
........ t ,._ •

.......... 1,.

A Simulation Env·irontnentfor Schema

by

Mafgaret Ann St. Pierre ,

Copyright © 1986 Massachusetts fnstitute of T...:hnotogy

&Jpport for thie research was provided by the ~ Advanced Research Pro;ects Agency of
Olf) Department of Oefenee under Connet No.~: ·

A Simulation Environment for Schema

by

Margaret Ann St. Pierre

Submitted to the Department of Electrical Engineering and Computer Science
in parlia! fulfillment of the requirements for

the degrees of Master of Science and Electrical Engineer

Abstract

In present day circuit design, many independent simulation tools are available for analyzing cir­
cLiits Rt various levels of detail. This thesis presents a framework to tie these tools into the
Simulation Environment in Schema, an integrated CPD system. The framework easily incor­
porates additional si111ulators, serves as a foundation upon which to bui!d new analysis tools, and
provides the ability for mixed-mode simulation. The Simulation Environment is composed of
common data reprc~;entations, a Generic Simulator, and a sing!e user interface. A common
representation for tooo!ogical, model, and wavl;forrn data objects facilitates a uniform interface to
the user and to all CAD tools. The Generic Simulator coordinates the :low of data objects be­
tween each simulator and the user or analysis tool.

Thesis Supervisor: Professor Richard Zippe!
Title: Associate Prof..c:ssor of Electrical Enuineering and Co!l;puter Science

Key Worcls and Phrase::;: CAD, VLSI, simulation

Acknowledgments

I would like to thank:

My thesis advisor, Rich Zippe!, for the inspiration, focus, and encouragement that made t11is

thesis possible, for fathering the famous ski resorts upon which this thesis work was implemented,

and for providing me with quiet officespace.

Brian Williams for many stimulating discussio:1s and suggestions along the way.

Jeff Arnold, Randy Davis, Steve Heller, and Jerry Roylance for comments on early drafts of

this thesis.

George Clark and Mike MacDonald for giving unity to Schema.

My friends back at the Schema Chalet.

Moses Ma, Peter Nuth, and Pete Osler for interesting non-technical discussions.

Jim Restivo for faithfully escorting me to and beyond the finish line.

My family for their love and support throughout my many years of academia.

3

Table of Contents

Chapter One: Introduction

1.1 Motivation
1.2 Design Goals

1.2.1 Integrating Simulation Tools
1.2.2 Building Analysis Tools
1.2.3 Mixed-mode Capability

1.3 Overview of Thesis

Chapte; Two: Design Methodology

2.1 Simulation Domain
2.2 Design Strategy
2.3 Wt1at is a Sirnulaticn Environment?

2.3.1 Common Representation
2.3.1 .1 Objects
2.3. 1 .2 Object Types
2.3. 1.3 Appropriate Types

2.3.2 The Generic Sirnulatur
2.3.2. ·1 Internal Simulation
2.3.2.2 External Sirnu!ation

2.3.3 Uniform Interface
2.3.4 Accomplishing the Design Goals

2.4 lmplement2tion in Schema
.2.4.1 Hierarchical Organization
2.4.2 Constraint Network
2.4.3 Creation on Demand

2.5 Summary

Chapter Three: Topology

3.1 Module Definition
3.1.1 Uniform Representation
3.1.2 Module interconnection
3.1.3 Module Definition Creation
3. ·1.4 Uniform User Interface

3.2 Defining New Module Types
3.2.1 Simple Modules
::1.2.2 Compound Modules
3.2.3 Abstract Modules

3.3 Defining New Module Operations
3.4 Summary

Chapter Four: Models

4

7

7
9
9

10
10
10

12

12
·14

14
16
16
16
17
18
19
20
21
21
22
22
23
24
24

25

25
25

25
28
29
30
30
30
31
32
33

34

4.1 Uniform Representation
4.2 Uniform User Interface
4.3 Defining New Model Types

4.3.1 Models Without State
4.3.2 Models With State

4.4 Defining New Model Operations
4.5 Summary

Chapter Five: Waveforms

5.1 Urdorm Representation
5.2 Uniform User Interface
5.3 Display Types and Waveform Types

5.3.1 Analog Waveforms
5.3.2 Binary Waveforms
5.3.3 Defining New Displays and New Waveform Types

5.4 Mixed-Mode Cap::i.bility
5.5 Summary

Chapter Six: Generic Simulator

6.1 Uniform User Interface
6.2 Initiation Phase
6.3 Initialization Phase

6.3.1 Locating Appropriate Modules
6.3.:? Interconnection of Appropriate Modules
6.3.3 Loco.ting Appropriate Waveforms
6.3.4 l\ttachirig Appropriate Waveforms

6.3.4.1 Input Waveforms
6.3.4.2 Output Waveforms
6.3.4.3 Mapping Waveforms onto Nodes
6.3.4.4 Mapping Wa•1dorrns onto Pins

6.3.5 Locating Appropriate Models
6.4 Execution Phase

6.4.1 l'lterna! Simulation
6.~.2 External Simulation

6.5 Completion Phase
6.6 Surnmary

Chapter Seven: Discussion

7.1 Summary
7.2 lmplerni')ntation: Th0~ Simulation Environment Layer
7 .3 Future Work: The Concurrent Mixed-Mode Simulation Layer
7.4 Conclusion

References

5

34
35
35
36
37
37
38

39

40
41
42
42
44
45
45
46

47

47
48
48
49
49
50
50
50
51
51
52
53
55
55
56
56
57

58

58
58
59
60

61

Table of Figures

Figure 2-1: Simulation Environment in Schema. 15
Figure 2- 2: Hierarchical organization of Schema. 23
Figure 3-1: The topology and its placement in the hierarchical organization of Schema. 26
Figure 3-2: Inverter module definition and corresponding schematic presentation. 27
Figure 4· 1: Models and their placement in the hierarchical organization of Schema. 35
Figu rn 5-1: Waveforms in the hierarchical organization of Schema. 39
Figure 6-1: Mapping of a single simulation node onto electrically equivalent nodes of a 52

hierarchical module definition.
Figure 6-2: Summing current waveforms, current-1 and current-2, to produce 54

current-sum for pin of a hierarchical module.

6

t:hapter One

Introduction

CircL:it design requires the assistance of a comprehensive range o'. computer aided design

(CAD) tools. many of which either currently exist or are under develop111ent. Individually, each

tool addresses a specific task in the design process. As an integrated collection, however, the

tools share data and tasks across all stages of the design process. Unfortunately, no one system

has effectively integrated the collection into a single design environment.

Research on such an environment is presently underway at M.l.T. Nith the development of

Schema [Zippel 85]. Schema research focuses on providing a software environment for easily

integrating all CAD tools necessary for design and allowir.~i the effortless building of new tools

into the existing system. One area of major interest in Schema and or circuit design in general is

simulation. Fatul design errors are detected and circuit performance is measured by simulating

the operation of electronic designs. In tl1is way, simulation invaluably cu;itributes to the success

of hi\Jh-perforrnance circuit designs and is a vital compont:nt of any CAD ~;ystcm.

This thesis presents a Simuiation Environment for Schema following in the footsteps of

the integrated software design env!rcnment esto.blished in Schema.

1 .1 Motivation

Many simulators have been developed to satisfy different design needs using a single

modeling level of <::ircuit abstracticn. Often the designer is overwhelmed by the need ta learn the

opr:1rntion of and to manually recode circuit descriptions for each individual simulator. In addition,

output waveforms associated with one particular circuit modulr/s sirnulaiion must be interpreted

and manually translated fnr use as input to ~;ome other interconnected module's simulation.

Bcc~iuse of Hie massive time investment required, this process is typically omitted altogether.

The recent htmd l~<>S been towards mixed-mode simulation whereby different levels of

sirnu!ation are consolici:J.icd into one softwa:-e p.:Jckage. At the lligl1 encl, the Sable [Hill 79, Hill 80]

7

Chapter 1 Introduction

system combines behavioral, register transfer, and gate level descriptions. Similarly,

Themis [Doshi 84] addresses simulation at the behavioral, register transfer, logic, and switch

levels. Both simulators deal exclusively in the digital domain, however; neither includes circuit,

timing, or linear level models, which are critical to the design of high-performance circuits. On

the low end, concurr8nt circuit, timing, and logic analyses are illustrated in both the Diana [Arnout

78, Antogn;:;tti 84] and Splice [Newton 78, Newton 79] systems. In addition, tt1e second genera­

tion Matis fChawla 7~3, Fan 77, Chen 84, Antonnetti 84] program combir.es timing, switch, and

logic level simulators into one software packa~ie. running on a single mainframe; accuracy is

reduced by omitting the detaiied transistor models available in a circuit level simulator such as

Spice2 [Nagel 75, Cohen 76].

These and others [Nestor 132, Thomas 83, Borrione 83, Lanthrop 85] are attempts to com­

bine simulators using a range of modeling levels into a single software pr::igram. One disadvan­

tage of this single system approacll is a loss in computational efficiency. With increasing in­

tegrated circuit complexity, the computational power required for simulating very large circuits

becomes a major bmtleneck to the design effort. Even the use of the most advanced hardware

and software technology inevitably results in extensive execution times for a single system.

Expensive design dfor t is halted while waiting upon simulation results. ;,nother cost is incurred

from discarding old, yet still usable simulators to invest in software recoding for a mixed-mode

system. !'or example. in an effort to provide an integrated computer aided design system for

Sandia, a substantial amount of rnanpower was i11vesled i!l understanding, recoding, and debug­

ging undocumented industry and university sofLvare programs [Daniel 82].

With 1he acc2lerated advancement of today's technolo~w. 11ew simulators are continually

being devekJped using state-of-the-art hardware technology, and more efficient, optimized, and

sophisticated algorithms. Dramatic speed improvements are achievable with special-purpose

hardware, such as 1-he Yorktown Engine [Pfister 82] and tre Logic Simulation

iv:acl1in0 [Abrarnovici s:J], and hinhly parallel algorithms, such as Prsim [Arnold 85] and

Msplice [D8utscl1 8 1i] designed spcc:ifically for multi-processor systems.

SirnuL1tion alone cannot guarantee the success of today's high performance circuits. In

conjunction with sirnulalio11, analysis tools are an essential ingredient of the design process.

Analysis iools operate on simul:.·,tion data This data may pertain to one simulation, multiple

simulations, or ultimatr:;I/ different sirnulation levels. Performance evaluation, verification of

8

Chapter 1 Introduction

simulation results against specifications, and circuit partitioning for different levels of simulation

are just a sampling of invaluable analysis tools. Analysis tools also instigate simulations. An

analysis tool rnay schedule a series of simulations to compare the performance of different

designs or the behavior cf a single dGsign in different operating regimes.

Each analysis tool is simple to build, yet creating a simulator and usu interface for each is a

major undertaking. In effect, the existence of the analysis tool alone is not justified. For example,

mathematical operntions on waveforms are useful for analyzing circuit simulation results. For

instance, power consumption over time amounts to a simple rr.ultiplication of waveforms, yet

without a graphical user interface and a simulator interface, the tool is unusable. The designer

would be fcrced to manually enter the simulation data points - a tedious, error-prone, and time­

consuming task - as well a~ interpret the numerical output data.

1 .2 Design Goals

A framework is essential to tie simulation tools into a common en•1ironment. This thesis

presents such a framework: A Simulation Environment for Schema. The frarriework is

designed tQ ea~UY lolemat~ simu_l.Qtion tools, to se~y~ 1\ii _g Jg1inpatiQD. for building ne'.!'{ an!J.!ysis

tl)ols, and lE movid..Q mixed-mode ~Jillabilitv. The following sections detei.il eacl1 of these design

goals.

·1 .2.1 Integrating Sirr.ulation Tools

The Simulation Environment is designed v;ith the ability lo readily i11tegrate new as well as

currently e)...i::.>ting simulation tools. Simulation of all modeling levels rn:w be easily incorporated;

this includes tools exploiting each of the various transistor modeling levels :rnd the simulators tl1at

address the more abstract circuit representations. Without slowing Jown Lhe user's design effort,

simulatio11 can be distributed tlJ anot!-ier local process or rernote engine that can efficiently run

the sirnulatic,n. Distributing the effort amowJ whntever engines are currently available, and poten­

tially le.1st loaded, enhances the overall computational power of the designer's environment.

Furthermore, because a large amount of time, fn•)l1ey, and effort went into developil1g and main­

taining tt1e existing simulation too!s, they could remain constantly in use - greatly enhancing

cornputationid power. Adding new simulators allows the environment to keep race with the rapid

development of new hardware and software sirnu 1ation engines.

9

Chapter 1 Introduction

1.2.2 Building Analysis Tools

The Simulation Environment could serve as a foundation for building an unlimited number

of powerful analysis tools. Automatic partitioning algorithms can be developed for partitioning

large-scale circuits into a coliection of blocks to be individually simulated at different modeling

levels. An0t11er tool could schedule a series of simulations for each biock to verify that it meets

specifications. Additionally, smal! analysis tools could be designed to compare the results of

different simulations or to perform orerations on simulation output. Cornparison and evaluation

of the perfo~mance of new simulators could even be executed by an analy:Jis tool.

1.2.3 ML<ed-mode Capability

Mixed-mode refers to transforming the output data from one rnoduie's simulation for use as

input to an interconnected module's simulation, where each module may be modeled v.t different

levels of detail. For example, certain portions of a design rnay require the accuracy of a circuit

simulation, while for other less critical portions, a less exact switch or !ogic level simulation is

most appropriate. Botl1 require simulation, yet using different simulators. With the mixed-mode

capability, the Simulation Environment transforms tile output analog waveforms from the circuit

simulation into logic vvaveforms for use in the switch or logic level simulation, and vice versa.

