
Final Report 

Data Flow Computer Architecture 

Jack B. Dennis 

Professor of Computer Science and Engineering 

October 1987 

Advanced Research Projects Agency 

Full research support 
Partial support 

National Science Foundation 

Research Grant DCR74-21892 
Research Grant DCR75-04060 
Research Grant MCS-7915255 

University of California 
Lawrence Livermore National Laboratory 

Subcontract 8545403 

Department of Energy 

Contract DE-AC02-79ER10473 

September 1963 to March 1975 
April 1975 to December 1985 

April 1975 to September 1977 
April 1975 to December 1979 
March 1980 to November 1985 

January 1978 to September 1979 

July 1979 to December 1985 

National Aeronautics and Space Administration 
Ames Research Center 

University Interchange NCA2-0R425-101 February 1981 to April 1982 

Research Grant NAG 2-247 July 1983 to October 1985 

Masssachusetts Institute of Technology 
Laboratory for Computer Science 

Cambridge, MA 02139 



1 Introduction 
2 Background 

Table of Contents 

3 Computer System Concepts 
4 The Origins of Data Flow Concepts 
5 Computational Models 
6 Generalizations 
7 Data Flow Architecture 
8 Packet Communication Architecture 
g Structure Memory 
10 The Engineering Model 
11 Routing Networks 
12 Fault Tolerance 
13 Functional programming languages: Val 
14 Applications of Data Flow Architecture 
15 Program Structure and Compiler Technology 
16 Programming Generality 
17 Petri Nets 
18 Self-Timed Systems 
19 Semantic Theory for Functional Language and Architecture 
20 Simulation 
21 General 
22 Conclusion 
23 Personnel 
24 Bibliography 

1 
5 

6 
7 
8 
g 

10 
13 
13 
14 
14 
15 
15 
16 
17 
18 
19 
20 
21 
22 
23 
23 
24 
27 



1 

1 Introduction 

This report covers the work done by the Computation Structures Group of the MIT 

Laboratory for Computer Science on developing models, languages, and architectures for data 

flow computation from 1966 to the end of 1985. The work was supported by research grants and 

contracts from NSF, the University of California, DOE, NASA, and DARPA having periods of 

support as follows: 

Advanced Research Projects Agency (DARPA) 

Full research support 
1 September 1963 to 31 March 1975 

Principal results: 

• Contributions to conceptual design of multiple processor and interactive 
computer systems. 

• Addressing schemes for time-shared, multiprocess computer systems; the concept 
of capability-based architecture. 

• The working set model for storage management in multiprocess computer 
systems. 

• Extension of the banker's algorithm for deadlock-free sharing of resources. 

• Conception of data flow program graphs and their evolution into a complete 
program model. 

• First proof of determinacy for a system of cooperating computational processes; 
its extension to data flow schemas. 

• Early proposals for data flow computers: the static data flow architecture and a 
multiprocessor based on allocation of processors to procedure activations. 

• The base language concept and the use of operational models to establish 
computer system correctness; correctness proofs for nondeterministic operational 
models. 

• Early investigation of the use of streams as a means for functional expression of 
input/output processes. 

Occasional partial support 
1 April 1975 to 31 December 1985 



2 

National Science Foundation (NSF) 

Research Grant DCR74-21892 
Semantic Foundations for Structured Programming 
1 April 1975 to 30 September 1977 

Principal results: 

• Operational semantic techniques for system analysis and design. 

Research Grant DCR75-04060 (MCS-7504060) 
Data Flow Computer Architecture 

1 April 1975 to 31 December 1979 

Principal results: 

• Contributions to Petri net theory and applications. 

• Design methodologies for self-timed systems. 

Research Grant MCS-7915255 (DCR-7915255) 
Data Flow Computer Architecture 

1 March 1980 to 30 November 1985 

Principal results: 

•Contributions to the theory and practice of packet_routing networks for 
processor interconnection. 

• Elucidation of the principles of packet communication architecture; 
development of the PADL architecture description language. 

• Fault tolerance techniques for data flow computers. 

• Methodology for proving compositions of modules specified as transformers of 
streams. 

• Study of functional data structures; semantic modeling and the packet memory 
concept for data structures. 

• The observation that functional languages can be implemented without use of 
cyclic data structures, and therefore may employ reference count storage 
management and be more compatible with concurrent execution. 

• The scenario theory for the semantics of compositions of nondeterminate 
program modules. 



3 

• Extensions of type-inference methods and value-binding mechanisms for 
functional programming environments. 

University of California 
Lawrence Livermore National Laboratory 

Subcontract 8545403 
Development and Application of Data Flow Computers 
17 January 1978 to 30 September 1979 

Principal results: 

• Design of the programming language Val. 

• Translator /interpreter implementation of Val. 

• Analysis of a simplified hydrodynamics code-Simple. 

Department of Energy (DOE) 

Contract DE-AC02-79ER10473 
Data Flow Computer Architecture 

1 July 1979 to 30 June 1982 
1 September 1982 to 31 March 1984 
1 June 1984 to 31 December 1985 

Principal results: 

•Translation of the Simple code into Val; analysis of Simple. 

• Construction of a data flow engineering model. 

•Experimental back end for the Val compiler. 

• Structural analysis and simulation of packet-routing networks. 

• Trial design and fabrication of key VLSI components for static data flow 
computers. 

• Development of program structuring principles for partial differential equation 
codes. 

• Development of diagnostic techniques for packet-routing networks. 

• Study of the particle-in-cell method for plasma simulation. 



4 

National Aeronautics and Space Agency (NASA) 

Ames Research Center, Moffett Field CA 
University Consortium Interchange NCA2-0R425-101 

High Speed Data Flow Computer Architecture 
for the Solution of the Navier-Stokes Equations 
1 February 1981 to 30 April 1982 

Research Grant NAG 2-247 
Specification of a Data Flow Computer for Aerodynamic Simulation 
1 July 1983 to 31 October 1985 

Principal results: 

• Translation of ARC3D, a three-dimension aerodynamic simulation code, into 
Val. 

• Mapping of aerodynamic simulation onto a data flow computer with 256 
processing elements. 

• Refinement of the static architecture to meet requirements of benchmark codes. 

• Comparative evaluation of standard and cyclic reduction methods for solution of 
block tridiagonal equation systems in the context of data flow computation. 

Certain of the written proposals for these grants and contracts have been 

published [99, 104, 105, 108]. 

The entire research program on data flow models, languages, and architecture has been 

carried out under the direction of Professor Jack B. Dennis. The program contributed papers to 

refereed journals, several book chapters, and many conference papers and reports. The project 

supported many students who earned 28 doctorates, 42 master's degrees and 38 bachelor's 

degrees. 

The research led to major projects at Manchester University, the University of Utah [197], 

Texas Instruments [63], Hughes Aircraft, and Loral Instrumentation. There has been much 

interest in Japan, including government-sponsored projects and commercial products. Many 

other workers have studied a variety of specialized aspects of data flow computation, m 

particular at Iowa State University [256] and at the University of Southwestern Louisianna. 

Research on data flow concepts at MIT was broadened and strengthened in 1979 by the 

appointment of Professor Arvind. His work, begun at the University of California at Irvine, 

added a new dimension to the field in the unravelling interpreter and the tagged-token data flow 

architecture. 



5 

The application of data flow principles to large-scale scientific computation is now being 

developed for commercial use by Dataflow Technology Corporation, a company founded by 

Professor Dennis. 

2 Background 

When Jack B. Dennis joined the MIT faculty in Electrical Engineering in 1958, he had 

already accumulated four years of experience working with computer systems. As a student in 

the electrical engineering VI-A co-op program, he improved the design of encoding circuits that 

prepared radar data for use by an early aircraft tracking computer at the Air Force Cambridge 

Research Center. In his MIT graduate work in operations research, he developed Whirlwind 

programs for several problems, including an unusually efficient code for the transportation 

problem, a specialized linear programming application, that was extensively used by a sponsoring 

company. 

As a young faculty member, Professor Dennis was responsible for the operation and 

improvement of the TX-0 computer, an early high-speed transistorized machine built by the MIT 

Lincoln Laoratory and loaned to the Electrical Engineering Department. He designed and 

directed installation of extensions to the machine's instruction set and additions to its collection 

of peripheral equipment. He also developed software for the TX-0, including a macro assembler 

which evolved into a commercial assembly language, and an interactive debugging program that 

led to later interactive debugging tools. 

In 1960 the efforts of John McCarthy, J.C.R. Licklider, Herbert Teager, and others had 

generated great interest in the concept of time-shared operation of a computer system to 

support interactive use by programmers and users [144]. The gift in 1961 of a PDP-1 computer 

by the Digital Equipment Company to the MIT Electrical Engineering Department offered the 

opportunity to apply the time-sharing concept on a small scale for a unique community of users 

desiring hands-on use of a computer: electrical engineering students and the staff of the Research 

Laboratory of Electronics. With the help of students and a small staff, Professor Dennis designed 

and implemented hardware changes and software that turned the PDP-1 into a unique facility 

especially suited to work where a tight coupling of the computer to an experimental set-up was 

required [92]. It was one of the first three interactive, time-shared computers to become 

operational-all in Cambridge, Massachusetts and all in response to McCarthy's advocacy. 

The demonstrated effectiveness of interactive computing led to the formation at MIT of the 

Long Range Computer Study Group to recommend how these ideas could be implemented on a 

large scale. The study, in which Professor Dennis participated, considered the concepts and 

technology needed to create efficient computer structures and operating systems that would 

support productive, interactive, time-shared computing for a large community of users such as 

an entire university. The committee recommended multiprocessor architecture for such an 

ambitious system, noting the requirements for expandability, support for concurrency, reliability, 



6 

and efficiency of resource allocation [295]. The work of the committee led directly to MIT's 

Project MAC [143] and development of the Multics time-sharing system [64, 63]. 

3 Computer System Concepts 

In the fall of 1963 Professor Dennis joined Project MAC to participate in formulating plans 

for the Multics system, and to lead a new research group in study of the long-range problems of 

computer system structure posed by the new style of computer use. One area of intense 

investigation concerned how information-units of data and program-should be organized, 

accessed, and updated in the context of the envisioned "computer utility". The initial work of 

the group, done in collaboration with the Multics implementation team, involved unifying the 

notions of virtual memory, paging, and descriptor-based addressing, and finding an appropriate 

concrete realization of these concepts for use in Multics. The first results of these studies were 

published in a widely-read report [80, 81], and their application in Multics is discussed 

in [67, 68]. This work led to Dennis' election as Fellow of the Institute of Electrical and 

Electronic Engineers. A paper projecting the likely form of the future computing utility was also 

published by Dennis [82, 83]. Although the ideas presented in this paper have taken substance 

within the framework of "distributed computing systems," the concept of system operator has 

yet to be established with the strength envisioned. 

Over the next few years the Dennis group made many contributions to the conceptual 

foundations for the design of computer systems. The viewpoint espoused in this effort was that 

computer hardware and an operating system jointly define the interface upon which useful 

application software is built. Hence, the design of the hardware and operating system must be 

coordinated so that the most desirable interface is obtained, consistent with practical 

constrain ts. 

Two major contributions were the concepts of "capability" and "sphere of protection" 

introduced in a well-known paper by Dennis and van Horn [136, 135]. This work led directly to 

work on computers using "capability-based addressing", specifically the Chicago Magic Number 

Computer and the Plessey 250. An excellent review of these projects and the principles of 

capability architecture is given by Fabry [142]. Many of the ideas tested in these projects were 

subsequently incorporated in the IBM System 38 architecture [185]. 

Other subjects explored include issues of input/output control [291, 290], subsystem 

sharing [278], the management of names for information [88], and the control of 

information-sharing [304] in multiprocessor computer systems employing segmented addressing. 

Hebalkar's doctoral thesis [176, 177, 175] extended the scope of known methods for the 

coordinated sharing of resources with a guarantee of deadlock-free operation. 

The group's work on the conceptual basis of time-shared computer systems led to study of 

related issues of performance modeling and analysis, primarily by Peter Denning [70, 71, 72]. In 



7 

his doctoral research, Denning developed the working set principle into a practical model for 

storage management in multi-process computer systems [73, 74, 75]. This work became widely 

known and led to an important joint paper with Aho and Ullman [303]. 

Professor Dennis was invited to give lectures on these subjects at an "Advanced Course in 

Software Engineering" held in Munich [96, 89, 90, 91], and also participated in a workshop on 

"Computer Architecture and the Cost of Software" [100, 101]. 

4 The Origins of Data Flow Concepts 

The work on computer systems issues led us to recognize that the interface defined by the 

hardware and operating software of a computer system is a computer language-a language 

made up of all the facilities provided by the system for users to implement application codes. We 

call this set of facilities the base language of the computer system. The base language is far 

more extensive than the usual notion of a programming language. It includes all facilities for 

addressing, for scheduling, for accessing and manipulating files, and for controlling concurrency 

and directing input and output activities. An important observation was that the complexities 

of the base language of a computer system are responsible for a large portion of the difficulties of 

large software projects. 

The idea arose naturally that it would be better to design the base language consciously 

rather than let the base language arise ad hoc from the fortuitous independent decisions of 

hardware and software designers. The system architecture should be in such harmony with high­

level user languages that the relationship between the two is simple, direct, and complete. We 

set as our goal the formulation of the simplest base language that would serve the needs of 

computer users, and the development of computer architectures that would efficiently support 

such a simplified basis for general-purpose computing. 

The first steps were evolutionary-a suggestion that a straightforward combination of ideas 

already explored would suffice to achieve the goal. The concept of capability-based addressing 

mentioned above was the principal achievement of this first phase. 

The next step was revolutionary-the suggestion that fine grain concurrency must be 

exploited in a computer system design if the requirements of modular programming are to be 

met efficiently. This thesis was put forth at the 1968 IFIP Congress in Edinburgh [84]. Data 

flow program graphs (see below), in which nodes represent individual operators of a program, 

turned out to be the right program model for realizing this suggestion. 

The concurrency of activities plays an important role in real computing problems. 

Input/output transactions inherently involve the notion of synchronized, independent activities. 

Several users communicating with a time-shared computer run processes that interact with each 

other and make concurrent demands for computing resources. Yet, computer architects and 

designers of programming languages had not responded to the need for simple and elegant means 

of expressing concurrent computations and for efficient means for supporting their execution. 



