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mentally limited by the Von :\eumann bottleneck . .\Iultiprocessors do not share 

this limitation. The task of solving the equations for the many parallel signal paths 

found in most circuits lends itself readily to concurrent computation. For both of 

these reasons, parallel processing is a highly promising approach to circuit simula­

tion. This thesis explores several facets of this problem. 

The logic simulator CO.\SD.1 was implemented in the parallel language .\f ultil­

isp, which contains special constructs for dispatching tasks in parallel. A model for 

the simulator's behavior was developed using a series of experiments. The analysis 

explains the effects upon COl\Sf\(s performance of several parameters, including: 

the number of nodes in the multiprocessor, circuit size and topology, and the algo­

rithms for generating the simulation code and for taking advantage of its inherent 

parallelism. The final generation of these algorithms exposed and exploited signifi­

cant parallelism, but did not attain linear speedup . 
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Chapter I 

Introduction 

Using computer simulation, a designer can explore the stresses in a bridge, 

the aerodynamic drag coefficient of an automobile, or the performance of a circuit 

without having to first construct a prototype or model. The economic advantages 

of this are obvious - building and discarding bridges or cars can become quite 

expensive. Eliminating the time lag caused by prototype construction also allows 

creativity to flow more freely through the design process. The circuit application, 
although driven less by economic pressure than some other cases, is nonetheless 

complex enough to require powerful simulation tools to keep its architects produc­

tive and sane. When circuit size exceeds a few dozen devices, solving the equations 

by hand becomes tedious and simulation tools are useful. In modern VLSI circuits, 

where sizes regularly exceed 100,000 transistors, these tools are not merely useful, 

but downright vital. Besides saving the designer from having to solve thousands 

of equations in thousands of unknowns, the immediate feedback saves ideas that 

might otherwise be lost while the IC masks are at the foundry or the PC board is 
being etched. 

The computer power required to simulate a circuit increases, linearly or worse, 

with circuit size. If simulation technology is to keep pace with circuit size, the sim­

ulation time must not increase accordingly. To simulate a larger circuit in the same 

amount of time, we must either focus more CPU power on the task or somehow 

selectively lower the complexity of the task itself by finding shortcuts. The ubiq­

uitous cost/performance tradeoff is at the root of this problem. In this particular 

case, the "cost" is computer time and the "performance" is accuracy and speed. 

The arsenal of simulation theory abounds with techniques which attack one 

end or the other of this tradeoff. Classical theory has largely focused on finding and 

exploiting shortcuts in the algorithms. For example, certain variables may remain 

unchanged during some time interval in a simulation run. Accuracy can be locally 

downgraded in that interval and thus traded for overall speed. Variations on this 
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type of technique are discussed later in this paper. 

Squeezing the other end of the tradeoff is less common and more powerful. 

Perhaps the most obvious way to apply more computer power to a problem in a 

given amount of time is to use a faster computer. The speeds of Von Neumann 

computers are fast approaching their fundamental limits: more and more research 

and design effort is required to gain an increment of performance improvement. An 

intriguing and highly attractive alternative is the use of multiprocessors. 

There are two angles of thought which lead to this approach. The first leads 

from system performance considerations. The fundamental "bandwidths" of multi­

processors are much higher than those of Von Neumann machines. A multiprocessor 

can deliver more cycles per second, which is precisely the desired result. A sim­

ple observation about circuit topology also leads naturally to a parallel-processing 

approach to simulation. Circuits contain many parallel signal paths, while a simu­

lation algorithm running on a SISD computer is purely sequential in nature. The 

concurrency of the circuit is not duplicated in the simulator, which causes the pro­

gram to run slower than the hardware by a factor proportional to the amount of 

parallelism in the circuit. Partitioning the circuit and distributing the task among 

the nodes of a multiprocessor is an esthetically pleasing and hopefully efficient solu­

tion to this problem. Note that the underlying cost/performance tradeoff has been 

sidestepped but not completely avoided. The real time required to run a particular 
simulation decreases, but the CPU time remains constant, since many computers 

are working in parallel on the problem. 1 

Partitioning a complex circuit, such as a CPU, so as to facilitate faster simula­

tion is not at all trivial. The boundaries of blocks in a partitioning that streamlines 

the computation may not resemble hardware boundaries at all - for example, a 

designer may find it easier to follow the operation of her circuit by thinking of a 

block as an "adder," while an algorithm that treats that block as a network of XOR 

gates may run much faster due to the behavior of the computer system upon which 

it executes. The mathematics behind a successful partitioning is a combination of 

circuit theory, simulation theory, programming technique, and the architecture of 

the computer involved. 

The logic simulator CONSIM, described in this thesis, investigates these issues. 

The effects of coding algorithms, partitioning schemes, parallelism exploitations, 

1 The actual CPU time may even increase over the sequential case due to the 

overhead involved in orchestrating the parallel tasks. 
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and circuit size and topology upon simulator speed were isolated. Using these 

results, CONSIM was tailored to take maximum possible advantage of the parallelism 
made available from its target machine - the Concert multiprocessor - by the 

language Multilisp. 

Concert [3] was constructed by the Real Time Systems Group of the Laboratory 
for Computer Science at MIT. It consists of an array of Motorola 68000 micropro­

cessors and some shared memory. The processors are organized in eight groups or 

"slices" and connected on a common Multibus. Several slices are linked using an 

interconnection scheme called the RingBus. As of this writing, 14 processors on 5 
slices are functional. 

Multilisp, an extension of the Lisp dialect Scheme [1], has been implemented 

on Concert [14]. Multilisp shares much of the function and semantics of Lisp, but 
incorporates additional operators and semantics to take advantage of the paral­

lelism of its implementation. Examples of these special constructs are (1) the pcaJJ 

construct, in which the programmer specifies two or more expressions whose evalua­

tions may proceed concurrently, and (2) the future construct, which allows a process 

to execute given a "promise to deliver" its arguments at a later time. The Multilisp 

implementation, without programmer intervention, takes care of the parceling out 

of tasks associated with (1) and the "filling in at a later time" associated with (2). 

The intent of the Concert project was to provide researchers with a functional 
testbed for multiprocessor applications. Multilisp brings this functionality to the 

hands of the programmer. Together, Multilisp and Concert represent an ideal sys­

tem on which to experiment with the problem at hand. 

The main goal of this research was to answer some questions about the issues 

that affect performance of a simulator running on such a system: Does perfor­

mance reflect hardware or software issues? How should the code and algorithms be 

structured to take maximum advantage of the multiprocessor system and its under­

lying hardware? How should tasks be divided to enhance parallelism? Of course, a 

welcome side-effect2 was a functional logic simulator which can verify logic designs. 

Several circuits, as small as a dozen gates and as large as several hundred, 

have been simulated under CONSIM on as many as 14 Concert processors. All show 

significant parallelism gains over their sequential execution times, but the gains fall 

short of the t = ~ speedup theoretically available from n processors. For example, 

a simulation of a 58 gate ALU circuit runs 6.3 times faster on 14 processors as on one. 

2 Lisp occasionally does have side-effects. 
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Execution times fall as processors are added to the system, but this improvement is 

limited by the size of the circuit and the length of the simulation run, which together 
determine the number of tasks in the computation. The parallelism exploitation 

algorithms choose among these available tasks to fill the system's pipelines. Larger 

numbers of tasks allow the algorithms to keep these pipelines full and the throughput 

maximal. This has novel implications in the CAD world: a tool whose efficiency 

does not decrease radically with circuit size is highly uncommon and promising. 

CONSIM is a logic simulator which was designed to run efficiently on a particu­

lar multiprocessor. It cannot compete outright with state-of-the-art, lightning-fa.st 

simulators. Its purpose is not to have the words "fastest, newest, improved prod­

uct" splashed in bright colors across its package, but rather to explore how the 

particular flavor of parallelism made available by multiprocessors can be exploited 

to make a simulation algorithm run faster. Farther along this path lie simulators 
with truly blinding speed that will leave the current state of the art far behind. 

Thesis Outline 

By way of introduction, chapter 2 presents a brief review of the literature re­

lated to this endeavor. This establishes CONSIM's roots and reveals the novelty of its 

approach. Chapter 2 then presents an outline of the goals of the CONSIM project. 
Chapter 3 describes the environment, both hardware and software, in which the 

simulator operates. The software description presents the details of Multilisp on a 

level which presupposes some knowledge of Lisp or another programming language. 

Chapter 4 discusses the implementation of the simulator, beginning with the class 

of circuits to which it applies. CONSIM's general structure is then outlined, and 

the hardware description language (HDL) is defined and discussed, along with the 

algorithms that transform the hardware description into simulation code and other 

algorithms which exploit the parallelism in this code using Multilisp's special con­
structs. Chapter 4 concludes with a top-level CONSIM "user's manual," which ties 

together the aforementioned low-level description. The actual experiments per­

formed are documented in chapter 5. The procedures, example circuits and issues 

are introduced, and experiments are proposed which investigate each issue. In each 

case, the results are presented and discussed in light of the underlying issues. Chap­

ter 6 summarizes the conclusions of the research and proposes direction for future 

work. 
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Chapter 2 

Approaches to Simulation 

2.1 Previous Research 

In circuit simulation, the network equations derived from device physics are 

repeatedly solved to determine the values of the variables (voltage, current, etc.) at 

the nodes and/or branches of a circuit. The values of the variables are computed for 

one time interval using the input values for that period. The internal and external 

variables are updated and the simulation continues at the next time point. The 

network equations may be a mixture of algebraic and differential equations; they will 

be nonlinear if the circuit contains nonlinear elements. For simulation purposes, the 

equations comprising a full description of an n node circuit are formulated in various 
ways, creating matrices whose dimensions are typically O(n). An intermediate 

linearization step is required to get to these forms if the network equations are 

differential or nonlinear. The problem solution then reduces to a matrix inversion 

and multiplication. The computer time required to perform these operations can 

grow as badly as n 2 , where n is the size of the matrix and, indirectly, of the circuit. 

If simulators are to keep pace with increasing circuit size, a time penalty which 

grows as n 2 is unacceptable. For a circuit containing 10,000 devices, one signal 

input and two clock inputs, a 1,000 time step simulation run on a 370/168 takes 

approximately 105 seconds assuming 1 millisecond per device-iteration and three 

iterations required to reach convergence [27]. This amounts to about a day of 

CPU time. To simulate a circuit containing 100,000 devices, an example ten times 

as large, would take 102 times as long: about three months of continuous CPU 

time. In addition, the higher density devices may require more complex models 

because they are so small. This contributes to computational complexity and thus 

to device-iteration time. All things considered, the motivation for faster simulators 

is painfully obvious, and research has proceeded accordingly. 

Techniques of improving simulator speed fall in two general categories. Those 
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in the first category use more efficient and intelligent algorithms, while those in 

the second attempt to improve the implementation upon which the algorithms run. 
Most of the research in the literature has focused on the former approach. Only re­

cently, as alternative architectures appeared, have the limits of the implementation 

been explored. 

Algorithm Improvements 

Matrix mathematics provides many shortcuts which improve the n 2 perfor­

mance lag. Gaussian elimination, LU decomposition, pivoting, node and branch 

tearing and sparse matrix manipulations are examples of this type of improvement. 
A full description of these methods is beyond the scope of this paper - the reader 

wishing further elaboration should refer to [13] for the tearing techniques or [32] for 
the others. 

Circuit analysis programs, such as SPICE [21] linearize and solve the circuit's 

nonlinear differential equations using numerical methods, providing a wealth of 

information and chewing up large amounts of computer time in the process. SPICE, 

which grew out of another program called CANCER [22] at UC Berkeley during 

the late 1960s, contains many of the matrix-mathematical improvements described 
above. A serious problem with SPICE is the effect of the time step used. A badly­

chosen time step can cause the "solution" to contain very real-looking transients 

that are purely artifacts of the numerical integration. This time step is chosen by 

compromise. If it is small enough to follow the fastest-changing node, the rest of 

the circuit will be oversampled and speed will suffer. If it is too large, artifacts and 

even nonconvergence can result. 

IBM's ASTAP [33] relies upon an alternative formulation of the circuit matrix 
to achieve efficiency. SPICE, assuming that solution time and matrix size are closely 

linked, attempts to form the densest possible matrices. ASTAP places all possible 

information in a sparsely-populated "tableau" matrix to which special techniques, 

which preserve and exploit the sparsity throughout the computation process, can 
be applied. ASTAP includes another innovation which is based in the theory of 

numerical integration. The accuracy of the integration method (i.e., the number 

of terms used in the predictor and corrector) varies according to the needs of the 

circuit. The time step, as in SPICE, varies as well. The combination of these factors 

avoids unnecessary accuracy at points where circuit variables are changing slowly 

or not at all: the "bypass method." This is not pathological case - over 90 percent 
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of the transistors in a digital VLSI circuit often remain unchanged over a particular 

time step [26]. 

Timing simulators exploit this "time sparsity" by using simpler models for 

circuit elements. These simulators give approximate results using less CPU time, 

but at risk of neglecting important effects and giving erroneous or nonconvergent 

results. The first timing simulator, MOTIS [9], was developed at Bell Labs in the 

early 1970s. In MOTIS, feedback within devices (such as the Miller capacitance) 

is omitted from the models, which means that only a single iteration is required 

to reach a solution. The result is accurate if and only if the assumption is valid; 

if not, a second, more accurate level of simulation at that time step is required. 

One way to accomplish this is to allow the iteration to proceed beyond one step 

to absolute convergence if an error is found. The program must thus be able to 

estimate its own error [34]. Further model simplification adds yet more speed and 

intensifies accuracy and convergence problems. An example of a simulator which 

has succeeded with simpler models and found ways around the convergence problem 

is the MOS LSI simulator RSIM [31]. RSIM models transistors as resistors, whose 

values depend upon the logic state of the devices. The value of the capacitance in 

parallel with each of these resistors is extracted from the layout information (gate 

and interconnect parasitics) and an RC timing analysis is performed. This process 

chooses models accurate enough to avoid the pitfalls described above, but simple 

enough to speed computation. CRYSTAL [25] is a simplified timing simulator which 

identifies critical paths using static RC time constant analysis. The user may then 

choose to analyze the critical paths in a more accurate fashion. 

In functional level or logic simulators, the model is simplified one step further. 

These programs, as their names suggest, simply verify the function of the circuit 

under test. Variables typically take on logic values: 0, 1, undetermined (X), and high 

impedance (Z). No timing information is computed. Since so much less information 

is involved, the program runs even faster than a timing simulator. For example, a 

timing simulation of a particular circuit took 2 hours of CPU time, while a functional 

level simulation took 10 minutes. [2]. In ESIM [31], the sister program to RSIM, 

transistors are abstracted yet one level higher than in RSIM and are treated simply 

as switches. Other functional level simulators are TEGAS [30], LAMP [8] and, indeed, 

CONSIM. 

