sequence of read/write operations on the objects accessed by the computation. In
order to guarantee serializability and failure atomicity of atomic computations, each
object is implemented to behave "atomically:" the values returned by the read
operations should be identical to those returned had the committed computations
been executed in some serial order common to all the objects.

14



In general, two different types of algorithms are used to ensure such atomic behavior.
In a locking algorithm, an object is associated with a read/write lock [31,56,17]. A
read (write) lock is acquired before a read (write) operation is executed. Two locks
conflict with each other unless they are both read locks. When a computafion
requests a lock, it is‘delayed until all other computations that had previously acquired
conflicting locks are completed. This locking algorithm is called 2-phase
locking [17]. In a timestamp algorithm, computations are assigned timestamps when
they are started [48]. A computation is aborted and restarted if it tries to write an
object that had already been read by another computation with a larger timestamp. If
a computation with a timestamp t tries to read an object, it is delayed until the
computation that_has the largest, yet smaller than t, timestamp among all the
computations that had written that object is committed.

When long computations are executed, neither type of algorithm results in a
satisfactory level of concurrency. In the locking algorithm, a long computation
causes other computations that attempt to acquire confiicting locks to be delayed
until it is completed. Worse yet, computations can be deadlocked with one another,
so that one of them has to be aborted. When a deadlock occurs, there is the cost of
detection, which usually involves passing messages among sites [43], and the cost of
restarting the computation. Although there is no empirical data on the frequency of
deadiocks in a system with long computations, one can expect deadiocks to be more
frequent than in a system with only short computations, as locks are heid for longer
periods of time.

The long delays caused by incomplete computations are also possible in a timestamp
algorithm. In addition, a long computation can be aborted due to other computations
with larger timestamps reading the objects that it is going to write. Normally, to make
sure that computations are serialized approximately in the order that they are
invoked, timestamps are assigned from real-time clocks. Consequently, a
computation becomes more likely to be aborted when it gets longer, because more
computations are started While it is being executed.
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The following example illustrates the concurrency problem. Consider a personal
calendar application that consists of many personal calendars, each owned by a
different user. Each user can read his own calendar (read_calendar), reserve a time
slot in his calendar (mark), and un-reserve a time slot (delete). Read_calendar returns
a list of slots, some of which are reserved by previous mark operations. The mark
operation can return okay or slot filled depending on whether the proposed slot has
already been reserved. Delete un-reserves a slot and returns okay if the user is
permitted to do so. Otherwise cannot.delete is returned. Al of these operations,
except read_calendar, require updating a calendar. On top of these operations, the
calendar application can construct computations that set up a meeting among
several calendars (set.up meeting), o} computations that cancel a meeting
(cancel_meeting). For example, set.up meeting would invoke a mark operation at
each of the calendars involved. 7’

A word of terminology is needed before we proceed with the example. - In this thesis,
a computation is modelled as a wqueqcé of operations on some objects. It shouid
be emphasized that these objects are abstract objects supporting abstract
operations, such as the calendar object descnbed abpve. A simpliﬁed view of the
- system is td regard each operation, such as a mark operation, as relatively short,
while a computation, such as a set up meeting computation, spends most of its time
'delivering messages across a network to invoke operations.

A computation that involves muitiple calendars may span a long period of time
because some of the computers involved may be disconnected from the system
either physically (because they are portable) or functionally (because they are not
running the calendar software). Set up_meeting and cancel meeting computations
belong to this category.

Obviously, if each calendar object is implemented with a single read/write lock, the
level of concurrency would be unacceptably low. For example, it is unacceptable to
render all the calendars of a meeting's participants inaccessibie until a disconnected
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participant is reconnected to complete a setup.meeting computation. The
timestamp algorithm has similar problems. We will omit it in the discussion below
unless it offers interesting alternatives to the locking algorithm.

Concurrency can be increased by dividing a calendar into slots and associating a
read/write lock with each slot. However, the concurrency of the implementation may
still be unacceptably low. For example, consider the situation in which the owner of a
calendar is trying to read his calendar when the calendar is the participant of an
incomplete set_up_ mesting computation. Following the read/write lock algorithm, the
read calendar operation will be delayed until the set.up meeting computation is
completed. This is clearly unacceptable.

One may argue that a timestamp algorithm offers a Solution in this situation. By
choosing a smaller timestamp for the computation that invokes read_calendar than
that of the set.up_ meeting computation, the read calendar operation can return the
state of the calendar before the set_.up meeting computation is executed. However,
this solution is not without its problems. Suppose the owner of the calendar decides
to reserve the slot occupied by the set.up meeting computation for some other
-purpose. The request cannot be accepted because the siot had already been
promised to the set.up_meeting computation, albeit tentatively!. On the other hand,
the request cannot be delayed or rejected either because an inconsistent picture will
. be presented: by observing the state of the calendar before the setup meeting
computation is executed, the user is led to believe that the slot is empty and expects
the request to readily succeed.

One may consider this example as an argument against having long atomic
computations. Arguing intuitively, we cannot expect an implementation to hide the

pepending on how different sites of a distributed computation decide whether the computation
should be committed or aborted, a site may be able to abort an incomplete computation unilaterally [17].
However, thers is also a window of vulnerability in which such unilateral aborts are not allowed. This
window can span a long period of time if communication delays are long. in any case, it is rather
counterproductive to abort any incomplete set up meeting computations whenever a calendar is read.
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fact that there are multiple users using the system in substantially overiapped periods
of time. Hence, atomicity may have to be replaced with some other correctness
criterion. One of the contributions of this thesis is to show how atomicity can be
employed even with long computations. Section 1.3 will describe how atomicity E:an
be used in conjunction with non-determinism to solve the concurrency probiem.
Since atomicity is not abandoned, the simplicity offered by atomicity is preserved.

In conclusion, the concurrency problem is caused by the uncertainty of whether an
incomplete computation would eventually commit, and also the requirement that
computations shouild appear to execute serially when in fact they are invoked
concurrently. The problem is more serious in a system with long computations
because long computations take a long time to complete and overiap substantially.

1.2.2 Resilience Problem

In addition to the concurrency problem, one also needs to deal with a resilience
problem in implementing long atomic computations. For a system with long
computations, the failure atomicity requirement is both a biessing and a curse. On
the one hand, the increased likelihood that a long computation would encounter
some transient failure’ heightens our need for recovery mechanisms. Failure
atomicity provides a simple interface to the application users because a computation
is executed either in entirety or not at all. On the other hand, satisfying failure
atomicity requires aborting computations interrupted by transient failures unless
sufficient intermediate state of the computations has been saved. Some systems
preserve the intermediate state of a computation through the use of replicated
processors and memories [3, 13]. Howevér. these systems require a degree of
replication that may be too expensive for many applications. ‘

When a long computation is aborted, potentially much time and work can be wasted.
The decomposition of a computation into a nested tree of actions [40, 48] provides a

2Sources of transient failure inciude site crashes and deadiocks.
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partial solution: an action can be aborted without undoing the effects of its sibling
and ancestor actions. it is inadequate since actions near the top of the tree are‘still
vuinerable. Transient failures that happen while these actions are waiting for their
descendant actions to complete can cause most of the action tree to be aborted. For
example, a set.up_meeting computation can be implemented with a parent action at
the originator of the meeting,‘ which creates a child action at each of the participant
calendars. Although the computation is insulated from transient failures at the
participants, it is still vulnerable to failures at the originator site. We will describe the
nested acti_on model in greater detail in Chapter 2.

1.3 Contributions and Solutions

Collectively, our contributions can be viewed as an argument for the feasibility of
long atomic computations. More specifically, they can be viewed as solutions to the
concurrency and resilience problems. We will start with an enumeration of our major
contributions, then we will give a more detailed summary of the solutions presented
in this thesis.

There are four major contributions in this thesis:

1. We show that an application can trade off functionality for more
concurrency. By functionality we refer to the behavior of the application
when computations are executed serially in an environment without
failures. Our approach, like other proposals [1, 25, 38, 50, 51], uses
application semantics to increase concurrency. However, our approach,
similar to0[33], goes a step further and raises the possibility of
"decreasing” functionality to increase concurrency. The decrease in
functionality is achieved by introducing non-determinism. Our
contribution is to show that this approach of decreasing functionality
while maintaining atomicity is as "powerful” as other correctness
definitions that have abandoned atomicity, such as the input consistency
criterion described in [50]. We will show that the exact gain in
concurrency through the use of these other correctness definitions can
be realized through decreasing the functionality of the application. On
this basis, we will claim that our atomicity definition is preferable, since in
comparison it is equally powerful and easier to understand.
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2. Our second contribution is the development of a conflict model that
allows the programmer to determine an approximation of the level of
concurrency achievable with a particular functionality of an application.

- The level of concurrency is expressed as conditions under which
conflicts occur. A conflict is created when an implementation is
uncertain of how computations are serialized or whether a computation
will eventually commit. When conflicts occur, computations are either
delayed or restarted, depending on how the serialization order is
determined. The model is useful in that it abstracts away the details of
how to deal with a conflict and how the serialization order is determined.
For example, the programmer can design the functionality of an
application -without worrying about whether a timestamp or locking
algorithm is used.

3. Our third contribution relates to the study of concurrency control
algorithms, which determine the actions that are taken when conflicts
arise and how a serialization order is determined. Although the
concurrency of an application is significantly influenced by its
functionality, we argue that the concurrency control algorithm still has an
effect on the overall level of concurrency of an implementation. For
example, the cost of a conflict is relatively insignificant if it causes a long
computation to be delayed until the completion of a short computation.
The same is not true if the situation is reversed. Our contribution lies in
the design of novel concurrency control algorithms that can substantially
reduce costly conflicts under certain conditions.

4. Finally, this thesis also discusses how applications can be implemented
such that the concurrency of the implementations would improve with
the relaxation of the application functionality. Our contribution is the
design of a programming interface that allows application semantics to
be utilized without exposing the concurrency control algorithm
underneath. Our programming interface allows a programmer to write
programs for systems using different concurrency control aigorithms
without having to be familiar with all of the algorithms. The programs are
also portable so that no modifications are necessary when the underlying
concurrency control algorithm is changed.

Having enumerated the major contributions, we now proceed to give a more detailed
description of the solutions to the concurrency and resiliencé'problem prOpbsed in
this thesis.



1.3.1 Functionality - Concurrency Trade-Off

Consider the read_calendar operation discussed in section 1.2 again. Although we
have described the concurrency problem using the locking and timestamp
algorithms, the problem lies in fact in the functionality of the operation. The problem
exists regardiess of how atomicity is implemented. The functionality of the
read calendar operation that we described in section 1.2 is to present an up-to-date
view of the state of a calendar. In addition, we also require the view to be accurate
such that it reflects only committed computations. This is clearly unachievable given
that a set up_meeting computation had visited the calendar and the calendar has no
knowledge as to whether the computation will be committed eventually. An
implementation must either risk presenting an inaccurate view or choose an outdated

one.

The solution that we propose in this thesis is not to abandon atomicity, but rather, to
change the functionality of the read calendar operation. For example, one can
incorporate non-determinism in the functionality of the read calendar operation such
that the set of reserved slots in the list of slots returned is required to be only a
superset of the set of reserved slots in the accurate view. By allowing non-
determinism in the result returned by read_calendar, read calendar does not have to
be delayed until all incomplete setup meeting computations are completed.
Read_calendar can simply retumn all the slots reserved by incomplete or committed
computations as reserved. The result returned by read_calendar is acceptable even if
some of the incomplete computations turn out to be aborted later. The semantics of
read_calendar does not require the result to contain only committed slots. We will
~ define atomicity such that it allows a non-deterministic functionality of an application
to be incorporated in the definition. Liskov et al. proposed the same solution in [33].

Our example can also illustrate why atomicity, coupled with the functionality of the
applications, is as powerful as some other correctness definitions. For exampile,
consider an alternative in which set.up_meeting is implemented as a collection of
atomic computations [15], one at each participant calendar of the meeting. If
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set up_meeting is to be abandyoned, compensating atomic computations can be
executed at each of the participants already visited. Concurrency is not a problem in
this implementation because each of the afomic computations is short. Interestingly,
the behavior of this implementation is the same as the one with the relaxed
functionality of read.calendar described above. Because setup meeting is
implemented as a collection of atomic computations, the atomic computation that
executes read_calendar can be serialized between the atomic computation that
reserves the slot for the meeting and a later compensating atomic computation. The
result returned by read calendar is just as up-to-date and tentative as that implied by
the relaxed functionality. The difference is that our approach provides an abstract
specification of the behavior of the implementation, defined by atomicity and the
relaxed functionality of the application. The abstract specification allows the users of
the application to understand the behavior of the implementation more easily.

1.3.2 implementation Paradigms

Relaxing the functionality of the application by itself is not sufficient to solve the
concurrency problem. For example, if an implementation of the calendar application
' uses read/write locks, relaxing the functionality of read calendar does not change
the fact that a read_calendar operation trying to acquire the read lock would still be
delayed by a set up_meeting computation that is holding a write lock. In this thesis,
we are also interested in how an application can be implemented such that the
relaxed functionality of an application can be utiﬁzed. To provide a summary of our
programming paradigms, we will describe how System R, a relational database
management system that supports atomic computations [18], increases its
concurrency with the semantics of its index objects. We will draw analogies between
System R’s approach and our paradigms.

There are two levels of objects in System R. At the upper level, there are ASS
objects, such as an index to a relation. At the lower level, there are page objects.
Invoking an operation on an index object invoives accessing one or more page



objects. Accesses to page objects are synchronized with page locks, which can be
viewed as read/write locks of the page objects. Because a page object that
implements an index object may be accessed by many concurrent computations,
locking a page for the entire duration of a computation is unacceptable. To increase
concurrency, page locks are released at the end of an operation on an index object,
instead of at the end of a computation. To preserve atomicity, an additional level of
"logical locking” is implemented. Information about an index operation is recorded
when the operation is executed. By examining the history of past index operations,
"conflicting™ index operations th»at may lead to non-atomic behavior, such as
inserting and reading from the same key value, are delayed. Furthermore, because
the relevant page locks have been released, aborting an index operation cannot be
achieved by restoring the previous contents of the modified pages. Rather, a logical
undo operation is invoked during recovery.

Our approach to implementing atomicity is similar to System R’s in many ways.
. Moreover, we are interested in the following questions:

1. Can System R's approach of utilizing the semantics of an index object be
applied to other kinds of application-level objects? in particular, can the
programs that perform the "logical" synchronization and recovery be
made easier to write and understand by following a general
implementation paradigm?

2. Can a concurrency control algorithm akin to a timestamp algorithm, or
some other hybrid algorithms [7], substitute for the locking protocol used
in the page lock level or the logical locking level or both? Can a
programming interface be designed such that an application
programimer is not aware of the concurrency control algorithms used in
the system implementation? :

The rest of this section gives a summary of our answers to these questions.



1.3.2.1 Level Atomicity
Similar to System R’s approach of implementing atomicity, ours also divides objects
into multiple levels. This division is more than just a division of levels of abstraction. |
As will be described in this section, the division is a partitioning of the
synchronization and recovery code of an implementation. For simplicity’s sake, we
will limit the discussion in this thesis to systems with only two levels. An object in the
. higher level is implemented using the objects in the lower level. For example, an
index object is implemented using page objects.

To simplify the programs that access the higher-level objects, all the operations on
the objects in the higher level are made to appear instantaneous to one another. For
example, because of the page locks acquired by an index operation, index
operations appear to be instantaneous to one another even though an index
operation may access more than one page object. The logical locking in System R is
simplified because index operations can be treated as instantaneous. The atomicity
concept can be applied again to present this image of instantaneity. in other words,
there are two kinds of atomic computations in our implementations. The first kind of
atomic computations are the computations that we have been discussing in this
chapter. They access the higher-level objects and can last a long time. In System R,
they may be queries or updates to the database. The second kind of atomic
computations are the computations used to implement the operations on the higher-
level objects. They make the operations on the higher-level objects appear
instantaneous and simpiify the programming of the first kind of atomic computations.
They are probébly short. In System R, they last for the duration of an index
- operation. To distinguish the two kinds of atomic computations, we call the first kind
globally atomic computations and the second locally atomic computations because
we expect in most applications the second kind will execute within a single site.
Figure 1-1 describes this paradigm of implementing globally atomic computations
with locally atomic computations.

The locally atomic computations are atomic in the sense that they make operations
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Figure 1-1:A Globally Atomic Computation Implemented with
Locally Atomic Computations

on a higher-level object appear to be instantaneous to one another. On the other
hand, they are not globally atomic in the sense that after one of these locally atomic
computations (e.g., al1 in figure 1-1) is completed, its effects can be observed by
other locally atomic computations even though the globally atomic computation that
invokes it (e.g., a in figure 1-1) is not yet committed. For example, by releasing page
locks at the end of an index operation o, changes made by o on the page objects can
be observed by other index operations even when the globally atomic computation
that invoked o is not yet committed. | '



Using the calendar example,l each mark operation in a long globally atomic
set.up meeting cbmputation can be executed as a short locally atomic computation.
Obviously, we need the equivalent of the logical locks in System R to make sure that
the collection of short locally atomic computations would appear to be a long globally
atomic computation. For example, a read calendar oberation must be prevented
from observing the eftects of a mark operation if the result returned by read__calendar
is supposed to be accurate. This is because the set up_meeting computation that
~ invoked the mark operations may be aborted later. The subject of logical locking will
be discussed in the next section.

By implementing operations on a higher-level object with locally atomic
computations, the programs that invoke these operations can treat them as
instantaneous regardiess of the compiexity of their implementations. The complexity
of synchronization and recovery is reduced by dividing theni into two levels. For
example, synchronization is divided between the logical locks and the page locks in
System R. In our calendar example, a read calendar operation would never observe
the state of a calendar with partially executed mark operations. We call this idea of
implementing long globally atomic computations with .short locally atomic
computations level atomicity. A similar idea has been presented by Beeri in [5] and
Moss et al. in [42] although their work is not motivated by long atomic computations.
The difference between our work and theirs lies in the different approaches used to
implement logical locking.

1.3.2.2 Conflict Model
In this section we briefly describe our solutions to the following two questions:
1. How can the logical locking in System R be extended to different kinds of
abstract objects? ’
2. How can logical locking be extended to cover "Iogical timestamping?”

To answer these questions, we will generalize from the concurrency control
algorithms synchronizing objects with only read/write operations. Examining the



timestamp and locking algorithms, we can identify three common components of
these algorithms:

1. Determining how computations are serialized. It is determined by the
order in which computations commit in a locking algorithm, and by the
timestamp order in a timestamp algorithm.

2. Determining when a "conflict" arises. For example, in a locking
algorithm, a conflict arises for a read operation when it tries to acquire a
read lock and there is another incomplete computation holding a write
lock. In a timestamp algorithm, a conflict arises for a write operation
when there are previously executed read operations invoked by other
computations with larger timestamps.

3. Determining the action to take when a conflict arises. In a locking
algorithm, operations are delayed. In a timestamp algorithm, operations
are either restarted or delayed.

Programming the logical locking needed for any abstract object can follow the
pattern above. First, determining how computations are serialized can be achieved
with the following:

1. a concurrency control algorithm similar to the locking and timestamp
algorithms, ' : '

2.a programming interface from which an object implementation can
determine the serialization order of the computations that had invoked
operations on the object. ‘

Second, when conflicts are created is application-dependent and depends on the -
functionality of an object. For example, whether a read_calendar operation creates a
confiict depends on its functionality and, if it is required to return an accurate view of
the calendar, whether there are incomplete set up_meeting computations that may be
serialized before it. In addition to capturing the serialization order, the programming
interface that we described above should also capture the history of previously
invoked operations and the status (e.g., incomplete, committed) of the computations
that invoked them. In the next section we will describe such a _ programming
interface. it allows an object implementation to express the conditions under which a
confiict arises.



These conditions are expressed in such a way that they are insensitive to whether a
locking or timestamp algorithm, or some other concurrency control algorithm, is
used to determine the serialization order. For example, the condition under which a
conflict arises for a write operation on a read/write object can be expressed as
follows: previously executed read operations invoked by other computations may be
serialized after this computation. '

With a locking algorithm, this condition translates into the following condition: read
locks are held by other computations. With a timestamp algorithm, the equivalent
condition is: previously executed read operations invoked by other computations
have larger timestamps. Similarly, the condition under which a conflict arises for a
read operation is that there are previously executed write operations invoked by
other computations that are not committed or aborted and may be serialized before
this computation. Notice that we have hidden underneath these conditions the
choice of how to determine the serialization order. '

We will describe a process in which these conflict conditions can be systematically
derived from the functionality of an abstract object. The conflict conditions provide
an approximation of the level of concurrency that can be achieved with a certain
functionality.

Finally, the action that needs to be taken when a conflict arises depends on how the
serialization order is determined. For example, some aigorithms require that an
operation be delayed whereas other algorithms require the computation that creates
a conflict to be restarted. Similar to the conflict conditions, these actions can be
expressed without exposing the underlying concurrency control algorithm.

1.3.2.3 Programming Interface

To implement the conflict model that we have described above, we provide a
programming interface that is characterized by the use of history objects. A history
object captures the history of operations that had been executed in an abstract



object. Queries can be directed to the history object to determine whether a conflict
condition is met. The interface of the history objects will make the underlying
concurrency control algorithm transparent to the application programmers.

When a conflict arises, some of the actions that can be taken are delaying or

restarting a computation that is involved in the conflict. Again, these actions can be

made transparent to the programmer and expressed in the programming interface as
‘a generic resolve conflict statement.

We will also discuss how recovery can be performed in our programming interface.
For example, if the execution of an operation changes only the state of a history
object, abérting a computation can be achieved by simply undoing the changes in
the history object. This is a simple action and can be automated easily.

1.3.2.4 Concurrency Control Algorithms

Aithough we have provided a programming interface so that the programmer is
unaware of the underlying control concurrency algorithm, the system implementation
has to make a choice among the available options. The system implementation
should also provide the necessary translation from the programming interface to the
option chosen.

. We have argued that in some applications the concurrency problem can only be
solved by changing the functionality of the application. it remains to be seen whether
the choice of the concurrency control algorithm affects the concurrency of a system
with long atomic computations significantly. We will argue that in some cases it does
make a difference. We will present some novel algorithms that minimize the
likelihood that costly conflicts will arise. For exampie, the cost of restarting a short
computation is much smaller than restarting a long computation. Consequently, an
algorithm that makes restarting long computations leas likely provides a higher level
of concurrency. - '



1.3.3 Resilience Problem and its Solutions

To increase the resilience of long computations, we propose a checkpoint
mechanism and the use of relay message servers. Each checkpoint specifies some
intermediate state of a computation; the state specified by the last checkpoint will be
restored after a transient failure and the computation will be restarted from that
checkpoint. In addition to limiting the effect of site crashes, checkpoints can also
serve as fire walls to limit the roliback due to deadlocks. Relay message servers
provide buffering and reliability when the network partitions frequently. Some other
systems [10, 19] also use reliable communication primitives to simplify the
implementation of distributed atomic computations. The relay message service in
this thesis is easier to implement because it does not provide any guarantees on the
order that messages are delivered. |

1.4 Roadmap :

Chapter 2 describes our model of system hardware and assumptions. In particular,
we do not assume a reliable communication network in which messages are not lost
and are delivered in a bounded time. We believe that implementing such a network is
~ prohibitively expensive and any upper bounds on delivery times would be so large as
to be useless. The hardware mode! s followed by a model of computation. Chapter
2 concludes with a more careful definition of atomicity.

Chapter 3 describes our conflict model and how functionality can be traded off for
concurrency. -Chapter 4 describes our programming paradigms and presents
examples of application programs. Chapter 5§ compares concurrency control
algorithms and argues that some algorithms would have better performance with
certain types of applications. We will also present two novel algorithms: a
hierarchical algorithm and a time-range algorithm. These algorithms minimize the
occurrences of costly conflicts under certain conditions. Chapter 6 shows that
atomicity is as powerful as some other correctness definitions [S0, 38] in which
atomicity is abandoned and replaced with explicit deacriptions of how computations
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can interleave. In Chapter 7 we turn our attention to the resilience problem of long
computations. We will describe a checkpoint' mechanism and the use of relay
message servers to buffer messages. Chapter 8 is the conclusion.

1.5 Related Work

in this section, we compare our work with related work on concurrency control and
resilient computing. In our comparison of concurrency control, we focus on other
systems that use application semantics to improve concurrency. Much work has
been done in this area. Many proposais [e.g., 23, 24, 25, 5, 8] do not consider
recovery issues and will not be covered in this section. Comparison with related work
can also be found in the rest of this thesis as we describe more details of our

proposal.

1.5.1 Predicate Locks

Eswaran et al. [14] describe the use of predicate locks for a relational database
management system. An operation must acquire a predicate lock before it can
proceed. Two predicate locks conflict if a tuple in a relation satisfies both predicates.
Other than assuming a locking algorithm, the predicate locks differ from our conflict
conditions in that the unit of concurrency is limited to a tuple. For example, using
predicate locks does not solve the concurrency problem of our calendar application
if each slot is implemented as a tuple. There is also no obviousv\}ay in which a slot
can be broken into smallor unité to increase concurrency.

1.5.2 Schwarz’s Thesis |

Schwarz [50] defines correctness as the acyclicity of computations with respect to a

set of dependency relations. A dependency between two computations is formed if

they each execute an operation at the same object. Correctness requires that the

dependency graph be acyclic. The dependency reiations are parameterized by the

type of the operations invoked and the value of the arguments. Dependency
/

31



relations are “insignificant” and ignored in the dependency graph if the two
operations involved in the dependency commute. Serializability is viewed as a
special case in a range of possible correctness definitions with only the insignificant
dependency relations ignored. Less restrictive _correctness definitions can be
obtained by leaving out "significant" dependency relations in the dependency graph.

The limitation of this approach is that the commutativity of two operations depends
on many factors usually. It depends not only on the types of the operations and their
arguments, but also on the history of operations invoked previously and the resuits
returned by operations. For example, whether an operation to withdraw money from
a bank account commutes with a previous withdraw operation depends on the
balance of the account and the responses to these withdraw operations
(insufticient funds or okay). Whether an operation can proceed cannot in general be
determined by pairwise dependencies with previously invoked operations. In other
words, the limitation of Schwarz’'s approach is due to a static specification of the set
of dependency relations included in the dependency graph.

1.5.3 Alichin’s Thesis

Alichin [2] describes several different mechanisms to synchronize concurrent
computations. One of them uses locks with user-defined lock modes. This approach
is similar to Schwarz's and suffers from the same limitations. Allchin also suggests
“the use of a history mechanism similar to ours but taliored for a locking algorithm.
Recovery is supported with recoverable objects that return to their initial values when
a computation is aborted. The state of an lmpbmontation has to be carefully
encoded with méoverablo objects. in general, the ohanoesvmade to a recoverabie
object by two computations will be lost if the computation that made the first changes
is aborted. The recovery paradigms discuseed in this thesis are different in that an
application can invoke application-dependent recovery code explicitly. Two different
recovery paradigms will be discussed in this thesis. One of them allows application-
dependent code to be executed to perform state changes when a computation



commits. The other allows application-dependent code to be executed when a
computation aborts. '

1.5.4 Weihl’s Thesis

. Our atomicity definition follows the work of Weihl [55]. Weihl describes two types of

objects called atomic and mutex objects. Mutex objects are in general locked for the
duration of an operation whereas atomic objects are locked until the end of a
computation. Two approaches, implicit and explicit, are suggested for
synchronization and recovery.

in the implicit approach, synchronization is achieved by testing whether an atomic
object was accessed by a still incomplete computation. Presumably the programmer
can set up enough atomic objects to encode the history information needed for
synchronization. For recovery, fhé programmer sets up the atomic objects so that
when a computation aborts, its effects are nullified by the atomic objects reverting to
their previous states. The effects of concurrent computations should not be undone
in the process. In the explicit approach, objects are associated with undo records or

intentions lists constructed explicitly by the programmer. The undo records or

intentions lists can be examined to determine whether an operation can proceed.
When a computation commits or aborts, the undo records or intentions lists are used
to determine the state changes that need to be made.

in the implicit approach, 7it is unclear how other types of concurrency control
algorithms can be employed because the lock testing of atomic objects exposes the
underlying algorithm Although the explicit approach does not exclude using other
concurrency control algorithms, it does not provide an interface that makes the
concurrency control aigorithm transparent.




1.5.5 Garcia-Molina’s Semantic Consistency

Garcia-Molina [38] describes a system in which-computations are divided into steps
and counter-steps. The counter-steps undo the previous steps if the computation is
aborted. Two steps can proceed concurrently if they are "compatible"” according to
the compatibility sets of the computations to which they belong. A compatibility set is
determined by the type of a computation and consists of sets of other types of
computations that can interleave with this type. The limitation of the compatibility
sets is similar to that of the dependency relations in Schwarz's thesis [50]. Since the
compatibility sets are defined statically, there are a large number of applications in
which two computations are defined to be incompatible because they are
incompatible for a small class of situations. It is also unclear how an application
programmer can describe the behavior of an implementation in a high-level abstract'
specification. The compatibility sets and counter-steps are rather impiementation-
- oriented descriptions of the behavior.

1.5.6 Montgomery’s Thesis

Montgomery [39] describes the use of polyvalues to represent the values of data
objects accessed by incompiete computations. Each polyvalue represents the
possible values that the object may take on depending on the outcomes of the
concurrént computations. |t deals with the problem of failure atomicity but not
serializability, because two computations can access two objects in different orders
and both commit.

1.5.7 Gifford’s Persistent Actions

Gifford and Dohahue [15] describe execbting a obmputationas a persistent action. A
persistent action consists of atomic actions and other persistent actions. Atomic
actions in [15] can be equated with the atomic computations in this thesis. The
results returned by the component actions of a persistent action are logged in stable
memory. When a persistent action is interrupted by a site crash, it is restarted from
the beginning. When it invokes a component action that had its result logged, the
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result can be reused instead of calling the component action again. Any non-
idempotent operations, such as reading the time-of-the-day clock, have to be cast as
component actions. The component actions of two persistent actions can interleave

arbitrarily.

In the system described in [15], it is unclear how abstract specifications of the
behavior of persistent actions can be provided. Another difference between our
work and theirs is our emphasis on how application-dependent synchronization and
recovery can be programmed.

Our approach to resilience is also different. Instead of requiring the operations
executed in a persistent action to be either idempotent or cast as a component
action, the operations executed by the atomic computations in this thesis can be
non-deterministic. A careful structuring of idempoient actions is not necessary.
Checkpoints are specified explicitly. Stable memory access is necessary only at
checkpoints instead of whenever a component action retumns.

1.5.8 Sha’s Thesis

Sha [61] describes a system in which data objects are partitioned into atomic data
sets. Consistency constraints in the system cannot span atomic data sets. A
computation is called a compound transaction, which is subdivided into consistency-
' preserving elementary transactions. The elementary transactions are further
subdivided into atomic commit segments, each of which accesses a different atomic
data set. When an atomic commit segment is finished, locks acquired to assure
serializability are released, but write locks are retained to guarantee failure atomicity.
When an elementary transaction is finished, the write locks are released and
recovery is achieved through compensating transactions.

The atomic data sets provide a relatively coarse-grained concurrency control. Two
data objects have to belong to the same atomic data set as long as there is at least
one consistency constraint relating them. Furthermore, Sha's approach does not
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take into consideration the semantics of the consistency constraint itself. Weakening
a constraint does not increase the concurrency of a system unless the data objects
can be divided into smaller atomic data sets as a resuit.

To increase the resilience of a compound transaction, Sha suggests storing the
values of local variables in stable memory at the end of each atomic commit segment.
Our approach is different in that a computation can save a portion of its local state
selectively. Also, we describe how a computation can save its state when part of the
state may be acceésed by other computations concurrently.

1.5.9 Miscellaneous

Other researchers [41, 53] have suggested the use of checkpoints to increase the
resilience of a computation. Our work is similar to theirs but is motivated by
computations that experience long communication delays As a result, we
emphasize how a caller of a remote program can checkpoint in response to, or
anticipation of, long communication detays. To avoid restamng the remote program
that is expected to return after a long delay, the calling program should probably
checkpoint at the remote call. Mechanisms are also provided to allow the calling
program and other ancestor programs to checkpoint if an unexpected delay arises. It
seems that in [41, 53] a computation checkpoints the entire state accessible to it,
; whereas we expect programmers to specify explicitly a portion of the computation
state to be preserved.

Another approéch to improving resilience is by replicating procescors and memory,
such as in Tandem and Auragen [3, 13]. These systems consist of a collection of
logical processes. Each logical process is impiemented by two physical processes,
one primary and one secondary, on two processors. in the Auragen system, the
messages received by a logical process are automatically checkpointed by the
system in the memory of a secondary processor. The secondary processor can take
over by re-processing the messages to bring its memory up-to-date. Any non-
deterministic processing, such as reading the time-of-the-day clock, has to be cast as

368



another logical process, communicating with this process through messages. The
application is not aware of the checkpointing except for management duties, such as
choosing the processors for the process pair. In the Tandem system, any state
Change in the primary processor is checkpointed on the secondary processor. Our |
checkpoint mechanism is more economical because it assumes only the availability
of some permanent memory. It is not always possibie to have an available secondary
processor to process the checkpoint messages. A site may be disconnected from
the rest of the system and the cost of a secondary processor may be too high for
some applications.

Replication aiso provides a limited solution to the concurrency problem. By
replicating objects [16, 20], computations can access nearby replicas and long
communication delays can be avoided. Unfortunately, replication has its drawbacks.
First, it is expensive. When objects are replicated, constraints are imposed on
accesses of the objects to ensure consistency. For example, if an object can be read
with any one of the replicas, all replicas have to be written when the object is
updated. There is aiso the cost of extra storage. Second, replication does not
eliminate all long computations. In the read-one-ﬁrita-au rule described above, read
accesses can be serviced readilyvas long as there is a replica nearby. The availabiliiy
of write accesses is decreased, however. The length of a computation that perform
updates is actually increased by replication. ‘

Another limited solution to the concurrency and resilience problems is to abort and
retry a computation when it cannot be completed quickly. This is unacceptable as a
general solution for the following reasons:

- Previous work is wasted.

- If the system does not retry the computation automatically, the user has
to retry manually.

-The computation is likely to take longer to complete than if it were

allowed to suspend and wait for communication problems to disappear.
in fact, when the computation invoives many sites and the network
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partitions frequently or extensively, the computation is unlikely to be
completed without encountering significant communication delay.

- The deferral of the entire computation due to the unavailability of several
sites may be unacceptabie. For instance, it is undesirable to abort a
computation that sets up a meeting among many personal calendars
because a few of them are unavailable. Also, the likelihood of setting up
the meeting successfully decreases with the passage of time. The
proposed meeting, though it may be tentative, is prevented from
appearing in the available calendars. Abandoning the unavailable
participants and declaring the computation compieted is also not the
most appropriate behavior. ' '



Chapter Two

System Model

In this chapter we give an account of a system model to prepare for discussion in
later chapters. We start in section 2.1 by describing the hardware abstractions on
which the distributed systems considered in this thesis are based. In section 2.2, we
present a higher level view of these systems and describe how activities inside them
can be modelied. Then, in section 2.3, we give a definition for atomicity based on the
model. ‘

2.1 Physical Environment and Assumptions

In this dissertation, a distributed system is viewed as a col|ection. of machines
connected by a communication network. We call the machines sites; they can be any
type of machines ranging from portable computers to mainframes or large
multiprocessor machines. Sites can be added to or removed from the system
dynamically. A site can send messages through the network to communicate with
other sites. Messages may be lost, duplicated, delayed for an arbitrary period of time,
or arrive out of order, but garbled messages will be discarded. In particular,
messages can be delayed for an arbitrary period of time because the communicating
sites are partitioned. We assume, however, that partitioned sites will be able to
communicate eventually. We will not attempt to handle Byzantine failures: the sites in
the system are assumed to be cooperative, and redundant bits can be added to
packets in the network to keep the probability of undetected garbled messages

arbitrarily low.

