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Abstract 

The ever-increasing complexity of VLSI chips threatens to choke out all available computer 
power unless methods arc devised to keep the CAD tasks conveniently sized. A review of 
the current methods or multirrocessing approaches in the domain of layout verification 
precedes the discussion of the current work. A loosely coupled coarse-grained 
multiprocessing version of the circuit extractor used by Digital Equipment Corporation was 
built to run in the VAXcluster environment. The technical issues of how to divide the work 
and how to combine partial results to make final results arc discussed. Test results and 
performance measurements arc given, accompanied by an open question about how to 
gauge performance. Finally, explanation of the pieces left out, suggestions for further work 
in the field, and suggestions for a coarse-grained multiprocessor for circuit extraction are 
given. 
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Chapter One 

Introduction 

I. I An overview 

As VLSI chips become more complex, the CAD tools essential to their design 

become more crucial. As chips cross the threshold of 1 million devices, however, the strain 

of the best tools on the fastest system computing on the densest chip is too great: some 

advant:.igc must be gained to combat the exponential increase in the complexity involved in 

larger device counts. One of the many ways to achieve a speedup is to modify an existing 

algorithm to use a multiprocessing environment. This document describes MACE, a 

modi lication to IV (I ntcrconnect V eri lier), an ex isling circuit ex tractor used by Digital 

Equipment Corporation. 

A circuit extractor is one tool that performs layout verification: it reconciles one 

representation of the VLSI chip, the layout, with another, the schematic representation. 

1v·s purpose is to analyze the layout in a VLSI chip to sec how closely it matches the 

schematic representation. IV translates the layout from a layout language into the 

equivalent wirelist. Although circuit extraction is not a geometrically local task, that is the 

approximation made in this research. The methods of setting up the supposedly separate 

tasks and the methods of merging together the separate results into a coherent unit that 

correctly represents the whole chip forms the crux of the explan~1tion. 

The organization of this document is as follows: Chapter 1 serves as an overview, to 

explain the imminent computation bottleneck in the VLSI CAD realm, to analyze IV, and 

to preview the approach taken in this research. Chapter 2 details the design rule checking 

problem (DRC) and the circuit extraction problem (CE), how DRC has been parallelized, 

and why CE is fundamentally different and more complex. It also gives a brief overview of 
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FPIC, the task scheduler/controller fr>r the current research. Chapter 3 explains IV, the 

circuit extractor currently used by Digital Fquip111c11t Corporation, along with its input and 

output formats. It also traces the design decisions made in the current work. Chapter 4 

discusses the merging process in f'ull detail. Chapter 5 gives algorithm analysis, testing 

strategics, testing results, perlurmance measurements, and predictions. Chapter 6 

enumerates the features and racilities that were omitted from the current system, and 

contains suggestions for f'urther research. A portion is devoted to design considerations for 

building a circuit extrnctor that is amenable to rapid prototyping, especially in computing 

environments ranging from medium to coarse-grained parallelism. Appendix I is the 

glossary of tcchnicil terms. Appendix 11 reports the test results in a more verbose lltshion 

than Chapter 5. Appendix 111 contains the cases that arc not handled, along with a set of 

f'eatures that should be handled by a tool similar to MACE. In order to maximize 

universality of this document while not boring or insulting the more sophisticated reader, 

technical terms will appear in italics, and arc explained in the footnotes. 

1.2 IV: the starting point 

1.2. t IV oven icw 

IV works on hierarchically organized layoul. A root cell, usually corresponding to the 

entire chip, contains instances of other smaller cells, loose layout, or some mixture of the 

two. Those cells, in turn, may call other cells or contain layout. At the bottom level of the 

hierarchy are leaf cells, containing only layout. IV typically extracts the connectivity of the 

layout, identi lies the devices, and records their sizes. It Gin also calculate parasitic 

capacitance. Its input is a layout lile in a language like CI F [9]. Its output includes a 

wirclist for a circuit simulator, such as SPICE, or ror a wirelist comparator, such as WLC 

[7, 10]. 
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1.2.2 The scanlinc al~~orithm 

IV uses a scan line algorithm to establish connectivity [2, 15]. IV scans in units called 

swaths, starting at the top of the chip and working down. Within a swath. it scans from left 

to right. The swaths share horizontal edges. A swath is defined by the highest feature 

remaining, where a feature is de lined as the upper edge of a new rolygon, the lower edge 

of a polygon already under analysis, or the bottom of the chip. 

1.2.3 Current anti active swaths 

For a given swath, IV uses the swath previously extracted, which lies above the 

current one, as a source of state infrmnation. The state infi.nmation includes which 

electrical nodes and devices arc active in the previous swath and touch the current swath's 

upper border and which edges of polygons touch the border. The term active refers to 

structures within the previous swath: the term current refers to structures within the swath 

under analysis. Structures arc active because they can still have an effect on structures 

under scrutiny. Current polygons are reconciled with the active ones. When a connection 

is made from a current structure to an active structure, the two structures arc merged into 

the same structure. When a structure is encountered that docs not connect with anything in 

the active swath, a new record is allocated for that structure, and a new name is assigned to 

it. A device is defined by a description of the technology used to fabricate the chip and by 

the various layers present in an area. For example, in an N N10S process, a device is 

defined by the presence of overlapping polysilicon and diffusion and the absence of the 

buried contact layer. The set of layers present is compared to the layers needed to establish 

a device. A device is recognized if the two sets agree exactly. 

1.2.4 IV bookkeeping 

IV measures the devices and stores the geometry of their channels. 1 At the end of 

1 A channel is the overlap area of polysilicon and diffusion for an N MOS device. 
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the extraction or each swath, IV calculates Lhc size and ;irea of the devices within the swath. 

After all swaths have been cxtructcd, the structures arc checked for consistency. For 

example, a device record contains pointers to the nodes that form the gate and 

source/drains of the device. These nodes may be renamed when they merge with other 

nodes in a lower swath. In the output phase, the comprehensive, coherent results are 

output into the wirclist lormat, and the errors in the layout arc announced to the user. 

1.3 MACE: the prototype 

MACE, a Multiprocessing Approach to Circuit Fxtraction, is the system built out of 

IV with modifications to support multiprocessing. It runs under the control or the EPIC 

system [8]. MACE essentially imposes the notion of a task upon the serial, interlocking 

nature of the swath extraction or IV. Because it decomposes layout where layout is not 

amenable to decomposition, MACE must take steps at some point to compensate for the 

division. 

MACE divides the layout into horizontal sections called slices, compnsing many 

swaths, and pretends that the layout in each slice can be extracted indepcndently.2 This 

preparatory step is handled by the SPLIT verb in MACE. The extraction in MACE is a bit 

of bookkeeping surrounding a normal IV extraction, and is handled by the EXTRACT 

verb. The compensation phase takes all the individual extraction results and attempts to 

conve11 them into a circuit equivalent to what normal IV would have derived. This occurs 

by several stages of merging two adjacent slices together, using the MERGE verb. As the 

slices combine to make larger and larger slices, the results become more and more final, 

until there is only one slice the size of the whole chip, wllose merged output resembles that 

produced by normal IV. 

ln IV, the previous swath serves as the context fix the extrnction of the current swath, 

2 A slice is a rectangular portion of a chip. Also called strip. 
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wilh the exception or the topmosl swath in the chip, v.ihich has no predecessor. In MACE, 

there is no previous swath fix the ftrsl swath in each slice of layout. (Typically there arc 

many swaths within a slice.) Because MACE docs not have this contexl from which to start 

the extraction process, it must perform further analysis of the temporary results produced 

by the EXTRACT verb. Later chapters will reveal in greater detail the nature of the 

problems encountered with this approach, the methods to solving them, and the 

performance and applicability of those solutions. 

1.4 An overview of multiprocessing 

To make the motivation for a project such as MACE more concrete, consider that in 

the lasl 10 years, chip complexity has increased 5000-fold, while computer speed has 

increased only 100-fold [17]. The problem of speedup has received some attention before, 

but there is no universal solution to all CAD problems [l]. Hardware multiprocessors or 

problem-specific hardware engines are one method that promises large speedup at the 

expense or the high cost and the time required to integrate such an engine into the CAD 

environment [14, 18]. Conve1ting existing hardware systems to serve as a multiprocessing 

environment depends on the support of the operating system and hardware for the 

necessary operations [6, 12, 19]. It is this latter approach that was taken in the current 

research and in the related EPIC project [8]. 
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Chapter Two 

LV and extant rnultiproccssing rncthods 

Before jumping into the details of IV and MACE, some analysis of the layout 

verification problems will put the current work into perspective. 'l11is chapter examines the 

problem of layout verification in greater detail. It explains and contrasts the two problems 

of circuit extraction and or design rule checking. It reviews the relevant work done on 

developing multiprocessing systems for DRC. It contains some insight as to why the circuit 

extraction problem is significantly harder than the design rule checking problem to modify 

into a multiprocessing environment. It concludes with a brief look at the system for 

controlling the parallel execution of a set of interrelated tasks on a multiprocessor, used by 

the current system. 

2.1 Layout verification tasks 

In the layout verification phase of VLSI design. the layout undergoes several tests to 

ensure that it fulfills the specifications for the chip. Additionally, it may be passed under 

the scrutiny of a set of check tools, which ensure that the layout is consistent with the other 

forms of representation. One assertion vital to establish in the verification process is that 

the layout actually embodies the functionality specified by the schematic description of the 

chip. Another is that the shapes of the physical metal layers arc such that they are 

consistent with the size, shape, and separation that can be reliably produced by the 

fabrication process. The former task is the domain of a circuit extractor; the latter, of a 

design rule checker. 
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2.1.1 Circuit extraction 

The circuit extractor is a translator of layout into circuit. It uses a description of the 

fabrication process to de!ine which luyers interact with others by merely crossing, and 

which require contacts to be electrically connected. The description also defines which 

layers constitute di ffcrent types of devices. Several descriptions of circuit extraction and 

various implementations have appeared [5, 13, 15). 