The bypass method capitalizes on time sparsity by varying accuracy with time; 
hybrid or mixed-mode simulators capitalize on the different levels of complexity 
within a circuit by varying the accuracy over space: each section of the circuit is 
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simulated at an appropriate level of detail. The linear region performance of a video 

amplifier, for example, is of much higher interest than the details of how a TTL 
output slews through the noise margins of the following input stage. A timing or 

even functional level simulation would be appropriate for the latter, while a full 

SPICE or ASTAP run is indicated for the former. One can envision a really mixed­

mode simulator which simulates at all levels from functional to actual solution 
of Maxwell's equations at the device physics level! The critical paths in a logic 

circuit, perhaps identified by a timing simulator like CRYSTAL as described above, 

are candidates for a more detailed inspection. The interface between sections of 
the circuit which are to be simulated at different levels can be delicate, both to 

specify and to compute. The hardware description language used to describe the 

circuit to the program must incorporate different description levels; the program 

must perform complex variable coercions at the boundaries, where logic values 

meet voltages and times. SPLICE, also developed at Berkeley [24], combines logic 

and timing levels. Other combinations (i.e., timing and SPICE-level) also exist. 

The notion of partitioning a circuit into sections and performing different op­

erations as the sections dictate is extremely powerful. In the most general case, 

the simulator and not the designer should determine the partition. PowerSpice [20] 

conquers the SPICE problem of artifact due to bad time step choice by partitioning 

a circuit into various-size sections according to node time constants. During the 

simulation, the appropriate time step is then used for each individual section. In 

macromodeling [19], a "black box" is modeled at its terminals. The behavior of the 

circuitry within the box is characterized at the outset and then only its "boundary 

conditions" are used in subsequent computations. The partition is chosen so the 

black boxes enclose chunks which have complex, computationally-expensive internal 

interactions, which are bypassed by lumping them together, and so the interactions 

at the boundaries are easy to compute. 

Implementation Improvements 

Perhaps the most obvious way to improve a program's implementation is to 

buy a faster computer. However, the cost of a Cray or a Cyber computer reminds 

us of the ever-present cost/performance tradeoff. Tasks like astronomic simulations 

of entire galaxies do indeed mandate supercomputers; circuit simulation, since it 

is much better understood than astrophysics, lends itself readily to task-specific 

shortcuts in implementation, much as was the case with the algorithm improvements 

discussed above. This is based on the assumption that, since circuits are designed 
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by humans and galaxies aren't, humans can devise safer and more efficient shortcuts 

in the former case. Another reason for the use of supercomputers in astrophysical 
simulations is that such simulations are typically quite long, while some of the 

processes at work have short time constants. 

Simulation is inherently repetitive. Large digital circuits are repetitive in space: 

they contain many instances of particular devices or subsystems. Simulating a 

circuit for a number of cycles is also repetitive in time: the same equations are re­

solved for every time step. Implementation modifications which exploit this quirk 

accelerate the simulation process. 

The simulation software can be "tuned" to the underlying computer and to a 

typical circuit application. The sections of the code which are called most often, as 

determined by some sort of time histogram, may be written in assembly language 

or even microcode. The mixed-level Berkeley program, SPUDS [10], with sections in 
both assembly language and in microcode, shows a factor of 3 improvement over its 
high-level language twin. The drawback behind this approach is its unportability: 

it cannot be used on another computer without intricate modifications, and its 

efficiency may not be as high when it is used on different sorts of circuits. 

Critical paths in the simulation can also be accelerated by special purpose 

computers. A vector computer can process large numbers of identical tasks, like 

solutions for RC delays, in parallel. For highly regular circuits, this can speed 

the simulation by a factor of 10 [26]. Manipulating arrays of numbers is the most 

time-consuming part of any circuit simulation; a special purpose array processor 

helps reduce this cost. General purpose improvements like floating point packages 

or accelerators obviously speed simulation runs as well. 

Approaches which exploit the concurrency inherent in circuit behavior - sig­

nals propagating simultaneously along many parallel paths - have developed in 

the wake of recent parallel processor architectures. Parallelism can be mapped onto 

the nodes of a multiprocessor network in two ways: the processing units (PUs) may 

be specialized to perform a given task, or they may be entirely general. 

An appealing, if unrelated, example of a dedicated multiprocessor application 

is the Digital Orrery [4]. This machine computes the orbits of the planets in a solar 

system. The computation involved in this "N-body problem" is greatly accelerated 

by partitioning: one PU is designated to simulate each planet. The specificity -

planet radius, distances to other planets, etc. - is programmed into each PU. 

A circuit-simulation analog of this is the Yorktown Simulation Engine (YSE) 
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[28]. Each PU in the YSE is a "Logic Processor" capable of simulating 4,096 gates. 

The gate functions to be simulated are microprogrammed into these modules. The 

YSE can simulate 2 x 109 gate operations per second - which translates to an 

instruction rate faster than the native rate 1 for some commercial processors. It 

cannot handle levels of abstraction, like lumping 2 gates into a flipflop. 2 

An array of unspecialized PUs may not offer the ultimate throughput possible 

with perfectly synchronized, specialized units, but interunit communication chores 

are more tractable if all units are identical. Tasks may be farmed out statically 

among the processors, as in PRSIM [5], which runs on Concert. Transistor circuits 
are modeled, as in RSIM, as RC networks. The circuits are then partitioned anq each 

chunk is assigned to a particular processor. Tasks may also propagate dynamically, 

as in PowerSpice. Each subcircuit is handled by a single process which executes on 

the first available processor. CONSIM follows this approach. 

The "Logic Simulation Machine" at Bell Labs [2] combines dedicated and 
general-purpose PUs and achieves 106 gate operations per second - an order of 

magnitude slower but somewhat more flexible than the YSE. Gate operations, des­

ignated "simple", are processed by PUs which are microprogrammed to perform a 

small number of fixed tasks. More complex, "functional" operations are handled as 

individual, dynamically assigned processes. For a "representative" mixture of gate 

and functional operations running on 8 general and 6 specialized PUs, the Bell Labs 

authors estimate that the simulation would run 30 to 60 times faster on this special 

setup than it would on a single SISD computer. 

Summary 

Perhaps the most persuasive argument for attacking simulator technology via 

implementation improvement is the Von Neumann limit: the fundamental "band­

width" limit imposed by the processor-memory link through which all communica­

tion must pass. Any approach in which a Von Neumann computer, however fast 

(and expensive), is used will eventually fetch up against this limit. 3 Special purpose 

1 The rate at which instructions are performed by an actual chip operating at 

its maximum specified clock rate 
2 Another quirk of the YSE surfaces when it must be used to simulate a FET: a 

FET is modelled as an artificial collection of gates. Most simulators model gates 

as collections of FETs! 
3 In fact, the expense is a result of the gymnastics required to get supercomputers 
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processing units improve this bandwidth by customizing the operations at both ends 

of the link and streamlining the information which travels between them. Special 

hardware serves the same function in a less flexible way, diverting certain parts of 

the information flow to special alternate "pipes" which are built to handle one kind 

of data very well. However, the huge systems of the future, containing "myriads" 

of processors, may not be able to afford the luxury of non-uniformity, either in the 
form of the data fl.owing between nodes, or in the nodes themselves. Communication 

chores may limit performance, and non-uniformity complicates communication. 

Many of the techniques in this section apply to circuits as opposed to logic. The 
models in the former are much more complex, which tips the computation balance. 

"Simulating the wiring" is not necessarily a quick operation, since large chunks 

of information must be passed around between the subroutines that simulate the 

circuit's internal blocks. If those subroutines are so time-consuming as to completely 
dominate the simulation time, the time spent orchestrating their interactions is 
negligible. Conversely, the simplicity of the blocks makes this orchestration time 

dominate logic simulation. 

2.2 Research Objectives 

The logic level simulator CONSIM explores and extends one of the avenues 

described in the previous section: the use of a multiprocessor composed of non­

specialized processing units to speed up a simulator. To attain performance gains, 

measured as "speedup factors" which reflect how much faster each program runs on 

several processors than on one, it is necessary to tailor the simulator to the capabil­

ities of the system. In particular, the parallelism hidden in a logic circuit must be 

preserved or enhanced through all steps leading up to the simulation: description 

of the circuit to the computer and compilation of this description into a computer­

palatable form. This parallelism can then be exploited in the final simulation run 

to lower the execution time. 

The dominant effects in a multiprocessor-based simulator are very different 

from those in a classical simulator. Identifying and characterizing these effects are 

primary goals for early research in this area, such as the CONSIM project. This 

problem is extremely involved: size, character, and partitioning of the circuit to 

be simulated play roles in the amount of speedup gained by adding processors to 

the system, as do implementation issues like the structure of the simulation code, 

as close as they are to the limit. 
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exploitation of parallelism in that code, process scheduling, etc. These issues are 

sorted out and explained, and trends are projected based on the analysis. Advances 

in VLSI processing technology and the resulting growth in IC gate count make the 

size effects particularly important. 

The efficiency of a particular flavor of parallelism is highly system-specific. 
CONSIM is tailored to Multilisp running on Concert. Its choices, results, and pre­

dictions are not universal. For instance, Multilisp's speed in its present incarnation 

doesn't exactly rival that of ZetaLisp running on a Symbolics 3600. Waiting 1.5 

seconds for a 20-cycle simulation of a 10-gate circuit doesn't call for celebration. 

Although it certainly can be (and has been) a useful design tool, especially when 

used on a faster machine and/or in tandem with other CAD tools like SCHEMA, 

CONSIM is not fast. Rather, it serves as a tool with which important effects in this 

relatively new realm can be investigated. It paves the way for future development. 
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Chapter 3 

The CONSIM Environment 

3.1 Concert 

The growing interest in alternatives to Von Neumann architectures and the 

resulting wealth of orphan parallel software were the motivations behind the Con­

cert project. Concert's designers recognized the need for an actual multiprocessor 

testbed for user programs - a need caused by the slowness inherent in a simula­

tion of a parallel program on a sequential machine, and also by the danger that 

such a simulation might not unearth problems significant in real-time, like memory 

contention. 

Concert is a shared-memory multiprocessor - details of its implementation 

may be found in [3]. Concert has a memory hierarchy with curious properties, 

explored in [17], but the details of Concert's architecture do not concern us here. 

3.2 Multilisp 

Multilisp is an extension of the Lisp dialect Scheme, with special constructs 
that allow a programmer to designate parts of the program that may run in parallel. 

Implementation 

A Multilisp program is compiled into the stack-oriented machine language 

MCODE1 , which is interpreted by a layer of C [18] code running on the Concert 

processors. A special Multilisp processor, under investigation by Peter Nuth of 

LCS, would speed matters greatly by removing this interpretive layer. MCODE 

has special provisions for futures, synchronization, and other special features that 

1 The compiler itself is written in Multilisp to further confuse straightforward 

types trying to understand this incestuous tangle. 
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orchestrate concurrency. Garbage collection follows Baker's incremental model as 

described in [14]. 

Description 

Like other members of the Lisp family, Multilisp is oriented towards symbolic, 

rather than numerical computation, maintains garbage-collected heap storage, and 

looks very strange indeed to those used to Pascal or Fortran. Scheme and Multil­

isp branch off from the Lisp family tree to incorporate lexical scoping, "first-class 

citizenship" for procedure values, and tail recursion. Multilisp branches yet again, 

incorporating special constructs which allow the parallelism of the underlying ar­

chitecture to be exploited. A single processor machine, being sequential, allows no 

parallelism regardless of program structure. As more and more processors become 

available, the program execution can branch out if the data dependencies cooperate. 

One such construct, the future, sends a chunk of computation off in the back­

ground in parallel, and at the same time returns a token which can be used as if 

it were the result of that computation. When the background computation termi­

nates, the token is replaced with the real value. Operations, such as list, which 

do not require explicit values for their arguments can proceed using only the token. 
Other operations, which need the value for an argument midway through their ex­

ecution, can at least proceed up to that midway point. When a point is reached in 

any operation where the token no longer suffices, the operation is suspended until 

the token is filled in. 

Programs have built-in data dependency structures. Since operations depend 

upon the results of other operations, a partial ordering is imposed on their execution 

sequence as in Figure 3.1. Sequentialization imposes additional constraints, shown 

as the dotted lines in Figure 3.2, which comprise a total ordering on the sequence. 

Any partial ordering permits at least one total ordering and perhaps many more. For 

example, several otherwise independent operations may depend on the same result. 

The data-dependency graph would show these operations in parallel, following the 

operation that produced that result, but on a sequential computer they would be 

executed one after the other. The additional" ordering within the parallel group is 

an artifact of the implementation. In this case, there are as many total orderings 

as there are orderings of the parallel group. Futures relax these added constraints, 

so Multilisp programs are bound only by their underlying data-dependencies and 

not by some tighter, artificial criterion imposed by the implementation. 
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The Multilisp statement 

{future a) 
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sends the computation a off in parallel and returns a token for its value. 

A second construct, the pcall, invokes simultaneous evaluation of its arguments. 

The statement 

(pc all fa /3) 

is equivalent to the call to procedure f 

(fa /3) 

except that the pcall causes concurrent evaluation of f, a, and f3. Pcalls are not as 

general as futures because they constrain both fork and join of the operations they 

control. All threads of a pcall must terminate before the next program step can 

begin. This imposes additional precedence constraints, shown in Figure 3.3. 

Data Dependency 

- - - _..., Additional Precedence 

From Pcall Join 

Figure 3.3 

Precedence Graph for Pcalls 

Although the type and mechanism of the extra constraints are very different from 

those imposed by sequentialization, the overall effect is the same: strictness added 

by the implementation. Futures specify the fork and leave the join up to the back­

ground, so the next task is only delayed by the spawning of the future and not by 

the entire computation within the future. 
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Since efficient use of a multiprocessor implies keeping all the task pipelines 

full, a parallel program should spawn as many tasks as possible. This translates 

to a program with futures in as many places as possible. If futures involved no 

overhead, a very simple heuristic would govern their placement: "put one around 

every expression." However, in the real world, futures have some finite overhead 

and must be placed intelligently. It is only worthwhile to enclose a computation in 

a future if the time gained by running that computation in parallel is greater than 

that lost via the overhead. It is also useless to enclose a computation in a future if 

the computation will immediately hang up. These issues are of great significance 

to CONSIM and are discussed in depth in chapters 4 and 5. 

Computer Scientists like to abstract things and thus sanitize them, to put a 

messy thing in a well-defined box and then just interact with the box boundary. A 

future is a good example of such a box, where the insides of the box represent the 

actions required to send a task off to run in parallel. The book-keeping involved 

in orchestrating parallel processes is intricate and involved. Communication of 

arguments and results, keeping memory areas separate, synchronization, and a host 

of other problems contribute to this complexity. These issues are all hidden by 
futures' implementation. However, the required juggling of overhead, efficiency and 

data dependencies makes the future a less-abstract box. It is difficult to use, which 

contradicts the very nature of an abstraction. The ultimate abstraction in this case 

is one in which future placement is mechanized - the programmer doesn't have 

to use them at all and they are inserted by the system. An example of such an 

automated placement algorithm is discussed in section 4.4. 
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Chapter 4 

Structure and Implementation 

4.1 The Test Case 

CONSIM's primary intent is to explore how concurrency in a simulation algo­

rithm can best be exploited to accelerate the program on a particular multiprocessor 

system. A second goal is more practical: to be a useful design tool, a simulator 

ought to be flexible - to apply to a wide variety of problems. Both of these func­

tions deeply influenced the design decision about the class of circuits to which it 

applies. 

Experiments which investigate the fundamental effects of parallelism may well 

be clouded by the intricate problems of modern circuit simulation. Delicate models, 

variable levels of complexity, and all the other trappings of an advanced algorithm 1 

may skew the resource usage and obscure the sources and effects of the parallelism. 

To truly isolate these effects, the problem must be pared down to the bare bones. 