8 

The problem was that the only avenues of development open without g1vmg up strongly 

ingrained traditions of computer architecture were two: independent computational processes 

sharing an address space and communicating by means of "synchronizing primitives"; and 

independent computing elements with no shared memory communicating by "message-passing". 

In 1956 Jorge Rodriguez, a graduate student working with Mr. Douglas Ross in the MIT 

automated machine tool project, proposed a novel idea to Professor Dennis: Why not use a 

directed graph model for programs in which the arcs denote data value production/consumption 

relationships between operator nodes? Rodriguez thought that such a graph model would be 

useful in optimizing compilers, an idea that is just now entering compiler practice [311]. Dennis 

found the idea to be just the concept needed to fulfill the goals of a base language. 

5 Computational Models 

A cornerstone of the research program of the Computation Structures Group has been the 

basing of computer system architecture on sound models of computation. The first such model 

was presented in the Dennis and van Horn paper on semantics [135]. Although informal, this 

paper sketched what would later be known as an operational semantics for an abstract 

computer system. 

Rodriguez' work [280, 281] was the first formal parallel computation model that incorporated 

data flow and sequencing control in one and the same graph. A similar model emphasizing the 

semantics of function call and return was formulated in Suhas Patil's master's thesis [260]. 

It was satisfying to note certain similarities in other contemporary work: the work on parallel 

program schemas by Karp and Miller [195, 196] at the IBM Research Center; the report by 

Presberg, Saint and Shapiro [270] at Massachusetts Computer Associates; the thesis of Burt 

Sutherland [294] on a graphical editing tool for programs; and the Stanford University thesis of 

Duane Adams [11]. 

Several years of exploration led to the formal exposition of the data flow program graph 

model as it is generally known. The first definitive description of the model was in the master's 

thesis of John Fosseen [147]. The MIT work inspired a similar formulation by Paul Kosinsky, 

then at the IBM Research Center [198]. 

The basic data flow model, extended to include functional data structures, was described by 

Dennis in 1974 [93]. This paper also contrasted alternative ways of dealing with recursive 

function invocation and introduced the concept of an unchanging heap for holding data 

structures. We noted [94] that storage management for the underlying program execution model 

for data flow program graphs could be accomplished using the reference count scheme, even 

when functions are passed as arguments or results of function activations. This fact, even 

though it appeals to us as very promising for efficient parallel implementations of functional 

languages, seemed little appreciated at the time. 



9 

A major insight gained during our research on computational models was the realization that 

asynchronous parallel computing could be accomplished without risking the hazards of timing 

inherent in conventional approaches to structuring parallel programs. Although this fact is now 

widely appreciated, it was a surprising idea in 1966. To the best of our knowledge, Earl van 

Horn's work [305, 306] provided the first proof that a system of computational processes 

assembled according to simple rules of construction, is inherently determinate-free of timing 

hazards. Van Horn's work used the concepts and terminology of conventional multiprocess 

operating systems. 1 Yet, the ideas transferred naturally to the data flow model. Proofs of 

determinacy of the data flow model were given by Rodriguez, then more general formulations by 

Patil [261] and Denning [69] captured the essence of the idea. 

The language of data flow graphs was a new kind of parallel program schema, one in which 

determinacy is guaranteed. Recognizing that data flow schemas are fundamentally different from 

other schematic models of programs, it was natural to explore their formal classification to 

rephrase the usual questions about equivalence properties and the like, and to inquire about their 

decidability. Research on these questions led to a master's thesis [209, 210] and doctoral theses 

by Luconi [224, 225], Slutz [288, 289], Linderman [222, 221], and Qualitz [271, 272]. 

The question of deciding equivalence of data flow schemas was addressed by Rodriguez [280] 

in his work on program graphs, but this early effort was flawed. Later we examined the subject 

again, narrowed to the question of output equivalence for free data flow program graphs. This 

problem appears to be decidable [119]. 

6 Generalizations 

We devoted much effort to generalizing our base language model to be a sound and complete 

semantic model for as wide a class of computing tasks as possible. One important topic was the 

handling of procedure-valued variables that might occur as inputs to program modules or 

returned as one result of a module. We analyzed these issues within the framework of the base 

language ideas of [86] and reported the results in [12, 13]. 

An area that required much thought to arrive at a satisfactory resolution is the expression of 

input/output actions in a manner compatible with data flow ideas and the functional 

programming style. We were aware that coroutines [61, 62, 233] in certain ways express the 

"semantics" we wished to encompass with an extended data flow formulation, and we had 

observed a correspondence between data flow graphs and cooperating groups of coroutines [87]. 

Very early in our study of the data flow model, we had observed the naturalness with which 

signal processing operations, such as filtering, convolution, etc., fit the model. Since an electrical 

1The work of Karp and Miller on determinacy [195] was contemporary with and independent of the work of van 
Horn and Rodriguez 



10 

signal, quantized in time, is essentially an unending sequence of values, we felt that the concept 

of a stream of values was very important in data flow computation. It seemed that certain 

problems, such as the comparison of "fringes" [179], had elegant formulations only in terms of 

streams. Kung-Song Weng, in his master's thesis [312, 137], showed how the stream concept 

should be incorporated into the data flow model to achieve the most desirable semantic model 

and source language functionality. The concept of using infinite sequences in a model for parallel 

computation was given early treatment by Gilles Kahn [194]. 

To complete our base language proposal, the problem of expressmg nondeterminate 

computations required resolution. We had long been aware that certain computer applications, 

for example a simple airline reservation system [103], were not expressible in a strictly functional 

programming language. We were also aware of the monitor construct that evolved from the 

thinking of Dijkstra, Wirth, and Brinch-Hansen [180], an important contribution to dealing with 

nondeterminacy in the context of imperative-style programming languages. We found that 

proposals for introducing a closely analogous construct into data flow models not entirely 

satisfying [15]. Our most advanced proposal is for a data flow guardian construct [110] that 

draws upon ideas of Hewitt [179] and others. 

A survey of data flow models was presented in six lectures to the NATO Summer School at 

Marktoberdorf, West Germany, in 1984 [115]. 

7 Data Flow Architecture 

Our efforts to develop architectural proposals for data flow computers began early in 1972, 

inspired by the problem of achieving real-time computer synthesis of music. This challenge was 

posed by Professor Barry Vercoe, who had just arrived at MIT with the goal of establishing a 

preeminent experimental music studio. Thus, our earliest proposal was for a machine that could 

execute the restricted sorts of data flow graphs arising in signal-processing applications [128]. 

At first we thought that this machine concept, in which all actors would fire an equal number 

of times, would be limited in its range of application. Time has proved otherwise. We soon 

discovered how mechanisms for handling conditional graphs and iterations could be incorporated 

into the architecture [129, 130]. 

These first proposals for data flow machines used many instruction cells to hold instructions 

representing the individual actors of a data flow program graph. The thought was that each cell 

might be a separate silicon chip. The cells would be served by a small number of specialized, 

high-performance functional units. Communication between the cells and the functional units 

would be provided by an arbitration network to funnel active operations to the required 

functional units, and a distribution network to pass result packets to their respective target 

instruction cells. Since a serial representation of information was desirable for the cells but a 

parallel form was presumed to be needed at the functional units, serial-to-parallel and parallel-



11 

to-serial conversion was called for as packets passed through the two networks. The properties 

of such networks were studied by Boughton [29], and designs for self-timed implementations of 

the necessary components were developed [242]. 

By 1975 we realized that the idea of providing an individual instruction cell for each data 

flow actor was too extreme. It would be more efficient for many instructions to share the 

functional logic for recording operand arrivals and recognizing enable conditions. Hence, the 

notion of a hardware cell block was proposed. Since then, the number of instructions to be 

handled by one processing element of the machine has risen from an initial guess of 16 to the 

current guess of 4096. At one point, byte-serial transmission of data between the major sections 

of the machine was envisioned, and a study of byte-serial floating point arithmetic units was 

done [145, 146]. 

Later, the proposed machine configuration was expanded to include array memory for 

holding array values in sequences of memory locations in support of large-scale scientific 

computation. This design has proved to be well matched to important benchmark problems, and 

a tutorial account of it has been published [106, 107, 109]. Further and more refined 

descriptions of the architecture of data flow machines for scientific computation have been 

presented together with our analyses of specific applications. The paper [78] presents a 

commentary on the attractive features of data flow architecture for advanced supercomputers. 

For his doctoral research, James Rumbaugh developed a contrasting kind of data flow 

computer based on associating processors with activations of procedures [284, 285]. In this 

machine, an auxiliary memory is arranged to hold function activations that are dormant while 

waiting for subsidiary activations to terminate, or are active but awaiting their turn for 

processmg. This is one study of a highly parallel architecture that includes a hierarchical 

memory structure, albeit a "coarse grain" scheme. Rumbaugh's design anticipated important 

elem en ts that were to appear later in experimental machines. Specifically, the instruction 

execution system of Rumbaugh's activation processor is an antecedent of the processing elements 

of the Texas Instruments data flow testbed [65, 193]. Later, related ideas appeared in 

commercial data flow computers offered by NEC [205], and in a paper design developed by the 

Hughes Aircraft Company [307, 308]. 

The problem of function call and termination in a data flow computer was analyzed by Glenn 

Miranker [237, 240, 241], who proposed a novel implementation scheme for use within the 

framework of the Dennis-Misunas proposals [129, 130]. 

Later advances in the static dataflow architecture went hand in hand with our analysis of 

potential applications for data flow computers. The focus was on applications to large-scale 

scientific computing. As a result, two major developments took place: an array memory 

capability was added to hold the multi-million-word data bases required by very large numerical 

problems; and we discovered that pipelined operation of data flow programs offered a means of 

obtaining very efficient operation of a data flow computer. 



12 

The array memory was first mentioned in [113], and later in [123]. We now envision 

associating one module of array memory with each processing element [79], so non-local array 

references are implemented using transmission through the routing network. 

The merit of pipelined operation of data flow programs became evident as our research 

turned to the study of practical scientific applications. The form of pipelining considered is one 

in which the actors or instructions of a data flow program are grouped into stages and sets of 

data values move through the stages in succession, thereby keeping all stages continuously busy. 

The first exposition of this idea in application to a scientific application was the study by Dennis 

and Weng of a global weather model [138]. The idea, which is a stored program variation on 

"systolic computation" [204], has been used subsequently in all our studies of scientific 

benchmark codes. 

A crucial element of a data flow computer is the mechanism that identifies the instructions 

available for execution and chooses their order of execution. A comparison of two schemes for 

implementing this function was made by Marcovitz [227, 228]. 

The work on data flow under Professor Dennis [128, 129] became known to Professor Arvind 

at the University of California at Irvine. With students and faculty colleagues, Arvind 

formulated an alternative model of data flow computation, the unraveling interpreter, and a 

corresponding architecture, the tagged-token architecture [16]. On the basis of the originality and 

soundness of his work, MIT invited Arvind to join its faculty in Cambridge. Since 1979 Arvind 

has given strength to data flow research at MIT, and his projects have had their own 

independent evolution [17, 18, 19]. Toshio Shimada, a visitor to the Laboratory for Computer 

Science, returned to Japan and formed a group at the Electrotechnical Laboratory that has built 

a practical tagged-token machine, the Sigma 1 [316]. 

During the 1970s and early 1980s, annual workshops were held for one week each summer at 

the MIT Endicott estate. These gatherings served to bring together workers from around the 

world who were interested in discussing and contributing to the technology of data flow 

computation. Conference notes from some of these meetings have been 

published [243, 247, 248, 46]. 

8 Packet Communication Architecture 

The various architectural proposals we had devised for data flow computers had a common 

characteristic: they consisted of hardware units interconnected by links that conveyed 

information packets from one unit to another. Therefore, we abstracted from these systems to 

identify useful common properties [95, 97]. For example, that determinate behavior of 

interconnections of modules is preserved by the communication protocols used in such systems 

was shown by Patil [261]. Also, means of simulating such systems were developed and the 

problems of performing these simulations using distributed processing were solved [39, 40]. 



13 

Our research suggested that a descriptive methodology particularly suited to such systems 

would have advantages in clarity and simplicity. This led to the design of PADL (for Packet 

Architecture Description Language) [211, 216, 181, 182], which was used to specify several 

hardware elements of our proposed machine designs. 

9 Structure Memory 

An important issue in any computational model is the treatment of data structures. To be 

consistent with the desired side-effect-free character of functional languages, the user should 

regard data structures as being created but never modified during the progress of computation. 

Of course, what actually happens in the supporting machine does not matter so long as the effect 

seen by the user is the effect intended. A conflict needing resolution is that the desired user 

semantics appears to require much copying of data structures, whereas the desired computation 

may often be best accomplished by in-place modification of data structures in the machine. 

Our first efforts were semantic modeling experiments [84, 50, 148, 139, 186, 187] that 

convinced us that we should present the functional view of data structures to users. This view is 

reflected in the extensions to data flow program graphs eventually adopted for expressing the 

creation and use of data structures [93]. 

Once the semantic model for data structures had been determined, the search for efficient 

implementation techniques began. Our efforts concentrated on approaches suitable for use in 

highly concurrent realizations of data flow computers. The concept of a hierarchical associative 

memory, introduced in [84], was pursued by Gertz [157, 158]. 

Later, schemes for implementing the functional data structure heap, as described in [93], were 

devised in the form of packet communication systems [95, 97]. Using our observation that data 

flow program graphs can be implemented with a cycle-free heap [94], these schemes used the 

reference count technique for determining when storage occupied by items may be recovered. 

They were subsequently elaborated and refined in the master's thesis of Ackerman [2, 3, 4], and 

in subsequent work by Weng [313, 314]. 

10 The Engineering Model 

About 1977 we began construction of a simulation means for evaluating dataflow 

architectures. Since we could not foresee obtaining enough simulation time on available 

laboratory computers, we proposed to build a multiprocessor system specialized for the purpose 

of simulating packet comunication architectures. A summary paper on this proposal is [217]. Our 

work on this topic led to significant original work on the problem of distributed simulation by 

Randal Bryant [39, 40]. 