The most common approach to extracting connectivity is the bitmap approach [2]. 

The term bitmap is somewhat misleading because individual bits arc not used to store 

useful data. Rather. the l<1yuul is brnkcn into small tiles. each of which is likened to a bit. 

As the scan line passes from top to bottom and from lcrt to right, the connectivity of a given 

bit is a function of its lcli. and top neighbors. it they exist. If either neighboring tile is ufthe 

same material as the tile currently under analysis, they arc the same electrical node: 

otherwise, the tile is a distinct electrical node. For a given tile, the various layers are 

lrnndlcd by examining the neighbors. The layers can also connect within a tile, if two layers 

present connect withoul a contact. Recognition of devices comprises detecting the presence 

of the required layers and the absence of the forbidden layers within a tile. 

2.1.2 Design rule checking 

Design rule checking examines the chip layout with respect to a set of design rules. 

Typical design rules relate separation between physical shapes required to ensure that the 

shapes function as distinct electrical nodes on the fabricated chip. Design rule checking in 

general includes some electrical rules in addition to the geometric ones in the rule set, but 

DEC concentrates on the geometric checks. Other rules specify the minimum size that is 

able to be reliably drawn. In the VLSI chips of 1986, a minimum dimension of 1 micron is 

typical. 
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2. l .J ( 'omf>arison of the two tasks 

Design rule checking is enlirely a local operation because all tile data necessary to 

generate a design rule error, or conversely, to prove that a given area is error-free, arc in the 

area plus its immediate border. Ousterhout and Taylor call this border the halo [16]. 

Geometry in one corner or a large chip cannot cause design rule errors in another corner. 

Circuit extraction, on the other hand, depends on the generation and maintenance of a 

context essential for the correct extraction of a given area. Without this context, results are 

only pa11ially valid. Judgments of electrical characteristics arc impossible to make given a 

limited area, because lwo nodes that look distinct within the area could join outside the 

area. 

Because of its locality, the task of DRC can he· segmented with much less care than 

can the task of circuit extraction. As the subsequent seclions show, DRC can be 

segmented, and in some cases, with no conversion or temporary results necessary. Circuit 

extraction, because of its nonlocal nature, has not lent itself to arbitrary segmentation: 

Several methods for breaking down lhc DRC or a large chip have been developed. 

2.2 nnc parallelization methods 

Consider the chip as a three dimensional entity. The x and y dimensions arc the ones 

apparent when looking al the plot of the chip from above. The z dimension is the view 

from a side of the chip, in which one can see the various layers, one on top of the other. 

The approaches that arc discussed in turn are the x-y method, the z-mcthod, and the rule­

mcthod. 

2.2.1 The x·y method 

In this method of layout segmentation, the cuts are in the x-y plane. TI1c majority of 

the work is done by performing DRC on the individual segments. After each sector of the 

chip is checked, all that remains to guarantee equivalence to a conventional whole-chip 

17 
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DRC i~; to rcrli.mn a check on the haloes or each sector. I call Lhis final operation sewing, 

since it is similar to sewing together patches to make a quilt. Such an aprmn1ch to parallel 

design rule checking was recently made [3]. 

2.2.2 The z-method 

This method considers the interacLion between the various sets of layers. One rule 

might refer to the minimum size of a contact, while another might relate the minimum size 

of one layer overlapping another to form a transistor. Perlorming several checks with 

partial rule sets, which collectively encompass the entire rule set, is equivalent to checking 

the whole chip over the entire rule set. There is nu sewing step needed. This approach has 

also recently hecn reported by Nielson [11]. The rule set is separated in this fashion into 

separate jobs that rnn be scheduled independently. To gain a speedup, this approach uses 

the generic queue facility available in the YAX/VMS environment of a VAXcluster [19]. 

The queue server holds jobs in a generic queue, which reeds into several queues on the 

processors that compose the cluster. 

2.2.3 A novel approach 

A slightly different tack was take by Marantz [8]. This approach goes deeper into the 

heart of the DRC problem. The process of checking a single rule is not an atomic action; 

there arc smaller sub-parts, which generate intermediate results. Marantz notices that these 

intermediate results are the same for the computation of severul rule checks. This means 

that in the separate task for separate rule approach, as above, some computation is 

duplicated by two different processors. The potential exists that even the same processor 

would recompute intermediate results in two different rule checks. The approach taken is 

to divide the 40 or so rules into 120 steps. As many as 14 distinct rules depend directly on a 

given intermediate result. If communications costs, measured in time and disk space 

needed to store the intermediate results, are small compared to the computation costs, there 

will be a speedup of the aggregate computation. 
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2,3 EPiC 

To facilitate this method of problem rartitioning. Marnntz designed and built the 

FPIC system [8]. EPIC serves a variety or functions involved in multiprocessing. Initially, 

it serves as the task scheduler. During the computation it serves as a comrutation 

controller, rroviding a front end, the monitor, with which the user can view the 

computation. It also handles the communication of status messages and the file transfer. 

Input to EPIC describes what tasks there arc to be performed. EPIC reads an cxeculion 

co/1/ro/ file (ECF), which wntains the tasks descriptions. A task description consists of the 

task name. its inputs, its outputs, and the single statement that is given to the computer to 

pcrfrH·m the task. All the file transfer is hidden from the user. In some preliminary 

measurements of EPIC on tasks with low communications overhead, he has measured 

speedup of 3.2 on 4 processors compared to sequential processing of DRC. 
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rv~ACE; A new weapon 

MACE, a Multiprocessing Approach to Circuit Extraction, is the body of work that 

attempts to solve the question or how circuit extraction with overlapping layout can be 

performed using the coarse-grain parallelism provided by the EPIC system. MACE is a set 

or modifications and enhancements to IV (Interconnect Verifier), the circuit extractor 

currently used hy Digital EquipmL~llt Coqmration. The version or IV used in this research 

contains over 16,000 lines of source code, and includes some object modules. The MACE 

system contains all of I V's code, all I Y object modules, and other code speci fie to MACE's 

functions. This additional code consists of 6400 lines of PL/I code, hair of which are 

MACE's private copies of IV routines. MACE executable images arc fully 50% larger than 

IV images. 

This chapter is organized as follows: Section 3.1 gives an overview of IV. Section 3.2 

gives the MACE mindset and shows how it motivated design decisions. The explanation of 

the verbs in MACE starts in section 3.3. 

3.1 IV: the starting point 

To get a better understanding of the question it is necessary to elaborate on IV [15]. 

The input is in a variant or Cl F [9]. There arc statements that repre~cnt geometric shapes, 

such as boxes, wires and polygons, and there arc other statements such as labels, comments, 

and calls to other blocks of layout.-~ The output is a wirclist for a simulator like SPICE 

3 Lahcls arc descriptive text associated with a node in a layout file that helps to identify for the designers' 
use the function of the node. Sample labels might be Pl 1 I, WRITF-FN/\BLF. D/\TA<J>. to indicate a clock 
signal, a control signal. or a slice of daw. respectively. 
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containing the dt:vices <ind !heir :;L• .. :::, :·:~,,:_' ' ;'.·"de'.;, and so on [10]. IV always extracts 

the devices and names or the slrunurc~;. Acidiliona!ly, ir the user wishes, IV calculates 

parasitic capacitance, the stray caracitancc found betwee11 a node and ground. 

The forms of IV output are: 

cap file 

edge file 

XND file 

a capacitance list. Capacitance is of two types: parasitic capacitance, 
between a node and ground, and coupling capacitance, between two 
nodes. 

a list of polygon edges that touch the MBB of the chip. 

eXtcncled Network Description file, which contains information about 
the chip; all the node names and their locations; all the device names, 
their sizes, locations, and type; and capacitance information if it is 
calculated. 

device geometry file 

wire list 

log file 

contains the individual coordinates or the points that define the devices' 
channels. Also called DG R file, from Device Geometry Record. 

the inrut for the circuit simulator, which contains the device names, 
sizes, and its terminal names. The wirelist also contains the capacitance 
data i r they arc calculated. 

the record of the IV run, which contains information about cells 
encountered, CPU time taken in the various phases, errors in the layout, 
and status messages. 

One initial task was to find appropriate points 111 the layout-to-circuit pipeline to 

break the pipe, in order to define a task in the sense of EPIC's tasks. The phases in an IV 

extraction, without capacitance, are the following: 

• read the layout file into working memory 

• flatten the layout, which may be at various levels in a hierarchy, especially for 
large chips, into a consistent, globally-defined grid. 

•start the scan-line algorithm, as detailed in [2]. 
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o after all layout has hecn rrocesscd, m:ikc the ~iutput !<.mnats from the internal 
data structures that remain when scanning is linishcLI. 

Flattening the layout, and why ifs done 

Large chirs. which might have a multilevel organization such as the one in ligure 3-1, 

may include instances of smaller cells, as from a library of standard cells, or not so small 

cells that correspond to the logical blocks or the chip such as datapalh, mux, input pad, and 

so on. 

Chip (the root of the tree) 

(many levels of hierarchy in between) 

l 

Parent (conui11s cells and layout) 

If\ II\ 

l 1 
I .eafl 

(contain layout only) 

Leaf2 

Figure 3·1: Hierarchy in a composite cell 

They may in addition contain loose layout. In the flattening stage, all the individual 

elements of all the cells at the various levels of the chip hierarchy are brought into a 

22 



S. M. I .cv it in MACF: A Muitipr:.i~·t:s.,ing /.ppmach tu Circuit Fxtraclion 

common rq1 rcsen tat ion. 