1.3 Overview of Thesis

Chapter 2 opens with a brief cwerview of the types of simulators ?:,1ai!able. Tl1is naturally

leads into a discussion of Hie goals of the Simulation Environment and the approach taken to

achieve tl~e·rn. Next each component of the Simulation Environment is briefly described: the

uniform do.ta rcr,resentations, a Generic Simulator, arid a common user interface. The chapter

closes with a discussion of the techniques available in Schema that are 1•seful to the Simulation

Environment.

The circuit topoloqy, models, C:'nd waveforms arc the data required for simulation. Their

uniform representations and user interface ar0 discussed in Chapters 3, 4, and 5, respectively.

When inteqrating additional si;nulators or building new analysis tools, only new data types and

local operati~ns need to be defined as described in the latter sections of each chapter.

Chapter 6 describe;-:; fhl" role of the Generic Simulator in the Simulation Environment. The

10

Chapter 1 Introduction

Generic Simulator contains the simulation toots of the environment and generically interfaces

them to the objects in the environment, to the user, ~ to the analysis tools. This chapter

presents each step of the Generic Simulation Process.

Chapter 7 concludes with a summary of the Simulation EnVironment for Schema recounting

the properties achieved. Suggestions for possible future .,,... tools ate cited. These tools

could be easily built on top of the Simulation Environment in SctlelM..

11

Chapter Two

Design Methodology

The currently available simulators are roviewed with respect to input and output data re­

quired for each. Next, a design strategy is developed to tie these simulators into a single

Simulation Environment. Each component of the Simulation Environment is defined along with its

corresponding role in the simulation process. And finaliy, the implementation of the Simulation

Environment within Schema is presented.

2.1 Simulation Domain

Many simulators have been developed to satisfy different design needs throughout the

various stages of the design process. This section briefly describe:; the different kinds of

simulators in :.ise today. Notably, each simulator utilizes different algorithms, accepts input such

as a circuit description, excitation signals and perhaps some modeling parameters, and ultimately

produces output data.

Circuit simulators provide the most detailed level of simulation; node voltages and branch

current waveforms are calcuiated and plotted. General-purpose circiit simulators, such as

Spice2 [Nagel 75; Cohen 76] and Astap [Weeks 73], apply general algorithms for non-linear static,

linear ac, w 1d non-linear tr~msient analyses. Circuits may contain capacitors, resistors, inductors,

mutual inductors, voltc.ge and current sources, and a wide range of nonlinear active devices

including diodes, bipolar junction transistors (BJTs), junction field-effect transistors (JFETs), and

metal-oxide-semiconductor (MOS) field-effect transistors (FETs). Each sGmiconductor device is

modeled with a set of process parameters. Spice2, for example, has three built-in types of MOS

device models: Shichrnan and Hodoes, analytical, and semi-empirical models. At this level of

detail, circuit simulators are generally cost effective for circuits with a few hundred devices or

less. Execution time can be increased by repi:lcing analytic device models with simplified table

look-up models relating device current to terminal voltages. These general-purpose circuit

simulators 3re largely indcpendrnt of technology. If simulc.t~ion algorithms are tailored to specific

12

Chapter 2 Approach

technologies or applications, substantial speed improvements can be achieved. To take advan­

tage of the unilateral nature of MOS devices, relaxation-based circuit simulation [Dumlugol

83, Newton 84] algorithms provide up to a twofold increase in simulation speed over general­

purpose circuit simulato1s.

The linear-model simulator Rsim [Terman 83] represents MOS transistors as resistors in

series with a voltage-controlled switch. This model provides logical and approximate timing

information. Logic behavior is determined by a fast event-driven algorithm; transition times

depend upon on effective transistor resistance, and interccnnect and gate capacitance. Using

this simplified li11ear model, networks containing up to 50,000 transistors may be simulated.

Instead of node voltages and branch currents, discrete logic states at nebvork nodes are used.

Switch-level simulators such as Mossim [Bryant 81] and Esim [Terman 83] model MOS tran­

sistors as a network of on/off switches. This model captures the logical properties of a circuit

while ignoring many of the detailed electrical issues. A switching network is most appropriate for

simulating the bidirectional nature of MOS transistors. Furthermore, since so little modeling

information is retained for each transistor, this type of sirnul:Jtor is abl:J to t1andle larger scale

designs. Signals are typically represented in terms discrPte lc~1ic stat~s in unit-delay time se­

quence.

A simplification oi the switch-l~)vel simulator is the unidirectional gate-level logic simulator,

which uses NOT, AND, OR, NANO, and other combinational logic gates, and state-preserving com­

ponents such as flip-flops and counters. This simulator solves simple boo\~an equations to obtain

the output state of tile logic components. Time may be in unit delay intervals or variable delay,

which more closely mode!s continuous time. Unfortunately, not all MOS gate-level elements,

specifically pass transistors, are unidirectional in nature, and thus u.re not suitable for gate-level

simulation.

Register-transfer level simulato 1 s [Hafer 8~3, Lewke 83] de;d with tile overall structure and

architecture of a design. r·Aociul<o-s, such as tull adders and systolic arrays, are specified by

procedural descriptions. Because they simulate more abstract modules and their representation

of signals is sornewl1at courser tlian in tt1e looical case, registc,--transfer level simulators are

usually over an order of magnitude faster than gatci-level simulators for the same circuit.

At the r1ighest level of abstraction, behavioral or functional ~imulators are used at the initial

13

Chapter 2 Approach

design phase to verify the algorithms of the abstract system to be implemented. In contrast to the

register-transfer level simulator, the actual structure of the circuit is not necessary for this type of

simulation.

2.2 Design Strategy

The first question to answer when developing a new system is "Wl1at are the design goals

of our system?". The Simulation Environment ties together the simulators needed by all phases of

tl1e circuit design process. More specifically, the Simulation Environment in Schema provides (1)

simple extensibility for incorporating additiona! simulators, (2) a foundation for building and in­

tegrating new analysis tools, and (3) the capability to perform mixed-mode simulation. These are

the major design goals of the Simulation Environment.

A uniform interface is a natural consequence of the aforementioned design goals. This

can be viewed from two perspectives. For the designer of CAD software, a uniform C.1\D interface

facilitates additional simulation tools as well as providing the groundwork upon which to build

new analysis tools. For the user of CAD software, a common interface eliminates Hie unnecessary

task of learning the operation of each individual tool.

The question remaining is "What approach or design strategy leads to these desired

properties?". Common ddta representations make it possible to create a uniform interface to

the user, the simulators, and the analysis tools. The following sections describe the Simulation

Environment in Schema, and how this approach achieves the design goals.

2.3 What is a Simulation Environment?

The rnajor components of the Simulation Environment are: a Generic Simulator, common

data representations, a single user interface. Figure 2-1 depicts the intvractions of eact1 com­

ponent within Schema. The Generic Simulator coordinates the flow of information between the

~irnulation initiator and tile individual simulators. The medium for information flow is a common

c'ata representation, and finally the user interface provides a slick graphical interaction with the

underlying data structures.

The Generic Simulator acts as an interactive guide in the Generic Simulation Process:

14

Chapter 2

Simulation
Environment

/
--~~J User

terr~ca
I - -

:c_l --~J

Schema

, __ --,
L:~

t
Uniform l

Data I
Ropresontatio~~

I

I

'\
Figure ?-1: Simulation Environment in Schema.

Approach

1. The user interacts with the Simulation Environment by way of the user interface.
Analy:is tools in:eract directly with the Simulation Environment Once the ap­
propriate input data has been entered, ;:,irnulation is initio.tecl by the user or by an
analy::>is tool. At this time the initiator chooses a specific; si1nulator from among a rich
variety of available simulator~, and selects a specific region of a circuit for simulation .

.:!. The Generic Simulato(initialize:-, input data tor simulation. This may i-equire :t trans­
lation of the input dcita to the form required by the selcct•:;d simulntor. Prior to execu­
tion the Generic Simulator intwactively notifies the initiator in the event of any am­
biguities, inconsistencies, or undefined quantities.

3. The simulation is performed.

4. The Generic Simulator interprets the output data and transforms it into a common
representation. The results arc then presented to tile user, again via the user inter­
face, or are made di1 cctly ava.ilable to the analysis toe ls.

15

Chapter 2 Approach

The following sections take a closer look at each component and its role in the develop­

ment stages of the Simulation Environment. The final section discusses the contribution of each

piece toward the design goals.

2.3.1 Common Representation

2.3.1.1 Objects

For electronic simulators, typical input data comprise circuit topology, modeling

parameters, and excitation sign<lls; typical output data are the resultin~ waveforms. Thus, the

basic entities or objects the Simulation Environment must supply to thG Generic Simulator are

circuit topolo9ies, models, and waveforms. Determining what objects 0xist is the first task in

designing the Simulation Environment.

For each object to be accepted by a simulator, a corresponding object in the Simulation

Environment is defined. Within Schema, a circuit design is made up of components called

modules. Modules and their interconnections are supplied by the circuit topology. Each module

may contain some local model information. For example, transistor modi..!les may have U1n?shold

voltages or logic gates may have propagation delays as part of their model. And finally, signals

are the waveforms associated with the input to and the output from simulatcrs. In general, these

objects rcrrcsent the data essential for simulation, and thus essential to the Simulation

Environment.

2.3.1.2 Object Typel:)

The next task is to further s•.Jbdivide the types of topology, model, and waveform objects

required in the Simulation Environment. This subdivision is dictated by the types of objects

each simulation tool simulates. P. transistor, for example, has a i1on-linear, linear, and switch

model; thus, these model types should be made available in the Simulation 1=nvironment. Similarly

a circuit-level simulator accepts topological modules including resistors, capacitors, transistors,

arid waveforms such as exponential or piece-wise line3r voltages and currents. The ~>ubdivision

of topological, model, and waveform types is explored further in Cha::-iter 3, Chapter 4, and

Chapter 5, re3poctively.

There is an overlap in th8 types of topological, model, and waveform objects accepted by

16

Chapter 2 Approach

each simulator. An example of a topological module is the transistor. Although circuit, linear, and

switch level simulators all simulate the transistor, it is not necessary to define a different transistor

object in the Simulation Environment for each inrlividual simulator that simulates it. The objects

defined in the Simulation Environment are the union of the object types tflat could possibly be

simulated by any of the simulation tools. This is the key idea behind a common representation for

data objects in the Simulation Environment. The user interface, the Generic Simulator, and the

analysis tools built into or integrated on top of the Simulation Environme11t all interact with these

uniform data objects.

2.3.1.3 Appropriate Types

Of course, not all objects defined in the Simulation Environment will be accepted by each

simulator. A logic le·Jel simulator for instance does not simulate capacitor modules, and exponen­

tial voltage waveforms. Thus, C':ssociated with each simulator is a specific set of appropriate

module, model, and waveform types. These represent the types of objects each simulator ac­

cepts. lncorp0rating a new simulator requires t11e specification of a set of appropriate module,

model, and waveform types.

While some simulators handle different tyµes of modules, other simu!~ttors share some of

the same types of modules. Circuit, linear, and switch-level simulators all ilave the MOS transistor

as an appropriate module type. But each of these simulators uses a diffe1ant model for tile MOS

transistor module type. A major feature distinguishing one kind of simulator over another is the

models it associates with its modules. For any given appropriate module :ype, there may be one

or more appropriate model types. For the cir1:uit simulator Spice2, no model is expected for

modules of typ1:: resistor. yet for the tv10S transistor, three model types are possible.

S!muL.1.tor selection also restricts the appropriate waveform types: different signals are re­

quired for different simulators. Voltage and current waveforms are expected for a circuit-level

analysis, and binary waveforms are required for switch or logic level analysis. To support the

mixed-mode capability of the Simuiation Environment, if signals of one type can be transfonned

into another type acceptable to a specific simulator, these types are also part of the si1md<1tor's

set of appropriate waveform types. If a transformation operation on a binary signal can produce a

V•Jltage signal for a circuit simulation, then binary as well as the voltage signals are appropriu.te

signal types for a circuit simulation.

1l

Chapter 2 Approach

In summary, the object types in the Simulation Environment are the union of the types of

objects handled by the different simulators. As every simulator does not accept all types of

objects defined in the Simulation Environment, a set of appropriJ.te types are associated witll

each simulator. 1

2.3.2 The Generic Simulator

The Generic Simulator is made up of many simulators, and treats each component

simulator as a black box. It is only responsible for supplying input to and obtaining output from

the black box. Thus the Generic Simulator need never know about the inlernal workings of each

component simulator. From outside the Generic Simulator, the user anu the analysis tools per­

ceive the Gerieric Simulator as a black box. Furthermore they never need to interact with the

simulators within the Generic Simulator.

The Generic Simulator interactively coordinv.tes the flow of topology, model, and waveform

objects between the simulation initiator and each incliviclual simulator. This entails obtaining the

input data from the user or analysis tool, supplying the data in the rep; ese:1tation required for the

simulator, invoking simulation execution, interpreting the resulting outpl1(data, and placing the

output data into the Sirnulation Environment for future analysis.

The Generic Simulutor interncts with two kinds of simul;:i~ors: internal and external. An

Internal Simulator directly manipulates the data objects present 'Vithin the Simulation

Environment, in much the sarne way an analysis tool built on too of the Simulation Environment

would. In this c~se, the s:rnulation initiator has the opportuniiy to internct:·1ely conlroi sirnu!;:,tion

execution; ol!tput signal3 can be moniiorecl in real time. On the other hand, a11 ox/Qrnc:f simulator

creates its own data structures. External simulators typically exist on a remote proccssor(s) using

a separate address space. Computationally intensive sirnulations are sent off to special-purpose

hardware or multiprocessor systems witliout inhibiting the speed of the Sirlulation Environment's

current precess. The combination of internal and external simulation ofi~xs the advantages of

both strategies and permits a large dl~(:;rce of flexibility in simulation.

