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Temporal Reasoning in Medical Expert Systems

by
Isaac Samuel Koha.ne

Abstract

Diseases develop and change over time. Much of the distinction between patho-
physiological complexes rests on the temporal relations of their component events.
Therefore, knowledge bases that fail to capture the temporal component of the
course of disease omit useful diagnostic knowledge. Expert systems that cannot
reason with temporal knowledge are impaired in distinguishing between hypothe-
ses and therefore have to explore much larger problem-spaces than would a human
or temporally sophisticated expert system. Temporally naive expert systems are
also limited in the extent to which they follow human diagnostic style and provide
reasonable automated explanations and diagnostic questions.

The Temporal Utility Package (TUP) is a domain independent utility that is
designed for use with a wide variety of knowledge representations. TUP can rép-.
resent points, intervals, qualitative and quantitative temporal relations, groups of
points, common temporal “yardsticks,” and alternate temporal contexts. TUP em-
ploys a form of constraint propagation to make temporal inferences. As the infer-
ence computation grows rapidly with the number of points, TUP enables temporal
deductions to be performed locally by “chunking” the temporal data base. The
knowledge structures of the application domain can be used to automatically guide
this “chunking” process. Certain aspects of TUP’s performance may have their
parallel in human cognition.

THRIPHT is a prototype expert system that &emomtntes TUP’s application and
the role of temporal reasoning in different phases of the diagnostic process: data
gathering, hypothesis evocation, elaboration, instantiation, and hypothesis ranking.

TUP and THRIPHT together illustrate why temporal reasoning is necessary for
successful second generation medical expert systems, and how to promde this capa-
bility.

Keywords: temporal reasoning, medical diagnosis, expert systems.
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1. Introduction

In 1982, Drew McDermott [38] wrote,

A common disclaimer by an Al [Artificial Intelligence] author is that
he has neglected temporal considerations to avoid complication. The
implication is nearly made that adding a temporal dimension to the
research (on engineering, medical diagnosis etc.) would be a familiar,
but tedious exercise that would obscure the new material presented by
the author. Actually, of course, no one has ever dealt with time correctly
in an Al program, and there is reason to believe that doing it would
change everything.

There are many reasons why this should be. Phenomena that we associate with
time’s passage, such as change, are ubiquitous. This is reflected in our view of the
world, and the language and notation we use to describe it. It should therefore not
be surprising if expert systems, bereft of a conceptual representation and vocabulary
of time, as well as the necessary mechanisms to make temporal inferences, fail in
general to interact smoothly with us. Expert system performance and knowledge
acquisition is at best incomplete and at worst fatally flawed if the system does
not possess a systematic and principled “understanding” of temporal knowledge.
Therefore, even though temporal reasoning is not in and of itself sufficient to produce
satisfactory behavior in expert mtem itisa nouluty and ngniﬁctnt step in that
direction.

In contrast to the state of affairs in the late 1970’s, described by McDermott
in the past six years several projects have addressed the problem of incorporating
temporal reasoning in Al programs. The emphases of these projects vary with the
application domain. Sommdknewhdpmtobomondopendmtuponmd
demanding of temporal knowledge than others. The initial “blocks world” experi-
ments [65] were adequately served by a simple ordering of events. Other applica-
‘tions require considerably more sophistication. Medical diagnosis and therapy are
often selected as test tasks, not so much because they provide realistic tests of the
breadth of representation and the generality of the temporal reasoning mechanism,
but because without such capabilities, performance in these domains is poor.

Within the domain of medical expert systems, the efforts in temporal reasoning
have tended to focus on issues most relevant to intensive care. That is, domains

1




2 ' CHAPTER 1. INTRODUCTION

in which there are large amounts of real-time data available, and where the values
of several physiological variables are known and can change rapidly and often. In
such applications the emphaasis is on abstracting point data, correcting erroneous
information, and making predictions about future values based on perceived trends
[16,32,33]. In contrast, the temporal issues involving the task of patient history-
driven diagnosis, have only been cursorily examined. This task is the focus of this
thesis. In the sections that follow, I justify this choice and briefly outline the specific
temporal issues involved. ’ '

1.1 The Patient History

Apart from serving as an investigational tool to study the issues of temporal rea-
soning, patient history-driven diagnosis is a worthwhile task in terms of the broader
objectives of AIM [Artificial Intelligence in Medicine]. The patient history remains
the most powerful and widely used diagnostic tool of bealth-care practitioners. It
serves to narrow the diagnostic possibilities so that other, much more expensive, di-
agnostic modalities can be employed sparingly. Often, the patient history is the only
available means for establishing the diagnosis.! Consequently, a significant amount
of educational resources is spent to augment and refine the clinician’s ability to
obtain and use the patient history. Capturing and automating such widely applied
expertise, will therefore provide health-care providers with an intellectual tool with
which to manage many of the problems of the medical “information explosion.”

Increasingly, clinical practices—especially large hospitals—are attempting to
bring patient records, including the patient history, on-line {2,4,63]. The availability
of such data holds the promise that expert systems, running in the *background”,
will be able to use the patient histories to perform diagnostic tasks without requiring
special attention or effort from health personnel. To be able to effectively use such
a patient history, it is necessary that the expert system be capabk of lophuticated
temporal reasoning as is ilhutntcd below.

1For instance, in distinguishing bronchiolitis from asthma, or differeatisting rheumatoid arthritis

mmhwmmmmdmmmmmhmm
- available clue.