From the viewpoint of the scanline algorithm, it is more eflicicnt if all the layout 

within a given area can be identified directly, without making reference to the whole 

hierarchy. In order to enable convenient byout retrieval during the scanline algorithm, the 

layout is nattencd. 

3.2 MACE: the philosophy 

MACF revolves around a very simple philosophy: pretrnd that extracting a segment 

is a local operation, and then make up f(>r what was missed by this oversimplification later. 

It attempts to treat as many of !V's functions as possible as black boxes. MACE attempts in 

several places to create a state of the machine that is equivalent to an IV state, then to 

execute the same procedure that IV docs, in the belief that this is one way to achieve 

equivalent results. 

Error propagation was one such issue, in which MACE attempts to recreate the state 

of the machine. IV reprn1s errors in the lnyout to the user in the log file. Some of the 

various error types arc shown in table 3-1 . IV generates errors as a side effect of 

scrutinizing a data structure; MACE does likewise. 111e messages reprn1 structures IV 

believes to be of questionable validity. For example, an MOS capacitor is a valid electronic 

structure that could be introduced under some circumstances. However, more often than 

an intentionally introduced structure of this kind is the occurrence of a device whose two 

source-drains are sho11ed together. making a two-terminal device. This device functions as 

a parallel plate capacitor, and is nagged by IV as a questionable structure the user should 

scrutinize. More frequent than this are errors that result when unusual electrical properties 

are deduced, such as two nodes with different names that are shorted together. 

Fortunately for MACE, IV generates the errors when it creates the wirelist. 'The 

process of writing out a wirelist involves examining each device, each node, and all the 
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MOS capacitor detected 
As this is an unusual structure, IV 
notifies the user that it encountered one. 

dangling node a label unattached to any node 

a shorted node two nodes with unequal labels 

well node not connected to VOD 
for CMOS process 

surface plug node connected to VSS 
also for CMOS 

no source-drains 
a device without any source-drain nodes 

extra source-drain 
a device with too many source-drain nodes 

structures derived from the extraction. If MACE were able to create an identical 

environment at this point, the errors would follow directly. This was the approach taken. 

3.3 The MACE verb set 

MACE was built as a separate subsystem under the IV system. IV commands did not 

apply in the MACE subsystem, and MACE commands were irrelevant in the IV system. 

The basic flow of data is illustrated in figure 3-2. The involved flowchalt is illustrated in 

figure 3-6 on page 32. The following sections describe the MACE verbs in the order they 

were built. The order is also their order in the flow of a MACE invocation. 
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.lJ. I The SPLIT verb 

I chose lo place the first break in the pipe at the point when the layout had been 

flattened and was all available for comparison on a single grid. This is accomplished with 

the MACE verb SPLIT. SPLIT was the first MACE verb implemented, and was 

accomplished by reordering existing IV code. SPLIT reads in the layout file and tilters it 

into bins corresponding to di !Te rent regions or the chip. Each bin is given a number or 

index, which is used by the other verbs to identify the data belonging to the segment. In 

general, if the chip name is CHIP and the IV file type is .TYP, files will be called 

CH IP-SEG l.TYP, CH IP-SEG2.TYP, and so on. 

J.J I. I Fixed splitting 

Splitting can be done in two ways: fixed or variable. In lixcd splitting, the user enters 

the number of slices into which he wishes the layout partitioned. Fixed splitting into two 

slices is equivalent to halving the chip; with four slices it is equivalent to quartering it and, 

so on. However, because all cu/lines arc drawn horizontally, quartering the chip creates 

four thin slices, not almost-square sections like a window pane.4 While the facility existed 

to filter layout into arbitrary shapes whose borders arc horizontal and vertical line 

segments, it seemed difficult in the early stages of MACE development to merge two 

staircase shaped regions. It also seemed unnecessarily complicated. In the absence of a 

clear benefit to handling arbitrarily cut slices, I opted for simply shaped ones. 

Since all the cutlines arc horizontal, the slices are regularly shaped, and the cutting 

process is well-defined for numbers that are not integral powers of 2. Merging must only 

be done on the tops and bottoms of the slices, and not on the left or right sides, since the 

left and right sides of the slices directly correspond to the left and right borders of the chip. 

Typically the number of slices is low, and corresponds to the number of processors one has 

available to run MACE. 

4A cutline is an imaginary line imposed on a layout by which SPl.I'ITING occurs. 
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J.J.1.2 Variable splitting 

In variable splitting, the user enters a sequence of y values at which he wishes to split 

the layout. Currently, MACE prompts the user ll1r a descending sequence of values, 

discarding values that ~lre out of order. Also, the value 0 is used as a token to specify the 

last value. However, not all chips have their M BB's low y value equal to 0. For reasons of 

symmetry, often the point (0,0) falls somewhere inside the chip. IV places no constraint on 

placement, so MACE should not have done so either. A version of MACE for production 

use would have embodied a cleaner user interface that would have solved this problem. 

Sec section 6.1 for the features that did not make it into the MACE described here. 

Rather than try to convert lhc internal memory lo readable inrormation, I decided 

merely to dumr IV's geometric data unceremoniously to a disk file. I called the atomic unit 

of data transfer an iotrar, for I nput/Outrut TRAPezoid, based on name of the IV data 

structure. IV's working memory contains trapezoids rather than rectangles because IV 

allows non-Manhallan geometry. 5 The iotraps were written out with the SPLIT verb and 

read by the EXTRACT verb. 

3.J.2 The EXTUACT verb 

EXTRACT was the second MACE verb implemented. It consists of a memory 

reconstruction phase, the extraction phase, and the output phase. It was the goal of the 

EXTRACT implementation that, except for a few status flags, that the state of the machine 

after the memory reconstruction phase be identical to the normal IV run after layout is 

flattened. The memory reconstruction phase locates and reads into memory the file full of 

iotraps. The extraction processes normally, as if the internal data structures had been 

derived from flattening the circuit and not from reading in the iotraps. In order not to 

corrupt the working of IV, MACE uses a copy of the IV code, except with different 

procedure names. The only other modifications that were necessary were the setting of a 

5Manhattan layout contains only horizontal and vertical lines. 
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few status !lags in order to rorcc the generation of some data formats that arc optional in a 

normal IV run. The EXTRACT verb produces the files CHIP-SFGI.EDG, 

CH IP- SEG 1.XN D, and CH IP- SEG ,.DEV as output of extracting slice 1. 

I chose to use existing IV data formats rather than to create my own for several 

reasons. I judged that using the existing routines to read and write formats would be better 

than to have to design a file format to contain all the various data types. This approach 

kept the code size down, and also used the existing IV support team's expertise on the code 

that was assumed to function correctly from the start. Consult section 6.3.2 for an analysis 

of this decision. It should be noted that the implementation of these two verbs was 

completed within the first month of coding: making the MERGE verb successively more 

functional took all the remaining time, roughly 4 mon1hs of work. 

3.3.3 How lo paste two slices together: the MERGE verb 

Given several processors working individually at extracting slices of a layout, there 

must be a way to get their combined output to look cohesive. That is, we must transform 

the output so that it is functionally indistinguishable from what normal IV would have 

made. This duty was relegated to the MERGE verb. The MERGE verb requests the 

numbers of two adjacent slices, and complains if the numbers arc not consecutive. It is not 

possible or meaningful to attempt to merge slices 1 and 4 of a chip that was quartered by 

the SPLIT command. The MERGE facility reads in the oulput liles from the two 

extractions and constructs output files that represent what would have been derived from 

the extraction of the combined slice. 

I call the MERGE facility a binary merge because the slices arc pieced together like a 

binary tree. Originally I wanted to make the merging process computable at run time, after 

the extraction has taken place. It seemed intuitively better to perform a merge on any two 

adjacent segments than to specify the order of the merge operations. Each segment must 

be merged with both of its neighbors eventually, so why not let it be merged with which 
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ever neighbor is ready lo be merged lirst? 

Limitations in EPIC, which preclude runtime decisions or precedence, coerced me 

into opting for a binary merge. Additionally, I round a set of tasks and executions limes 

that make a dynamic decision process worse than a rigid, binary merge. The comparison of 

a dynamic decision process to a static decision process is shown in figures 3-3 and 3-4. 

[I I B [I] 
Ml-4 

LI I B I I I 
[I] 

Ml-8 

B n- I 
[I] B 

MS-8 

0 5 10 15 17 Time (units). 

Figure 3·3: The merge ordering is made before the run. 

In a chip split into a power of 2 slices. the merge functions exactly like a single­

elimination tournament. In a chip split into some other number of segments, the odd 

segments are merged together where possible, and are unprocessed until needed (figure 
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Figure 3·4: The decision to merge is made during the run. 

3-5). This is similar to the wild-card playoff in the National Football League. The order or 

rules used to arrange the merges would only have mattered in the case that 1 had written a 

routine to generate the ECF from the MACE command line. Since the command line 

interface was not written, the ECF generator was not written either. The test cases I ran 

under EPIC used hand-written ECFs. Consult section 6.2.3 for the details. 

3.3.4 The aborted OUTPUT verb 

Originally I had the EXTRACT verb output a wirelist, but I later decided to avoid 

the creation of the wirelist file when MACE was extracting a slice. The reason the wirelist 
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final merge result 

l 

I 2 3 4 5 6 7 

initial merge results 
8 9 

Figure 3-5: How the merge phase works with an odd number of slices. 

is unneeded is that all the inf(mnation contained in the wirelisl is in the XND file. In fact, 

both the wirelist and XND file are generated from the same data structure. At first I had a 

separate MACE verb OUTPUT, which reads in the XND file corresponding to the whole 

chip and creates the wirelist. Later I realized that this verb was unnecessary. At some point 

I realized that the MBB information must be propagated throughout the process, and in 

any case would certainly be available at merge time. If the window information about the 

size of the slice is available also, the MERGE facility can decide when a wirelist is called 

for. The window data for a slice is the M BB of the slice. The window data for a slice 

merged from two adjacent smaller slices is the M BB of the combined slice. When the 

window data of the slice being merged is equal to the M BB of the whole chip, the MERGE 

facility knows it is performing the final merge. 