Only when parallelism is understood in simple examples can it be extended to more 

complex cases, which are the real applications. 

On the other hand, a simulator which only works on a limited number of simple 

circuits is fundamentally useless. Conclusions drawn from its behavior certainly 

cannot be held to be representative of the general class of simulators - those we 

hope to eventually speed up using the knowledge gained by this research. 

CONSIM's range of applications - the circuits to which it applies - is thus a 

compromise between the complexity and generality of a flexible model and the ease 

of experimentation of a simple one. It is restricted to logic circuits which fit into 

the Finite State Machine (FSM) structure for sequential circuits. This model is by 

no means universal, but it is very widely applicable. 

Any sequential {clocked) logic circuit can be modelled using the FSM model that 

1 Like those discussed in chapter 2. 
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appears in Figure 4.1. The model consists of clocked registers 2 and combinational 

logic, which may not contain any signal path loops. The "state" of the circuit 

appears on the output lines of the registers; the "next state" is computed from the 

present state and the external inputs by the combinational logic and is presented 
on the input lines of the registers to be loaded on the next clock tick. A sequential 

circuit with N state variables has 2N possible states. All of the blocks in this 

model are fully unilateral - the signal path flows only from input to output and 

not in reverse. This absence of feedback means that iteration is not required to 

reach the solution. FSMs fall in two categories according to the role played by their 

logic inputs. The outputs of Moore machines only depend upon the state, while 

in a Mealy machine the outputs are functions of the current inputs as well. The 

distinction is one of form only - a Moore machine can be constructed to fulfill any 

function that a Mealy machine performs, but it generally requires more states. Since 

this implies more labor for the designer, more hardware in the design, more power 

dissipated while the machine is running, and more effort involved in specifying and 
simulating the circuit with a CAD program, we choose to specify the Mealy model. 

Any logic circuit which can be cast into the form of Figure 4.1 can be simulated 

under CONSIM. 

The FSM is not only a powerful model, but also an ideal test case for investiga-

2 The degenerate case where the registers are missing is called the fundamental 

mode. Issues involving such circuits will not be addressed in this thesis. 

19 



tion of simulator concurrency. There is a great deal of parallel activity in all blocks 

just after the clock transition. In hardware, the clock period is chosen to synchro­

nize this: by the time the next clock edge arrives, all transient activity is settled 

out and the outputs are ready. This behavior pattern has promising implications 

for concurrent simulation. CONSIM's task is to expose and exploit this parallelism 
in its most useful form. 

4.2 General Structure of CONSIM: 

CONSIM consists of two main sections: the compiler and the simulator. The 

compiler translates the user's description of a circuit into an internal form used by 
the simulator. The simulator takes as inputs this "compiled" circuit, the initial 

state, and a list of inputs, organized by clock cycle. It returns a list of outputs 

(and/or machine state), also organized by clock cycle. 

Circuit primitives within CONSIM are general clocked registers and functionally­

described blocks of logic. Signal variables within and between the blocks take on 

logic level values: 0, 1, X (undetermined) and Z (high impedance.) No timing infor­

mation is computed. The circuit is specified by the user in a hardware description 

language (HDL). The HDL is described in the next section. The compiler trans­

forms this description into a Multilisp procedure which performs the function of 

the "combinational logic" block in the FSM model (Figure 4.1) during one clock cy­

cle: given present state and inputs, it returns next state and outputs. The simulator 
maintains cycle information, synchronizes inputs, and calls this procedure once for 

each simulated cycle, feeding back each cycle's "next state" output to the follow­

ing cycle's "current state" input. This structure exposes two levels of parallelism: 

signal-level parallelism (analogous to the circuit's inherent concurrency) within the 
single-cycle subroutine and a kind of "macroparallelism", unlike anything in the 

hardware behavior of the circuit, which results when entire cycles are computed in 

parallel. Futures solve the data dependency problem - that inputs to each cycle 

depend upon the last cycle and thus are not immediately available if these cycles 

are called concurrently. 

4.3 The Hardware Description Language and the Compiler 

A language used by humans to describe circuits to computers must be flexible 
enough to encompass all possible circuits that its users may wish to describe. It 

must also be precise, or the computer's understanding of the circuit may differ 
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vastly from the designer's. Since levels of abstraction are common and powerful 

design aids, the language must handle blocks of all sizes and levels of functionality 

with equal ease. If the block definition syntax becomes clumsy at either end of the 

complexity scale, the user interface suffers. If the implementation of the language 

requires an intermediate compilation step, like translating all logic into NAND gates, 

the computer performance (run time) suffers. 

CONSIM's hardware description language (HDL) has a Lisp-like structure. The 

HDL compiler is written in Multilisp and thus operates most easily on Lisp data 

objects. Parsing issues are also much less of a problem in list structures. 

A description of a circuit consists of three sections: the specification of the 
circuit name, the functional description, and the interconnect information. Infor­

mation within these sections appears in the form of Lisp expressions. The first part 

identifies the circuit. The second part specifies the function, as defined from the 

terminals, of each block in the circuit. The third part specifies how those terminals 

are connected. 

The HDL compiler translates this information into a Multilisp procedure which 
simulates the input/output behavior of the combinational logic block in the FSM 

model. This procedure, called the single-cycle procedure, is called once by the 

simulator for each cycle to be simulated. The mechanics of this translation are 

discussed later on in this section and the algorithms underlying the translation are 
discussed in the next section. 3 

A functional description of a block defines the names and number of its input 

and output terminals, the types of variables that exist at those terminals, the action 
the block performs upon those variables, and (of course) the block's name. A 

library of standard blocks exists within CONSIM; if a non-library block is used, it 

must be explicitly defined in a separate statement in the second section of the HDL 

description. 

The syntax of a block definition statement is 

(defmod name fen-name (inputs) (input formats) (output formats) (body)) 

Defmod is the HDL module (block) definition command. Name is the block's name. 

Fen-name is the name under which the Multilisp function is to be defined. The 

format fields, which are used during the compilation for error checking, specify the 

3 In the best incestuous traditions of computer science, the compiler itself con­

tains futures to speed it on its way. 
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number and types of the inputs and outputs. Formats may be Boolean (B), integer 

(I), or character (C), depending upon the block. A gate would operate on Boolean 
signals, a 16x 16 multiplier would multiply integers, and a dot-matrix display driver 

would use characters. Obviously, ANDing a 16-bit integer signal and an ASCII 

character is an error. These types of errors are detected by the compiler when 

it compares the format fields of all the blocks according to their interconnections. 

Body is the body of the Multilisp function the block is to perform, specified in 

Polish-ordered Boolean equations. When the module definition is executed, body 
is translated into Multilisp and encapsulated in the function fen-name. A data 

structure called a block descriptor, used by the HDL compiler, which contains name, 

type and number information is also created by this call. An analogous statement, 

defmodlib, is used in a separate file to define library blocks. In cases where the 

block or function defined by the user carries the same name as a library version, the 
user's definition takes precedence. The structure of a Lisp environment can cause 

problems if more than one circuit is being simulated in one workspace and both 

contain different versions of the function "f" - the last-loaded version overwrites 

the other. 

For example, a block named f which has two Boolean inputs x and y and one 

Boolean output z = (x AND (NOT y)) would be defined by the following statement: 

(defmod f b (x y) (B B) (B) (and x (not y))) 

This command creates the Multilisp function b: 

(defun b (x y) (and x (not y))) 

which returns z as specified and will be called every time the outputs of block f are 

to be computed. 

Each line in the interconnect section lists the names of the variables connected 

to the terminals of a block. The order of the names within this list must follow 

the order of the terminals as defined in the defmod statement. There is one line 

for each block in the circuit and the lines may be entered in any order. Every 

inter-block variable must have a unique name - the HDL compiler error check 

procedure detects duplicates. It also detects block outputs that are not connected 

to any input, as well as block outputs that are connected together (unless they are 

tristate outputs). The type fields in the block descriptors for all the block terminals 
connected to each variable are compared to detect the type errors discussed above 

(i.e., ANDing an integer and a character, NANDing four signals with a three-input 
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gate or three signals with a four-input gate.) Note that the interblock data take 

many forms, and thus internal and external vectors of variables are heterogeneous. 

The external variables, which connect the circuit to the outside world, have special 

names 4 but they are otherwise treated just like the internal signals. 

The general format of an interconnect line is the expression: 

((block-id) block-type (inputs) (outputs)) 

Block-id is an optional identifier. It may be used to differentiate between different 

instances of a certain block type. For example, three XOR gates within a single 
circuit may be labelled "xorl", "xor2", and "xor3" for mnemonic purposes. Block­

type is the name of the block, as given in the first field of the block definition in 

the first section of the HDL (or of the library definition.) If the block is not in 

the library and has not been explicitly defined in the first section, the compiler 

will complain. The input and output fields contain ordered lists of the inputs and 
outputs by name. 

An example HDL interconnect line defining connections to a 2 input AND gate 
(called "gate!" because the designer wanted to differentiate it from some other 
2-input AND gate which she named "gate2") with inputs m and n and output w is: 

((gate1) and2 (m n) (w)) 

If no special mnemonic name is required, the HDL line would be: 

(and2 (m n) (w)) 

These code lines assume that the Multilisp function "and2" is either in the library 

or defined in the defmod section of this HDL file. As explained above, if the types 

of m, n, or w are not those given in the defmod call which defined "and2", or if 

"and2" is undefined, the compiler will return an error. 

An Example: The complete HDL description of a circuit. 

The schematic and HDL description of the circuit examplel is shown in Figure 4.2. 

For this circuit, current state (mstate) and next state (nstate) are two-bit variables. 

There is one input z, one output x3, several standard gates, and a single non-library 

4 mstate, ckt-in, nstate, and ckt-out 
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block called A. Block A has two Boolean inputs a1 and a2 and two Boolean outputs 
(and (not a1) (not a2)) and (and (not a1) a2). 

Note the interplay of internal and external variables: mstate, the 2 bit "current 

state" vector, fans out to the circuit variables x and y. Ckt-in, the single bit external 

input, connects to the circuit variable z. Nstate, the 2 bit "next state" vector, is 

composed of the circuit variables x1 and x2. The external single-bit output, ckt­

out, is the internal variable x3. The external variables must be decomposed into 

internal variables before they are used and must be explicitly reassembled before 
being returned by the procedure. This is the general rule for the treatment of 

composite signals, and external signals are defined to be composite. Internal and 

external signal connections follow the same syntax, which is a little repetitive but 

allows generality. The interconnect lines are shown in data-dependent order for 

clarity, but their actual order in the HDL file is immaterial, since the compiler 

sorts them into data-dependent order before generating the single-cycle procedure. 
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Finally, note that the defmod statement defining the A block imposes a specific order 

on its inputs and outputs. The HDL statements (A (x y) (z w)) and (A (y x) 

(z w)) have different meanings. 5 

4.4 Code Structure and Future Placement 

The various algorithms which the HDL compiler uses to translate an HDL cir­

cuit description into a Multilisp single-cycle procedure create different forms and 

amounts of parallelism in the code. Heuristics which govern how futures are used 
to exploit this parallelism also produce varying results. The trick is to find the best 

combination. 

The simplest way to generate the single-cycle procedure from the HDL code is 

a one-to-one mapping. Each HDL interconnect line maps to a single call of the Mul­

tilisp function, created by the defmod statement, which simulates the input/output 
behavior of a block. Each intermediate signal in the circuit maps to a temporary lo­

cal variable in the procedure. Code generated using this algorithm is highly vertical 

- a long string of simple statements. 

(defun example1 (mstata ckt-in cyc-num) 
(lat* ((g1 matata) 

(x (field 1 g1)) 
(y (field 2 g1)) 
(g:Z ckt-in) 
(z (field 1 g:Z)) 
(g3 (f-a x y)) 

(w (field 1 g3)) 
(x:Z (field 2 g3)) 
(z1 (f-and:Z x z)) 
(x1 (f-or:Z w z1)) 
(x3 (f-xor:Z x:Z z1)) 
(nstate (list x1 x:Z)) 
(ckt-out (list x3))) 

(list cyc-num nstate ckt-out))) 

Figure 4.3 

Single-Cycle Procedure 

For Circuit Of Figure 4.2 

The single-cycle procedure generated from the HDL description of Figure 4.2 

via one-to-one mapping is shown in Figure 4.3. The top line of the procedure shows 

5 Just as swapping the data and address inputs to a RAM chip gives different results. 
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the inputs. Cyc-num is the cycle number which is used for book-keeping purposes. 

Let* is the Multilisp way of defining local variables. Let*, unlike the standard 

Lisp Jet, is sequential: variables computed in the body of the let* may be used 

later on in that statement. (let* ((x <exprl>) (y <expr2>)) (<expr3>)) binds 

the value of <exprl> to the local variable x, then binds the value of <expr2> to 

y in the resulting environment, and finally evaluates <expr3> in the environment 
that remains after the full succession of bindings. 6 X may be used in <expr2> to 

compute y. The last line, (list cyc-num nstate ckt-out), is the returned value. 

Any intermediate result which is composite (i.e., a list containing several variables) 
is first assigned to a temporary variable (g1, g2, etc.) and then decomposed using 

the function {field n alist), which picks out the nth field of alist. All external 

variables are composite by definition. 

The definition of a local variable uses computer resources in two stages. The 
expression whose result is to be assigned to the variable is evaluated, then the 

allocation of storage space and binding take place. Both steps require CPU time 

and memory. If an intermediate variable is used in several places in a process, it 

makes sense to explicitly define that variable - to compute its value and store it 

in a slot which can later be called up by name - when it is first used, rather than 

to recompute the value every time the variable is used. However, explicit definition 

of a variable that is only used once is superfluous. The time and memory spent in 

the assignment step are wasted, since the slot will never be accessed again. The 

CONSIM code shown in Figure 4.3 exhibits this kind of wastefulness: the variables 

z , w. x1 , and x3 appear in the code only once after their definitions. 

This waste can be eliminated by "condensing" the code. If a variable occurs 

only once later on in the code, that instance is replaced with the expression used to 

synthesize the variable. Condensed code is horizontal - a shorter sequence of more 

complex statements. Since the relative "costs" of computing the expression versus 

making the assignment differ from computer to computer, the algorithm's efficiency 
depends upon the implementation. On a computer where storage allocation was 

extremely slow and computation extremely fast, it might be more efficient to allow 

two, three, or even more later instances before an explicit definition is made. 

The condensed version of the code for the circuit in Figure 4.2 is shown in 

6 The number of variables in a Jet is limited to 512 on the VAX and 256 on 

Concert. This effectively limits the size of the circuits tested in this particular 

implementation, but is not a general problem. 
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Figure 4.4. Note that the intermediate definitions of z, w, x1, and x3 have dis­

appeared; those of g1 and g2 remain because they correspond to the composite 

external variables mstate and ckt-in. Although this example is too small to effec­

tively demonstrate the full shift in aspect ratio, it is clear that the code is shorter 

and wider. 