Each site possesses both voiatile and stable memcary3 A site also possesses one or

31115_3 is not strictly necessary. Sites without stable memory can employ remote stable storage
servers.



more fail-stop processors: a processor may crash at any moment, but when it
crashes, it immediately stops all. processing before sending any erroneous messages
or corrupting its site’'s stable memory. The implementation of fail-stop processors
from unreliable hardware is beyond the scope of this thesis. See [49] for a discussion
of the subject. We assume that all crashed sites will recover eventually. When a site
recovers, it loses the content of its volatile memory but presefves that of its stable

memory.

When a site sends a message to another site, it may expect a response. If none
arrives after a long time, it may be because:

- the original message is lost or still on its way, or

- the response message is lost or still on its way, or

- the two sites are partitioned, or '

- the responding site is crashed, or

- the responding site is not ready to send the response.

We do not assume that the sender can differentiate among all these cases.

2.2 Model of Computation

At a higher level than the hardware abstractions described above, a system can be
viewed as a collection of objects. For example, there may be objects controlling
access to personal calendars, and objects acting as printer spoolers. An object may
reside at one site or may be distributed among many sites. Each object supplies
several operation types; for example, a personal calendar object can support a mark
operation and a delete operation. Arguments can be passed when an operation is
invoked. Results can be retumed with an operation. For instaﬁce, a time duration
and a purpose can be passed to mark as arguments. Mark can return either okay or
slot filled. |

Computations are the units of work in a system. Inside a computation, operations on
different objects can be invoked. A computation can span multiple sites.
Computations are atomic and serve as units for synchronization and recovery.



Atomicity, defined more carefully in section 2.3.3, guarantees that the system
behaves as if the computations were executed serially and each computation were

executed either in entirety or not at all.

To provide a finer-grainéd unit in synchronization and recovery, a computation is
decomposed into a nested tree of actions [40, 48, 34]. Actions are divided into
top-level actions and sub-actions. A computation is associated with a single top-level
action. The boundaries of a computation coincide with that of its top-level action. A
top-level action can create sub-actions and sub-actions can in turn create their own
sub-actions. Operations are executed within an action; they must start and finish
within the same action. A parent action can create several sub-actions in parallel,
but the sub-actions will appear to have executed serially within the parent action. A
parent action can also abort a sub-action without abandoning the'work performed in
the rest of itself. An aborted action should appear never to have been executed.

Frequently, a computation creates a sub-action to execute an operation so that the
effects of that operation can be undone by aborting the sub-action. However, an
action should be distinguished from an operation .because the former, like a
computation, is merely a mechanism to define a unit of synchronization and
recovery. It is not associated with any object.

Aborts of an action may be caused by hardware failures such as site crashes or
communication failures. For example, the creator of an action can decide to abort
the action if the latter is executed on a remote site and, due to communication
failures, the creator cannot determine whether the action has terminated. Aborts can
also be initiated by an application program in the absence of hardware failures. For
éxample, an action that executes a mark operation in a set up_meeting computation
can be aborted if too few participants can attend. Depending on the concurrency
control algorithm used in a system, an action can also be aborted because of
deadlocks. When an action is aborted, all its sub-actions are aborted. A
computation is aborted when a top-level action is aborted. in general, we will use the
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same terminology to refer to an action and the operations that are executed within it:
we say an operation is aborted when the action in which it is executed is aborted.

A computation, its nested actions (excluding those aborted), and the operations
executed within these actions are committed when the top-level action terminates
successfully. Committed computations, actions, or operations can not be aborted. A
computation, action, or operation is finalized when it is committed or aborted.
Otherwise it is tentative. The outcome of a computation, action, or operation is
determined when the it is finalized. A nested action is still considered tentative
during the time that it has terminated and the top-level action is still incomplete. See -
figure 2-1 for the possible states that a computation, action, or operation can go
through.

Figure 2-1:States of a Computation/Action/Operation
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2.3 Atomicity

In this section we will give a more careful definition of the behavior of a system in
which computations are atomic. Qur goal is to define atomicity without constraining
the system implementations unnecessarily. The definition will be stated only in terms
of the observable behavior of a distributed system. More importantly, the observabie
behavior of a system will be cast in terms of the behavior of abstract objects with
abstract operations instead df the behavior of objects with read/write operations.
Using abstract objects in our definition allows atomicity to depend on the
functionality of these abstract objects. Our definition is similar to that in [55] except
that ours covers nested actions.

We will describe our atomicity definition in three steps. First, we will describe an”
event model, which models the externally visible activities that happen at the
interface of an abstract object with events. The activities in a distributed system are
modelied with a sequence of events, which we call a history. The events in a history
can be generated by different computations. Since the model does not include the

- details of how an object manipulates its internal state, the implementation of the

object is not constrained to a particular type of implementation.

Second, we will describe how applications can define their functionality by specifying
serial specifications for the objects in a system. These serial specifications are

- similar to the specifications that are usually used to define the semantics of abstract

data types [32]. They specify a set of states that an object can be in, and a set of
operations that may cause a state transition. Pre-conditions on the state can be
attached to the operations.

_ Third, since a computation can be modelied as a sequence of events'. we will define

the behavior of a system which executes computations atomically as a set of atomic
histories. Informally, a history is atomic if it is "equivalent” to an acceptable "serial
history.” The set of acceptable serial histories is defined collectively by the serial
specifications.



Section 2.3.1 describes the event model. Section 2.3.2 illustrates how a serial
specification can be expressed conveniently with a state machine. The state
machines help us capture the semantics of the example applications in later
discussions more succinctly. As introducing a formal specification Ianguagé is
beyond the scope of this thesis, we will use informal notations to represent ther state
machines. Section 2.3.3 defines atomic histories with the event model and the serial
specifications. |

2.3.1 Event Model

In our event model, an event occurs when an operation is invoked or returned, or
when an object is informed of the outcome of an action in which an operation of that
object is executed.? Each event identifies the object and action that are involved with
unique object identifiers and action identifiers. In this thesis, action identifiers are of
the form a.b...m.n where a.b...m is the identifier of the parent action of a.b...m.n.
There are four types of events in the model: |

invoke events: {operation_type name(arguments), Object ID, Action_ID>
The named operation type is invoked at Object ID. Action D is
the unique identifier of the action in which the operation is
executed.

return events: <result_type_name(resuits), Object.ID, Action_ID>
Object D returns the result of an operation invoked previously.

commit events: <commit, Object ID, Action_ID>
Object D is informed that the action |dent|ﬂed by Action:D is

committed.

abort events: <abort, Object_ID, Action_ID>
Object ID is informed that the action identified by Action D is
aborted.

To simplify our notation, we assume that an action can only invoke an operation after
the result to a previous operation‘ is returned. Parallelism within an action can be

“4We will ignore 1/0 operations in our model aithough they are externally visible.
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achieved with parallel sub-actions. The invoke and return events of an action can be

paired in the obvious way.

To illustrate the event model, suppose r1 and r2 are personal calendar objects, each
providing a mark operation to reserve a slot in the calendar. Further suppose an
implementation of set.up_meeting that creates sub-actions to execute the individual
mark operations in the participating personal calendar objects. The following
sequence of events may be observed when a user tries to set up a meeting between
r1 and r2 in a top-level action a.

<mark(time, description_of_ meeting), r1, a.b>
{okay, r1, a.b>
<{mark(time, description_of meeting), r2, a.c>
<okay, r2, a.c>
{commit, r1, a.b>
{commit, r2, a.c>

or the following may happen, where d is another action:

<{mark(time, description_of meeting), r1, a.b>
<okay, r1, a.b>
<mark(time, some_other_business), r2, &>
<okay, r2,d>
{commit, r2, d>
<mark(time, description_ of meeting), r2, a.c>
<{slot filled, r2, a.c>
<abort, rt, a.n’s

Obviously, not every sequence of events is "well-formed." For example, a sequence
of events should not have a commit event and an abort event for the same action.
We will leave a more formal definition of well-formed sequences until Chapter
6 where we construct proofs using the event model. Meanwhile, we assume all the
event sequences are well-formed in the sense that they represent some "reasonabie”
behavior of an implementation and call them histories.

5We have left the outcome of a.c unspecified in this example. However, it makes littie difference at
12.



2.3.2 State Machines o

The serial specification of an abstract object can be defined with a state machine.
Intuitively, a state machine defines the abstract states that the object "passes
through" as individual events are “processed." This section describes how a state
machine is specified and gives an example.

A state machine for an object r; has four components: S, I, T, and N,. S, is the set
of possible states of the state machine. |, is the initial state. T, is the set of
transitions; it corresponds to the set of possible invoke and return évent pairs, since
not only the invoke event, but also the result that has been returned, determine how
the state is to be changed. N, is a partial function which determines how and under
what conditions the state machine would change its state. It takes two inputs: a
"before" state and a transition, and returns an "after” state.

N, can be extended in the following way to accept a sequence of transitions as its
second input:
N:S, X T,* = §,

such that Ni(s, O) = s,

Nl(s, taaqlit) = N(N((s, t ), 1), it Ni(s, ¢ )= L
L,otherwise

where O is the empty sequence,s €S, t €T, teeq €T,*

The partiality of N, can be used to exclude undesirable transition sequences from the

object. In other words, a serial specification can be viewed as defining a set of
acceptable transi'aon sequences.

Suppose r, is an object representing a set of integers. It supports three operations:
insert, delete, and member. Each operation takes an integer as an argument. /nsert
adds the integer to the set and returns okay. Delete deletes the integer from the set if
the integer is in the set and returns okay in any case. Momber returns a boolean
depending on whether the integer is an element of the set. The serial specification of
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this set object is defined in figure 2-2. Abbreviations of the form op_arg_result will be

used for the transition <op(arg), r;, aXresuit, r;, a>.

S,: sets of mtegers

I . @

T insert x okay = <insert(x), r,, a><okay, r,a
delete x okay = <delete(x), r,, a><okay, r a
member x b = <member(x), r,, aXh, r, a)
where x is an integer, b is a boolean

N,(s, insert x okay) = s U {x}
N, (s delete x okay) = s - {x}
N (s, member.x b) = sif (x€s and b = true) or (x¢s and b = false)

Figure 2-2:A State Machine for a Set

In figure 2-2, the object starts with an empty set as its initial state. Three kinds of
transitions are possible. Each kind of transitions changes the state in the obvious
way. Notice that N, is defined only under the condition (x€s and b = true) or (x¢s
and b = false) for the state 8 and the transition member x b. For example, a
sequence of transitions in which an insert_x okay transition is followed immediately
by a member. x false transition would be undefined with respect to N, and hence
unacceptable. '

We have introduced the terms "event” and "transition” in this section. Each of them
denotes something similar to an operation. The execution of an operation can be
viewed as the generation of an invoke event and a return event, or as the generation
of a transition. Since different results can be returned by an operation, different
transitions may be generated by the execution of an operation. For exémple, the
member(x) operation generates either a member xtrue or a member_x false
transition. |
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2.3.3 Atomic Histories _

In this section we will combine the event mode! and serial specifications to define a
set of atomic histories. First, we will define what a serial history is. Second, we will
describe how a set of acceptable serial histories can be defined using the serial
specifications. Finally, we will define when a history is equivalent to a serial history.
An atomic history is a history that is equivalent to an acceptable serial history. Again,
we will rely on informal descriptions and leave a more formal notation until Chapter 6.

A serial history is a history in which events from different actions are not interleaved,
an invoke event is always paired with a return event, and only invoke and return
events exist. The events in a serial history are ordered by a linearization, which can
be defined as a total ordering between every pair of sibling actions [34]. As a special
case, the top-level actions can be considered as sibling actions. An action b is
subsequent to a according to a linearimﬁm L if either b or one of b’s ancestors is
after a or one of a's ancestors in L. An action a is prior to another action b if and
only if b is subsequent to a.8 7 |

Ideally, this prior/subsequent relationship should be extended to the operations
executed in two actions iri the obvious way. However, because more than one
operation may be invoked at the same object by the same action or by actions that
bear an ancestral-descendant relationship, the following more complicated definition
is needed. An operation é is prior to ancother operation b at the same object
according to a serial history sh if:

GWG assume that there are linguistic mechanisms for the application programmer to express the
desired linearization constraints among sibling actions. For example, if b is created after a by the same
parent action, then naturally b should be subsequent to a. in the rest of this thesis, we only consider
linearizations that conform to these constraints. Occasionally, an action will create parallel sub-actions
and the order among them is left unspecified by the application. Any total ordering will be acceptable in
those cases.

Wae do not provide any facility for the users to constrain the order among the top-level actions except
a guarantee of external consistency. If a linearization is externally consistent, a computation a is
ordersd after another computation b if a is begun after b is completed and the completion of b is
communicated to the human user of a either externally (outside the system) or internally (through
messages sent and received by the sites in the system).

48



1. the action in which a is executed is prior to that of b according to the
linearization of sh, or

2. a and b are executed in the same action and a is executed before bin
sh, or

3. the actions that a and b are executed in bear an ancestral-descendant
relationship and a is executed before b in sh.

An operation a is subsequent to another b if and only if b is prior to a. This definition
is well-formed because we assume that an action can execute only one operation at
a time and a parent action cannot invoke any operation while a child action is not

terminated.

We define a serial history sh to be acceptable if, by partitioning sh according to the
object that an event is associated with, each of the sub-histories is an acceptable
transition sequence according to the serial specification of the object associated w:th
_that sub-history. '

Finally, a history h is equivalent to a serial history sh if h is identical to sh after all but
the committed invoke and return events are removed from h and the events left
behind are rearranged according to the linearization of sh. A history is atomic if it is
~ equivalent to an acceptable serial history. A system is correct if it generates only
atomic histories. The linearization of sh is called a’serializatior; order. By excluding
. all but the committed events from a hisiory h, we formalize the requirement on failure

atomicity. By requiring h to be equivalent to a serial history in which events are not
_interleaved, we formalize the requirement on serializability.

Notice that our definition is different from some other atomicity definitions [46, 1]. In
these definitions, an atbmic history is defined as equivalent to a serial history if the
two histories both cause the objects in the histories to reach the same states. Our
definition requires that an atomic history has the same external behavior as a serial
history. Our requirement is sufficient as a user cannot determine the state of an
object except through observing its visible behavior. For example, a bank customer



does not care about the internal state of a bank account object as long as he can
withdraw what is in his account and the balance on a monthly report is not less than
expected. Our definition also has the advantage that we do not 'have to define the
states that the objects will be in after executing a possibly non-serial history.

The major advantage of our atomicity definition, however, lies in its ability to
incorporate serial specifications of abstract objects. If serial specifications are
relaxed to enlarge the set of acceptable serial histories, the set of atomic histories is
also enlarged and the system becomes more concurrent, provided an
implementation can utilize the relaxed semantics. Thus concurrency is increased
without sacrificing the simplicity offered by atomicity.



Chapter Three

Using Applicatipn Semantics

In this chapter we describe the increase of concurrency that can be achieved
through the use of application semantics in an implementation. To avoid being
encumbered by excessive implementation details, we ignore how the implementation
is actually programmed in this chapter. Instead, we assume an idealized
implementation that would illustrate how concurrency can be improved when
compared to an implementation that, say, uses read/write locks and 2-phase locking.
We will describe how the idealized implementation can be approximated by a
practical implementation in Chapter 4. The concurrency level afforded by the
idealized implementation is only an approximation of the actual concurrency level of
a practical implementation. We will argue why it is a useful approximation later in the
chapter.

Our idealized implementation consists of multiple program modules, each
implementing an abstract object. We assume that a program module has encoded a
history of previously invoked operations and that the history information can be
retrieved. Each of the objects’ has an associated queue of requests to invoke
operations at that object. These requests are issued by computations running in the
system. An object executes by taking a request from it8 queue, examining the
request and the history of previous operations, and determining whether a result can
be returned for the requested operation. A resuit can be returned when an object
can guarantee that only atomic histories are generated.

_ If a result can be returned, the request and the resuit will be added to the object’s

7WQ will use the word “object” to refer to the program module implementing the object.
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history. Othen&ise, a conllict is created and we assume that some action will be
taken against the request'or the computation that issues the request. We leave these
actions unspecified for the moment, since our purpose is to evaluate the
concurrency of the implementation, which can be measured by how often a result
can be returned to a request. In an actual implementation, the operation may be
delayed or the computation that invokes the operation may be restarted when a
conflict occurs. Thus, how often a conflict arises is a realistic measure of
concurrency. We assume that an object can process a request instantaneously.
Details such as how the internal state of an object is encoded and how recovery is
performed will be left unspecified. However, we do assume that an object will learn
of the outcomes of computations eventually. |

In order to illustrate how application semantics improves the concurrency of the
idealized implementation, we will describe a conflict model, which is one of the
contributions of this thesis. The conflict model aliows a programmer to determine the
condition under which a conflict is created based on the serial specification of the
" object. We call this condition a conflict condition. The model is useful in that it
abstracts away the details of the concurrency control algorithm underneath. A
conflict condition will remain the same regardiess of whether the abstract objects ina
system use timestamps assighed at the beginning of execution, or the order in which
computations commit, to determine a serialization order. Conflict conditions can
' serve as a guide when serial specifications are designed, so that concurrency can be
traded off against functionality.

In section 3.1 we describe our conflict model. in section 3.2 we use a bank account
object to illustrate how conflict conditions can be derived and how concurrency is
improved when compared to an implementation that uses, say, read/write locks and
2-phase locking. A bank account example is used in this chapter to facilitate
comparison With other work. In section 3.3 we discuss how conflict conditions can
be derived for any abstract object. Because the practical implementations that will
be described in Chapter 4 approximate the idealized implementation closely, the



process of deriving conflict conditions is also helpful to a programmer writing the
practical implementations. In section 3.4 we describe how concurrency can be
increased by relaxing the serial specification of an object. Relaxing the serial
specification of an object makes conflicts less likely to arise. Using sevéral
examples, we will illustrate that there are interesting classes of applications in which
the trade-off between concurrency and functionality can be usefully employed. In
Chapter 6 we will show that this approach of increasing concurrency is as powerful
as other correctness definitions that abandon atomicity [50, 38].

3.1 Conflict Model

This section describes our conflict model and defines conflicts more carefully. We
show how the requirement of generating only atomic histories can be translated into

- a requirement of detecting conflicts.

3.1.1 Generating Atomic Histories ,

To ensure that only atomic histories are generated by our idea!izéd implementation,
the objects in the implementation must guarantee that any history generated will be
equivalent to some acceptable serial history. To provide this guarantee, the objects
must agree on a particular serialization order, which, in an actual implementation,
may be determined by the timestamps that are assigned at the beginning of
execution, or by the order in which computations commit_. How this serialization
order is arn'ved_ at in an actual implementation depends on the concurrency control

algorithm and is the subject of Chapter 5. We refer to this serialization order

determined by the concurrency control algorithm as the serialization order of the
system. We assume that this is what is referred to when we speak about the
serialization order among operations.



3.1.2 Guaranteeing ‘Equivalence to Serial Histories

To ensure that the history generated by the implementation is equivalent to an
acceptable serial history defined by the serialization order, each object must ensure |
that the committed events involving itself, after being rearranged according to the
serialization order, will be an acceptable transition sequence according to the
object’s serial specification. More informally, each object must make sure that the
transitions that it generates are part of an acceptable serial history defined by the
serialization order. We say that an object exhibits atomic behavior when this is
satisfied.

For example, consider a bank account object r; with a serial specification described
by the state machine in figure 3-1. To simplify our example, we assume the state of
the bank account contains only its balance, which can be represented with a real
number. The account object has three types of operations: deposit, withdraw, and
read_balance. The first two take a real number as an argument. Deposit increments
the balance by the amount indicated in the argument and returns okay. Withdraw
decrements the balance by the amount indicated in the argument and returns okay if
the balance is large enough to cover the withdkawal. Otherwise it returns
insufficient funds. Read_balance returns the balance.

'SI: oreal numbers

1l : <deposit(x), r,, a><okay, r, @ = deposit x okay
<wnthdraw(x) r,, aXokay, r,, a> = withdraw_x okay
<withdraw(x), r,, aXXinsufticient_funds, r Ty a> = withdraw x_insuf
<read_balanced r, aXx, r, 3> = read.x
where a is an action, is a positive real number.

N.(s, deposit x okay) = 8+ x

N (s, withdraw x okay) = s - x it 8 > x
N (s, withdraw x_insuf) = sifs{x
N(s, readx) =sifs = x

Figure 3-1:A State Machine for a Bank Account Object




Suppose the history depicted in figure 3-2(a) has action a serialized before action b.
Because the transition sequence deposit 40 okay || read_balance_ 60 depicted in
3-2(b) is not a member of the set of acceptable transition sequences defined by the
state machine in 3-1, the history in figure 3-2(a) is not atomic, and hence the bank
account object that generates the history in figure 3-2(a) does not exhibit atomic
behavior.

<deposit(40), r;, a> <deposit(40), r, a>
<okay, r,, &> <okay, r,, &>
<deposit(20), r, c> (read balance(), r), b>
{okay, rp e <60, s b>
<read_balance(), r, b>
<60, r;, b>

<abort, T c>
<commit, Tps b
<commit, M a

(a) (b)
Figure 3-2:A History and a Transition Sequence

3.1.3 Generating Atomic Behavior

To ensure atomic behavior, each of the resuits returned by an object must be valid. A
result is valid if the corresponding transition® céuses a defined state change in the
state machine representing the serial specification of the object, given that the state
- machine starts in a state defined by executing all the committed transitions serialized
before this transition. For example, in the previous bank account example, the resuit
60 is invalid because the state machine has a state of 40 after executing the
committed deposit 40 okay - transition, and the state machine requires a
read_balance x transition to have its result x equal to the current state. Notice that
when an object generates a result to an operation, it must ensure that not only the
result is valid, but that all other results returned to previously invoked operations
should remain valid.

andlmatawmcmapm&mapﬁrdinmwmm
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3.1.4 Generating Valid Results

Obviously, in many cases we need some knowledge of the serialization order to
generate valid results. For example, to return a valid result to a read_bala_nce
operation invoked on a bank account object, we need to determine how the
read balance operation is serialized with respect to previously invoked deposit and
withdraw operations.

In addition to knowing the serialization order, we also need some knowledge of the
outcomes of the operations that have been invoked. For éxampte, knowing the
serialization order between a read balance operation and a deposit operation is not
enough to determine a valid result for read balance; we aiso need to know the
outcome of the deposit operation if the read balance operation is serialized after the
deposit operation. How the knowledge of a computation outcome is disseminated to
the objects that the computation had accessed is determined by a commit protocol.
We will discuss commit protocols in Chapter 5.

In our conflict model, each object is viewed as possessing some knowledge of the
serialization order and the outcorhes of the operations that have been invoked. An
object may not possess complete knowledge because some operations are still
tentative; they may be either aborted or committed later. In fact, a computation can
be finalized already but the objects that it has accessed will not have the knowledge
of its outcome until the outcome is propagated to these objects. In Chapter 5, we will
discuss how the serialization order is detenmned In some algorithms, it is pre-
determined and an obgect always has complete knowiledge of the serialization order
among the operations that have been invoked. In some algorithms the order is
determined dynamically.

When determining whether a valid result can be returned while preserving the validity
of all previous results, an object must be prepared for all the possible combinations
of serialization orders and outcomes of the tentative operations that are consistent
with the local knowledge. Informally, a conflict is created when no result can be
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returned such that it and all previously returned results will be valid under afl
circumstances consistent with the local knowledge of the serialization order and
operation outcomes. For example, a read_balanée operation invoked at a bank
account object may create a conflict because the object lacks the knowledge of the
serialization order between the read_ balance operation and a previously invoked
deposit operation. The serialization order determines the valid balance to return and
there is not a result that will be valid under all circumstances.

3.1.5 Conflicts

A conflict may be created even when an object possesses complete knowledge of the
serialization order and operation outcomes. For exampie, a deposit operation can
create a conflict because the local knowledge dictates that the deposit operation is
serialized before a previously invoked read_balance operation. Unless the deposit
operation is refused, the result returned to the read balance operation may be
invalidated when the deposit operation is committed. '

On the other hand, suppose we have a bank account object with an initial balance of
$100 and the following history of events:

<withdraw(40), r, 2>
<okay, r, &>
{commiit, r, &
<withdraw(30), r, b>
<okay, r, b>

No conflicts would be generated if a withdraw(20) operation were invoked on the
‘account object, since an okay response to the withdraw operation is valid, and the
okay responses to the previous withdraw operations are not invalidated, regardless
of the serialization order and outcomes of the operations.

Notice that whether conflicts are created depends not just on operations that are
tentative or for which the serialization order with respect to the incoming operation is
unknown, but actually on the entire history of events. In the previous example,
conflicts would be created if action a had withdrawn more than $50, since whether
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the incoming withdrawal can succeed would depend on the outcome of b.

Conflicts can also disappear with the execution'of new actions not already in the
history. Suppose action a in the 'example' above had withdrawn more than $50 and a
conflict is created when an action ¢ invokes withdraw(20) at the account object. The
conflict will disappear if another action d executes a deposit operation, commits, is
serialized before ¢, and the amount deposited by d is large enough to cover the
withdrawal by c. |

When a conflict is created, it can be resolved in several ways:

- delay the operation generating the conflict, e.g., 2-phase locking [17];

-restart the computation generating the conflict, e.g., timestamp
algorithm [48]; :

- make an assumption about the serialization order or operation outcomes
and verify the assumption later, e.g., optimistic algorithms [26].

In this chapter, we will not elaborate on how conflicts are resolved. The appropriate
way to resolve a conflict is related to how the serialization order is determined. We
will discuss the subject in Chapter 5 when we discuss concurrency control
algorithms. Suffice it to say that resolving a conflict represents a potentially high
cost.

3.1.6 Conclusion 7

" In this section we have described how the requirement of generating only atomic
histories can be translated into the requirement of detecting conflicts. The conflict
conditions that can be derived from serial specifications are a useful indication of the
level of concurrency of our idealized implementation because they abstract away the
details of the concurrency control algorithm underneath. The conflict conditions are
a good approximation of an actual implémentatlon's concurrency if the actual
implementation approximates closely the assumptions of our idealized
implementation. For exampile, for a long computation whose length is attributed to
communication delays, regarding the execution of an operation in the computation
as ingtantaneous is a close approximation to the actual execution. Our model of the
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structure of the idealized implementation is also sufficiently general so that for any
implementation that conforms to this structure, the conflict conditions can be
regarded as an indication of the upper bound on an implementation’s Vconcurrency
level. Executing an operation non-instantaneously would only decréase

concurrency.

3.2 An Example
In this section we will use the bank account object defined in figure 3-1 to show the
following:

1. How conflict conditions can be derived from a serial specification.

2. How the semantics of an application can be used to increase
concurrency over an implementation that uses, say, read/write locks and
2-phase locking.

3.2.1 Read_Balance Operations

Consider when the operation read balance is invoked on the bank account object r,
defined in figure 3-1; Since the read_balance_x transition does not mutate the state
of r, the results returned to the previously invoked operations will remain valid
regardless of the outcome and the serialization order of read balance. However,
read balance itself returns a result whose validity depends on the serialization order
and outcomes of other operations. |

Among the set of transitions, only deposit_ x okay and withdraw_x okay change
the balance. Hence, a conflict is created if the foﬂoviing condition is met:

1. there are deposit or successful withdraw bperations (ones that had
returned okay) that are tentative and may be serialized before the
read _balance operation, or

2. there are committed deposit or successful withdraw operations that may
be serialized either before or after the read_balance operation,

In other words, the account object can not return any number to the read_balance
operation that is guaranteed to be valid under all possible situations. Notice that we
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have used the terms "may be serialized before/after" and "tentative” in the conflict
condition above. It reflects the view in our conflict model that an objeCt possess
some knowledge of the serialization order and operation outcomes. in the following
discussions, we will use the terms "potentially prior" and "potentially subsequent as
abbreviations for "may be serialized before"” and "may be serialized after”
respectively. The terms "definitely prior" and "definitely subsequent” are
abbreviations for "definitely serialized before" and "definitely serialized after”
respectively.

There is a remote possibility thaf some tentative deposit and withdraw operations
may cancel one another’s effects, and because they are executed by the same action
or by sibling actions in the same computation, they are constrained to commit or
abort together. In those cases, no conflicts are created although there are tentative
deposit and withdraw operations. We will ignore such possibilities because it is
rather unlikely for a computation to deposit as well as withdraw from the same

account.

Suppose we have an implementation that uses a read/write lock on the balance such
that both deposit and withdraw would first acquire a read lock and then a write lock,
and read_ balance would acquire a read lock only. For the read balance operation,
there is no increase in concurrency with the use of the semantics of the account
object. The situations under which conflicts are created for this operation are exactly
the same in our idealized implementation and the implementation that uses a
read/write lock. |

3.2.2 Withdraw Operations

The withdraw operations can illustrate how concurrency is increased with the use of
application semantics. Consider when the operation withdraw(x) is invoked at r,.
The result of the operation is either okay or insufficient funds, depending on whether
x is less than the balance. Since an insufficient funds reply does not imply a change
to the abstract state, no previous results returned will be invalidated. However,
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because an insufficient funds febly implies that the balance is less than x, the reply
can be returned only when the highest possible balance under the possible
combinations of serialization orders and outcomes of the operations that may be
serialized before the withdraw operation is less than x. This highest possible balance
can be caiculated by adding all the unaborted and potentially prior deposits to the
initial balance and subtracting all the committed and definitely prior withdrawals.

Briefly, as long as the balance is so low that there would not be sufficient funds under
any circumstances, Insufficient_funds can be returned, even if there may be tentative
update operations or update operations that may be serialized either before or after
the withdraw oberation. Consequently, some conflicts that would be created had a
read/write semantics been imposed are avoided. Although this is not the most
significant improvement in concurrency over an implementation using read/write
locks, it does illustrate the use of the history of previous invocations, the current
operation’s argument values and results, and the types of operations in determining
whether conflicts are created. This is in contrast to some other approaches that rely
only on the operation type and argument values to determine whether conflicts are
created [50].

A more significant improvement in concurrency happens when there is a large
balance. Again consider the withdraw operation but this time consider an okay reply.
. Since an okay reply implies a decrement of the balance, the commitment of this
operation may invalidate the results of the following kinds of operations: '

1. a potentially subsequent read balance operation, or
2. a potentially subsequent and successful withdraw operation®.

To avoid creating any confiicts, there must be no operations of either kind if an okay
reply is to be returned. The number of cohﬂicts can be further reduced if we
recognize that potentially subsequent withdraw(x’) operations are permissible as
long as there is enough money to cover all the withdrawals. Or, more algorithmically,

9Themuttofan unsuccessful withdraw operation will not be invalidated because the newly arrived
withdraw operation will never increase the balance.
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when the lowest balance under the possible combinations of serialization orders and
outcomes of the operations potentially prior to the withdraw(x') operation (with this -
operation included) is at least x'.

Again, in addition to preserving the validity of the previous results, we must also make
sure that the okay reply is valid before returning it to the withdraw operation.
Because an okay reply implies that the balance is at least x, it can be returned only
when the lowest balance under the possible combinations of serialization orders and
outcomes of the operations potentially prior to the withdraw operation is at least x.

The discussion above shows that a withdraw operation will not create any conflicts
as long as the balance is either large enough to accept the withdrawal or small
enough to refuse the withdrawal, despite any uncertainty created by concurrent
updates. When compared to an implementation that uses read/write locks, it
represents a significant improvement on concurrency.

The withdraw operation is representative of a large class of operations that can avoid
the creation of confilicts most, but not all, of the time. Whether a conflict is actually
created depends on the state of the object. The state of the object includes not only
what other concurrent operations are being executed, but also all previous
committed operations.

Wae will not discuss the conflicts that will be generated by a deposit operation, except
to note that because there is only one possible result (okay), which is defined for all
input states, thfs result is always valid. However, deposit may stili create conflicts
because it mutates the state of the account and so it May affect the validity of other
results. In Chapter 4 we will discuss how this bank account object may be
implemented practically. Two different implerﬁentations are shown in figures 4-4 and
45.



3.3 Deriving Conflict Conditions

In the previous section we illustrated, with the bank account object example, how
conflict conditions can be derived. In this section we will generalize from the bank
account example, and describe the process by which conflict conditions can be
derived from the serial specification of any abstract object. As will be seen in
Chapter 4, deriving these conflict conditions is an essential component of an actual
implementation. /

In general, a conflict condition depends on the type of a transition. For example,
different conditions are required for a withdraw operation to reply with an okay or
insufficient funds response. A conflict is created for an operation if every possible
transition of that operation creates a conflict. For each transition, the process of
deriving the conflict condition can be expressed conceptually as follows:

1. Based on how the abstract state is mutated by the transition, determine
the set of potentially subsequent operations in the history of the object
whose results may be invalidated. For a transition that only observes the
abstract state, such as a withdraw _x_insuf transition, the set is empty.
For a withdraw x okay transition, the set includes any potentially
subsequent read. balance operations and other successful withdraw
operations.

2. Derive the condition ¢1 under which the results of the set of operations
discussed in item 1, if the set is not empty, will remain valid with every
possible combination of serialization order and outcomes of their
potentially prior operations. For exampie, in order to return okay to a
withdraw(x) operation, there must not be any potentially subsequent
read balance operations, and, if there are any potentially subsequent
successful withdraw(x’) operations, the lowest balance under the
possible combinations of serialization order and outcomes of the
operations potentially prior to the withdraw(x’) operation (with this
withdrawal included) shouid be at least x’.

3.Based on how the abstract state is mutated by other operations,
determine the set of potentially prior operations whose outcomes or
serialization order may affect the result to this transition. For example,
the set is empty for a deposit_ x okay transition because the deposit
operation can only return okay. For a withdraw x_okay transition, the
set includes all deposit and successful withdraw operations that are
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tentative and potentially prior to this transition, or that can be either prior
or subsequent to this transition. :

4. Derive the condition ¢2 under which the result of this transition will
remain valid with every possible combination of serialization order and
outcomes of the set of operations discussed in item 3 (if the set is not
empty). For exampile, in order for an okay reply of a withdraw_x okay
transition to be valid, the lowest balance under the possible
combinations of serialization order and outcomes of the operations
potentially prior to this transition should be at least x. This lowest

" possibie balance can be calculated by assuming that all the potentially
prior tentative deposit operations are either aborted or serialized after
this transition, and all the potentially prior and tentative successful
withdraw operations are committed and serialized before this transition.

5. The result of this transition can be generated without creating any
conflicts if the condition (c1 and ¢2) is satisfied.