We soon found that it would be just as easy to build a multiprocessor system that would 



14 

more directly model the behavior of proposed data flow machines. This concept was pursued, 

leading to construction of the MIT data flow engineering model, as described in [125, 127] which 

report completion of the project. The experimental system consists of eight processing elements 

connected together by a packet-routing network. Its design is discussed in [116, 117]. Studies by 

students contributed to the design of the engineering model in several areas, including structures 

for packet communication [188, 53] and implementation of floating point arithmetic [301, 302]. 

A trial design of the processing module was done by Vishniac [309, 310], and several simulation 

efforts were carried out [277, 236]. The design of the packet-routing network (see below) was 

augmented with diagnostic facilities that provided for pinpointing a faulty router module 

without having to dismantle the interconnection network [220]. 

The data flow instruction set chosen for implementation m microcode is described in a 

manual written by Ackerman [7], and an interpreter for this instruction set was implemented by 

Todd [298]. This instruction set served as the target language for subsequent compiler 

experiments. 

Several projects were undertaken to develop trial designs for data flow hardware. Early work 

was done using the instruction cell concept as a design challenge for self-timed logic design 

methodology [242]. As the ideas moved toward more practical concepts, so did the experimental 

designs, and two designs representing different compromises were developed [14, 296]. 

In the fall of 1983 an ambitious and successful VLSI project was undertaken by three 

students, Ackerman, Bauman and Woodhall. They designed a single chip embodying the control 

logic of a cell block together with a simple eight-bit arithmetic/logic unit. This chip was 

eventually refined, fabricated, and successfully tested in 1985 by Ackerman. 

11 Routing Networks 

Arbitration and distribution networks were integral parts of our early design proposals for 

data flow computers [129, 130]. Theoretical studies and simulations of these networks were 

carried out by Boughton [29], by Jacobsen and Misunas [189, 190], and in a bachelor's 

thesis [235, 234]. 

Once the cell block archictecture became the focus of our research, work on processor 

interconnection concentrated on packet-switched networks having a uniform data path width. 

On this basis, most of the conceptual difference between arbitration networks and distribution 

networks disappears, and a single routing module can serve as a building block for arbitrarily 

large machines. 

Our first design of a two-by-two router module was done by Tai-Lai Tung, an undergraduate 

student technician. His successful design using asynchronous logic principles was validated and 

refined by Redford [276] and Lilienkamp [218, 219]. For use in the engineering model, diagnostic 

facilities were added to the design by Lim [220]. 



15 

Subsequently, a VLSI implementation of the two-by-two packet router was proposed [279], 

and a very elegant self-timed realization was developed by Tam-Anh Chu [58], who also had the 

device fabricated through the MOSIS facility and verified correct operation of the product. 

A general treatment of packet-routing principles for interconnecting large numbers of 

processing elements was completed in the doctoral research of Boughton [28, 30]. 

12 Fault Tolerance 

The possibility of making data flow computers fault-tolerant has been a matter of interest to 

us since our earliest conception of data flow designs, as in the study by Misunas [246, 245]. The 

most extensive work was done more recently by Leung, who developed a general approach to 

making packet communication systems tolerant of arbitrary single fault occurrences 

[212, 213, 214, 215]. 

13 Functional Programming Languages: Val 

Throughout the research program, we have always envisioned a textual language as the user 

language for data flow computers. Yet, it has been our philosophy to resolve semantic issues 

before dealing with their syntactic forms of expression. 

We familiarized ourselves with modern ideas about formalisms for expressing the semantics of 

programming languages and systems, and with related work on structured programming, formal 

verification, and abstract data types. We perceived the importance of this work in providing 

criteria for distinguishing good programming constructs from bad ones: "goto considered 

harmful"; "side effects make program proofs difficult". We applied these perceptions in choosing 

the foundation constructs for data flow programming. 

In 1978 our work with the Lawrence Livermore National Laboratory led to the definition of a 

user programming language for scientific data flow computation. Two pieces of background 

experience made this an easy task. One was the experience of Professor Dennis in teaching a 

course (MIT subject 6.534 "Semantic Theory for Computer Systems" beginning in spring 1973) 

in which the semantic notation of Scott was introduced in 1975 and used to give formal 

definition of a simple functional language. The second was Dennis' participation in the design 

process for the object-oriented language Clu conducted by Professor Liskov and her 

students [223]. In fact, the initial draft of the "Preliminary Manual for the Programming 

Language Val" [10] was created by editing the Clu programmer's manual. The utility of Val for 

research in compiling and programming parallel computation was promoted by James 

McGraw [231], and the unique features of Val relating to error-handling are presented in [315]. 

More recently, a structured editor for Val has been designed [229, 230]. 

The programming language SISAL [232] is derived from Val, and other workers have 



16 

independently designed functional languages for data flow computation, notably Id by Professor 

Arvind's MIT group [16], and Lapse by the Manchester University group. 

At the time Val was defined, the design goal was to provide a basis for studying the scientific 

application of data flow computation. Nevertheless, much progress had been made toward the 

long range objective of a general-purpose language based on functional programming principles. 

Issues of free variables and their binding were resolved through a success10n of 

analyses [86, 12, 13, 156]. Ackerman published an exposition on the change of thinking required 

when dealing with data arrays in the functional programming style [5, 6, l]. 

Many authors have expressed dismay at the prospect of debugging large programs 

constructed for execution on highly parallel machines. One can sympathize with this view when 

the parallel machines are arrays of von Neumann processors and the programmer must express 

the coordination of actions using "synchronizing primitives" or "message passing" facilities 

outside the principal programming language (usually Fortran). On the contrary, use of a 

functional programming language implemented on a data flow machine makes possible a 

debugging support environment more attractive than that offered for conventional computers. A 

discussion of issues and a proposal are given by Bauman [21, 22]. Our research also includes an 

earlier study of debugging systems [208]. 

14 Applications of Data Flow Architecture 

The study of specific applications for data flow computers has provided the means for a 

continuing evaluation of our architectural concepts. In each case, our study of an application 

has included hand construction of the graph of data flow instructions needed to implement 

critical parts of the algorithm. In each case, the experiment has yielded insights that led to 

improvements in our designs. One of the earliest subjects of study is the fast Fourier transform, 

for which data flow machine code was designed for an early version of the static data flow 

architecture [131, 126, 54, 55]. Other early studies concerned the problem of airplane collision 

avoidance [66, 162] and musical sound synthesis [51, 52], illustrating the broad range of 

application for data flow computation. 

In many ways, the problems of modeling the global atmosphere is representative of large­

scale scientific computation: the problem is reduced to solving a system of difference equations 

over a uniform, three-dimensional, rectangular grid. This class of computations has served as a 

principal guide in evaluating useful directions of evolution for data flow architecture. We began 

this work based on computational procedures used m the MIT Earth Sciences 

department [149, 254, 255, 138], and continued it later using a benchmark code supplied by the 

NASA Ames Research Center [122, 123]. 

Our collaboration with the Lawrence Livermore National Laboratory led to study of a 

benchmark hydrodynamics code known as Simple [253]. Although cut down from a classified 



17 

production weapons code, this program embodies the aspects of the application known to be 

particularly challenging for current supercomputers. Our analysis shows there is much 

concurrency available, but one part of the code requires a minor revision to remove a serious 

bottleneck, and use of a more parallel solver for the block tridiagonal linear systems arising in 

the computation would increase greatly the number of processors that could be used. The Simple 

code has been translated into Val and used for testing new compilation techniques for data flow 

computers. 

The third substantial code studied is a benchmark program for three dimensional 

aerodynamic simulation. This was rewritten in Val and used as a tool for evaluating proposed 

data flow machine designs. The results of this study were reported to NASA [113, 114]. A recent 

study [79] presents a thorough analysis of this application based on the latest design proposals 

for data flow machines. 

In many problems that involve solution of partial differential equations, the solution of linear 

equation systems having 11 tridiagonal 11 form is required. The problems of implementing 
11 pipelined 11 data flow machine code for this important component of many scientific 

computations have been analyzed by Gao [155]. 

15 Program Structure and Compiler Technology 

Our work with various application codes guided our study of machine code structures 

suitable for achieving high efficiency in static data flow computation. Our early efforts in this 

area led us to devote one of our summer workshop meetings to a review of contemporary 

projects [247]. 

A paper by Misunas [244] was an early contribution to the topic. Subsequent studies 

concerned buffering requirements [184], and economy m the use of acknowledgement 

arcs [249, 250]. Todd conceived elegant data flow machine code structures to implement the 

shared use of function bodies [299], and also gave the basic structures for the pipelined 

implementation of the Val forall and for .. .iter constructs [297, 300]. The latter work was 

subsequently expanded and refined by Gao Guang-Rong [153]. 

Only gradually did we come to understand the requirements to be satisfied by a compiler for 

data flow computers. One of the first issues to be clarified was the need to balance data flow 

graphs so they could be operated in pipelined mode. This was accomplished in the master's 

theses of Montz and Gao [249, 250, 153, 154]. Our knowledge increased as we developed 

machine features and code structures that would yield high utilization of the processing and 

memory resources of the machine. The problem of translating from a functional programming 

language into data flow graphs was formalized and given a careful treatment by Brock [37, 38], 

using ideas from semantic theory and from Weng's work [312]. 

The problem of generating efficient code for a data flow machine involves choosing an 



18 

optimal partitioning of the computation in space and time. For many scientific applications, the 

computation follows a sufficiently regular pattern that static analysis by a compiler can provide 

a good solution. Two approaches to this problem have been developed as the subject of doctoral 

research. In his thesis, William Ackerman makes use of the unrolling of iterative loops and the 

interleaving of array references to transform blocks of code so they may make use of many 

processing elements [8, 9]. In his thesis, Gao Guang-Rong applies transformations methodically 

so that each block of code becomes an efficient data flow pipeline [120, 121, 151, 152]. We expect 

that an effective compiler for a highly parallel computer will make use of both approaches. 

We used some of the application codes as test vehicles for our compiling principles. For the 

weather code [123] and for the aerodynamic simulation problem [79], we constructed the data 

flow machine code that we envision a good compiler would produce. 

16 Programming Generality 

The application of data flow principles to large-scale scientific computation has received the 

greatest attention in our research program because this has been the most promising area for 

profitable near-term application. Nevertheless, the group has long been convinced of the 

applicability of data flow concepts to computing and information processing, generally. Indeed, 

Malhotra and Patil regarded their early work [226, 260] as new paradigms of computing that 

would be applicable to all domains of information processing. The philosophy of the group was 

expressed in a paper for the IFIP Congress 1968: "Programming Generality, Parallelism and 

Computer Architecture" [84]. The goal set was to achieve reusable software modules in the 

framework of a system in which all user information is held online in a hierarchical memory. One 

thesis put forth is that practical achievement of this goal would require use of parallel processing 

at fine grain level and use of a small unit of information transfer among the levels of the 

memory hierarchy. Our early work includes [23]. 

Some systems partially achieve this goal. The Multics operating system [64, 63] is an 

important milestone. Much later, the IBM System 38 incorporated many related ideas, although 

at considerable cost in performance and complexity of implementation. 

An essay published in 1970 analyzes the issues involved in moving programs and data from 

one computing environment to another [76, 77]. The paper argues that the general problem of 

data exchange is no less difficult than the problem of program exchange, and therefore the 

concept of a "data description language" is not a solution. 

In the Vim project, begun in 1981, the Computation Structures Group sought to test the 

validity of its concepts regarding the abstract computational model that would form the basis of 

a general-purpose, multiuser computer system based on principles of data flow computation and 

functional programming. The groundwork for such systems had already been laid in the 

doctoral theses of Rumbaugh [284, 285], Gertz [157, 158], Ellis [140, 141], Vanderbilt [304] and 



19 

Isaman [186, 187]. In 1979 Kung-Song Weng [313, 314] synthesized this earlier work into a 

comprehensive proposal for a computer system structure that would realize the goal. However, 

being a radically different structure from conventional computer systems, there is no reasonable 

way of evaluating its effectiveness other than by building it and trying it out. Yet, in building 

an unconventional system it is hard to predict the programming style that will be adopted by its 

users. Their programming style will certainly be different from that evolved for conventional 

computers, and it will likely be different from what the designers can envision. 

For this reason, the Vim Project has the goal of building an implementation, functionally 

identical to the envisioned general-purpose dataflow machine, but built with commercially 

available components to reduce the design effort. A success10n of operational 

models [110, 111, 164, 165, 191, 192] specify the base language for Vim. Dennis has described its 

conceptual basis [112] and the group has presented the planned internal mechanisms of the 

projected implementation [133, 134]. For the Vim Project, the Val language has been extended 

to incorporate high-order functions, streams, and a guardian construct to permit the 

programming of non-determinate computations [110]. At the end of funding, an implementation 

had been designed incorporating a compiler, a type-inference facility [266, 265, 206, 207], a 

scheme for data structure representation and implementation [164, 165], and a backup and 

recovery scheme [191, 192]. 

17 Petri Nets 

Petri nets [267], originated by Carl Adam Petri [268] and introduced to American workers by 

Anatol Holt [183], are a scheme of representation for asychronous systems. They are attractive 

for formulating descriptions of logic systems, concurrent programs, systems of human 

interaction, etc. Largely at the instigation of Suhas Patil, the Computation Strucutures Group 

made many contributions to the theory and application of Petri nets. 

Michel Hack made the principal theoretical contributions. He contributed to the 

classification of Petri nets and elucidated their properties [168, 169, 170]. He explored the 

relation of Petri nets to "vector addition systems" [171] and to formal languages [172]. He 

contributed to the resolution of the "reachability question" for Petri nets by providing insight to 

related questions of decidability for Petri nets [166, 167]. 

Petri net languages were also studied by Baker [20], and nets were used as a research tool for 

other studies in the group [177]. Furtek's work [150] elucidated the elegant structures and 

reasoning about concurrent sytems that may be mediated by the discipline of Petri nets. 

A basic reason for our interest in Petri nets was their po ten ti al application to the design of 

asynchronous and self-timed systems. An early illustration of the power of these descriptive 

techniques was Dennis' description [85] of the control logic of the Control Data 6600 computer, 

the first commercially successful machine embodying instruction look-ahead and interleaved 

execution. 



20 

Some foundation principles for building logic circuits specified by Petri net descriptions were 

presented by Patil [262]. A good example of the design style developed by the group is Misunas' 

description of a self-timed realization of a rudimentary data flow computer [242]. Ramchandani 

introduced and developed the application of Petri nets to the performance analysis of systems 

encompassing many concurrent activities. For this work he introduced timed Petri nets in which 

the transitions have specified time delays [273, 274, 275], an idea also studied by 

Rotenberg [282]. Dennis developed tutorial material to show how Petri nets may be used to 

analyze software systems using concurrent processes [90, 96]. 