The design decisions made during implementation of the MERGE verb are 

sufficiently complex that to explain them fully requires an entire chapter. 

31 



S. M. I ,cvitin 

FXTRACT I 

Merge 1,2 

MACF: A Multiprocessing Appro:1cl1 lo Circuit Fxtr:iction 

(disk ( 
I 

Layout file 

SPLIT 
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FXTRACT 3 

2 edge files 

2 XND files 

2 DGR files 

for each MERGE 

Merge 1-4 

Merge 3,4 

Final edge tile 

Final XND file 

Final DGR file 

Cap file 

Wirclist 

IXl'RACT4 

edge file 

XNDfilc 

DGR lilc 

I from each 

FXTRACT 

edge file 

XNDfilc 

DGR file 

I from each 

MERGE 

Figure 3-6: MACE data flow. in exact detail, for layout split into 4 pieces 
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Chapter Four 

The 111crging process and the MERGE verb 

The merging process was not well understood at the beginning. Its charter was ill­

dcfined, roughly "do whatever is necessary to transform two slices' output into one 

meaningful whole." The concept of "whatever is necessary" changed as my understanding 

or IV's output formats grew. At first I believed only the edge and XND files necessary. 

However, al Sl)llle point I realized that the DG R file was also needed because device 

geometry was required to compute device size properly. Device size is an important datum 

to process correctly because 

•the simulator that reads IV's output uses device size to compute rise and fall 
times or the devices, and 

• the •,virelist compare facility reports device size mismatch errors when the 
device size in the schematic wirclist docs not agree with the device size that IV 
renders. 

The rest of the chapter is organized as follows. A high level description of the 

MERGE algorithm comprises section 4.1. The major fcntures rrom the algorithm are 

discussed in the subsequent sections. The different ways a device can be victimized by a 

cutline arc illustrated in section 4.5. 

4.1 The MEl~GE algorithm 

The purpose of the merge phase is to paste two slices together. At a very high level, 

the steps involved are to: 

1. compute the connectivity between the two slices, 

2. rename the layout structures to approximate IV's output, and 
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3. merge those structures judged tu he split by the cutline. 

Connectivity is discussed in section 4.2, renaming in section 4.3, and structure merging in 

section 4.4. The parts of section 4.4 deal with the individual types or data that must be 

merged. 

4.2 Connectivity 

Connectivity was computed by analyzing the edge files. The polygons abutting the 

cutline have edges written to the edge file. Although the slices have four sides each, 

corresponding to lop, bottom, kit, and right, only the bottom edge of' the top and the top 

edge of the bottom are involved in the sewing process. For each edge record or the bottom 

border of the top slice, the list of edge records of the top border or the bottom slice is 

scanned. A match is made if there arc two edges made on the same layer that have a 

nonzero overlap, signifying that the two edges belong to the same electrical node. The 

match records are used to rename and to merge the set of nodes and devices in the two 

slices, as detailed in following two sections. 

4.3 Renaming 

4.3.1 Motivation 

Before explaining how the various structures in the slices arc renamed, it is best to 

explain why structures are renamed. Nodes can be named by the user with labels in the 

layout. If a node is not labeled by the user, it is given an internal identi lier for I V's use. 

The user cannot label devices, so each device is given an interrrnl identifier. The labels are 

assigned during the extract phase. Thus, in a normal IV run, the unnamed nodes are 

numbered consecutively starting at 1; in MACE, the unnamed nodes arc numbered starting 

from I at each cutline. The node names are very probably overlapping, since there are 

many cutlines. 
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If during an extraction IV discovers two unnamed nodes that connect, !<Jr examrle, 

nodes 7 and 9, node 9 would become node 7, and the number 9 would not he reused. It 

was an early goal of the project to preserve the general node naming order. including these 

"holes". I was initially unclear of the importance of the holes and attempted to emulate as 

closely as possible the IV node naming scheme. An alternative would have been to 

construct a node name by having a slice-dependent prefix plus the internal node number. 

This would mnke all node names unique, with the loss of only a small rortion of 

informntion. Any tool that deals with node names symbolically, such as WLC. would not 

he affected by this naming scheme, as long as the node names did not contain illegal 

characters [7]. However, I judged these names to be unpleasant to sec in an output lile, and 

did not ort for this route. Another possible alternative would have been to assign these 

slice-unique names, but at the end to renumber the unnamed nodes consecutively from 1 

for all nodes in the chip. This renumbering operation could be done very conveniently at 

the end of the merging, when the wirelist and final output tiles are being created. 

However, this appronch was rejected because it destroyed the in formation about the holes. 

4.3.2 Mechanics 

With the set of matches cJerivcd from the previous stage, the collection of nodes from 

both slices can be named appropriately. The precedence by which IV joins together two 

nodes that are electrically the same is illustrated in table 4-1. MACE follows the same rules 

for connict resolution in node names. Thus, not only must node numbers rropagate from 

top to bottom, but labels must cross the cutline in both directions. 

In order to approximate IV's node naming strategy, the node names of the unnamed 

(local) nodes from the bottom slice arc adjusted. The unique naming routine finds the 

highest internal node identifier. and uses it to change the bottom slice's local node names. 

If the highest numbered node from the top is 44, local nodes in the bottom numbered 3, 25, 

and 29 become 47, 69, and 73 respectively. Since IV always assigns positive integers to 

nodes, the nodes named by MACE will be in an order similar to what IV would compute. 

35 



S. M. Levitin MACF: A Multiprocessing Appruach tu Circuit Fxtraction 

Table 4-1: Rules fl)r resolution of node name connicts 

Unlabeled node on top + unlabeled node on bottom: 
bottom node takes top node's label 

Unlabeled node on top + labeled node on bottom: 
top node takes bottom node's label 

Labeled node on top + unlabeled node on bottom: 
bottom node takes top node's label 

Labeled nodes on top and on bottom: 
If the labels are the same, ok 
Else it is a short. 

The result of renaming is that the nodes from the two slices, considered as one group, arc 

correctly named in the context of the merged slice·. The holes arc preserved with this 

approach. 

Device naming is handled similarly, but more simply. When two device records are 

judged to be di !Te rent perspectives of the same device, the device names arc resolved. 

Since the user cannot assign a name to a device, all names arc given by IV. The resolution 

strategy is one rule: the device on the bottom assumes the name of the device on the top. 

Compared to determining when a node crosses a cutline, determining when a device that 

touches the cutline is the same as one touching the cutlinc rrom the other side is a bit 

trickier. A node is single polygon: a device is a set of overlapping polygons. A node only 

has one name and one layer: a device has several nodes and several layers. To rename a 

device, one must check the constituent nodes with the set of node names in the merged 

slice. This set of node names is possibly different than the names of the device's nodes. 

Then, the devices themselves can be renamed with increasing indices to reflect the larger 

context of the merged slice. 

36 



S. M. Levitin MACE:;\ Multiprocessing Appro;1ch to Circuit Fxtraction 

4A Merging the structures 

The structures that arc lo be merged consist of edges, nodes, devices, and, although I 

did not know it at the beginning of the MERGE implcmcntation, the DG R records. 

Edges 

Fdgc merging is a problem of symbol manipulation. Edges from the two interior 

borders vanish when the two slices become one. Edges on the left and right borders of the 

slices must be checked to sec ii' they connect to edges on the same layer on the other side of 

the cutlinc. After the edges arc merged, the names of the nodes to which they are 

connected arc checked to make sure they arc consistent with the node names determined 

previously. All edges that appear in the merged edge file need the name of the associated 

node checked with the node names of the merged slice. 

Nodes 

Nodes can have status flags associated with them. These must be propagated into the 

node records f(x the merged slice. This minor adjustment, along with the connectivity 

computation <ind the renaming, above, su fficcs for merging nodes. 

Devices 

Some of the attributes of a device arc easy to compute: names, types, and terminals 

are some of these. There is, however, one minor difficulty. Devices have a flag called 

"touches-boundary" (TB), which IV sets when it notices that the channel touches the 

boundary of the chip (or slice in MACE). If no device has the TB flag set, the whole DG R 

phase is avoided, since all devices are local to their respective slice. Thus, correct 

processing of the TB llag is essential. 

However, each slice has four edges in the current MACE. For the device whose 

channel lies in the corner of the slice, touching two edges, the TB flag is set as if it only 

touches one edge. The TB flag alone cannot reliably encode the channel's position relative 

to the boundary. The problem I identified was that a device that is large in the y-
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dimension could run from top to bottom or the slice, yet when it is merged on one side, the 

TB nag is cleared. The foct that it still touches a boundary is lost. I did not correct this 

deQ~\~ncy, because it resulted rro_f'.l IV's inability to encode the inl(mnation. With suitably 

thick slices this problem could be avoided. 

There are other attributes that make merging complex. The merged device's area, 

length, and width, for instance, arc not imml'.diatcly evident from the two component 

device records. In order to examine the device merging more fully, we must first examine 

the different scenarios of device splitting. 

Device geometry 

Device geometry merging was extremely complex, and was not solved in the general 

case. Over 800 lines or source code were devoted to merging device geometry alone. DG R 

data are stored in non-A SCI I format. The DG R files contain records for e<1ch device. 