The result of following the process above is a conflict condition, ~(c1 and ¢2). The
conflict condition can be used as an indication of the concurrency that can be
achieved with the particular functionality assumed in the process.

The process described above can be simplified considerably when the concurrency
control algorithm is specified. For example, with a timestamp algorithm, there is only
one possible serialization order. It is not possible for an incoming operation to be
both potentially prior and subsequent to another operatidn.

3.4 Increasing Concurrency

in the last two sections we described how confiict conditions can be derived based
on the serial specification of an object and how the semantics of an application can
be used to increase the concurrency of a system. By relaxing a serial specification,
or more precisely, by increasing the set of acceptable transition sequences, conflicts
become less likely to arise and concurrency is increased. The same idea has been
suggested by Liskov and Weihl in [33]. This section uses several examples to
illustrate this trade-off between functionality and concurrency. We hope to convince



the reader of the usefulness of the trade-off. In Chapter 6 we will take a more formal
approach to show the power of our atomicity definition. We will show that our
atomicity definition is at least as powerful as other correctness definitions [50, 38]
that had abandoned atomicity. The same gain in concurrency through the usé of
these correctness definitions can be achieved through trading off functionality in our

atomicity definition.

There are several interesting classes of situations in which the semantics of an
application can be changed to increase concurrency while the new semantics
remains useful. The following list is not intended to be exhaustive, but rather serves
to illustrate some interesting ways in which semantics can be changed.

3.4.1 Reducing Precision of Numerical Resuits

In one class, the precision of a numerical result is reduced to allow for more
concurrency. For example, a bank account object can provide an dperation
lower.bound balance that does not take any argument and returns a value that is a
lower bound for the balance. The following can be added to the state machine in
figure 3-1 on page 54.

T;: <lower_ bound balance(), r;, aXx, r,, a = Ibalance_x
N/(s, Ibalance x) = s ifs2>x -

By returning the lowest balance under all possible combinations of serialization
orders and operation outcomes, the result is valid yet never create any conflicts.
Note that the increase in concurrency is "two-way.” Not only does
lower bound balance never create a conflict, but a deposit operation invoked
afterwards will also avoid creating any conflict due to the possibility that it may be
serialized ‘before the lowerbound:balance operation.'® Aithough the result to
lower_ bound_ balance is not exact, it may be useful when the caller is using it as an

estimate.
1 , it is possible for a withdraw operation invoked afterwards to create a conflict due to the
lower bound balance operation.




Similar operations that increase the concurrency of the account object are
upper_ bound balance, balance_range (which returns the upper and lower bounds),
and approximate balance, which takes a fraction as an argument and returns a value
guaranteed to be within a range of the balance determined by the fraction.

T,: <approximate balance(p), r;, aXx, r, a> = abalance_p_x
N,(s, abalance px) = sifs*(1-p) < x S 8*(1+p)

Consider another example in which an application is implementing a distributed
ticketing agent. A fixed number of tickets is divided among several sites for
availability reasons. Each site can sell tickets from its allotment. Occasionally, a
computation may be started by one of the sites to record the number of tickets left in
other sites and re-distribute the tickets. Suppose we regard each site as a ticket
account, supplying operations identical to thoée of the bank account defined in
figure 3-1. The "balance” of the account represents the numbers of tickets unsold in
the allotment in this site. Re-distributing the tickets would_involve two phases: in the
first phase, read_ balance operatidns are invoked at each of the sites; in the second
phase, based on the values returned by the read balance operations, deposit and
withdraw operations will be invoked at the appropriate sites. The entire computation
can be aborted if one or more of the withdraw operations returns insufficient funds
(more accurately, insufficient tickets).

- One of the problems of this implementation is that the semantics of the read balance
operation may prove to be too restrictive. Tickets are prevented from being sold
while the re-distribution is proceeding because seilling a ticket involves invoking
withdraw(1), which may create a conflict with a potentiaily subsequent read_balance
operation. Concurrency can be improved if the value returned by read_balance is
treated as a hint. Although the withdraw operaﬁons in a re-distribution computation
may find the actual number of tickets available for re-distribution is not the same as
that claimed in the hint, correctness is not compromised. A re-distribution
computation can aiways be aborted. In fact, the two phases of the re-distribution
computation can be separated into two computations.. However, it-may become
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counterproductive if the hint loses too much of its accuracy. A more appropriate
strategy is to keep the two phases in the same computation but use the
approximate balance operation in the first phase to record the tickets left in each site.
Approximate_balance allows other update operations to proceed concurrently. On
the other hand, it sets a limit on the imprecision of the result returned so that in most
cases tickets are re- dustnbuted "reasonably. "

3.4.2 Conditional Opératlons

Another interesting class of situations in which the semantics of an application can
be relaxed to increase concurrency involves "conditional” operations. Consider a
change meeting place operation for the personal calendar object described in
section 1.2.1. The change_meeting place operation takes two arguments, a unique
identifier of a meeting and a new place for the meetmg If it finds the meeting in the
calendar, it changes the place of the meeting and returns okay. Otherwise, it returns
no_such_meeting. A portion of an informal definition of the state machine defining the
serial specification for the calendar object is as foliows:

T;: <change meeting_place(m, p) r, a><okay, r,, &> = change place m p okay
<change meeting_place(m, p), T a>{no_such_meeting, s a
= change_place m_p_none

N,(s, change place m p okay) = s’if s contains the meetingm ands’ = s
except that the place of m is changed top
. N,(s-, change_place_m_p_none) = s if s does not contain the meeting m

A global change meeting place computation invokes a change meetingplace
operation at each of the participants of a meeting. The problem with the semantics of
change_meeting place is that if a global.change_meeting place computation'is started
before the corresponding set up_meeting computation is committed, their operations
may arrive at different calendars in different orders and confiicts may be created.'!

11The motivation for executing the set up meeting and global change meeting place computations

concurrently is that at least those reachable participants can be informed of the piace changs as early

aspoasublo We assume that a participant can cbserve a tentative set up meeting computaﬁon using the
on-deterministic read calendar operations described in Chapter 1.
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The conflicts are created because the result to a change meeting place operation
depends on whether the meeting exists in the calendar. Restarts may be needed to
resolve these conflicts. The problem can be avoided with the semantics of
change_meeting place modified to the following: ' |

T <{change_meeting_ place(m, p), r' a>{okay, T a> = change_place_m_p_ okay
N (s, change_place.m_p okay) = 8’ if s contains the meetingmands = g’
except the place of m is changed top
s if s does not contain the meeting m

The new semantics implies that change_meeting place will changé the meeting place
to the new place if the meeting is in the calendar and return okay. Otherwise, no
changes are made but okay is still returned.

With the new semantics, the mark and change_meeting place operations from two
computations can be executed in different orders in different calendars. No conflicts
will be created. The only problem left is to make sure that set_up_ meeting is serialized
before'global_change_meeting place. It can be accomplished with, for examplé. the
assignment of appropriate timestamps in a timestamp algorithm.

In this example, the change meeting place operation becomes "conditional”
because whether it makes any changes to the state depends on whether the meeting
exists. The reply okay does not indicate one way or another. A similar semantics can
be used for a cancel_meeting operation to reduce confiicts.

A similar but slightly different class of situations can be illustrated by the withdraw
operation in a bank account object. Originally, we have:

N,(s, withdraw x insuf) = s if s <x
However, by changing the specification to:

N,(s, withdraw x insuf) = s

a withdraw operation can return insufficient funds whenever there is a possible
combination of serialization order and operation outcomes that would lead to
insufficient funds for the withdraw operation. Conflicts due to other withdraw or
deposit operations are minimized.



One can argue that a semantics similar to the more relaxed withdraw_x_insuf
transition abové is necessary for a make_reservation operation in an airline
reservation object. The semantics is acbeptable because most computations that
invoke make_reservation operations would probably not expect a reply of
insufficient tickets to indicate that there are “absolutely” no tickets left. An airline
reservation object cannot afford to be blocked for other reservation operations
because a computation that had made a reservation is tentative. A computation may
last an arbitrarily long périod of time, especially when some objects in the system are
unreliable. The application would rather tufh ‘away customers 'when"it is not
absolutely sure that there is a ticket to be soid. 2

3.4.3 Discussion
A trade-oftf between precision and concurrency exists in all these examples.
Normally, if there are no communication problems and all computations are short, it

is probably not worthwhile to sacrifice the precision of the result in exchange for the

concurrency. However, concurrency becomes a much more serious concern in a
system with long atomic computations. The examples illustrate that there are many

_interesting situations in which an application would be willing to exchange the

precision for the extra concurrency.

Our approach of relaxing the semantics of the application is not without problems. -
For instance, an implementation of lower bound balance that always returns zero is a
correct implementation as zero is always a valid result. However, it is not very useful.
To eliminate this type of behavior, we need to impose additional constraints on the
implementation. In this particular example, we need to assert, in addition to tha
requirements in the serial specification, that there must be a serial history sh
consistent with the local knowledge of the account object, such that the resuit
returned by lower bound_ balance is not smaller than the balance generated by

12116 fact that airlines overbook their flights does not change our. arguments since there is a limit on
how much overbooking is allowed.



executing operations in the order of sh. In other words, an implementation should

only return x when x is a "possible” balance.

Similarly, to eliminate uninteresting implementations that return insufficient funds to
a withdraw(x) operation unnecessarily, we assert that there must be a serial history
sh consistent with the local knowledge of the account object, such that x is larger
than the balance generated by executing opefations in the order of sh.

3.5 Summary

In this chapter we described a conflict model, which allows conflict conditions to be
derived from the serial specification of an object. We argued that the conflict
conditions are useful indications of the concurrency level of an implementation of
that_ object due to the masking of the underlying concurrency control algorithms.
Based on the conflict conditions, a programmer can determine the appropriate trade-
off between the functionality and concurrency of an application.



Chapter Four

Implementing Atomic Objects

In the last chapter we focused on the functionality of abstract objects. We described
how the semantics expressed in the sefial specifications of abstract objects can be
used to increase concurrency over an implementation that uses read/write locks and
2-phase locking. We discussed how functionality can be traded off for concurrency.
In this chapter we will describe how abstract objects can be implemented with a
concurrency level approximating that of the idealized implementation in the last

chapter.

Like the idealized implementation described in the last chapter, the implementations
described in this chapter are object-oriented. To guarantee that computations
execute atomically, we ensure that each of the abstract objects accessed by a
computation behaves atomically'®. We call an:object that behaves atomically an
atomic object. The advantage of an object-oriented implementation is its modularity.
When changes are made in the implementation of an atomic object, other program
modules are not affected as long as the serial specification of the object remains
unchanged.

A simple way to implement atomic objects is to build them from smaller atomic
objects. For example, Argus [31] supports atomic records and atomic arrays. These
objects are equipped with read/write locks and follow a 2-phase locking protocol.
Their recoverability is implemented using some logging or shadow mechanisms.
Because these "system-levei” atomic objects provide the necessary synchronization

13Recauthataﬂobioctthat behaves atomically guarantees that the committed events involving itself,
after being rearranged according to the serialization order, will be an acceptable transition sequence
according to the object's serial specification.
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and recovery, the implementation of abstract atomic objects on top of them can
ignore any concurrency or failures in the system. Unfortunately, as we have
illustrated in previous chapters, using these system-level atomic objects fails to take
advantage of the semantics of an application. The resulting concurrency level is too
low for a system with long computations. So in this chapter we will explore how
abstract atomic objects can be implemented from objects that do not mask the
underlying concurrency and failures.

There are three goals in this chapter. First, we will introduce programming
paradigms that allow abstract atomic objects to be constructed easily. These
paradigms should not oniy simplify application programming, but also help the
programmer to convince himself of the correctness of the implementations. The
simplicity of an implementation is an important consideration because subtle
programming errors can be introduced easily, especially when the complexity of an
irhplementation increases with the desire to increase concurrency.

Second, our implementations shouid maximize concurrency while maintaining
reasonable performance in terms of the computing needed to execute an operation.
The performance requirements of our implementations are not as stringent as in
some real-time applications. Comparing long computations and short oomputations,
the former are not as sensitive to increases in execution time as the latter.

Third, the programming interface and programming paradigms used in this chapter
should make the underlying concurrency control algorithm transparent. Either a
timestamp algorithm or a locking algorithm, or maybe some other algorithms, could
be used to determine the serialization order and the actions to take when conflicts
arise. The motivation for this trénsparency is that a programmer can implement
atomic objects without having to learn different concurrency control algorithms.
Ancther motivation is that the programs written are portable when the underlying
concurrency contrbl algorithm changes. Implicit in this goal is the belief that
different systems may use different concurrency control algorithms. We will justify
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this belief in Chapter 5.

This chapter is structured in the following way. First, we present an overview of our
programming paradigms in section 4.1. For the next few sections (4.2 to 4.5) we
discuss individual aspects of our paradigms in more detail and provide motivation for
them. Section 4.6 presents some program exampies illustrating our paradigms. To
illustrate that there is enough flexibility in our paradigms to optimize an
implementation, we discuss some of the trade-offs of different implementation
techniques in section 4.7.

4.1 Overview of Implementation Paradigms

When the underlying concurrency and failures are not masked, two issues have to be
addressed: synchronization and recovery.  The implementations described in this
chapter follow the structure of the idealized implementation in the last chapter
closely. To simplify synchronization and recovery, we divide them into two levels. At
the lower level, concurrent activities at an atomic object are executed such that they
appear to be instantaneous. Candidates for such activities are the processing of an
invocation request, or the processing of a message that conveys the outcome of a
computation. At the higher level, the execution of an atomic computation is viewed
as the execution of a collection of these instantaneous activities. Since the
~ collection of instantaneous activities of two atomic computations can interleave with
each other arbitrarily, synchronization is needed before processing a new invocation
request. An operation can only proceed when no conflicts are created. Recovery is
implemented by compensating activities when an object is informed of the abort of a
computation.

4.1.1 Lower-Level Synchronization and Recovery

In section 4.2, we will discuss the lowerlevel synchronization and recovery: how to
make the concurrent activities at an atomic object appear to be instantaneous. An
obvious solution is to apply the concept of atomicity again. Two kinds of atomic
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computations can be used in an implementation. The first kind of atomic
computations are the one that we have been discussing in previous chapters. They
invoke operations on atomic objects and can last a long time. The second kind of
atomic computations are used to make the concurrent activities at an atomic obfect
appear to be instantaneous to one another. They are usually much shorter because
these activities are usually small portions of an atomic computation ‘of the first kind.

To distinguish the two kinds of atomicity, we call them globél atomicity for the long
atomic computations of the first kind, and local atomicity for the short atomic
computations of the second kind. The serialization order that the locally atomic
computations appear to be executing in bears no relationship to that of the globally
atomic computations. A locally atomic computation can aiso be committed before
the long globally atomic computation that it is executed in is cdmmitted. Globally
atomic computations appear to execute in a global serialization order and locally

atomic computations in a local serialization order.

Since our model of a computation is a sequence of operation invocations at various
objects, we are essentially implementing a long globally atomic computation with a
collection of short locally atomic computations. In Chapters 2 and 3 we described
how computations can be made atomic by accessing only atomic objects.
Corresponding to the two kinds of atomic computations are two kinds of atomic
objects: globally atomic objects and locally atomic objects. A different way to
‘understand our implementations is that we are implementing the globally atomic
objects with locally atomic ones.

An analogy can be drawn with the two level of objects in System R [14]. In System R,
a page object is locally atomic in the sense that the page locks and recovery
mechanisms make the RSS actions (e.g., an operation on an index object, which is a
globally atomic object) appear to be atomic to one another. However, since page
locks are released at the end of an RSS action, a page object is not globally atomic
and a higher level of synchronization and recovery is needed on top of the lower level
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of synchronization and recovery provided by the page- locks and recovery

mechanisms.

4.1.2 Higher-Level Synchronization

In section 4.3 we discuss how the higher-level synchronization is implemented.
Given that each operation on a globally atomic object is executed as a locally atomic
computation, there is still the task of determining whether a conflict is created with
each new operation invocation. In order to determine when conflicts are created,
each globally atomic object encodes a history of the operations invoked and the
results returned at that object. When a new invocation request arrives, the locally
atomic history object is examined to determine whether a conflict is created. If no
conflict is created, a result is returned and the transition'* corresponding to the
operation and its result is added to the history object. Otherwise, a conflict is created
and must be resolved.

A history object captures the transitions that have been executed at a globally atomic
object. The important operations of the history objects are operations to insert a
transition, delete a transition, enumerate transitions, and update the status of a
transition, which indicates whether the giobally atomic computation invoking that
transition is committed or tentative. Each operation invoked on a globally atomic
object will insert a transition into the history object associated with the globally
atomic object. To prevent a history object from growing indefinitely, committed
transitions. are deleted periodically and "merged” into a more compact
representation. When transitions are enumerated from a history object, they can be
filtered by their status or the type of operation and resuits. The caller of the
enumerate operation can aiso supply another transition t and a condition ¢ (e.g.,
"potentially subsequent according to the global serialization order") such that only
transitions that satisfy ¢ with respect to t will be returned. The words "potentially”

14Recalnhatatrandﬁon is & pair of invoke and returmn events.
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and "definitely" capture the Ioéal knowledge on the global serialization order. With
the use of the history objects and other locally atomic objects, an operation can
determine what other operations have been executed at the globally atomic object
and the possible combinations of serialization orders and operation outcomes. We
will describe the implementation of these history objects in more detail in section
4.3 and Chapter 5.

4.1.3 Higher-Level Recovery

In section 4.4 we discuss how the higher-level recovery is implemented. When locally
atomic objects are used to implement globally atomic objects, locally atomic
computations are committed before the corresponding globally atomic computation
is completed. The effects of the operations invoked on the locally atomic objects
have to be explicitly undone when the globally atomic computation is aborted. The
combined effects of the original operations and the compensating operations should
make the globally atomic objects appear to be failure atomic.

We introduce two recovery paradigms in section 4.4. These paradigms are stylized

approaches to performing recovery for globally atomic objects implemented with

locally atomic objects. Their goal is to simplify the writing of application-dependent

recovery code. Simpler code makes it easmr to convince ourselves that an
implementation is correct.

In the first paradigm, only one mutator operation is performed on locally atomic
objects during an operation on a globally atomic object: inserting a transition into
the locally atomic history object. When the globally atomic computation containing
the operation is committed, the transition can be used to determine other mutator
operations to be performed on other locally atomic objects in the representation of
the globally atomic object. This type of processing after the globally atomic
computation is committed is called commit processing. In that sense, the history
object serves as an intentior;s list. When the globally atomic computation is aborted,
the only compensating activity needed is to delete the transition from the history
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object.

in the second paradigm, arbitrary operations can be invoked on the locally atomic
objects. Here, the goal is to minimize the work that neéds to be done when the
globally atomic computation is committed. An 'undo operation is associated with
each of the tentative operations on a globally atomic object. The undo operation is
invoked when the tentative operation is aborted. The undo operation invokes
}compensating operations on the underlying locally atomic objects. The history
object is a natural place to store names of the undo operations and their arguments.
In this case, the history object serves as an undo log.

4.2 Global Atomicity and Local Atomicity

The separation of synchronization and recovery into two levels allows division of
labor and greatly sirripliﬁes the task of programming application-dependent
synchronization and recovery. By limiting the higher-level synchronization to happen
at operation boundaries, each globally atomic computation will observe only a limited
set of well-defined intermediate states of another computation. Similarly, higher-level
recovery is simplified because the compensating activities, which ¢an be executed as
locally atomic computations, start with a limited set of well-defined intermediate
states.

This section describes the idea of having two kinds of atomic objects in more detail.
We will describe how locally atomic objects can be implemented and compare our
paradigm of implementing giobally atomic objects using locally atomic objects with
related work.

4.2.1 Definitions of Global Atomicity and Local Atomicity

With the introduction of the distinction between global atomicity and local atomicity,
we have separated the objects in a system into globally atomic objects énd locally
atomic objects. Recall that in Chapter 2 we have defined a history to be atomic if it is




~ equivalent to an acceptable serial history. We have defined a serial history sh to be
acceptable if, by partitioning sh according to the object with which an event is
associated. each of the sub-histories is an acceptable transition sequence according
to the serial specification of the object associated with that sub-history. The same
definition can be used to define local atomicity if we limit our attention to locally
atomic objects.

A history is globally atomic if it is equivalent to an acceptable globally serial history.
A globally serial history is a history in which the events are rearranged according to a
linearization of the globally atomic computations. A globally serial history sh is
acceptable if, by partitioning sh according to the globally atomic object with which
an event is associated, each of the sub-histories is an acceptable transition sequence
according to the serial specification of the globally atomic object associated with that
sub-history. Local atomicity can be defined analogously using the concept of a
locally serial history in which events are rearranged according to a linearization of
the locally atomic computations. Notice that there is a local serialization order and a
global serialization order. The behavior of the Iocaﬂy atomic objects is not

necessarily valid according to the global serializatibn order.

4.2.2 Implementing Locally Atomic Computations

We assume that a programmer can declare the boundaries of locally and globally
atomic computations. An access to a globally (locally) atomic object should always
be enclosed in a giobally (locally) atomic computation. Typically, a locally atomic
computation is a small portion of a globally atomic computation and should last only
a short time (e.g. executing an operation on a giobally atomic object). A globally
atomic computation can contain several locally atomic computations. A locally
atomic computation is committed when it terminates successfully. The locally atomic
computation remains committed even though the globally atomic computation that
contains it may be aborted later. Notice that given the same serial specification, the
concurrency of a locally atomic object is potentially much higher than a globally
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atomic object because of the shorter locally atomic computations. If a locking
algorithm are used to implement an atomic object, a shorter computation allows

locks to be released sooner.

Locally atomic objects can be implemented using a traditional concurrency control
algorithm and recovery mechanisms based on read/write sémantics [17]. With such
an implementation, it is in general inappropriate to access a Idcally atomic objectin a
long locally atomic computation. The concurrency of the implementations described
in this chapter depends on the use of short locally atomic computatidns.
Alternatively, the same implementation paradigm described in this chapter can be
used to implement the locally atomic objects as well as the globally atomic objects. A
multiple-level atomicity model can be extended easily from the current dichotomy of
global atomicity and local atomicity. In section 4.7.2 we will explore the situations in
which the generality of multiple-level atomicity is needed.

In order for the effects of an atomic computation to remain permanent, the updates
made by the computation have to be stored into stable memory when the
computation commits. Afterwards, the updates will survive site crashes. If accessing
stable memory is expensive, the cost of implementing each operation to a globally
atomic object with a locally atomic computation may become prohibitive. |

To avoid the cost of accessing stable memory every time a locally atomic
| computation is committed, we can make use of the fact that locally atomic

computations are not invoked difectly by human users. Consequently, the changes

made by a locally atomic computation a do not have to be stored in stable memory
~ until the globally atomic computation that contains a commits, or until other locally
atomic computations store their changes in stable memory. The latter condition is
needed because other locally atomic computations may have observed the effects of
a. Since these other locally atomic computations can aiso delay their access to the
stable memory, all the accesses due to the commitments of locally atomic
computations can be piggybacked on a single access when some globally atomic
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computation commits. The details of how a distributed computation coordinates its
- accesses to stable memory in different sites will be discussed in section 5.4.

4.2.3 Related Work

The same idea of having multiple levels of atomicity has been suggested by Beeri et
al. in [5] and Moss et al. in [42]. The difference between our work and theirs lies in
how synchronization and recovery is performed. To implement serializability, Moss
proposes a conflict-based locking mechanism: locks to the level |-1 objects are
released when the level | operation that accessed them is finished. However, a lock
at level 1 is retained so that conflicting level | operations are delayed. in [42] the
conditions under which "simple aborts" exists are also derived: recovery of a level |
object can be achieved by simply omitting the effects of thé operations on the level
I-1 objects. The conditions require that no conflicting level I-1 operations have been
executed by other level | operations.

Weihl [65] describes how atomic objects can be built with other smaller atomic
objects and mutex objects. Mutex objects behave like monitors [21]. Programs can
acquire and release mutex objects to achieve mutual exclusion. The activities
performed while the mutex lock is held are serialized as a result. The mutex objects
can be viewed as a simple wéy to implement local atomicity.

4.3 Synchronization

Since locally atomic computations might not be serialized in the global serialization
order, a higher level of synchronization is needed 8o that the behavior of a globally
atomic object appears to be globally atomic. Our approach to the higher-level
synchronization is to capture sufficient information of the history of events generated
at a globally atomic object using history objects, 8o that it can be used to determine
whether conflicts are created. Since all the relevant local information in our atomicity
definition is being captured by these history objects, our approach is "complete” in
the sense that unnecessary conflicts need not be created except when there is a lack .
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of global or future knowledge.

In [55] the state of an atomic object is encoded with smaller atomic objects and
monitor-like mutex objects. By encoding enough information in these objects, an
incoming operation can determine whether conflicts are created and delaying is
necessary. It is up to each application to determine how the state is to be encoded.
To simplify programiming, we have provided a more stylized approach of using history
objects for the same purpose.

In general we can expect our programs that handle an invocation request to follow

the following pattern:

if conditionl then ...:; insert t1 into history; return resultl end
if condition2 then ...; insert t2 into history; return result2 end

it conditionN then ...; insert tN into history; return resultN end
resolve conflict

In the expressions conditioni the program determines whether certain transitions
can be generated without creating any conflicts. If an operation can proceed
immediately, a valid result is determined from the history object ahd other objects. A
transition for this operation can be inserted into thé history object to be examined by
later operations before returning the result. If none of the condition1’s are satisfied, .
a conflict is created and must be resoived. In the rest of this section we will first
discuss the operations provided by a history object that plays an important role ih the
programming of the conditioni expressions. Then we will discuss the resolve
conflict statement.

4.3.1 History Objects
Figure 4-1 describes an informal specification of the interface of a history object. To
avoid a lengthy digression describing all the operations supported by a history
object, figure 4-1 is only a partial list and presents only the operations relevant to our
approach of higher-level synchronization. We will continue our description of history
operations in section 4.5.1.

81




A history object can be pictured as a tree of transition objects. These transition
objects correspond to the different types of transitions in a serial specification. The
order of the transitions in the tree is determined by their global serialization order. A
tree instead of a linear list is used because a history object may not have complete
knowledge of the serialization order. We will not discuss the transition objects in this
section. A informal specification of their interface will be presented in section 4.5.2.

p_sub = procedure(h: history, t: transition) returns(history)
% returns the largest sub-history of h in which all the transitions
%X are potentially subsequent to t.

p_prior = procedure(h: history, t: transition) returns(history)
% returns the largest sub-history of h in which all the transitions
% are potentially prior to t.

d_sub = procedure(h: history, t: transition) returns(history)
% returns a sub-history of h in which all the transitions are
X definitely subsequent to t,.

d_prior = procedure(h: history, t: transition) returns(history)
% returns a sub-history of h in which all the transitions are
% definitely prior to t.

p_between = procedure(h: history, t1, t2: transition) returns(history)
% returns a sub-history of h in which all the transitions are
% potentially subsequent to t1 and potentially prior to t2.

d_between = procedure(h: history, t1, t2: transition) returns(history)
% returns a sub-history of h in which all the transitions are
% definitely subsequent to t1 and definitely prior to t2.

Figure 4-1:interface of a History Object

4.3.1.1 Masking Concurrency Control Algorithms

In order to mask the concurrency control algorithm used underneath the
programming interface, we follow the conflict model described in section 3.1. We
assume that each history object has some knowledge of operation outcomes and the
global serialization order determined by the concurrency control algorithm
underneath. The operations p_sub, d_.sub, p_prior, dprior, p between, d between
supported by a history object reflect the view. For example, p_sub takes a history




object as its first argument and a transition ‘object as its second argument, and
returns the sub-history in which the transitions are serialized potentially before the
argument transition. How the transitions in the sub-history are ordered is again
determined by the global serialization order. The uncertainty about operafion
outcomes can be reflected with an attribute on the transition objects, which are
eithef committed or tentative. Aborted transitions will be deleted from a history
object. We will describe the use of this attribute in sections 4.5.2 and 4.5.3.

These p. and d. operations can be implemented and optimized rather
straightforwardly given the underlying concurrency control algorithm. For example,
if the global serialization order is determined by timestamps assigned at the
beginning of a globally atomic computation, the tree in which the transition objects
are arranged degenerates to an ordered list, since the global serialization order is
known when an operation on an giobatly atomic object is invoked. There is also no
difference between the d_ and p_ operations. A different implementation is required
for a concurrency control algorithm in which the global serialization order is
determined in a way similar to 2-phase locking. We will defér our discussion of
concurrency control algorithms and how these history operations can be
implemented until Chapter 5. Note that an implementation for these operations does
not necessarily have to copy the history object. A lazy evaluation scheme can be
used to enumerate the transitions in the returned history object without changing the
semantics of the operations.

With the p_ and d_ operations to capture the global serialization order relationship
among the transitions in a history object, the concurrency control algorithm used by
the system becomes transparent to the application programmers. Although
application-dependent synchronizatioh is needed in an implementation, the
programmer does not have to be aware of the choice of concurrency control
algorithm made by the system. This transparency is the primary characteristic that
distinguishes our proposal from all previous ones that involve application-dependent
synchronization.



4.3.1.2 Advantages and Disadvantages of Transparency

There are both advantages and disadvantages of providing this transparency. There
are two advantages. First, programmers do not have to understand the details of
different concurrency control algorithms. The same conflict model can be used
during programming. Second, the application programs remain correct even when
the underlying concurrency control algorithm is changed. No program modification
is needed. One may question how often a cbncurrency control algorithm would
change underneath the application programs. A situation in which this may happen
is when application programs are ported, especially for "common" abstract objects
such as a FIFO-queue, a set, or some kind of table. Another possibility is for a system
to change its concurrency control aigorithm in order to combine with another system,
so that computations that span both systems can be executed.

One of the disadvantages of the transparency is its over-generality. Application
programs become more difficult to write than necessary. For example, given a
timestamp concurrency control algorithm, the serialization order is always known.
The difference between p_and d_disappears. Furthermore, the programmer does not
need to consider cases where a transition is both potentially subsequent and
potentially prior to another transition.

Another possible disadvantage of the transparency is decreased efficiency. An
application program may require several passes over a general history object to
determine whether a conflict is created. On the other hand, because of the simpler
structure of a history object when the concurrency control algorithm is known, one-
pass versions can be constructed more easily than when the concurrency control

algorithm is transparent.

Whether these disadvantages outweigh the advantages cannot be evaluated without
more experience implementing abstract atomic objects. On the other hand, it seems
that without actual experience of the performance of different concurrency control
algorithms, a safer investment would be to emphasize portabiiity.



4.3.2 Resolving Conflicts

When an object decides that a conflict has been created, it must resolve the conflict.
Depending on the concurrency control algorithm, and why the conflict arises, the
range of actions that may be taken include delaying the current operation, restarting
the current computation, or making an assumption of the serialization order or some

other transition's outcome.

Ideally, a programming interface can provide a generic resolve conf1ict statement
which maintains the transparency of the concurrency control algorithm underneath.
An intelligent compiler or run-time system can generate code to determine the
actions to take, such as when to reschedule a request'if delay is needed, or whether
to restart a computation or delay a request, or what assumptions to make. However,
supporting such a generic statement efficiently is difficuit as conflict conditions can
be arbitrary expressions.

Depending on the concurrency control algorithm; simple-minded solutions can be
devised. For example, in some algorithms a request would be able to proceed given
that sufficient time has passed. In those algorithms, a simple solution is to
reschedule an invocation request periodically. For some other algorithms, in which
restarts and delays are the only two possible aiternatives to resolve a conflict, the
more pessimistic restart can be chosen whenever delays do not guarantee eventual
. progress. For algorithms that makes assumptions on operation outcomes and the
serialization order, different assumptions can be tried to determine whether they can
maintain a valid behavior given that those assumptions are correct. 7

The drawback of these simple-minded solutions is the loss of concurrency in the
form of unnecessary delays, spurious reschedules, unnecessary restarts, or
unnecessary assumptions. To provide a compromise between this loss of
concurrency and a complicated programming interface, we replace the resolve
conf11ict statement with a retry statement and require the programmers to specify
a proceed condition with a retry statement. The purpose of the proceed conditions



is to provide a hint to the language system as to when conflicts would not be created.
The structure of the proceed conditions is required to obey a well-formedness
requirement described below so that a proceed condition can be analyzed by the
language system. Based on the proceed conditions, the language system can
determine whether a delay would lead to eventual progress, when to reschedule, or

what assumptions to make.

A proceed condition is taken as a hint to the condition under which an invocation
request would be able to proceed. However, in order to guarantee that a request is
not delayed indefinitely, a proceed condition should be well-formed. A weli-formed
proceed condition satisfies the following requirements:

1. The proceed condition should be satisfied if:

a. new operations are not started, and

b. all current operations in the system, except the one being
considered, are finalized and the outcomes are known by all
history objects, and ' '

c. the operation being considered is serialized after all existing
transitions and the global serialization order among existing
transitions are known.

2. It is'not satisfied currently.

- 3. It is constructed with boolean operations and the operations provided by
the history objects.

The first two requirements guarantee that by analyzing a proceed condition, a
language implementation can discover the set of "events” that may cause the
proceed condiﬁm to become satisfied. In some concurrency control algorithms,
these events may correspond to the finalization of incomplete computations. In some
algorithms, the events may involve a restart of the computation.that invokes the
current operation. The first requirement prevents situations in which the proceed
condition is too restrictive. If a proceed condition is too restrictive, the current
operation may never be rescheduled, or unnecessary restarts may be initiated.
Application programmers should expect the language implementation to make better
decisions in determining how to resolve a conflict if the proceed condition is a closer

86



approximation of the negation of the conflict condition. The second requirement
prevents situations in which the proceed Condition is already satisfied. If the proceed
conditibn is already satisfied, the language implementation may not be able to
determine the set of events that can cause the current operation to resolve the
conflict. In that case, the only alternative is busy-waiting in the form of constantly
rescheduling or constantly restarting. it is probably not the most desirable solution.
The third requirement restricts the structure of a proceed condition so that it can be
analyzed by the language implementation. In Chapter 5 we will describe how a
language implementation can use the proceed conditions to determine the actions
that need to be taken to resolve a confiict. |

The retry statements are also paired with begin entry statements so that a
program that uses the retry statement has the following form:

begin entry
if conditionl ... end

i§.condiiionl ... ond
retry whenever c % ¢ is a proceed condition

The semantics of the rotry statement is to abort ény work performed in the last retry
loop and retry from the matching begin entry statement. A retry might be attempted
after a certain delay, a computation restart, or the making of some assumptions. The
proceed condition ¢ may or may not be satisfied when the loop is retried.

4.4 Recovery

When locally atomic objects are used to implement globally atomic objects, the
effects of a committed locally atomic computation have to be compensated explicitly
when the containing globally atomic computation aborts. This section describes how
these compensating activities can be programmed. Similar ideas have been
proposed in [55, 38, 1]. We will not present any comparison since the purpose of this
section is merely to show that recovery paradigms compatible with the rest of our
implementation paradigm can be designed.
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We will describe two different ~recovery paradigms in this section. One of them uses
the history objects as intentions lists and the other uses them as undo logs. The two
paradigms described in this section are not mutually exclusive methods; rather, they
represent two ends of a spectrum of possibilities. For example, an application may
use one paradigm for certain operations and the other paradigm for the other
operations. Depending on the type of an application, one paradigm may be more
efficient and/or convenient than the other.