The G.-,meric Simul&tor expects the objects in the Simulation Environment to perform cer-

1
The sets nf ~1ppropri«.te types arc 1101 ne\:es;','lrily sL;tic. l\s low-level simul;:tion results are surnmari?ed into mojeis of

more abstract module:" lor use in h:siher-level simulations, tile modules a.1rJ their corresponding rnodels may be appended
to the set of appropriate types.

Chapter 2 Approach

tain tasks, or operations. The operation actually invoked depends on the type of object being

asked to perform the operation, yet the object type is irrelevant to the Generic Simulator. The

same oµeration can mean different things depending on the type of the object. This technique is

known as data-directed 1-:rogramming [Abelson 85]. The following two sections present a more

detailed look at both internal and external simulators and what operations are required for each

kind of simulation tool.

2.3.2.1 lniernal Simulntion

Internal simulators t1ave direct access to the objects in the Simulation Environment. Each

object involved in the simulation is delegated responsibility for delivering some local information

about itself or performing some computation using this information. To do this, specific simula­

tion operations are defined for each appropriate object type handled by the selected simulation

routine. For example, the NANO and NOil model types each have their own boolean operation for a

logic level simulation.

Internal simulation becomes a layer of these simulation routines where each general algo­

rithm stands alone as an independent, modular unit. Common algorithms could then be shared

over different simulators. For example, relaxation-based simulators and asynchronous logic

simulators both exploit the inactivity of the circuit by using selective-trace and event-driven al­

gorithms. One routine could serve both simulators. Other generic algorit~.ms are useful for other

parts of Schema. The matrix manipulation routines used for the general-purpose circuit simulator

may also be useful in handling graphics.

A generic; layer of operations on objects would ideally c;;mplement this layer of simulation

routines. These operations are similarly shared over different sirnulation algorithms as well as

other components of Schema. For instance, most types of waveforms hr.ive a generic internal­

value operation which calculates and returns a value given a specific point in time. This is a very

common operation used not cnly by circuit level simulators, but also by display routines and

analysis too's. One generic operntion is defined for each waveform type to satisfy the needs of all

potential callers.

19

Chapter 2 Approach

2.3.2.2 External Simulation

Prior to an External Simulation, each object in the Simulation Environment requiring simula­

tion must be transformed into the appropriate external representation, usually a textual descrip­

tion language understandable by tl1e simulator. The description is then sent to a separate ad­

dress space where the simulator builds its own internal data structures for the simulation. If the

simulator exists on a remote processor(s), the description is sent via the local network or file

system. Aft.er simulation execution, the output data must be interpreted a•.d transformed into data

objects in the Simulation Environment.

Input transformations are instigated by the Generic Simulator, yet are actually performed by

the object itself. As in the Internal Simulation case, the particular opemtor invoked will depend

upon the type of object being transformed. A transistor object reciuircs ~l very different transfor­

mation operator than that of an exponential waveform. Furthermore, becuuse there is exactly one

representation for the transistor object in the Simulation Environment and possibly many

simulators that use this type of object, there may be many transformation operators defined for it

-- potentially one for each external tool that simulates the transistor. A switch-level simulator for

example, requires a different transistor representation than a circuit-level simulator and thus a

different transformation operator. In the case of output data, the Generic Simulator must however

supply a parser to extract the output information and to create the d::ita objects within the

Simulation Environment. Transformation responsibility in this case lies witt1 the Generic

Simulator.

For both types of simulators, each object has a certain set of ope!·ations that it must per­

form. The Generic Simulator need never know the irnp!cmentation details of these operations,

and each object need not know about the interna! workings of the Generic Simulator. The

individual :.:;imulators, the Generic Simulator, and each object in the Simulation Environment are

all perceived as b!'.lck boxes. Their internal structure c.1.nd operations are essentially hidden and

i~olated from each other. Ttw Generic Simulate>r can be dcsignP.ci incfcpencient of tho type of

objects it is simulating. It is generic in the true sense of t11e word. Thus, for the Generic Simulator

to perform its task, coordin0.ting the flow of objects within tt1e Simulation Environment, it must

simply know wh:.it operation to perform and on which ubject to perform it.

20

Chapter 2 Approach

2.3.3 Uniform Interface

The user and the analysis tools interact only with the data objects and the Generic

Simulator. Because of the black-box quality of the Generic Simulator, the user and the analysis

tools do not interact with the individual simulators.

The analysis tools built on top of the Simulation Environment have direct access to the

uniform data structures in the Simulation Environment, and thus can intPract with the objects in

much the same way as an internal simulator. Thus the interface to the topology, model, and

waveform objects, as well as the Generic Simulator is simp!e; the analysis tools need only know

the operations defined for each. Cy just knowing the operations for accessing output waveform

objects and the op0rations for telling the Generic Sirnulator to halt the simulation process, an

analysis tool can interactively monitor the execution of an internal simulation the moment erratic

waveform beha'lior develops.

The user indirectly interacts with both the data representations and the Generic Simulator

through a graphical interface. The Generic Simulo.tor interface amounts to a well-defined series

of textual, or menu-driven commands. The designer is thus spared the burden of learning the

operation of each individual simulator; instead, a \Norking knowledge of the Generic Simulator is

sufficient. Schematics, layouts, and icons serve as a graphical presentations of the topology.

The correspondence between the graphical presentations and the topology is dealt with furtt1er in

Chapter 3. Models have a simple menu-driven interface. Waveforms have display objects which

have the ability to represent themselves graphica!ly to the user; these are discussed in Chapter 5.

2.3.4 Accomplishing the Design Goals

/\ co~nmon representation fur data is equivalent to defining a set of object types and a set of

operations that can he performed on those types. These types provide the uniform interface

which enables us to achieve our cl%ign goals. Interfacing new CAD t::,1ls requires only local

additions to the environment. Integrating an additional sirnulatrx rnay require new object types

and a set of operations for each type of object th::~ simulator handles. A new object type is defined

for the Simulation Environment only it the simul;;tor actually simulo.tes an object not yet defined in

the environrw;nt. Adding a11 internal simulator may also necessitate the modular addition of

general simulation algorithms along with some object operations. For an external simulator, a set

of transformation operators and an output pars8r are necessary. Building new analysis tools

21

Chapter 2 Approach

requires only a working luiowledge of the objects in the environment, the operations that can be

performed on them, and the operations that are available for the Generic Simulator. Because

waveform objects are represented uniformly in the Simulation Environment, output signals from

one simulation can be us2d as inpLlt to another simulation; the mixed-mode property is a direct

result of the uniform data structures. With the different le•12ls of simulation, a type transformation

operation may be necessary. This is explored further in Ch<:tpter 5. In sur,1mary, all design goals

can be accomplished tl1rough ti1e loc<:tl addition uf new objects and operations on those objects.

2.4 Implementation in Schema

The Simulation Environr~ent is implemented in Scl1ema In this section, a brief overview of

Schema's hierarchical orga11ization, constraint network, and creation on demand techniques are

all described. In subsequent chapters, we shall see how these strntegies tie directly into the

Simulation Environment.

2.4.1 Hierarchical Organization

Schema is organized hierarchically as shown in Figure ?-2 '.'!here each part in the hierarchy

may contain subparts. Tile root of the hierarchy is the Portf,)lio which has subparts called

f'rojects, and environment folders. Projects serve as an oru«nizatiorm! mechanism for grouping

together other Projects and Module folders. Environment folders surply the designer with stan­

dard libraries. A 1'1lodule foldcr2 contains the electronic; circuit desig!1; it has Icon, layout,

schematic, topologv, and waveform folder parts. The user's g;·aphical interface to the topology is

11-,ainly throuuh the schematic, layout, and icon presentations. And finally, waveform folders hold

collections of waveforrr. specifications, simulation stimuli, and sirnulr::.tion results. This partition­

ir:g allows the user to concentrate on one given t·iierarchical le11el of desi~Jn at any particular time.

Hierarchical 1xganizatio11 is an essential strategy in contro!ling the corr>plexity of large scale

designs.

Each object in the Simulation Environment naturally fits into the hi;:;rarchical organization of

Schema. Tho circuit topology and simulation v..aveforrns are parts of Module folders. Bec:.wse a

2
Moclulc folders and modules are di~ferent entities; for historical reasons, tl 1ey were incorrectly named. Modules are

components of t~1e wpolony; tl1e topolor;y is ;:i component of I.lie module folder.

22

Chapter 2 Approach

model may be shared over many modules, models are collected into folders located directly in the

user's environment. In later chapters, we shall see how each of the objects also naturally con­

forms to this hierarchical representation.

Portfo11o

Project(s)

Project(s)

Module Folder(s)

1-----------'~~ I con (s)

1---------> I <1you t (s)

1-----------'7'>- Sch eri1a tic (s)

1--------7-- fopo logy

~------? Waveform Folder(s)

Waveform Folder(s)

~-------? Fnvironment Folder(s)

1-------~ Fnvii-onment Folder(s)

,,. Model Folller(s)

>---------;,..,... Module Folder(s)

1-------7,... Waveform Fol de1·(s)

~--------'71'-- other library facilities

Model(s)

Figure 2-?.: Hierarchic2I organization of Schema.

2.4.2 Constraint Network

Objects may contain parameters. Relationships called constraints are held between these

parameters. A transistor has local width, length, and shape-factor parameters where the width is

constrained to be the length multiplied by the shape factor. All constraint relationships are

specified in a global constraint network. This permits constraints between the parameters of

different objects. Complex timing relationships between the parameters of many different

waveforms can be captured in the constraint network.

23

Chapter 2 Approach

This technique is primarily useful for the automatic propagation of constraints through local

computation. Modifying one waveform's parameter automatically propagates to those waveforms

constrained to it. In the event of far-reaching effects, constraint propagation saves the designer

from the tedious and time-consuming process of manual updates. Analysis, synthesis, and

reasoning tools can also make use of the constraint network in transistor sizing or circuit verifica­

tion, for example.

2.4.3 Creation on Demand

Creation on demand is the technique of creating an object's internal structure only when it

is needed. In the meantime, the external environment only knows the obiect exists; typically this

is done by knowing the name of the object. Creation on demand applies €4ually ov2r all objects in

the hierarchy. Once the internal data structure has been created, its int<::rnal parts likewise need

not be created until required. For example, if the designer is interested in only in one specific

module folder in a lar!;_ie hierarchy of projects and module folders, th(:m it is only necessary to

create the parents of the desired module, beginning with the designer's Portfolio. This technique

has the advantage of saving valuable memory space and subsequent garbage collection time - a

substantial savings when dealing with lar~ie-scale designs.

2.5 Summary

Tl1e Simulation Environment provides a uniform CAD interface, a consistent user interface,

and mixed n10de capability by using a common representation for simulation data objects: circuit

topologies, Models, and waveforms. The Generic Simulator coordinates the flow of these objects

between each simulator and the simulation initiator. The data objects, the Generic Simulator, and

t11e user interface together make up the Simulation Environment as implerr.ented in Schema.

24

Chapter Three

l~opology

The topology contains the interconnection information of a circuit design. The structure of

a topology deviates from the general hierarchical organization of Schema in that it does not

contain subparts. Instead, the topology has a module definition and a module type. The module

definition is useo for the simulation cf the current topology. The first half of the chapter con­

centrates on the module definition: its uniform representation, subrnoclule interconnection, and

user interface. The module definition defines a new module type. The basic module types as well

as techniques for creating new module types and operations are examined in the remaining half

of the chapter.

3.1 Module Definition

3. ·1.1 Uniform Representation

The module definition contains submodu!es, pins, nodes, parameters, and models. The

submodules may also have submodules. In this way, modules fit ni\turally into the hierarchical

organization of Schema, as shown ir1 Figure 3-1. Together, the submodules, riins, and nodes

specify the electrical connectivity information. Parameters name quantities which are tied to

Schema's constraint network. Models are discussed in detail in Chapter 4. The topology, as all

objects in tile Simulation Environment, has a uniform representation.

3. -1.2 Module Interconnection

Moduk: interconnection, an essential piece of electricnl information, is accomplished with

pins, nodes, and global pins. A pin is a module's interface to tile outside wodd. Transistor

modules for example crn1tain four pins: gate, source, drain, and body. Modules are intercon·

nected by ntt::i.ching thei;· pins to noclos. And finally, a global pin is a special pin seen by all

modules spannin~J the hierarchy. It mo.y connect through a common node to any module pin.

Global pins arc' used mai11iy for supply volt2~ies such as Vdd and Vss.

25

Chapter 3

Moduli! Folder(s)

I

E
->

-~
---->

I con (s)
I ayout(s)
Schematic(s)
Topology

1----->- Module Def1n1t1on

l
--7- Modulo Type

-----> Waveform ~o Ider(s)

M(•dulc(l)
P1n(s)
Node{s)
Parameter(s)
Model(s)

Topology

Figure 3-1: The topology a11d its placement in the hierarchical organization of Schema.

Each rnodule pin knows (1) the nodes connected to internal modules, inodes, (2) the nodes

to which exterr.al modules connect, enodes, (3) its direction, and (4) its rarent module. In Figure

3-2, the inverter rnoc!ule has four pins associated with it: A, A-bar, Vdd, 'lnd Vss - of which the

latter two are global pins. They all have nodes that connect to the pins of internal modules. Pin A

has an internal node n3, no nodes connected externally, the direction input, and a parent, the

inverter module. The gate pin of the enhancement mode eMOS module tias no nodes internally

connected, but does l1ave ::rn external node n3, the direction, input, and the eMOS module as a

parent.