18 Self-Timed Systems 

The early work on self-timed (or "speed-independent") logic circuits was done by David 

Muller at the Aiken Computation Laboratory of Harvard University [252], and at the University 

of Illinois in connection with construction of the Illiac II computer [251]. Since then, self-timed 

logic circuits have intrigued people. The possibility of building systems with distributed 

components but without a central source of timing signals was very appealing to us, and Muller's 

theory suggested that such systems could be built which would function correctly regardless of 

delays introduced by the active elements and interconnecting wires. Our studies led to a 

conception of digital systems as comprising a data flow structure built of registers and 

combinational logic blocks, and a control structure built of self-timed control modules. The 

power of this concept was shown in its application to describing the operation of the CDC 6600 

processor [85]. Several other works of a similar nature were published [132, 264, 242, 159]. 

Subsequently Narinder Singh developed a design methodology based on the earlier foundation 

studies [286, 287]. 

Suhas Patil developed the idea of usmg Petri nets as a specification language for digital 

systems. He adopted for his doctoral research the problem of effectively implementing a useful 

class of Petri nets ("coordination nets") in digital logic [262, 257]. His research on this topic led 

to invention of the asynchronous logic array [263], which became the basis for a commercial 

enterprise. 

One notorious issue for computer designers concerns synchronizers, devices that generate a 

pulse at the clock cycle next following the occurrence of an asynchronous event, typically a 

signal from an input or output device connected to a clocked computing system. It had long 

been known that such synchronizers will sometimes fail to perform correctly when the 

asynchronous event occurs within a critical interval of the clock transition. Our group has 

shown [239, 269] how asynchronous (self-timed) systems can be designed using asynchronous 

arbiters so that the function of synchronizing is performed, but without the hazard of incorrect 

operation always present in clocked systems using synchronizers. Patil showed that a bounded­

delay arbiter and a synchronizer are equivalent [258, 259]. He also argued that perfect 

synchronizers and bounded-delay arbiters cannot be built, whereas an arbiter that has no time 

bound on its response to input signals can be built and will operate perfectly. 



21 

In 1980 we recognized that the advent of VLSI technology yielding high-density circuits 

might change the relative merits of clocked and self-timed design. Our summer workshop that 

year was devoted to a review of old and new ideas on the subject and an evaluation of their 

applicability in the VLSI era [46]. 

Recently our investigations have born fruit in the work of Tam-Anh Chu [56, 57, 58]. He has 

discovered a powerful new methodology for designing self-timed logic. Application of his concepts 

together with strategic exploitation of the layout possibilities offered by VLSI technology has 

produced several very effective designs: a self-timed router device [59] that could be used to build 

arbitrarily large packet-switched networks; and a buffer element [60] that could be used in the 

construction of an even more efficient router device. These designs have been fabricated and 

tested, and show that self-timed designs can be realized with no more logic complexity or silicon 

area than conventional clocked designs. 

19 Semantic Theory for Functional Language and Architecture 

In his opening remarks to the 1977 IFIP Working Conference on Formal Description of 

Programming Concepts [102], Professor Dennis emphasized the potential role of semantic theory 

in establishing the ideal form (base language) for computer systems. Semantic theory is useful 

not only for the precise and complete definition of programming languages, but also for defining 

the behavior of computer systems. At one level, a semantic description may define the 

"language" the system presents to the user, meaning those facilities offered by the operating 

system and the hardware as well as those offered by the user's chosen programming language. 

Here it is understandability that is most important-the user must readily comprehend system 

features so that they may be put to effective use. At another level, a formal description may 

represent the detailed actions by the elements that make up the system's implementation. Here 

what is important is the ability to ascertain consistency of the description with the designs of 

the elements used. 

Our research group has been concerned with formal description techniques appropriate to 

these two levels of description, and with the methodology of establishing correctness (that Is, 

consistency of the implementation with the semantics of the user "language"). Our approach to 

semantic specification was inspired by the work at the IBM Vienna Laboratory [224]. The 

doctoral research of Henderson [178] is one of the earliest uses of sophisticated operational 

semantic models in studying issues in computer system design. A pioneering effort in this area 

was Rumbaugh's doctoral thesis [284, 285] in which he formalized his original data flow 

architecture at the two levels mentioned, and presented the mappings between the two formal 

models that establish correctness of his proposed system design. Miranker [238] used similar 

techniques to establish formally the validity of his mechanisms for data flow procedure 

implementation. 

The thesis of Ellis [140, 141] IS a deeper study of a narrower domain, that of packet 



22 

communication systems. He gives a formal method of specifying determinate systems that accept 

and send out streams of items (possibly unending), and shows how to establish formally that an 

interconnection of such systems satisfies its specification. 

The development of an adequate formal semantics for data flow programs was another area 

of interest. Dean Brock provided a consistent operational and denotational semantics for data 

flow program graphs and their corresponding expressions in the Val language [31, 32]. This work 

left open a crucial subject in semantic theory: the means of representing the behavior of 

nondeterminate actors (the nondeterminate merge actor) and programs containing them. The 

early proposals coming from the semantic theory community for mending the deficiency were not 

appealing to us because they lacked the property of being "fully abstract "-there was no 

composition rule that defined the semantics of a composite system in terms of the semantics of 

its components in a manner consistent with the operational semantics of data flow graphs. We 

wrestled with this problem for some time and developed some partial 

solutions [202, 199, 200, 201, 203]. Finally, the concept of scenarios was discovered by Brock 

and Ackerman [35, 36] and was refined into a theory of nondeterminate data flow 

programs [33, 34, 115]. 

A comprehensive bibliography of early literature on semantic theory was assembled by Steve 

Zilles [317]. 

20 Simulation 

Simulation serves several roles in the study of computer system architecture. It can be used 

to test validity of an architectural concept. It can be used to estimate performance of a 

computer system or subsystem for a hypothesized load. It can be used to validate the 

functionality of a detailed design expressed as a logic design, a silicon layout, microcode, or 

register transfer description. Our research has used simulation in all of these ways. 

The systems under study are themselves distributed systems of a special sort-packet 

communication systems. Randal Bryant has made contributions both to techniques for 

simulating packet communication systems [39, 40], and to carrying out simulation on 

distributed, multiprocessor computer systems [41, 42]. Simulation of our engineering model 

processing unit at the instruction set level was carried out by Resnick [277]. 

An early study of efficient digital logic simulation was done by Donald Smith [292, 293], and 

Randal Bryant introduced a very popular technology by developing switch-level simulation for 

VLSI circuits [43, 44, 45]. 



23 

21 General 

An important topic given insufficient attention by computer scientists is data bases. Since 

any practical computer system must provide support for data base storage and retrieval, we have 

been careful to ensure that our concepts of systems based on data flow principles are adequate to 

provide effective support for data base operations. The thesis research of 

Hawryskiewicz [124, 173, 174] showed how a relational data base model supporting multiple 

users and handling updates can be modeled on a base language substrate. In his doctoral thesis, 

Sheldon Borkin studied equivalence properties of the relational and semantic graph data 

models [25, 24, 26, 27]. 

Additional contributions by the research group include a review chapter on concurrent 

programming [48, 49, 47], a thesis comparing inductive program proof methods [160, 161], a 

primer for the Lisp machine [163], an example of programming with abstract data types [98], 

and a study of surveillance mechanisms [283]. The group has published a commentary on 

research directions in computer architecture [l18], and a lecture series on data flow models of 

computation [l15]. 

22 Conclusion 

The effort reviewed here has been gratifying to the principal investigator. The goal of 

bringing new ideas from the germ of thought to practical realization and application has been 

nearly achieved. Many research institutions have taken up study of variants inspired by work on 

data flow computation done at MIT, several companies have taken steps toward familiarization 

with the ideas, and commercial products have been anounced by Nippon Electric and by Loral 

Instrumentation. Data flow technology has been under consideration for several years for certain 

military uses. 

We appreciate the support provided by the sponsoring agencies during the period of 

development, and we are confident that the future will see their investment amply rewarded. 



24 

23 Personnel 

The personnel who worked with Professor Dennis on the data flow project are listed below 

with the degrees awarded on the basis of research done in the Computation Structures Group. 

Students marked with an asterisk (*) are currently enrolled in degree programs. 

Doctoral Students 

William B. Ackerman 
Sheldon A. Borkin 
George Andrew Boughton 
Jarvis Dean Brock 
Randal Everitt Bryant 

* Tam-Anh Chu 
Peter James Denning 
David J. Ellis 
Frederick C. Furtek 
Guang-Rong Gao 
Jeffrey Lee Gertz 
Bhaskar Guharoy * 
Michel Henri Theodore Hack 
Igor Titus Hawryskiewicz 
Prakash G. Hebalkar 
D. Austin Henderson, Jr. 
David Lee Isaman 

Suresh J agannathan * 

Paul Roman Kosinski 
Clement Kin Cho Leung 
John P. Linderman 
Fred Louis Luconi 
Suhas S. Patil 
Joseph E. Qualitz 
Chander Ramchandani 
Jorge E. Rodriguez 
James Rumbaugh 
Lawrence Seligman 
Donald Ray Slutz 
Earl Cornelius van Horn, Jr. 
Dean Hanawalt Vanderbilt 

Earl D. Waldin * 
Kung-Song Weng 

Master's Degree Students 

Surendra Nimal Amerasinghe 
Katsuhiko Amikura 
Donald J. Aoki 
Nena B. Bauman 

S.M. '77, Ph.D. '84 
S.M. '78, Ph.D. '79 
S.M. '78, Ph.D. '85 
S.M. '79, Ph.D. '83 
S.M. '77, Ph.D. '81 

S.M. '82, Ph.D.'87 
S.M. '65, Ph.D. '68 
Ph.D. '74 
Ph.D. '76 
S.M. '82, Ph.D. '86 
Ph.D. '70 

S.M. '85 
S.M. '72, Ph.D. '75 
Ph.D. '73 
S.M. '68, Ph.D. '70 
Ph.D. '75 
Ph.D. '79 

S.M. '85 
Ph.D '79 
S.M. '75, Ph.D. '81 
Ph.D. '73 
Ph.D. '68 
S.M. '67, Ph.D. '70 
S.M. '72, Ph.D. '75 
Ph.D. '74 
Ph.D. '67 
Ph.D. '75 

Ph.D. '68 
Ph.D. '66 
Ph.D. '69 

S.M. '75, Ph.D. '79 

S.M. '72 
S.M. '77 
S.M. '79 
S.M. '84 



Peter B. Bishop 
Ian Richard Campbell-Grant 
Carol Andrea Cesari 
John Blake Fosseen 
Paul Jeffrey Fox 
Thomas McDonough Gearing 
Irene Gloria Greif 
Thomas R. Hegg 
Bradley C. Kuszmaul 
Bruce P. Lester 
Jam es William Leth 
Jeffrey Bruce Lotspiech 
Glen Seth Miranker 
David P. Misunas 
Lynn B. Montz 
Richard Ribak 
Leo Joseph Rotenberg 
N arinder Pal Singh 
Arthur Anshel Smith 
Donald Leigh Smith 
Kevin B. Theobald 
Kenneth Wayne Todd 
Thomas S. Wanuga 
Michael J. Yachtman 

Undergraduate Students 

Jeslie R. Chermak 
Arnold Chien 
Timothy Richard Connelly 
Lawrence Crooks 
Gilbert Falk 
Arif M. Feridun 
Edward Flinker 
Thomas B. Freeman 
David Gero 
Cindy Gilbert 
Charles A. Goldman 
Edward H. Gornish 
Steven Grossman 
Walid M. Hamdy 
Howard Louis Helman 
James E. Holderle 
Robert G. Jacobsen 
Klunder, D.B. 
David Kravitz 
Dana Alfred Lasher 
Joel Lilienkamp 

25 

S.M. '72 
S.M. '71 
S.M. '81 
S.M. '72 
S.M. '73 
S.M. '73 
S.M. '72 
S.M. '83 
S.B. '84, S.M. '86 
S.M. '71 
S.M. '79 
S.M. '72 
S.M. '77 
S.B. '73, S.M. '75 
S.M. '80 
S.M. '68 
S.M. '66 
S.M. '81 
S.M. '66 
S.M. '66 

S.M. '81 
S.M. '85 

S.B. '76 
S.B. '80 
S.B. '66 
S.B. '76 
S.B. '65 
S.B. '78 
S.B. '72 
S.B. '77 
S.B. '72 

S.B. '86 
S.B. '86 
S.B. '77 

S.B. '65 
S.B. '84 
S.B. '78 
S.B. '71 
S.B. '85 
S.B. '65 
S.B. '80 



Beng-Hong Lim 
Edward H. Lyons 
David M. Marcovitz 
Steven C. Markowitz 
Mary E. McN ally 
Barbara J. Miglierina 
Martin George Morris 
David R. Nadler 
Timothy Peacock 
John L. Redford 
Paul E. Ressler 
Paul S. Ries 
Bernard Hugh Robinson 
Rex Carroll Ross 
Matthew S. Stern 
Raymond S. Tetrick 
William T.-C. Tsang 
Richard Tucker 
Tai-Lai Tung 
Ephraim M. Vishniac 
Michael Stephen Wolfberg 

Research Staff 

William B. Ackerman 
G. Andrew Boughton 
Denis J. Kfoury 
William Y.-P. Lim 
David P. Misunas 
John M. Myers 
Andrij Neczwid 
William W. Plummer 
Edward S. Shaw 
Pedro S. Thiagarajan 

Support Staff 

Visitors 

Marsha Baker 
Ilene Klang 
Anne Rubin 
Pamela Sedell 
Natalie F. Tarbet 

Gary Lindstrom 
Robert McNaughton 
Toshia Shimada 

26 

S.B. '86 
S.B. '86 
S.B. '86 
S.B. '84 
S.B. '78 
S.B. '76 
S.B. '72 
S.B. '78 
S.B. '83 
S.B. '79 
S.B. '79 
S.B. '80 
S.B. '75 
S.B. '66 
S.B. '82 
S.B. '79 

S.B. '80 

S.B. '79 
S.B. '63 



Bard Sorbye 
Joseph E. Stoy 
Jam es H. Vellenga 

24 Bibliography 

27 

1. Ackerman, W. B. Data flow languages. IEEE Computer 15, 2 (February 1982), 15-25. 

2. Ackerman, W. B. A Structure l\1emory for Data Flow Computers. Master's Th., Dept. of 
Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, September 1977. 