Within the record there may be one or more polygon sections. A polygon section contains 

a number that indirntcs how many points follow, and then that many points, stored in 

ordered pairs. 

I first attended to channels that 

•had only one polygon in the top DGR and only one in the bottom DGR; 

•had arbitrary numbers of points in the polygon; 

• had no embedded holes in the channel; 

• had the polygon touch the cutlinc in exactly two points. 

Some varieties of split channels arc shown in figure 4-1. Note that not all shapes are 

mc<1ningful in the physical realm. From a physical standpoint there are problems if the 

different pieces of the channel arc not all the same length. My solutions were strictly 

geometric. Devices with holes in them arc used to generate a high Width to Length ratio 

within a small area. 
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Figure 4· I: Merge possibilities: types (a)-(c) were handled; types (d) and 
(e) were not. 

-

Toward the end, I put more complex device geometries lower on the priority list than 
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other tasks, and only de Ji;_ • ;.;i u,:,; lJ;' · ;.,·.1d d1ci:· geometry correctly rrocessed. The most 

important issue toward tl1c end 'N«'...: ilow i') h~1ndlc a class of split devices, as detailed in the 

next section. 

4.5 Split devices 

When a cutline is arbitrarily imposed on layout, the structures split into pieces can get 

arbitrarily comrlcx. Specifically, when a device is split, it can he split in several ways. I 

used the terminology in table 4-2 to describe devices in a layout across which cutlines had 

been imposed. Figure 4-2 shows what some of these cases look like. 

Table 4-2: Different split device types 

• unsplit devices: 
These devices have 
cutline. 

also called 
the channel 

local devices. 
not touching the 

•cleanly split devices: also called a 3-3 split, 
because there are 3 terminals on hath sides of 
the cutline. On both sides of the cutline, there 
is a recognized device. 

•uncleanly split devices; and 

• touching MOS capacitors. 

For unsplit devices, only a single processor running extract recognizes the device. 

MERGE merely propagates the information, which is correct except for the global naming. 

For a cleanly split device, both processors running extract recognize that a device exists. 

Merging the device is possible because the list of nodes that cross the cutline includes the 

gate and both source-drain nodes in the two devices. Another form of this device is the 2-2 

split. In this form, each processor sees an MOS capacitor, that is, a device with a gale and 

one source-drain. Fortunately for MACE, the extract code writes out a device record for 

this type of device. In a 2-2 split, only the gate node crosses the cutline; one source-drain is 
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(a) Clean (3-3) split (b) Clean (2-2) split 

Normal no<lc 

Gate Plate I 

SD ,_J l'latc2 

(c) Unclean (1-2) split (ct) MOS Cupacitor touching cutline 

Figure 4-2: Split device types 

above the cutline, the other source-drain is below. In this case, both device records arc 

deleted and a new record created, with the proper names of the three nodes included. An 

uncleanly split device is a true bcte noire. From one side, the device looks like an MOS 

capacitor. From the other side, there is no gate node to comprise a device. This happens 

when the cutline coincides with a horizontal edge of the gate node. Thus, when the 

previously restored structures are consulted, there is no matching device on the other side. 
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Recognition of' this dt~vice: is, LX.JH,i~'.al:enttQ .di ffcrrnti<!i i ng between the fr>llowing two cases. 
, • ' 1i ~ • ·~ 

0 There is material on the other side that normal IV would have considered the 
second source~drain,, T~1~ device is a nornial, thn~e terminal transistor. 

•There is no material on the other side of the cutline. IV would have reported 
the device as an MOS capacitor. The device is a two-terminal capacitor. 

To recognize an uncleanly split device would require making access to the data structure 

that represents the definition of the process technology, deciding which layer or layers 

would complete a device, and then searching the opposite edge list for such a layer. 

Although it may be difficult to believe, all the work in MACE was strictly geometric 

symbol manipulation, except frir this recognition rhase. Cleanly split devices, local devices, 

and MOS capacitors were handled properly in MACE, with device sizes not accurately 

calculated for split devices. Uncleanly split devices were not handled. 
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This chapter analyzes the algorithm in MACE, especially parts of the MERGE 

algorithm. It also discusses the testing strategy of MACE, along with brief test results. An 

explanation of the rcrformance is given. 

5.1 Algorithm analysis 

If there arc N devices in the chir. then it is expected that there arc at most 0(VN) 

devices in any horizontal line. Similarly, if there arc k cutlincs drawn, there will be 

0(k·VN) items that abut the cut lines. Also, k cutlines imply running MERGE k-1 times, 

which will require, if there arc sufficient proccssurs, jlog2(4)l stages of the processors 

running MERGE. 'll1t1s, we can complete the merge phase in polynomial space in log 

time. 

In cases where there were 0(V7V) structures along the two sides or the cutline, 

searches for matches, as in the edge sewing phase, can be done naively in 0(N) time, and 

could be done cleverly in 0(VN · log
2 

uV)) time by sorting them before searching. As a 

worst case, we would expect 0(V7V ) devices to cross a given cu ti inc, but with a bit of 

adjustment, especially in a regular layout, as might be found in a gate array chip, we might 

expect to do quite a bit better, avoiding split devices entirely. 

The edge merging is proportional to the size of the side edges, or 0( V7V + k ). If the 

merge algorithm does not have to rename the items inside the slice, then its phases are 

proportional either to the length of the cutline or to the height of the slice. 
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5.2 Testing strategy 

During the development ur MACE, I touk the approach of testing and building 

feature by feature. Since VLSI chips often have Cl)lllplcx geometry. it is diflicult to say 

when all cases fur testing a certain feature have been cxh~1ustcd. It is also diflicult, in the 

absence of a mass of statistical data, to judge which geometrical cases arc more frequent 

than others. I often encountered the situation al which a certain MACE feature worked 

over a set of layout configurations, but there were identifiable configurations not in the set. 

I often did not know whether it was important to be able to deal correctly with these 

con ligu rations. 

One qualific1tion for IV to work properly is that the layout be free of design rule 

errors. If there arc design rule errors, IV's bchavioi· is unpredictable. It might function 

currectly, and it might not. Since there arc a few unusual cases that IV docs not handle 

correctly, I decided not to expect MACE to behave better than IV. MACE's goal was 

emulation of IV, whether the behavior was correct or not. 

5.3 Performance 

I generated both two-way comparisons and three-way comparisons. Two-way 

comparisons involved serial running of IV, the existing tool, and sequential running of 

MACE. In a serial IV run, a command file calls on IV to extract the circuit and produce the 

edge lile. The other output forms of the extraction are produced by default. The execution 

takes place on a single processor. In the sequential MACE condition, command file calls 

on MACE a number of times to perform the individual tasks: splitting, extracting, and 

merging. The execution takes place on a single processor. The three-way comparisons 

include these two conditions and the combination of MACE and EPIC as the third 

condition. A command file creates the EPIC master and starts the computation. Execution 

takes place across a group of processors all of which have the same hardware and memory 

size. 
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5.4 Results 

In order to classify the test as a success or foilure, the wirclists were checked against 

each other using WLC. The results in condensed form arc shown in table 5-1. For the 

unexpurgated results, consult Appendix 11. 

Table 5-1: Brief performance results 

Hardware characteristics: 
Nodcl: YAX-111780 
Node2: YAX-111780 
Nodd: VAX-111780. 
Node4: VAX-111785 
Node5: VAX 8600 

Test 1: Comparison of serial IV with sequential MACF on Node5, block 1. 
IV: CPU time: Ol:OJ(min:sec) elapsed time: 01:16 
MACE: CPU time: 01:32 elapsed time: 02:38 

Test 2: Comparison of serial IV with sequential MACE on Node5, block 2. 
IV: CPU time: 17:54 elupsed time: 18:23 
MACE: CPU time: 24:20 elapsed time: 32:25 

Test 3: Three-way comparison on Nodcl, Node2, and Nodc3, block 1. 
lV: CPU time: 04:04 elapsed time: 04:30 
MACE: CPU time: 05:39 elupsed time: 07:24 
MACE+ EPIC: CPU time: 05:36 elapsed time: 05:15 

Test 4: llirec-way comparison on Nodel, Node2, and Nodc3, block 2. 
IV: CPU time: 1:05:41 elapsed time: 1:09:31 
MACE: CPU time: 1:27:31 elapsed time: 1:52:08 
MACE+ EPIC: CPU time: 1:25:32 elapsed time: 1: 17:00 

Note: CPU time in the MACE+ EPIC condition is that consumed by all 
processors. 

I compared CPU and elapsed time for the three conditions on test cases that were 

large enough to make the fixed costs insignificant. Sequential MACE required more CPU 

and elapsed time than serial IV. MACE with EPIC required roughly the same aggregate 
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CPU time as Sequential MACE. The elapsed time on the MACE with EPIC runs was 

larger than for serial IV. 

5.5 Explanation 

It has been shown that IV is a memory limited CAD tool. It builds such complex 

data structures, tending to fill all available memory, that performance analysis shows 

memory to be the bottleneck (4]. 

5.5.1 Serial IV vs. sequential MACE 

The serial IV case required only one image activation: sequential MACF and MACE 

with EPIC require separate image activations. Although the test cases were large, the 

MACE runs required several more image activations that the IV run. Also, serial IV keeps 

all its data in main memnry, whik MACE has the additional overhead of having to write its 

data out to enable communication. Another weakness in MACF is that MACE contains an 

abundance of consistency checks. At various phases, MACE traces its linklists to ensure 

that connectivity is preserved. During the development phase this was crucial, because 

frequent examination tended to limit the number of routim's that were suspected of 

corrupting the data structures. Infrequent checks would have resulted in a more difficult 

debugging task. rfl1e removal of these checks wou Id speed up execution somewhat, but not 

significantly. Were MACE to be used for production, as a released tool to the VLSI 

designers, it would most likely have these checks removed. 