Each node knows all the pins attached to it and the internal pins for which it is the internal

node. Node n 2 is ;:ittact1ed to pin A- ti at' of the inverter rnoJule, the gat:J and drain pins of the

depletion mode dMOS rnodu!e, and the drain pin iJf the eMOS module. Pin f1-bar is the internal pin

for which n 2 is Hie internal node.

26


~~~~t'¥'~~ .. ~- .. ~4'~,,;•Nl'itft~5-~~-~s•Jlill~~-~-t;)Ju ,.,, .• __ gJUl•Ut,A.JlJlf.!f!LllJ!~-""+·i·MltJll!I~-..~ 
.-· ... - ,- . ···"-~, 

Chapter3 

I Inverter 
I Module 
I Definition 

IQ node 

ID,,. 
,a., .. ~,·-

Vdd 

A-bar 

Vss 

Inverter 
Sch ... tic 

Vlro·I 0... 
ICOft 

., .... 

Vdd 
Pin 

'"" 

Wlro·I 

Topology 

.__.,._._ •. _, --4•---"-'•-•·-• -D A-bar 

Ou"•' 

D 111••-• 
A -----1 ,.,.., , ... ,_ 

lltro·• 

Vet 

"" ., .. 

,,. 
ICOft 

Figure 3·2: Inverter module definition and corresponding eehematic presentation. 

27 



Chapter 3 Topology 

3.1.3 Module Definition Creation 

Prior to initiating a simulation, a module definition must be available. If the definition does 

not exist, it is initially created from the most recent graphical schematic or layout presentation. A 

module definition may however already exist from some other simulation. In this case, if it is not 

up to date with the latest version of Hie presentation, it is updated. This section describes the 

process of creating or updating a module definition from the presentation. 

The presentation is given responsibility for creating or updating the module definition. If the 

definition is nonexistent, a dummy module object is created for the definition; it initially has no 

submodules, pins, or nodes. ThE:n for each part in the presentation, a topological correspondent 

is created in the module definition, if none exists. Topological correspondents are submodules, 

pins, or nodes in the module definition; the module definition is updated accordingly. 

A schematic presentation for example, is composed of icons ;.ind wires that contain place­

ment and display information. Pin icons, module icons, and wires in the schematic have topologi­

cal correspondents of pins, modules, and nodes respectively, in the module definition. A 

schematic for the inverter is shown in Figure 3-2. Wire-2, Wire-3, \!lire-5, W·ire-6, Wir'e-7, 

and Wi re--8 of the inverter schematic all have node n2 of the inverter definition as their topologi­

cal correspondent. The Tnput Pin Icon and eMOS Jeon have topolcr3ical correspondents of 

Pin A, and the eMOS module, respectively. Associated v1ith e<icl1 icon is a set of display pins used 

to connect wires. These display pins are not shown grapt1ically, yet they do have topological 

correspondc~nts in the module definition. The eMOS-Tcon has three disp!ay pins, each of which 

has a topological corresr:.ondent - the aate, source, and drain pins. 

The mcdule definition is created at t11e top level; the submodules and tlleir interconnections 

are created. The internal structure of each submodule is only created on demand. Once this 

top-level module definition has been generated, it may be sa•Jcd in a topoiogy save file for future 

use. When t!Je file is read in during a new Schema session, the module ddinition is not created, 

but rather a new module type 1s defined. In this case, it is not necess<Jry to create the definition 

from the presentation; the definition can be simply created from the module type. 



Chapter 3 Topology 

3.1.4 Uniform User Interface 

The module definition is visually transparent to the user. The user indirectly communicates 

with the objects .in the topology's module definition via the graphical schematic or layout presen­

tation. Durina the simulation process, the presentation is used as a read-only medium for extract­

ing or modifying electrical information in the module definition. Because each display object has 

a topological correspondent in the module definition, the user can easily access electrical infor­

mation. Similarly, each part in the m'.Jdule definition has a presentation correspondent. In this 

way, the parts of the module definition may report back. to the user. 

The presentation is a flat structure, whereas the topology is hierarchical. The correspon­

dence between lhe module definition :rnd the presentation is only for the top-level modules in the 

hierarchical definition. This presents two problems when the user tries to examine the electrical 

information in the lower levei moclules. First of all, the on!y topological components accessible to 

the user are those having a correspondent in the presentation. Any parts of submodules in the 

module definition do not have presentations associated with them. Secondly, these parts may not 

even exk;t. When the rnodule definition is first created, only the top level objects and their 

interconnections may exist. 

These problems are solved with the zoom-in facility. Suppose an inverter icon is a part of 

the user's current presentation, and the user wishes to set the length and width parameters of the 

transistors inside tl1e inverter module. Further suppose the inverter module is not fully created, 

i.e., the transistors do not yet exist. The zoom-in facility finc!s the layout or schematic presen­

tation from the rnodule fo!der of the inverter icon, and makes it visible to the user as a read-only 

reference for examining the submodules of the inverter module. In order to examine the tran­

sistor submodules of the inverter, the inverter must first create its submodules. During the crea­

tion process, a correspondence is set up between the inverter's presentation and the module 

instance in the sarne manner as before. The advantage to this str2tegy is a single schematic or 

layout presentation is useful for all modules of the same type - not just the 1i1odule definition. 

28 



Chapter 3 Topology 

3.2 Defining New Module Types 

A new module type is defined from the module definition, or from a textual description 

stored in the topology's save file. The type is used to create a separate copy of the module 

definition for use as a part in some other module. When the type is created, operations are 

autornaticaliy defined to enable an object of the new module type to create its own parameters, 

constraints, submodules, pins, and internal interconnections. Three basic module types are avail­

able: simple, compound, and abstract. 

3.2.1 Simple Modules 

Simple Module Types do not contain ~~ubmodules. They may, however, have pins, 

parameters. and constraint re!ationsliips, which are generated us soon as an object of this type is 

created. Examples of simple modules include the resistor, carac i tor, dMOS and eMOS tran­

sistors, and inverter, ~l!'\ND, NOR, XOR, OR, and AND logic gates. These types are mainly defined in 

the designer's environment. Another distinguishing feature of simple modules is they typically 

have no schematic, only an icon. The following examples d8pict simple module type definition for 

the resistor cmd eMOS transistor. 

(defmodule resistor simple 
(resistance) 
(µins p+ p-)) 

(defmodule eMOS simple 

;par·ameter dofi11ition 
;pin definitions 

(width ·1ength shape ;raramete1' df~finitfons 

source--a1·ea sour'ce--per ime ter· 
rl r a i n - are a d r· a i n - per' inie t er) 

(pins gate tt t2 body) 
(c~ (>> width) ;constraint between parameters 

(>> shaµe) 
(>> length))) 

3.2.2 Compound Modules 

Compou11d Module Types have submodules; and thus, can he f1iera(chically structured. As 

1i1iittl simrile modules, pins, parameters, and constraints are all generated when an object of this 

type is first created. Pin creatior, is particularly important at this point; external modules can then 

connect to this module without knowing the internal structure of the module. Tho submodules 

and their interned interconnections are cfeo.ted only upon dcmaPd. The i_ypc associated with each 

30 



Chapter 3 Topology 

user-defined topology is usually a compound module type. An example of an inverter module 

type follows: 

(defmodule inverter general 
( ) 
(global-pins Vdd Vss) 
(pin a input) 
(pin a-bar output) 
(module pulldown eMOS) ;submodule definitions 
(module pullup dMOS) 
(connect(>> t2 pullup) ;internal connections 

(» Vdd)) 
(connect (>> t1 pulldown) 

(» Vss)) 
(connect (>> gate pulldown) 

( » a - b a 1' ) ) 

(connect (>> t1 pullup) 
(» gate pullup) 
(>> t2 pulldown) 
(» a-bar)) 

3.2.3 Abstract Modules 

Abstract A1oduie Types are generalizations of a class of module types with similar charac­

teristics. For example, there are many module types that have two pins, sucl1 as tl1e r'es is tor, 

capacitor, and in ve 1' te r. The abstract module type, Two-Pin --Oe v ice, captures this notion. 

(defn1odule two-piil-dev·ice abstract 
() ;no parameters 
(pins p+ p-)) ;pin definition 

The res i star can 11ow inherit this abstract type, and thus implicitly includes two pins. 

This is known as type inheritance. The previously-defined simple rnoduie type, resistor, is 

redefined as follows. 

(def111odule resistor simple 
(resistance) 
(includes two-pin-d-c:vice)) ;inherits two pins 

/\nother abstract module, MOS, captures Hie general characteristics of MOS transistors 

including width, length. and shape parameters. Additionally, a constraint is placed between these 

parameters. 

31 



Chapter 3 

(defmodule MOS abstract 
(width length sllape 
source-area source-perimeter 
drain-area drain-perimeter) 

(pins gate tl t2 body) 
(c* (» width) 

(» shape) 
(» length))) 

Topology 

This abstract module is then used to define specific types of transi,-;tors, such as eMOS and 

dMOS, with these implicit parameters and constraints. Type inheritance g(oatly simplifies the type 

definition. 

(defmodule eMOS simple 
( ) 
(includes MOS)) ;inherits MOS characteristics 

3.3 Defining New Module Operations 

A layer of general, all-purpose accessors and operations is currently defined for topological 

objects. This layer is independent of any particular simulator and thus is useful not only to the 

Generic Simulator, but to any tool requiring access to topological inforr11ation. One very basic 

operation gives modules the ability to create their own submodules if 'hey have not yet been 

created. Another operation permits a module definition to dump its data structure in sucf1 a way 

that a module type is defined when the clump forms arc evaluated. Other localized operations 

may be easiiy incorporated. 

Because a general !ayer of operations on topolooicv.I objects curr:c:ntly exists, integrating 

additional internal simulators does not require the addition of a new operators. For .:ln external 

simulator, i1 owever, a transformation operation must be defined to translate the data objects in 

the environment into a textual description for the simulator. For each mcdule type the simulator 

accepts, a new transformation opera~io11 is defined. Simple transforrnati·,~n operations for creat­

ing a Spice2 input deck are shown below. 

32 



Chapter3 

(defmethod (resistor :spice-deck) (stream) 
(format stream "R·-D -0 -0 -F-%" 

(simulation-resistor-number self) 
(simulation-nocle-nu111he1' (>> p+)) 
(simulation-node-number (>> p-)) 
(>>resistance))) 

(defmethod (MOS :spice-deck) (stream) 
(format stream "M-0 ,_Q -0 -0 -D -A W=-0 L=·-0-%" 

(simulation-MOS-number self) 
(simulation-node-number (>> t2)) 
(simulation-node-number (>> gate)) 
(simulation-node-number (>> tl)) 
(simulation-node-numbf3r (>>body)) 
(send (send self :get-model) :name) 
(» width) 
(»length)) 

Topology 

Notice a single operation i~; defined for a whole class of MOS devices. In ottwr words, this 

operation is performed on all modules that have the abstract MOS type; this includes eMOS module 

type redefined above. Thus, not on!y is the type inherited, but tile operations defined on the type 

are also inherited. 

3.4 Summary 

A topology contains a modu!e Jefinition and a type. The module definition is the topologi­

cal object used in simulation. It is uniformly represented within the !1ierDrct1ical organization of 

Schema. It is initially created from a presentation and servP.s to define the module type. In this 

way, new types and their operators can be easiiy integrated into tl;e Simulation Environment. The 

simple add'tion of new types and their operators facilitates extensibility to both Internal and 

external simulators. 

33 



Chapter Four 

Models 

Because simulators model the behavior of real devices, models play a vital role in the 

simulation of circuit designs. In the Simulation Environment, a model may be associated with 

each module being simulated. Models contain many of the electrical quantities required in 

simulation. The uniform representation, the user interface, and the basic types of models are all 

discussed in this chapter. 

4.1 Uniform Representation 

Models are not hierarchical; they do not contain other models. Instead, models have 

parameters such as threshold voltages and oxide thicknesses for circuit level transistor models, 

and setup times. propagation delays and hold times for logic-level models These parameters are 

not the associated witl1 the con~;traint network. In the hierarchical organization of Schema, 

models applicable to a particuiar type of module are collected into a model folder. Similarly, 

model folders for different modules <J.!e grouped into environment folders as shown in Figure 4-1. 

At any one level in the environment folder hierarchy, there is Gt most ont5 model folder for each 

module type. 

It is internsting to note that rncdel folders and their respective models are l<ept separate 

from the module folder for which apply. Rather models all(! model folders are classified by 

environment, and the intorrnatiun contained in the module foider is shar'.~d over all the environ­

ments. In this 'Nay, environme11ts can be configured by a particular fabrication process, for 

exarnpie. By simply switchinq environments, a new set of models corresponding to a different 

fabricatirm process CRn be used. The major advantage to this approach is that circuits can be 

designed independent of the fabrication process, or indeed, any other technological division. 

34 



Chapter 4 

fnvironment Folder(s) 

Fnvironment Folder(s) 
-->+- Model Folder(s) 

.__I--->~ Model(s) 

other library facilities 

Models 

Figure 4-1: Models and their placement in the hierarchical organ!zation of Schema. 

4.2 Uniform User Interface 

The user interface to creating new model folders and models is simply menu-driven and 

self-explanatory. If the model folder for the module to be modeled does not exist, a new module 

folder is first created. A new model is generated by selecting any one of the currently defined 

model types for tl1e chosen module type. Furthermore, the user is fr.=::e to modify any of the 

parameters of the newiy-created model. 

4.3 Defining New Model Types 

In the; Simulation Environment, each newly-defined model type must specify both a module 

type for which it is applicable and a list of parameters. A default value, a short documentation 

string, and a dimension accompany each parameter definition. 

While a model type corresponds to exactly one module type, each module type may cor­

respond to several different models. The MOS transistor is a prime example of a module having 