3. Ackerman, W. B. A Structure Controller for Data Flow Computers. MIT /LCS/TR-156, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, January, 1978. 

4. Ackerman, W. B. A structure processing facility for data flow computers. Proc. of 1978 
Intern. Conf. on Parallel Processing, Institute of Electrical and Electronics Engineers, 
Piscataway, N. J., 08854, New York, NY, August, 1978, pp. 166-172. 

5. Ackerman, W. B. Data Flow Languages. Computation Structures Group Memo 177, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, May, 1979. 

6. Ackerman, W. B. Data flow languages. Proc. of the 1979 Nat. Comp. Conf., June, 1979, pp. 
1087-1095. 

7. Ackerman, W. B. Processing Unit Programming Manual. MIT/LCS/TR-192, Computation 
Structures Group, Laboratory for Computer Science, MIT, Cambridge, MA 02139, April, 1980. 

8. Ackerman, W. B. Efficient Implementation of Applicative Languages. MIT /LCS/TR-323, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, March, 1984. 

9. Ackerman, W. B. Efficient Implementation of Applicative Languages. Ph.D. Th., Dept. of 
Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, April 1984. 

10. Ackerman, W. B. and Dennis, J. B. VAL-A Value-oriented Algorithmic Language: 
Preliminary Reference Manual. Report MIT /LCS/TR-218, Laboratory for Computer Science, 
MIT, Cambridge, MA 02139, June, 1979. 

11. Adams, D. A. A Computation Model with Data Flow Sequencing. Technical Report CS 
117, Computer Science Department, Stanford University, Stanford, CA, December, 1968. 

12. Amerasinghe, S. N. Handling of Procedure Variables in a Base Language. Master's Th., 
Department of Electrical Engineering and Computer Science, MIT, Cambridge, Mass., September 
1972. 

13. Amerasinghe, S. N. and Henderson, D. A., Jr. A Contour Model Evaluator for Lambda­
Calculus Expressions, Computation Structures Group Memo 74, Project MAC, MIT, Cambridge, 
MA 02139, February, 1972. 

14. Amikura, K. A Logic Design for the Cell Block of a Data Flow Processor. 
MIT /LCS/TM-93, Laboratory for Computer Science, MIT, Cambridge, MA 02139, December, 
1977. 



28 

15. Arvind and Brock, J. D. Streams and managers . Proc. of the Fourteenth IBM Computer 
Science Symposium, June, 1982. Superseded by Arvind and Brock, J. D., Resource Managers in 
Functional Programming. J. of Parallel and Distributed Computing 1, (1984), 5-21. 

16. Arvind, Gostelow, K., and Plouffe, W. The (Preliminary) Id Report: An Asynchronous 
Programming Language and Computing Machine. Technical Report 114, Department of 
Information and Computer Science, University of California, Irvine, September, 1978. 

17. Arvind, Kathail, V. and Pingali, K. A Dataflow Architecture with Tagged Tokens. 
MIT /LCS/TM-174, Laboratory for Computer Science, MIT, Cambridge, MA 02139, September, 
1980. 

18. Arvind and Kathail, V. A multiple processor dataflow machine that supports generalized 
procedures. Proc. of the Eighth Ann. Symp. on Computer Architecture, May, 1981, pp. 291-296. 

19. Arvind, and Kathail, V. A Multiple Processor Dataflow Machine that Supports Generalized 
Procedures. Computation Structures Group Memo 205-1, Laboratory for Computer Science, 
MIT, Cambridge, MA 02139, June, 1981. 

20. Baker, H. Petri Nets and Languages. Computation Structures Group Memo 68, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, May, 1972. 

21. Bauman, N. A Debugging Process for Static Programs. Master's Th., Department of 
Computer Science and Electrical Engineering, MIT, Cambridge, Mass., September 1984. 

22. Bauman, N. and Iannucci, R. A. A Methodology for Debugging Data Flow Programs. 
MIT /LCS/TR-219, Laboratory for Computer Science, MIT, Cambridge, MA 02139, October, 
1982. 

23. Bishop, P. B. Data Types for Programming Generality. Master's Th., Dept. of Electrical 
Engineering and Computer Science, MIT, Cambridge, MA 02139, June 1972. 

24. Borkin, S. Data model equivalence. Proc. of the Fourth Intern. Conf. on Very Large Data 
Bases, IEEE, New York, NY, September, 1978, pp. 526-534. 

25. Borkin, S. Data Model Equivalence. Computation Structures Group Memo 217, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, February, 1978. 

26. Borkin, S. Equivalence Properties of Semantic Data Models for Data Bases. 
MIT /LCS/TR-206, Laboratory for Computer Science, MIT, Cambridge, MA 02139, January, 
1979. 

27. Borkin, S. Equivalence Properties of Semantic Data Models for Data Bases. Ph.D. Th., 
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, January 
1979. 

28. Boughton, G. A. Routing Networks for Packet Communication Systems. 
MIT /LCS/TR-341, Laboratory for Computer Science, MIT, Cambridge, MA 02139, June, 1985. 

29. Boughton, G. A. Routing Networks in Packet Communication Architectures. Master's 
Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, June 
1978. 



29 

30. Boughton, G. A. Routing Networks for Packet Communication Systems. Ph.D. Th., 
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, September 
1985. 

31. Brock, J. D. Consistent semantics for a dataflow language. In Lecture Notes in Computer 
Science, Volume 88: Mathematical Foundations of Computer Science. Springer-Verlag, Berlin, 
Heidelberg, New York, 1980, pp. 168-180. 

32. Brock, J. D. Consistent Semantics for a Dataflow Language. Computation Structures 
Group Memo 172, Laboratory for Computer Science, MIT, Cambridge, MA 02139, January, 
1979. 

33. Brock, J. D. A Formal Model of Non-determinate Data Flow Computation. Ph.D. Th., 
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, August 
1984. 

34. Brock, J. D. A Formal Model of Non-determinate Data Flow Computation. 
MIT /LCS/TR-309, Laboratory for Computer Science, MIT, Cambridge, MA 02139, October, 
1984. 

35. Brock, J. D. and Ackerman, W. B. Scenarios: A Model of Non-determinate Computation. 
Computation Structures Group Memo 206, Laboratory for Computer Science, MIT, Cambridge, 
MA 02139, February, 1981. 

36. Brock, J. D. and Ackerman, W. B. Scenarios: a model of non-determinate computation. In 
Lecture Notes in Computer Science, Volume 107: Formalization of Mathematical Concepts. 
Springer-Verlag, Berlin, Heidelberg, New York, 1981, pp. 252-259. 

37. Brock, J. D. and Montz, L. Translation and optimization of data flow programs. Proc. of 
the 1979 Intern. Conf. on Parallel Processing, IEEE, New York, NY, August, 1979, pp. 46-54. 

38. Brock, J. D. and Montz, L. Translation and Optimization of Data Flow Programs. 
Computation Structures Group Memo 181, Laboratory for Computer Science, MIT, Cambridge, 
MA 02139, July, 1979. 

39. Bryant, R. E. Simulation of Packet Communication Architecture Computer Systems. 
MIT /LCS/TR-188, Laboratory for Computer Science, MIT, Cambridge, MA 02139, November, 
1977. 

40. Bryant, R. E. Simulation of Packet Communication Architecture Computer Systems. 
Master's Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 
02139, November 1977. 

41. Bryant, R. E. Simulation on a distributed system. Proc. of the First Intern. Conf. on 
Distributed Computing Systems, IEEE, New York, NY, October, 1979, pp. 544-552. 

42. Bryant, R. E. Simulation on a Distributed System. Computation Structures Group Memo 
182, Laboratory for Computer Science, MIT, Cambridge, MA 02139, July, 1979. 

43. Bryant, R. E. An algorithm for MOS logic simulation. Lambda Magazine I (Fourth 
Quarter 1980), 46-53. 



30 

44. Bryant, R. E. A Switch-level Simulation Model for Integrated Logic Circuits. 
MIT /LCS/TR-259, Laboratory for Computer Science, MIT, Cambridge, MA 02139, March, 1981. 

45. Bryant, R. E. A Switch-level Simulation Model for Integrated Logic Circuits. Ph.D. Th., 
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, March 1981. 

46. Bryant, R. E. Report on the Workshop for Self-timed Systems. MIT /LCS/TM-166, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, May, 1981. 

47. Bryant, R. E. and Dennis, J. B. Concurrent Programming. In Research Directions in 
Software Technology. MIT Press, Cambridge, MA 02139, 1978, pp. 584-610. 

48. Bryant, R. E. and Dennis, J. B. Concurrent Programming. Computation Structures Group 
Memo 148-2, Laboratory for Computer Science, MIT, Cambridge, MA 02139, June, 1978. 

49. Bryant, R. E. and Dennis, J. B. Concurrent Programming. MIT /LCS/TM-115, Laboratory 
for Computer Science, MIT, Cambridge, MA 02139, October, 1978. 

50. Campbell-Grant, I. The Controlled Execution of Parallel Programs Operating on 
Structured Data. Master's Th., Dept. of Electrical Engineering and Computer Science, MIT, 
Cambridge, MA 02139, January 1971. 

51. Cesari, C. A. Applications of a Data Flow Architecture to Computer Music Synthesis. 
MIT/LCS/TR-257, Laboratory for Computer Science, MIT, Cambridge, MA 02139, February, 
1981. 

52. Cesari, C. A. Applications of a Data Flow Architecture to Computer Music Synthesis. 
Master's Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 
02139, January 1981. 

53. Chermak, J. C. Packet Communication Discipline in Microprocessor, Microprocessing, 
Packet-driven System. Unpublished S.B. thesis, Dept. of Electrical Engineering and Computer 
Science, MIT, Cambridge, MA 02139. 

54. Chien, A. Structuring the Fast Fourier Transform for Data Flow Computation. 
Computation Structures Group Memo 193, Laboratory for Computer Science, MIT, Cambridge, 
MA 02139, June, 1980. 

55. Chien, A. Structuring the Fast Fourier Transform for Dataflow Computation. S.B. thesis, 
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139. 

56. Chu, T.-A. A Design Strategy for Testable Self-timed Systems. Computation Structures 
Group Memo 216, Laboratory for Computer Science, MIT, Cambridge, MA 02139, April, 1982. 

57. Chu, T.-A. Circuit Analysis of Self-timed Elements for NMOS VLSI Systems. 
MIT /LCS/TM-220, Laboratory for Computer Science, MIT, Cambridge, MA 02139, May, 1982. 

58. Chu, T.-A. The Design, Implementation and Testing of a Self-timed Two-by-Two Packet 
Router. Computation Structures Group Memo 225, Laboratory for Computer Science, MIT, 
Cambridge, MA 02139, February, 1983. 



31 

59. Chu, T.-A. Design of a CMOS Self-timed Two-by-Two Packet Router. Computation 
Structures Group Memo 242, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
December, 1984. 

60. Chu, T.-A. Design of a VLSI Self-timed Ring Buffer Using Signal Transition Graphs. 
Computation Structures Group Memo 247, Laboratory for Computer Science, MIT, Cambridge, 
MA 02139, March, 1985. 

61. Conway, M. E. A multiprocessor system design. AFIPS Conference Proceedings, 1963, pp. 
139-146. 

62. Conway, M. E. Design of a separable transition-diagram compiler. Communications of 
the ACM 6, 7 (July 1963), 396-408. 

63. Corbato, F. J. Multics-the first seven years. AFIPS Conference Proceedings, 1972, pp. 
571-583. 

64. Corbato, F. J., and Vyssotsky, V. A. Introduction and Overview of the Multics System. 
AFIPS Conference Proceedings, 1965, pp. 185-196. 

65. Cornish, M. The TI dataflow architecture: the power of concurrency for avionics. Proc. of 
the Third Digital Avionics Systems Conf., 1979, pp. 19-25. 

66. Crooks, L. Analysis of Airplane Collision Avoidance Algorithm. Unpublished S.B. thesis, 
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139. 

67. Daley, R. C. and Dennis, J. B. Virtual memory, processes and sharing Multics. Proc. of the 
Sym. on Operating System Principles, October, 1967. 

68. Daley, R. C. and Dennis, J. B. Virtual memory, processes and sharing in Multics. 
Communications of the ACM 11, 5 (May 1968), 306-312. 

69. Denning, P. J. On the determinacy of schemata. Record of the Project MAC Conference 
on Concurrent Systems and Parallel Computation, New York, NY, 1970, pp. 143-147. 

70. Denning, P. J. Queueing Models for File Memory Operation. MIT/LCS/TR-21, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, October, 1965. 

71. Denning, P. J. The working set model for program behavior. Proc. of the Symp. on 
Operating System Principles, October, 1967. 

72. Denning, P. J. Effects of scheduling on file memory operations. Proc. of the Spring Joint 
Computer Conf., AFIPS, Washington, DC, 1967, pp. 9-21. 

73. Denning, P. J. The working set model for program behavior. Communications of the 
ACM 11, 5 (May 1968), 323-333. 

7 4. Denning, P. J. Resource Allocation in Multiprocess Computer Systems. MIT /LCS/TR-50, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, May, 1968. 

75. Denning, P. J. Resource Allocation in Multiprocess Computer Systems. Ph.D. Th., Dept. 
of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, May 1968. 



32 

76. Dennis, J. B. On the exchange of information. Computation Structures Group Memo 52, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, October, 1970. 

77. Dennis, J. B. On the exchange of information. Proceeding of ACM-SIGFIDET Workshop 
on Data Description and Access, New York, NY, 1970. 

78. Dennis, J. B. Data flow ideas for supercomputers. Proc. of the Twenty-eighth IEEE 
Computer Society Conf., February, 1984, pp. 15-19. 

79. Dennis, J. B. Dataflow computation: a case study. In Computer Architecture: Concepts 
and Systems. V. Milutinovic, Ed., Elsevier, New York, 1987. 

80. Dennis, J. B. Program Structure in a Multi-access Computer. MIT /LCS/TR-11, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, May, 1964. 