5.5.2 Where MACE spends time 

Without performing detailed analysis on exactly where MACE spends time, exact 

figures are unknown. However, some estimates can be given. Of the function performed 

by the split verb, some is mirrored by IV, the rest is pure overhead. The portion that IV 

performs is the reading of the layout file and fiattcning of the data. The overhead is the 

46 



S. M. I .i.:vitin Mi\CF: A Multiprocessing Approach to Circuit Fxtrnction 

writing out of the iotraps. In the extract phase, there is some overhead involved in reading 

in the iotrnps and writing out intermediate extraction lilcs, but flff the most par1, the CPU 

times are very close to those of IV. The merge phase is entirely overhead, with the 

exception of the extremely small portion in which the wirclist and error list arc generated. 

5.5.J MACE + EPIC: any advantage? 

The running of MACE with EPIC has not yet revealed an advantage over serial IV. 

Often the elapsed (turnaround) time was only slightly more than serial IV. However, it is 

clear from the data that working within EPIC tends to reduce the damage done by MACE's 

extra phases. In a condition of uniformly dense layout, and a cleanly runctioning MERGE, 

it might be possible to bring the turnaround time h_elow that of serial IV. Although the 

evidence seems to suggest that linear speedup is a goal far afield, it is reasonable to expect 

that with more processors devoted to the extraction and with a streamlined MERGE verb, 

the turnaround time could be brought much lower than that required with IV. From. 

extrapolating from one of the test cases, I estimate that in a large chip extracted by 8 

processors, the SPLIT time should be about 10% of the IV turnaround time, the 

EXTRACT time should be about 15%, and the time to perform a 3-stage binary merge 

should be about 40%, for an overall turnaround time of 65% that of IV. 

5.6 An unanswered question about efficiency 

For the sake of case in reporiing results, the runs performed with EPIC used the same 

type of processor, with the same amount of memory. Even though EPIC does not require 

slaves to be on the same VAXclustcr, I only used processors on one V AXcluster due to 

availability. Were the goal to minimize turnaround time, one would not care which 

hardware was used. One would prefer using the fastest processor possible to perform as 

much as possible. But how does one measure speedup in the heterogeneous environment? 

Performance analysis is a tricky enough field without compounding the issues by 

introducing different processor types, memory sizes, and loading factors into the melee. 
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Chapter Six 

Future Research Opportunities 

6.1 Missing features 

MACE did not achieve rrolicicncy at handling all the desired layout features 

correctly. The uncleanly split device was not handled, although the hooks were put in to 

facilitate its insertion. Device size calculation for merged devices were consistently 

different from IV's llgures. Digital Equirmcnt Corporation uses a more complex model 

for device sizes than merely avernge length times average width. Because of this formula, 

these data were difficult to reproduce. Instead of making the area the product of length 

and width, area is computed by adding up the areas of the trapezoids in the channel. One 

of the two factors is maintained, and the other is derived when the device is complete. 

Without introducing dubious correction factors into the code, the size errors could not be 

eliminated for severed devices. Also, MACE's input method did not allow specified 

negative coordinate values. 

6.2 Extensions to MACE 

6.2.1 Alternate splitting modes 

For testing, the variable SPLIT mode was essential to en<1ble dropping a cutline on 

top of a feature in question. If one wanted to minimize the variance in the extraction times, 

one might like to have a method of splitting the layout that would evenly divide the 

number of polygons in each slice. Such a scheme would produce slices with variable 

heights. If extraction time is related to the number of polygons, this might be a good first 

step to achieving uniformity of the size of the extraction task. Note from one of the test 

cases that the times to perform the extraction were widely varying. 
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One area Lhat could have bencfitted from some work is that of automatic testing 

tools. Few things arc more frustrating than to generate some test results and not to know if 

they are equivalent to the expected results. Wirclist Compare is an excellent tool to 

establish equivalence of two wirclists [7]. However, there arc other output formats of IV 

that do not have such a sorhisticatcd checker. The edge file l(Jrmat Jnd XND lilc format in 

rarticular arc two for which equivalence could have been established by an easily built 

postproccssor. A single tool to compare equivalence of edge Jnd XND files would work as 

follows: 

1. Read in the two edge files. 

2. Sort edges into two data structures, one for the· IV-generated structure, one for 
the MACE generated structure 

3. Further divide the cdgcs into lcft, right, tor. and bottom edges. 

4. Considering each area (left, right, top, or bottom) alone, attempt to build a 
marring function, f (iv-node-name) = mace-node-name. Constructing the 
function and its inverse edge by edge would be straightforward. 

5. Report any edges that were did not exactly match edges in the other structure. 

6. Read in the XN D files into two new structures. 

7. Using the same mapping function and its inverse clcri\'cd above, attempt to 
reconcile the nodes listed in the XND rile, reporting errors as above. 

8. Build a device-name mapping. (perhaps this can be done by a postprocessor to 
WLC) 

9. Reconcile the device data with respect to gate name, source/drain names, 
location, device type, and device size. 

Device geometry, because of its inscrutable format, is difficult to check. Especially 

with more complex channel shapes, equivalence is not the same as coordinate-for­

coordinate equality. The Jack of a canonical representation for channel shapes and of 
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D 0 
(a) Donut case. Center is empty (b) Representation l: two concentric squares 

(c) Representation 2: limiting case of a 'C' 

Figure 6-1: Two representations for a shape with a hole 

procedures to eliminate interior lines makes the establishment of such equivalence an 

involved task. In figure 6-1, Lhe actual layout is in part (a). One way to represent this is 

with two polygons, as in part (b). Another way to represent this is with one polygon whose 

edges meet, as can be extrapolated from the closing arms of the C in pa1t (c). When IV 

encounters a device such as this, it writes the DG R in form (b ). When thinking about 

merging portions of channels, I realized that my algorithm would represent it in form (c), 

and that deriving form (b) would be extremely difficult. 
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6.2.3 Glamorous yet functional w.;cr inh.~iiract 

MACE performs input hy rrompting the user for a chip name, a verb, qualifiers, and 

so on, one to a line. This method was Lhe simplest, but investing the time tu develop a 

command reader with the CDU (Command Oclinition Utility) would be a functional 

improvement as well [20]. The CDU provides for the description of the verbs available 

within a subsystem such as MACE. It is easy lo specify that a verb such as SPLIT has two 

possible qualifiers, /FIXED and /VARIABLE, that the two qualifiers arc mutually 

exclusive, and so on. In particular, it is possible to specify that /FIXED takes one 

argument, the number of slices to divide the layout into, and that /VARIABLE takes a list 

of y coordinates. These arguments can be passed as formal parameters to user-specified 

routines. CDU puts glamor on the front end, where it belongs, but it also provides a good 

way of command processing. What is apparent to the user would be a difference between 

these two dialogues: 
$mace := $mace$dir:mace 
$mace 
MACE> split 
Block to split: blockl 
Fixed or variable: v 
Enter 
Enter 
Enter 
Enter 

as opposed to 

coordinate, 
coordinate, 
coordinate, 
coordinate, 

or 0 
or 0 
or 0 
or 0 

$mace $mace$dir:mace 

when 
when 
when 
when 

$mace split /fixed=4 blockl 

finished: 7600 
finished: 4850 
finished: 1040 
finished: 0 

$mace split /var= ( 7600, 4850, 1040, 0, -2500) v2yscan 

In the first, the task takes several lines to specify; in the second, any MACE task can be 

specified with one line. It should be noted that this approach would solve one liability with 

the approach implemented in MACE. MACE's SPLIT verb docs not permit a named y 

coordinate to be less than 0. It also rejects out of order values. With the CDU interface, all 

values are available to the routine named in the command description, and could be so1tcd 
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there. Further, nL·gativc values, which h~m~ mca1-,in2 ii! s~m1c chip~;. arc acceptable with 

th is method. 

6.2.4 Automatic ECF generation 

With the benefit of the CDU, MACE tasks become single command lines, instead of 

requiring a whole command lile. or course, a command file may still be needed if there 

arc setup steps needed, or ir there arc steps to be taken alter the task. The CDU mentioned 

above would enable the user to interact with MACE more enicicntly. A new tool could be 

built as a new front end, that would prompt for some extraction parameters, and build the 

FCF and command lilcs needed to run MACE under EPIC. This new tool would be 

simihJr to the module Murantz built to parse the rules_lile to generate lhe ECF [8]. 

6.2.5 Capacitance calculation 

It was not a goal of this rese<1rch to calculate capacitance with IV's accuracy. Indeed; 

given the problems representing complex :.;hapcs, this would have been very diflicult. 

However, in another environment, the multiprocessing extractor need not be excluded 

from calculating capacitance. If the tool can correctly detcrm inc the shapes of the nodes, 

then such calculations should be straightforward. 

6.3 Design decisions better redone 

6.3.1 Static computability or merge might not be best 

Recall section 3.3.3, in which dynamic computability of merging was judged not to be 

an advantage. The argument about static or dynamic computing of which slices to merge 

holds for a homogeneous computing environment. It is a different question entirely for the 

heterogeneous environment. Assume the slices arc of roughly the same complexity, as 

measured subjectively by number of nodes, devices, polygons, and so on. Then, the 
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variance of execution times will be greater for a v<irying set of' ~1:cccs:~or ~ypcs than it will 

be for all ic.knticul processors. Ir the processors assignee! c~1ch to extract one slice have 

power that ranges over two orders ol' lll(Jgnitudc, then the execution times arc expected to 

range over two orders of magnitude also. Observe from Appendix II that in larger chips, 

the time required Lo merge two slices becomes small relative to the time required to extract 

a single slice. Given Lwo slices, which ordinarily would nol be merged in the first merge 

stage, that have passed the extraction phase, it might therefore he possible to complete the 

merge operation before either or the merges called for in the static stralegy would be 

possible. Having layout of nonuniform complexity only blurs the issue more. Every factor 

that tends to increase the variance of the extraction times, such as processor memory, 

processor speed, and variable segment height, speaks for the accommodation or dynamic 

computing of the merge pattern. 