In addition to performing compensating activities, it is also necessary to condense
‘the information contained in the history objects which would otherwise grow
indefinitely. We can condense the information contained in the transition objects
with a more compact representation after they are committed. How the compaction
is performed is related to the recovery paradigm.

4.4.1 Intentions list Paradigm

In the intentions list paradigm, the state of a globally atomic object is represented by
a collection of locally atomic objects (which will be called a snapshot) and a locally
atomic history object. The history object records the transitions of the operations
that have been invoked at the gldbauy atomic object. For committed transitions, the
application can specify a locally atomic computation which merges their effects into
the snapshot and deletes them from the history object. Aborted transitions can be
" deleted without further action. This kind of commit processing can be viewed as
taking the processing "off-line" after the serialization order and the outcomes of the
transitions are known. To simplify the application, the committed transitions are
merged in the global serialization order. In other words, a committed transitions can
be merged only if there are no prior unmerged transitions in the history object.

When an operation is invoked on the globally atomic object, the snapshot and the
history object are examined to determine whether a conflict is created. If the
operation can proceed immediately, a valid result for the operation is also determined
from the snapshot and the history object. Before returning, the transition for this
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operation is inserted into the history object. The accesses to the snapshot and the
history object are executed in a locally atomic computation.

The intentions list paradigm minimizes the work performed when an operation on the
globally atomic object is aborted. If the operation is aborted before the locally atomic
computation is committed, changes to all the locally atomic objects will be undone. If
the operation is aborted afterwards, the only compensatihg activity needed is to
delete the corresponding transition from the history object. The deletion can be
executed as a short locally atomic computation. | '

Deleting transitions from the history object and merging them into the snapshot as
soon as they are committed may create a problem. Occasionally, a committed
transition may be needed in a history object to determine whether conflicts are
created for an incoming operation that can be serialized before it. Depending on the
concurrency control algorithm, committed transition may»or may not be needed. In a
2-phase locking algorithm, a committed transition is never needed and a transition
can be deleted when it is merged. In a timestamp algorithm, a transition is useful in .
determining whether conflicts are generated when operatibns with older timestamps
are invoked. If committed transitions are deleted, incoming operations with older
timestamps must be refused. '

A solution to this probiem is to keep a sequence of pairs of snapshots and history
objects. Before deleting committed transitions from a history object and modifying
the snapshot, a copy of the history object and the snapshot can be kept. For an
incoming operation o, the appropriate pair of snapshot and history object that is the
most updated and yet contains all the transitions that may be serialized after o in the
history object can be chosen. A complication arises when inserting a transition.
Since the transition has to be inserted into all the history objéct versions, those that
have already deleted transitions prior to the transition being inserted have to be
discarded. '

Since storage is limited, some of the pairs are also discarded when it becomes more
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and more unlikely to have incoming operations that need to access the transitions in
those pairs. In a timestamp algorithm that assigns timestamps using a real-time
clock, transitions invoked by computations that are stérted before the currently
executing computations in a system can be discarded. Without global knowledge, a
transition can be deleted if it is estimated to be older than the currently executing
computations. If an older computation is still executing and access the history object
later, it has to be restarted. Notice that a language imblementation can make the
maintenance of a sequence of pairs of snapshot and hiétory object trahsparent tothe
programmer. It can also make the copying of history object and snapshot more
efficient by, for example, keeping one history object and having each history object
"version"” be an index to this single history object.

4.4.2 Undo Log Paradigm ;

in the undo log paradigm, the state of a globally atomic object is represented by a
collection of locally atomic objects (which will be called a projéction) and a locally
atomic history object. In this paradigm, instead of merging the committed transitions
during commit processing, the projection is mutated before an operation on the
globally atomic object returns. The transition for the operation is also inserted into
the history object. The projection should represent the correct abstract state
according to any global serialization order in which the transitions in the history
object may be serialized, even though there may be many such orders. No extra
work is needed if all the tentative operations eventually commit. The accesses to the
projection and the history object are executed in a'locauy atomic computation.

If an operation on the globally atomic object is aborted before the locally atomic
computation commits, changes made to the locally atomic objects will be undone.
No extra work from the application is necessary. If the operation is aborted after the
locally atomic computation is committed, the aborted transition will be deleted from
the history object and it will be "unmerged” from the projection with an undo
operation. The undo operation should compensate for the previous mutation of the



projection and preserve the failure atomicity of the globally atomic object. If two
operations are aborted because one of their common ancestor actions is aborted,
the undo operation of the operation serialized afterwards is invoked first. An undo
operation, along with its arguments, is specified by each operation on the globally
atomic object before the latter returns, and remembered in the transition in the
history object. The undo operation and the deletion of the transition from the history
object are executed in a locally atomic computation. The high-level synchronization
performed by an implementation, by guaranteeing that only atomic histories are
generated, ensures that this locally atomic oomputation does not encounter any
permanent failures. For example, the undo operation of a deposit operation in an
account object deducts the amount deposited from the projection. Since an
implementation shouid be prepared for the possibility of the deposit being aborted,
there is always enough funds in projection to cover the undo operation. Transient
failures that interrupt the undo operation, such as site crashes, can be masked by

retrying.

The projection and the history object will be used to determine a valid result that can . .

be returned to an operation invoked at the globally atomic object, and to determine

whether conflicts are created. As will be discussed in section 4.7.1, the undo log

paradigm may be more efficient than the intentions list paradigm in some

applications. The comparison of the two recovery paradigms will be delayed until we
" have presented some example programs.

Two problems with the undo log paradigm prevent its applicability to general
applications. The first problem arises because the paradigm requires the projection
to be maintained such that it represents the correct abstract state according to any
global serialization order in which the transitions in the history object may be
serialized, even though there may be many suqh orders. For some applications, this
is not possible. For example, when the operations insert(i) and delete(i) are executed
on a set object, the correct projection state depends on the serialization order of the
two operations.
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There are two possible solutions for this problem. One of them is to regard this
situation as the creation of a conflict. This is not ideal, as concurrency is decreased
unnecessarily. In the set example above, no conflicts aré generated by the insert(i)
and delete(i) operations, since the only valid reply for both operations is okay, which
would remain valid regardless of the serialization order. Another possibility is to
allow the projection to be modified when the operation commits. This is also
undesirable because of the complexity introduced into the structure of the
projection. ‘

The second problem arises because occasionally the projection and a history suffix
do not capture enough information on the entire history of previous invocations. For
example, suppose the projection is a locally atomic array object representing the
abstract state of a set object. Invoking an insert(e) operation causes e to be inserted
into the array. On the other hand, after inserting e from the array, we have lost the
information indicating whether e was in the array before the insert(e) operation was
invoked, unless the history object contains the transition for the last insert(e) or
delete(e) operation prior to this opération. This information is needed in case the
operation is aborted, and also to determine the result of a member(e) operation
serialized before the insert(e) operation. Selecting an undo operation based on the
state of the projection when the insert(e) operation is executed is not an adequate
solution either, since the state of the projection might be changed by other undo
operations. '

As a remedy, we can delay the deletion of transitions from the history object, or add a
snapshot to the state. This raises the question of how transitions should be deleted
from the history object. A possibility is to declare all committed transitions which are
certain to be serialized before all other tentative transitions eligible for deletion.
However, this does not solve the problem described above. A more complicated
scheme in which the application makes the final decision over which transition is
deleted can be devised. However, it seems complicated and may add a significant
cost to accessing the history object. '



The addition of a snapshot can be regarded as a combination of the two recovery
paradigms. Snapshots can be maintained as described in the last section. They can
also be derived more cheaply than described in the previous section by saving old
projections. After all the mutator operations that have been merged into the
projection are committed, the projection can be regarded as a snapshot.

A final possibility is to encode the necessary information in a more complicated way.
In the set example, we can associate an item in the array with a linked list of boolean
values. When a delete or insert operation is invoked/aborted, a boolean value can

be inserted/removed from the list. Boolean values at the beginning of the list can be
removed by a background process as long as there is a subsequent boolean value
inserted by a committed operation.

Despite these limitations and complications, the undo paradigm is still useful in many
applications which do not have "overwrite” operations. These overwrite operations;
such as insert(e) in a set object, have the characteristic that they destroy some
significant piece of information in the oild state necessary for recovery. Without
"overwrite” operations, an operation can determme all the necessary information
from the projection and the history object.

4.5 Programming Interface

This section describes some more programming constructs in order to present the
program examples in section 4.6. However, this is not meant to be a language
proposal. There is a trade-off involved in introducing specialized constructs into a
language. While the programs that motivate these constructs become more efficient
and easier to write, the language also becomes more complicated and specialized.
More detailed study is needed before deciding what linguistic constructs are
desirable. |




4.5.1 History Objects Continued
The following is a continuation of the description of the operations provided by a

history object.

delete_first = procedure(h: history) returns(transition)

% returns the transition in h that 1s serialized before all other

%X transitions and is committed. The transition returned is deleted
X from h.

match = iterator(h: history, t: template) fterates(transition)
% iterates the transitions in h that matches t.

exists = procedure(h: history, t: template,

p: proctype(transition) returns(bool)) returns(bool)
% returns true if there is a transition s in h such that s matches the
% template t and p(s) returns true. Otherwise false is returned.
% p is an optional argument. If p is omitted, only the template t is
X used to filter transitions in h,

% The following operations are internal and invoked only by the
% language system implementation that we will discuss.

insert = procedure(h: history, t: transition)
X inserts t into h. This operation is invoked by the language
% implementation when an operation on a globally atomic objoct returns.

get_ transitions = {terator(h: history, a: action_1id)
iterates(transitions)

iterates the transitions that are executed in a. This operation is

used by the language implementation to search for transitions whose

status should be updated when information about the outcome of an

action is received. We will not show the invocations of these

operations in our programs in section 4.6. The update of

the status of a transition can be executed in a locally atomic

computation.

WARN RPN R

in addition to the sub, prior, and between operations described in section 4.3.1, the
history objects also support an exists operation and a match operation which allow
for searching of particular transitions in a history object. The exists operation takes a
history object, a transition template, and a procedure as arguments. Transition
templates will be described in section 4.5.3. Both the transition template and the
procedure argument are used to filter the transitions in the history object. The
procedure in the procedure argument takes a transition as an argument and returns
a boolean. The exists operation also returns a boolean as its result. It returns true if
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there is a transition in the argument history object that matches the template and true
is returned when the procedure argument is invoked with this transition. False ié

returned otherwise.

in the example programs that we will present in section 4.6, we will in fact need a
closure rather than a procedure in most calls to exists. To aliow closures to be
passed, the programmer can specify a muitiple-argument procedure p:

P = procedure(arg,: T,, argy: T,, ..., argy: transition) returns(bool)
and the closure can be specified as p(a,, a,, ..., 8, ;) where a, is an object of
type T,.

4.5.2 Transition Objects

Figure 4-2 is an informal specification of the operations supported by a transition
object. A transition object can be regarded as a type of record, with various
attributes.

get_argl = procedure(t: transition) roturns(typo_uf_argl“)
% return the first argument of the operation represented by t.

% 81-11ir1y for get_arg2, get_argd, ..., get_resulti, ...

match = procedure(t: transition, temp: template) returns(bool)
% returns true if t matches temp, otherwise false 1s returned.

~ set_status = procedure(t: transition)
X set the status of t to be connittqd.

set_undo = procedure(t: transition, undo: proctype)
% remembers undo as the undo operation of t.
% This 1s needed only when the undo recovery paradigm is used.

Figure 4-2:Interface of a Transition Object

We assume that the language system supports abbreviations of the form:

15Toavoidduﬁoﬁngwrproormwithoxcudntypewmmﬁm.mmmuﬁcttyping
here. Hm.hhisnot‘amprouanum‘mmmdwyobiectsmbo

%



transition$Sget_argl(t) abbreviated as t.arg1l
transition$set_undo(t, s) abbreviatedas t.undo := s

In our example programs, a procedure either returns normally or signals an
exception. We use a special keyword okay to represent the result of a transition
when no results are returned. The exception name is used as the result value when
an exception is signalled.

| We also assume. that the language system supports a distinguished variable
this_transition. This variable can be regarded as the current transition being
executed. It can be implemented with a value of the curreht action identifier which
allows comparison with other transitions to determine the relative global serialization
order. For example: history$p_sub(h, this_transition) returns a history that
only has transitions that are potentially subsequent to the caller. We assume that a

program can execute
this_transition.undo := p
to indicate to the language system that the undo operation of the current transition is

p.

4.5.3 Template Objects _

Template objects can be used to match against transitions and filter out irrelevant
transitions in a history object. When defining transition templates, programmers are
interested only in the status of a transition, the types of the operation and result, the
arguments, and the values of the resuits. We will ignore the action identifiers and
object identifiers of the transitions in the templahes For example, for the set object
- defined in figure 2-2 on page 47, we assume that the Ianguagé interpreter can parse
transition templates of the form;

committed_moember_x_true
committed transitions of the form <member(x)><{true>.

tentative_1insert_x_okay
tentative transition of the form <insert(x)><okay>.
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Determining whether a transition is committed is slightly more complicated than one
would expect. Normally, one would expect an implementation of a transition object
to associate a status flag with a transition and determine the status accordingly. A
complication arises when an action currently executing belongs to the same
computation as some of the transitions in the history object, Since an operation may
expect to see the effects of other transitions in the same computation that are
definitely prior to and would not be aborted independently from itself, the set of
"committed” transitions is defined to include these transitions also. Given that
another transition t is prior to the current operation o and belongs to the same
computatioh as o, and the names of the actions executing t and o are at and ao
respectively, determining whether t would abort independently from o can follow the
following algorithm: - '

1. lf'an' ancestor of at (or at itself) and an ancestor of ao (or ao itself) are
parallel sibling actiong, then t can be aborted independently from o,
2. otherwise it is not possible. '

The action identiﬁers of at and ao can be uéed.to determine the family relationship.

To avoid long template names in our programs, we assume that abbreviations can be
defined (e.g., ins_x = 1insert_x_okay). For similar reasons, we assume that
templates can be constructed from other templates using boolean operations. For
example, if a program defined successful_update = withdraw_x_okay or
 deposit_x_okay, then a transition matches successful_updatae if it matches either
withdraw_x_okay or deposit_x_okay. We also assume that templates with fixed
values in the transition arguments or results can be constructed. For example, if xis
an variable defined in a program, then insert_x_okay defines a template that
matches any transition of an insert operation invoked with the object denoted by x.

4.5.4 Resource lManagcrs

The' program examples in this chapter are structured in modules called resource
managers, which are similar to the guardians in [3)]. In fact, Ari\any of the linguistic
constructs are copied from the Argus language described in [30].
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At run time, an instance of a resource manager can be instantiated on a site. (In the
rest of this chapter, the term "resource manager" will be used to refer to an instance
of a resource manager and no distinction will be made.) Each resource manager can
be regarded as a virtual site in the system, with a name known by ofher resodrce
managers. We assume there are name servers [11, 45] which map resource manager
names to network addresses. The indirection allows a resource manager to be
‘moved to a different physical site easily. Multiple resource managers can be
instantiated on a single physical site. | ‘

A resource manager has associated with it a collection of procedures. These
procedures share some state, which only procedures from this resource manager
can access. A subset of these procedures are exported and can be called by
procedures outside the resource manager.

There are many possible ways in which top-level actions and sub-actions can rbe
declared. Since choosing the best way for these declarations is not relevant to the
ideas proposed in this thesis, we simply assume that all our example programs are 7
executed in some globally atomic computation. To insulate the caller of a procedure
from the site crashes at fhe resource manager invoked, we also assume that a sub-
action surrounding the call would be created if the caller executes in a different
resource manager. We assume that the locally atomic computation boundaries are
defined by a begin entry ... retry whenever c Statement or a begin local
computation ... end local co-puntidn statement.

The caller and callee of a procedure, if they are in different resource managers,
commuhicate using a remote procedure call (RPC) paradigm: the caller suspends
until the remote procedure returns. To facilitate the implementation of atomic
objects, we use a zero-or-once semantics: when the remote action returns, the action
invoked was. executed exactly once; otherwise it is executed at most once. We
assume that the system will generate an exception to the application when a
response has not been received for a remote call after a system-defined timeout. In

98



Chapter 7 we will describe the measures that the application can take to handle these
communication failures. For the time being, we assume that the remote action will be
aborted.

Resource managers can be used to implement atomic objects. An object may be
|mplemented within a single resource manager, or with several resource managers.
Depending on the overhead of using a resource manager an application may decide,
for example, to implement a singie bank account with a resource manager, or many -
accounts with a resource manager. Procedures in a resource manager can be used
to implement the operations on an object.

We assume that the objects used in our example programs are locally atomic uniess
otherwise specified. Two kinds of locally atomic objects are used: history objects
and regular objects. Regular objects consist of the usual 'arrt_ly, record, ... int
types, which have the usual serial semantics expected for these types. .

For the time being, we assume each resource manager has a distinguished history
object called history_suffix. Several atomic objects implemented on the same
resource manager will share the same histbry object. To shorten our programs, we
also assume the distinguished history object is the first argument in a history
operation if it is not supplied. Transitions are inserted into h‘lstory_sufﬁx
automatically when an operation on a globally atomic object returns. When an action
is committed, fha status of the transitions in Mstorj__suffix is updated
automatically. When an action is aborted, the aborted transitions in history_suffix
" are deleted automatically. ’

4.6 Program Examples

Figures 4-3 on page 100 and 4-4 on page 103 show two application programs. Figure
4-3 shows an implementation of the set object of section 2.3.2 with the intentions list
paradlgm The mplementation is parameterized by the type of the items in a 96t.
Three operations, insert, delete, and member, are supported. The state of the set is
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X This example uses the intentions 1ist paradigm.
sot[T] = resource_manager is insert, delete, member

% abbreviations for transition templates

no_x = member_x_false X <member(x)><false>
yes_x = member_x_true X <member(x)><{trued
del_x = delete_x_okay % <delete(x)><okay>
ins_x = insert_x_okay % <insert(x)><okay>

permanent state is
snapshot: array[T].
history_suffix: history

while true do % background process
begin local computation
t: transition := historySdelete_first()
if transition$match(t, committed_del_x)
- then ... %X remove t.argl from snapshot
elseif transitionSmatch(t, committed_ins_x)
then ... X insert t.argl into snapshot
ond
end local computation
end

insert = procedure(x: T)
begin entry % begin local computation
it ~historySexists(history$p_sub(this_transition), no_x,
not_changed(del_x))
then X insert this transition into history_suffix
return
end _ ' ' '
% If no <member(x)><{false> transitions can be potentially
4 sorialized after this transition, or if there are but.
4 the effect of this transition is overwritten by another
x committed <{delets(x)><okay> transition, then this
% operation can proceed and retura.

retry whenever % end local computation :
~historySexists(history$p_sub(this_transition), no_x,
not_changed(del_x))
end insert .

not_changed = procedure(op: template, t: transition) returns(bool)
roturn(~h1story$ox1sta(historyid between(this_transition, t),

committed op))
end not_chuugcd

Figure 4-3:An Implementation of a Set RM with the Intention List Paradigm
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delete = procedure(x: T)
begin entry
if ~h13tory80x13ts(historySp_sub(this transition), yes_x,
not_changed(ins_x))
then X insert this transition into history_suffix
return
end
retry whenever ~historySexists(history$Sp_sub(this_ transition).
yes_x, not_changed(ins_x))
end delete -

member = procedure(x: T) returns(bool)
begin entry
it historySexists(d_prior(this_transition), colnittod del_x,
not_p_changed(ins_x))
then X insert this transition into history_suffix
return(false)
end
% If there is a committed <delete(x)><okay> transition
% serialized before this transition, and there are no
% intervening <insert(x)><okay> transitions, then false
% can be returned.
% The following three clauses are similar.

i? historySexists(d_prior(this_transition), committed_ins_x,
: not_p_changed(del_x))
then X insert this transition into history_suffix
return(true)
end

it ~historySexists(history$p_prior(this_transition), ins_x)
and ~array{T]$Smember(snapshot, x)
then % insert this transition into h1:tory_suff1x\
: return(false)
end

if ~history$exists(history$Sp_prior(this_transition), del_x)
and array[T]Smember(snapshot, x)
then % insert this transition into history_suffix
return(true)
end

retry whenever
historySexists(d_prior(this_transition),

committed_del_x, not_p_changed(ins_x)) or
history$Sexists(d_prior(this_transition),

committed_1ins_x, not_p_changed(del_x)) or
(~historySexists(history$Sp_prior(this_transition), ins_x) and

~history$exists(history$p_prior(this_transition), del_x))

end lo-bor

Figure 4-3, continued
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not_p_changed ‘= procedure(op: template, t: transition) returns(bool)
return(~historySexists(history$p_between(this_transition, t),

op)) »
end not_p_changed :

end set

Figure 4-3, continued

represented by a locally atomic array and a locally atomic history object. When insert
and delete operations are committed, they are merged into the snapshot in an infinite
loop. The operation historySdelete_first() returns the committed transition in
history_suffix that is serialized before all other transitions. Thus the committed
operations are merged in the global serialization order.

In the implementation of the insert operation, a test is made to ensure that no conflict
is created before returning okay. No conflict is created if there are not any potentially
subsequent member_x_false (i.e., no_x) transitions. Notice that the x in the template
refers to the x in the argument of the procedufe. Furthermore, even if such a
transition does exist, no conflict is created if the effects of the insert operation are
overwritten by another commitied delete_x_okay trangition serialized between this
insert operation and the member operation. This extra filtering is achieved with the
closure not_changcd(dﬂ_i). If a conflict is created, the current local computation
is aborted. The proceed condition specified in the retry statement is used as a hint
to determine how the conflict can be resolved. The implementations of delete and
member follow a similar pattern,

Figure 4-4 shows an implementation of the bank account object of section 3.2 with
the undo log paradigm. Instead of merging the committed transitions in an infinite
loop, the projection ‘in ‘the implementation is modified when the operation is
executed. Each transition is paired with an undo operation. The undo operation is
invoked when the transition is aborted. Changes to the projection are undone. The
correct undo operation to invoke depends on the result of the original operation.
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% This example uses the undo log paradigm
account = resource_manager is read_balance, deposit, withdraw

% transition template abbreviations
read = read_balance_x %X <{read_balance()><x>
dep = deposit_x_okay X <deposit(x)><okay>
withdr = withdraw_x_okay X <withdraw(x)><okay>
successful_update = dep or withdr
insuf_funds = withdraw_x_1insufficient_funds
% <withdraw(x)><insufficient_funds>

permanent state 1s _
projection: real X the balance of the account
history_suffix: history

while true do X background process
begin local computation
historySdelete_first()
end local computation
end

deposit = procedure(x: real)
begin entry
it ~historySexists(history$p_sub(this_transition), read) and
~history$Sexists(history$p_sub(this_transition),
insuf_funds, high(x))
then projection := projection + x
X declare undo operation for deposit
this_transition.undo := un_deposit(x)
% insert this transition into history_suffix
return
end
retry whensver
~historySexists(history$p_sub(this_transition), read) and
~historySexists(history$p_sub(this_transition), insuf_funds)
end deposit

un_deposit = procedure(x: real)
% this procedurs, together with the updcto of the status of
% the deposit transition, are executed as a local computation
projection := projection - x
end un_deposit

high = procedure(x: real, t: transition) roturns(bbol)

return(highest_| pocsiblo balance at(t) +x ;: t.argl)
end high

Figure 4-4:An Implementation of a Bank Account Object
with the Undo Log Paradigm
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highest_possible_balance_at = procedure(t: transition) returns(real)
return(projection - definite(dep, t) + possible(withdr, t))
% Unmerge effects of deposits that are definitely subsequent
% to t and withdrawals that are tentative or potentially
% subsequent to t.
end highest_possible_balance_at

Tow = procodure(x real, t: transition) returns(bool)
return(lowest_possible_balance_at(t) - x < t.argl)
end low

Towest_possible_balance_at = procedure(t: transition) returns(real)
return(projection - possible(dep, t) + definite(withdr, t))
end lowest_possible_balance_at

definite = procedure(opname: template, t: transition) returns(real)
value: real := 0
for each s: transition in history$Smatch(history$d_sub(t),
opname) do
value := value + s.argl
end
return(value)
end definite

possible = procedure(opname: template, t: transition) returns(real)
value: real := 0
for each s: transition Ain h1:torySlatch(hi:torySp_sub(t).
opname) do
value := value + s.argl
end
% Add in the values of potentially subsequent transitions.

for each s: transition in history$Smatch(d_prior(t),
tentative_opname) do

value := value + s.argl
end -
% Add in the values of tentative transitions, but avoid
% repeating those above.
return(value)
end possible

Figure 4-4, continued
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read_balance = procedure() roturn:(roal) ‘
begin entry
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un_withdraw = procedure(x: real)
projection := projection + x
ond un_withdraw

oend account
Figure 4-4, continued

4.7 implementation Trade-Offs

in this section we discuss several trade-offs that an implementor of a globally atomic
object may have to make. Section 4.7.1 compares the two recovery paradigms.
Section 4.7.2 explores the possibility of implementing globally atomic objects with
other giobally atomic objects.  We have not considered this possibility for
concurrehcy reasons. However, such an imp&ementaﬂon may have sufficient
concurrency if the underlying globaily atomic objects are highly concurrent. For
example, in implementing a bank object which consists of many bank accounts,
implementing the bank object with globaily atomic bank account objects is a viable
alternative to the paradigm that we have been describing in this chapter. Finally,
section 4.7.3 discusses how history objects can be partitioned to reduce the cost of
accessing them.

4.7.1 Comparison of chovgry Paradigms _

’ Before comparing the two recovery paradigms, it should be emphasized that the
recovery paradigm is a local choice. Each resource manager can be coded with a
different recovery paradigm. In fact, the two paradigms can be combined. Both
snapshots and projections can be maintained, and each operation can derive its
result from the appropriate objects. The comparison below is based on efficiency
and programmability. We have commented in section 4.4.2 that occasionally a
simple projection and a history object cannot capture the entire state of an object. In |
those cases, either a more complicated projection is needed or an intentions list
paradigm should be used.

Figure 4-5 shows an implementation of the bank account object using an intentions
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list paradigm. Comparing with the implementation that uses the undo log paradigm
in figure 4-4 on page 103, we see that the undo log paradigm is more efficient in
observing a "recent” state df the object, in other words, when there are few prior
operations whose ‘effect needs to be "unmerged"” from the projection. For examble,
in executing the procedure highest_possible_balance_at(t), if there are few
tentative withdr transitions in history_suffix and t is a recent transition, then only
those few transitions potentially subsequent to t and the tentative withdraw
transitions need to be "unmerged" from the projection. On the other hand, the
effects of all the withdr transitions definitely prior to t and deposit transitions
potentially prior to t have to be merged with the snapshot. Conversesly, the intentions
list paradigm is more efficient in observing an "old" state.

The efficiency of the paradigms also depends on the frequency of aborted
operations. [f an operation is aborted, the undo log paradigm has to undo the
changes made to the projection, in addition to wasting the effort expended in
changing the projection when the operation is invoked. With an intentions list
paradigm, little work is needed. However, we anticipate aborted operations to be
uncommon.

The intentions list paradigm is easier to program with because the programmer does
not have to provide undo operations. With the undo log paradigm, undoing is
needed not only during recovery, but aiso when the effect of operations has to be
"unmerged” from the projection, such | as when determining the result to a
read_balance operation. The fact that the state has to be merged and unmerged may
complicate programming. ' :

o

4.7.2 Implementing Atomic Objects with Atomic Objects

In previous sections we have discussed how to implement globally atomic objects
using locally atomic objects. The implementations are characterized by application-
dependent synchronization and recovery because a locally atomic computation is
- committed before the globally atomic computation in which it executes is committed.
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% This example uses the intentions 1ist paradigm
account = resource_manager is read_balance, deposit, withdraw

X transition abbreviations
read = read_batlance_x X <read_balance()><{x>
dep = deposit_x_okay % <deposit(x)><okay>
withdr = withdraw_x_okay %X <withdraw(x)><okay>
successful_update = dep or withdr
1nsuf _funds = withdraw_x_1insufficient_funds
% <-1thdrav(x))<1nsuff1c1ont funds>

permanent state is
snapshot: resal
history_suffix: history

% background process
while true do
begin local computation
, t: transition := history$delete_first(history_suffix)
if transitionSmatch(t, committed_dep)
then snapshot := snapshot + t.argl
elseif transitionSmatch(t, committed_withdr)
then snapshot := snapshot -~ t.argl.
end
end local computation
end

deposit = procedure(x: real)
begin entry
if ~historySexists(history$p_sub(this_transition), read) and
~history$exists(history$Sp_sub(this_transition), insuf_funds,
high(x))
then %X insert this transition into history_suffix
return
ond
retry whenever
~history$Sexists(history$Sp_sub(this_ trcnsition). read) and
~h1storySoxists(hicterytp_sub(thia transition), insuf_funds)
end deposit

high = procodurc(x. real, t: transition) returns(bool)
roturn(highost_posaiblo balance_at(t) + x > t.argl) -
end high

highest_possible_balance_at = procedure(t: transition) returns(real)

return(snapshot - definite(withdr, t) + possib!o(dop. t))
end highest_possible_balance_at

Figure 4-5:An lmplementation of a Bank Account Object
with the Intention List Paradigm
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lowest_possible_balance_at = procedure(t: transition) returns(real)
return(snapshot - possible(withdr, t) + definite(dep, t))
end Towest_possible_balance_at

low = procedure(x: real, t: transition) returns(bool)
return{lowest_possible_balance_at(t) - x < t.argl)
end low

definite = procedure(opname: template, t: transition) returns(real)
value: real := 0
for each s: transition in history$match(history$d_prior(t),
: committed_opname) do
value := value + s.argl
end
return(value)
ond definite

possible = procedure(opname: template, t: transition) returns(real)
value: real := 0
for each s: transition in history$Smatch(history$p_prior(t),
opname) do
value := value + s.argl
ond
return(value)
end possible

read_balance = procedure() returns(real)
begin entry
if ~historySexists(history$Sp_prior(this_transition),
tentative_successful_update) and
~historySexists(history$p_sub(history$p_prior(
this_transition), this_transition),
committed_successful_update)
then X insert this transition into history_suffix
return(highest_possible_balance_at(this_transition))
ond :
retry whenever
~history$exists(history$Sp_prior(this_transition),
tentative_successful_update) and
~historySexists(history$Sp_sub(history$p_prior(
this_transition), this_transition),
committed_successful_update)
end read_balance

Figure 4-5, continued
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withdraw = procedure(x: real) signals(insufficient_funds)
- begin entry
if highest_possible_balance_at(this_transition) < x
then X insert this transition into history_suffix
‘ signal 1insufficient_funds
end

it ~historySexists(historySp_sub(this_transition), read) and
~history$exists(history$Sp_sub(this_transition), withdr,
' Tow(x)) and
lowest_possible_balance_at(this_transition) > x
then % insert this transition into history_ suffix
return
end

retry whenever
~historySexists(history$Sp_sub(this_transition), read) and
~history$Sexists(history$p_sub(this_transition), withdr) and
~history$exists(history$p_prior(this_transition),
tentative_successful_update) and
~historySexists(history$Sp_sub(history$p_prior(
this_transition), this_transition),
committed_successful_update)
ond withdraw

end account
Figure 4-5, continued

The locally atomic computations are also serialized in a different order than the
globally atomic computations. An alternative is to construct globally atomic objects
with globally atomic objects. For example, instead of using locally atomic record
objects, a bank account can be constructed with globally atomic record objects. No
application-dependent synchronization or recovery is needed. Application programs
can be written as if there were no concurrency or failures.

We argued that using globally atomic record objects to construct globally atomic
account objects is not concurrent enough when a globally atomic computation can
last a long time. The semantics of the record objects does not allow sufficient
concurrency. However, this approach of implementing a giobally atomic oblect with
smaller globally atomic objects may be viable if the underlying globally atomic objects
are abstract objects and their semantics can be used to increase concurrency.
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In this section we will illustrate two different approaches of implementing a bank
object. A bank object consists of many bank accounts. The semantics of a bank
object is described in figure 4-6. Notice the difference between a bank object and a
bank account object. At first glance, a bank object may look similar to a bank
account object because they both support withdraw, deposit, and read balance
operations. However, the bank object is in fact capturing the state of a collection of
bank accounts; hence it also supports a transfer operation that transfers funds
between two accounts and an audit_sum operation that retums a sum of the balances
in all the accounts. |

S a mapping s from account numbers to real numbers

I undeﬂned for any account number yet

T <deposit(an, x), r,, a><okay, r,, a> = deposit an x okay
<withdraw(an, x) r a)(okay, r, 3> = withdraw_ an x okay
<withdraw(an, x), r,, aXinsufficient funds, r, 8> = withdraw_an_x_insuf
<read_balance(an), r, aXxx, r, a> = read_an_x
<transfer(an1, an2, x), r;, a><okay, r,, a> = transfer an1_ an2_ x _okay
<transfer(an1, an2, x), r, aXinsufficient funds, r,, a> =

transfer.an1_an2 x_ nsuf
<audit_sum(), r,, aXx, r;, a> = audit sum_x
where a is an action, anl’s are account: numbora,
x is a positive real number.

N,(s, deposit an_x okay) = s’ where s’ =s except s’(an) = s(an) +x
N (s, withdraw _an x okay) = s’ if s(an) 2> x, where 8’ =8 except 8’(an) = s(an)-x
N,(s, withdraw an x inguf) = s if s(an)<x
N(s, read anx) = sif s(an) = x
N (s transfer_.ani_an2 x okay) = s’ if s(an1) 2 x,
where s’ =8 except s’(ant) = s-x,8’(an2) = s+ x
N,(s, transfer.an1 an2 x insuf) = s if s(an1)<x
N (s, audit sumx) = s if 2 s(an) = x

Figure 4-8:A State Machine for a Bank Object

We will assume that an operation on the bank object last for only a short period of
time, even though the operation may involve more than one account. This is possible
if, for example, the bank object is implemented on a single site. However, we assume
that there are long computations in this application because some computations
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might access multiple bank objects.

An obvious approach to implement the bank object is to implement it using locally
atomic record/array/history objects and the paradigm described in this chapter.
The semantics of the bank object is used to increase concurrency. A different
approach' is to implement the bank object out of the globally atomic bank account
objects that we have described in this chapter.. The implementation is simple
because the account objects are globally atomic and hide the concurrency and
failures in a system. The complexity is instead hidden in the implementation of the
account objects. Notice that in this approach the semantics of the account objects is

used to increase concurrency.

We will compare these two approaches of 'implementing a bank object. The
difference lies in one approach using the semantics of a bank object to increase
concurrency, while the other using the semantics _of the account objrects. We will
argue that concurrency and complexity of the implementations can be comparable.
However, there are several potentially significant differences aiso.

4.7.2.1 Two Approaches to implement a Bank Object

In figure 4-7 we show a partial implementation of a bank object using the
implementation paradigm described in this chapter and some locally atomic record,
- array and history objects. Each bank operatibn is executed as a local computation,
in which locally atomic record, array, and history objects are accessed. We have not
shown the locally atomic record and array objects in figure 4-7 because they are
hidden in the implementation of the locally atomic directory object.