81. Dennis, J. B. Segmentation and the design of multiprogrammed computer systems. 
Journal of the ACM 8, 10 (October 1965), 589-602. 

82. Dennis, J. B. A position paper on computing and communications. Proc. of the Symp. on 
Operating System Principles, ACM, October, 1967. 

83. Dennis, J. B. A position paper on computing and communications. Communications of 
the ACM 11, 5 (May 1968), 370-377. 

84. Dennis, J. B. Programming generality, parallelism and computer architecture. In 
Information Processing 68. North-Holland, Amsterdam, 1969, pp. 484-492. 

85. Dennis, J. B. Modular, asynchronous control structures for a high performance processor. 
Record of the Project MAC Conference on Concurrent Systems and Parallel Computation, ACM, 
New York, 1970, pp. 55-80. 

86. Dennis, J. B. On the design and specification of a common base language. Proc. of the 
Symposium on Computers and Automata, Brooklyn, NY, 1971, pp. 47-74. 

87. Dennis, J. B. Coroutines and parallel computation. Princeton Conference on Information 
Sciences and Systems, Princeton, NJ, March, 1971, pp. 293-294. 

88. Dennis, J. B. Management of Names in a Computer System. Computation Structures 
Group Memo 63, Laboratory for Computer Science, MIT, Cambridge, MA 02139, November, 
1971. 

89. Dennis, J. B. Design and Construction of Software Systems. Computation Structures 
Group Memo 69, Laboratory for Computer Science, MIT, Cambridge, MA 02139, June, 1972. 

90. Dennis, J. B. Concurrency in Software Systems. Computation Structures Group Memo 
65-1, Laboratory for Computer Science, MIT, Cambridge, MA 02139, June, 1972. 

91. Dennis, J. B. Modularity. Computation Structures Group Memo 70, Laboratory for 
Computer Science, MIT, Cambridge, MA 02139, June, 1972. 

92. Dennis, J. B. A multiuser computation facility for education and research. 
Communications of the ACM 1, 9 (September 1974), 521-529. 



33 

93. Dennis, J. B. First version of a data flow procedure language. In Lecture Notes in 
Computer Science, Volume 19: Programming Symposium. B. Robinet, Ed., Springer-Verlag, 
Berlin, Heidelberg, New York, 1974, pp. 362-376. 

94. Dennis, J. B. On Storage Management for Advanced Programming Languages. 
Computation Structures Group Memo 109, Laboratory for Computer Science, MIT, Cambridge, 
MA 02139, November, 1974. 

95. Dennis, J. B. Packet communication architecture. Proc. of the 1975 Sagamore Conf. on 
Parallel Processing, 1975, pp. 224-229. 

96. Dennis, J. B. Modularity; Concurrency in software systems; and On the design and 
construction of software systems. In Lecture Notes In Computer Science, Volume 30: Software 
Engineering: An Advanced Course. Springer-Verlag, Berlin, Heidelberg, New York, 1975, pp. 
12-28, 111-127, 128-182. 

97. Dennis, J.B. Packet Communication Architecture. Computation Structures Group Memo 
130, Laboratory for Computer Science, MIT, Cambridge, MA 02139, August, 1975. 

98. Dennis, J. B. An Example of Programming with Abstract Data Types. Computation 
Structures Group Memo 131, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
September, 1975. 

99. Dennis, J. B. Proposed Research on Architectural Principles for Large Memory Systems. 
Computation Structures Group Memo 132, Laboratory for Computer Science, MIT, Cambridge, 
MA 02139, October, 1975. 

100. Dennis, J. B. Computer architecture and the cost of software. ACM Computer 
Architecture News 4 (April 1976). 

101. Dennis, J. B. Computer Architecture and the Cost of Software. Computation Structures 
Group Memo 140, Laboratory for Computer Science, MIT, Cambridge, MA 02139, July, 1976. 

102. Dennis, J. B. Opening Remarks to the IFIP vVorking Conference on Formal Description of 
Programming Concepts (Saint Andrews, NB, Canada). Computation Structures Group Memo 
152, Laboratory for Computer Science, MIT, Cambridge, MA 02139, September, 1977. 

103. Dennis, J. B. A language design for structured concurrency. In Lecture Notes in 
Computer Science, Volume 54: Design and Implementation of Programming Languages. J. 
H. Williams and D. A. Fisher, Eds., Springer-Verlag, Berlin, Heidelberg, New York, 1977. 

104. Dennis, J. B. Data Flow Computer Architecture. Computation Structures Group Memo 
160, Laboratory for Computer Science, MIT, Cambridge, MA 02139, May, 1978. Research 
proposal submitted to the Department of Energy. 

105. Dennis, J. B. Data Flow Computer Architecture. Computation Structures Group Memo 
174, Laboratory for Computer Science, MIT, Cambridge, MA 02139, March, 1979. Research 
proposal submitted to the National Science Foundation. 

106. Dennis, J. B. The varieties of data flow computers. Proc. of the First Intern. Conf. on 
Distributed Computing Systems, Huntsville, AL, October, 1979, pp. 430-439. 



34 

107. Dennis, J.B. The Varieties of Data Flow Computers. Computation Structures Group 
Memo 183-1, Laboratory for Computer Science, MIT, Cambridge, MA 02139, August, 1979. 

108. Dennis, J. B. Data Flow Computer Architecture. Computation Structures Group Memo 
198, Laboratory for Computer Science, MIT, Cambridge, MA 02139, July, 1980. Research 
proposal submitted to the Department of Energy. 

109. Dennis, J. B. Data flow supercomputers. IEEE Computer 13, 11 (November 1980), 48-56. 

110. Dennis, J. B. An operational semantics for a language with early completion data 
structures. In Lecture Notes in Computer Science, Volume 101: Formal Description of 
Programming Concepts. Springer-Verlag, Berlin, Heidelberg, New York, 1981, pp. 260-267. 

111. Dennis, J. B. An Operational Semantics for a Language with Early Completion Data 
Structures. Computation Structures Group Memo 207, Laboratory for Computer Science, MIT, 
Cambridge, MA 02139, February, 1981. 

112. Dennis, J. B. Data Should Not Change: A Model for a Computer System. Computation 
Structures Group Memo 209, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
July, 1981. 

113. Dennis, J. B .. High Speed Data Flow Computer Architecture for the Solution of Navier­
Stokes Equations. Laboratory for Computer Science, MIT, Cambridge, MA 02139, 1982. 

114. Dennis, J. B. High Speed Data Flow Computer Architecture for the Solution of Navier­
Stokes Equations. Computation Structures Group Memo 225, Laboratory for Computer Science, 
MIT, Cambridge, MA 02139, March, 1983. 

115. Dennis, J. B. Data flow models of computation. In Control Flow and Data Flow: 
Concepts of Distributed Programming. M. Broy, Ed., Springer-Verlag, Berlin, Heidelberg, New 
York, 1984. 

116. Dennis, J. B., Boughton, G. A., and Leung, C. Building blocks for data flow prototypes. 
Proc. of the Seventh Ann. Syrop. on Computer Architecture, LaBaule, France, May, 1980, pp. 
1-8. 

117. Dennis, J. B., Boughton, G. A., and Leung, C. Building Blocks for Data Flow Prototypes. 
Computation Structures Group Memo 190, Laboratory for Computer Science, MIT, Cambridge, 
MA 02139, February, 1980. 

118. Dennis, J. B. et al .. Research Directions in Computer Architecture. Computation 
Structures Group Memo 114, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
September, 1978. 

119. Dennis, J. B., Fosseen, J. B. and Linderman, J. P. Data flow schemas. In Lecture Notes in 
Computer Science, Volume 5: International Symposium on Theoretical Programming. 
Springer-Verlag, Berlin, Heidelberg, New York, 1972, pp. 187-215. Also published in Russian. 

120. Dennis, J. B. and Gao, G-R. Maximum Pipelining of Array Operations on Static Data 
Flow Machine. Computation Structures Group Memo 233, Laboratory for Computer Science, 
MIT, Cambridge, MA 02139, November, 1983. 



35 

121. Dennis, J. B. and Gao, G-R. Maximum pipelining of array operations on static data flow 
machine. Proc. of Intern. Conf. on Parallel Processing, August, 1983, pp. 331-335. 

122. Dennis, J. B., Gao, G-R., and Todd, K. W. R. A Data Flow Supercomputer. 
Computation Structures Group Memo 213, Laboratory for Computer Science, MIT, Cambridge, 
MA 02139, March, 1982. 

123. Dennis, J. B., Gao, G-R., and Todd, K. W. R. Modeling the weather with a data flow 
supercomputer. IEEE Transactions on Computers C-33, 7(July 1984), 592-603. 

124. Dennis, J. B. and Hawryszkiewicz, I. T. An approach to proving the correctness of data 
base operations. In Workshop on Data Base Description, Access and Control. ACM, 1973. 

125. Dennis, J. B., Lim, W. L.-P., and Ackerman, W. B. The MIT data flow engineering 
model. Information Processing, IFIP, 1983, pp. 553-560. 

126. Dennis, J. B., Leung, C. and Misunas, D. A Highly Parallel Computer Using a Data Flow 
Machine Language. Computation Structures Group Memo 134-1, Laboratory for Computer 
Science, MIT, Cambridge, MA 02139, June, 1979. 

127. Dennis, J. B., Lim, W. L.-P., and Ackerman, W. B. The MIT Data Flow Engineering 
Model. Computation Structures Group Memo 222, Laboratory for Computer Science, MIT, 
Cambridge, MA 02139, November, 1982. 

128. Dennis, J.B. and Misunas, D. P. A computer architecture for highly parallel signal 
processing. Proc. of the 1974 National Conf., ACM, 1974, pp. 402-409. 

129. Dennis, J. B. and Misunas, D. P. A preliminary architecture for a basic data flow 
computer. Proc. of the Second Ann. Symp. on Computer Architecture, IEEE, New York, NY, 
1975. 

130. Dennis, J. B. and Misunas, D. P. A Preliminary Architecture for a Basic Data Flow 
Computer. Computation Structures Group Memo 102, Laboratory for Computer Science, MIT, 
Cambridge, MA 02139, August, 1975. 

131. Dennis, J. B., Misunas, D. P., and Leung, C. A Highly Parallel Processor Based on the 
Data Flow Concept. Computation Structures Group Memo 134, Laboratory for Computer 
Science, MIT, Cambridge, MA 02139, January, 1976. Superceded by CSG Memo 134-1, June 
1977, and CSG Memo 134-2, June 1980. 

132. Dennis, J. B. and Patil, S. S. Speed independent asynchronous circuits. Proc. of the 
Fourth Hawaii Intern. Conf. on System Sciences, 1971, pp. 55-58. 

133. Dennis, J. B., Stoy, J. E., and Guharoy, B. VIM: An Experimental Multi-User System 
Supporting Functional Programming. Computation Structures Group Memo 238, Laboratory for 
Computer Science, MIT, Cambridge, MA 02139, April, 1984. 

134. Dennis, J. B., Stoy, J. E., and Guharoy, B. VIM: an experimental multi-user system 
supporting functional programming. Proc. of the Workshop on High-level Computer 
Architecture, May, 1984. 



36 

135. Dennis, J. B. and van Horn, E. Programming Semantics for Multiprogrammed 
Computations. MIT/LCS/TR-21, Laboratory for Computer Science, MIT, Cambridge, MA 
02139, December, 1965. 

136. Dennis, J. B. and van Horn, E. Programming semantics for multiprogrammed 
computations. Communications of the ACM 9, 3 (March 1966), 143-155. 

137. Dennis, J.B. and Weng, K.-S. An abstract implementation for concurrent computation 
with streams. Proc. of the 1979 Conf. on Parallel Processing, August, 1979, pp. 35-45. 

138. Dennis, J. B. and Weng, K.-S. Application of Data Flow Computation to the Weather 
Problem. Computation Structures Group Memo 147, Laboratory for Computer Science, MIT, 
Cambridge, MA 02139, May, 1977. 

139. Ellis, D. J. Semantics of Data Structures. MIT /LCS/TR-134, Laboratory for Computer 
Science, MIT, Cambridge, MA 02139, August, 1974. 

140. Ellis, D. J. Formal Specification for Packet Communication Systems. MIT/LCS/TR-189, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, November, 1977. 

141. Ellis, D. J. Formal Specification for Packet Communication Systems. Ph.D. Th., Dept. 
of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, November 1977. 

142. Fabry, R. S. Capability-based addressing. Communications of the ACM 17, 7 (July 
1974), 403-412. 

143. Fano, R. M. The MAC system: the computer utility approach. IEEE Spectrum 2, 1 
(January 1965). 

144. Fano, R. M., and Corbato, F. J. Time-sharing on computers. Scientific American 215, 3 
(September 1966), 128-140. 

145. Feridun, A. Design of a Byte-level Pipelined Arithmetic Processor. Computation 
Structures Group Memo 162, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
July, 1978. 

146. Feridun, A. M. Design of an On-line Byte-level Pipelined Arithmetic Processor. 
Bachelor's Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 
02139, June 1978. 

147. Fosseen, J.B. Representation of Algorithms by Maximally Parallel Schemata. Master's 
Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, June 
1972. 

148. Fox, P. J. Representation of Parallel Computation on Data Structures. Master's Th., 
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, January 
1973. Also submitted for the E.E. degree, January 1973. 

149. Freeman, T. B. A Data Flow Program for Numerical Weather Prediction. Bachelor's 
Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, ~1A 02139, June 
1977. 



37 

150. Furtek F. The Logic of Systems. MIT /LCS/TR-170, Laboratory for Computer Science, 
MIT, Cambridge, MA 02139, December, 1976. 

151. Gao, G.-R. A Pipelined Code Mapping Scheme for Static Data Flow Computers. Ph.D. 
Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, August 
1986. 

152. Gao, G.-R. A Pipelined Code Mapping Scheme for Static Data Flow Computers. 
MIT /LCS/TR-371, Laboratory for Computer Science, MIT, Cambridge, MA 02139, August, 
1986. 

153. Gao, G-R. An Implementation Scheme for Array Operations in Static Data Flow 
Computers. MIT /LCS/TR-280, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
August, 1982. 

154. Gao, G-R. An Implementation Scheme for Array Operations in Static Data Flow 
Computers. Master's Th., Dept. of Electrical Engineering and Computer Science, MIT, 
Cambridge, MA 02139, June 1982. 