6.3.2 Unified output format 

I believe that using the existing IV formats was the correct decision. However, there 

could be one slight modification that would stre<1mlinc the process. Rather than using the 

various IV output formats in many separate disk files, an alterni.ltive is to use a unified file 

format, that would store several files' data. The unified output fcm11al would be an output 

of the extract verb and an input of the merge verb. The merge verb would then merely 

have to read one file per input, and create one output file as its result. As before, the final 

merge operation could know to create from the single output lile the additional reports, 

such as errors, capacitance charts, and wirelists. The advantages to be had by using this 

format include the following: 

1. There is less overhead on file transfer between very loosely coupled processors. 

2. Confusion from issues of file protection and file naming are minimized. 

3. Directories of files involved in a merge operation are smaller, more 
comprehensible. 

4. The ECF for a MACE circuit extraction run will be smaller, because there will 
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be fewer inputs and outputs or the various merge stages, thus is quicker to write 
and read f(Jr the EPIC modules that use ECF. 

5. Validation of the unified format can still be clone by separate tools in rarnllcl if 
each validation tool opens the unified output file for READ access (with no 
intent to modify). 

The identifiabk disadvantages include: 

1. Some information might be lost due to only one file organization. When 
different data types use different file or'ganizations, for example, to facilitate 
reading by computer or by human, these decisions would have to be made in 
the context of a rredetermined unified format. 

2. Maintainers would not have the freedom to choose any lite format when adding 
a new data type. 

3. With serarate files, it is immediately obvious from looking at the directory if 
the merged edge file was produced. With a uni lied output format, it is not 
obvious from looking at the directory listing if each format was dumped into 
the single file. 

On the one hand, simplicity seems to be in favor of a single file for single data type, 

as in traditional IV. On a more global perspective, however, when there arc many different 

formats for different data types, and the confusion multiplies for each diffrrent file type, 

creating a polyglot format might be attractive. 

6.4 Modifications in the MACI~ and EPIC interaction 

EPIC was built with the intention of scheduling independent tasks. The task 

processors should have no idea that there is even another processor in the universe. In this 

setup, slave processors cannot cooperate. An alternate paradigm is that of coworkers and 

bosses. The coworkers communicate as the task requires, and the boss channels the 

communication and controls the execution. Such a setup would require some minor 

rebuilding of the application to take advantage of the possibility to communicate. 
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However, the availability of such communication would greatly facilitate some goals, 

primary mnong which is smart cutlinc imposition. 

6.4.1 Cut clc\·erly; Merge simply 

Structure avoidance by arbitrarily placed horizontal cutlincs is not dependable. It is 

an event with a certain probability of success. The imposition of many horizontal cutlines 

will sooner or later sever a device, and if there is no code to handle the severed device, 

there will be a mess. The suggestion is that by appropriate communication, cutlines could 

start horizontal, with the possibility of being nudged by a processor to avoid certain 

structures. A processor that recognizes a device touching the top boundary of its slice may 

decide to pull the cutline down below the device, in GITect relegating the device to the duty 

or the processor of the adjacent slice. The dcvice·s data could be formed into a message, 

and sent, with the boss's aid, to the coworker in charge. The coworkers would not know 

who was assigned to what task, but the boss would. With a bit of work, so as to avoid the. 

excision by bolh processors of two halves of a cleanly split device, MACE could be built to 

avoid device splitting entirely. 

6.4.2 Alternate merge formats 

MACE uses a binary merge format, in which two slices arc merged in one task into a 

larger slice. Each strip has exactly two neighbors. An alternate merge method that still 

uses the strip decomposition method would be a bucket brigade algorithm. This algorithm 

would not be possible without the support for interprocess communication, but could 

conceivably function within the boss-coworker configuration. 

Consider n processors working on n separate strips, and assume we have a reliable 

way to pass messages from slave to slave. On an even phase, processor 0 (PO) working on 

strip 0 (SO) talks to processor 1 (Pl) working on strip l (Sl). Similarly, even processors talk 

to their higher neighbors. The high processor, if even, remains idle. On an odd phase, PO 

remains idle, and all odd numbered processors talk to their higher neighbors. Even and 
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odd phases alternate until message traffic stors. WlH.:n message traffic stops, the memory 

of euch processor is combined in any order to rerresent the circuit equivalence of the chip. 

The master can judge when message traffic stors by a function of the slaves' stnte. If a 

slave is computing, there might be more message traffic. If all slaves huve finished 

computing on their own data and they have processed all of their incoming messages, then 

there are no more messages to be sent. 

6.4.3 Messages for naming 

The preceding explanation gives the general configuration of the processors. It could 

be used to perform any of the central MERGE functions. Messages could be used to 

emulate !V's naming scheme. if this is the desired method. In one phase. all labels could 

start nowing back and f(Jrth, until all named nodes were agreed uron by all the processors. 

In a second phase, the numbers for the unnamed nodes would spread out. In a third phase, 

the processor of the top slice would retrieve its highest node number and pass it to the 

neighbor. Each processor of an internal slice would read the number mid adjust the nodes 

that are local and unnamed by this offset, then sending the new highest node number to its 

neighbor. To establish consistent naming among n processors would require O(log2(A)) 

time. 

6.5 Recommendations for implementation 

From the experience and difficulties encountered in the development of MACE, 

have gleaned some impressions and thoughts on how to build a multi-processing circuit 

extractor. The observations are made both in reference to the software engineering aspects 

of the project and to the multiprocessing aspects of the project. 
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6.5. 1 Sort ware development suggestiuns 

To ensure case of building prototypes rapidly, consideration should be given to 

modul:.ir design of the components. The modules that perform input or output of a certain 

data type should completely insulate the realization of the format from the rest of the 

system. This feature, not a recent development of software engineering, is absent in the IV 

system. It is difficult to derive the syntax for an XND file from the code. It is even more 

difficult to be sure that changes to the format, which were necessary in the project, were 

adequately achieved without adverse side effects by the changes made to the code. 

Each module should be built with its own debugging routines, f(Jr record analysis. 

The records IV manipulates tend to he quite large, with analysis of selected components 

diffictilt. By providing routines within each module that inspect data, scrutiny of the 

relevant parts is easier. This approach was taken in the modules of MACE. 

Consistent module and variable naming, a unified approach to error handling, and 

unified approach to procedures' return values all will help the members of the 

development team ensure consistency of the code. Rather than have several modules in 

each member's style, establishing and enforcing conventions will provide greater ease to the 

group at the expense of rufning each member's feathers only slightly. 

6.5.2 Suggestions for multiprocessing extractors 

I believe that a circuit extractor can be built that not only embodies these principles 

of high quality code, but also enables the system to work in a single processor or a 

multiprocessor environment. The computing environment assumed here is a moderately 

coupled multiprocessor. Several autonomous processors share memory and have a means 

of sending messages to each other. 111e notion of a task is central to the design of the 

system. There are several methods of breaking the task of circuit extraction of the entire 

chip into several smaller tasks. 
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Use hierarchy 

One might wish the tool to take advantage of the hierarchy of the chip. In its present 

form, IV docs not take advantage of the hierarchy; it nattcns the layout in formation before 

processing it. We might wish to have the tool work al the grain or the leaf cells of the chip 

assembly, constructing descriptions for the cells. Then it would instantiate the descriptions, 

modifying them with any loose layout in the calling cell. A natural ordering of the tasks 

comes from the hierarchy. Possibly great savings could come from not having to perform 

the extraction !Or the same leaf cell many times. The added complication is the need to 

accommodate the loose layout that can overlay an instance of a cell. 

Use pipelines 

Just as a compiler has several phases of operation, each with a well-defined phase that 

transforms intermediate results, conceiving circuit extraction as a sequence or refinements 

on data might help. The various phases might be 

• reading the layout 

• nattening the layout 

•connectivity calculations (contact recognition) 

•device recognition (depends on the process) 

• device attribute calculation (area, perimeter, length, width ... ) 

•[capacitance/resistance calculation] 

• global naming of items (such as edges, devices, nodes) 

• output the datn and 

•output the errors in the layout. 

Each tusk filters the dntn from the previous step or steps to accomplish its own task. 

The rusks are designed to be ntomic. I don't know if this atomicity is possible, but this 
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might work. II' the rrocesses arc not atomic, but i( message passing is possible in the 

architecture, the tasks can be pipelined. The flattening can start bcf'ore the reuding is 

finished, but cannot comrlete until the reading is complete. 

Use wisdom 

Another approach is to make the merging as simple as possible. The simplest it could 

be is if appending individual results makes final results. By rutting the name construction 

phase at the end, as has been suggested is prererablc to the naming scheme within MACE, 

no time is spent computing and recomputing node names. In the current MACE, a local 

node in the bottom slice could be renamed once for each M ERG F operation it is in. Also, 

if the cutlincs arc positioned cleverly, to avoid structure merging, temporary results are 

much closer to final results than they are in current MACE. By appropriate use of 

knowledge and communication, as described previously, the binary merging can be made 

essentially a local operation; no structure merging need occur. 