many model types: switch, linear, shichman and hodges, analytical, and semi-empirical models. 

Each model type may produce several individual model objects. There may, for example, be 

special models for worst-case speed, worst-case power, and worst-case noise margin. 

Two basic types of models exist: models without state and models with state. Models 

35 



Chapter 4 Models 

without state may be shared by modules of a common type, but models with state may not be 

shared. Modules may require the use of both kinds of models; some parameters may be shared 

over many devices of the same type, whereas other parameters refer to the local state of the 

device3 . The following two sectio:is describe each model type and explain how to define new 

model types. 

4.3. 1 Models Without State 

Modules of the same type shme a common model wiU101.1t state. The obvious advantage to 

this appro::tch is :i savings in memory space because only one copy of the model is generated. 

This does not imply that a// devices of a common type must shar8 the sarne model. Ttiis 

mechanism just facilitates a sharinq of a common model. Some module::; of a common type may 

require one shared model without state, while others of the SD.me type may require a different 

model without state. 

Models V1.1ithou£ state are useful to both external simulators and internal simulators. In a 

logic level simulation, nil NANO gates in the circuit may share common V<.:dues for transition times 

along with a common boolean operation. In this case, a ::::ingle shared model without state is 

useful to all module~, of type NAND, regardless of whether the logic level simulator is an external or 

internal sirr;ulator. 

For the abstract module type MOS defined in Chapter 3, a abstract Spice2 morlel is defined 

as follows: 

(define-rnocl(!l MOS .:>pice-MOS () 
(vtO 0.0 "Zero hias threshold voltaae" :voHage) 
(kp 2.0e-5 "Tra:1sconcluctance" :cur1·ent-per-vPltage-squared) 
(garn111a 0.0 "Bulk threshold parameLe1·" :sqrt-voltage) 
(;..illi 0.(i "Surface potential" :voltage) 

... ) 

The new model type is called spice-MOS and its parameters are those that are used over 

all three tvlOS device :11odcls defined in Spice2. A s p ice - MOS - an :-i l y ti r: a I model type can now 

be defined with the additional par.:trnetcrs required for simulating an '1nalytical model. Since this 

new rnodel incluJes the spice-MOS model, al! c1f its parameters will also b.c: included. 

3This case has not yet been dealt \vith exnlicitly. Either the two separatr~ models could both be r.achccJ in the modulA, 
or another tyre could be def~necl h<:Jvi;ig local stdtc <:!long with <1 pointer to H1c sl1ar,;d model. 

36 



Chapter 4 Models 

(define-model MOS spice-MOS-analytical (spice-MOS) 
(lambda 0.0 "Channel lengLh modulation" :inverse-voltage) 
(ucrit 1.0e4 "Crit field mobility degrad" :voltage--per-length) 

... ) 

And finally, this abstract model is used to define a general model for the eMOS module. The 

model restricts the channel type to n-channel, while also including all the abstract charac­

teristics of the spice-MOS-analytical and spice-MOS model types. 

(define-model eMOS spice-eMOS-analytical (spice-MOS-analytical) 
(channel-type "Channel-type" :value nMOS)) 

4.3.2 Mude!s With State 

As the name implies, a model with state stores information relating to the current state of 

the module, such as charge, binary state, and local variable bindings. Internal simulators use 

models with strtte w temporarily store simulation data. The Q parameter of the 

logic-D-fl ip-flop model and the state parameter of the Rs·im-MOS model are recalculated 

for each event or clock cycle of the simulator. 

( def i n e - 111 ode I --w i th - s t J t e D - fl i p - fl op l o g i c - D - fl i p -- fl op 
( Q " C u r 1' e n t s tat e " : v J l u e s · ( L H X ) ) ) 

(define-model-with-state MOS Rsim-MOS () 
(state "Current state" :villues '(on off unknown weak)) 
( rst.at ic-111i11 
(rdynlow 

' . • • I 

"Minimurn static rr3sistance" :resi:;tance) 
"Dyna1n-ic low resistance" :resi$tance) 

/\n irnple~nentatio:i of R~;im also requires an initial cletermiioation of the effective static and 

dynamic resistances ·of eacl1 tviOS device. These parameters are ca!cul::i.ted one time only from 

the local p:::i.rameters of each module and are reused over many simulations. To sum up, the 

parameters of a model with state mu.y depend on the model's local state and the module's local 

properties. 

4.4 0(;-fining New Model Operations 

Defining opemtions for models is a very powerful tool for pro1noting modularity in internal 

simulation design as well as in integrating additional external simulators. For internal analysis 

tools, moclels perform certnin operations such a drain current calculations, boolean functions, 

31 



Chapter4 Models 

and behavioral-level procedures. For external simulators, transformation aperations can be 

defined similar to those defined on modules. 

4.5 Summary 

Models have parameters which hold the efectrical Information required during simulation. 

Models are located in the designer's environment and ••cached in 1he module prior to simula­

tion. The cached model is then available for future ~ Two baaic types of models exist 

in the Simulation Environment: models with and without atata. New MOdefs and operations can be 

built out of these basic types. 

38 



Chapter Five 

Waveforms 

Waveforms embody any type of excitation or response signal used in the simulation and 

analysis of 2lectronic circuits. In the Simulation Environment, the uniform waveform represen­

tations are patterned after the input and output signals of simulators. This chapter briefly ex­

amines these uniform representations and how they fit into the overall hierarchical framework of 

Schema. Then an introduction to the uniform user interface leads naturally into a discussion of 

the display types, their associated waveform types and operations, and the usefulness of the 

constraint mechanism. And finally, type conversions are discussed with respect to the mixed­

mode property of the Sirnulation Environment. 

Portfolio 

--> Project(s) 

--;>- Prcj,,ct(s) 

I---->- ~lo;Ju I e Folder ( s) 

L__~ Wavarorm F~lder(s) 

Waveform Folder(s) 

Fnvironment Foljer(s) 

~ Waveform Fold~r(s) 
L_;, other library facilities 

>----->~ Waveform Folder(s) 
~-->- Waveform Dlsplay(s) 

~-->,,- Waveform( s) 

~-->- Waveform(s) 

Figure 5-1: Waveforms in the hierarchical organization of Schema. 

39 



Chapter 5 Waveforms 

5.1 Uniform Representation 

Waveforms are the uniform mechanism for communication among modules in the 

Simulation Environment. The means of organizing and grouping waveforms, waveform folders, 

the means of displaying waveforms, waveform displays, and the actual waveforms objects them­

selves, provide the mechanism for fitting waveforms into the hierarchical organization of Schema 

as shown in Figure 5-1. This section gives a brief overview of each, along with its dedicated 

purpose in the Simulation Environment. This background, in combination with a discussion on 

the applicability of the constraint network in tile waveform domain, lay:; the foundation for the 

implementation details presented in the remaining sections. 

In the hierarchy of Schema, waveform foiders are parts of projects, module folders, and 

environment folders. As a project part, a waveform folder serves as a medium for capturing many 

of the simulation stimuli, e.g., clocks, control signals, and waveform specifications that are shared 

between the simu!ations of different modules. As a module-folder part, a waveform folder con­

tains waveform info~mation pertaining just to the moduleo Waveform folders that are project and 

module parts are generic ::rnd thus may be shared by many different environments. And finally, as 

an environment folde( part, a waveform folder holds simulation results. In the same way that 

models are associated with a particular environment, so are the waveforms resulting from simula­

tions that use those models. Allowino waveform folders at rn::my levels in the hierarchy permits a 

large degree of modularity in organizing the waveforms of very large circ11it designs. 

Waveform folders contain other waveform folders as weil as waveform displays as parts. As 

the name implies, a waveform disp:ay object holds the inforrnation required fur a visual display to 

the user. A display object, for example, could contain information regarciing maximum and min­

imum axis a1nplitucles, horizontal and vertical scaling, and dimensional units. This information is 

conveniently useful to display routines defined for the objects. 

One level deeper in the hierarchy, v;avcform displays hold a ordered set of waveform µarts. 

These parts repre~;ent the actuai signal values. In keeping witl1 the hierarchical structure of parts, 

waveforms may also ha'1e wrivdorm parts. Waveforms are ordered in increasing value along the 

x-axis to guarantee fast searching through parts. 

Constraints may be placed among parameters internal to a waveform, between the 

waveform parts of a common display object, or across waveform parts of different display objects. 

40 



Chapter 5 \iVaveforms 

A ramp has parameters of in it i a 1 -x, f i na 1--x, and de 1 ta- x. In this case, de 1 ta-- x is numeri­

cally constrained to be equal to the difference between the f in a 1 - x and the i fl it i al - x 

parameters. This is an examp!e of a constraint placed on parameters internal to a WL:<vefonn. 

Another constraint may be tied between parameters of waveform parts in a common display 

object. In a sequence of ramps, the i flit i al - x parameter of each ro.mr· part of a dispiay object 

is constrained to be equai to the fin a 1 - x of waveform part preceding it. This constraint, in 

conjunction with the aforementioned internal constraint imposed upon each individual ramp, 

makes it possible to achieve simple sr.ifting operations along the x-axis. Changing one parameter 

locally propagates the constraints to shift all waveform parts of the display object to the right or 

left along the x-axis. 

Finally, constraints may be placed across waveforms parnrnctcrs in different display ob­

jects. This is especially valuable wlien specifyin9 complicated timing relationships between input 

signals. Consider a typical dynamic rnndom-access memory chip where read, early-11\rrite, 'Nrite, 

read-write/re;.:.d-modify-write, page-mode read, page mode write, and Ra~-bar-only refresh cycle 

timing relationships each occupy a full page in the standard MOS me!1ory data book. Local 

constraint propagation to achieve global consist·2ncy over tile numorcus compiicated timing 

relationships associated wit:1 very large performance circuits is a very valuable asset to the ci1cuit 

designer of today. 

5.2 Uniform User Interface 

Waveform displHys provide a powerful user interface lo all 'Na.;eform objects of the 

Simuiation Environment. They contain the essential data and cperations for graphical entry and 

screen dispiay. The types of display objects defined in the Simulation Environment 2re geared 

toward the visual representation universally sketched by today's circuit designers and typically 

observed on standard tE:::>t eciuipnien~ such as the oscilloscope or logic analyzer. Rather than 

ir,exact sketching with paper and pencil, complex adjustments of knobs and buttons, and reams 

of computer simulation printouts, a simple uniform menu-driven, bucky-key interface to each 

display type is furnished. The user rn::ty then gr::.tphically enter input waveforms, and view simula­

tion results via a common waveform display interface. 

41 



Chapter 5 Waveforms 

5.3 Display Types and Waveform Types 

Display types are selected on the basis of input and output waveform needs for the different 

simulators. The following sections present a few of the possible types of waveform displays. For 

each display type, a set of basic waveform types is also defined. Waveform objects are created 

from these basic types and subsequently become parts of the display objects. Other waveforms 

can be added to this basic set as long as they supply the 1iec0ssary grapl1ical entry and screen 

display routines. Alternatively, additional compound waveform types can be generated from this 

basic set. This generation of new waveform types is performed in rnuc i1 the same way as the 

topology's type is automatically generated from the module definition a~; dc3cribed in Chapter 3. 

5"3.1 Analog Waveforms 

Graphically, analog display objects are two-dirm.nsional. Horizontal and vertical axes con­

stitute any continuous dimensions, such as voltage, current, time. frequency, power, and 

capacitance. Maximum and minimum axis amplitudes are also display attributes. 

Ail waveform parts of analog display objects are i1nrlicitly given p::irametars of in it i a 1 - x, 

final-x and del ta-x, where delta-xis nurnericnlly constra:ned to !Jc equal to the difference 

between tile f i ne11-x and the initial -x pan::t1noters. The user has exp!icit control over setting 

and constraining these va!ues. 

Two basic types of waveforms are parts '.:Jf anai0rJ display objects: functions and arw!og 

arrays of (x,y) pairs. Functional types are convenient in th(ee importani ways: first as input to 

c;rcuit level simulators; secondly as a simple gr>iphic'.11 entry icrrn for th•.) user, and finally as a 

c0mpact description of the waveform. Levels, ramps, si11u~::,oicls, and exponentials represent the 

common sei of functional types currently available in the Sirnul2tion E.=nvironment. In general any 

function, y .-o f(x), can be inc!11ded. All functioned constants, such H1 e frequency and amplitude of 

8. sinusoid or the time con;:;t:::nt of an exponential, are p;mrnieters and thus may be constrained. A 

level waveform type is defined as foilows: 

(defwaveform level simple 
( y)) 

In addition to th'.3 implicit parameters and constraint, an explicit parameter, y, has also been 

defined. In the fo!!owing type definition, the ramp imposes an explicit constraint between the y 

parameters: this is similar t0 the implicit constrai11t imposed in the x-direction. 

42 



Chapter 5 

(defwaveform ramp simple 
(initial-y final-y d~lta-y) 
(c+ (>> final-y) 

(>> initial-y) 
(>> delta-y))) 

Waveforms 

Because simulation output of circuit level simulators is typically lonq listings of (time, value) 

pairs, an array waveform type is the most efficient data structure for memory storage. A sum­

marized graphical -form is created to allow for fast visual display. 

(defwaveform analog-array simple 
(pts graphical-fo1'111 accuracy)) 

Frequently the output pair.ts resulting from a detailed simulatio;1 run are extraneous. 

Furthermore, the designer is often only interested in a transition time or time constant of some 

selected portion of the waveform. At the expense of some accuracy, •nany of the points are 

discarded and replaced with a summarized version. In essence, t11is summarization process can 

be viewed as a conversion between the waveform array type and the functional waveform type. At 

first, the array waveform could be naively viewed as a series of ramps. At this point, the major 