(defun example1 (m1tata ckt-in cyc-nUlll) 
(lat• ((g1 m1tata) 

(x (field 1 g1)) 
(y (field 2 g1)) 
(g2 ckt-in) 
(g3 (f-a x y)) 

(x2 (field 2 g3)) 
(z1 (f-and2 x (field 1 g2))) 
(n1tata (li1t (f-or2 (field 1 g3) z1) x2)) 
(ckt-out (li1t (f-xor2 x2 z1)))) 

(lilt cyc-nUlll n1tate ckt-out))) 

Figure 4.4 

Condensed Single-Cycle Procedure 

For Circuit Of Figure 4.2 

Futures must be placed in this code for the parallelism to be exploited. Recall 

that (future <expr>) sends the computation <expr> off in parallel and returns 
a token that can be used as if it were the result of that computation. A naive 

heuristic would suggest that every expression be enclosed within a future. This 

"optimistic" approach trusts the implementation to find and exploit any parallelism 

and to simply sidestep extra operations if a spurious future is encountered. Applying 

this heuristic to the condensed single-cycle code for circuit examplel yields the 

version in Figure 4.5. 

This approach has one very large problem: it falsely assumes that futures incur 

no overhead. Extra operations cannot simply be sidestepped when a useless future 
is executed. For each expression, the algorithm must weigh the time gained by 

parallel evaluation against the overhead associated with the future operation. Only 

if the former outweighs the latter should a future be used around that expression. 

This comparison varies from computer to computer as well, so a particular grouping 

of futures which work well on Concert may not (and does not) work well on the 

Symbolics 3600 Lisp Machine's sequential version of Multilisp. On Concert, a future 

takes 4 times as long as a procedure call; on a 3600, it is computationally much more 

expensive and takes about 40 times as long as a procedure call. Thus, simulations 

on a 3600 of Concert's behavior reflect this ratio. The code is tailored to Concert 
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(detun exlllllple1 (matate ckt-in cyc-nWD) 
(let• ((gl matate) 

(x (tuture (tield 1 gl))) 
(y (tuture (tield 2 gl))) 
(g2 ckt-in) 
(g3 (tuture (t-a x y))) 
(x2 (tuture (tield 2 g3))) 
(zl (tuture (t-and2 x (tuture (tield 1 g2))))) 
(natate (tuture (list (tuture (t-or2 (tuture (tield 1 g3)) zl)) x2))) 
(ckt-out (tuture (list (tuture (t-xor2 x2 zl)))))) 

(list cyc-nWD natate ckt-out))) 

Figure 4.5 

Condensed Single-Cycle Procedure With Naive Futures 

For Circuit Of Figure 4.2 

and its efficiency is predicated upon Concert's balances. 

The efficiency of a placement algorithm depends upon how well it predicts the 

effects upon run time of dispatching a particular task in parallel. Some predictions 
are obvious: (future 3) is useless, since no computation is required to evaluate the 

atom 3 and thus no task exists to run in parallel. The statement (+ (future (* 
3 4)) 7) is also useless, since the "+" operator requires the values of all operands 

immediately, and the operation (* 3 4) is too small to warrant the overhead of 
being sent off in parallel. A statement like (+ (future (f 100}) (future (g 100}}), 
where the functions f and g are complex, would be useful, since the two arguments 

to the + can be efficiently evaluated in parallel. 7 Other predictions are much 
less obvious - see [14] or [11] for further discussion. The overall trend can be 

informally summarized: the more complex <expr> is, the more efficient (future 

<expr>) becomes. A future must have enough to chew on before it becomes useful. 

This informal definition can be formalized and extended to the point where it 
can be used as a mathematical rather than a subjective criterion for the efficiency 

of a particular future. The automatic future insertion program Savant, written by 

Sharon Gray [11], automates this criterion and achieves impressive results. Two 

properties, quickness and strictness, are defined in terms explicit enough to be used 

by Savant's compiler. Quickness is roughly analogous to the informal "enough to 

chew on" definition: "An expression is considered quick if it can be evaluated in less 

time than the time it would take to return a future for that expression." [11] Any 

combination of applications of Multilisp's primitive functions is defined as quick for 

7 Note that none of these "useless" futures cause a wrong answer - they just 

delay the correct answer's arrival. 
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Savant's purposes. Quickness is also affected by the context of evaluation. The 

function (car x) is quick if x has been touched already (i.e., if the value of x has 

been used) but not if x may be bound to an undetermined future. Savant main­

tains context information in order to make these decisions. Strictness formalizes the 

precedences between a function and its arguments. A function that is strict with 

respect to a particular argument needs its actual value and not a token. If a func­
tion is not immediately strict with respect to a particular argument, execution can 

proceed, with a token in place of that argument, up to the point where the actual 

value is required. The further along that point lies in the execution of the function, 

the more efficient a future around that argument becomes. Applying Savant to the 

condensed code for circuit examplel yields the code in Figure 4.6. 

(defun example1 (m1tate ckt-in cyc-nua) 
(let• ((g1 m1tate) 

(x (future (field 1 g1))) 
(y (future (field 2 g1))) 
(g2 ckt-in) 
(g3 (future (f-a x y))) 
(x2 (future (field 2 g3))) 
(z1 (future (f-and2 x (future (field 1 g2))))) 
(n1tat• (lilt (future (f-or2 (future (field 1 g3)) z1)) x2)) 
(ckt-out (li1t (future (f-xor2 x2 z1))))) 

(li1t cyc-nWI n1tate ckt-out))) 

Figure 4.6 

Condensed Single-Cycle Procedure With Savant's Futures 

For Circuit Of Figure 4.2 

Savant is very conservative in this example and thus uses almost as many 

futures as does the optimistic heuristic. It makes no assumptions about the de­

terminedness and thus the quickness of the procedures's inputs, so it puts futures 
around the Held statements which decompose those inputs (i.e., (future (field 1 

g1)) ). The function Held is not a Multilisp primitive, so its instances are enclosed 

in futures. If the primitive functions car, cadr and caddr had been used to take 

the lists apart, and mstate was known not to be a future, the operations would be 
quick and no futures would have been used. The functions f-or2, f-xor2, f-a, 

and f-and2 are, like Held, assumed not to be. quick. List, however, is known to be 

quick and not strict, so its invocation receives no future. 

The vertical Multilisp code consists of a long succession of small and probably 

quick expressions. The expressions in the horizontal code are more substantial and 

thus less quick. The naive future placement heuristic ignores the very real problem 
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of overhead, while Savant takes careful account of it. From this analysis, the best 

combination of code generation and future placement algorithms would appear to 

be Savant applied to horizontal code. This hypothesis is verified by the results in 

chapter 5, although not as resoundingly as one might expect. 8 The verification and 

the reasons for this apparent inconsistency are discussed in great detail in section 
5.3. 

4.5 Using the Simulator 

Once the compiler has produced the single-cycle procedure and Savant or 

some other entity has judiciously placed futures in that procedure, the simula­
tor is brought into action. This is by far the simplest of CONSIM's tasks, although 

because of its repetitive nature it may be the most time-consuming. 

The simulator performs the calls to the single-cycle procedure and communi­
cates with the outside world. Simulator inputs are a compiled and "futured" circuit 

(the single-cycle procedure), the initial machine state, a list of circuit inputs which 

contains one vector of variables (ckt-in and mstate) for each cycle to be simulated, 

and commands from the user. The initial machine state and the elements of the 
circuit input list must match the HDL templates in number, order and type, or the 

simulator returns an error message. A command from the user tells the simulator 

how many cycles to run. H the input list doesn't contain enough elements, the 

simulator goes as far as possible, then stops and reports the error. 

It may become apparent from the first round of output that the design is fl.awed. 

The user would then make a change in the HDL file, recompile the circuit, run the 

single-cycle procedure through Savant, and try the run again. To help speed up 
this painful process, the compiler itself has been accelerated with futures. For a 

small circuit, where the Savant run takes longer than the performance gained by 

the few futures it can place in the code, it would be efficient to skip that step during 

the design cycle. Once the circuit works, the simulation runs presumably become 

longer and futures save time. 

A useful and interesting extension of parallel computing is to enclose entire 

cycles in futures. This is accomplished by enclosing the call to the single-cycle 

procedure in a future. This might not seem advisable at first glance, because of 
the data dependencies: each cycle depends upon the "next state" computed in the 

8 Code condensation turns out to be not as important as it initially appears. 
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last cycle. However, at least some computation can proceed without every result 

from the previous cycle; requiring each cycle to terminate completely is akin to the 

extra requirements imposed by a pcaJJ, as discussed in section 3.2. The parallelism 

within the cycle has a hardware analog but the "macroparallelism" of calling cycles 

in parallel is purely a software phenomenon. Its effects are nonetheless extremely 

powerful - in fact, it actually multiplies the effects of the cycle-internal parallelism. 

The mechanics and results of this technique are discussed in section 5.3. 

Since print does not require the explicit values of its arguments, a future left 

unevaluated at the end of a simulation run, such as the final cycle's outputs, is 
printed out as is - in the form of Multilisp's internal undetermined future repre­

sentation. Not only is this information incomplete, but the time required to return 

it also does not reflect the full computation. Background processes, assigned to 

fill in the values of those futures, continue to run after the computation "returns". 
These orphan processes can persist into the next process invoked, possibly dam­

aging its results 9 and certainly altering the statistics of its run time. To return 

actual values and account fully for computation time, all elements must be touched 

during the final return process. The touching operation adds a certain amount of 
unavoidable overhead; the significance of this amount is explored in section 5.3. 

Several additions are required to make CONSIM user-friendly enough to serve 

as more than just a test bed for exploring parallelism in simulation code. It now 
reports cycle number, machine state, and outputs for every cycle simulated. Users 

who don't want to wade through all this information might wish to instruct the 

simulator to omit parts of this report. Someone who is uncertain that his circuit 

functions properly would find breakpoints and "variable-watch" functions useful. 

The simulator runs until a "watched" variable changes or assumes some defined 

value, then stops and notifies the user. Implementing this may be tricky: the 

condensation algorithm obliterates some of the intermediate variables. Loops in 

the logic are, by the FSM model definition, not permitted. If present, they throw 

the compiler into a tailspin. A more graceful response would be nice. A single-step 

mode would be helpful too, although it completely bypasses the performance gains 

made by calling cycles in parallel. Ail:other unrelated but effective modification is 

the interface between CONSIM and the expert development system SCHEMA [35]. 

SCHEMA provides extensive graphics support for schematic circuit entry and its 

internal circuit representation is not vastly different from the CONSIM HDL. A simple 

9 if side effects, which can occur in Multilisp, but are not used in CONSIM, were 

to collide. 
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Chapter 5 

Results and Discussion 

5.1 Procedures 

Four test circuits were simulated with CONSIM. Examples of different sizes 
were chosen to represent a variety of common circuit types. Two small examples 

were HDL-coded and compiled by hand before the compiler was automated. Ex­

periments with these examples and the main simulation loop (which was the first 

CONSIM section implemented) guided the development of the code structure and 

future placement algorithms. After the compiler was automated, HDL descriptions 

for two larger circuits were compiled and the resulting single-cycle procedures were 

tested with combinations of code structure and future placement algorithms. Ex­

ample 1 is purely illustrative and has no useful function. It contains 10 gates. 

Example 2 is a controller for a 1960 vintage Coke machine (which sells Coke for 25 

cents) and it contains 25 gates. The combinational logic block of the FSM model in 

Example 3 contains an ALU with 58 gates, equivalent to the TTL 181 chip. This 

machine can, for example, be used as a 4-bit counter if the next state is connected 

to the current state plus one. Example 4 is the same as example 3, but the ALU 

block is 16 bits wide and contains four times as many gates. Schematics and state 

transition diagrams for these examples appear in appendix 1. 

The next-state and output logic for each example was derived using standard 

digital design techniques (Karnaugh maps, etc.) A description of this logic, given 

in the HDL format specified in section 4.3, was entered into a file. This description 

was then compiled - by hand at first, then by the automated HDL compiler - into 

a Multilisp single-cycle procedure following one of the code structure algorithms 

described in section 4.4. Futures were then placed in this code using one of the 

placement algorithms discussed in the same section, and the finished procedure was 

stored in another file. A purely sequential version, without any futures, was also 

used for comparison. The HDL description and Multilisp code resulting from appli­

cation of various combinations of code structure and future placement algorithms 
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to example 1 appear in appendix 2. 

The various versions of the Multilisp code were tested on two computer sys­

tems: a VAX 11/780 and Concert. Until it was certain that the compiler produced 

syntactically and functionally correct code, and until the HDL description of the 
circuit was known to match the desired function, the VAX's sequentialization of the 
code made de bugging easier. 1 Multilisp is implemented by a program called XML, 

itself written in Multilisp. 

The histogram facility in XML, used to simulate Concert on the VAX, com­

putes how much actual parallelism would be used by a program given 50 Concert 
processors. These data, together with the amount of actual VAX CPU time that 

was used, predict how fast the program will run on the Concert hardware itself. 

XML predictions were gathered on the VAX for the four examples, and then the 
Multilisp function time was used to gather statistics on Concert itself for simulation 

runs of various lengths. 

Single-cycle procedures were tested both in cycle-serial and in cycle-parallel 

simulation runs. If a future has not been "filled in" by the time the program 

terminates (e.g., if the program returns a result, like a list, that can contain tokens), 

the Multilisp token itself will be returned; program termination does not force a 

global join. In CONSIM, this occurs most frequently when cycles are called in parallel 

because more futures are present. Each element in the returned list is touched using 

a tree-walk algorithm to force all futures to be filled in. Examples with no futures 

were tested with and without the tree walk to determine the scope of this overhead. 

5.2 The Issues 

This research investigates a number of issues, some of which interact strongly 

with several of the others. A simulator is a software entity which mimics a hardware 

entity; which of these realms' laws dominates the program's behavior? Is program 

speed affected more strongly by hardware topology or by programming algorithms 
and techniques? 2 Which programming techniques are important? Should futures 

or pcalls be used and, if so, what heuristics should govern their placement? What 

code structure contains the most exploitable parallelism? What are the effects upon 

1 Debugging code which runs in no apparent deterministic order can be difficult. 
2 This issue is of particular interest to the author - a hardware designer mis-

placed into the software arena! 
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efficiency of circuit size and simulation run length , and how does this bode for real­

world applications and trends? Finally, how reliable, duplicatable, applicable, and 

explainable is all this anyway? 

In the very simplest conceptual model of concurrent computation, simulator 

performance improves from that in the sequential case by a factor proportional to 
the parallelism in the circuit under test - a hardware effect. This model assumes 

that no software overhead is required to control the concurrency, and that software 

complexity and hardware complexity are somehow linked: a complex logic block will 
require lots of CPU time to simulate. The former is clearly an idealization. Given 

levels of abstraction, the latter assumption may also be flawed. The sim~lified 

model also assumes that passing values between blocks - simulating the wiring, as 

it were - takes no time. When the computations within the blocks are complex, 

this approximation is valid. However, when the insides of the blocks are simple, 
"simulating the wiring" dominates - a software effect. A mixture of hardware and 

software effects governs software efficiency. 

The following brief summary of chapters 3 and 4 is presented for those impetu­
ous readers who skipped directly to "Results." Multilisp provides two tools, pcall 

and future, which allow a programmer to exploit parallelism. One or both may be 

useful in the CONSIM application. These two constructs differ in how they use the 

parallelism of the underlying architecture and also in how they are used in a pro­

gram. Ideally, a compiler should insert them and the programmer shouldn't have 

to learn the intricacies of their use. The efficiency of an algorithm which inserts 

futures in a program depends upon its intelligence and the structure of the code to 

which it is applied. Code generated by the HDL compiler takes two forms: vertical 

and horizontal, so-called because of the aspect ratio of its printed form. The former 

is produced by a one-to-one mapping between HDL and code. The latter is con­

densed to improve software resource usage and efficiency. Each exposes a different 

flavor and amount of parallelism. This affects the success of the future placement 

algorithm used to transform that code. 