155. Gao, G-R. A Maximally Pipelined Tridiagonal Linear Equation Solver. Computation 
Structures Group Memo 254, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
August, 1985. 

156. Gearing, T. M. An Alternate Approach to the Furnag Problem in the Base Language. 
Master's Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 
02139, January 1973. 

157. Gertz, J. Hierarchical Associative Memories for Parallel Computation. MIT /LCS/TR-69, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, June, 1970. 

158. Gertz, J. Hierarchical Associative Memories for Parallel Computation. Ph.D. Th., 
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, June 1970. 

159. Goldberg, H. J. An Asynchronous Model of a Small Computer. Computation Structures 
Group Memo 133, Laboratory for Computer Science, MIT, Cambridge, MA 02139, October, 
1975. 

160. Greif, I. Induction in Proofs About Programs. MIT /LCS/TR-93, Laboratory for 
Computer Science, MIT, Cambridge, MA 02139, February, 1972. 

161. Greif, I. Induction in Proofs About Programs. Master's Th., Dept. of Electrical 
Engineering and Computer Science, MIT, Cambridge, MA 02139, February 1972. 

162. Grossman, S. A Data flow Machine for an Airplane Collision Avoidance Network. 
Bachelor's Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 
02139, June 1977. 

163. Guharoy, B. A Primer for the Lisp Machine. Computation Structures Group Memo 237, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, March, 1984. 

164. Guharoy, B. Data Structure Management in a Data Flow Computer System. Master's 
Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, May 
1985. 



38 

165. Guharoy, B. Data Structure Management in a Data Flow Computer System. 
MIT /LCS/TR-355, Laboratory for Computer Science, MIT, Cambridge, MA 02139, May, 1985. 

166. Hack, M. Decidability Questions for Petri Nets. MIT /LCS/TR-161, Laboratory for 
Computer Science, MIT, Cambridge, MA 02139, June, 1976. 

167. Hack, M. Decidability Questions for Petri Nets. Ph.D. Th., Dept. of Electrical 
Engineering and Computer Science, MIT, Cambridge, MA 02139, June 1976. 

168. Hack, M. Analysis of Production Schemata by Petri Nets. MIT /LCS/TR-94, Laboratory 
for Computer Science, MIT, Cambridge, MA 02139, February, 1972. 

169. Hack, M. Analysis of Production Schemata by Petri Nets. Master's Th., Dept. of 
Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, February 1972. 

170. Hack, M. Extended State-Machine Allocatable Nets (ESMA), and Extension of Free 
Choice Petri Net Results. Computation Structures Group Memo 78, Project MAC, MIT, 
Cambridge, MA 02139, May, 1973. 

171. Hack, M. Decision Problems for Petri Nets and Vector Addition Systems. 
MIT /LCS/TM-59, Laboratory for Computer Science, MIT, Cambridge, MA 02139, March, 1975. 

172. Hack, M. Petri Net Languages. MIT/LCS/TR-159, Laboratory for Computer Science, 
MIT, Cambridge, MA 02139, March, 1976. 

173. Hawryskiewicz, I. Semantics of Data Base Systems. MIT /LCS/TR-112, Laboratory for 
Computer Science, MIT, Cambridge, MA 02139, December, 1973. 

17 4. Hawryskiewicz, I. Semantics of Data Base Systems. Ph.D. Th., Dept. of Electrical 
Engineering and Computer Science, MIT, Cambridge, MA 02139, December 1973. 

175. Hebalkar, P. G. Deadlock-free Sharing of Resources in Asynchronous Systems. Ph.D. 
Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, 
September 1970. 

176. Hebalkar, P. G. Asynchronous Cooperative Multiprocessing within Multics. Master's 
Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, June 
1968. 

177. Hebalkar, P. G. Deadlock-free Sharing of Resources in Asynchronous Systems. 
MIT /LCS/TR-75, Laboratory for Computer Science, MIT, Cambridge, MA 02139, September, 
1970. 

178. Henderson, D. A. The Binding Model: A Semantic Base for Modular Programming 
Systems. MIT /LCS/TR-145, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
February, 1975. 

179. Hewitt, C. Viewing control structures as patterns of message passing. Artificial 
Intelligence 8 (1977), 323-364. 

180. Hoare, C. A. R. Monitors: an operating system structuring concept. Communications of 
the ACM 17, 10 (October 1975), 549-557. 



39 

181. Holderle, J. A Parser for the Language PADL. Bachelor's Th., Dept. of Electrical 
Engineering and Computer Science, MIT, Cambridge, MA 02139, August 1983. 

182. Holderle, J. A Parser for the Language PADL. Computation Structures Group Memo 
234, Laboratory for Computer Science, MIT, Cambridge, MA 02139, November, 1983. 

183. Holt, A., and Commoner. F. Events and Conditions. Record of the Project MAC 
Conference on Concurrent Systems and Parallel Computation, Association for Computing 
Machinery, New York, NY, 1970, pp. 3-52. 

184. Hong, P. Analysis of Buffering Requirements in a Data Flow Processor. Bachelor's 
Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, June 
1977. 

185. IBM. IBM System/38 Technical Developments. IBM General Systems Division, 1978. 

186. Isaman, D. Data-structuring Operations in Concurrent Computations. 
MIT /LCS/TR-224, Laboratory for Computer Science, MIT, Cambridge, MA 02139, October, 
1979. 

187. Isaman, D. Data-structuring Operations in Concurrent Computations. Ph.D. Th., Dept. 
of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, October 1979. 

188. Jacobsen, R. G. and Misunas, D. P. Analysis of structures for packet communication. 
Proc. of the 1977 Intern. Conf. on Parallel Processing, IEEE, New York, NY, August, 1977, pp. 
38-43. 

189. Jacobsen, R. G. Analysis of Structures for Packet Sorting Networks. Bachelor's Th., 
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, June 1978. 

190. Jacobsen, R. G. and Misunas, D. P. Analysis of Structures for Packet Communication. 
Computation Structures Group Memo 151, Laboratory for Computer Science, MIT, Cambridge, 
MA 02139, August, 1977. 

191. Jagannathan, S. Data Backup and Recovery in a Computer Architecture for Functional 
Programming. Master's Th., Dept. of Electrical Engineering and Computer Science, MIT, 
Cambridge, MA 02139, October 1985. 

192. Jagannathan, S. Data Backup and Recovery in a Computer Architecture for Functional 
Programming. MIT /LCS/TR-353, Laboratory for Computer Science, MIT, Cambridge, MA 
02139, October, 1985. 

193. Johnson. D., et. al. Automatic Partitioning of Programs in Multiprocessor Systems. 
COMPCON Spring 80, Institute of Electrical and Electronics Engineers, Piscataway, N. J., 
08854, February, 1980, pp. 175-178. 

194. Kahn, G. The semantics of a simple language for parallel programming. In Information 
Processing 14. North Holland, Amsterdam, 1974, pp. 471-475. 

195. Karp, R. M., and Miller, R. E. Properties of a model for parallel computations: 
determinacy, termination, queueing. SIAM Journal of Applied Mathematics 14, 6 (November 
1966), 1390-1411 ". 



40 

196. Karp, R. M., and Miller, R. E. Parallel program schemata. Journal of Computer and 
System Sciences 3, 2 (May 1969), 147-195. 

197. Keller, R., Lindstrom, G., and Patil, S. A loosely-coupled applicative multi-processing 
system. Proc. of the National Computer Conference, Association for Computing Machinery, 
June, 1979, pp. 613-622. 

198. Kosinski, P. R. A Data Flow Programming Language. RC4264, IBM T. J. Watson 
Research Center, Yorktown Heights, NY, 1973. 

199. Kosinski, P. R. A Straightforward Denotational Semantics for Non-determinate Data 
Flow Programs. Computation Structures Group Memo 157, Laboratory for Computer Science, 
MIT, Cambridge, MA 02139, January, 1977. 

200. Kosinski, P. R. A straightforward denotational semantics for non-determinate data flow 
programs. Proc. of the Fifth ACM Symposium on Principles of Programming Languages, 
January, 1978, pp. 214-219. 

201. Kosinski, P. R. Denotational Semantics of Determinate and Non-determinate Data Flow 
Programs. MIT /LCS/TR-220, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
January, 1979. 

202. Kosinski, P. R. Mathematical Semantics and Data Flow Programming. Computation 
Structures Group Memo 135, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
December, 1976. 

203. Kosinski, P. R. Denotational Semantics of Determinate and Non-determinate Data 
Flow. Ph.D. Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 
02139, January 1979. 

204. Kung, H. T. Why systolic architecture? IEEE Computer 16, 1 (1982), 37-46. 

205. Kurokawa, H., Matsumoto, K., Temma, T., Iwashita, M., and Nukiyama, T. The 
architecture and performance of image pipeline processor. Proc. of IFIP WC 10.5 Intern. 
Conference on Very Large Scale Integration, 1983. 

206. Kuszmaul, B. C. Type-checking in Vim Val. MIT /LCS/TR-309, Laboratory for Computer 
Science, MIT, Cambridge, MA 02139, June, 1984. 

207. Kuszmaul, B.C. Type-checking in Vim Val. Bachelor's Th., Dept. of Electrical Engineering 
and Computer Science, MIT, Cambridge, MA 02139, June 1984. 

208. Lester, B. Cost Analysis of Debugging Systems. MIT /LCS/TR-90, Laboratory for 
Computer Science, MIT, Cambridge, MA 02139, September, 1971. 

209. Leung, C. K.-C. Formal Properties of Well-formed Data Flow Schemas. 
MIT /LCS/TM-66, Laboratory for Computer Science, MIT, Cambridge, MA 02139, June, 1975. 

210. Leung, C. K.-C. Formal Properties of Well-formed Data Flow Schemas. Master's Th., 
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, \I \ 02139, June 1975. 



41 

211. Leung, C. K.-C. ADL: An Architecture Describing Language for Packet Communication 
Systems. Computation Structures Group Memo 185, Laboratory for Computer Science, MIT, 
Cambridge, MA 02139, October, 1979. 

212. Leung, C. K.-C. Fault Tolerance in Packet Communication Computer Architectures. 
MIT /LCS/TR-250, Laboratory for Computer Science, MIT, Cambridge, MA 02139, September, 
1980. 

213. Leung, C. K.-C. Fault Tolerance in Packet Communication Computer Architectures. 
Ph.D. Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, 
September 1980. 

214. Leung, C. K.-C. N. and Dennis, J. B. Design of a Fault-tolerant Packet Communication 
Computer Architecture. Computation Structures Group Memo 196, Laboratory for Computer 
Science, MIT, Cambridge, MA 02139, July, 1980. 

215. Leung, C. K.-C. and Dennis, J. B. Design of a fault-tolerant packet communication 
computer architecture. Tenth Ann. Symp. on Fault Tolerant Computer Systems, IEEE, New 
York, NY, October, 1980, pp. 328-335. 

216. Leung, C. and Lim, W. L.-P. A Packet Architecture Description Language. 
MIT /LCS/TR-306, Laboratory for Computer Science, MIT, Cambridge, MA 02139, October, 
1982. 

217. Leung, C., Misunas, D. P., Neczwid, A. R., and Dennis, J.B. A computer simulation 
facility for packet communication architecture. Proc. of the Third Ann. Symp. on Computer 
Architecture, IEEE, New York, NY, 1976, pp. 58-63. 

218. Lilienkamp, J. The Development of a Prototype Router: Design, Implementation and Test 
Procedures. Computation Structures Group Memo 199, Laboratory for Computer Science, MIT, 
Cambridge, MA 02139, September, 1980. 

219. Lilienkamp, J. The Development of a Prototype Router: Design, Implementation and 
Test Procedures. Bachelor's Th., Dept. of Electrical Engineering and Computer Science, MIT, 
Cambridge, MA 02139, June 1980. 

220. Lim, W. Y-P. Diagnostic Hardware of the Prototype 2 x 2 Router. Static Dataflow 
Machine Project Design Note 3, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
February, 1982. 

221. Linderman, J. Productivity in Parallel Computation Schemata. Ph.D. Th., Dept. of 
Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, December 1973. 

222. Linderman, J. Productivity in Parallel Computation Schemata. MIT/LCS/TR-111, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, December, 1973. 

223. Liskov, B. H. et al. Lecture Notes in Computer Science. Volume 114: CLU Reference 
Manual. Springer-Verlag, Berlin, Heidelberg, New York, 1981. 

224. Luconi, F. Asynchronous Computation Structures. MIT/LCS/TR-49, Laboratory for 
Computer Science, MIT, Cambridge, MA 02139, February, 1968. 



42 

225. Luconi, F. Asynchronous Computation Structures. Ph.D. Th., Dept. of Electrical 
Engineering and Computer Science, MIT, Cambridge, MA 02139, February 1968. 

226. Malhotra, A. Asynchronous Control of Computer Operations. Master's Th., Dept. of 
Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, February 1967. 

227. Marcovitz, D. M. A Comparison of Two Signal System Architectures for a Static 
Dataflow Machine. Computation Structures Group Memo 260, Laboratory for Computer 
Science, MIT, Cambridge, MA 02139, February, 1986. 

228. Marcovitz, D. M. A Comparison of Two Signal System Architectures for a Static 
Dataflow Machine. Bachelor's Th., Dept. of Electrical Engineering and Computer Science, 
MIT, Cambridge, MA 02139, February 1986. 

229. Markowitz, S. VLOE: A Val Language-oriented Editor. Computation Structures Group 
Memo 255, Laboratory for Computer Science, MIT, Cambridge, MA 02139, September, 1984. 

230. Markowitz, S. VLOE: A Val Language-oriented Editor. Bachelor's Th., Dept. of 
Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, June 1984. 

231. McGraw, J. R. The VAL language: decription and analysis. Transactions on 
Programming Languages and Systems 4, 1 (January 1982), 44-82. 

232. McGraw, J. R., Skedzielewski, S., Allan, S., Oldehoeft, R., Glauert, J., Kirkham, C., 
Noyce, W., and Thomas, R. SISAL: Streams and Iteration in a Single-Assignment Language. 
Language Reference Manual M-146, Lawrence Livermore Laboratory, Livermore, CA, March, 
1985. 

233. Mcllroy, M. D. Coroutines: Semantics in Search of a Syntax. Unpublished memorandum, 
Oxford University and Bell Telephone Laboratories, 1968. 