Figure 4-8 shows an implementation of a bank object that uses globally atomic
account objects. Notice that because concurrency and failures are hidden by the
implementation of the account objects, the implementation in figure 4-8 is relatively
simple.
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% This implementation uses an intentions 11st paradigm.

bank = resource_manager is read_balance, deposit, withdraw, transfer,
audit

X abbreviations for templates
% <read_balance(an)><x> or <audit_sum()><x>
read_an = read_balance_an_x or audit_sum_x

% <{deposit(an, x)><okay> or <{transfer(an', an, x)><okay>
deposit_an_x = deposit_an_x_okay or transfer_an'_an_x_okay

% <withdraw(an, x)><okay> or <transfer(an, an', x)><okay>
withdraw_an_x = withdraw_an_x_okay or transfer_an_an'_x_okay

% <{deposit(an, x)><okay> or <withdraw(an, x)><okay>
successful_update = deposit_an_x_okay or withdraw_an_x_okay

% <withdraw(an, x)><insufficient_funds> or

y 4 {transfer(an, an', x)><insufficient_funds>

insuf_funds = withdraw_an_x_insufficient_funds or
transfer_an_an'_x_insufficient_funds

permanent state 1is
snapshot: directory[account_number, real]
history_suffix: history

while true do X background process
begin local computation
t: transition := historySdelete_first()
if transition$Smatch(t, committed_deposit_an_x)
then snapshot(t.argl) := snapshot(t.argl) + t.arg2
olseif transition$match(t, committed_withdraw_an_x)
then snapshot(t.argl) := snapshot(t.arg2) - t.arg2
end '
end local computation
end

deposit = procedure(an: account_number, x: real)
' begin entry

if ~historySexists(history$p_sub(this_transition), read_an) and

~historySexists(history$p_sub(this_transition), insuf_funds,
high(an, x))
then % insert this transition into history_suffix
return

end

Figure 4-7:An implementation of a Bank Object
with the Intention List Paradigm
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retry whenever
~historySexists(history$p_sub(this_transition), read_an) and
~historySexists(history$Sp_sub(this_transition), insuf_funds)
end deposit

high = procedure(an: account_number, x: real, t: transition)
returns(bool)
return(highest_possible_balance_at(an, t) + x > t.argl)
end high '

highest_possible_balance_at = procedure(an: account_number,
' t: transition) returns(real)
return(snapshot(an) -
definite(withdraw, an, t) + possible(deposit, an, t))
end highest_possiblie_balance_at

audit_sum = procedure() returns(real)
begin entry
it ~historySexists(history$Sp_prior(this_transition),
tentative_successful_update) and
~historySexists(history$p_sub(history$p_prior(
this_transition), this_transition),
committed_successful_update)
then r: real := 0
for an: account_number 1n
directorySelements(snapshot) do
r := r + balance_at(an, this_transition)
end
X insert this transition into history_suffix
return(r)
end
retry whenever
~history$Sexists(historySp_prior(this_transition),
tentative_successful_update) and
~historySexists(history$p_sub(history$p_prior(this_transition),
this_transition), committed_successful_update)
end audit_sum

definite = procedure(opname: template, an: account_number,
t: transition) returns(real)
value: real := 0
for each t: transition in history$Smatch(history$d_prior(t),
committed_opname_an_x) do
value := value + x
end
return(value)
end definite

Figure 4-7, continued
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possible = procedure(opname: template, an: account_number,
t: transition) returns(real)
value: reatl := 0 ‘
for each t: transition in history$match(history$Sp_prior(t),
opname_an_x) do
value := value + x
end
return(value)
end possible

balance_at = procedure(an: account_number, t: transition) returns(real)
return(snapshot(an) -
definite(withdraw, an, t) + definite(deposit, an, t))
end balance_at

end bank
Figure 4-7, continued

Depending on how the globally atomic account objects are implemented, our bank
application may or may not have enough concurrency. An application that uses a
combination of the impiementation in figure 4-8 with the implementation of globally
atomic bank accounts in figure 4-9 is probably not concurrent enough in a system
with long computations, since no semantics of the application has been utilized. On
the other hand, if the application uses the globally atomic bank account
implementations described in figures 4-4 and 4-5, which make use of the semantics
~of a bank account, the resulting application allows much more concurrency.

Notice that there is some similarity between figures 4-5 and 4-7. For example, the
depos it operations in the figures are aimost identical. However, part of this similarity
is due to clever encoding of the transition templates. The read_an transition
template in figure 4-7 stands for either a read_balance_x transition or an
audit_sum_x transition that involves an, whereas the read transition template in
figure 4-5 stands for a read_balance_x transition only. :

Figure 4-10 depicts the two different approaches to implement a globally atomic bank
object. Notice that both Approach 1 and Approach 2 use the implementation
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bank = resource manager is deposit, withdraw, road_baiance. audit,
transfer

permanent state 1is
dir: directory[account_number, account_resource_manager]
% this is a directory that maps account numbers to the account
% resource manager that implements the account. To simplify
%X our example, we assume all input account numbers are valid.

deposit = procedure(a: account_number, r: real)
dir(a).deposit(r)
% dir(a) looks up the resource manager corresponding to a.
% The syntax "resource_manager_name.procedure_name(arguments)"”
"% 1s used to call a procedure in another resource manager.
end deposit

withdraw = procedure(a: account_number, r: real)
signals(insufficient_funds)
dir(a).withdraw(r) resignal insufficient_funds
% The resignal statement catches any insufficient_fund
% signal from the withdraw procedure of the bank account object
% and resignals 1t to the caller of this withdraw procedure.
oend withdraw

read_balance = procedure(a: account_number) returns(real)
return(dir(a).read_balance())
end read_balance

audit_sum = procedure() return (real)
result: real := 0
for an: acconnt number 1n directorySelements(dir) do
result := result + read_balance(an)
end
return(result)
end audit_sum

transfer = procedure(from, to: account_number, amount: real)
signals(insufficient_funds)
withdrav(fro-. amount) resignal 1insufficient_funds
deposit(to, amount)
end transfer

end bank
Figure 4-8:A Simple implementation of a Bank Object
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account = resource manager is deposit, withdraw, read_balance
% Procedures exported

permanent state 1s
state: globally_atomic_record[balance: roal R |

deposit = procedure(r: real)
state.balance := state.balance + r
end deposit

withdraw = procedure(r: real) signals(insufficient_funds)
if state.balance < r then signal insufficient_funds end
state.balance :=~ state.balance - r
end withdraw

read_balance = procedure() returns(real)
return(state.balance)
end read_balance

end account
Figure 4-9:A Simple Implementation of a Bank Account Object

paradigm described in this chapter, though at different levels of abstraction.

4.7.2.2 Comparison of the Two Approaches

In this section we compare Approach 1 and Approach 2. The two approaches are
comparable in complexity and concurrency. However, there are also some subtle
differences. The compiexity of Approach 1 is in the implementation of the giobally
atomic bank objects using locally atomic objects, whereas the complexity of
Approach 2 is in the implementation of the gliobally atomic bank account objects.
Building globally atomic bank objects from globally atomic account objects is a
simple task, because the necessary synchronizétion and recovery have been
implemented with the underlying globally atomic account objects. |

Concurrency and Complexity

It is not obvious whether Approach 1 or Approach 2 is more desirable. In an
implementation that follows Approach 1 (figure 4-7), the transfer and audit sum
operations can avoid creating any conflicts with each‘an‘othér as long as the other is
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Globally atomic Glabally atomic
bank object .| bank object
Giobally atomic
account objects
Locally atomic Locally atomic
record and record and
history objects history objects
Approach 1 Approach 2

Figure 4-10:Two Different Approaches of implementing a
Globally Atomic Bank Object

finished but maybe tentative. Because a transfer or audit sum operation can be part
of a much longer computation, this period of being finished but tentative can be quite
_long. The concurrency is due to the semantics of audit sum, which only requires the
result returned to be a sum'of the balances, and that of transfer, which keeps the
total balance constant although it changes individual balances. As a result, when
one of the operations is compieted, the other operation can proceed even when the
first operation is not committed. | |

If the bank object is implemented using globally atomic account objects, the transfer
and audit sum operations will be translated into withdraw/deposit and read balance
operations on the bank account objects. These operations interfere with one
another and cause conflicts to be created even after the higher-level operations at
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the bank object are already finished.

One may be tempted to implement the transfer and audit sum operations with special
versions of the lower-level operations. in fact, a possible implementation is to define
the globally atomic bank accounts with the semantics in figure 4-11.

S,: [s1, 32] where 81 and 82 are real numbers

I [O 0]

T <deposit(x), r,, a><okay, r,, a> = deposit. x okay
<wnthdraw(x) r,, axokay, r,, a> = withdraw_x okay
<withdraw(x), r,, aXinsufficient funds, r,, 8> = withdraw_x insuf
<tdeposit(x), r,, a><okay, r,, a> = tdeposit x okay
<twithdraw(x), r,, a)(okay, r, @ = twithdraw x okay
{twithdraw(x), ri aXinsufficient_funds, fpa> = twithdraw_x_insuf
<read balancel(), r;, aXx, r,, > = read.x :
<aread balance(), r;, a><x, r,, a> = aread.x
where ais an action, X is a positive real number.

N,([s1, s2], deposit x okay) = [s1 +x, 82 +x]

N ([s1 s2], tdeposit_x okay) = [s1 +x, 82]

N([s1 s2], withdraw _x okay) = [81-x, 82-x] if 81 > x
N ([31 s2], withdraw x_insuf) = [81,82] ifs1 <x

N ([s1 s2], twithdraw_x okay) = [s1-x,82] if 81 > x
N([s1 s2], twithdraw x insuf) = [s1,82] if s1<x
N([s1 s2], read x) = [s1,82] ifs1 = x

N([s1 2], aread x) = [s1, 2] if 82 = x

Figure 4-11:A Specialized State Machine for a Bank Account Object

Special operations tdeposit and twithdraw are provided for the implementation of
transfer, and an aread operation is provided for audit sum. In essence, each bank
account keeps track of two "balances.” The first balance is the normal one. The
second "balance" is updated when the update is not invoked by a transfer operation.
The second balance is read to calculate the sum of the balances. As a result, no
conflicts are created between an audit_sum operation and a transfer operation.

This technique does not work in general situations because the cost of keeping extra
state information can be prohibitive. For example, suppose a database of employee
records is partitioned among several sites. The application provides operations to
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transfer employee records from one partition to another, update information in the
employee 'records. and to evaluate queries. The interference between the transfer
and query operations poses a problem similar to the interference between transfer
and audit.sum in the bank application. However, keeping an extra copy of an
employee record at the old partition when it is transferred does not seem to be
acceptable. Not only is extra storage required, updating the employee records
becomes more costly also. A more appropriate solution in this example would be to
allow the partitions to return a superset of the records in that partition. The
coordinator of the query can ignore redundant records ool_lected from the partitions.
If a record is being transferred from one partition from another, both partitions can
return the record before the transfer computation is finalized. When a record is
deleted, both partitions must be informed. |

Although the examples above do not show that concurrency is necessarily

‘deéreased when globally atomic objects are implemented with other giobally atomic
objects, they do illustrate that the semantics of the lower-level giobally atomic objects
have to be customized. The customization increases the complexity of implementing
a globally atomic object. |

Reliability and Efficiency

A possible disadvantage of implementing the bank object with locally atomic objects
is the centralization of synchronization and recovery information. When compared to
an implementation in which the history objects are distributed among many account
objects, the history object used by a bank object contains more transitions and is
- more expensive to access. In addition, the reliability of the application can be
reduced because its functioning depends on the availability of the centralized history
object of the bank object. A possible solution to overcome these disadvantages is to
partition or replicate the state (directory) of the bank object. We will describe how
history objects can be partitioned and/or replicated in the next section. -

Another possiblé problem of implementing globally atomic objects with locally atomic
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objects is the limitation in the ‘Iength of locally atomic computations. Since locally
atomic objects are implemented with other locally atomic objects, such as locally
atomic arfays or records, the lengths of the locally atomic computations have to be
kept short to minimize the cost of conflicts created in accessing locally atomic
objects. Keeping locally atomic computations short is not always possible, especially
when a locally atomic object may be partitioned or replicated. To minimize the cost
of these conflicts, we can have a multiple-layered model of atomicity, instead of the
dichotomy of local atomicity and global atdmicity. A layer | atomic object can be
implemented with a layer | + 1 atomic object. The semantics of the objects in each
layer can be utilized. For example, a layer I-1 atomic bank object can be
implemented with a layer | atomic history object and a layer | atomic bank account
object, which can in turn be implemented with a layer | + 1 atomic history object and
alayer 1 + 1 atomic record object.

4.7.3 Partitioning and Replicating History Objects
When computations are long, their transitions may remain tentative and be kept in a
history object for a long period of time. Performance can become a problem when
there are too many transitions in a history object. An obvious solution to this problem
is to partition history objects into smaller history objects.

“in our previous program examples, we assume one history object is shared by all the
" atomic objects implemented in a resource manager. This is not necessary and can
be -changed by having multiple history objects declared in the resource manager,
with history operations specifying the history object being operated on explicitly.

More complicated schemes of partitidning the history object are possible. For
example, if an operation x is only interested in a subset of the different types of
transitions, a sub-history can be created containing only those transitions. The cost
of inserting a transition, which happens once, may become higher because the
transition may have to be inserted into several sub-histories. However, the cost of x
accessing a history object is lowered because there are probably fewer transitions in
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the sub-history in which x is interested.

For example, the history qf a set object can be partitioned according to properties of
the items involved. For example, if a set object is a set of integers, the history object
can be partitioned according to the range of» values of the arguments. A more
complicated example can be illustrated with the history object in the implementation
of a globally atomic employee file object. The application may decide to partition the
history object and the snapshot/projection objects according to the department that
a transition is related to. For example, if a transition involves an employee in
Department X, then only the partition of Department X needs to be accessed. When
an employee is transferred from Department X to Department Y, a transition is
inserted into each of the partitions of the two departments. If a query involves
potentially every Wnt, all the partitions need to be accessed

in these examples, the locally atomic and logically centralized history object is
implemented with locally atomic history partitions. The semantics of the partitions
reduces the number of partitions that need to be accessed. If only a few partitions
are accessed, the cost of accessing the entire history is reduced and the operation
can proceed even when some partitions are not available.

in [20] a history object is partitioned and replicated for availability reasons. The
history object is not partitioned according to properties of the transitions but rather
the availability of the replicas (partitions). Each transition has an initial quorum and a
final quorum. When the history object is read, an initial quorum of replicas is read to
guarantee that every transition relevant to the current operation is contained in at
least one of the replicas. When a transition is inserted into the history object, a final
quorum of replicas is accessed. For example, in determining whether conflicts are
created for an observer operation, other observer transitions are irrelevant.
Consequently, the replicas read may not overlap with the replicas updated when
previous observer transitions are inserted.

A simpler scheme of replicating the entire history object can be used to increase
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availability, though not performance, over an un-replicated implementation.
Howevef, because a history object is usually both read and written.‘a read-one-write-
all algorithm will not increase availability. A slightly more complicated read-write
quorum scheme [16] is needed.

Another way of partitioning the history object can be illustrated by the example in the
previous section. By implementing the bank object with globally atomic bank
account objects, no history needs to be kept for the bank object; rather, the history
information is partitioned among the account objects. This partitioning is simpler
than those described above because no centralized image isS necessary.
Unfortunately, as the example has illustrated, this partitioning may cause a loss of
concurrency.

Finally, there is a possibility of avoiding the cost of accessing the history object
altogether in some applications. Consider the semi-queue object specitied in figure
4-12,

s,. zsets of items (we assume items enquoued are unique)

I ™

‘ll' <enqueue(x), r;, aXokay> = enqueuoxokay
<dequeue(), r;, a)(x, r, a> = dequeue.x
<dequeue(), r,, a><empty, r,, 8> = dequeue empty
where ais an actlon, xis an item.

N,(s, enqueue x okay) = s U {x}

N(s dequeuex) =s-xifx€s

N (s dequeue empty) = sits = &

Figure 4-12:A State Machine for a Semi-Queue

An implementation using an intentions list recovery paradigm can be found in figure
4-13. In the implementation of the dequeue operation, we find that when there are
items in the snapshot, the history object has to be accessed to make sure the items
have not been dequeued by previous dequeue operations. To avoid this access, the
snapshot object can be partitioned into two arrays, say a1 and a2. The idea is to put
all the items which are definitely not dequeued into a1 and items which may have
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% This example uses the intentions 1ist paradigm.
semig[item] = resource_manager is enqueue, dequeue

% transitions in history suffix

% dequeue_x = <{dequeue()><{x>

% dequeue_empty = <{dequeue()><empty>
% enqueue_x_okay = <enqueue(x)><okay>

permanent state 1s
snapshot: array[item],
history_suffix: history

while true do
bogin local computation
t: transition := history$Sdelete_first()
if transitionSmatch(t, committed_dequeue_x)
then ... X remove x from snapshot

‘elseif transitionSmatch(t, committed_enqueue_x_

then ... % insert x into snapshot
end
ond local computation
end

dequeue = procedure() returns(item) signals(empty)
begin entry
for x: item in array[item]Selements(snapshot) do

if ~historySexists(dequeue_x) thea return(x) end

if historySexists(history$d_prior(this_transition),
committed_enqueue_x_okay, not_used)
then X insert this transition into history_suffix
return(x)
end

it ~historySexists(history$p_prior(this_transition),
enqueue_x_okay, not_d_used) and empty_snapshot()
then X insert this transition into h1:tory_suff1x

signal empty
end

retry whenever
~historySexists(history$p_prior(this_transition),

tentative_enqueue_x_okay)
and ~historySexists(tentative_dequeve_x)

‘end dequeue v
Figure 4-13:An implementation of a Semi-Queue Object
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enqueue = procedure(x: item)
begin entry
it ~historySexists(history$p_sub(this_transition),
dequeue_empty)
then % insert this transition into history_suffix
return
end
retry whenever
~h1storySoxists(h1story$p_sub(th13 transition) dequeue_empty)
end enqusue

not_used = procedure(t: transition)
x: 1tem := t.argl
return(~historySexists(history$Sd_sub(t), dequeue_x))
end not_used

not_d_used = procedure(t: transition)
x: item := t.argl
return(~historySexists(history$d_sub(t), committed_dequeus_x))
end not_d_used

empty_snapshot = procedure() resturns(bool)
for x: item in array[item]Selements(snapshot) do
if ~history$exists(committed_dequeue_x)
then return(false)
end
end
return(true)
end empty_snapshot

end semiq

Figure 4-13, continued

been dequeued into a2. When a committed enqueue transition is merged, the item
can be inserted into a2 if there is a subsequent dequeue transition of that item, and
into a1 otherwise. When the dequeue operation is invoked, it can enumerate a1 first.
If there is an item in a1, it can be deleted from a1, inserted into a2, and returned to the
caller, without ever accessing the history object. If no items are found in a1, a2 can
be searched. Occasionally, a dequeue operation may be aborted after the item has
been moved into a2. The item may stay in a2 without affecting the correctness of the
implementation; a background process can move such items back to ai.
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4.8 Conclusion

In this chapter we have described programming paradigms that an implementation of
an atomic object can follow. These paradigms simplify the writing of application-
dependent synchronization and recovery code. With simpler code, arguing the
correctness of an implementation becomes easier. In particulaf, we introduce the
notion of locally atomic objects and locally atomic computations. Synchronization
and recovery are partitioned into those performed by the locally atomic objects and
those performed by the implementation of the atomic object. This partitioning heips
the programmer convince himself that the implementation is correct.

In this chapter, we have also introduced the use of history objects, which capture all
the relevant local information needed by an object to determine whether conflicts are
created. The interface provided by these history objects makes the underlying
concurrency control algorithm transparent to the programmers. This transparency
provided by the history objects, together with the transparency provided by the
conflict model, allow the programmer to design the functionality and program the
implementations of an application without having to understand the details of the
underlying concurrency control algorithm.

For recovery, we have discussed an intentions list paradigm and an undo log
paradigm. By imposing constraints on how an operation may mutate the locally
atomic objects, the recovery activities become a more structured process.

We have presented several program examples and illustrated the use of the
paradigms we introduced. '

Finally, we have discussed several implementation strategies and their trade-offs.
First, there is the local choice of the recovery paradigm. . Second, globally atomic
objects can be implemented using locally atomic objects or other globally atomic
objects. Finally, the cost of accessing history objects can be minimized by various
ways of partitioning them. . These options provide opportunities to customize the
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implementation to specific needs.
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Chapter Five

Concurrency Control Algorithms

In our conflict model and programming interface, each atomic object is assumed to
poséess some knowiledge of the serialization order and operation outcomes. Based
on this knowledge, an object can express conflict conditions without knowing the
details of how the serialization order and operation outcomes are arrived at. In this
chapter we discuss how the objects arrive at a ‘sen'alization order through a
concurrency control algorithm. The protocol that different entities in a distributed
system use to arrive at a consensus of the outcome of a computation is called a
commit protocol. Many papers [17, 37, 52] have been written on the subject and we
will discuss it only briefly at the end of this chapter.

This chapter seeks to fulfill two goals. First, we will show that the programming
interface that we present in Chapter 4 can be implemented on top of a large class of
concurrency control algorithms. In particular, we show how the history operations,
such as p_sub and d_prior, can be implemented. We will also show how the retry
statement can be implemented so that the appropriate actions are taken when
conflicts are created. ‘

Second, we will argue that in some situations the concurrency of a system can be
significantly affected by how the serialization order is determined. In deriving conflict
Conditions. we find that whether a conflict arises depends on the functionality of the
operations of an application and the local knowledge of the serialization order and
. operation outcomes. Previous chapters have focused on how the functionality of an
operation determines the likelihood of conflicts. This chapter shows that there are
special situations in which some concurrency control aldoﬁthms can reduce the
likelihood of costly conflicts significantly when compared to other algorithms. For
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example, suppose long computations are rare in a system and it is unlikely for two
long computations to overlap their execution. Given these conditions, it may be
possible to develop concurrency control algorithms that distinguish between long
computations and short computations so that only short computations will be
restarted or cause delays in other computations. Given that, the overall cost of
conflicts in these algorithms can be much smaller than that incurred by existing
algorithms. One of the contributions of this thesis is the design of two novel
concurrency control algorithms that are adapted to systems with long atomic
computations.

Section 5.1 briefly describes some of the existing concurrency control algorithms
and compares the likelihood of costly conflicts in these algorithms. Section
5.2 describes two novel concurrency controt algorithms and explains the situations in
which these algorithms can reduce the overall cost of conflicts significantly. Section
5.3 describes the implementation of the programming interface in Chapter 4 given
that different concurrency control algorithms can be used underneath. Section
5.4 discusses commit protocols briefly.

To separate our consideration of concurrency control algorithms and the
functionality of an application, we will use the terms "observer" and "mutator” in this
chapter to refer to two classes of operations. The functionality of the first class
observes the abstract state of an object. The second class mutates the abstract
state. For example, a read_balance operation is an observer, a deposit operation is a
mutator, a successful withdraw operation is both because it observes that there are
sufficient funds and mutates the abstract state. To simplify our discussion, we will
assume that conflicts are created when:

1. an observer may be serialized after a tentative mutator, or

2. a mutator may be serialized before an observer previously invoked.

This is not true in all cases, such as when the observer is a withdraw operation and
the mutator is a deposit operation. No conflicts would be created if there were
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sufficient funds for the withdrawal regardiess of the deposit.

Also, we exclude the possibility of parallel sub-actions in our description of
concurrency control algorithms. A computation executes with only one locus of
control and sub-actions within a computation are vsefia,lized by the order they
execute. In most cases, it is straightforward to extend the algorithms to handie
parallel sub-actions. We will give brief explanations of how an algorithm can be
_extended when the extension is not obvious.

5.1 Concurrency Control Aigorithms

The goal of a concurrency controt algorithm is to ensure that a serialization order
among the committed computations exists. It also determines the actions that need
to be taken when a conflict arises. ‘

Many different concurrency control algorithms have been proposed. Some of
them [48] use the order in which computations are started as a serialization order,
some [17] use the order in which computations commit as a serialization order. The
actions that are taken when conflicts arise depend very much.on how a serialization
order is arrived at. In sections 5.1.1 and 5.1.2 we enumerate some of the well-known
concurrency control algorithms that have been propoesd' in the literature and discuss
the likelihood of costly conflicts in these algorithms. Enumerating all the algorithms
~ proposed in the literature would be impossible. However, the performance of the
algorithms described in section 5.1.1 and 5.1.2 is representative of a large class of
algorithms.v

5.1.1 Static Concurrency Control Algorithms

in general, concurrency control algorithms can be classified accordmg to the time
that the serialization order is determined. In static algorithms, the serialization order
is determined at the beginning of a computation. When a computation is started, a
unique timestamp is associated with the computation, and the value of the timestamp
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determines the serialization order'®. In the rest of this section, we will use Reed's
multi-version timestamp algorithm [48] as an example of static concurrency control
algorithms. In his algorithm, computations with larger timestamps are serialized after
computations with smaller timestamps.

Recall that conflicts are creatéd under two types of situations:

1. when a mutator m1 is invoked and it may be serialized before an
observer o1, or

2. when an observer 02 is invoked and it may be serialized aftér a tentative
mutator m2. :

in [48], the mutator m1 is refused and the computation that invokes m1 is restarted
with a larger timestamp. Restarting a computation with a larger timestamp is the only
way to change the serialization order. The observer 02 is delayed until the tentative
mutator m2 is finalized. |

An alternative to refusing m1 is to abort some-of the previously invoked operations,
such as the observer o1. However, this is not always possible as those operations
may have committed. Furthermore, a race condition may develop in deciding to
commit or abort those operations. The sites making the decisions must be
synchronized. ' ‘

The concurrency problem created by the formation of conflicts can be evaluated with
the likelihood of formation and costs of the conflicts. The likelihood and cost of a
conflict can be classified according to the two types of situations in which it is
created. Besides depending on the functionality of the operations of an application,
the likelihood that the first type of conflicts are created in a static algorithm depends
on whether operations are arriving at an object in the predetermined static order.
The more operations arrive in that order, the less likely it is that the first type of
conflicts are created. However, considering that the time between when the

16r-'cor paraliel sub-actions, it suffices to extend the ﬁnm to nmovedabping time ranges, with
sub-actions subdividing the parent's time range. For details see [48].
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computation begins (the timestamp assigned) and when the object is accessed has a
larger variance in our system than in systems with only short computations, we may
have a significantly larger pekcentage of operations arriving in an order that differs
from the static serialization order. In particular, an operation from a remote caller
may find that many local computations with larger times’tamps have been executed,
and probably committed, during the time the call travelied from the caller to the callee
site. Obviously, when a computation may remain tentative for a long period of time,
the second tybe of conflicts is also more likely to arise in a system with long
computations than in a system with only short computations.

In static algorithms, the cost of the first type of conflicts is a restart of the refused
computation. This is potentially disastrous as the refused computation may have
~ executed for a long period of time.. In addition to lost work, restarts also cause
delays. If the top-level action of the refused computation is executed at a remote site,
the restart is likely to be expensive: it adds an extra round-trip delay at least. Note
that when a conflict of the first type is created in a static algon'thm, the operation that
creates the conflict is likely to be invoked from a remote site. It is also possible that a
restarted computation may encounter another 6onﬂict and have to be restarted

again.

The coét of the second type of conflicts depends on how long the tentative operation
m2 remains tentative. An alternative to delaying the observer o2 is to restart the
computation that invokes 02 with a smaller timestamp. It is not always the most
appropriate action as the computation may encounter some other conflicts of the first
type because of the smaller timestamp. However, concurrency may be increased if:

1. the computation does not invoke mutator operations and cannot create
the first type of conflicts, and

2. the computation has only been started recently and restarting it has a
small cost, and

3. the mutator m2 is invoked by a long computation and may not be
finalized until after a significant delay. '

If the conditions described above can be evaluated at ruh time, the concurrency |
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control algorithm can minimize the cost of the conflict accordingly.

Although the likelihood of formation and costs of conflicts are generally higher in a
system with long computations than in a system with only short computations, there
are some situations under which we can expect the two kinds of systems to have a
similar concurrency level. In a static algorithm, short computations are less likely to
create the first type of contflicts than long computations. This is because they are
less likely to encounter operations with larger timestamps aiready executed. The
cost of restarting a short computation is also lower. Short computations may include
single-site computations and computations that execute within a tightly-coupled
group of sites that can communicate with short delay. Consequently, if all the
mutator computations are short and only read-only computations are long, short
computations can usually succeed without incurring qostly conflicts. Moreover,
because read-only computations are never restarted uniess a restart is cheaper than
a delay, the long read-only computations are only delayed by short mutator
computations. ' :

'5.1.2 Dynamic Concurrency Control Algorithms

In dynamic algorithms, the serialization order is determined during the execution of
the computations at the objects. Typically, the serialization order between two
computations in a dynamic algorithm is determined by the order in which they finish
“accessing the last object. The moment immediately after the last object is accessed
is called a computation’s locked point [6], which, to simplify matters, can be equated
with the moment at which the computation is finalized. |

Dynamic concurrency control algorithms have the property that an operation is
always serialized after all other finalized operations. Other tentative operations can
 be either prior or subsequent to this operation in the serialization order. Given these
~ properties and that a conflict of the first type is created (i.e., a mutator m1 is invoked
and it may be serialized before an observer o1), the observer o1 must betentative.
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Usually the mutator m1 is delayed until the observer is finalized.!” Delaying the
‘mutator eliminates the possibility that it can be serialized before the observer. When
a conflict of the second type is created (i.e., an observer 02 is invoked and it may be
serialized after a tentative mutator m2), the observer o2 is delayed until the mutator
m2 is finalized.'®

Occasionally, several computations may be deadlocked, each waiting for another to '
finalize. A deadlock detection algorithm [43] can be used to detect and break the
deadlock by restarting some computation in the cycle. After the victim computation
has been chosen, one of its actions that causes the delay of other actions can be
aborted and its parent action can be notified. If the parent action has not proceeded
beyond the end of the victim action (e.g., the victim action has not finished, or the
parent action has created several parallel sub-actions and is waiting for all of them to
finish), the parent action can abort the victim action and start a new instance of it.
Otherwise, the parent action becomes a victim action also. The process is repeated
until the top-level action is reached. The top-level action could not have been
committed since it is deadiocked.

The likelihood of formation of both types of conflicts in a dynamic algorithm
increases with the number of tentative operations at an object. Unfortunately, the
likelihood will be higher in a system with long computations than in one with only
short computations. This is because the time between when an object is accessed
and when the computation is finalized is, in general, longer in a system with long
computations. To make matters worse, the delay caused by a conflict adds to the
length of a computation and make the expected number of tentative operations even

17'An alternative is to delay the commitment of the mutator until the observer is finalized. In this
alternative, the mutator operation can proceed but cannot commit untii the obeerver is finalized.

185 aiternative is to delay the commitment of the observer until the mutator is committed. The
observer can proceed but may be aborted later if the mutator is aborted. Depending on the likelihood of -
a computation being aborted, this alternative may or may not improve concumrency. However, the
improvement is not significant because the obeerver has to wait for the mutator to commit in any case.
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larger.

In dynamic algorithms, the cost of a conflict is a possibly long delay. Moreover, when
the probability of being'delayed is high, there is a possibility of cascaded delaying: a
tentative operation delaying other operations is in turn delayed by another tentative

operation.

In addition to cascaded delaying, there is also the cost of deadlocks. There is some
empirical evidence [18] that deadlocks are uncommon in systems with short
computations. However, it is unclear whether this is stiil valid when computations are
long. When a deadlock occurs, there is the cost of detection, which usually involves
passing messages around [43], and the cost of restarting a victim action.

5.2 Improving Concurrency with Concurrency Control Algorithms

In this section we suggest some novel concurrency control algorithms. We will show
that these algorithms can reduce the likelihood .that'cost!y conflicts will arise in a
system with long atomic computations. In particular, we will describe a hierarchical
conflict algorithm that preserves the advantages of a static algorithm over a dynamic
algorithm (short computations are less likely than long computations to encounter
conflicts and less expensive to restart, and observer operations create conflicts only
when a restart is cheaper than a delay), and generates less conflicts for long
~ computations.

We will also describe a time-range concurrency control algorithm in which each
computation is associated with a time-range instead of a timestamp. The static and
dynamic aigorithms can be shown to be special cases of this algorithm. The time-
range algorithm allows the user to choose a "privileged" class of computations that
can be made to be serialized after all other computations except those also in the
privileged class. The ability to do so reduces the possibility that a privileged mutator
computation is restarted or delayed.
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5.2.1 Hierarchical Concurrenvcy Control Algorithm

Suppose each computation is given a period identifier and a serialization identifier.
The serialization identifiers can be assigned with unique timestamps (from a real-time
clock). The two identifiers are concatenated, with the period identifier more
significant, and used to determine the serialization order of the compu_tations.19

Period identifiers are not necessarily unique. Computations receive their period
identifiers from period counters. We assume each site has its own period counter,
which is updated with the current clock value when a distributed computatfon is
started at this site, or when the period identifier of an incoming distributed
computation is larger than the current period counter.® The period counter will lag
behind the clock most of the time, assuming that most computations are local.
Notice that, although the period identifiers are not unique and lag behind the real
time clock, the same is not true for serialization identifiers. Local computations in
this algorithm are similar to those in the static algorithm in that they are unlikely to be
restarted in their short duration and can be restarted inexpensively.

Distributed computations perform better in this algorithm than in a static algorithm.
Consider a distributed computation ¢ started at clock time t; it will have a period
identifier and a serialization identifier, both approximately t. Consider the period
counters at the remote sites that c will visit. |f they are also t at the time ¢ is started,
then this algorithm will have the same performance as the Static algorithm because it
is just as fikely that conflicts will be created. if they are greater or smaller than t, then
this algorithm will perform more poorly or better respectively. Given that a period
counter at a site s is updated only when there are other distribﬁted computations
visiting or started at s, the period counters at the remote sites that c will visit are likely

1911wseﬁalizaﬁmidenﬁfbncmbeexhndodhmn-onﬁapphgﬁmmmsmhmdbmu
sub-actions. .
: 2"Weaasume‘thatwhethera¢:0rm:utatk>nislocal<>‘rdiotributodcaﬂt:odeterminea.forinstanoa,from

the syntax of the program. In any case, this information is only a hint and does not affect the
correctneas of the ailgorithm.
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to be less than t at the time ¢ is started. An exception is when the clocks at those
remote s/ites are running ahead of the one used to generate t and other distributed
computations have visited or been started at those remote sites recently. If we
assume distributed computations to be rare or clqcks to be closely synchronized, the
exception is unlikely to happen.

Given that the period counters of the remote sites‘that c will visit are smaller than t, it
will be less likely for ¢ to be aborted due to an old timestamp when c finally arrives at
a remote site 8. This is because the local computations started at s before s’s period
counter exceeds the period identifier of ¢ will be serialized before ¢, and not cause ¢
to be restarted. This algorithm performs better when distributed computations are
infrequent.

Note that incrementing the period counters is an optimization and does not affect the
correctness of the algorithm. A period counter can be left unchanged when, say, a
distributed computation that only involves nearby sites is started. To avoid these
distributed computations béing restarted, the period couhters of the nearby sites can
be synchronized frequently by bringing the smaller counters to the values of the
larger counters.