A physical analogy provides a framework from which to reason about the ac­

tions of a multiprocessor. Consider a tank of liquid with a number of outlet pipes, 
where the liquid represents the pool of tasks to be executed and each pipe corre­

sponds to a processor. A more powerful (faster) processor maps to a pipe with a 

wider mouth. The performance of an actual multiprocessor also depends on the ex­

ecution time after a task has entered a pipeline. This is a function of the size of the 

task, which is in turn affected by the code generation algorithm. Given a particular 
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distribution of tasks, the procedure which empties the reservoir the fastest gives 

the shortest execution time. If a system contained pipes of different diameters, the 

routing of tasks to pipes would be critical - the larger tasks would be directed to 

the larger pipes to make the execution times of all tasks comparable. Concert con­

sists of identical processors, so its pipes have identical diameters and task routing 

is immaterial. The Multilisp implementation fits this pattern: the task at the head 

of the queue is grabbed by the first free processor. The order in which tasks are 

placed on the queue is nondeterministic because it depends upon the order in which 

futures were spawned and in which they were completed. Each future may hang 

up any number of times as it encounters tokens among its own arguments. A final 
addition to the model concerns futures' overhead, which may be modeled as liquid 

added in proportion to the amount which enters each processor. 

One problem with this model is its lack of a graceful analogy for a quantized 
task. Another model, which does not suffer from this problem, is a typing pool of n 

secretaries. Each secretary corresponds to a processor and each job - letter, paper, 

envelope - corresponds to a parallel task. The reservoir in the last model maps 

to the "in box", where jobs to be typed are stacked. Hanging up has a plausible 
analogy in this model. If a table of data has not been filled in, the secretary can 

continue to type until that table is reached, but then must put that paper aside 

until the table is filled in by a "background process". In this case, this process is 

the author of the paper, who can be working, in parallel, on the data for that table, 

which represents the future. Overhead is represented by travel time between in box 

and typist. 

A simple throughput argument [14] shows that parallel computation is only re­
ally efficient when the task-pipelines are kept full. The future placement algorithms 

determine the optimum task "size" that fills the pipe width-wise; the circuit size 

and simulation run length create the tasks which fill the reservoir. Increasing circuit 

size within the same hardware family or lengthening a simulation run have similar 

effects: the number of tasks increases without changing their statistical distribution 

(i.e., average run time.) This assumption is based on the placement algorithm's 

habit of dicing any circuit into chunks of roughly the same size. When the circuit 

and run length are too small to fill all the pipes, the speedup, defined as 

execution time on one processor 

execution time on n processors 

continues to rise, since the numerator rises with the number of tasks and the de-
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nominator doesn't, but the system is underutilized. Processors are idle. The level in 

the reservoir is so low that all liquid immediately finds a vacant pipeline and exits. 
Once there are enough tasks to fill all the pipes ( n tasks for an n-processor system), 

the entire system comes into action and the parallelism is maximum. Adding more 

tasks above this level causes a backup; parallelism is still maximum, but tasks have 

to wait in the reservoir for pipelines and the speedup is reduced. The mathematics 

of speedup and runtime evolve from these considerations. 

5.3 Results 

The execution time for the vertical single-cycle procedure with no futures, 

invoked in cycle-serial mode, is the baseline measurement for these experiments. 
This version is generated by the simplest of the code generation algorithms. Since 

it contains no futures, it does not utilize Concert's parallelism. Speedup factors for 

versions with improved code structure and/or future placement will be measured 
against these results. All data are for simulation runs of 20 cycles. 3 

Example 
1 
2 

3 

4 

Total Ops % Parallelism Real-Time Ops 
9189 100 9189 
25424 100 25424 

74802 100 74802 

356566 100 356566 

Table 5.1 

Baseline XML Results - All Examples 

Vertical Code With No Futures 

The results in Table 5.1 were produced by a histogram facility within XML that 

simulates Concert's performance on the VAX. The "total ops" column shows the 

total number of operations performed by all processors to complete the computation. 

The "%parallelism" column shows the speedup factor which would be obtained by 

running the program on a 50-processor Concert machine. 100% is a factor of one 

speedup - no parallelism gains. The "real time ops" column contains the result 

of dividing "total ops" by "% parallelism." With no futures, one certainly expects 

no speedup; the 100% factors reflect this and "total ops" and "real time ops" are 

equal. 

3 The effects of run length are discussed later in this section. 
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"Operation" is ambiguous; XML counts both a simple add and a complex pro­

cedure call as one operation, but their actual Concert execution times are very 

different. The average operation time in a program is a function of the program's 

instruction mix. 4 XML results are difficult to interpret in light of this operation 

time uncertainty. The "% parallelism" is the statistic that relates most closely to 

Concert for this purely sequential case. Unfortunately, the "real time ops" is the 

statistic which is of the greatest interest, since it mirrors the cumulative speedup, 

including parallelism overhead. 

The execution times of the same programs on Concert itself are shown in Table 

5.2. Concert results, like XML results, are for 20 cycle runs unless otherwise noted. 

Results vary with the number of processors in the system, as discussed at the end of 

this section. A 14-node system was used in these trials simply because that was the 

operational limit as of this writing. Each value shown was averaged from two time 

trials to filter out background system effects like process scheduling and garbage 

collection. No actual garbage collection occurred during these particular trials 5 

but the two-sample format is followed throughout this paper for consistency. 

Example 

1 

2 

3 

4 

Time in Seconds 

3.000 

7.400 

16.717 

78.867 

Table 5.2 

Baseline Concert Results - All Examples 

Vertical Code With No Futures 
14 Processors 

The "Total Ops" in the XML data and the time in the Concert data are very 

closely correlated. This correlation does not persist as the code structure and place­

ment algorithms change 6 for a variety of reasons, including the operation time un-

4 One way to get a handle on this average operation time is to factor in the total 

VAX CPU time required to execute the simulation. 
5 Futures are most allocation-intensive operations in CONSIM and thus cause the 

most garbage collection. Since none appear in this series of examples, very little 

garbage collection occurred. 
6 i.e., the Concert data do not fit the XML prediction. The data in the appendices 
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Example Time (sec) 

Vertical Code 
Time (sec) 

Horizontal Code 
1 

2 

3 

4 

3.000 

7.400 

16.717 
78.867 

Table 5.4 

3.067 

8.533 

16.075 

74.600 

Concert Results - All Examples 
Vertical Code vs. Horizontal Code 

14 Processors 

certainty discussed above. XML's statistics do not reflect garbage collection, which 
is a distinct advantage, since the execution times of garbage collection algorithms 

vary widely. However, the uncertainty arising from its approximations - typically 

±10% - overshadows its value in this application (beyond preliminary tests and 
debugging). Hereafter, XML data will only be used for comparison, except in pre­

liminary comparisons of the various future placement algorithms, where the XML 

statistics were the only data available. XML histogram data for all versions of the 

single-cycle procedure and main simulation loop for all four examples are shown in 

appendix 3. All Concert time trial results for the same cases appear in appendix 4. 

Condensing the code has interesting effects. Both XML and Concert data are 

shown, in Tables 5.3 and 5.4 respectively, to illustrate the disparity between the 
simulation data gathered on the VAX and the real data gathered on Concert. Data 

points for vertical code are shown for comparison in all cases. The "total ops" and 

"% parallelism" data are not shown in the first table; since this code is sequential, 

parallelism is universally 100% and the other two columns are equal. 

Example Real Time Ops 

Vertical Code 
1 9189 

2 25424 

Real Time Ops 

Horizontal Code 
8259 

24476 

Table 5.3 

XML Results - Examples 1 and 2 

Vertical Code vs. Horizontal Code 

demonstrate this variance. 
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The XML data predict that the horizontal code will execute 1.113 times ( ~~~~) 

f a.ster than the vertical code in example 1 and 1.039 times ( ;~:;:) faster in example 
2. Concert, however, has a different opinion. For both of these examples, the 

horizontal code actually runs slower (0.978 and 0.867 times as fa.st as the vertical 

code, for examples 1 and 2 respectively.) This lack of a correct prediction may be 

a consequence of XML's ±20% error, but Concert's results are somewhat puzzling. 
The horizontal version of a single-cycle procedure is a subset of the vertical code: 

no operations are added during condensation and thus it should run as fa.st as or 

slightly faster than vertical code. This may be a result of the way Multilisp IS 

compiled into MCODE. 

The Concert results hold no other great surprises. Where the circuit and the 

procedure are small (examples 1 and 2) the condensation from vertical to horizon­

tal doesn't seem to eliminate enough computation to override the effect described 
above. Where the circuit is large and the procedure is long (examples 3 and 4) the 

effects are felt and the run time shrinks. The decrease is not drastic - 4 % in exam­

ple 3 and 6% in example 4. The amount of shrinkage the condensation algorithm 

is able to perform, as measured by the reduction in program execution time, does 

not appear to be a constant function of program size - the percentage grows with 

increasing size. Overall, the effects of condensing the code, when they are helpful, 

aren't very striking when the code executes sequentially. 

Several pcall and future placement heuristics were tested during the preliminary 

stages of this project, beginning with "judicious hand placement" and ending with 

Savant, the automated compiler described in section 4.4. 

Pcalls are constrained by the call/return structure of their target program and 

thus are difficult to use: a given program contains many fewer potential pcall sites 

than future sites. The best possible combination (as determined by exhaustive 

process-of-elimination testing of combinations) of pcalls and code structure yielded 
121 % parallelism in example 1 and 126% in example 2, while futures far outstripped 

those levels. Pcalls cause treacherous artificial parallelism gains, not reflected in a 

lowered "real time ops" value. Both branches of a pcall must be long enough 

to require several quanta of CPU time for the construct to be efficient. Thus 

"padding" one or both branches yields more parallelism. This effect is illusory. 

The pcalls added in combination were themselves acting as padding for the outer 

pcalls and thus made the overall speedup look better than it really was. Pcalls force 

the pattern of the computation to follow the hardware topology; from the results, 

this would appear to be inefficient. Topology-independent futures are more general 
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and powerful. Indeed, the pcall command in Multilisp is simply syntactic sugar -

implemented with futures. For these reasons, pcalls were omitted from the CONSIM 

picture very early on. 

The XML results for "judicious hand placement" of futures in the horizontal and 

vertical code versions of the first two examples are shown in Table 5.5. Sequential 
results, without futures, are shown for comparison. 

Example Version Futures Total Ops % Parallelism Real Time Ops 

1 vertical no 9189 100 9189 
1 vertical yes 9369 101 9270 

1 horizontal no 8259 100 8259 
1 horizontal yes 8687 152 5717 

2 vertical no 25424 100 25424 
2 vertical yes 25484 104 24454 

2 horizontal no 24476 100 24476 

2 horizontal yes 24776 158 15724 

Table 5.5 

XML Results - Examples 1 and 2 

Hand Placement of Futures 

Each future adds to the "total ops" column via its overhead and to the "% 
parallelism" column if it facilitates parallel branching in the program flow. If the 

future is useful, these two effects combine to yield a lowered "real time ops" value. 

In all but one of the versions above, this is indeed the case. The exception, where the 

code doesn't contain enough exploitable parallelism to make futures worth trying, 

is the vertical coding of the small example. In example 2, code the same structure 

doesn't exhibit this effect. Since the vertical procedures for these two examples 

differ only in length - the instructions in the stream are almost identical because 

the circuits are composed of similar gates - the lack of parallelism in example 

1 must be a result of its small size. The data dependency graph is not complex 

enough to make relaxing its constraints an advantage; there aren't enough tasks to 

keep the "in box" or the pipelines full, to extend the comparison to the two models 

which were introduced in section 5.2. Example 2's size allows it to escape this 

problem. The horizontalized versions are saved by the granularity of their available 

parallelism, which was precisely the intent of the condensation algorithm. 
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The "judiciousness" of hand-placement hinges upon the programmer's knowl­

edge. In the process of finding the best combination, several empirical heuristics 

were discovered and followed. The most important one was later formalized as 

"quickness" - that futures enclosing simple tasks are inefficient. The interactions 

between futures can be perplexing. Two futures may allow 124% and 119% indi­
vidually but 151% together. Synergy is obviously at work, both in positive and 
negative directions: two otherwise useful futures can work badly in combination. 

These interactions are too intricate to be summarized in a limited set of general 

heuristics. See [14] or [11] for further elaboration. 

The optimistic future placement algorithm is at the opposite end of the spec­

trum. It exercises no judiciousness whatsoever about its choices, adding as many 

futures as possible. The results of applying this algorithm to the code for examples 
1 and 2 are in Table 5.6. Although the plethora of futures certainly keeps the task 

pipelines full, those tasks are too small to be efficient in the vertical versions. Note 

that the "total ops" column is greatly increased over t-hat of the sequential code -

much more so than was the case when futures were placed, more sparingly, by hand. 

The amount won back by the parallelism is sufficient, in all cases but the first, to 

at least counterbalance the added overhead. The size issues that caused the similar 

effect with futures hand-placed in the code are at the root of this. A comparison of 

the "real time ops" columns of hand and optimistic versions shows that the latter 
loses in all cases except in the vertical coding of example 2, where the difference is 

too small to be significant. 

Example Version Futures Total Ops % Parallelism Real Time Ops 

1 vert no 9189 100 9189 

1 vert yes 10473 101 10417 

1 horiz no 8259 100 8259 

1 horiz yes 8829 138 6377 

2 vert no 25424 100 25424 

2 vert yes 27164 112 24338 

2 horiz no 24474 100 24476 

2 horiz yes 25496 156 16379 

Table 5.6 
XML Results - Examples 1 and 2 

Optimistic Placement of Futures 
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Savant, exercising its objective mathematical judgment, succeeds best of all. 

Data are shown in Table 5.7. Speedup factors occur where expected, and in every 
case the "real time ops". value for the Savant-compiled code is lower than the orig­

inal. The data from the other placement heuristics both showed exceptions to this 

trend, where the overhead killed the performance gain. The speedup factors are 

larger in the second example because of the circuit's size, which keeps the pipelines 

full of tasks and allows the condensation algorithm to perform more efficiently. The 

vertical code appears to have more potential (2.36 best-case speedup versus 1.68 

best-case for the horizontal code.) As will be demonstrated later, this is not true 

for the XML data from the larger examples, nor for actual Concert data for any 

example. It is assumed to be related both to size and to XML approximations. 

Example Version Futures Total Ops % Parallelism Real Time Ops 

1 vert no 9189 100 9189 

1 vert yes 9772 114 8571 

1 horiz no 8259 100 8259 

1 horiz yes 8740 125 6992 

2 vert no 25424 100 25424 

2 vert yes 53761 236 22780 

2 horiz no 24474 100 24476 

2 horiz yes 25813 168 15365 

Table 5.7 

XML Results - Examples 1 and 2 

Savant's Placement of Futures 

The performances of the various future placement algorithms are shown graph­

ically in Figure 5.1. The vertical axis shows "real time ops" and the horizontal axis 

shows "total ops." The line with a slope of 1.00 represents 100% parallelism or a 

factor of 1.00 speedup. The overhead added by its futures pushes the data point for 

a future-doctored procedure to the right and any parallelism gains push the point 

down. A useful future pushes harder down than right so that the overall trend is 

down - lowered overall real-live simulation ti~e. Eight points are plotted for each 

of the two examples: four placement algorithms acting upon two code structures. 