difference between the two types is the inherent constraint mechanism associated with the ramps 

parameters. One-to-one mapping for the conversion of the detailed array to the ramp type would 

be absurd. A rnore realistic approach applies a combination of heuristic techniques, rigorous 

curve-fitting algorithms, and desired accuracy level to produce a summarized series of piecewise­

linear segments, or a combrnation of piecewise linear and exponential segments, as is more 

typical of w.-:cveforrns resulting from a digital circuit. Detailed sirnulatiori results are then discarded 

for the more surnmarizec: version The currently defined conversion ope. iltit1ns are presented in 

[.Solden 86]. 

In adclition to conversion ar.d summarization operntions on functional and array waveform 

types, many mathernatical operations are defined [Solden 86]. Standard unary operations useful 

in analysis are interpolation, differentiation, and integration. Otbers stancl;,rd operations involving 

more than one waveform operand include addition, subtraction, rnultiplication, and division. 

Operations such as these are extremely powerful for calculating power lossage, effective resis· 

tance and capacitance. Moreover, defining nddilional waveform operations is simple. It requires 

only a local understanding of the waveform data ~;tructures described above, in addition lo 

knowledge of tile basic OPE:'at!ons already defined, 

43 



Chapter 5 Waveforms 

5.3.2 Binary Waveforms 

A binary display type is built on top of the analog display type with a restriction placed on 

the maximum (1) and minimum (O) amplitude of the y-axis. The x-dimension is either continuous 

(variable-del::.iy) or discrete (unit-delay) time. 

Three basic types of waveforms can be parts of binary displ::~y objects: steady-state, 

transition, and binary array. These types were selected on the basis of their usefulness as input 

and output to linear model, switch, and logic level simulators. 

Steady-state and transition waveforms implicitly inherit the same purameters and constraint 

in the x-direction described for the analog case. In addition, steady-state waveforms have a state 

parameter, and transitions have initial -state and final - state rnrameters. States may 

have values of logic zero (0), logic one ( 7), a high-impedance (Z), and an unknown (X). 

(defwaveform steady-state simple 
(state)) 

(defwavefor'lll transit-ion simple 
(initial-state final-state)) 

Steady-sto.te and transition waveforms are similar to the level and ramp defined for analog 

displays, yet with tt1e restriction on values of state. In the case of tl~e transition however, a 

constraint was not placed between the in it i a 1-state 'md f i na·l -state as was done be­

tween the star-t-y, end-y, and del ta-y for the rump bccm1se del ta-y would always be either 

1 or -1. 

As in the analog case, tinary arrays are a condensed furn1 of output storage. Points are 

restricted to be (x,statc) pairs. 

(defwaveform binary-array simple 
(pts)) 

Conversion between stt~ady-state I transition waveforms and binwy array waveforms is a 

straightfor'vvard rn<.1pping. Boolean operations, bit-pattern searching, ancl other virtual logic­

m1alyzer operations can be easily incorporated. 

44 



Chapter 5 Waveforms 

5.3.3 Defining New Displays and New Waveform Types 

Analog and binary display types are designed to cover most all the cases for the lower level 

simulators. This listing is by no means exhaustive. For this reason, adding new waveform types 

for these display types is a simple procedure. Infinite as well as periodic waveform definitions 

could also be added. From the basic set of simple waveform types defined above, a library of 

compound, hierarchical waveform types can be defined. New waveform displays may also be 

created. A qualitc.tive [Williams 84] display for example could be built on top of the analog display 

type, incorporating the display procedures cu:-rently available in the s:mulation Environment. 

Non-linear Rnd multi-dimensional display axes and graphics routines coulri be integrated. 

At higher levels of signal abstraction, waveform axes are no longer of any use. Waveform 

displays amount to program descriptions, flow graphs, state diagrams, and the like. Instead of 

viewing individual binary signals for example, a collection of siGnals numerically represented in 

base 8 or 16 1i~ould prc,vide the greatest amount of flexibility. Octal and hexadecimal waveform 

types would most likely exist where collections of up to 8 and 16 binary display objects, respec­

tively, could be directly mapped. 

5.4 Mixed-Mode Capability 

In order to perform mixed·mode simulation, where the output results of one simulation are 

used as the input in some other simulation, a waveforrn conversion may be necessary. Simple 

handlers transform waveforms from one type to anotl1er on demand. Conversion techniques 

among waveforms occupying analog display objects and binary display objects have been briefly 

discussed. Conversion between analog and binary waveforms is of greater interest for the provid­

ing the mixed-mode capability of tl1e Simulation Environment. In general, conversions from the 

more accuro.te waveforms to a higher level of abstraction i::; <:;traightforward. Mapping a voltage 

waveform onto a binary waveform requires an understanding of the thresi1old voltages and cur­

rents for the different logic states in the chosen technology. In the opposite direction, techniques 

are available and are documented in the literature [Arnout 78, Antognetti 8~]. All coercions could 

be easily iff,plernented and integrated with little knowledge ot the internal workings of the sur­

rounding Siml'lation Environment. 

45 



Chapter 5 Waveforms 

5.5 Sun1mary 

The uniform representations of waveforms, waveform displays, and waveform folders 

naturally conform to tile hierarchy of Schema. Waveform displays provide a uniform interface to 

the user. Display types and their associated waveform types are designed to satisfy the input and 

output requirements of simulators. Parameters associated with input waveform tie directly into 

the constraint network of Schema: output waveform types conserve on memory storage space. 

New waveform types and operations as well as display types can be easily integrated. Local 

coercion routines can be defined to simply transform one type of wavefG;-m to another; this gives 

the Simulation Environment the capability to perform mixed-mode simulation. 

46 



Chapter Six 

Generic Simulator 

This chapter explores the Generic Simuiation Process: a series of .steps leading to a single 

simulation with the Generic Simulator. As the process unfolds, the discussion centers on how the 

Generic Simulator coordinates the flow of data objects between the simulation initiator, the user 

or analysis tool, and the selected simulator. 

6.1 Uniform User Int.art ace 

During the Presentation Editing Mode, the user graphically draws a schematic or layout of a 

circuit design. Then the user enters Simulation Mode. The display is reconfigured to provide 

both a waveform editor and a read-only presentation viewer. The Gener:;, Simulator requests the 

presentation to create or update the module definition. During this time, a correspondence is set 

up between the presentation and the module definition. The read-only nresentation viewer can 

then serve as the user's interface to the electrical information in the module definition. l\t this 

point, only the top-level submodules of the module definition and their interconnections cor­

respond to the flat presentation. The user may at any time access th8 internal parts of a sub­

module via the zoom-in feature described in ChGpter 3. Using the wavekrm editor, the user may 

graphically enter new waveform displays as well as view the waveform displays of any currently 

existing w&veform folders. For example, the user may wish to use a waveform folder containing 

input test 'l'actors and output spE')Cification waveforms for an add or memory-write operation. The 

combination of both the presentation viewer and waveform editor enables the user to assign 

waveforms lo the input nodes and pins of the module definition. After input waveform assign­

ments, the user may begin the Generic Simulation Process. 

47 



Chapter 6 Generic Simulator 

6.2 Initiation Phase 

To begin a Generic Simulation Process, the initiator first selects a region or all of a module 

definition upon which to perform the simulation. Next a specific simulator is chosen from the 

available simulators within the Generic Simulator. Simulator selection specifies the set of ap­

propriate module, model, and waveform types handled by the simulator. 

Becm:se some simulators perform more thnn one type of analysis, an analysis context must 

also be specified by the initiator. Traditional circuit simulators for example perform de, ac small­

signal, and transient analyses. If more than one analysis type exists for any chosen simulation, 

analysis context selection may further restrict the appropriate module, model, and waveform 

types. For example, a de analysis context greatly simplifies a capacitor or inductor model. Under 

different an&lysis contexts, a different kind of signal may be necessary; a de analysis produces 

volta9e and current values, whereas a transient analysis 9enerates a history of (time, value) pairs. 

The Generic Simul;1tor may request additional information from the initiator. In the case of 

a transient analysis for example, initial time, time step size, final time, and number of simulation 

steps are required information. For an internal simulation, the initiator has the opportunity to 

control simulation execution, e.g., to l1alt when certain waveforms fail to n~eet output specifica­

tions, or to supervise some cornbin.:ition of output waveforms such ;:is effecti 11e capacitance. 

6.3 Initialization Phase 

Once a simulation h3.s been initiated, the Generic Simulator initializes :is much information 

for the simulation as possible. This includes locating the uppropriate modules, waveforms, 

models, and the relationship between them. The Generic Simulator passes type· dependent tasks 

onto each object. .A.JI initialimtion is completely transparent t0 the initiator. The following sec­

tions describe the Generic Simulator's role in the preparation lhe uniforrT' data objects in the 

Simulation Environment for simulation execution. This constitutes the lnitic.iiization Phase of the 

Generic Sirnu!ation Process. 

48 



Chapter 6 Generic Simulator 

6.3.1 Locating Appropriate Modules 

The Generic Simulator locates the appropriate modules for the selected simulator by re· 

questing this information from the module definition. The module definition asks all of its sub· 

modules in the selected region to return the modules to be simulated. If a submodule is an 

appropriate module type, it just returns itself to the Generic Simulator. If the submodule is not 

appropriate and is a compound module type, it creates its subrnodules and their interconnections 

· if not already created from some .'.)ther simulation · and forwards tt-1e request onto its sub­

modules. If a simple module type is encountered which is not appropri<:·.te, an error is signaled; 

the initiator is then notified that the selected simulator is unable to simulate this particular module 

type. The recursive process continues until all ~ppropriate modules in the selected region are 

located. In this way, the responsibility for fincling the appropriate modules is passed from the 

Generic Simulator, to the module definition, and onto each submodule. 

As an aside, notice that the entire submodule hierarchy need not be fully generated. 

Submodule creation is required only down to the appropriate modules in the selected region. 

This results in considerable time and memory savings · esoecially when simulating very large 

circuits at higher levels of abst:-action. Even though the circuit may be hierarchically defined 

down to the detailed transistor levei, the existence of the lower level objects is unnecessary for 

the simulation at hand. For example, consider performing a register tran0fer level simulation of a 

microprocessor chip. vvhere a programmable logic array PL/\ is one rT.ajor component. The 

module definition of the PL1-\ may have been separately defined and tested at the detailed tran­

sistor level, where simulation results were summarized into a ;narc abstract logic level model. For 

a logic level simulation ot the microprocessor chip, valuable memory space is conserved by not 

creating the internal transistor strur.ture of the PLA submodule. Creation on demand inhibits 

submodule gener~tio;i unless absclutely necessary. 

6.3.2 lnterconnecUon of Appropriate Modules 

Once the appropriate modules ho.ve been located, t11e Generic Simulator determines the 

interconnections for the selected simulator. Be~~ause modules in the Simulation Environment are 

l1ierarchical, the pins of appropriate modules are indircctlv connected to other appropriate 

modules via the nodes and pins along the hierarchy. Unfortunately most simulators do not l1anclle 

hierarchicallv intt;i-connected modules. To solv0 this problem, the pins of appropriate modules 

are directly interco,:nected through a common simulation node. Conversely, each pin of an 

49 



Chapter 6 Generic Simulator 

appropriate module connects to a simulation node. In this way, the Generic Simulator, and thus 

the selected simulator, may view the circuit as a flat structure of interconnected modules. 

6.3.3 Locating Appropriate Waveforms 

Input waveforms assigned by the initiator must be of the appropriate signal type for the 

simulator, and if not, must be transformed into the correct signal type. The Generic Simulator 

asks each top-level input node or pm of the hierarchical modules in the selected region to return a 

waveform of the appropriate type fer the simulator. Each node or pin forwards the operation onto 

the attached waveform. If the v11aveform is not of the correct type, the waveform calls a transfor­

mation operation on itself, which returns an appropriate waveform to thfJ Generic Simulator. If the 

waveform undergoes a type conversion, the transformed waveform is c.1ched on the node or pin 

from whence in came; now both the original waveform and its transformed counterpart are avail­

able on the hierarchical module definition. This avoids unnecessarily repeating the transfor­

mation procedure in future simulations. 

6.3.4 Attaching Appropriate Waveforms 

6.3.4.1 Ir.put Waveforms 

The initiator attaches input waveforms to nodes and pins of the hierarchical mcdu!o defini­

tion. Yet the Generic Simulator associates appropriate waveforms with the flat structure of inter­

connected moduies. When an appropriate waveform is returned frorn a hi~rarchical node of the 

module definition the Generic Simulator attaches it to a corr;:;sponding simulation node. Voltage, 

binary, syn1bolic and other abstract waveforms are associated with simulation nodes. Some 

simulators however also associate waveforms with pins. Circuit level simulators for example 

commonly employ current waveforms. In this case the Generic Simulator creates a new set of 