234. McNally, M. E. The Design of an Arbitration Network for a Data Flow Processor. 
Bachelor's Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 
02139, June 1978. 

235. McNally, M. E. The Design of an Arbitration Network for a Data Flow Processor. 
Computation Structures Group Memo 164, Laboratory for Computer Science, MIT, Cambridge, 
MA 02139, July, 1978. 

236. Miglierina, B. J. A Generalized Mod1tlar Microprocessor Simulator. Bachelor's Th., 
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, 1976. 

237. Miranker, G. S. Implementation Schemes for Data Flow Procedures. Computation 
Structures Group Memo 138, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
May, 1976. 

238. Miranker, G. S. Proving Packet Communications Architectures Correct. Computation 
Structures Group Memo 143, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
1976. 

239. Miranker, G. S. The Synchronizer Problem. Computation Structures Group Memo 145, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, January, 1977. 



43 

240. Miranker, G. S. Implementation of procedures on a class of data flow processors. Proc. of 
the 1977 Intern. Conf. on Parallel Processing, IEEE, New York, NY, 1977, pp. 77-86. 

241. Miranker, G. S. Implementation Issues in Data Flow Architecture. Master's Th., Dept. 
of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, 1977. 

242. Misunas, D. P. Petri nets and speed independent design. Communications of the ACM 
16, 8 (August 1973), 474-481. 

243. Misunas, D. P. Deadlock avoidance in data flow architecture. Proc. of the Third 
Milwaukee Symp. on Automatic Computation and Control, April, 1975 . 

244. Misunas, D. P. Structured programming in a data flow computer. Proc. of the 1975 
Sagamore Conf. on Parallel Processing, IEEE, New York, NY, 1975, pp. 230-234. 

245. Misunas, D. P. Error Detection and Recovery in a Data Flow Computer. Proc. of the 
Intern. Conf. on Parallel Processing, IEEE, New York, NY, 1976, pp. 117-122. 

246. Misunas, D. P. Error Detection and Recovery in a Data Flow Computer. Computation 
Structures Group Memo 142, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
September, 1976. 

247. Misunas, D. P. Report on the workshop on data flow computer and program organization. 
ACM Computer Architecture News 5 (October 1977), 6-22. 

248. Misunas, D. P. Report on the Workshop on Data Flow Computer and Program 
Organization. MIT /LCS/TM-92, Laboratory for Computer Science, MIT, Cambridge, MA 
02139, November, 1977. 

249. Montz, L. Safety and Optimization Transformations for Data Flow Programs . 
Master's Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 
02139, July 1980. 

250. Montz, L. Safety and Optimization Transformations for Data Flow Programs. 
Computation Structures Group Memo 164, Laboratory for Computer Science, MIT, Cambridge, 
MA 02139, July, 1980. 

251. Muller, D. E. Asynchronous logics and application to information processing. In Switching 
Theory in Space Technology. Stanford University Press, Stanford, CA, 1963. 

252. Muller, D. E., and Bartky, W. S. A theory of asynchronous circuits. Proc. of an 
International Symposium on the Theory of Switching, Cambridge, MA, 1963, pp. 204-243. 

253. Myers, J. Analysis of the Simple Code for Data Flow Computation. MIT /LCS/TR-216, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, May, 1979. 

254. Nadler, D. R. Data Flow Computer Performance for the GISS Weather Model. 
Bachelor's Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 
02139, June 1978. 

255. Nadler, D. R. Data Flow Computer Performance for the GISS Weather Model. 
Computation Structures Group Memo 159, Laboratory for Computer Science, MIT, Cambridge, 
MA 02139, March, 1978. 



44 

256. Oldehoeft, A., Allan, S., Thoreson, S., Retnadhas, C., and Zingg, R. Translation of High 
Level Programs to Data Flow and their Simulated Execution on a Feedback Interpreter. 
Technical Report 78-2, Department of Computer Science, Iowa State University, Ames, Iowa, 
1978. 

257. Patil, S. S. Coordination of Asynchronous Events. TR-72, Project MAC, MIT, 
Cambridge, MA 02139, June, 1970. 

258. Patil, S. S. Synchronizers and Arbiters. Computation Structures Group Memo 165, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, October, 1973. 

259. Patil, S. S. Bounded and Unbounded Delay Synchronizers and Arbiters. Memo 103, 
Computation Structures Group, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
June, 1974. 

260. Patil, S. S. An Abstract Parallel-processing System. Master's Th., Dept. of Electrical 
Engineering and Computer Science, MIT, Cambridge, MA 02139, June 1967. 

261. Patil, S. S. Closure properties of interconnections of determinate systems. Record of the 
Project MAC Conference on Concurrent Systems and Parallel Computation, ACM, 1970, pp. 
107-116. 

262. Patil, S. S. Circuit Implementation of Petri Nets. Computation Structures Group Memo 
73, Project MAC, MIT, Cambridge, Mass., December, 1972. 

263. Patil, S. S. An Asynchronous Logic Array. MIT /LCS/TM-62, Laboratory for Computer 
Science, MIT, Cambridge, MA 02139, May, 1975. 

264. Patil, S. S. and Dennis, J. B. Description and realization of digital systems. Digest of 
Papers on Innovative Architecture, IEEE, New York, NY, 1972, pp. 221-233. 

265. Peacock, T. Type-checking in Generalized Val. Computation Structures Group Memo, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, May, 1983. 

266. Peacock, T. Type-checking in Generalized VAL. S.B. thesis, Dept. of Electrical 
Engineering and Computer Science, MIT, Cambridge, MA 02139, May, 1983. 

267. Peterson, J. L .. Petri Net Theory and the Modeling of Systems. Prentice-Hall, 
Englewood Cliffs, NJ, 1981. 

268. Petri, C. A. Kommunication mit Automaten. Ph.D. Th., Reinisch-Westfalischen 
Institutes fur lnstrumentelle Mathematik, Bonn, 1962. 

269. Plummer, W. W. Asynchronous Arbiters. Computation Structures Group Memo 56, 
Project MAC, MIT, Cambridge, Mass., February, 1971. 

270. Presberg, D. L., Saint, H., and Shapiro, R. M. Representation of Algorithms as Cyclic 
Partial Orderings. Report CA-7112-2711, Vol. I, Applied Data Research, Wakefield, MA, 
December, 1971. 

271. Qualitz, J. E. Weakly Productive Computation Schemata. Master's Th., Dept. of 
Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, May 1972. 



45 

272. Qualitz, J. E. Decidability of Equivalence for a Class of Data Flow Schemas. 
MIT /LCS/TM-58, Laboratory for Computer Science, MIT, Cambridge, MA 02139, March, 1975. 

273. Ramchandani, C. The computation rate of asynchronous computation systems. Proc. of 
the Seventh Ann. Princeton Conf. on Information Sciences and Systems, 1973, pp. 276-285. 

27 4. Ramchandani, C. Analysis of Asynchronous Concurrent Systems by Timed Petri Nets. 
MIT /LCS/TR-120, Laboratory for Computer Science, MIT, Cambridge, MA 02139, February, 
1974. 

275. Ramchandani, C. Analysis of Asynchronous Concurrent Systems by Timed Petri Nets. 
Ph.D. Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, 
February 1974. 

276. Redford, J. L. A Design for a Routing Module. Bachelor's Th., Dept. of Electrical 
Engineering and Computer Science, MIT, Cambridge, MA 02139, January 1979. 

277. Ressler, P. Simulation of a Highly Parallel Processor. Bachelor's Th., Dept. of 
Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, January 1979. 

278. Ribak, R. Subsystem Sharing in Parallel Asynchronous Processing. Master's Th., Dept. 
of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, June 1968. 

279. Ries, P. S. A VLSI Implementation of a Two-by-two Packet Router. Computation 
Structures Group Memo 197, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 
July, 1980. 

280. Rodriguez, J. E. A Graph Model for Parallel Computation. Ph.D. Th., Dept. of 
Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, September 1967. 

281. Rodriguez, J. E. A Graph Model for Parallel Computation. MAC/TR-64, Project MAC, 
MIT, Cambridge, Mass., September, 1969. 

282. Rotenberg, L. J. Analysis of Asynchronous Concurrent Systems by Timed Petri Nets. 
MIT /LCS/TR-116, Laboratory for Computer Science, MIT, Cambridge, MA 02139, February, 
1974. 

283. Rotenberg, L. J. Surveillance mechanisms in a secure computer utility. ACM Special 
Interest Group on Computers in Society 2, 1 (April 1971 ). 

284. Rumbaugh, J. A Parallel Asynchronous Computer Architecture for Data Flow Programs. 
MIT /LCS/TR-150, Laboratory for Computer Science, MIT, Cambridge, MA 02139, May, 1975. 

285. Rumbaugh, J. A Parallel Asynchronous Computer Architecture for Data Flow 
Programs. Ph.D. Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, 
MA 02139, May 1975. 

286. Singh, N. A Design Methodology for Self-timed Systems. MIT /LCS/TR-258, Laboratory 
for Computer Science, MIT, Cambridge, MA 02139, February, 1981. 

287. Singh, N. A Design Methodology for Self-timed Systems. Master's Th., Dept. of 
Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, February 1981. 



46 

288. Slutz, D. The Flow Graph Schemata Model of Parallel Computation. MIT /LCS/TR-53, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, September, 1968. 

289. Slutz, D. The Flow Graph Schemata Model of Parallel Computation. Ph.D. Th., Dept. 
of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, September 1968. 

290. Smith, A. Input/Output in Time-shared, Segmented, Multiprocessor Systems. Master's 
Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, June 
1966. 

291. Smith, A. Input/Output in Time-shared, Segmented, Multiprocessor Systems. 
MIT /LCS/TR-28, Laboratory for Computer Science, MIT, Cambridge, MA 02139, June, 1966. 

292. Smith, D. Models and Data Structures for Digital Logic Simulation. MIT /LCS/TR-31, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, August, 1966. 

293. Smith, D. Models and Data Structures for Digital Logic Simulation. Master's Th., 
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, August 
1966. 

294. Sutherland, W. R. On-line Graphical Specification of Computer Procedures. Ph.D. Th., 
Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, December 
1965. 

295. Teager, H., Ed. Report of the Long Range Computer Study Group. Massachusetts 
Institute of Technology, 1961. 

296. Tetrick, S. An Instruction Cell Block Design for a Data Flow Computer. Unpublished 
S.B. thesis, Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, 
1979. 

297. Todd, K. W. Function sharing in a static data flow machine. Proc. of the Intern. Conf. 
on Parallel Processing, August, 1982, pp. 137-139. 

298. Todd, K. W. An Interpreter for Instruction Cells. Computation Structures Group Memo 
208, Laboratory for Computer Science, MIT, Cambridge, MA 02139, July, 1981. 

299. Todd, K. W. High Level VAL Constructs in a Static Data Flow Machine. 
MIT /LCS/TR-262, Laboratory for Computer Science, MIT, Cambridge, MA 02139, June, 1981. 

300. Todd, K. W. R. High Level VAL Constructs in a Static Data Flow Machine. Master's 
Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, 
February 1981. 

301. Tucker, R. Implementation of Arithmetic for the Data Flow Processing Unit. 
Bachelor's Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 
02139, 1980. 

302. Tucker, R. Implementation of Arithmetic for the Data Flow Machine Processing Unit. 
Computation Structures Group Memo 195, Laboratory for Computer Science, MIT, Cambridge, 
MA 02139, June, 1980. 



47 

303. Ullman, J., Aho, A., and Denning, P. J. Principles of optimal page replacement. Journal 
of the ACM 18, 1 (January 1971), 80-93. 

304. Vanderbilt, D. Controlled Information Sharing in a Computer Utility. MIT/LCS/TR-67, 
Laboratory for Computer Science, MIT, Cambridge, MA 02139, October, 1969. 

305. van Horn, E. Computer Design for Asynchronously Reproducible Multiprocessing. 
MAC/TR-34, Project MAC, MIT, Cambridge, .MA 02139, November, 1966. 

306. van Horn, E .. Computer Design for Asynchronously Reproducible Multiprocessing. 
Ph.D. Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, 
November 1966. 

307. Vedder, R., Campbell, M., and Tucker, G. The Hughes data flow multiprocessor. Proc. of 
the Fifth Intern. Conf. on Distributed Computing, New York, NY, 1985, pp. 2-9. 

308. Vedder, R, and Finn, D. The Hughes data flow multiprocessor: architecture for efficient 
signal and data processing. Proc. of the 12th Ann. Intern. Symp. on Computer Architecture, 
Association for Computing Machinery, New York, NY, 1985, pp. 324-332. 

309. Vishniac, E. A Processor Module for a Data Flow Computer. Computation Structures 
Group Memo 176, Laboratory for Computer Science, MIT, Cambridge, MA 02139, May, 1979. 

310. Vishniac, E. M. A Processor Module for Data Flow Computer Development. Bachelor's 
Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, May 
1979. 

311. Welcome, M. L., and Skedzielewski, S. K. Dataflow graph optimization in IFl. In Lecture 
Notes in Computer Science, Volume 201: Functional Programming Languages and Computer 
Architecture. Springer-Verlag, Berlin, Heidelberg, New York, 1985, pp. 17-34. 

312. Weng, K.-S. Stream-oriented Computation in Recursive Data Flow Schemas. 
MIT /LCS/TM-68, Laboratory for Computer Science, MIT, Cambridge, MA 02139, October, 
1975. 

313. Weng, K.-S. An Abstract Implementation for a Generalized Data Flow Language. 
MIT /LCS/TR-228, Laboratory for Computer Science, MIT, Cambridge, MA 02139, May, 1979. 

314. Weng, K.-. An Abstract Implementation for a Generalized Data Flow Language. Ph.D. 
Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, May 
1979. 

315. Wetherell, C. S. Error data values in the data flow language VAL. Transactions on 
Programming Languages and Systems 4, 2 (April 1982), 226-238. 

316. Yuba, T., T. Shimada, K. Hiraki, and H. Kashiwagi. Sigma-1: A Dataflow Computer For 
Scientific Computation. Electrotechnical Laboratory, 1-1-4 Umesono, Sakuramura, Niiharigun, 
lbaraki 305, Japan, 1984. 

317. Zilles, S. N. Bibliography on the Semantics of Programming Languages. Computation 
Structures Group Memo 75, Project MAC, MIT, Cambridge, MA 02139, March, 1973. 