The upper cluster of points is from example 2 and the lower cluster from example 

1. The different placement algorithms and coding schemes are distinguished by the 

shape of the symbol used to plot the data point, as shown in the Figure's key. 
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With no futures, there is no parallelism and thus the "no future" (¢ and 0) 

data points all lie on the 1.00 line. The other points all fall somewhere below it. 

The best of all the points, given the intent to improve overall time, is the lowest 

one. In all cases but one, the lower cluster of red points, this point is Savant's 
• or e. The reason for the exception was discussed at the end of section 4.4 -

Savant is overcautious about procedure inputs, treating them as if they were all 
undetermined futures and thus wrapping all references to them in another layer of 

futures. The extra overhead kills performance in cases where the program contains 

so few internal sites that the input-wrapping futures form the majority. This caution 
is vindicated when cycles are called in parallel and inputs are indeed undetermined, 
in which case the input-wrapping futures greatly enhance the parallelism. 

Since Savant's results are consistently the best and the only exception arises 

from a mechanism which will actually be beneficial when cycles are called in parallel, 
hand and optimistic placement were not pursued any farther. This choice was based 

solely on the early XML data, so the next step in the experiments was to verify the 
results on Concert. 

For each example, four versions of the single-cycle procedure exist, comprising 

all possible combinations of horizontal/vertical code with or without Savant's fu­
tures. The results of running these four versions on Concert, both in cycle-serial 

and in cycle-parallel mode, are shown in Table 5.8. 

Garbage collections clutter the data for example 4, obscuring the actual results. 

Since allocation activity increases with program size and future usage and example 

4 is by far the largest circuit this is unavoidable. Garbage collection frequency is a 

function of the amount of system free storage and the time lost during the cleanup is 

a function of the algorithm used. Each computer system has a unique combination 

of these two parameters. Incorporating Concert's personal combination as a part of 

these results would make them not only less general, but also more difficult to inter­

pret. Neither function - the time used by an algorithm or the necessary collection 

frequency at a particular amount of free storage - is simple or even well-defined, 

and thus "backing out" the unadulterated time value is impossible. Example 4 is 

only presented to illustrate CONSIM's behavior within a class of problems relevant in 
the real world, and this garbage-collection-produced interference is thus a realistic 

problem. However, it complicates drawing conclusions about trends in experimental 

results. These trends must be identified if the process is later to circumvent them. 

In the experimental world, data which masks the trends under study are worse 

than useless. Because it is the largest example not crippled by garbage collection, 
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Example Version Time (sec) Time (sec) Improvement Ratio 
Cycle-Serial Cycle-Parallel Serial + Parallel 

1 vert 3.000 1.908 1.57 

1 vert/fut 3.200 1.692 1.89 

1 horiz 3.067 1.984 1.55 

1 horiz/fut 2.167 1.750 1.24 

2 vert 7.400 6.317 1.17 

2 vert/fut 4.134 3.234 1.28 
2 horiz 8.533 7.725 1.10 
2 horiz/fut 3.959 3.067 1.29 

3 vert 16.717 16.259 1.03 
3 vert/fut 12.342 4.025 3.07 

3 horiz 16.075 15.509 1.04 
3 horiz/fut 7.217 3.783 1.91 

4 vert 78.867 85.600* 0.92 

4 vert/fut 24.775* 23.050* 1.07 

4 horiz 74.600 83.559* 0.89 

4 horiz/fut 23.792* 24.942* 0.95 

Table 5.8 

Concert Results - All Examples 

14 Processors; * = garbage collection 
Cycle-Serial vs. Cycle-Parallel Code 

example 3 is considered the single "most representative" example of the four. 

The promised effects of cycle-parallel invocation make a striking appearance. 

In all cases, except where obscured by garbage collection (and probably there too, 

underneath the noise - recall that the extra futures of cycle-parallel execution ac­

tually cause more garbage collection), cycle-parallel code runs faster. This holds 

regardless of size, regardless of code structure, and whether the single-cycle proce­
dure is purely sequential or contains internal futures. The magnitude of the speedup 

ratio is, however, a function of the first and last of these three parameters. With 

one exception (the horizontal coding of example 1), the speedup ratio is larger 

for single-cycle procedures with internal parallelism, suggesting that "macroparal­

lelism" multiplies the effects of "microparallelism." The mechanism at work in this 

case is that the cycle-wrapping futures prevent the single-cycle procedures from 
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immediately hanging up because mstate is a future, as discussed in a following 

paragraph and Figures 5.2 and 5.3. The improvements are greater, in cycle-parallel 
mode, in example 3 than in example 2, which again suggests that size plays a role 

in keeping pipelines full. There is no identifiable connection between code structure 

and improvement ratio, but since the times for the horizontal code start out lower 

than those for the vertical code, the same factor of improvement yields a lower final 
value. 7 

The "best combination" of code structure and future placement - the consis­

tently lowest of any example's cluster of eight time values - is the horizontal code, 
with Savant's futures, run in cycle-parallel mode. 

The synergy between microparallelism and macroparallelism is illustrated in 

Figures 5.2 and 5.3. The main execution sequence of the program is shown by 
the line of squares linked by double arrows. Parallel tasks, symbolized by circles, 

are spawned where indicated by wavy arrows. Single arrows represent precedences 

imposed by data dependencies within the program. Figure 5.2 shows cycles without 

internal parallelism, called in parallel. Here the circles - the tasks - represent 

entire cycles. Since mstate of cycle n, needed at the very beginning of that cycle's 

computation, is nstate of cycle n - 1, assembled at the very end of that cycle's 

computation, the data dependencies all but sequentialize those tasks. Figure 5.3 

shows cycles with internal parallelism, called in parallel. The internal parallelism 

causes each cycle to spawn pieces of itself off as separate tasks. Now the data 

dependency arrows aren't constrained to lead from the end of one cycle to the 

beginning of the next, but from the point of production to the point of need of the 

datum in question - which may well be from midcycle to midcycle, as shown. At 
lea.st some work can proceed before hangup, which keeps processors busy and useful. 

The depths within the cycle at which those arrows enter and exit, which ultimately 

govern how much parallelism can be squeezed out of the program, depends upon 

the application. 

In these cases, the amount of exploitable parallelism is primarily a function 

of the code structure and future placement, rather than of the circuit topology. 

Creating efficient future sites dominates all other considerations and requires the 

code to depart from the topology given in the HDL. (The topological analog of code 

7 The data from examples 1 and 4 are given less weight than the others in most 

of these comparisons, since example 1 has previously demonstrated odd size effects 

and the latter are obscured by garbage collection. 
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Figure 5.2 

Cycle-Parallel Invocation of Internally Serial Code 

Program Flow and Precedences 

Figure 5.3 

Cycle-Parallel Invocation of Internally Parallel Code 

Program Flow and Precedences 
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condensation is lumping circuit blocks together.) Passing values between blocks 

(simulating the wiring) is clearly not "free" - it actually dominates the behavior. 

The simple circuit model is partially responsible for this. ANDs and OR.s are simple 

things compared to scheduling of processes! If the blocks contained complex models 

of huge linear networks, the balance would be different and hardware topology might 

play a bigger role in simulation speed. Topology issues are discussed, for extreme 

cases, later in this section. As it is, software issues dominate CONSIM's performance. 

As the run length and thus the number of parallel tasks increase, the parallelism 

also increases at first, then reaches an asymptotic value. The XML "% parallelism" 

statistic shows this more clearly than the Concert time. Table 5.9 illustrates this 

effect. These results are from a slightly larger version of example 2. The total 

number of operations increases linearly (to within 1 %) with the number of cycles 

simulated. The parallelism increases, as the number of tasks grows to the capacity 

of the pipelines, from 100% to some maximum determined by the code. Further 

increases simply raise the backlog - the level of liquid in the reservoir - and not 

the parallelism. It is at or above this capacity that Concert's efficiency is maximal 

and CONSIM's results indicate its true power. Note that for cycle-serial code, this 

level is already reached in a 5 cycle run and no increase in the fourth column is seen 

for longer runs. For cycle-parallel code, where different granularities of parallelism 

are at work, this number doesn't level off until around 10 cycles. A simulation of a 
smaller circuit requires more cycles to reach this point. In view of this, a uniform 20 

cycle run length was chosen for all tests in this paper. The scenario of full pipelines, 

with orderly lines of homogeneous tasks waiting in line at their entrances, represents 

a steady-state that dominates long-term behavior. Since long simulations of large 

circuits are the rule rather than the exception in simulator applications, simulations 

that fit this scenario reflect real-world use. 

These effects can be indirectly observed on Concert by keeping track of the 

time per cycle for various length runs. The graphs in Figure 5.4 show these data for 

all parallel versions of example 3. This example is large enough to require only a few 

cycles to fill the pipelines. Following a slight initial downslope, the cycle time levels 

off, indicating that steady-state has been reached. This corresponds to the point 

in the XML data above which the maximum parallelism is attained. An identical 

experiment on an 8 processor Concert system did not show this initial glitch; since 

there were fewer pipelines, fewer tasks were required to fill them up. A smaller 

circuit would have the opposite effect: the glitch would be more pronounced and 

more cycles would be required to reach steady-state. 
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Version Cycles Total Ops % Parallelism Real Time Ops 

vert 5 8176 100 8176 

vert 20 25424 100 25424 

vert/fut 5 17214 240 7160 

vert/fut 20 53761 236 22780 

horiz 5 9346 100 9346 
horiz 20 24474 100 24474 

horiz/fut 5 9856 170 5782 

horiz/fut 20 25813 168 15365 

Cycle-Serial Code 

vert 5 8320 137 6012 
vert 20 32819 146 22506 

vert/fut 5 17268 844 2046 
vert/fut 20 69138 1115 6199 

horiz 5 9400 132 7145 
horiz 20 37499 137 27316 

horiz/fut 5 9910 504 1967 
horiz/fut 20 39539 612 6461 

Cycle-Parallel Code 

Table 5.9 

XML Results - Example 2(a) 

Effects of Run Length on Parallelism 

Note from Table 5.10 that simulation time grows with the number of gates 

in the circuit, but that the time per gate remains about the same, barring the 

interference of garbage collection, for both horizontal and vertical codings when 

no futures are present. This is consistent with the condensation algorithm, where 

the code is simply reorganized so as to create expressions that are more complex. 

Adding futures, either around or within the cycles, removes this correlation and the 

time per gate drops drastically, since many gates are being simulated at the same 

time. 

Circuit size is a double-edged sword. Small circuits do not usually contain 

enough tasks to fill the parallel pipelines, and when they do, the tasks are too quick 
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to aid performance. The condensation algorithm, a possible solution to this, works 
poorly on small programs. A toy circuit is not a "useful" simulator application; 

optimizing a simulator for such a circuit would be naive and artificial. Simulators 

come into play when people are faced with circuits that are too big or too complex 

for them to analyze by hand. CAD tools should be optimized for the applications 

in which they will be used, and not for some academic example which happens to 

give intriguing results (although exploring those results may give insight into the 

simulator's behavior and perhaps even suggest something about the type of circuit 

it should be used on.) XML data from the longer simulations of larger circuits 

are more realistic for statistical reasons, since the histogram facility uses methods 

that require large sample spaces to produce valid results. On the other hand, large 
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Example 

1 
2 
3 

4 

1 

2 

3 

4 

Number Time per Gate per Cycle (sec) 

of Gates Vertical Vertical Horizontal Horizontal 

No Futures Futures No Futures Futures 
10 
25 
58 

232 

10 

25 

58 

232 

0.015 0.016 

0.015 0.008 
0.014 0.011 
0.017 0.005* 

Cycle-Serial Code 

0.010 0.008 

0.013 0.006 

0.014 0.003 

0.018* 0.005* 

Cycle-Parallel Code 

Table 5.10 

0.015 

0.017 
0.014 
0.016* 

0.010 

0.015 

0.013 

0.018* 

Circuit Size and Concert Execution Time 

14 Processors; * = garbage collection 

0.011 

0.008 
0.006 
0.005* 

0.009 

0.006 

0.003 

0.005* 

circuits use more storage space and need more garbage collection, which obscures 
true results, but reflects a real-world problem. Experiments must steer a careful 

path between these two extremes to avoid misrepresented data. 

If t tasks, each requiring execution time ~t, were running on n processors, and 
each task were assigned to the first vacant processor and ran to completion with 

no overhead, execution time as a function of number of tasks can be predicted as 

follows. For 1 ~ t < n, there are idle processors. The runtime is ~t and the speedup 

is t. For n < t ~ 2n, the runtime is 2~t and the speedup is t/2. In general, the 

runtime is rt In l ~t and the speedup is t Ir t In l · This relation is plotted in Figure 
5.5. 

For CONSIM, the worst of the approximations in this hypothesis is that all 

tasks have the same execution time. Not only are the sizes of the circuit blocks 
different, implying differences in the granularity of the potential "microparallelism," 

but entire cycles can also be invoked as tasks. The future placement algorithm 

adds another variable, because it decides which of these available tasks to exploit. 

The approximation that all tasks run to completion is more applicable to pcalls 

than to futures, since processes which require an explicit argument hang up when 

they encounter an undetermined future. The real Concert data will thus comprise 
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some complex statistical distribution of tasks, governed by data dependencies which 

further complicate how these tasks run. 

Some information about the statistical distribution of the tasks created by the 

various code structures and future placements is needed to determine how closely 

CONSIM fits this model. It is unfortunate that the detailed breakdown provided by 

the XML histogram is invalid. XML reports the speedup factor that would result on 

a system with one to 50 processors. Given how the speedup grows with number of 

processors, one can determine the nature of the available parallelism. The speedup 
might grow linearly as processors are added, or it might asymptotically approach a 

limiting value after only a few processors are included in XML's calculations. The 

latter, which is apparently the case with CONSIM, indicates that the application 

program does not contain enough parallelism to keep more than a few processors 
busy. This effect is discussed later in this section in conjunction with the discussion 

of Figure 5.7. This breakdown of information is not available explicitly from any 

other measurement, but can be gleaned indirectly from simulation runs on different 

numbers of processors. 

Two user-level parameters affect the number of tasks: circuit size and sim­

ulation run length. Four points (from four examples) are not enough to predict 
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a trend, so the easily-altered run length was chosen as the variable parameter in 

investigations of time versus number of tasks. Number of tasks and run length are 

linearly related. The relationship between circuit size and number of tasks is not so 

clean, since data dependencies also affect run time. Two n-gate circuits with dif­

ferent topologies may have vastly different execution times if one's topology creates 

data dependencies which cause many processes to hang up (e.g., a ring oscillator, 

where dependencies actually force sequentialization.) Execution times of all parallel 

versions of example 3 for various run lengths are graphed in Figure 5.6. 
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The upward trend is obvious, but the "staircase" effect of Figure 5.5 is absent. 

The "frequency" of the staircase wave is ~, so the number of tasks would have 
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to be increased in increments of ~ ("sampling" at twice the highest "frequency"), 
2 

according to the Nyquist criterion, for its fine-grain nature to be apparent. A one-

cycle increase in run length, for this example, comprises many more than 14 (n) 
tasks. Overall, the "mean" behavior seems to follow the global pattern predicted 

by the model. Even if there were a way to gather more detailed data, it would 

be unlikely that the required complex statistical analysis would yield a closed-form 
solution or provide any insight into the causes and predictions of the simulator's 

performance. 