The hierarchical algorithm can be useful in a system in which distributed
computations and long computations are rare. For example, most of the
computations in a calendar application will be local. Occasionally a distributed
computation involving a meeting is started. Also, in many distributed databases, the
majority of computations will be local if the data is partitioned according to locality of
reference.

Consider the two kinds of conflicts that can arise in a system in which distributed
computations and long computations are rare. First, a mutator m1 may be restarted
if there is an observer o1 serialized potentially after it. However, with our agsumption
that distributed computations are rare, only short mutator computations are likely to
be restarted and the cost of restarting a short mutator computation is small. Second,
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an observer 02 may be delayed if there is a tentative mutator m2 serialized
potentially before it. If m2 is invoked by a short computation, the cost of waiting for
m2 to be finalized is small. If m2 is invoked by a long computation, a possibie
solution is to restart the combutation that invokes 02 with a smaller timestamp. |f
long computations are rare, we may expect the execution of two long computations
to seldom overlap with each other. Hence, given that m2 .belongs to a long
computation, we may expect 02 to be invoked by a short computation most of the
time and the cost of restart of 02 is small. However, restarting a computation with a
smaller timestamp is not always possibie as the computation may invoke mutator
operations. Hence short computations that invoke both observer operations and
mutator operations may have to incur a high cost in being delayed by a long mutator
computation.?"

In a system where objects support only read/write operations, it is unreasonable to
expect that short computations would invoke either only observer operations or only
mutator operations. In a éystem where objects support abstract operations, this
expectation is more likely to be valid. If the system also has the characteristic that
distributed computations and long computations are rare, the hierarchical algorithm
can be used to minimize costly conflicts. The hierarchical algorithm is also
preferable to the dynamic algorithm because an incomplete long computation,
though infrequent, can cause many other subsequently started short computations to
" be delayed.

5.2.2 Time-Range Concurrency Control Algorithm

The time-range algorithm we are going to describe is similar to the dynamic
timestamp allocation protocol described by Bayer in [4] but with several important
differences. We will describe Bayer's algorithm first and then the differences.

21Long computations that invoke both observer operations and mutator operations are less likely to
be delayed by other long computations because we expect an overiap of execution of two long
computations to be rare.
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Bayer’s Algorithm

In Bayer's algorithm each computation is associated with a time range (t1, t2) such
. that if the upper time bound of a computation a is less than or equal to the lower time
bound of another computation b, then a is serialized before b. These time ranges
can be shrunk dynamically but not expanded. The range will be shrunk to a singie
unique value when the corresponding computation is finalized. The upper time
bound can initially assume the value infinity while the lower bound can assume
negative infinity. It should be noted that for external consistency reasons, a
computation probably should not be started with a lower time bound much smaller
than the current time.

The static and dynamic algorithms are obvious special cases of this algorithm. The
static algorithm starts with a time range with a single vaiue. The dynamic algorithm
has each computation associated with a time range in which the lower time bound is
the current time, and the upper time bound is infinity, since the locked point of the
computation can happen any time between the current time and the indefinite future.

The utility of this algorithm lies in its ability to shrink the time ranges dynamically so
that conflicts can be avoided. For example, if computation a has a time range of
(t1, t2) and computation b has a range of (t3, t4), then a can be serialized after b by
raising t1 or shrinking t4 until t1 is greater than or equal to t4. Obviously this is not
possible when t2 is less than or equal to t3. In those cases shrinking is disaliowed
and a has to be restarted if it is trying to invoke a mutator operation and b has
invoked an observer operation. 22 |

Our Time-Range Algorithm

In our time-range algorithm, time ranges are extended to a more general form:

22Parallel sub-actions can be serialized by sub-dividing the time range of the parent action into
non-overiapping time ranges.
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(max(L1, L2, ..., Lm), min(U1, U2, ..., Un))

where Li and Ui can be either a constant real number or a computation identifier. In
the algorithm that we have described above, there is no way to ensure that a
computation a will be serialized before/after b by shrinking a’'s time range if b’'s
lower/upper time bound is negative infinity/positive infinity and cannot be
changedzs. To overcome this limitation, we allow the computation identifier of b to
appear in a’s lower/upper time bounds, which implies that b must be serialized
before/after a. Initially a's time range can start with (negative) infinity or a constant
in its upper or lower bound. The time range can be shrunk and computation
identifiers of other computations, such as b's, can be added to ensure particular
serialization order relationships. |

We assume that each computation is associated with a site, called its coordinator,
that keeps track of the final timestamp value of that computation. When b is finalized
and the time range of b is shrunk to a single constant value, the sites that keep
copies of a's time range can request this value from b's coordinator and replace the
computation identifier with the constant. We call this process the binding of the
computation identifiers. We will discuss how binding information can be propagated
later.

To make sure that the time range is not empty, i.e. the lower bound is smalier than the
upper bound, a computation should not commit until all the computation identifiers in
- its time range are bound. Any computation with an empty time range is aborted. This
rule guarantees that if a cycle of serialization orderings is formed with each
computation in the cycle assumed to be serialized before the next computation, at
least one of the computations in the cycle will be prevented from committing. This is
because one of the computations in the cycle must have an empty time range;

When a computation is aborted, infinity can be assigned to its computation identifier

230hanging b’s time bound may invoive sending messagee to other sites and require a long delay.
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if it is used as an upper time bound, or negative infinity if it is used as a lower time
bound. This rule implies that when a computation a is to be serialized after two other
computations b and ¢, a must include both b‘s and c’s identifiers in its lower time
bounds, even when b is constrained to be serialized after c. If a includes only the
computation identifier of b in its time range _and b is aborted later, the serialization
ordering between a and c is expressed in neither a’'s nor ¢’s time range.

When a cycle is formed, two different scenarios may happen. In the first scenario,
some of the computations in the cycle will commit and at least one of the other
computations will discover that it has an empty time range. For example, if the time
ranges of the computations a, b, and ¢ are as foliows:

a: (t1,t2)
b: (max(a, t3), min(c, t4))
c: (t5, min(a, t8))

assuming that t1 < t2, t5 < t6, and the system chooses a final timestamp value for a
in (t1, t2) that is larger than t5, a and ¢ will be committed eventually but b will be
aborted because c¢’s final timestamp value is less than a’'s.

Deadlock Resolution

In the second scenario, a deadlock will develop, such as when:

a: (b, t1)
b: (a, t2)

A deadlock detection algorithm can be used to abort one of the computations in the
cycle. However, not all deadlocks represent a cycle in the serialization orderings.
For example, we may have: '

a: (b, t1)
b: (t2, a)

where t1 > t2. In this example, a is assumed to be serialized after b and b is
assumed to be serialized before a. These assumptions are obviously compatible and
a serialization order is not ruled out by them. However, a deadlock is developed
because both a and b are waiting for the other to finalize.
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To avoid aborting any computation when these deadlocks occur, we can rely on the
deadlock detection algorithm to switch'the "direction" of waiting. For example, if a
appears in the upper time bound of b's time range and hence b is waiting for a to
finalize, b's computation identifier can be added to a's iower time bound and then‘ a’'s
computation identifier can be removed from b's time fange and replaced with the
upper time bound of a. In our previous example: '

a: (b, t1) — (max(b, b), t1) = (b, t1)
b: (12, a) — (12, t1)

The switching preserves the correctness of our algorithm because at least one of a
and b is waiting for the other to finalize at all times. After the switch, a is waiting for b
instead. In our example, b can proceed with its commitment and a can be committed
if t2 is less than t1.

To avoid having switchings that nullify one another's effects and to ensure that the
deadlock will be resoived eventually, the switching can be limited to one direction.
For example, we can limit the algorithm to remove computation identifiers only from
upper time bounds and insert then only into lower time bounds. To avoid creating
deadlocks with the switching when there are not any, identifiers can only be removed
from the upper time bounds if there are not any other computation identifiers in the
lower time bounds. In other words, the removal should allow the computation to
commit. In the previous example involving computations a, b, and ¢, we will never
have:

a:(t1,t2) — (max(c, t1), t2)
b: (max(a, t3), min(c, t4)) — (max(a, t3), t4)
c: (t5, min(a, t8)) — (max(b, t5), t6)

Binding Computation ldentifiers

To make sure that every computation identifier used by a time range will be bound
eventually, we have to make sure that the final timestamp value of a committed
computation ¢ (we will discuss aborted computations later) will be sent to each site
that it had visited. In addition, since other computations that had visited those sites
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might have included c¢'s computation identifier in their time ranges and caused it to
appear in other sites,v the final timestamp value of ¢ has to be propagated to those
~ other sites as well. Notice that because of the indirect propagation of c's identifier,
the sites visited by ¢ may not overlap with the set of sites visited by another
computation d that has ¢ in its time bounds. |

In order to make sure the computation identifiers can be bound eventually, we
assume the coordinator of each computation ¢ remembers the following in stable
memory when ¢ commits:

1. ¢’s final timestamp value,
2. a list of all the sites that ¢ had visited,
3. the computation identifiers that ¢ had used in its time bounds.

After commitment, the coordinator will send ¢’s timestamp value to all the sites that ¢
had visited, which can be piggybacked on the messages that the coordinator uses to
convey the outcome of ¢ (see section 5.4).. The coordinator will also'try to find out

‘the final timestamp values of the computation identifiers that ¢ had used and send
those values to the Sites that ¢ had visited. This is necessary as other computations
may have learned those computation identifiers from ¢. Only then all these messages
are acknowledged can the coordinator discard the information that it had stored
during commitment. At each site being visited by ¢, each copy of the computation
identifiers, if there is more than one, will be replaced with the final timestamp value
before acknowledgment.

To see that every computation a, that has the computation identifier of a
computation a, in its time range will eventually learn of the final timestamp value of
a,, conSider the path of computations a,, aé, ..., a, along which a_ learns about the
computation identifier of a,. (The computation a, accesses an object accessed by
a, and includes a,’s identifier in its time range. Then a, accesses an object
- accessed by a, and includes a,’s identifier in its time range. Eventually a, accesses
an object accessed by a,,_; and includes a,'s identifier in its time range.) Note that
each pair of adjacent oomputatiohs on this path vigited some site in common. Since
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the coordinator of a, makes sure that each site that it visited learns about its final
timestamp value, the coordinator of a, can find out a,‘s final timestamp value from
the shared site, where a, first learned about a,'s computation identifier. Similarly,
after a, sends that value to every site that it had visited, ay can learn about the value
from the shared site between a, and a,. The process is repeated until a_ learns
about a, 's final timestamp value.

A complication arises when some of the a;'s are aborted. In the algorithm that we
described above, a, will be waiting indefinitely for the final timestamp value of a,. A
solution is for a,, , to remember a list of all the sites and the name of the actions
(e.g., the name of a,) from which it has learned about a, along with the name of a, in
stable memory when it commits. Instead of waiting for a, to propagate the final
timestamp value of a,, a,, , can send queries to each of the sites in the list. If
records about those actions from which a,, learns about a, cannot be found in any
of the sites in the list and none of those sites is in the process of sending out a,'s
final timestamp value, a, . 4 can propagate the value of positive infinity to ai .20 ay 's
identifier is used as an upper time bound by a, _ ,, or negative infinity if it is used as a
lower time bound. This is because the serialization constraint is established between
a, and a,_,, instead of between a, and a, ,. This solution is correct only if a;  ,
limits the propagation of the infinity value to 3,2 and not to any other computation
that happens to use a,’s identifier. So when a site receives an infinity value from
" @, 4 it should bind an a, identifier in its memory only when the identifier has been
learned from a, _,.

Privileged Computations

In the rest of this section we will describe an optimization that will allow the
computations in the system to have different priorities. In particular, we can use the
optimization to make mutator computations less likely to be restarted. Suppose there
is a class of computations with the following form of time ranges:

(max(L1,L2, ..., Lm), 00)
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and the property that the identifiers of these computations are not allowed to be used
in the lower time bounds of any computation. Consequently, the final timestamp
values of these computations are never required to be smaller than any other value,
and since they have no upper bound, we can always find real constants that excéed
their lower time bounds. In other words, these computations can commit even when
there are unbound computation identifiers in their lower time bounds. Choosing final
timestamp values for these computations has to be delayed until the unbound
computation identifiers are bound, however. '

These computations are "privileged" because they can always avoid being restarted
by including the upper time bounds or the identifiers of other computations (except
those in the privileged class) in their lower time bounds. It should be noted, however,
that a privileged computation may still be delayed due to tentative mutators that are
serialized potentially before itseif.

Because privileged computations can commit without binding their time ranges, a
deadiock involving committed computations can be developed. Because of the
restriction that identifiers of privileged computations cannot be used in the lower time
bounds of other computations, a deadlock must invo!venon-brivileged computations,
which must be uncommitted and can be chosen as victims to be aborted.

The time-range algorithm is useful in a system where the only long computations are
mutator computations. By assigning the long mutator computations as privileged
computations, the mutator computations can avoid being restarted by other observer
computations. Mutator computations are aiso not delayed by tentative computations
because they do not observe any state. Short observer computations in the system
can avoid being delayed by tentative long mutator computations by restarting with
smalier timestamps. The cost of restart is low. However, this may not be possible if a
short computation invokes both observer and mutator computations. Compared to
other multi-version algorithms [9, 48], our algorithm has the advantage that the long
mutator computations are never restarted by the concurrency control algorithm. The
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cost of our time-range algorithm lies in the complexity of manipulating time ranges
and sending messages around to bind the computation identifiers.

Examples of applications that have only long mutator computations and short
observer computations are databases that are replicated on many sites for availability
and efficiency of observer operations. Mutating the state of one of these databases
is a long computation because of the large number of replicas. Frequently, a mutator
computation also does not observe the state of the database, such as when old data
values are overwritten with new data values. On the other hand, usually only short
queries are directed at database because most data is available from the local site.

5.3 Making Concurrency Control Algorithms Transparent

In the previous two sections we have described various concurrency control
algorithms. We have shown that under special situations concuryehcy control
algorithms can be adapted to minimize costly confiicts. For example, in the case of
the hierarchical algorithm, iong computations would not suffer from repeated restarts
when they are rare. .

Given that different concurrency control algorithms might be appropriate in different
applications, we have designed a programming interface which hides the
concurrency control algorithm used underneath. The history operations, such as
p_sub or dprior, make the algorithm in which the serialization order is determined
transparent. The retry statement also makes the actions that need to be taken when
a conflict arise transparent.

This section describes how to implement such a programming interface given a
particular concurrency control algorithm. In section 5.3.1 we will describe the
implementation of the history operations that capture the serialization order. In
section 5.3.2 we will describe the implementation of the retry statement.
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5.3.1 Implementation of History Opera_tions

In this section we will describe how the history operations p_sub, p_prior, d_ sub, and
dprior can be implemented given that a static or a dynamic concurrency control
algorithm is used. Our goal is to show that these operations can be implemented and
our descriptions will not focus on efficiency. The operation p between can be
implemented by filtering a history object with p_prior and p_sub. D_between can be
implemented with d_prior and d_sub similarly.

Figure 5-1 defines the subset of transitions that should be returned by the sub and
prior operations for a static and a dynamic concurrency control algorithm. In the
dynamic algorithm, we assume that each transition is labelled with two timestamps
from a Lamport clock [27]: an operation timestamp and a commit timestamp. The
operation timestamp is read immediately before tﬁe corresponding operation returns,
and the commit timestamp is read when the computation commits. For the operation
being executed currently, the current clock vaiue can be used as its operation
timestamp. We assume that these timestamps are remembered in a history object. A
commit timestamp can be piggybacked on a message that informs a site of a
computation’s outcome and recorded in a history object when the computation’s
status in the history object is updated.

Implementations for other concurrency control algorithms are similar to those in

- figure 5-1. For exampie, the implementations for the hierarchical algorithm. and the

static algorithm are the same except that the two timestamps for a computation are
concatenated for comparison in the former and a single timestamp is used in the
latter. In an implementation for the time-range algorithm, a transition can be
serialized potentially before or after another transition if their time ranges can
possibly overiap. Otherwise, one of them is serialized definitely before the other.
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Static serialization concurrency control algorithm:
(Implementations for the d_ counterparts are identical.)

p_sub =

p_prior

procedure(h: history, t: transition) returns(history)
return transitions in h with larger timestamps than t
end p_sub

= procedure(h: history, t: transition) returns(history)
return transitions in h with smaller timestamps than t
end p_prior

Dynamic

p_sub =

d_sub =

p_prior

d_prior

serialization concurrency control algorithm:

procedure(h: history, t: transition) returns(history)
if t has a commit timestamp ¢
then return all finalized transitions that have larger
commit timestamps than c and all tentative transitions
in h .
else return all tentative transitions in h and all finalized
transitions that have larger commit timestamps than
the operation timestamp of ¢t
end
end p_sub

procedure(h: history, t: transition) returns(history)
if t has a commit timestamp ¢
then return all finalized transitions that have larger
commit timestamps than ¢ and all tentative transitions
that have larger operation timestamps than ¢ in h
el1se return an empty set
ond
end d_sub

= procedure(h: history, t: transition) returns(history)
return (a1l transitions in h - d_sub(h, t))
end p_prior -

= procedure(h: history, t: transition) returns(history)
return (all transitions 1n h - p_sub(h, t))
end d_prior

Figure 5-1:implementations for Sub and Prior
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5.3.2 Implementation of Retry Statement

This section describes how the retry statement can be implemented given a
concurrency control algorithm. In particular, we will use a static algorithm as an
example. We will also describe implementations for other concurrency control
algorithms, although more briefly. Our description of implementations will focus on
their feasibility, but brief references to efficiency will be made occasionally. We will
first present an example of the kind of decision making that is involved in the
execution of a retry statement. Then we will describe an implementation.

| When a retry statement is executed in a system with a static algorithm, the language
system should decide whether the computation executing the statement should be
delayed or restarted, and if it is delayed, when it should be rescheduled. With a
dynamic algorithm, the only possibility is to delay a computation. The only decision is
when to reschedule a computation. With a time-range algorithrri, the decisions are
more complicated. A computation can be delayed, restarted, or have its time range
‘shrunk in different ways.

When the system is faced with these decisions, there are no optimal decisions
without knowiedge of the future. Heuristics are needed to determine the relative
likelihood of correctness and cost of each of the choices. For exdmple, it is
reasonable to expect that a tentative transition is more likely to commit than to abort
and make decisions accordingly. We will also assume that it is unlikely to have an
operation invoked in the future serialized before some existing operations.

An Example .

Consider the proceed condition

~historySexists(history$p_sub(this_transition), no_x,
not_changed(del_x))

in the insert procedure in figure 4-3 where
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not_changed = procedure(op: template, t: transition) returns(bool)
return(historySexists(history$d_ botuocn(th1s transition, e)),
committed_del_x))
end not_changed

Suppose the proceed condition evaluates to false and a transition t is the only no_x
transition that causes the condition to be faise. The proceed condition will be
satisfied when either:

1. t is aborted, or

2. t is serialized definitely before the invoked operation, or

3. a coomitted_del_x transition is senallzed definitely between the invoked
operatson and t

item 1 is unlikely to happen, regardldes of the concurrency control algorithm used.

Suppose a static concurrency control algorithm is used. Item 2 will only happen with
a restart because the predetermined serialization order does not change. item 3 is
only likely to happen if there is already an tentative del_x transition serialized
between the invoked operation and t. In those cases, the invoked operation can be
delayed until the de1_x transition is finalized. In other cases, the invocation request
should be refused and the computation that invokes it restarted. Aithough it is
possible that the restart is unnecessary after all, it is the most appropriate choice
under our assumptions.

If a dynamic concurrency control algorithm is used, delaying the current operation
B cannot cause item 3 to become trué. In fact, it would achieve the opposite effect.
Also, a de1_x transition may not exist after all. item 2 can be fulfilied by delaying the
current operation until t is finalized, the most appropriate step to take in this case.

If a time-range concurrency control algorithm is used, the system may have several
choices. The time range of the current computation may be shrunk, if necessary and
possible, in such a way that item 2 is satisfied. If a committed_de1_x transition exists
and it is definitely serialized before t, the time range of this action may be shrunk
such that item 3 is satisfied. If a tentative_de1_x transition exists and it is serialized
potentially before t, the current operation can be delayed until the serialization order
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is known and the transition committed.
An Implementation for a Static Algorithm

Since we have limited our proceed conditions to be constructed with boolean
operations and history operations, program analysis can be used to decide the action
to take when a retry statement is executed. The goatl of the program analysis is to
determine whether a proceed condition is likely to be satisfied eventually without a
restart. Only when should an operation be delayed. We assume that when a system
is confronted with a choice of delaying or refusing an operation, delaying is
preferred. A more sophisticated decision can be based on the expected costs of the
delay and the restart:

Choosing Between Delay and Restart
To shorten our presentation, assume that a boolean operation can be either and, or, -
or negate. However, we would eliminate all the negate operations that are not
immediately applied to the result of an ex{ists operation by making suitable program
transformations. For exampile, if a proceed condition is of the form:

; ~(exists(h, t, p) and exists(h', t', p'))
we change it to: '

~exists(h, t, p) or ~exists(h', t', p')

If a proceed condition ¢ is of the form:

1.¢1 and c2: then cis likely only if both ¢1 and c2 are likely.

2.c1 or c2:then c is likely only if at least one of c1 and c2 is likely.

Other than the two forms above, ¢ can also be of the form exists(h, t, p) or
~exists(h, t, p) where his a history object, t is a transition tempiate, and p is a
procedure. In order to allow the language system to determine the likelihood of an
exists or ~exists expression, we limit p to be of the form:

p = procedure(arg: transition) returns(bool)
return(e)
end p
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where e is subjected to the same restrictions as proceed conditions. If ¢ is of the
form: ' |

1.exists(h, t, p): then ¢ is likely only if t is of the form
committed_op_..., and there is a transition tr in h that matches op_...
and p(tr) is likely. ‘

2. ~exists(h, t, p): then c is likely only if for all the transitions tr in h,
either a committed version of tr does not match t or ~p(tr) is likely.

Determining whether an exists expression is liké!y involves searching the history
object h at run time. The same process can be used to determine whether p(tr) or
~p(tr) is likely after replacing references to arg in e with tr at run time.

Determining Reschedules
Given that a proceed condition is likely to be satisfied without a restart, the language

system should determine when the current invoke request should be rescheduled. In
other words, the language system shouid determine when the proceed condition
becomes likely.

There are many options for determining what kinds of events and processing are
allowed to trigger the rescheduling of a suspended operation. For example, a simple
scheme is to allow only the finalization of a fixed set of transitions determined at the
execution of the retry statement to trigger rescheduling. A more complicated
alternative is to also allow the finalization of subssquently invoked transitions and
evaluation of arbitrary expressions to determine when rescheduling is appropriate.
Since the goal of this section is to show the feasibility of an implementation that can
resolve a conflict in a reasonable, but not necessarily optimal, fashion, we will use the
simpler scheme. Another reason to use the simpler scheme is to minimize the cost of
scheduling. One of the necessary consequences of using the simpler scheme is that
we cannot guarantee that a proceed condition will be met when an operation is
rescheduled, as some other operations may have executed between the suspension
and the rescheduling. However, this is considered acceptable by our programming
interface. '
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Suppose s is a set of transitions such that the finalization of a transition in s should
trigger the rescheduling of an operation with a proceed condition c. A program
analysis similar to the one above can be used to determine a non-empty s. If ¢ is of
the form:

1. c1 and c2: then s is the union of the sets that trigger c1 and c2.

2.¢1 or c¢2:same as above.

3.exists(h. t, p): if tr is a tentative transition in h such that if it is
coszitted, it would match t and p(tr) would return true, then trisin
s. ' '

4. ~exists(h, t, p):if tr is a tentative transition in h that matches t and
p(tr) returns true, then trisins.

All Delaved Operations are Rescheduled Eventually

To show that this implementation is correct, in the sense that if an operation is
delayed, it will be rescheduled eventually, we need to show that s is not empty. We
will now describe an informal argument showing that it is indeed the case. |

Recall that a well-formed proceed condition satisfies the following requirements:
1. The proceed condition should be satisfied if:

a. new operations are not started, and

b.all current operations in the system, except the one being
considered, are finalized and the outcomes are known by all
history objects, and

c. the operation being considered is serialized after all existing
transitions and the serialization order among existing transitions
are known.

2. It is not satisfied currently.

3. It is constructed with boolean operations and the operations provided by
the history objects.

Given that a proceed condition ¢ i3 not satisfied currently, there must be some

2"More accurately, the commitment of tr i in s, since aborting tr woukd not make ¢ become likely.
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exists(h, t, p) or ~exists(h, t, p) expressions not satisfied currently. Given
that c is not restarted and hence likely to become satisfied eventually, at least one of
these expressions is likely to become satisfied eventually. Suppose an exists(h, |
t., p) expression is likely to become satisfied eventually. Following our definitioﬁ of
when exists(h, t, p) is likely, we know that there is a transition tr in h such that
either:

1. tr does not match t because tr is tentative, or
2. p(tr) is not satisfied currently but is likely to be satisfied eventually.

Given our rules for adding transitions to the triggering set, tr will be in the set if the
first case is true. [f the second case is true, induction can be used to argue that the
program analysis of p(tr) will lead to the addition of some transitions in the
triggering set. A similar argument can be used when an ~exists(h, t, p)
expression is not satisfied currently but likely to become satisfied eventually.

Discussion ,

In addition to guaranteeing that an operation will be eventually rescheduled if it is
delayed, there is also a performance issue that unnecessary restarts should be
avoided. This is achieved with the first requirement for the weil-formedness of
proceed conditions. By requiring a proceed condition to be satisfiable given the
conditions 1.a, 1.b, and 1.c, we prevent an application from specifying a proceed
condition which is unlikely to become satisfied when in fact an operation is likely to
be able to proceed eventually.

For systems that use a dynamic or time-range concurrency control algorithm, rules
similar to those above can be used to determine whether to restart or delay an
operation, and, if the operation is delayed, when it is rescheduled. Correctness in the
sense that a delayed operation is eventually rescheduled is not difficult to achieve as
long as every delayed operation is rescheduled occasionally. The complexity of an
implementation is in determining which set of events should trigger rescheduling and
whether restart, delay, or some particular way of shrinking a time range should be
employed. It is debatable whether a programmer or a language System
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implementation can make better decisions. For example, we have discussed that the
relative merits of restarts and delays depend on their expected costs. Having a
language implementation calculate these costs avoids cluttering a program with
optimizations. However, one may argue that a programmer has a better knowledge
of these costs.

5.4 Commit Protocols

When a distributed computation commits or aborts, the sites that participated in the
computation have to agree on its outcome. At any time during the process of
reaching an agreement, site crashes or communication failures can occur. Once a
computation is committed, each site should make sure that the computation would
appear to have executed despite site crashes and communication failures. The sites
that participated in an action should also be informed of the action’s outcome as
soon as possible, so that other actions will not be delayed. The protocol followed by
the sites to reach agreement is called a commit protocol.

Section 5.4.1 reviews the two-phase commit protocol [17]. Section 5.4.2 describes
an alternative, the one-phase commit protocol, and compares the two. We argue that
the one-phase commit protocol is more suitable in our environment. In the
description of these protocols, we assume that call and return messages are used to
invoke processing on remote sites and to return results of those efforts.

5.4.1 Two-Phase Commit Protocol

The most common commit protocols used by distributed systems are two-phase
commit protocols. In a two-phase commit protocol, one of the sites plays the role of a
coordinator and the other sites become subordinates. We assume that the site that
initiates the top-level action plays the cbordinator role, and the other sites that have
. participated in the computation are subordinates. '

At the end of the computation, if commitment is desired, the coordinator will send
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prepare messages to the subordinates and wait for their replies. In a system with
nested actions, only the subordinates with non-aborted sub-actions need to receive
these prepare messages. At the subordinates, a yes vote is returned if commitment is,
desired. A no vote is returned otherwise. Before a yes vote is returned, the
subordinates can decide to abort the computation unilaterally. In those cases, a no
vote can be returned when prepare messages arrive. ’

At the coordinator, if all the votes are yes votes, the computation can be committed
by ' writing the decision to stable memory atomically. Afterwards,
commit computation messages will be sent to the subordinates. If any of the votes
returned is a no vote, or the coordinator has given up waiting for all the votes to
return, abort computation messages can be sent to the subordinates that had sent
yes votes. Abort.computation messages can aiso be sent anytime during the
execution of the computation. A parent action can also send abort action messages
to abort sub-actions before the end of a computation.

Commit computation messages and abort_computation messages are mutually
exclusive. A computation should never send both types of messages. Through the
commit computation and abort computation messages, the subordinates will learn
that the computation is finalized. The sending of prepare and vote messages is the
first phase, and the sending of commit/abort computation messages the second.

- When sending messages to the subordinates, either the coordinator can send to -
each subordinate directly, or the messages can be relayed by other subordinates. A
convenient strategy is to have the site of a parent action relay the messages to its
sub-actions [37]. The first messages are sent by the site that executes the top-level
action, the coordinator of the computation. The strategy is convenient because each
parent action knows the names of its sub-actions, where they are executed, and
whether they should be aborted or committed. However, having the coordinator
send the messages directly avoids any delay in relaying. To do so, each action
should include the names of its sub-actions, where they are executed, and whether
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they should be aborted or committed when it returns to its parent. In this way, the
top-level action will collect all the necessary information to send the messages
directly. ’

5.4.2 One-Phase Commit Protocol

An alternative to the 2-phase commit protocol is a 1-phase commit protocol. In the
1-phase commit protocol, no prepare or vote messages are sent. A site is prepared
to commit when it sends a return message. It stays prepared until notified by the
coordinator to commit or abort. The 1-phase commit protocol takes one less round-
trip delay to finish. In a system with long communication delays, this is an important
savings. in a simple 2-site distributed computation using a 2-phase commit protocol,
the coordinator and the subordinate are informed of the outcome of the computation
after 2 and 2.5 round-trip delays respectively. With a 1-phase commit protocol, the
delays are reduced to 1 and 1.5 round-trips respectively.

One of the advantages of the 2-phase commit protocol over the 1-phase commit
protocol is that a subordinate retains the privilege to abort a computation unilaterally
until it has responded yes to a prepare message. Presumably, by aborting an
tentative computation, a site can recover the resources held by that computation.

it is not clear whether this window of vuinerability, during which a subordinate has to
wait for a decision from its coordinator, is in fact shorter in a 2-phase commit
protocol than in a 1-phase protocol. in a 2-phase commit protocol, the length of the
window is at least the time required for a vote to travel to the coordinator and the
decision to come back to the participant. In addition, assuming that most
computations commit, the coordinator has to wait for all the votes before sending out
the decision in most cases. in a 1-phase commit protocol, the length of the windo_w is
determined by the time required to execute the rest of the computation after a
subordinate has returned plus the time needed for the coordinator to send a
decision. If a site is accessed near the end of a computation and sending messages
to sites accessed in the beginning of the computation from the coordinator leads to
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long delays, then the site accessed near the end of the computation has a shorter
window with a 1-phase commit protocol. On the other hand, the window is probably
longer for sites accessed in the beginning of a 'computation if the computation
accesses more than two sites serially. In a simple 2-site distributed computation the
window of vuinerability is approximately a round-trip delay in length for both
protocols if we ignore the time the coordinator uses to compute after it has received
a reply from the subordinate. This period of computation should be negligible
compared to the round-trip delay. The same arguinent canbe applied to an n-site
distributed computation in which the coordinator invokes the n-1 participants in
paraliel.

In a 2-phase commit protocol, by delaying the preparation of an action until the
coordinator is ready to commit, there is a possibility that several actions’
preparations can be piggybacked in a single write to stable memory. In a 1-phase
protocol, a sub-action that executes in the same site as some of its ancestors can
~ delay its preparation until the oldest ancestor returns because a site crash before its
preparation would also abort the ancestor. Otherwise, it has to be prepared before it
returns. The 2-phase commit protocol is more efficient if accessing stable memory is
an expensive operation.

A compromise between the 2-phase and 1-phase commit protocols is to leave a
choice in the protocol. When a subordinate returns, it can set a flag in the return
message to indicate whether it has prepared. If it has not, the coordinator has to
send a prepare message and wait for a yes vote from that subordinate before the
coordinator can commit. Meanwhile, the subordinate can piggyback its preparation
with a later stable memory access; afterwards, as an optimization, it can send a yes
vote to "catch up” with its retun. In other words, the preparation can become an
asynchronous process as long as it is performed before the computation is
committed. In Chapter 7 we will discuss the use of checkpoints, of which an early
preparation is a special case, to increase the resilience of a computation.
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There are other commit protocbls proposed in the literature. Skeen proposed a 3-
phase non-blocking commit protocol in [52]. In addition to the extra delay, the
assumptions about the communication network in his protocol are incompatiblé with
our model. We believe that the 1-phase commit protocol is more appropriate in a
system with long computations because of the reduced detay with one less phase of
messages.

5.5 Summary

This chapter discussed how the programming interface described in Chapter 4 can
be supported. In particular, we showed that it is possible to mask the concurrency
control algorithm used in a system. We have described how history operations, such
as p.sub or dprior, and the retry statement can be implemented in different
concurrency control algorithms. We have aiso proposed two novel concurrency
control algorithms which minimize the likelihood of costly conflicts given that special
conditions are met. We have described commit protocois briefly and described a
1-phase protocol which has a shorter delay between an action returning and its being
finalized. A compromise between a 1-phase protocol and a 2-phase protocol using
an asynchronous preparation allows the cost of accessing stable storage to be
reduced.

150



Chapter Six

Power of Atomicity

In this chapter we compare our atomicity definition with other correctness definitions
in which atomicity is abandoned. Atomicity is used in this thesis to model
computations because it is easy to understand and reason about. We have also
shown that the concurrency of a system can be increased by using semantics in an
implementation. In particular, by incorporating the functionality of an application into
the atomicity definition, our approach allows a trade-off between functionality and
concurrency. However, if there were other correctness definitions which permitted
more concurrency, the importance of concurrency might outweigh the simplicity of
atomicity, especially in a system with long computations. In this chapter we will show
that our atomicity definition permits as much concurrency as some non-atomic
correctness definitions. On this basis, we will claim that our model of correct
behavior is preferable, since in comparison it is equally powerful and easier to
understand.

The class of correctness definitions that we use to compare against our atomicity
definition is one in which the application defines explicitly pairs of transitions that
"conflict." These definitions insure that computations that invoke conflicting
transitions are executed in the same order at all objects. A representative of this
class of correctness definitions can be found in [50]. A slightly different but similar
correctness definition can be found in [38]. We will describe a correctness definition
~ which is slightly more general than the one in [50). We will call the definition we are
going to describe the consistency definition.

As we have described earlier, the consistency definition insures that computations
executing conflicting transitions are executed in the same order at all sites. For
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example, suppose computation a executes two transitions at and a2 and
computation b executes two transitions b1 and b2. Furthermore, suppose a1l

conflicts with b1 and a2 conflicts with b2. The consistency definition requires that
either a1 precedes b1 and a2 precedes b2, or b1 precedes a1 and b2 precedes
a2. More precisely, the consistency definition can be defined with a graph acyclicity
requirement. The nodes in the graph are computations. Two computations are
linked by an edge if they execute a pair of conflicting transitions at an object. The.
direction of the edge is determined by the order of execution of the transitions. A
history of transitions is said to be consistent if the graph is acyclic. A system that
only generates consistent histories is called a consistent system.