simulation pins corresponding to the pins in the selected region of the rnodule definition that were 

assigned input waveforms. These new simulation pins are different from the pins in the hierar­

chical module definition because they are directly connected to th~ flat simulation nodes. The 

Generic Simulator then attaches appropriate waveforms to these simulation pins. 

50 



Chapter 6 Generic Simulator 

6.3.4.2 Output W<:iveforms 

Output waveforms are placed on the simulation nodes. If output waveforms are also as­

sociated with pins, a set of output simulation pins are created for each module to be simulated. 

As with input pins, outp<Jt pins are connected directed to the flat simulation nodes. If an internal 

simulator has been invoked, the output waveform displays are generated and attached to their 

respective nodes and pins during the initializi.:l.tion phase for pending availability to other Generic 

Simulation Processes. They act as virtual waveforms and can be as.:;igned as input in other 

internal simulations, i.e., for concurrent mixed-mode simulation. For external simulators, it is not 

necessary to create the waveforms until simulation executlon is complete. In the event of exten­

sive or lengthy external simulation, creating the waveform displays ahead of time only adds long­

term objects to local memory, and ne;edlessly increases memory paging. 

The flat structure now contains the modules, thei( intcrconr.ections, and the input 

waveforms rP-quired for the simulator. The appropriate modules and th6 input waveforms are the 

exact same objects contained in the hierarchical module definition, yet the simulation nodes, 

simulation pins and the output waveforms are newly created for each simulation performed. 

Furthermore, simulation nodes and pins and their associated wa-Jeform data are stored 

independently from the hierarchical module definition; no explicit pointers exist from the module 

definition •o tf1e objects in the flat structure. In this way, each simulation run is kept separate and 

distinguishable from other simulations, and thus can be quickly and easily discarded, saved for 

later use, ur" compared against the results of otl1cr simulations. Because waveform output often 

contains many data points, it is important to summarize the essential waveform data and to 

discard or garbage collect the rest. 

6.3.4.3 l'v!c.1pping V/<ivcforms onto Nodes 

A rno.pping tible is created relating the fiat simulation nodes and ti1e electrically equivalent 

nodes ir, the i1ierarchical circuit module. lnterr.~onnected nodes along the hierarchy correspond 

to one simulation node, and one sin1ulation node nups onto one or morn electrically equivalent 

nodes of the hierarchical module definition, as shown in Figure 6-1. This mapping allows t11e user 

and the analysis tools access to the waveform data from the hierarchical module definition, and 

vice versa. The user, for example, may probe n wire of the graphical presentati1m for a waveform. 

The wire forwards the message onto its topological correspondent, a node in the module defini­

tion. The mapping table is consuitecl for the equivalent simul2.tion node. Once found, the simula­

tion node then returns the waveform. In the reverse direction, waveforms can now find wires of 

51 



Chapter 6 Generic Simulator 

the presentation for which they are associated. Supposr3 the user is viewing a waveform and 

wishes to know the wires in the presentation for which a particular waveform applies. The 

waveform forwards the operation onto its simulation node. Next the mapping table is consulted 

for the set of electrical!y equiva!e:it nodes in the hierarchical module definition. With the 

knowledge of the user's current presentation, a single node is selected. And finally this node 

requests each of its presentation correspondents, graphical wires, to display themselves to the 

user. 

h·ierarch1cal 

module 

def1n-:tion 

1---------------1 
r------- 1 I 

-[} _ 0- _ D uppr opr·iate 

l 1110U1Jle 

I "/f I ____ _ 
/ 

·-/-- -- - -- -- - - - - .. - -- -
/ 

-r----------------------~ 

" I / " / 
" I / 

4 "' J-. 

0 simulation 

1 
I 

y 

WJ.Veform 

node 

~-i911 re 6-1: Mapping of a single simulation node onto elect;·ically 
equivalent nod8s of a hierarchical modu!e definition. 

6.3.4.4 fv1apping Waveforms onto f-'ins 

If waveforrns are associated with pins, a mGpping table for pins is also useful, in this case, a 

0·1e to-one mapping. An 111put pin of the hierarchical module definition maps directly onto one 

sirnuldtion pin. Output wavefcnns attached to simubtion pins can map onto the pins of the 

appropriate P1ocl1.iles. In contrast to nodes, pins along the hierarchy and their associuted currents 

are not eloctricnlly e0,uivalcnt; pins of hierc.m:;hical modi lies will not have a waveform initially - nor 

an entry in the rnappin\:_l table - unless tile pin is queried for one. 

52 



Chapter 6 Generic Simulator 

Suppose the initiator probes for an output current waveform of a module's pin. The pin 

then consults the mapping table for its corresponding simulation pin containing the waveform. If 

the module is an appropriate module, an output current waveform is returned. If not, a current 

waveform must be created for the pin, as shown in Figure 6-2, where a simple application of 

Kirchoff's current law produces the desired waveform. The current waveforn1 of the hierarchical 

module's pin is actually the surn of the currents attached to the pins of the interconnected ap­

propriate modules inside (or outside). The procedure is performed as follows. First !he hierar­

chical pin finds all tt1e waveforms internal to its parent module by requesting a current waveform 

from all internal pins connected to its internal node. If these pins cannot locate a waveform in the 

mapping table, the request is again forwarded. This recu1·sive process co11tinues until all internal 

currents have been found. The hierarchical pin then performs a generic add operation on the 

waveforms returned. This newly generated wavefcJrm is then assigned a simulation node and 

cached in the mapping table for future reference. Generating waveforms only upon inquiry is 

again part of Schema's creation on demand technique. 

6.3.5 Locating Appropriate Models 

The Generic Simulator locates an appropriate model, if any, for each appropriate rnodu!e 

taking part in the simulation. The mcdel may be found in one of two places. It may already exist 

within the module itself, cached from a previous simulation, or it may be found in the designer's 

environment folder. !n the latter case, if the appropriate model is of type, model without stc:ite, the 

model itself is cached. If the appropriate model is of type, model with state, a copy of the model is 

created and cached in the module. 

The location procedure occurs as follows. The Generic Simulator simply asks each ap­

propriate module to find a model for the simulator selected under the current analysis context. 

The module then looks to see if any of its cached mociels are appropriate. if not, the designer's 

environment folder is passed the respon~;ibility. Nexc the environment folder searches tt1rough its 

subpmts for a mcdel folder with the correct module type. If not found, each subenvironment is 

searched, and so on in a breadth first manner4
. Once found, the model folder is asked to locate 

an aripropriate model. It then searches its models whiie asking each if it is appropriate. In effect, 

the responsibility for finding an appropriate model is passed naturally from the Generic Simulator, 

4
This is not currently the case, only one level of tt1c environment folder hiernrcny is s8arched. 

53 



Chapter 6 Generic Simulator 

_______ , ___ _ 

current-1 

A 
I 
v 

D 
A 
I 

pin-1 

---{r·---~ 
111era1·ch1cal 

I 
aµµrnpriate 11-- _ m~dule 

module ly I 
_______ J 

I 
oppropriate -i-

module [r -
----- _J 

D 
A 
I 
v 

simu1d.tion 

pin-2 

current-2 

J:-. 

/ 
/ 

/ 
/ 

current-sum 
A 

/ 
/ 

/ 
/ 

~ 
~I~-,: i:l tle 
tlule 

--·---· 

! 
v new 

D simulation 

pin 

r . i__, aµpropr1ate 

[ J module 

I 

Figure 6-2: Summing current waveforms, currcnt-1 and cnrrent-2, 
to produce current-sum for pin of a hierarchical module. 

to the modul8, to the environment folder, to th!,; model folder, and finally onto the model. If the 

appropriate model is found, either the model or a copy of the model is returned back to the 

module, and cached for use in future simulations. The Generic Simulator need never know 

anything about the models. 

Durin·J the course of simulation initializat:on, the Generic Simulator notifies the initiator of 

any inconsistencies, undefined quantities, or ambiguities in the information gathered by the 

Generic Simuiator thus far. Simulation execution cannot proceed until all required inforrr ation is 

supplied. The simulation initiator may need to subsequently add or modify waveforms, models, or 

54 



Chapter 6 Generic Simulator 

parameter values. At the close of the Initialization Phase, data associated with the simulation is 

locked from modification; all objects however are read-accessible to other processes, including 

other Generic Simulation Processes. 

6.4 Execution Phase 

The Generic Simulator handle:> two basic types of simulators, internal and external. An 

Internal Simulator directly manipulates the dato. objects present within the address space of the 

Simulation Environment. Simulation execution may be interactively controlled. An external 

simulator generates its own internal data structures in a separate address space. The following 

sections briefly describe each simulation process and the role oi the Generic Simulator in the 

execution phase. 

6.4.1 Internal Simulation 

Because an internal simulator accesses the data objects directly, the Generic Simulator 

need only call the simulation routine and pass it the flat module structure to be simulated. The 

simulator then forwards many of the type-dependent tasks ontJ th.a data objects. In a Spice-like 

circuit-level simulator, each module a!1d input waveform calculates its fill-in values for t11e sparse 

modified-nodal-analysis matrix. Each module's model is responsible for perfonning calculations 

based on its model, p2rameters, and some local state. Input wo.vefonn~ compute a voltage or 

current value for a given tirnepoint. At higher levels of sirnulo.tion, the:: simulator dyn~:unically 

sd1edules the sequence of operations, or events, as signal values propagate through the circuit. 

This time the model computes an output waveform value, given some 111put waveform values. The 

simulator p:opagates tl1e calculated output to the input of interconnected modules by way of the 

flat 0imulation nodes. 

At each time step of execution, input waveforms 2re sampled, outp•Jt values are produced 

and sent directiy to t:1e output waveform display objects. Simulation execution can be inter­

actively controlled by th1~ simulation initiator. The user for example can visually observe the 

output waveforms as the simulation proceeds, and may halt execution in the event of erratic 

circuit behavior. An analysis tool could dynamically discontinue execution at the moment the 

re::;ulting w;:iveforms fail to meet design specifications. Not only may the output waveforms them­

selves be observed, but any combination of operations on these waveforms may a!so be ob-

55 



Chapter 6 Generic Simulator 

served, e.g., power consumption. Furthermore, with the waveform transformation capability of 

the Simulation Environment, concurrent mixed-mode simulation is also possible. As output 

waveforms of one region's simulation becomes available, they could be automatically used as 

input to some other region's simulation. 

6.4.2 External Simulation 

An external simulation is performed in a separate address space. In the event the simulator 

exists on a remote processor(s), the Generic Simulator first estab:ishes a connection to the 

simulation server, typically via a local network. Because more than one remote processor may 

run the selected simulator, the Generic Simulator polls each of the existing processors to deter­

mine Urn best available resource. Spice2, for example, is highly portable and thus runs on many 

ciifferent servers. Yet at any point in time, some servers may be fully-loaded with performing 

simulations or some other computationally intensi•;e task. The least-loaded, most efficient 

machine should be prompted to service the simulation request. 

Next the Generic Simulator requests a textual description from all dat::t objects to be simu­

lated. Each appropriate module, waveform, model and parameter object then returns a textual 

description to be forwarded by the Generic Simulator to the selected simulator. Simulation may 

then proceed in a background process. During the course of execution, other acfr1ities or 

processes occurring within tile Simulation Environment may continue uninterrupted. Upon 

completion, some textual output is returned. Ger.eric ::;irnulator sends the data to an output 

parsing routine which interprets the output results and creates the uniform waveform data objects 

in the Simulation Environment. And finally, the simulation initiator is notified of execution comple­

tion. 

6.5 Completion Phase 

During the Completion Phase, output waveforms are availilble for inspection, analysis, and 

as input to other Generic Simulation Processes. The waveforms are accessible to the initiator via 

the module definition. ln the case of the user, the interface to waveforms attached to the module 

definition is by way of the presentation viewer in combination with the waveform editor. 

Convenient analysis tools summarize waveform data for example, not only for graphical display 

and recluced storage, but also into a new model for use in a higher level simulations as described 

in Chapter 7. 

56 



Chapter 6 Generic Simulator 

A Generic Simulation Process may be extended, in which case the same flat structure is 

reused. The same waveform objects are just appended with additional output points. Output 

waveforms are collected together into an output waveform folder. Because simulation results are 

dependent on the models used in the simulation, they are stored with the models in the user's 

environment folder. 

6.6 Summary 

The Generic Simulation Process is a series of steps leading to a single simulation on the 

Generic Simulator. The process occurs as fo!!ows. First of all, waveforms are assigned to the 

input terminals of a circuit module. The simulation initiator, either the user or analysis tool, 

selects a specific simulator from among a rich variety. The Generic Simulator then prepares the 

chosen region, the assigned wa·Jeforms, the appropriate models, and the module parameters for 

the selected simuiator. Next simulation is performed either directly on Hie data objects within the 

Simulation Environment, or externally in a separate address space. Output waveforms are 

created and made available for inspection, analysis, or as input tc future simulations. 

57 



Chapter Seven 

Discussion 

7.1 Summary 

The Simulation Environment provides a uniform CAD inierface, a single user interface, and 