Concert execution time data on 1, 2, 4, 8, and 14 processors for the various 
versions of each example appear in appendix 4. The data for examples 2 and 3 are 

graphed on log-log scales in Figure 5. 7. The most striking trend in these graphs is 

the sharp downward slope of the internally-parallel versions' data lines. When only 

one processor is active, the code is forcibly sequentialized and the parallel versions 
lose by virtue of their uncancelled overhead. The overhead added by the futures 

appears as the vertical spacing between the one-processor data points. This spacing 

is greater for the vertical versions in example 2 independent of macroparallelism. It 

seems to be roughly the same in example 3. This difference is probably an artifact 
of program overhead, such as counting cycles, returning the list, etc., which is a 

larger percentage of the execution time for a smaller circuit, such as example 2. As 

processors are added, the overhead is amortized and the parallelism is exploited. 
Eventually the parallelism gains overtake and pass the overhead losses and the 

lines cross. Beyond the crossing point, the lines for the procedures with internal 

parallelism continue downwards more or less in parallel and then the horizontal code 

line seems to tail off, followed by the vertical line. This effect is most apparent in 
example 2; it appears to some extent in example 3, but is absent in the cycle-parallel 

version. The number of tasks is responsible for this behavior. Where adding a pipe 

reduces the flow in the other pipes, improvement continues, but not at the same 

efficiency per added processor: a "diminishing returns" effect. Presumably some 
upper limit is reached, where adding a processor not only gives no improvement, but 

may actually cause a degradation in performance because of bus contention. The 

number of available tasks mitigates this effect - if the reservoir is really chock-full, 

adding a pipe won't decrease the flow in the other pipes, and the new pipe will 
work at full capacity. Parallel cycles and size both increase the number of available 

parallel tasks, and the graphs reflect it. The macroparallel versions level off later, 

as do the lines for the larger example. Example 3 shows the breakpoint clearly: the 

cycle-serial lines level off and the cycle-parallel lines don't. The latter case obviously 
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fits the proposed steady-state scenario for long-term simulation. 

Since the axes of these graphs are scaled logarithmically, a line of constant 

slope is a power function: the function y = 1/ xn would be the line of slope -n. 

On an ideal concurrent computation system, where any program would run n times 

as fast on n processors as on one, all data line slopes would be -1. The actual 
CONSIM slopes are shown in Table 5.11. 

Example Cycle-Parallel Cycle-Serial 

2 

3 

Vertical Horizontal Vertical Horizontal 
0.82 0.80 0.74 0.61 

0.74 0.74 0.44 0.67 

Table 5.11 

Asymptotic Line Slopes - Versions With Futures 
Improvement Per Processor 

Concert Results 

A slope of -0.8 means that the program runs n°· 8 times faster on n processors 

(1/n°·8 ). The lines on the graphs only appear to be straight for low numbers of 

processors, as explained above. The slopes in this table were measured in the linear 

sections of each line, which comprise a greater and greater portion of the entire line 

as parallelism increases. Cycle-parallel invocation may create larger line slopes than 

cycle-serial invocation because it creates more tasks, or because it relaxes more of 

the artificial precedence constraints to which cycle-serial invocation adheres, thus 

causing a wider average parallelism profile. Horizontal and vertical code structures 

generally result in roughly similar slopes. The reason that the data apparently 

follow a power-law speedup other than n-1 is not obvious. It may be a result of 

the average amount of available parallelism, which limits processor activity. It also 
may be illusory; five data points do not comprise an exhaustive proof that a line is 

straight. 

The lines for the versions with no futures inside the single-cycle procedures 
don't slope down. Any "parallelism" these programs contain is exploited by the 

first processor. They don't take advantage of Concert's power at all, regardless of 

whether or not cycles are called in parallel. 8 In fact, all lines for these versions 

8 The synergy between internal parallelism and cycle-parallel invocation was dis­

cussed earlier in this section - see Figures 5.2 and 5.3. 
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show a slight rise in runtime as the number of processors increases. This trend 

may be simply an artifact of measurement approximation, since its magnitude is 

not really far enough out of the error band to even prove its existence beyond a 

doubt, although the same effect has recently been observed when sorting routines 

are executed on Concert [16]. If it does exist, it may be due to bus contention 

and other side effects incurred because of the the idle processors' searches for tasks 

to perform. Horizontal versions with no internal futures execute more slowly than 

similar vertical versions in example 2; this is reversed in example 3 and is due to 

the condensation algorithm's increased efficiency upon larger programs. 

The behavior of the tailoff of the microparallel data lines is encouraging. It 

suggests that execution time will probably continue to improve as processors are 

added to the system beyond the number actually available in these experiments. 

As circuit size increases, the tailoff points move further to the right (on the axes for 

the graphs in Figure 5. 7). The improvement in run time gained by adding another 

processor to an n-processor system is given by the slope of the tangent to the curve 

where the number of processors is n. It is more efficient to add processors in the 

linear region, since the slope is higher before tailoff. A longer linear region means 

that a larger number of processors can be used efficiently. Extrapolating the lines 

for example 3 to the 50 processor level is unwise - the tailoff point probably lies 

just off the graph and the extrapolated run time value would be far too optimistic. 

Farther-reaching extrapolations could be made for larger circuits, such as example 

4, were it not for garbage collection. 

Garbage collection is a function of the amount of free storage: the more free 

storage a system contains, the less often program activity will fill it up and the less 

often it will require cleanup. At the time of these experiments, the fixed amount 

of Concert memory was divided up among the active processors. When only 8 

processors are active, each processor owns 1
8
4 times as much memory as does each 

member of a 14 node system, and thus garbage collection is less frequent. Where 

memory is limited, this has severe implications for CONSIM's performance on larger 

numbers of processors. If the garbage collection time negates the 1/n°·8 gain, 

CONSIM will actually run faster on the smaller multiprocessor system than on the 

larger one. 

Garbage collection pads execution time and drives the lines in Figures 5.4, 5.6 

and 5. 7 upwards. In the long term steady state scenario, this padding is more or 

less constant, since all pipelines are always working (and creating garbage) at full 

capacity. Increasing the simulation time with larger circuits or longer runs will 
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not alter this percentage, although it will increase the total time used. Since the 

experiments described in this paper attain the steady state only in fits and starts, 

garbage collection is a nuisance because it randomly scatters otherwise-useful data 

points. However, it must be accounted for in extrapolations to larger circuits. 

The immediate return of a token for a future's value, although vital in other 
parts of CONSIM, presents a problem in the return of the final value. The immediate 

return of an undetermined future can hide a huge percentage (upwards of 90% in 

some cases) of the computation work for that future, so the "execution time", 

measured up to the actual return, is meaningless. The solution is to touch every 

future at the end of the CONSIM run. Since futures can appear unpredictably in any 

part of the output list, the entire structure must be touched at all levels by a tree 

walk. This tree walk adds a constant amount of overhead for every version of an 

example (since all flavors of code structure and future placement had better return 
the same logical results!) Table 5.12 shows full simulation times for sequential 

versions of example 3 with and without the tree walk. The time taken by tree 

walks of fully-determined result lists for all examples are shown in Table 5.13. The 

differences between columns in Table 5.12 correlate well with the times in Table 

5.13. These times remain constant, for a given length run on a fixed number of 

processors, for all code structure/future placement versions. 

Version 

vertical 

horizontal 

5 Cycles 

Walk 
4.217 

3.917 

No Walk 
3.800 

3.392 

Table 5.12 

20 Cycles 
Walk No Walk 
17.050 14.950 

15.500 13.683 

Concert Results - Example 3 

20 Cycle Simulation With and Without Tree Walk 

Example 5 Cycles 20 Cycles 

1 0.250 0.992 
2 0.333 1.267 

3 0.516 2.050 

4 1.492 6.050 

Table 5.13 

Concert Tree Walk Times - All Examples 
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These times represent significant chunks (ranging from 10% to 13% in Table 

5.12) of the total simulation times used earlier in this chapter and reported in ap­
pendix 4. This is not "experimental error" - it simply reflects operations required 

to get the data into a specific form. IT the user of CONSIM's output needs deter­

mined values (as a human designer would), this time must indeed be included in 

its performance measure. However, if the output is piped into another Multilisp 

program which can capitalize upon undetermined futures, no tree walk would be 

required and including its time in the speed estimate is pessimistic. Performance 

is a function of environment in many ways: the implementation affects the relative 

costs of futures versus those of other operations, the garbage collection time varies 

with algorithm and amount of free storage, and the way the output is cascaded 

affects the amount of work that CONSIM's back end must perform. 
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Chapter 6 

Summary, Conclusions and Future Work 

This thesis documents the investigation of a new approach to circuit simulation: 

the use of a multiprocessor via the parallel language Multilisp. Finding the strengths 
and weaknesses of this particular language is part of a bigger goal - to determine 

what features of a multiprocessor system are useful in such an application and how 

the simulator's performance reacts to system and application parameters. This 

approach was also motivated by the parallelism inherent in circuits and by the Von 

Neumann bottleneck, which ultimately limits the speed of sequential computers. 

The novelty of using Multilisp in such an application lies in the way it exploits 

parallelism. The Multilisp future allows the programmer to exploit the parallelism 

in the code without adding artificial precedence constraints, as do sequentialization 

or fork-join constructs. Learning how to model and exploit the parallelism in a logic 

circuit under Multilisp's facilities and constraints led to the implementation of the 

logic simulator CONSIM. 

The results of this project take on several forms. CONSIM is a functional 

CAD tool which can be used to verify designs. More important are the results of 

using CONSIM, in several modes of operation, as an experimental tool on various 

sorts of circuits. Many issues, among them circuit size, code structure and future 
placement, were investigated using repeated CONSIM runs. The execution time data 

from these runs exhibit coherent, understandable trends which suggest not only a 

model for multiprocessor behavior in this application, but also the direction along 

which future simulators should develop. 

Modeling the behavior of Multilisp running on the Concert multiprocessor is 

a very complex problem. Many layers of interpretation and other automatic (and 

sometimes unpredictable) intervention lie between the Multilisp user and the CPU. 

Thus, data take on a much more empirical flavor than is usual for experiments on 

a man-made system, and many simplifications are required to reach any sort of 

agreement at all between system and model. Modeling is, however, an essential 
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step, or the trends and observations in this thesis will apply only to this particular 

system. If the mechanisms which underlie the trends are understood, this body 

of knowledge can be applied to other systems and applications as well. This is 

particularly important where circuit size and number of processors are involved; 

both of these parameters are being pushed higher and higher by advances in VLSI 
technology. 

The most important concept in the Multilisp performance model is that all 

processors must be kept busy for the machine to attain its maximum efficiency. The 

pool of tasks waiting to be executed must remain as full as possible. Two things 

affect the level in this pool: the number of tasks and their data dependencies. A 

task does not enter the active pool until its essential arguments have been evaluated. 
1 Some kinds of arguments are not immediately essential; evaluation of those can 

be def erred until absolutely necessary, raising the number of tasks that can enter 

the active pool. Finally, parallel invocation adds some overhead to each task, which 

must be counterbalanced by the performance gain for the task to be efficient m 

parallel. 

The various parts of this model were verified in a series of experiments. The 

first group of the series concentrated on how the sizes and dependencies affect the 

performance (via the level in the pool). The second group investigated the effects 

upon performance of this average level of available parallelism. 

Three different future placement algorithms were applied to horizontal and 

vertical versions of the code which simulates a cycle of the FSM under test. Success, 

measured as execution time speedup, was limited where the algorithm neglected all 

overhead, slightly better where overhead was taken into account, and best where 

data dependencies were also factored in. Horizontal code, where the potential tasks 

are larger, proved more fruitful. 

Extending the test one step further, entire cycles were called in parallel. Not 

only does this technique exploit bigger tasks, but it also relaxes some artificial 

precedence constraints which were introduced by executing the cycles in sequence. 

These constraints are analogous to the sequencing imposed in hardware by the 

clock signal, but are unnecessary in simulation. For both reasons, cycle-parallel 

code ran much faster. Synergy between internal- and cycle-parallelism allows the 

combination to work better than the sum of its parts - again, as a result of relaxed 

1 Here Multilisp differs from some other parallel languages, where essential and 

nonessential arguments are not distinguished. 
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precedences. 

This technique could be applied recursively: a task could be spawned whose 

only function is to spawn two more tasks, which each spawn two more, etc., until 

finally the cycles are called as the "leaf nodes" of a tree, as shown in Figure 6.1. The 

example given here is a binary tree, but the spawning process could follow tertiary 
or higher protocol as well. 

Figure 6.1 

Alternate Spawning Structure 

The notation in Figure 6.1 is the same as in Figures 5.2 and 5.3. The main 

execution sequence of the program is shown by a line of squares linked by double 

arrows. Here the main execution sequence consists of a single spawn. Parallel 

tasks, symbolized by circles, are spawned where indicated by wavy arrows. Single 

arrows represent precedences imposed by data dependencies within the program. 

The bottom row of tasks - the leaf nodes - are the cycles. If each leaf-task (cycle) 

can make truly significant progress and the tree structure facilitates task spawning 

(better distribution of work), this technique could be truly efficient. 

When the level in the task pool was raised via increased run length, the run 
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time grew linearly as expected. When the number of processors was raised, the 

other extreme of this effect was observed: the improvement in run time gained by 

adding a processor to an n-node system shrank markedly with increasing n. A 

tailoff was observed where the added processors outdistanced the level in the pool. 

Both trends verify the hypothesis that processors must be kept busy and indicate 

what happens when they are not. 

Run length and circuit size both fill the task pool, but changing the circuit also 

changes the precedences within the pool. Execution time is strongly affected by 

circuit topology as well as size. Thus, the amount of parallelism that can be squeezed 

out of the simulation of a circuit is related to its inherent hardware concurrency. 

An inherently sequential circuit, such as a ring oscillator, cannot really benefit from 

multiprocessor simulation under the assumptions made in CONSIM. 2 This would 

not be the case in a different kind of simulator, such as one employing waveform 

relaxation, where solution requires several iterations on each of the bilateral blocks. 

The exact shape of the time vs. number of processors curve contains a lot of 

information about the actions of the system, but the available diagnostic tools do 

not allow analysis detailed enough to unearth it. Speedup appears to initially follow 

a power law other than t = n- 1 (where t is execution time and n is the number 

of processors), which may be a result of limited available parallelism - the level 

in the pool. A more detailed breakdown of what task executed when and for how 

long would lead to an explanation, but all Concert provides is raw run time. The 

reasons for the existence of the tailoff are understandable from the models, but its 

exact shape suffers from the same lack of illumination. Another explainable trend 

is that tailoff occurs at a higher number of processors for a larger circuit. This is a 

clear implication that, in this type of simulator, size is not an all-around evil, as it 

is in other CAD tools. Large circuits will efficiently exploit the large multiprocessor 

systems of the future. 