6.6 Conclusions 

Considering the complexity of the task, I am pleased with the results. Within the 

context of a large body of software, I was able to modify it to support a different mode of 

behavior. I was able to bring in the necessary data for the reconciliation phase. There are 

some drawbacks in MACE's performance: some data are not correctly calculated, such as 

device sizes; device geometry is not handled in some of the more complex device shapes; 

and not all split devices are handled. However, there is reason to believe that these features 

could be implemented. The project shows that there may be hope for a multiprocessing 

circuit extractor, and it is suggested that finer granularity would go a long way toward this 

goal. 

The task of circuit extraction, on the surface a difficult one to mold for 

multiprocessing, does not present clear contraindications of this possibility. I have shown 

that, in spite of the nonlocal nature of the task of circuit extraction, temporary results made 

60 



MACE: A Multiprocessing Approach to Circuit Fxtraction 

on the busi~, or nu con:_cxt can be converted into results that arc equivalent to what is 

normally obtained from extracting the whole chip. It is suggested that there arc some 

reasons to rethink the process of circuit extraction to enable a cleaner decomposition of 

tasks and to provide ror several multiprocessing prototypes. Tighter coupling or processors 

'would aid in cc1iain computation scenarios. It is further postulated that an approach 

similar to the one taken can bring up to a 50% speedup over the existing method. 
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channel 

cul line 

device 

ECF 

homogeneous 

helerogeneous 

labels 

MACE: A Multiproci.~ssi1.g Ar11mmch lo Circuit Extraction 

Glossary of Te nus: 

the overlap area or polysilicon and diffusion for an NMOS device. 

an imaginary line imposed on a layout by which SPLITTING occurs. In 
MACF., all cutlines arc horizontal. 

usually, a transistor. It usually has three terminals: a gate node and two 
source/drains. In the context of IV, an MOS capacitor is called a device 
with only two terminals, and can be generated by a three-terminal 
device whose two source/drains arc the same electrical node. 

execution control Ii le. 111 is lile instructs EPIC which tasks arc part of the 
computation. 

describes a computing environment m which all the processors are 
substantially the same. 

describes a computing environment in which all the processors are not 
substantially the same. 

descriptive text associated with a node in a layout file that helps to 
idcnti ry for the designers' use the function of the node. Sample labels 
might be PHI, WRITE-ENABLE, DATA<J>, to indicate a clock signal, 
a control signal, or a slice or data, respectively. 

Manha/Ian geometry 

MBB 

layout that contains only horizontal and vertical lines. Modeled after the 
streets of Manhattan, which are largely box-like. · Non-Manha/Ian 
geometry contains lines that arc not horizontal or vertical, although in 
most cases this means oriented at some factor of 45 degrees. 

minimum bounding box, represents the smallest rectangle inside which 
all layout fits. [t can be thought of as horizontal and vertical shrink 
wrap. 
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slice 

window 

a rectangular port;~'! of a chip. 111e width· (l(Ute slice is the width of the 
M BB of the chip. 11tc height of tt. sliOt·' is controlled by the user. 
Synonyms; strip. sw.ath. "· 

similur 10 lhe ·MBB. except it may be of ... a part of the chip. MACE 
uses onty rectanpJar wiadows ._ ._ -ijhe x dimension is equal to 
that of the chip. 
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Hardware characteristics: 
Nodcl: VAX-111780 
Node2: VAX-111780 
Nodd: VAX-111780 
Node4: YAX-111785 
Nocle5: VAX 8600 
Node6: MicroVAX II 

Test size (approximate) 

MACE: A Multiprocessing Approach to Circuit Extraction 

Appendix II 

Test Ucsults 

24 Mb physical memory 
24 Mb physical memory 
24 Mb physical memory 
32 Mb physical memory 
32 Mb physical memory 
5 Mb physical memory 

Block1: 1600 nodes, 600 devices 
Block2: 23000 nodes, 6000 devices 

Test 1: Comparison of serial IV and sequential MACE on Nodc5, block 1. 
IV: CPU time: 01:03 elapsed time: 01: 16 
MACE: 
split 
extract 1 
extract 2 
merge 1,2 

Total 

CPU time: 00:21 
CPU time: 00:27 
CPU time: 00:25 
CPU time: 00:19 
CPU time: 01:32 

elapsed time: 00:30 
elapsed time: 00:37 
elapsed time: 00:34 
elapsed tirne: 00:58 
elapsed time: 02:38 

Test 2: Comparison of serial IV with sequential MACE on Node5, block 2. 
IV: CPU time: 17:54 elapsed time: 18:23 
MACE: 
split 
extract 1 
extract 2 
merge 1,2 

Total 

CPU time: 01 :05 
CPU time: 15:10 
CPU time: 06:40 
CPU time: 02:23 
CPU time: 24:20 

Test 3: Three-way comparison. 

elapsed time: 01 :51 
elapsed time: 17: 58 
elapsed time: 07:30 
elapsed time: 05:06 
elapsed time: 32:25 

Notes: IV ran on Node3; MACE ran on Nadel; MACE+ EPIC ran on Nodc1, Node2, 
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and Nodd, with Nodc4 as master. Test case: Block L 
IV: CPU time: 04:04 clarsed time: 04:30 
MACE: 
split 
ex tract 1 
extract 2 
merge 1,2 

Total 
MACE+ EPIC: 

CPU time: 01 :22 
CPU time: 01 :35 
CPU time: 01 :33 
CPU time: 01 :09 
CPU time: 05:39 
CPU time: 05:36 

elapsed time: 01 :34 
elapsed time: 01 :46 
elapsed time: 01 :4? 
elarsed time: 02:16 
elapsed time: 07:24 
elapsed time: 05: 15 

Test 4: Three-way comparison. 
Notes: IV ran on Nodc3; MACE ran on Node1: MACE+ EPIC ran on Nodcl, Node2, 
and Nodc3 with Nodc4 as master. Test case: Block2. 

IV: 
MACE: 
split 
ex tract 1 
extract 2 
merge 1.2 

Total 
MACE+ EPIC: 

CPU time: 1 :05:41 elapsed time: 1 :09:31 

CPU time: 03:52 
CPU time: 50:47 
CPU time: 24:01 
CPU time: 08:52 
CPU time: 1 :27:31 
CPU time: 1 :25:32 
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elapsed time: 1 :07:53 
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III.I Edges 

III.I.I Side edges 

MACE: A Multirrucessing Arproach to Circuit Extraction 

Appendix III 

l'cst Cases 

Correct edge handling requires correctly identifying the coordinates and the name of 

the node to which the edge belongs. This latter issue is applicable to any edge that is in an 

output file. Particular cases include 

•edge local to slice 

• edge with one point on cutline, other inside 

• edge with one point on cutline, other on extreme edge 

•two edges with the same coordinates but on di ffcrent (distinct) layers 

•edge touching cutline with no match on other side 

•edge touching cutline with match on other side 

•edge running the whole length of the side of the chip 

111.1.2 Cutline edges 

Edges on the cutline are essential to establish connectivity. In MACE, an overlap of 

any non-zero length was sufficient to establish connectivity. A good cutline sewing 

algorithm should handle these cases: 

•two edges, different layers, same coordinates 
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,--- ------·--------· 
I 

$24 Top slice 

• 

Bottom slice 

$1 $2 $3 

10 20 30 40 50 60 

Figure 111-1: Many to one edge/node match 

•two edges, same layer, small negative overlap (no connection) 

• two edges, same layer, zero overlap 

• two edges, same layer, non-zero overlap 

• two edges, one edge overhangs the other (begins before and ends after the 
other) 

•two edges, the one that starts to the left ends to the left 

•one edge on Lop that matches two or more seemingly distinct edges on the same 
layer below. See figure 111-1 

•checkerboard edges from top and bottom, all having zero overlap 
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After the sewing u;, o1~th:; cutlinc (~oges, the connectivity of the nodes should be able 

to be deduced. Some pitfalls in node handling: 

e Labels from top overrule numbers from bottom 

• Labels from bottom overrule numbers from top 

•Numbers from both sides are consistently handled 

•Conflicting labels get reported 

• Node flags of tht: resultant node arc the inclusive or of node flags of the two 
constituents 

• Conllicting flags (if any) arc reported as errors 

II 1.3 Devices 

• Device flags of the resultant node are the inclusive or of the device flags of the 
two constituents 

•Conflicting flags (if any) are reported as errors 

• Devices touching the boundary of the whole chip are repotted 

• Unsplit devices arc either handled or avoided and rchandled 

•Splits (2-2 and 3-3) are handled 

111.4 Device Geometry 

Device geometry is exactly or equivalently constructed, for a testing tool to judge 

after the extraction. One especially tricky case appears in figure II 1-2. From the 

perspective of the top slice only, the channel has no hole. From the perspective of the 

bottom slice only, the channel has no hole. Both seem solid. However, when they are 
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.------------------- ---------- -··-·----- - ----~ 

Figure 111·2: The appearing hole channel 

positioned adjacent, and the teeth come together, an arbitrary number of spaces are 

formed. By suitable positioning of the teeth (in a checkerboard pattern, for instance), even 

the number of holes, though constant, is a matter of semantics. If a hole connects 

diagonally to another hole, is that two holes or one? Recall figure 6-1 on page 51. TI1ere 

was ambiguity of how to represent a hole. ff the teeth mesh exactly and leave some holes in 

the middle, is the polygon represented as one slab with some holes in the middle, or one 

slab with one complex hole in the middle? 
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There are other, more mundane cases. Just as a nocfo·chaia .. ~n wind from top to·· 
• ~ :f" ; .· , 

boUom to top apint ~ atl nodes must be ~.socs . .,device·s channel .wind over 

the cudine. Cases (d) and (~}, of f1gure +I °" .paae 39 • be handled correctly. in 
t \o - • - .- • .-·.~, 

addition to the simple. lbur-point channel merps&t'8t MACS~ correctly . 

. . 
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