An equivalent way of stating the same requirement is to require that there exists a
total order among the computations in the system: If two computations a and b
execute a pair of conflicting transitions at an object with a’s transition executed
before b’s, then a is ordered before b in the total order. Notice that this total order is
different from a serialization order in an étomicity definition, since only conflicting
pairs of transitions are required to be ordered in this total order. Non-conflicting
pairs of transitions can be ordered in different orders in different objects. There may
be more than one such total order.

An example may help in the understanding of the consistency definition. Consider a
banking account with deposit x okay, withdraw_y okay, withdraw_y_ insuf, and
read_balance_z transitions. If the application does not define read_balance_z to be
conflicting with deposit_x okay or withdraw_y okay transitions, then a transfer
between two accounts, composed of a withdrawal and a deposit, can interleave with
an audit attempting to find the sum of the balance in two accounts with two
read_ balance op'erations.' in one of the accounts, the read_balance_z1 transition
may be executed before the withdraw_y okay transstion, whereas in the other
account, the other read balance_z2 transition may be executed after the
deposit_y okay transition. in this example, the amount being transferred is counted
twice by the audit. However, we must assume that this behavior is acceptable to the
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application, since it does not choose to exclude it by the definition of conflicting

transitions.

This behavior is typical of what real banking systems exhibit in practice. A transfer of
funds between two accounts is done in two separate parts, certainly when the two
accounts belong to two different banks and often when the accounts beldng to
different branches of the same bank. In the case of transfer by check, the deposit
occurs first, and the withdrawal occurs only after the check has "cleared." The
“clearing of the check involves physical transport of the check and makes the entire
transfer of funds a long computation. During the time the check clears, the money
appears to be in two places, which is a way of saying that read_balance_z does not
- conflict with deposit_x okay or withdraw_y okay. People have attempted to take
advantage of the inconsistency by investing the double-counted money in various
ingenious ways. The banks have not corrected this problem by imposing atomicity
across the Federal Reserve System; rather, they tolerate the probiem to a degree and
control abuses by regulation and law. The buildets of banking systems appear to
believe, as a practical matter, that the imposition of a total ordering among all the
computations would produce intolerabie loss of concurrency.

The consistency definition may seem more powerful than atomicity because an
application can specify conflicting transitions explicitly. However, we will show that
. atomicity is at least as powerful as the consistency definition. In the banking example
above, we can show that by defining the functionality of the read_balance, withdraw,
and deposit operations appropriately, the behavior described above can be modelled
by our atomicity definition. Our proof does not make the transfar of funds into a short
computation, nor does it enable the audit computation to predict whether a check will
clear and to return accurate and up-td-date answers. HOWever, by casting the
uncertainty in the answers returned with an atomicity model and providing the same
level of concurrency as a consistency system, we pmvnde a simpler model to
understand the behavior of an application than the consistency definition. The better
understanding in turn provides a better framework for the users to deal with the
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inconsistencies that they might observe. Thus the power of atomicity that we show is

of more than academic interest.

Our proof is by construction. We show that given any system of objects, their
transitions, and a set of conflicting transitions, we can construct a system with an
"equivalent” set of objects, an "equivalent” set of transitions, and serial
specifications for the equivalent objects, such that the set of consistent histories is
' identical to the set of "equivalent” atomic histories. Consequently, the two systems
‘have the same behavior and concurrency. The equivalence is defined with mappings
from one system to the other. The mappings can be used to "simulate” one system
with the other.

The problem with the "equivalent” atomic system that we construct is that its serial
_ specifications are too complicated to maintain our claim that atomicity is easy to
understand. Hence our proof only shows that atomicity is at least as powerful, but
not always easier to understand. We show a second result in this chapter. We show
that for a class of objects atomicity is as powerful and easier to understand. We also
argue that this class of objects is a large class.

Section 6.1 presents an informal version of our proof that atomicity is at least as
powertul as the consistency definition. Section 6.2 defines atomicity and consistency
with more formal notations and presents a formal version of the same proof. Section
6.3 defines a class of objects called accurate objects and shows that atomicity is as
powerful and easier to understand for accurate objects. Although some objects in a
system may not be accurate, modeiling the behavior of the non-accurate objects with
atomicity allows the behavior of the accurate objects to be understood more easily
than with a consistency definition. |f we abandon atomicity in the non-accurate
objects, we abandon atomicity in the accurate objects aiso. ‘

The correctness requirements to handle situations in which failures can happen are
usually not specified clearly in the consistency definitions in the literature. However,
failure atomicity can be incorporated into these definitions in a straightforward
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manner: only committed transitions are considered in determining whether a history
is consistent. We will ignore failure atomicity in our proofs and assume that all
transitions will be committed. The addition of failure atomicity, which is orthogonal to
the serializability and consistency concepts, does not change our resuits.

6.1 Ihformal Proof of Power of Atomicity

" Recall that conflicting transitions are required to be executed in a total order of the
computations ina consistent system. We will call this total order a consistent order.
Similar to an atomic system, a concurrency control algorithm is needed to determine
a global consistent order followed by every object in the consistent system. Also, just
as in an implementation of an atomic system, conflicts can be created when, for
example, there is insufficient knowledge of the consistent order. Using the
terminology of the conflict model developed in this thesis, a conflict is created by a
new transition when there are other transitions that have the following properties:

1. these transitions are conflicting with respect to the new transition, and

2. they are potentially ordered after the new. transition according to the
global consistent order.

If no conflicts are created, an object can proceed to determine the result to be
retumed. In a consistent system, the result is computed based on the order in which
transitions are executed in an object, which we will call the local execution order.

The core of our proof is to construct an equivalent atomic system in which conflicts
are created at the same situations and the same results are returned when there are
no conflicts. Since conflicts are created at the same situations, the atomic system
has the same level of concurrency as the consistent system. Since the same results
are returned, the atomic system has the same "behavior.” More rigorously, since the
conflict conditions and the validity of results in an atomic system are determined by
the serial specifications, we need to construct serial specifications that guarantee
that a history in the atomic system is atomic if and only if the equivalent history in the
congistent system is consistent. |
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Before describing these serial specifications, we will describe how the atomic objects
in the equivalent atomic system can be impiemented. Presumably, one can argue
that the same implementation that implements the objects in the consistent system
can be used to implement the atomic objects. However, we will describe an
implementation using the mechanisms that we described in Chapter 4, which may
help in understanding the equivalence between the atomic system and the consistent :
gystem.

" Just as in the implementations in Chapter 4, each transition executed at an atomic
object is recorded in a history object. When a new operation is invoked, the history
object is queried to determine whether there are previously invoked conflicting
transitions that can potentially be serialized after the new transition. If there are, a
conflict is created and has to be resoived. If rno conflict is created, the
implementation has to determine a valid result to return. Since resuits are computed
according to the local execution order in a consistent system, the results in the
atomic system should be computed in the same way. In a practical implementation,
the transitions in the history object should be merged according to the local
execution order, so that the snapshot/projection object can be used to determine the
result efficiently. The local execution order has to be encoded in the transitions so
that they can be merged accordlhgly.

. We will now describe the serial specifications for the objects in the atomic system
that create the same conflicts as the objects in the consistent system. Suppose that
in a consistent system a transition t1 is executed before another transition t2 in an
object o and t1 and t2 are a pair of conflicting transitions. From our definitions, t1
must be ordered before t2 in any consistent order. If we can make sure that, for their
equivalent transitions t1’ and t2’, t1’ must be ordered before t2’ in any serialization
order, then a serialization order exists only if a consistent order exists. Also, if the
ordering of any such pairs of t1’ and t2’ is the only requirement on a serializati_on
order, then a serialization order exists if a consistent order exists. To make sure that
t1’ is ordered before t2' in a serialization order, we can require the collection of
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conflicting transitions that are executed before t2’, such as t1’, to be serialized
before t2°. To express this requirement in the serial specifications, we can encode
this collection of transitions in t2’ and corripare this collection with the collection of
transitions that are serialized before t2’'. Since a serialization order exists if and only
if a consistent order exists, conflicts are created under the same situations.

An additional requirement on the serial specifications of the equivalent atomic
objects is needed. In addition to guaranteeing that conflicts are created under the
same situation, we must aiso require that the resuits returned in the equivalent
atomic system are those returned by the consistent system. In a consistent system,
the validity of a result is determined by specifications like the serial specifications.
For example, if a withdraw operation returns okay, then there must be enough
deposits executed before the withdraw operation to cover the withdrawal. Since the
serialization order, though identical with the consistent order, may not be the same
as the local execution order, we cannot use the serialization order to compute the
results. In other words, the validity of the resuits in the atomic system should be
determined with the local execution order instead of the serialization order.
Consequently, an additional requirement on the serial specifications is that each
transition should encode the sequence of previously invoked transitions in the local
execution order and ensure that this transition’s result is valid according to that
order.

Since the concurrency levels in the two systems are the same, and the results
returned are identical with the exception that a sequence of previously‘ invoked
transitions have been encoded in the transitions generated in the atomic system, we
claim that the two systems have the same behavior. The same implementations can
be used to implement the two systems. The only difference between the two is the
modelling of the acceptable behavior of the system.
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i e IR N A T

6.2 Formal Proof of Power of Atomicity

This section presents a more formal version of the argument described in the last
section. Atomicity and consistency are defined more formally in sections 6.2.1 and
6.2.2. The formal proof is in section 6.2.3.

6.2.1 Atomicity

Some terminology is needed before presenting the definition of an atomic system.
Suppose h is a sequence of events, r is an object, and a is an action. We define hjr
to be the subsequence of h involving r and hja to be the subsequence of h involving
a but not a’s sub-actions. An event in a sequence h is committed if there is a commit
event of the same action identifier in h. We define committed(h) to be the
subsequence of h that involves only invoke and return events that are committed.
Aborted(h) is defined similarly. The sign "||" denotes concatenation of sequences.
We will omit the concatenation signs for sequences whenever it is convenient. For
example, t,t,... refers to tjit,}J.... Also, we will use the "€" sign to refer to an
element being part of a sequence. So for example, we say t, € t,t,....

A sequence of events h is well-formed if it satisfies the following conditions:

1. Ignoring commit and abort events, the subsequence hja should have
alternating invoke and return events, starting with an invoke event, and
with each pair involving the same object.

2. committed(h) and aborted(h) do not have any common events.

3. If a commit event of an action a appears in h, then hja consists of an
alternating sequence of invoke and return events (starting with an invoke
event and ending with a return event) and some commit events at

different objects.
A well-formed sequence of events is called a history.

We define a function Serial which takes a history and a linearization of the actions in
that history as inputs, and returns the history rearranged according to the
linearization. More formally, if an action a or an ancestor of a is prior to another
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action b or an ancestor of b in the linearization L, then hja précedes h|b in Serial(h,
L). The order between events of a and events of a's sub-actions is preserved in
Serial(h, L).

We define Globally Atomic Objects as the set of globally atomic objects in the
system. A history h is globally atomic iff:

3L Vr,EGlobally Atomic Objects: - N,(I, Serial{committed(h|r, L)) # L
where L is a linearization for actions in h,
N, is the state transition function of the serial specification of r;,
II is the initial state of the state machine.

A system is atomic if it generates only atomic histories.

To simplify our proofs, we will ignore nested actions. Hence, instead of a
~ linearization, only a total ordering of the computations in a history is needed. We will
also limit a history to be a sequence of transitions and commit and abort events. In
other words, an invoke event must be followed immédiately by the corresponding
return event. Transitions from different computations can still be interleaved. The
limitation is impoéed to simplify the mapping between histories in an atomic system
and a consistent system. The simplification does not make any difference to our
results as the positions of the invoke events in a history are irrelevant.

Without failure atomicity and nested actions, the set of atomic histories can be re-
defined as follows: a history h is globally atomic iff

3L VrEGlobally Atomic Objects: N,(i,, Serial(hjr,, L)) = L
where L is a total ordering for computations in h

Notice that since we assume that every transition is committed, no commit or abort
events need to appear in h, which becomes a sequence of transitions.

6.2.2 Consistency

To distinguish the objects in a consistent system and an atomic system, we use the
symbol rg, to refer to an object in a consistent system, where C in the subscript Ci
refers to the set of conflicting transitions pairs. ‘
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C = {(t1,t2)|t1 and t2 are conflicting transitions of some object r, }

We assume that there is some mechanism for an application to define C.

The semantics of each object roi is defined with a state machine similar to those
used to define serial specifications of atomic objects. The state machine used to
define the semantics of Tei has four‘ components: Ncs' Sc', 'cv and Tcr
corresponding to N;, S, I, and T, in a serial specification.

A history h, is consistent iff:

Gchc is acyclic and VrCi: Nci('cv hc"cn) = 1

where Gchc = { (Comp,,, Comp, ) € Computations(h.) X Computations(h)
such thathe = ..te ...ty (te,, 1 )EC, to ECompe,,
tcp,€Compgy, Comp, * Compc,}

Computations(h.) = set of computations that appear in hg

In the definition above, GChc is a graph of edges between the computations that

appear in he. An edge exists between two distinct computations Comp, and

c°'“pcu iff they have executed a pair of conflicting transitions t., and t.,. To make

sure that conflicting transitions executed by different computations are not

interleaved, GChc must be acyclic. Furthermore, the transitions must be valid

according to specifications of the objects in the system. Notice that there is no
 global total ordering governing the order in which computations appear in hcl’cr

6.2.3 Proof

Suppose a consistent system 'is .defined with a set of conflicting transitidns C, the
objects ey and the specifications of these objects, which are in tum defined by ch
S¢pr ey @nd Torr Our goal is to construct an equivalent atomic system defined with a
set of equivalent objects r, and the serial specifications of these objects, which are
defined by N,, S, I,, and T,. A 1-1 mapping M will be defined to map histories in the
atomic system to those in the consistent system. The set of atomic histories in the
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atomic system should map to the set of consistent histories in the consistent system.

We will first show how the serial specifications in the atomic system are defined.
Then we prove lemma 1 which states that if a history h, is consistent then the history
M '(h.) in the atomic system is atomic, and lemma 2 which states the reverse: if a
history h is atomic then the history M(h) in the consistent system is consistent.

Construction of Serial Specifications in Equivalent Atomic System

In our informal version of the proof, we argued that for each transition t., that
executes at the object Iei in the éonsistent system, it is necessary to encode the
entire history of transitions that execute at r, before t_ in t,. The set of equivalent
transitions T, at the equivalent object r,can be defined as:

T =T XTy' |
where T, is the set of possible transitions in the object r,,

Tai * is the set of all possible sequences of transitions in Tcl

The first component of a transition t,in T, corresponds to the equivalent transition
tc, in Tcr The second component encodes the sequence of transitions that were
executed at rg; previous to t.,. To make sure that the second component does
encode such a sequence and the histories in the atomic system has a 1-1 mapping
with those in the consistent system, we constrain the set of histories H in the atomic
system to be coherent:

1.ith = ..t,..€H
andt, = (te,, t8.,)s to ETc,, t8. €T, "
and Vt, = (t . ts.Jsuchthath = .t ..t ..:t €T

then tsc. =0 '
~ (i.e., if t, is the first transition that belongs to r; in h, then the second component of t_
shouid be an empty sequence.)
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2.ith = .t,..t,...€H

andt, = (te,. tsc ).ty = (tep. t5cp ) tegs top €T 8¢ 19ep €Ty
and Vt, = (., ts Jsuchthath = .t ..ttt €T,

thents., = ts. [it., |
(i.e., if t, and t, are consecutive transitions that belong to the same object, then the
second component of t, should be the concatenation of the second and first
components of t ..)

The coherence requirement is an additional requirement that we need to impose on
the atomic histories because it can not be expressed with the serial specifications.
Since the coherence requirement deals with histories rather than serial histories, it
exposes the concurrency in a system. When serial specifications are used to reason
about the behavior of a system, concurrency can be ignored. This is not true for the
coherence requirement. In section 3.4.3, we have talked about a similar requirement
that requires exposing the concurrency in a system. In that section, we described a
lower_ bound balance operation on an account object. In.order to guarantee that an
" implementation does not return trivial results, such as zero, we require that a result
has to be one of the possible results given the many possibilities of serialization
orders and operation outcomes. Since this guarantee is a separate requirement from
the serial specification, we cannot assume any non-trivial resuits when we reason
about the behavior of lower_bound_balance using only the serial specifications.

Given that histories in H are coherent, there is an obvious 1-1 mapping M and its
reverse M"! between H and H_,, the set of possible histories in the consistent system:

Mt tscy) B (tcp, t8cp)ll -+ ) = tetop--
MUty = (e O (g OV - It €T, 8, €T, %
(e OV ey te )l M €T, 1y €T

We will reuse the symbols M and M1 to stand for the obvious mappings between the
computations in h and hc, or the mappings between Gc"c and a corresponding
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graph in Computations(h) X Computations(h). For notational convenience, we
assume: | |

- VhEH, Vt Eh:t, = (t.,,ts.,)
Note that if t., appears in he at the object Iep then tse, is the concatenation of all
the transition's\ that execute before t., at ro;. In other words, ts. lit., is an initial
subsequence of hg|rg,.

We now proceed to finish our definition of the state machine of r, by defining S, (the
set of states), II (the initial state), and Ni (the state transition function).

Let S' = TCI‘

l' =

critical(t,, ts. ) = {t, Ets | (te,, tcp)€EC)

N(tsc,, t,) = ts . lite, iff critical(t,, ts. ) C critical(t,, ts,)

and N, (I, tstth) = 1

In the definition of N| above, two conditions have to be satisfied in order for
N,(tsc., t,) to be defined. The first condition requires that criticallt,, ts.,) is a
subset of critical(t,, ts,,). In other words, all the conflicting transitions that
execute before th are serialized before tb. The second condition requires that
Nc&“cv tscplitcy) is defined. In other words, the transition t, must be valid

~according to the local execution order at r,, since this is required in the consistency
definition.

The following two lemmas will show that a history h, is atomic if and only if the
equivalent history M™* (h.) is consistent.
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Lemma 1: if hc is a consistent history then M"(hc) is an atomic history
Proof:
Suppose h,, is a consistent history, let M1 (hc) =z h
Let L be a total order of all the computations in Computations(h)
such that it is consistent with M"" (G,
Suppose Serial(hjr, L) = f.tb...tk_1tk
We will use induction on k to show that N(I,, Serlal(hjr,, L)) = L

Basic Step:
From the definition of critical, we know: critical(t,, O) = %/}
= criticallt,, ©) = @ C critical(t,, ts,,)
Also, since tsc.mc. is an initial subseqbenoe of hcll'cl
and N (I, helre) = L
= Nejlicp» tsc,lite,) * L

Hence N,(O, t) = t. = L

173



Induction Step:

Suppose N1, t,t,...t, )= L

From the definition of N;, we know: N,(ll, t .tb...tm) = teatep - tok-1
Suppose t, € critical(t,, to, tep--tox.1)

= te, € teatop--tox.1 an0 (te,, te ) €C

=> (Comp,,, Comp.,) € GChc and (t.,, to, ) €EC

= he = .teyentoyes-and (e, to ) EC

=> te, €8 and (t,, to ) €EC

=> t., € critical(t,, ts.,)

Hence critical(t,, to te,---tey.,) C criticallt,, tse,)

Also, since tsc,‘tc“ is an initial subsequence of "cl"c|
and N¢, (I, helrgy) = L:

= Neilicp tegylitey) * L

= N(tetoptok W) * L

= NG, t.tb...tk) L

Hence h is an atomic history

QED
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Lemma 2: if h is an atomic history then M(h) is a consistent history
Proof: |
Leth, = M(h)
Suppose heisnota consistent history
= 3rg; e Ehclre;: Nyl tagylitcy) = 1

or a cycle of transitions exists:

3 {temar tear) (teazs tept)s = (erar teme) € C

s.t. hc = ...th’z...tc“..., hc H] ""Caz"'tCM‘"’ ceey hc = ...tcm...tc"“...
and te,qs toaa € COMPEy: tep s topa € COMPEy; --vi temer toma € Compep,
Suppose 3rg, It Ehclrg: Neyllgp toclitey) = L
=> 3r, 3t €hjr: N (I, ts lite,) = L
=> 3r; 3t €Ehjr;: N(s, t) = L for all possible s€S,
=> h is not an atomic history, contradiction
Suppose the cycle of transitions exists.
Since h is an atomic history '
=> 3 atotal order L of Computations(h) s.t. Vr, N/(I,, &ﬂal(h]rl, L) = L
~=> 3(Comp,, Comp JEL s.t. (. ,, te,)€EC,

tc.2€00mpc‘, tcnecompc,,and he = cotega-topge
=> t,, € Prefix, where Serial(hjr, L) = Prefix | t_, | Sutfix
= to4 € criticallt ,, Ni(lI,, Prefix))
Since tey, € tac,,
=ty € criticailt,,, ts,,)
=> N(I;, Prefix fjt_,) = 1
=> h is not an atomic history, contradiction
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Hence he is a consistent history

QED

From Lemmas 1 and 2, we know that given any set of objects rep their specifications
which are defined with ch Sc‘, oy and ch and a set of conflicting pairs of
transitions C, we can construct an equivalent set of objects r, their serial
specifications which are defined with N;, §;, 1,, and T, so that:

hc is a consistent history iff M“(hc) is an atomic history

6.3 Objects with Simple Serial Specifications

With lemma 1 and lemma 2, we have shown that atomicity is at least as powerful as
the consistency definiton. However, the serial specifications that we have
constructed above are impractical in that they require encoding the entire previous
history in a transition. The more complicated a serial specification becomes, the
more difficult it is to understand. Thus, although atomicity is as powerful, it is not
always easier to understand. In this section, we will afgue that the serial
specifications can be simplified in many cases and still have the same behavior and
concurrency. In particular, we will show that for a particular class of objects in a
consistent system, their specifications can be used as the serial specifications for
their equivalent atomic objects. No complicated artificial serial specifications have to
be constructed. Since the specifications in the two systems are just as easy to
understand and the concept of atomicity is easier to understand than the concept of
the consistency déﬁnition, we will claim that our approach is preferable.

We will first define this class of objects, which we call accurate objects. Then we
prove a lemma which shows that the set of consistent histories is a subset of the
equivalent atomic histories when accurate objects reuse the specifications of their
counterparts as serial specifications. Finally we argue that the class of accurate
objects is a large class. | |
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6.3.1 Accurate Objects

Ignoring the requirement that a consistent order must exist, the only difference
between a consistent system and an atomic system is that the former can execute its
transitions in a local execution order, whereas the latter has to make its transitions
appear to be executed in a giobal serialization order. In general, this results in less
concurrency for the atomic system. Informally, because a pair of transitions may not
"commute"”, an implementation of the atomic system may create conflicts in the
process of making sure that the pair appears to execute in the serialization order. A
pair of transitions tCa and to, cCOmmutes if:

Neligp hellte lite, Bhe’) = LN (e, hefite, itg, lihe?) = L

Consider an object r., in a consistent system with the property that all non-
commutative pairs of transitions are conflicting. Suppose we construct an equivalent
object r, in an atomic system using the specification of r¢, as its serial specification.
Suppose a transition t2 is executed after a transition t1. There are two possible
scenarios: either t1 and t2 commute or they do not. In the first scenario, since t1
and t2 commute, no conflicts will be created in either system. Regardless of the
serialization order or the consistent order, the transitions t1 and t2 will be valid. In
the second scenario, t1 and t2 do not commute. In a consistent system, because t1
and t2 are aiso conflicting, t2 can only proceed if the implementation is sure that t2
is ordered after t1 in the consistent order. Reusing the consistent order as the
serialization order, we can achieve the same concurrenéy in the atomic system: t2
can only proceed if the implementation is sure that t2 is ordered after t1 in the
serialization order.

This property of fc; can be defined more formally as foliows:
Vtc., th € TCI: if NCI('CP hc | tc. | th ] hc') = |
and NI, he Btep Bt line) = L for some he, h¢’ €T,

then (t.,, t.,) €C
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re; has the property that whenever a pair of transitions does not commute, then it is
conflicting and belongs in C. We call Fcj @n accurate object.

Notice that commutativity depends on the definition of Ncr For example, suppose
the specification of a bank account object is defined with the state machine in figure
6-1. This specification is similar to the one we _defined in figure 3-1 except that
insufficient funds may be returned even when the balance is more than enough to
cover the withdrawal. The motivation of this non-determinism is to allow a
pessimistic reply to be returned immediately instead of being delayed by tentative
updates.

In the state machine in figure 6-1, the only pairs of transitions that do not commute
are (read balancex, deposityokay), (deposityokay, readbalance_x),
(read_balance_x, withdraw_y okay), (withdfaw_y_okay, read_balance x), and
(deposit x okay, withdraw_yokay). The transition pair (withdraw_y okay,
deposit x okay) commutes since the extra deposit does not invalidate the
withdrawal. Also, the transition withdraw x insuf commutes with all other
transitions, even though “normally" we would expect it not to commute with
deposit .y okay and withdraw_y okay transitions.

Sci real numbers

Te;: <deposit(x), r.,, aXokay, rq,;, @ = deposit x okay
<wnthdraw(x) Top aXokay, cir @ = withdraw_x okay
<withdraw(x), e aXinsufficient funds, r o a> = withdraw _x insuf
<read balance(), rp, aXx, r.;, a> = read.x
where ais a computaﬂon, :ﬂs a positive real number.

s 0 '

Nc(s, deposit x okay) = s + x

Ng;(s, withdraw x okay) = s - x if 8 > x
Nc,(s, withdraw x_insuf) = s

Nci(s, readx) = sifs = x

Figure 67 1:Specification of a Bank Account Object in a Consistent System
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6.3.2 Specifications of Accurate Objects Can Be Reused
We will show that if r,; is accuraté and the serial specification of the equivalent
object r; is defined as:

b= 1cip S; = Scp Ty = Ty Ny = N,
then the set of atomic histories includes the set of consistent histories. An
equivalence in behavior and concurrency is achieved without defining artificial serial
specifications for orr Rather, the same specification used in the consistent system is
used.

The current consistency definition preciudes the two sets of histories from being
equal. However, the stronger requirement of equality is not necessary as histories
that are atomic but not consistent are indistinguishable from the other atomic ones in
the sense that all the atomic histories can be generated by some serial execution.
Equality can be proved if we use the following more general ¢onsistency definition:

hc is a consistent history iff
Gern,, 18 acyclic and Vr 3L N (g Serlgl(hdrc,, L) =L
where L, is a total order of the transitions in hgjre, ’
GCThc = { (Comp,,, Comp,) € Computations(h.) X Computations(h)
such that (t.,, tch)€L| for some |, (t.,, tcn)GC, tc.GCompc.,

tcp€Compy, Compe, # Compey, }
Using the new definition does not change our previous results except that N, in
section 6.2.3 has to be redefined. In the following proof, we will use the old
definition.

Lemma 3: if h,. is a consistent history then M1 (hc) is an atomic history

(The mappings M and M'! can be extended in the obvious way. For example,
suppomtcb is a transition ofanacwrateobioctwhmeastc.md tc° are not.
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Mllte,, tsca) tey Il (tees t8cd o) = teteptoe
M T (te teptee-) = (teg OV tep Bltge, OV ... if e, €T te €T, i
(e Ot Ceeate Il ... Mt €T, te €T,
If all the objects in the system are accurate, then M and M°! become the identity
mapping.)
Proof:i
Let Commut‘atlveI - Te® X T * 8.t. (hg, h,) € Commutative, iff
1.Ng,lig;, he) # L, and
2.Ng,(lg; hey) * L, and
3. he; = hiit Jt,lh", he' = hjjt it lih’ where t,, t, € T, or he, = hey’
Let Reachable, be the transitive closure of Commutative,
Suppose h, is a consistent history, let M"'(h) = h
Let L be a total order of all the computations in Computations(h)
such that it is consistent with M"(Gc,,c) |
For non-accurate objects, we can show that N(l,, Seriallhjr,, L)) * L as
before.
For accurate objects rg,;, let h¢lre, = hir, = tit,..t, t
In the rest of the proof we will use induction on k to show that:
( Serial(t,...t,, LMit, , ,...t,, hclre, ) € Reachable, Vk = 1,2,..,m
In particular, since it is true for k = m:
=> (Serial(t,...t, L), hjre,) € Reachable,
=> N(1), Serial(t,...t L) = L
=> N/(1,, Serial(hjr,, L)) = L

=> M"'(h.) is an atomic history
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Basic Step: k=1
It is obvious that (t1 -t helre) € Reachable, as

tyety, = helrg and N (1, helrey) # L

Induction Step:

Suppose ( Serial(t,...t,, LJIt, , ,...t_, helre ) € Reachable,
Let Serial(t,...t,, L) = u,...u,

Let Serial(t,...t,  ,,L) = u, Uty L Uy Uy

From the definition of L, we know: (t, , 1, Uy, (), ., @y 4,0 ) €C
= Ng,llgys u»1 T T PR N 2....tm) # 1 since r, is accurate

= (U gt Ut ot U qut ot oLt ) € Reachable,

= ( u,... U ST NPT PO SR PR NPT SR Sppess ) € Reachable,

= ( Seriailt,...t, ,,, LIty , ...ty helre; ) € Reachable,

QED

6.3.3 There Are Many Accurate Objects
There are three possible kinds of pairs of non-commutative transitions:

1. mutator - observer
2. mutator - mutator
3. observer - mutator

Notice that case 3 is different from case 1 because a mutator transition and an
observer transition can be defined as conflicting if they execute in one order but
non-conflicting in the other order. We will argue that in most cases, an application
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would define the three kinds of non-commutative transitions as conflicting. Hence

most objects are accurate.
Mutator - Observer

The main reason for a mutator-observer pair to be conflicting is that there is no
concurrency gained by making them non-conflicting. Typically, when a mutator-
observer pair does not commute, the validity of the result returned by the observer
also depends on the outcome of the mutator. Consequently, because the observer
has to be delayed in any case, making them conflicting does not cause any loss in
concurrency. '

The bank account object with its N, defined in figure 6-1 can be used to illustrate
this argument. Suppose the account object has the following pairs of transitions in
C:

(read_balance x, deposit_ y okay), (read_balance x, withdraw_y okay),
(deposit_y okay, read_balance x), (withdraw_y_okay, read_balance_x)

These conflicting transition pairs in C prevent audit computations from interleaving
with fund transfer computations. However, because (deposit x okay,
withdraw_y okay) is not in C, the account object is not accurate. We will show that
no concurrency is gained by making the account object not GOCurate.

Consider an implementation of a consistent system in which an algorithm similar to a
dynamic concurrency control algorithm is used to guarantee that a consistent order
exists. An incoming transition t is delayed until any previously executed transition t*
is finalized if (t’, t) € C. Also, to guarantee that N (i, ho) = L, a
withdraw_x_okay transition is generated only when previous committed deposits in
h are sufficient to cover the unaborted withdrawals. A withdraw x insuf transition
can be generated anytimé without creating any oonﬂlct;.

The same implementation can be used if we define the account object as atomic with
N, as its serial specification and use a dynamic concurrency control algorithm. This
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is true despite the fact that successful withdraw transitions and deposit transitions
are not commutative. Two factors contribute to this equivalence. First, the
implementation has the property that the conflicting transition pairs in a history
generated by the implementation are ordered by their commit timestamps. Second, if
a withdraw transition depends on some previous deposit transitions, it must be
committed only after they are committed. Consequently, if we compare the actual
execution order and the serialization order, a successful withdraw transition is
ordered after a deposit transition in both orders if the withdrawal depends on the

deposit.

To present our arguments more rigorously, consider & sequence of transitions

s = u1...urdxwyv1...v' such that

Nc:“cv u,...urdxwyv1...v') # 1
where d, is a deposit_x okay transition,

wy is a withdraw_y okay transition.
Consider the sequence with the two transitions d, and w, reversed:
s’ = u1...u,wydxv1...v'.

Since N (i, 8) *= L

=> Ng(lgps uq---u) = L

Also, if N (i, u, ...u‘wy) = |

then "cx('cv 8’') # L, since the v;’s are not affected by the order of the
withdraw and deposit transitions '

If the system is implemented with the dynamic algorithm that we described above, we

know that the order in which the computations commit, L, is consistent with GChc.

Obviously, either w, is committed after d, or d, is committed after w,. If the former

is true, we know that w, is serialized after d, according to L and we would not have

to "switch” w_ in front of d, during the induction step in lemma 3. In other words,

we do not have to worry about the validity of 8°.
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If d is serialized after L it must be uncommitted when w, is executed.
Furthermore, due to the property of the concurrency control algorithm, all the
committed deposits at the time w, is executed must be represented in u,...u.
Assuming that the bank object cannot predict whether uncommitted deposits will
commit, it implies that: _
. Neller u,...u,w,) = 1

Consequently, we know that for any consistent he generated by the implementation
that we described above, (Serial(hfr;, L), hc"ca) € Reachable, despite the fact
the account object r, is not accurate. Making (deposit x okay, withdraw_y okay)

non-conflicting does not gain any concurrency.
Mutator - Mutator

Before describing the reasons why a mutator-mutator pair should be conflicting, we
should observe that there are many mutator-mutator pairs that commute. For
example, all the mutators in the bank account example commute with one another
because increments and decrements commute. Similarly, in an airline reservation
system, increments and decrements of seat counts commute with one another. The
concurrency probliem that we encounter in these applications is usually due to
conflicts between observers and mutators.

~ Nevertheless, there are also many examples in which two mutators do not commute.
One of them involves an "overwrite" transition, such as resetting the value of a
counter, which does not commute with other mutator transitions. In a calendar
application, changing the meeting place of a meeting appointment does not
commute with another transition that changes the meeting place of the same
appointment. In a FIFO-queue, the order in which items are enqueued determines
the order in which items are dequeued. Two enqueue transitions do not commute.

There are several reasons why these non-commutative tr'ansition.pairs should be
~ conflicting. First, making them conflicting is the only means to maintain consistency
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within a set of objects. For example, in a replicated object, if a compdtation that
performs an "overwrite" operation at each replica can interleave with other mutator
computations, the state thét results at each replica is no longer consistent. This is
probably not acceptable to the application. 'Similarly, if two computations fhat
change the meeting place of a meeting appointment are executed concurrently, the
desirable behavior is to serialize the mutators at each participant calendar in the
- same order, so that at least all the participants would go to the same place for the
meeting. Making the transitions that change the meeting place conflicting is the only
‘'way to guarantee such a behavior. The question of why there are two such
computations initiated concurrently in the first place should be left for arbitration at a
higher level.

Second, making two mutators non-conflicting does not improve concurrency in many
cases. In the implementations that we have described in previous chapters, the
validity of the resulits of two mutator transitions does not depend on the outcome of
other transitions or the serialization order. For example, both ingerting an item x and
removing x from a set object return okay in any case. Itis ohly when there are other
observer transitions whose validity depends on the saﬁaliz&ﬁon order or outcomes of
these mutator transitions that conflicts may be created. For example, in the
implementation of a set object in figure 4-3 on page 100, fhe only condition under
which a conflict is created by a delete(x) operation is when the delete(x) operation
may be serialized between an insert(x) operation and a member(x) opération that had
returned true. If the implementation uses a dynamic concurrency control algorithm,
the only situation that such a condition can be met is when the insert(x) operation is
committed and the member(x) operation tentative. In an implementation of a
consistent system, whether a confiict would also be created under such a condition
depends on whether member(x) and delete(x) are conflicting, which we will discuss
below.