CONSIM demonstrates several things. First and foremost, it shows that mul­

tiprocessor logic simulation is viable and efficient, potentially even more so than 

simulation on a classical Von Neumann machine, where circuit size is an inescapable 

yoke. There is no such thing as a free lunch, of course - although the real time is 

lower, the actual number of GPU cycles is the same or slightly higher, since many 

processors are working in tandem on the job. The price paid is in hardware: n times 

2 Some of these assumptions: unilateral blocks, a solution which is reached in 

one cycle, and tasks that only know about variables at their own terminals. 
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as much hardware ( n processors) is required to make the simulation run approxi­

mately n°·8 times faster. Secondly, Multilisp is a good language in which to write 

simulators. Its constructs fit freely into a structure which efficiently simulates logic 

circuits. The third result is somewhat amorphous. The body of knowledge gained 

from modeling and investigating CONSIM's response to changes in the various pa­

rameters, like code structure, future placement, circuit size and topology, provides 

a base from which we can make judgments and predictions about as-yet unexplored 

systems and applications. 
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Appendix 1 

Schematics and State Transition Diagrams 

For All Examples 
Example 1: 

State Transition Diagram 

QI 

u 
x 

v 
Q¢ 

Schematic 
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Example 2: 

State Transition Diagram 

GI-

GS-
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/1'.l 
CO--,,.; ~ D 

/Q 
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Example 3: 

State Transition Diagram - Counter Connection 
For M = 0, Cn = 1, S = 0000, F = A + 1. 

(Many other modes of operation are possible.) 

CKT-oor 

tvsTATE: 
"'1~1ATE ALU 

F 

l 
4 

C.KT-1...i [ 
Schematic 
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Example 4: 

4LO 
" ........... _ ....... 

,. t=:::=a:=t> 

Sdwml•lc 
Similar to example 3, bm data pUJw ... le Wta wide. 
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Appendix 2 

HDL Descriptions and Single-Cycle Procedures 

For Example 1 

1. HDL Description: 

(circuit-name tam) 

(matate (matate) (ql qO)) 
(ckt-in (ckt-in) (x)) 

((nota) not (x) (2)) 
((notb) not (ql) (ql)) 
((note) not (qO) (11.0)) 
((nanda) nand2 (2 ql) (u)) 
((nandb) nand2 (ql qo) (v)) 
((nandc) nand2 (u v) (qlp)) 
(xor2 (x ql) (w)) 

(or2 (qo w) (qOp)) 
((nandd) nand2 (x ql) (y)) 
( (nande) nand2 (qo y) (z)) 

(natate (qlp qOp) (natate)) 
(ckt-out (z) (ckt-out)) 

2. Vertical Single-Cycle Procedure: 

(detun tam (matate ckt-in cyc-num) 
(let• 

((gOOOO ckt-in) 
(x (tield 1 gOOOO)) 
(gOOOl matate) 
(ql (tield 1 gOOOl)) 
(qO (tiald 2 gOOOl)) 
(2 (t-not x)) 
(ql Ct-not q1)) 
(qO (t-not qO)) 
(u (t-nand2 f q1)) 

(v (t-nand2 ql qo)) 
(qlp (t-nand2 u v)) 
(w (t-xor2 x ql)) 
(qOp (t-or2 qo w)) 
(y (t-nand2 x ql)) 
(z (t-nand2 qo y)) 
(natate (list qlp qOp)) 
(ckt-out (list z))) 

(list cyc-num nstate ckt-out))) 
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3. Vertical Single-Cycle Procedure With Futures: 

(de!un !smg! (mstate ckt-in cyc-num) 
(let* 

((gOOOO ckt-in) 
(x (!uture (!ield 1 gOOOO))) 
(g0001 matate) 
(q1 (!uture (!ield 1 g0001))) 
(qO (!uture (!ield 2 g0001))) 
(f (!uture (!-not x))) 
(q1 (future (!-not q1))) 
(qo (!uture (!-not qO))) 
(u (future (!-nand2 f q1))) 
(v (future (!-nand2 q1 qo))) 
(q1p (future (!-nand2 u v))) 
(w (!uture (!-xor2 x q1))) 
(qOp (future (!-or2 qo w))) 
(y (!uture (!-nand2 x q1))) 
(z (!uture (!-nand2 qo y))) 
(nstate (list q1p qOp)) 
(ckt-out (list z))) 

(list cyc-num nstate ckt-out))) 

4. Horizontal Single-Cycle Procedure: 

(de!un !ams (mstate ckt-in cyc-nwn) 
(let* 

((g0618 mstate) 
(q1 (!ield 1 g0618)) 
(goe1g ckt-in) 
(x (!ield 1 goe1g)) 
(qo (!-not (!ield 2 g0618))) 
(nstate (list 

(!-nand2 
(!-nand2 (!-not x) (f-not q1)) 
(!-nand2 q1 qo)) 

(!-or2 qo (!-xor2 x q1)))) 
(ckt-out (list 

(!-nand2 qo (!-nand2 x q1))))) 
(list cyc-num natate ckt-out))) 
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5. Horizontal Siqle-Cycle ProcedtUW With Futucw: 

(ddu fauct (•11••• ctt-ia CJ•·-> 
Cln• 

( (&0911 Utah) 

c,1 (,...,.. (fle14 l IGell))) 
(IGeH d*·la) 
Cx (t1&11..-. (fleJA I ... 1.))) 
<•o C"*- {f ..... , Chtee cuew a_.,•»>» 
c .. -... CU•t 

(f11ftn(f..._a 

C.._.. Ct-...a (fUW. (f•aet a)) (f.-V• (f-aot q1)))) 
Ctnwe Ct.....a •I 40>»> 

Cf"'11ft Ct·•l \O <htwe Ct......a • •O>U» 
(Ut·•• (1'• 

Ct.._. Cf .. ...a 4.0 Cf--.. Ct·lllllllll x •U>»>» 
(11•• .,.._ ............. ,)) 

78 



Appendix 3 

XML Results 
20 Cycle CONSIM Runs 

The four versions of the single-cycle procedure are identified by the following 

abbreviations: "vert" =vertical; "hor" =horizontal; "fut" =futures added to code 

by Savant. In cycle-serial invocation, these procedures are called serially; in cycle­

parallel mode each cycle is enclosed in a future. "Total Ops" is the total number 

of operations (adds, conses, procedure calls, etc) executed in the simulation. "% 
Parallelism" is the speedup factor gained on a hypothetical 50-processor machine. 

"Real-Time Ops" is "Total Ops" divided by "% Parallelism". 
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Example 1: 

Version Total Ops % Parallelism Real Time Ops 

1. cycle-serial: 

vert 9189 100 9189 

vert/fut 9772 114 8571 

hor 8259 100 8259 

hor/fut 8740 125 6992 

2. cycle-parallel: 

vert 9351 183 5110 

vert/fut 9934 257 3865 

hor 8403 183 4591 

hor/fut 8884 224 3966 

Example 2: 

Version Total Ops % Parallelism Real Time Ops 

1. cycle-serial: 

vert 25424 100 25424 

vert/fut 53761 236 22780 

hor 24476 100 24476 

hor/fut 25813 168 15365 

2. cycle-parallel: 

vert 25606 146 17538 

vert/fut 53943 1115 4838 

hor 24629 137 17978 

hor/fut 25967 612 4243 
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Example 3: 

Version Total Ops % Parallelism Real Time Ops 

1. cycle-serial: 

vert 74802 100 74802 

vert/fut 79542 100 79542 

hor 69755 100 69755 

hor/fut 74375 174 42672 

2. cycle-parallel: 

vert 75036 123 60975 

vert/fut 79776 1475 5409 
hor 69989 125 55881 

hor/fut 74609 1652 4515 

Example 4: 

Version Total Ops % Parallelism Real Time Ops 

1. cycle-serial: 

vert 356566 100 356566 

vert/fut 373726 118 316277 

hor 337179 100 337179 

hor/fut 353859 210 168391 

2. cycle-parallel: 

vert 356800 111 321905 

vert/fut 187010 1054 17739 ( 10 cycles) 

hor 337413 112 302518 

hor/fut 354093 1504 23544 
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Appendix 4 

Concert Time Results 

14 Processors 

20 Cycle CONSIM Runs 

The four versions of the single-cycle procedure are identified by the following 

abbreviations: "vert" = vertical; "hor" = horizontal; "fut" = futures added to 

code by Savant. In cycle-serial invocation, these procedures are called serially; in 

cycle-parallel mode each cycle is enclosed in a future. 

Averages of the first two data points are given for all versions. These averages 

filter the effects of the scheduling, garbage collection, and other time-variant pro­

cesses which contribute processing time. For example 4, more than two data points 

were taken to study the pattern of the garbage collection frequency, but only the 

first two are used in the average. 
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Example 1: 

Version Time (sec) 

Number of Processors in Concert System 

1 2 4 8 14 

1. cycle-serial: 

vert 2.750 2.883 2.900 2.883 2.983 

vert 2.750 2.883 2.917 2.817 3.016 

average 2.750 2.883 2.909 2.850 3.000 

vert/fut 4.367 3.717 3.150 3.017 3.200 

vert/fut 4.383 3.650 3.117 3.017 3.200 

average 4.375 3.684 3.134 3.017 3.200 

hor 2.767 2.867 2.950 3.000 3.050 

hor 2.783 2.867 2.933 3.000 3.083 

average 2.775 2.867 2.942 3.000 3.067 

hor/fut 4.167 3.083 2.467 2.083 2.200 

hor/fut 4.167 3.050 2.417 2.117 2.133 

average 4.167 3.067 2.442 2.100 2.167 

2. cycle-parallel: 

vert 3.183 2.000 1.883 1.850 1.933 

vert 3.167 1.967 1.867 1.867 1.883 

average 3.175 1.984 1.875 1.859 1.908 

vert/fut 4.667 3.467 2.417 1.967 1.667 

vert/fut 4.667 3.450 2.567 1.900 1.716 

average 4.667 3.459 2.492 1.934 1.692 

hor 3.200 1.950 1.900 1.917 2.000 

hor 3.200 1.933 1.933 1.867 1.967 

average 3.200 1.942 1.917 1.892 1.984 

hor/fut 4.567 3.367 2.467 1.850 1.733 

hor/fut 4.567 3.167 2.417 1.800 1.767 

average 4.567 3.267 2.442 1.825 1.750 
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Example 2: 

Version Time (sec) 

Number of Processors in Concert System 

1 2 4 8 14 

1. cycle-serial: 

vert 7.167 7.100 7.283 7.483 7.333 

vert 7.150 7.117 7.250 7.500 7.467 

average 7.159 7.109 7.267 7.492 7.400 

vert/fut 20.267 11.667 7.433 5.217 4.250 

vert/fut 20.250 11.617 7.450 5.267 4.017 

average 20.259 11.639 7.442 5.242 4.134 

hor 8.217 8.150 8.317 8.500 8.633 

hor 8.217 8.167 8.300 8.467 8.433 

average 8.217 8.159 8.309 8.484 8.533 

hor/fut 12.033 7.967 5.350 3.967 3.917 

hor/fut 12.100 7.633 5.283 4.117 4.000 

average 12.067 7.800 5.317 4.042 3.959 

2. cycle-parallel: 

vert 7.483 5.700 5.850 6.033 6.300 

vert 7.483 5.783 5.917 5.933 6.333 

average 7.483 5.792 5.884 6.183 6.317 

vert/fut 20.783 12.800 6.800 3.650 3.217 

vert/fut 20.417 13.500 6.683 3.850 3.250 

average 20.600 13.150 6.742 3.750 3.234 

hor 8.533 7.200 6.917 7.250 7.783 

hor 8.333 6.900 6.967 7.100 7.667 

average 8.433 7.050 6.942 7.175 7.725 

hor/fut 12.317 8.550 4.717 3.483 3.083 

hor/fut 12.400 8.667 4.567 3.267 3.050 

average 12.359 8.609 4.642 3.375 3.067 
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Example 3: 

Version Time (sec) 

Number of Processors in Concert System 

1 2 4 8 14 

1. cycle-serial: 

vert 16.667 16.733 16.783 16.917 16.767 

vert 16.167 16.183 16.700 17.083 16.667 

average 16.417 16.458 16.742 17.000 16.717 

vert/fut 25.667 18.550 13.333 11.533 12.350 

vert/fut 25.733 18.333 12.983 11.917 12.333 

average 25.700 18.442 13.158 11.725 12.342 

hor 15.033 15.217 15.417 15.917 16.067 

hor 14.950 15.100 15.367 15.917 16.083 

average 14.992 15.159 15.392 15.917 16.075 

hor/fut 23.567 14.150 9.550 7.367 7.317 

hor/fut 23.617 14.650 9.483 7.383 7.117 

average 23.592 14.400 9.517 7.375 7.217 

2. cycle-parallel: 

vert 16.717 14.817 15.617 15.367 16.050 

vert 16.700 14.967 15.467 15.150 16.467 

average 16.709 14.692 15.542 15.259 16.259 

vert/fut 25.317 17.083 10.217 5.183 4.183 

vert/fut 25.333 16.983 9.433 5.967 3.867 

average 25.325 17.033 9.825 5.575 4.025 

hor 15.500 13.850 14.083 14.017 15.467 

hor 15.517 13.600 14.067 14.067 15.550 

average 15.509 13.725 14.075 14.042 15.509 

hor/fut 23.733 15.533 9.083 5.800 3.833 

hor/fut 23.733 15.733 9.300 5.100 3.733 

average 23.733 15.633 9.192 5.450 3.783 
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Example 4: 

Version Time (sec) 

Number of Processors in Concert System 

1 2 4 8 14 

1. cycle-serial: 

vert 78.183 76.950 79.533 78.100 78.383 

vert 75.967 77.833 79.250 78.250 79.350 

vert 93.450* 89.467* 89.133* 89.400* 

vert 93.516* 89.683* 89.750* 88.750* 

average 77.075 77.392 79.392 78.175 78.867 

vert/fut 145.38* 93.033* 56.483* 46.650* 26.917 

vert/fut 127.95* 84.883* 55.833* 48.683* 22.633* 

vert/fut 145.21 * 

average 136.66 88.958 56.158 47.667 24.775 

hor 71.383 84.967* 74.883 75.200 75.000 

hor 88.917* 85.533* 84.017* 84.983* 74.200* 

hor 89.083* 

average 80.150 85.250 79.450 80.092 74.600 

hor/fut 120.07* 73.567* 41.300* 29.900* 24.050* 

hor/fut 119.87* 83.267* 41.933* 28.767* 23.533* 

average 119.97 78.417 41.617 29.334 23.792 

Note: Averages are based on first two points only. 

* = garbage collection 
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Example 4: (cont) 

Version Time (sec) 

Number of Processors in Concert System 

1 2 4 8 14 

2. cycle-parallel: 

vert 76.650 87.283* 87.500* 87.850* 88.300* 

vert 93.900* 73.617 77.733* 74.300 82.900 

vert 94.050* 

average 85.275 80.450 82.617 82.792 85.600 

vert/fut 125.32* 80.317* 47.500* 33. 783* 21.250* 

vert/fut 125.38* 91.983* 55.133* 32.583* 24.850* 

vert/fut 92.200* 54.483* 

average 125.35 86.150 51.317 33.183 23.050 

hor 89.650* 85.350* 70.067 83.667* 81.800* 

hor 89.700* 87.167* 82.333* 71.700 85.317* 

hor 81.550* 

average 89.675 86.259 76.200 77.684 83.559 

hor/fut 119.27* 75.717* 44.600* 28.583* 25.517* 

hor/fut 119.20* 75.100* 48.167* 32.667* 24.367* 

hor/fut 75.100* 48.283* 

average 119.24 75.409 46.384 30.625 24.942 

Note: Averages are based on first two points only. 

* = garbage collection 
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