mixed-moc;e capability by using a common representation for simulation data objects: topologies, 

models, and waveforms. The data objects, a Generic Simulator, and the user interface together 

make up the Simulation Environrner.t as implemented in Schema. 

The object types and corresponding operations defined in the Simulation Environment are 

patterned after the requirements of the simulators that use them. The addition of new types of 

objects and their operators facilitates easy extensibility to additional simu!ators. The object types 

and the :ayer of operations defined in the Simulation Environmc;nt serve as the foundation upon 

which to build new :rnalysis tools. Local coercion routines can be defined to simply transform one 

type of waveform to another; this gives the Simulation Environment tt1e carK1bility to perform 

mixed-mode simulation. 

The Generic Simulator coordinates the flow of objects between each simulator and the 

simulation initiator, the user or ilnalysis tool, during the Generic Sirliulatinn Process. Waveforms 

are assigned to the input tei'mina!s oi a circuit module. The sirnL!lation initiator selects a specific 

simulator from among a va1iety of simulators. The Generic Simulator tilen prepares the circuit 

module, the assigned waveforms, the appropriate models, and the rncdule parameters for the 

~;elected simulator. ~Jext simulation is perform,:;d and finally output wavoforms are created and 

made av3ih.-<ble for inspection, analysis, or as input to future simulations. 

7 .2 lrnplementation: The Simulation Environment Layer 

The Si111ulation Environment is implemented in Schema using Symbolics 3600-family lisp 

machines . .A.II typi::s are built on top of the Flavor System [Reference 85] provided by the Zetalisp 

language. Hie object-oriented programming strategy established by the flavor system provides 

the base layer upon which Schema is established. 

58 



Chapter 7 Discussion 

Many of the basic topology, model, and waveform data types and operations have already 

been defined for the Simulation Environment in Schema. New types and operations are con­

tinually being added and refined to conform to the needs of additional tools built into the system. 

It is hoped that this defir.e-and-retine process will at some point converge to an optimum general 

representation for data objects, where these representations form a solid layer upon which to 

build other CAD tools for all areas of circuit design. 

Currently two simulators have been implemented in the Simulation Environment; an internal 

transient simL?lator and the external C:rcuit-level simulator Spice2. The inrernal simulator employs 

the forward-euler method of integrating current into each capacitive node of a circuit. This 

simulator does not have the accuracy of the detailed circuit analysis simuiator, but does have the 

advantage of being much faster and highly interactive. Thus the designer is able to make initial 

verification and performance estimates using the interactive internal simulator and save the 

detailed analysis for the remote simulation engine. Both make use analog waveforms. 

The next step is the addition of the linear, switch, and logic-level simulators that use the 

binary waveforms already defined in the Simulation Environment. For mixed-mode operation, 

coercion routines between analog ancl binary waveforms must also be def:ned. These simulators, 

together with the currently ernbedded transient simulators, constitute an essential layer of tools 

upon which to integrate higher-level simulators. 

7 .3 Future Work: The Concurrent Mixed-Mode Simulation 
Layer 

Because errors may be int:·oduced into simulation results by an unfortunate choice of 

simulator at a critical point in the circuit, expert or automatic partitioning routines could be in­

dependently developed and placed on top of the Simulation Environment. The routines would 

essentially divide large scale circuit n10dules into collections of submodules to be simulated at 

different levels of abstraction. Critical paths and tightly-coupled subcircuits are grouped and 

simulated at a detailed level, while less critical circuits are simulated more abstractly. 

Concurrent mixed-mode internal simulation is now possible. Tile Simulation Environment 

provides the foundation layer of simulators, a Generic Simulator, and uniform representations. 

On top of this are three essentially independent layers. One provides the signal transformation 

59 



procedures for mixed-mode operation, another contains the different internal simulators and 

general simulation algorittrn1s, and finally the tl1ird embodies the expert partitioner. These provide 

the base upon which to build a concurrent mixed mode simulator. As waveform values of one 

subcircuit's simulation become available, they could be used immediately as input to an intercon­

nected module's simulation. 

As cited in Chapter 1, the main bottleneck with such a single-system approach is the limited 

computational power. In Schema, the data objects exist in a common address space with the 

potential for multiple processes. Circuit partitioning conveniently lends itself to parcillel process­

ing and cou:ci thus spawn off new processes when necessary. Unfortunat(:Jly however only one 

processor if currently avo.ilable. In the future, these processes rnay be mapped onto more power­

ful parallel, multi-processm systems. In the meantime, the Simulation Envir0nment provides the 

foundation upo11 which to develop these more sophisticated softvvare layers. 

7 .4 Conclusion 

This thesis has two m.:1in conclusions. First, designing the layer of general representations 

is the most difficult task in developing the Simu!;1tion Envirorirnent. Second, once the general 

repri:::scntaticns h"J.ve been designed for a specific simulation le'lcl, it is easy to integrate o.d­

ditional simu!ators rrt t!lcit same li:;vel. In general, as each new sirrn1l:.itiori lev0; is incorporated into 

the environment, tile represent'.ltions undergo a continual define-and-refine process. As a con­

sequence, the representations eventually evolve into the most general forin satisfying the needs 

of a comprd1ensive range of simulators and the needs of the user. 

60 



References 

[Abelson 85] Abelson, H. a11d Sussman, G. J., Structure and Interpretation of Computer 
Programs, The MIT Press, 1985. 

[Abramovici 83] Abrarnovici. M., Levendel, Y. H. and Menon, P. R., "A Logic Simulation 
Machine," IEEE Transactions on Computer-Aided Design of lntegr::.ited Circuits and 
Systems CAD-2(2):82-94, April 1983. 

[Antognetti 84] Antognetti, P., Pederson, D. 0. and de Man, H. (Eds.), Computar Design !lids for 
VLSI, Martinus Nijhoff, 1984. 

[Arnold 85] Arnold, J. M., "Parallel Simulation of Digital LSI Circuits," Technical Report 333, 
Massachusetts Institute of Technology, February 1985. 

f Arnout 78] Arnout, G. and de Man, H., "The Use of Threshold Fu:ictions and Boolean­
Controlled Netwod( Elements for Macromodelling of LSI Circuits," IEEE Journal of Solid­
State Circuits SC- 13(6):326-332, June 1978. 

[Borrione 83] Borrione, D., Humbert M., Le Faou, C., "Hierarchical Mixed-Mode Simulation 
Mechanisms in the CASC/'\DE Project," Anceau, F. and Aas E. J. (Ed.), VLSI '83, Elsevier 
Science Publishers E3. V., Jl.ug ust 16-19 1983, pp. 119-129. 

[Bryant 81] Bryant, R. E., "A Switch-Level Simulation Model for Integrated Logic Circuits," Ph.D. 
Thesis, Massachusetts Institute of Technolog~'. Mmch 1981. 

fChawla 75] Chawla, 8. R., Gurnmel, H. K. and Kozak, P., "IV.OTIS -- An MOS Timing Sirnul~1tor," 
IEEE Transactions on Circuits and Systems CAS-22 (12):901-809, December 1975. 

[Chen 84] Chen, C. F., Lo, C., Nharn, II. f\l. and Subramaniam, P., "The Second Geri::;ration 
MOTIS Mixed-Mode Simulator," Proceedings of the 21st Desi9n Automation Conference, 
ACM IF-EE, June 25-27 1984, pp. 10-17. 

[Cchen 76] Cohen, E., "Program Reference for SPICL~2." ERL Memo EP.L-M592, University of 
California, Berki:;ley, clune 1976. 

[Daniel 82] Daniel, iv1. E. and Gwyn, C. W., "CAD Systems for IC Design," IEEE Transactions on 
Computer-Aided Dcsi9n of Integrated Circuits and Svswms CA D-1 ( 1):2-12, January 1982. 

fDeutsch J4] Oeutsct1, J. T. and N:::1.vton, /1 .. R., "A Multiprocessor lmpli:;rr1enta~ion of Relaxation 
Bast:cl Electrical Circuit Simulation," Proceeclings of the 21st De'-Jign Automation 
Conference, ACM lrTE, June 25-27 1984, pp. 350-3t)7. 

[Doshi 84] Doshi, M. H., Sullivan, R. B. ::i.nd Schuler, 0. M., "THEMIS Logic Simulator A i1,1ix 
Mode, Multi-Lc'Jel, Hicrarc!lic::i.I, Interactive Digital Circuit Simulator," Proceedings of the 
21st Design l\utof)iation Conference, /\CM IEEE, June 25-27 1984, pp. 24-31. 

61 



References 

[Dumlugol 83] Domlugol, D., de Man, H.J., Stevens, P. and Schrooten, G. G., "Local Relaxation 
Algorithms for Event-Driven Simulation of MOS Networks Including Assignable Delay 
Modeling," IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems CA D-2(3): 193-202, July 1983. 

[Fan 77] Fan, S. P., Hsueh, M. Y., Newton, A. R. and Pederson, 0. 0., "MOTIS-C: A New Circuit 
Simulator for MOS LSI Circuits," Proceedings of the IEEE International Symposium on 
Circuits and Systems, IEEE, April 1977, pp. 700- 703. 

[Hafer 83] Hafer, L. J. and Parker, A. C., "A Formal Method for the Specification, Analysis, and 
Design of Register-Tra;1sfer Level Digital Logic," IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems CAD-2(1):4-18, Januar/ 1983. 

[Hill 79] Hill, D. D. and vanCleemput, W. M., "SABLE: A Tool for Generating Structured, Multi­
Levet .Simulations," Proceedings of the 16th Design Automation Conference, ACM IEEE, 
Jun~ 25-27 1979, pp. 272-279. 

[Hill 80] Hi!I, D. D. and vanCleernput, W. M., "SABLE: Multi-Level Simulation for Hierarchical 
Design," Proceedings of the IEEE International Syrnoosium on Circuits and Systems, 
IEEE, April 1980, pp. 431-434. 

[Lanthrop 85] Lanthrop, R. H. and Kirk, R. S., "An Extensible Ohject-Oriented Mixed-Mode 
Functional Simulation System," Proceedings of the 22nd Design Automation Conference, 
ACM IEEE, June 1~)85, pp. 630-636. 

[Lewke 83] Lewke, K. and Rammig, F. J., "Description and Simulation of MOS Devices in 
Register Transfer Languages," Anceau, F. and Aas E. ,J. (Ed.), v:__s1 '83, Elsevier Science 
Publishers 8. V., /\ugust 15-19 1983, pp. 73 83. 

[Nage! 75] ~fagel, L. W., "SPICE2: A Computer Program to Simulate Semiconductor Circuits," 
ERL Memo EnL-!vl520, University of California, Berkeley, May 1975. 

[Nestor 82] Nestor, J. A. and Thomas, 0. E., "Defining and lmplerrn;[;~ing a Multilevel Design 
Representation with Simulation Applications," Proceedings of the 19th Design Automation 
Conference, ACM IEEE, ,June ~4-161982, pp. 740-746. 

[Newton 78j Newton, A. R., "The Simulation of Large-Scale Integrated Circuits," ERL Memo 
ERL-M78/52, University of California, Berkeley, July 1978. 

[Newton 79] Newton, A. n., "Techniques for the Simubtion of Large-Scale Integrated Circuits," 
IEEE Tronsactions on Circuits and Systems CAS-26(0):741-749, September 1979. 

[Newton 84] Newton, A. R. and S;:i.ngiovanni-V!ncentelli, A. L., "Rel<'-<Xation-Based Electrical 
Sim~ilation," iEEE Transactions on Computer-Aided Design of integratecl Circuits and 
Svstems CAD-3(4):308-331, October 1984. 

[Pfister 82] Pfister, G. F .. "The Yorktown Simulation Engine," Proceedings of the 19th Design 
Automation Conference, A.Ctvl IEEE, June 14- 16 1982, r>P· 55-5~1. 

[Reference 85] F?eference Guide to Symbolics-Lisp, 1985. 

[Solden 86] So!dr;;)n, S., "Waveforms as First-Class Objects in Schema," May 1986. Bachelor of 
Science Thesis. 

62 



References 

[Terman 83] Terman, C. J., "Simulation Tools for Digital LSI Design," Ph.D. Thesis, 
Massachusetts Institute of Technology, September 1983. 

[Thomas 83] Thomas, D. E. and Nestor, J. A., "Defining and Implementing a Multilevel Design 
Representation with Simulation Applications," IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems CAD-2(3):135-145, July 1983. 

[Weeks 73] Weeks, W., et al, "Algorithms for AST AP -- A Network Analysis Program," IEEE 
Transactions on Circuit Theory CT-20(6):628-634, November 1973. 

[Williams 84] Williams, B. C., "Qualitative Analysis of MOS Circuits," Technical Report 767, 
Massacl1usetts Institute of Technology, July 1984. 

[Zippe! 85] Zippe!, R. E. and Clark, G. C., "Schema - An Architecture for Knowledge Based 
CAD," International Confemnce on Computer-Aided Design, IEEt:, November 1985, pp. 
50-52. 

63 



Unclassified 
SECURITY CLASSIFICATION OF THIS PAGE 

REPORT DOCUMENTATION PAGE 
1a. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS 

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl,BUTION I AVAILABILITY OF REPORT 

Approved for Public Release;distribution 
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE 

is unlimited 

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 

MIT/LCS/TR-386 DARPA/DOD N00014-80-C-0622 

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL la. NAME OF MONITORING ORGANIZATION 
(If applicable) 

MIT Lab for Computer Science Office of Naval Research/Dept. of Navy 

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 

545 Technology Square Information Systems Program 
Cambridge, MA 02139 Arlington, VA 22217 

Ba. NAME OF FUNDING /SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 
ORGANIZATION (If applicable) 

DARPA/DOD 
Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS 

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT 

Arlington, VA 22217 ELEMENT NO. NO. NO ACCESSION NO. 

1 1. TITLE (Include Security Classification) 

A Simulation Environment for Schema 

12. PERSONAL AUTHOR(S) 

St. Pierrei Har_g_aret Ann 
13a. TYPE OF REPORT l13b. TIME COVERED !14. DATE OF REPORT (Year, Month, Day) 115 PAGE COUNT 

Technical FROM TO 1986 December 63 
16. SUPPLEMENTARY NOTATION 

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 

FIELD GROUP SUB-GROUP CAD, VLSI, simulation 

19. ABSTRACT (Continue on reverse if necessary and identify by block number) 

In present day circuit design, many independent simulation tools are available for analyzing 
circuits at various levels of detail. This thesis presents a framework to tie these tools 
into the Simulation Environment in Schema, an integrated CAD system, The framework easily 
incorporates additional simulators, serves as a foundation upon which to build new analysis 
tools, and provides the ability for mixed-mode simulation, The Simulation Environment is 
composed of common data representations, a Generic Simulator, and a single user interface. 
A common representation for topological, model, and waveform data objects facilitates a 
uniform interface to the user and to all CAD tools, The Generic Simulator coordinates the 
flow of data objects between each simulator and the user or analysis tool. 

20 DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 
IXJ UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. D DTIC USERS 

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code)l 22c. OFFICE SYMBOL 

Jud_y Little (617_1523-5894 
DD FORM 1473, 84 MAR 83 APR ed1t1on may be used until exhausted. 

SECURITY CLASSIFICATION OF THIS PAGE 
All other editions are obsolete 

Unclassified 