Observer - Mutator

185




In an atomic system, a conflict condition depends on the functionality of the
application. In particular, whether a conflict is created by a mutator that executes
after an observer depends on the functionality of the mutator and observer. For
example, in the bank account example described in figure 6-1, no conflicts are
created by any mutator that executes after the transition withdraw_x_insuf because
insufficient funds does not gdarantee that the balance is less than the amount to be

withdrawn.

Similarly, the relaxed semantics of insufficient funds can be used to increase
concurrency in a consistent system. A pessimistic answer can be returned by
withdraw if there are tentative mutators. Given that insufficient funds has a relaxed
functionality, defining withdraw_x_insuf and deposit_y okay as conflicting does
not increase concurrency over an atomic system. In other words, defining an
observer-mutator pair to be conflicting may not increase concurrency because the
functionality of the observer may have been relaxed to avoid conflict between a
mutator-observer pair of transitions.

In summary, since defining each of the three possible type of non-commutative
transition pairs as non-conflicting is unlikely to increase concurrency, défining them
as conflicting does not decrease concurrency either. Consequently, the set of
accurate objects is likely to be a large set.

6.4 Conclusion

In this chapter we have shown that atomicity is at least as powerful as a consistency
definition that is similar to some othjei' correctness definitions proposed in the
literature. By allowing serial specifications to be defined by an application, a
programmer can construct an atomic system equivalent to a consistent system in
terms of its concurrency and behavior. However, the serial specifications of the
equivalent atomic system are too complicated to sustain our claim that our atomicity
definition is easier to understand than the consistency definition. We showed that for
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a class of accurate objeds the specification used in a consistency system can be
used as the serial specification in the equivalent atomic system. Since the
specifications in the two systems are as easy to understand and the concept of
serializability is easier to understand than the concept of consistency, we claim that
atomicity is at least as powerfpl and easier to understand in the case of accurate
objects. We argued that the class of accurate objects is a large class because it is
unlikely to have non-conflicting non-commutative transition pairs.

This chapter finishes our discussion of concurrency. In the next chapter we will turn
our attention to resilience problems in a system with long computations.
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Chapter Seven

Resilience

When the execution of a computation spans a long period of time, the probability of
its eﬁcountering some transient failure increases. After a failure, a computation may
have lost its prdgram state (e.g. local variables) before the failure and be unable to
resume its execution. Unless precautions are taken to guard against these transient
failures, a computation becomes more and mbre unlikely to be completed
successfully when its length increases. Other than site crashes, transients failures
also include deadlocks and invalid assumptions in concurrency control algorithms.

Two kinds of resilience problems are dealt with in this chapter. The first kind of
resilience problems is concerned with limiting the amount of lost work when a failure
occurs. The use of nested actions is a partial solution: .wortihg a sub-action in
progress does not undo the sibling actions or the parent action. However, using
sub-actions alone is not sufficient. If a sub-action is aborted after it had finished and
the abort is not initiated by the parent action, the parent action has to be aborted
also. Since the execution of the shb-action may be non-deterministic and have
affected the subsequent execution of the parent action, a mere re-execution of the
sub-action is inadequate. Storing the modifications of the sub-action in stable
memory only helps occasionally, as aborts may be caused by deadlocks and invalid
assumptions in concurrency control algorithms, as well as by site crashes.

Conversely, when an action is aborted, all its sub-actions have to be aborted also.
Significant delay can be added to the response time when these sub-actions are
executed at remote sites. Re-executing the aborted action but not the sub-actions is
not acceptable in general. The execution of the aborted action can be non-
deterministic such that a different set of sub-actions may be created in the re-
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execution.

The second kind of resilience .problems is related to communication. In a
communication network where partitions are frequent, a message may never reach
the destination site if resending from the origin site is the only measure to mask
partitions. Consider the communication path between two sites to consist of
switches linked by direct communication links. If the receiver or one of these
switches or links is non-operational, a partition is created. Even though individual
'partitions disappear over time, and the sender site can resend the message
repeatedly, the system may be partitioned in such a manner that the sender and
receiver sites never establish a connection along which all the components would be
operational simultaneously (figure 7-1). A special case of this situation is when the
sender and receiver sites are connected to the communication network at non-
~overlapping periods of time. |

X
()X (=X (=)
(= (X {(=

Figure 7-1:Partitions that Prevent Communication
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With most current communication protocol implementations, an end-to-end
connection from sender to receiver is assumed. While switches may resend to
recover from a transient failure, they currently do not have the capability to buffer
messages for an extended period of time, so that the ultimate resending
responsibility falls back on the sender. If partitions develop, these assumptions
prevent successful communication.

In section 7.1, we describe a checkpointing mechanism which allows a program
interrupted by failures to restart itself at the last checkpoint. A "program” can be
equated with a procedure in a resource manager. Checkpointing has been
suggested in the literature [41, 63] to increase the resilience of a computation; 'our
goal is to work out a checkpointing mechanism compatible with the implementation
paradigm described in this thesis. In addition, because of our assumption that
communication delays can be significantly long, we will discuss how to minimize
aborting remote sub-actions by coordinating the checkpoints with remote
invocations. Another difference between our work and other work on checkpointing
mechanisms relates to the amount of information stored in a checkpoint. In order to
avoid checkpointing every piece of information accessible to a program, we will
describe how the program can specify a subset of its state to be preserved across
checkpoints. '

- In section 7.2, we describe how messages can be relayed through message transfer
agents (MTA's). The protocol between two MTA’s or an MTA and its client is simple,
minimizing the state that needs to be kept on both sides. MTA’s are capable of
buffering messages as well as storing messaqes in stable memory so that messages
are not lost with site crashes while waiting for partitions to disappear.

7.1 Checkpoints

This section deScribes how a program can checkpoint its state during execution. At
a checkpoint, all the updates to the shared objects accessed or created by this
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program should be stored in stable memory. These shared objects include all the
objects accessible frdm the permanent state of the resource manager. In addition,
any objects local to this program (e.g., local variables) must have their updates
remembered in a known location in stable memory. Since it may be too expensive to
copy all the accessible local state into stable memory, we will describe how the
application program can specify a subset of the local state. Only objects in this
subset are accessible after the checkpoint.

Due to our decision that only a subset of the state accessible to a program is
preserved by a checkpoint, and because a procedurs is a more convenient unit than
a process to specify the subset, we will equate a program with a procedure.
Obviously, checkpointing only the state of a program is not sufficient. To guard
against site crashes, all the ancestor programs on the call stack at the same site must
also be checkpointed. It may also be appropriate to extend the checkpointing
beyond this site.

Our approach may provide less availability than a system in which the checkpointed
state is replicated in another site with relatively independent failure characteristics.
To determine the appropriate trade-off, availability should be evaluated against the
cost and complexity of replication. Complexity can be reduced at the cost of special
hardware support (e.g., dual-ported disks).

In the remainder of this section we describe our checkpoint mechanism in greater
detail. We will describe the actions taken at checkpoint time and failure occurrences.

7.1.1 Checkpoint Time

Our discussion of the actions taken at checkpoint time will start with a brief
description of the local state that needs to be stored by a checkpointing program.
Storing the local state accessed by a program is not enough to guarantee resilience,
however. We will also discuss how the objects accessed by previously invoked sub-
programs can be stored in stable memory, and how checkpoints can be propagated
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to ancestor programs.

7.1.1.1 Checkpointing a Program

At a checkpoint, a program can specify a collection 'of local variables in a checkpoint
record. Together with the permanent state of the resource manager, a checkpoint
record constitutes the accessible state after the checkpoint.

Since abstract atomic objects of an application are eventually implemented using
globally atomic objects or locally atomic objects supported by the language system,
storing the accessible state requires storing these system-level objects into stable
memory. For concfetene&. we will assume that the} system-level objects are
implemented using read/write locks and storing the objects into stable memory
requires writing log information that contains new values of modified objects into
stable memory [44]. Other algorithms are possible [48, 17]. |

When the log records that contain the values of modified objects are written out, they
are associated with the corresponding checkpoint so that a consistent set of values
can be restored after a failure. The order in which log records are stored can be
used to determine the order of different checkpoints taken by a computation. The
creation and preparation of a sub-action can be regarded as special checkpoints and
ordered with other regular checkpoints in the log. When a restart is needed later, the
ordering in the log can be used to determine the latest checkpoint to rollback to. To
model checkpoints taken by paralle! actions, an acyclic directed graph instead of a
total order can be used to model the order. '

When a checkpoint is taken, an object checkpointed may be locked or a previously
acquired Iockmayhavebeenreleased Iftheobjectissﬁlllocked this can be
indicated in the log record so that the lock can be retained when the object is
restored. if the lock is released, it wbecausetheobjoct nalocallyatomac object and
the local computation that acquired the original lock had committed. If any changes
made by the locally-atomic computation had been written out to stable memory, no
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further work needs to be done. Otherwise, any changes made by the locally atomic
computation, including the decision to commit the locally atomic computation, can
be flushed to stable memory.

One complication remains. If a locally atomic object is checkpointed while a lock is
héld and the lock is subsequently released, it may not be possible to rollback to that
checkpoint because some other locally atomic computation could have accessed the
object and possibly committed. One of the solutions is to disallow checkpointing a
locally atomic object when it is locked. This is not a severe restriction because we
expect checkpoints to be taken between, and not during, short locally atomic
computations. Linguistically, a checkpoint can be taken as the end of a locally
atomic computation, which forces iocks to be released at the checkpoint. Another
possibility is to discard the checkpoint as if it had never been done when locks are
released later. The decision to discard a checkpoint can be written to stable memory
together with the decision to commit the locally atomic computatidn and release
locks.

Log records about a checkpoint can be dnscarded ‘when the action in which the
checkpoint is executed is finalized2S.

Linguistically, in order to enforce the scope of the local variables so that the program
after the checkpoint can only access those objects contained in the checkpoint
| record or permanent state, we require the prograin to continue in a separate
program module after a checkpoint; We call this program module a continuation
procedure, the name of which is stored in stable memory and associated with the
checkpoint. The permanent state is accessible to all program modules in the
resource manager. The checkpoint record can be made accessible to the
continuation procedure as its "argurhents." See figure 7-2 for an example.

25i¢ the only source of failures is site crashes, a checkpoint can be discarded once the action
executes a iater checkpoint or is prepared.
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calendar = resource manager s ...
permanent state 1s
a: table[slot]

ﬁ;ée_appo1ntnont = procedure(...)
locall: integer

checkpoint(locall, ...)
continue at contl
end -ako_appointiont

contl = proccduro(clocall integer, ...)
clocnll
I I ...
;6& contl
Figure 7-2:A Program Using Checkpoints

7.1 .'1 .2 Propagating a Checkpoint to Previously Invoked Sub-Programs

In addition to the local objects accessed by this program, other objects accessed by
the sub-programs previously invoked by this program should also be stored in stable
nwmnmry Shncethesesnurcwognmnstuuieﬂnuuhrnuurned no local variables need to
be stored. Only the objects in the permanent state of the resource managers in
which these sub-programs executed have to be written out to stable memory. If a
sub-program and its parent execute at the same site, a single stable memory access
can be used to write out all the log records. If they execute on different: sites, the
parent has to send messages to inform the sub-program of the checkpoint.

To simplify our discussion, we assume that all remote sub-programs are executed in
- sub-actions. If these remote sub-actions have already prepared, no extra work is
needed. Othenmse. prepare measagea should be sent to the remote sub-achons ifa
. novote is returned by a sub-action, this action has to be rolied back to a checkpoint
taken before the sub-action is created. We will discuss rollbacks in the next section.
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It is not necessary for the parent to wait for a remote sub-action to prepare before
proceeding. However, when the parent prepares later, it has to make sure that the
sub-action has also prepared. '

7.1.1.3 Two Kinds of Checkpoints

Two kinds of checkpoints are allowed in this proposal. The first kind of checkpoints
is associated with a procedure call. Under our model the length of a computation is
attributed to communication delays; Consaquently,-if a program expects a Ionb délay
in the return of a remote procedure call, it should execute a checkpoint immediately
after evaluating any arguments but before the call. If the site in which the caller
resides crashes during the wait, any previous work, such as calling some other
remote procedures, and the ongoing call would not have to be aborted. Executing
the checkpoint before the call minimizes the possibility that the caller will be aborted.
By associating the procedure call with the checkpoint, we guarantee that the
checkpoint will be immediately before the call and the deterministic processing in
between would not invalidate the invoke message.

The second kind of checkpoints is not associated with any procedure calls. These
checkpoints are executed when a program arrives at some "logical breaks.” At
these logical breaks, the remaining tasks in the program are relatively independenf of
~ previous tasks. Little or no local state is required to be stored for the continuation
procedure. However, if we assume that a program spends relatively little time
between remote calls, there is less motivation for these checkpoints.

When a checkpoint associated with a procedure call is executed, the arguments and
a unique frame identifier of the callee will be stored alongv with other information in
stable memory. A frame identifier uniquely identifies a brogram. We assume that
frame identifiers are unique over the lifetime of a system. Storing the frame identifier
of a callee ensures that a program is aware of its waiting for another program to
return when it is restarted. The continuation procedure will only be invoked when the
procedure cali finally réturns. A handle can be provided to access the resulits of the
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call in the continuation procedure. The use of frame identifiers will be discussed
further in the next section.

A program can anticipate the delay in calling a remote procedure and execute a
checkpoint at the time of the call. On the other hand, a program can also delay the
checkpoint until it is informed by the system of the difficulty in communicating with
the remote site. We expect the system to convey such difficuities through some
system-defined exceptions., In the discussion below, ‘we assume that an
unavailable exception is raised at a remote call when communication with the
remote site is not possible. It is possibie that the invoke message might have been
delivered and the remote call is actually executing.

The alternatives available to a program when an unavailable exception is raised
depends on the exception model. With a resumption model [36], a program can
execute a checkpoint and resume the outstanding call. With a termination
model [29], the outstanding call is abandoned. The resumption model has the
advantage that the call will not be aborted if it had been, or will be, started. The
program also has the choice of abandoning the call, and pursuing some other
alternatives, in which case the sub-action associated with the call will be aborted if it
is ever going to be started. After the checkpoint and resumption, the state of the
program is as if the checkpoint had been anticipated.

7.1.1.4 Propagating a Checkpoint to Ancestor Programs
In the discussion above, we have ignored the interaction between a program that
executes a checkpoint and its ancestor programs. In fact, the resilience of the
computation is not much improved if only the current program is checkpointed. In
order to notify the caller of a checkpolntinq' program, executing a checkpoint
statement will also cause a special exception o be raised inside the caller. At the risk
. of a slight misnomer, we can reuse the name unava1lable for the special exception.
. Uniess the caller had anticipated the delay by a previous checkpoint, the caller has to
provide a handler for the exception. To handle the exception, the caller can decide
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to checkpoint its state and resume the callee. The exception can be avoided if the
callee knows that the caller has a checkpoint associated with the call.

If the caller did not anticipate the checkpoint and decides to checkpoint when it
receives the exception, it would in turn cause an exception to be raised in its own
caller. Thus, checkpoints are propagated along the call chain (see figure 7-3). This
propagating of checkpoints can be thought of as translating volatile stack frames into
a chain of “stable stack frames," each of which consists of the follo‘wi_ng:

1. a checkpoint record,

2. the frame identifiers of this program and its caller,

3. a continuation procedure

4. the frame identifier of the callee and the arguments of the call if the
checkpoint is associated with a procedure call.

During a checkpoint, storing updated objects and the stable stack frame into stable
~memory, notifying the caller, and executing the continuation procedure can all
proceed in parallel. If the caller does not resume this program, the current action can
be aborted asynchronously. The parallelism is needed as the caller may be from a
remote site, creating a long delay in notification. If the calier and callee are at the
same site, their checkpoints can be synchronized in such a manner that the storing
of their states into stable memory can be buffered in a single access to stable
memory. On the other hand, there may be applications that may prefer to minimize
the probability of rollbacks before starting the continuation procedure. A
synchronous checkpoint can be provided; the continuation procedure will only be
invoked after the following has happened: |

1. the caller has resumed this program,

2. the objects updated by this program and its sub- -programs have been
stored in stable memory,

3. the procedure call associated with the checkpoint has returned.
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execution
ofa
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a = procedure(...)

invoke b
except when unavailable:
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continue at Conta
end
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b = procedure...)

invoke C
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checkpoint

resume

continue at Contb
end
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at calier of a
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at caller of b
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Figure 7-3:Propagating Checkpoints to Ancestor Programs
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7.1.1.5 Checkpointing Paraliel Sub-Actions

Consider when a checkpointing program is one of the parallel sub-actions invoked by
a parent action. Like other checkpoints, the program has to supply a cOntinuaﬁon
procedure and a checkpoint record. The creator of these parallel sub-actions is aiso
notified so that it can checkpoint if it had not anticipated the delay. In its checkpoint,
it will remember the sub-actions that have not yet finished. Its continuation
procedure will be invoked only after all the remaining sub-actions are finished.

Parallel sub-actions can be used to specify an application time-out. Figure
7-4 describes a scenario in which a parent action creates two parallel sub-actions:
one of them sends out requests to set up a meeting, the other contains a checkpoint
statement and remembers a deadline. The continuation procedure of the timer sub-
action will sleep until the deadline is reached. When the timer sub-action is
awakened, it will abort the sibling action or perform other necessary tasks. If the
sibling action is finished before the deadline, it will abort the timer sub-action and
return. We assume that there are mechanisms to abort sibling actions.

7.1.2 Restart.Time

This section describes the process of restoring the state of a program to a
checkpoint. First, the restartable programs have to be identified. This is not a
straightforward operation as checkpoints can be asynchronous at different sites.
Then the states of the sites involved have to be restored to those recorded by the
checkpoints and the programs associated with the checkpoints are restarted. We
will focus on the case where the failure is caused by a site crash. Later we will
describe variations to handie other types of failures.

7.1.2.1 Identifying the Restartabie Program

After a failure, the system should consuit the record of the checkpoints. The goal is
to identify the last checkpoint executed by a program whose caller is still expecting
the program to retumn. If the failure is caused by a site crash, the system can retrieve
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make-appointment = procedure(...)

coenter
remote-mark-subaction(...)
timer-subaction(...) .
end except when available:
checkpoint(...)
resume % subactions
“continue at contm
end

. end make-appointment

contm = procedure(..)
if expired signalled
then ... % abandon

end

end contm

remote-mark-subaction = procedure(...)
% invoke remote subaction

checkpoint(...)
continue at contl;
end remote-mark-subaction

contr = procedure(...)
% examine result of
% remote subaction
abort sibling and return
end contr

timer-subaction = procedure(...)
% calculate deadline and wait for
% short time before checkpoint
checkpoint(deadline)
continue at contt
end timer-subaction

contt = procedure(t: time)
sleep-until(t)
abort sibling and
signal expired
end contt

Figure 7-4:Using Parallel Sub-Actions to Specify Application Time-Out




all the checkpoint records that belong to unprepared actions from stable memory.
- Recall that the checkpoints created by a program are ordered in their execution
order and that sub-action creation and preparation can be regarded as special
checkpoints. Only programs that were executed by unprepared actions need to be
~ restarted. Programs that had returned before an ancestor program executed a
checkpoint need not be restarted either.

A program can be top-level if it executes the top-level action, in which case, the state
of its caller, if the program has any, is irrelevant for recovery purpoées. For the non-
top-level programs that potentially need to be restarted, the frame identifiers
recorded during a checkpoint can be used to identify their callers. A caller can be in
a remote site and not necessarily checkpointed. If the caller is local, one of the
checkpoints of the caller should be associated with a procedure call and expecting
this prbgram to return.

To determine whether the caller of a program has a checkpoint at the call or is still
waiting for the call to return, a message has to be sent to a remote site if the caller is
executing remotely. If a caller neither has a checkpoint at the call nor is it waiting for
the call to return, the callee should be asked to abort. If the caller is still waiting for
the call to return, no more work needs to be done and the callee can restart. If the
caller is not waiting for the call to return but has a checkpoint at the call, the caller
. can continue up the chain and determine whether the caller itseif can restart at that
checkpoint. If the caller can restart at that checkpoint, the callee can restart also.

7.1.2.2 Restarting a Program

In order to restart a program as quickly as possible, two optimizations can be
introduced. First, the sending of an inquiry message to a remote caller and a restart
can proceed in parallel. This is crucial as there may be a long delay before an
answer is returned. Second, a call message that invokés a remote callee can
" indicate whether the caller is checkpointed at the call. If it is, no inquiry messages
are needed later. Also, positive replies of an inquiry message can be saved and later
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inquiry messages directed to the same caller can be omitted.

When a program is restarted at a checkpoint, all the work performed after the
checkpoint, including any changes to the local objects and any sub-action created,
should be undone or aborted. The values of the local objects are restored according
to the values recorded by the chéckpoint. See [54, 35] for a discussion of detecting
orphan sub-actions that are still running even when they are supposed to be aborted.
To avoid committing supposedly aborted sub-actions, the return, prepare, and
commit.computation messages should contain the tree of action identifiers that
ought to be committed. An action should refuse preparation if the action tree
contains sub-actions that should have been aborted.

To restart a program on a crashed site, the continuation procedure associated with
the checkpoint- can be invoked directly if the checkpoint is not associated with a
procedure call. Otherwise, the program can re-invoke its caliee.

7.1.2.3 Other Types of Failures

Dealing with other types of failure is similar. If an operation a is the victim of a
deadlock, or a has made an invalid assumption in an optimistic concurrency control
algorithm, the checkpoint before a can be considered as the "last" checkpoint
before a "crash"” (see figure 7-5). All work performed after the "last” checkpoint has
to be undone. Determining this checkpbint requires remembering the ordering of the
checkpoints and the points at which operations occur. If this is too expensive, the
beginning of the action that a is executed in can be used as the last checkpoint.

7.2 Message Transfer Agents

In the introduction, we described a communication problem due to the improbability
of having all the components along a communication path operational at the same
time. This section describes how to allewate the probiem with Message Transfer
Agents (MTA's). ‘ - '
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If a destination resource man.ager has a fixed network address, the system can
determine which MTA is "closest” simply by some,téble lookup. However, a resource
manager can occasionally be relocated from one address to another. For example, a
resource manager can be reincarnated in a different machine when a previous one
crashes, and portable computers can be carried around and reconnected to the
network at different locations. If the new address has not been propagated in the
system, the table lookup may not return the closest MTA.

This problem can be alleviated in two ways. First, the source and destination of a
message can be expressed in resource manager identifiers, instead of network
addresses. Each relaying MTA can perform a table lookup for the best MTA to send
to. Anoth_er possible solution is to allow each resource manéger to specify a set of
MTA'’s as its home MTA’s. For example, a user may specify MTA’s which are closest
to his home or office as the home MTA's for his portable calendar resource manager.
Messages can be replicated and sent to each of these home MTA's. Aithough extra
resources are required for replication, these replicated messages are otherwise
harmless because they are detected by the destination resource manager. A home
MTA that receives a message will try to send the message to the destination resource
manager periodically. A resource manager can aiso poll its home MTA's periodically
or when it is conscious of its being reconnected to the network.

. To avoid keeping messages in an MTA for an extended period of time and employing
complicated algorithms to inform an MTA when messages can be deleted, an MTA
assumes that it can delete a message when its delivery has been acknowledged by
the destination resource manager or the next MTA on the path. If the delivery is not
acknowledged (e.g., the acknowledgment message is lost), the MTA can try another
path without having to worry about a possibie replicated message which is harmless.
in fact, a message can be replicated intentionally and relayed through different
routes to increase reliability and minimize delay even when there is only one home
MTA. To avoid lost messages, messages can be stored in stable memory along the
route. To avoid an MTA being "stuck” with a message, each message is associated




with an expiration time and the message can be dropped when it expires. The sender
of a message is responsible for resending when the message expires.

Several other protocols [47, 22, 57] provide a similar relaying service. A Simple Mail
Transfer Protocol which provides a relaying service across transport service
environments for mail is described in [47]. Sites that are connected to different
transport services are chosen as relaying points. An asynchronous data distribution
service for general distributed applications for the SNA architecture is describe in
[22]. A similar service for the CCITT standard is described in [57].

The protocol we described above is not meant to be a complete specification but
rather an outline of the main features. One of the features in our protocol is our
assumption that a recipient can detect and discard duplicate messages. It allows us
to simplify our protocol and increase reliability by replicating messages. Also, an
MTA can discard messages when they expire. It allows the resources of an MTA to
be reclaimed easily.

7.3 Conclusion .

This chapter described the resilience problems that a computation may encounter
when partitions in the network are frequent. In addition to the increased possibility of
site crashes during the long execution of a combutation, there is aiso a higher
likelihood of deadlocks. To avoid a computation being aborted whenever a failure
occurs, a program can éxecute checkpoints from which it can be restarted. We have
described how the state of the program can be specified at these checkpoints. In
view of the possible long communication delay between two sites, we have shown
how their checkpoints can be coordinated. A program can‘execute a checkpoint in
anticipation of or in response to a iong delay in communication. A program can also
inform its caller when it is performing a checkpoint.

A different resilience problem arises when it is unlikely for the sender and receiver of
a message to communicate synchronously. We described a relaying service which
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has a simple protocol due to its assumption that duplicate messages can be detected

by the receiver.



Chapter Eight

Conclusion

This chapter summarizes our work and suggests future work.

8.1 Summary

As the size and complexity of a system grow, it becomes more difficult to understand
the behavior of the system. Atomicity provides a useful tool to handie this problem.
in this dissertation we have investigated how long atomic computations can be
supported. '

There are several questions that we tried to answer:

1.How to improve the concurrency of a system with long atomic
computations? ;

2. Given that answers to the previous question may require application-
dependent synchronization and recovery, how can the process of
implementing an application be simplified?

3. Is atomicity the right model for long computations after all?

4. How can a long computation be resilient to transient failures?

- Two solutions to the concurrency problem have been proposed in this thesis. The
first solution involves the use of application semantim, which is not a new idea. The
basis of the solution is to define atomicity using the serial specifications of abstract
objects, which are specifications of the abstract objects’ behavior in an environment
without concurrency or failures. As long as the external behavior of an abstract
object appears to be atomic, how the object masks the internal concurrency and
failures is immaterial. This approach of defining atomicity naturally leads to a trade-
off between functionality and concurrency. By relaxing serial specifications,
concurrency is increased. Being able to trade off functionality for concurrency is an
important requirement in a system with long computations. Given that an
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implementation cannot predict whether tentative computations will commit and that
computations can be initiated asynchronously and inteﬂeave, a concurrency
problem is unavoidable uniess a "weak" functionality is used.

The ability to define atomicity based on objects’ serial specifications also makes

~atomicity at least as powerful as other correctness definitions that abandons
atomicity. We ha\)e shown that given a consistent system [50], an equivalent atomic
system can be defined such that the set of atomic histories is identical to the set of
equivalent consistent histories. We have also argued that in many cases, the serial
specifications in the equivalent atomic system are identical to the specifications used
in the consistent system. Consequently, atomicity is at least as powerful and easier
to understand. This result assures us that our atomicity definition is a useful tool.

In implementing an application, an application programmer is confronted with two
problems. First, how can the serial specification of an object be defined such that
there is "enough" concurrency? Second, how can abstract objects that behave
atomically be implemented? We introducad a conflict modei that measures the level
of concurrency with how frequent conflicts are created. We have described a
process with which a programmer can derive conflict conditions from the serial
specification of an object. Since a conflict condition is a useful indication of the level
of concurrency in an implementation, the serial specification of the object can be
designed accordingly. An important characteristic of the conflict modei is the
masking of the underlying concurrency control algorithm. Hence, the designer of a
serial specification does not have to be knowledgeable or aware of details of the
underlying concurrency control algorithm. |

The implementation paradigm that we suggested for the implementation of an atomic
object follows the conflict model closely. When an operation is invoked, it first tests
whether a conflict is created. If a conflict is created, it must be resolved. Otherwise
the operation can proceed. We emphasize simplicity in our implementation
paradigm. Not only do programs become easier to write, their correctness can aiso




‘be argued more easily. History objects are used to capture the necessary
information that determines whether a conflict is created. We described two
recovery paradigms that govern how recovery is achieved. .

An important feature of a history object is that, similar to the conflict model, it masks
the underlying concurrency control aigorithm from the application programmer. An
application programmer can write programs without having to know the underlying
concurrency control algorithm and its details. The programs written can also be
ported on systems with different concurrency control algorithms. This portability is
important when systems with different algorithms may be merged. It is also helpful
when little actual experience is available to determine the optimal concurréncy
control algorithm. We have shown how the programming interface can be
implemented with different concurrency control algorithms.

Another implementation hechanism suggested is the concept of local atomicity
versus global atomicity. By executing (short) portions of a globally atomic
computation as locally atomic computations, the programming of application-
dependent synchronizétion and recovery is simplified. A paraliel with recursion can
be drawn. The implementation of long atomic computations is simplified by making
portions of them atomic to one another. The power of the atomicity concept is
reused at a different level. |

The motivation for these implementation mechanisms is to provide a stylized and
well-understood way of implementing atomic objects. By using the history objects to
derive conflict conditions, the recovery paradigms to perform recovery, and local
atomicity to decompose synchronization and recovery, globally atomic objects can
‘be implemented easily.

The second solution that we provide to the concurrency problem is a limited one. We
have designed two novel concurrency control algorithms that minimize the
occurrences of costly conflicts. These algorithms provide a limited solution because
they are effective only under special conditions. For exa_mple, for the hierarchical
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algorithm, costly restarts and long delays can be avoided if distributed computétions
and computations that both observe and mutate are rare.

Finally, we have discussed a checkpointing mechanism and a reliable message
delivery service that alleviate some of the resilience problems. In view of the possible
long delay to communicate between two sites, we have shown how the checkpoints
within a computation can be coordinated. A program invoking another possibly
remote program can execute a checkpoint in anticipation of, or in résponse to, along
delay in communication. It can also inform its own caller 80 that its caller can in turn
prepare for the delay. Due to the possibly long communicatioh delay and cost in
accessing stable memory, the checkpointing process proceeds asynchronously at
each site. ~

8.2 Future Work
In this section we will discuss a number of areas for further investigation.

8.2.1 Other Communication Primitives

In this thesis, we have chosen RPC as the communication primitive. Although it has
its limitations, such as in dealing with interactions that resembles coroutines, RPC is
relatively more understood and familiar to programmers. The tree of call and returns

- also fit nicely with the nested action tree. However, the requirement that each call

must be paired with a return may pose some efficiency problem in an environment
with long communication delays. It is not uncommon to have computations
consisted of work that need to be done sequentially at several (more than two) sites.
The arrangement that requires that shortest communication delay will have the first
site invoke the second, the second invoke the third, and 8o on, until the last return to
the first. This is not possible within the RPC paradigm.

Another type of communication primitives that has been proposed is broadcast

'messages [12]. Communication cost can be reduced when implementing, say,
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replicated objects. In particular, the messages that need to be relayed through the
MTA's described in Chapter 7 can be minimized.

Incorporating new communication primitives requires much rethinking of the design
and implementation of a system. For instance, it i3 unclear how a nested action tree
can be defined when the control structure of the computation does not follow a
nested tree of invokes and returns.

There is also the problem of language design. A simple semantics of the
communication primitives should be presented to the programmers. When the
communication primitives are implemented on an unreliable network, the
implementation should be efficient and yet conform to the semantics.

8.2.2 Hardware Configuration and Reliability

We have assumed in this thesis that each site is equipped with stable memory. This
is not necessarily true for most personal workstations. One solution is to provide
stable memory servers shared by the sites without stable memory. The protocol
between the sites and the stable memory servers must not only be efficient, but also
provide a reliable service seldom interrupted by site crashes. For example, if the site
on which a resource manager resides crashes, one shouid be able to reincarnate the
resource manager on a different site with the heip of the stable memory server,
without waiting for the original site to be recovered. By concentrating the stable
memory of a system into fewer stable memory servers, better maintenance can be
provided to these machines and the system becomes more reliable as a result

A more difficult requirement is for a resource manager to be able to continue its
service using another stable memory server when the original server crashes, with or
without aborting ongoing computations. The problem is difficult as the resource
manager may not have a copy of its entire state. A less ambitious goal is to provide
some limited service, such as only allowing prepared actions to be committed. Since
prepared actions have their changes written in the crashed stable memory server, the
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new stable memory server can record the commitment and retrieve the changes from
the crashed server later.

Instead of stable memory servers, a system can replicate the state of a resource
manager on multiple sites. If these sites have relatively independent failure
characteristics, the storage reliability may be as high as that provided by stable
memory. Similar to the stable memory servers described above, the replicated state
information can aiso be used to increase availability when the resource manager
crashes.

A natural extension of this scheme is to replicate not only the state that needs to be
stored in stable memory, but also that on volatiie memory. Long computations
interrupted by site crashes are not aborted and they can resume execuiion as soon
as one of the "backup" sites where the state information is replicated is chosen as
the "primary.” Obviously, a resource manager cannot afford to broadcast every
memory update to its backups. A checkpointing scheme not unlike the one
described in Chapter 7 can be used to coordinate the updates at the backups.

8.2.3 Replication

A different form of replication can be used to reduce communication delay and
increase availability of the system. The replication in the previous section can be
regarded as the replication of system-level objects. Replication can aiso be
implemented at the application level. Conceivably, an application-level object can be
replicated in several sités with different representations.

Replicating at the application level has the advantage that the semantics of the
application can be utilized to reduce the number of replicas that have to be
accessed. Herlihy [20] discusses using the type of an operation to determine the
quorums of replicas that need to accessed. Different kinds of semantic information
can be used. For example, the state of an airline reservation database can be
replicated in several sites. Each site can sell tickets and update their own replica.
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The updates can be propagated to other sites after they are committed. The number
of tickets sold can be kept under a ceiling as long as each site is limited to sell only a
portion of the total tickets left. Periodically the number of tickets left can be
recalculated. | '

The implementation of replicated objects in our system wbuld present an interesting
(but not mutually exclusive) alternative to the solutions we have proposed for long
computations. Long communication delays can be avoided if only nearby replicas
are accessed. Implementing the replicated objects with the programming paradigms
and mechanisms proposed in this thesis would be an interéating test for these ideas.

8.2.4 Implementatibn Experience

Because the ideas proposed in this thesis have not been implemented, many of the
system issues are not discussed. There is no doubt that much fine tuning of the
system is needed to produce a practical implementation. For example, the scheduler
of the system has to be "fair" and efficient, since there may be many pending
processes waliting to be scheduled, some of them having been delayed for a long
time. '

Another critical component of the system is the stable memory manager. in many of
our arguments, we have relied on the piggybacking of stable memory accesses to
" make the costs of our algorithms acceptable. Careful coding is required. If the
stable memory manager is implemented with a remote stable memory server, the
system performance becomes even more sensitive to the frequency of stable memory
accesses.

The implementation of the communication subsystem is also left unspecified in this
thesis. In particular, the timeout interval is an important parameter. Too short an
interval leads to wasted effort in checkpointing. Too long an interval may jeopardize
an uncheckpointed computation and delay the application from taking other
appropriate actions, such as informing the user.
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