1.1. THE PATIENT HISTORY 3

1.1.1 Time and the Patient History

Any pathophysiological process is a creature of many dimensions, one of which is
time. The patient history is a window onto this creature. If this window filters out
temporal information, then errors will be made in describing the process and dis-
tinguishing it from others. Moreover, it is often inadequate to substitute ordering,
whether partial or complete, for quantitative specification of temporal distance, as
this quantification may be essential to characterize the process. In order to provide
a flavor of the different forms of temporal ezpression in a patient history, a tran-
script of a fictitious patient visit is presented in the next section. Following this, I
discuss the role of temporal reasoning in the taking of the patient history.

Scenario

The patient, a young male (J.), his mother (Mrs. W.) and the physician (Dr. C.)
are in the physician’s office. The mother reports concern with ‘fussiness, rapid-
breathing, cough, and loss of appetite”. After the preliminary discussion:

e Dr. C.: “How old is J.?"

e Mrs. W.: “Two years old.”

e Dr. C.: “When did he first become ‘fussy’?”

e Mrs. W.: “This past SBunday, when he woke up, around 8 a.m.”
e Dr. C.: “Was he coughing that morning?”

e Mrs. W.: “No, that started later, seven to eight hours later. In the early
afternoon.”

e Dr. C.: “When did you first notice that J. was breathing rapidly?”
e Mrs. W.: “In the morning, two days later.”

e Dr. C.: “When did J. stop eating, or stop eating as much as he usually
does?”

e Mrs. W.: “Monday.”

e Dr. C.: “A day before you noticed his rapid breat_hing?"
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¢ Mrs. W.: “No, during the same day he started to breathe rapidly... Tuesday,
I suppose.”

e Dr. C.: “Anybody in the family have a cold?”

e Mrs. W.: “Everyone did, J.’s younger sister too — but she had bronchioli-
tis.” '

e Dr. C.: “Is the rest of the family well now?”

e Mrs. W.: “Yes, my husband was last to get it. He’s felt fine for over a
month.”

e Dr. C.: “Has J. ever had anything like this before?”

e Mrs. W.: “Yes, now that you mention it, it happened about the same time
last year. The doctor at the time said it could be bronchiolitis or asthma.
But it cleared up after J. had spent one night in the hospital.”

e Dr. C.: “Anybody in the family have asthma?”

e Mrs. W.: “Yes, both my husband and my brother-in-law had asthma when
they were children, but neither have had any attacks since.”

Upon further work-up, the physician strongly suspects that asthma is the correct ds-
agnosis. The patient’s response to therapy supports this suspicion. The patient and
his mother are seen one month later for follow-up. During this visit, the following
conversation arises.

e Mrs. W.: “Is J. going to keep having these attacks?”

e Dr. C.: “A child like J., diagnosed as having asthma, may follow several
clinical courses. Some young people with asthma will continue to have attacks
during their childhood. Of those, a minority have asthma in their adult years.
Most probably, your son will be symptom-free by the end of his adolescence—
as was the case for your husband and brother-in-law. Meanwhile, we can
manage this problem without restricting J.’s activities.”

Therera.re many temporal concepts in each of the above queries and assertions.
Among these:
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o References to common temporal yardsticks such as the calendar, stages of
development (e.g. in infancy, childhood and adolescence) or numerical age.

¢ Relative positions of events, both quantitative (e.g. coughing “seven to eight
hours” after beginning to behave “fussily.”) and qualitative (e.g. anorexia
“during” the period of tachypnea).

e Temporal specification with respect to the present (e.g. “He’s felt fine for over
a month.” which is an implicit specification of the period immediately prior .
to the present.)

o Alternate temporal hypotheses. In the above example, the duration of the
period in which the asthma would be symptomatic depended on the clinical
course the patient followed (i.e. whether the disease would resolve with the
onset of adulthood). |

Expert System Performance

The import of temporal representation is not restricted to the range of expression
of an expert system and the “human-like” quality of the man-machine dialogue. It
also makes the performance of the expert system considerably more efficient and
focused. To illustrate this, take the thres findings of jaundice, abdominal pain,
and blood transfusion. Imagine that these are three (as in figure 1.1(a)) of very
many findings in the patient history in an automated medical record. A temporally
naive expert system would have to include the hypothesis of transfusion-borne acute
hepatitis B high in the differential diagnosis. It might be however, that the temporal
relationships in this case were such that to a human medical expert, there would
never be any question, or at the most a low likelihood of this diagnosis. The jaundice
may have happened during the neonatal period, the abdominal pain could have
happened after an appendectomy, and the transfusion may have occurred during a
later caesarian section.

Now, if we were to replace the previous, temporally naive expert system with
one capable of causal reasoning, then the expert system would be able to use the
temporal precedence relations between causal antecedent and consequent to dis-
tinguish between some hypotheses. If such an expert system were given a patient
history that included the assertions that a biood transfusion preceded both abdomi-
nal pain and jaundice (as in figure 1.1(b)), then the hypothesis of transfusion-borne
acute hepatitis B would again rank high in the differential diagnosis. However, if
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a physician had been told that the transfusion had preceded the jaundice by only
one day, a lot of other causes for the jaundice would come to mind, because the
incubation period of the hepatitis B virus is considerable longer than one day.

Were we to go one step further, to enable the previous expert system to represent
and reason with quantitative temporal information, this would still be inadequate.
For instance, if such an expert system were given a patient history that included the
assertions that the jaundice had followed the blood transfusion by two months, and
the abdominal pain had followed the transfusion by 45 days (as in figure 1.1(c)),
then yet again the program would rank acute transfusion-borne acute hepatitis high
in the differential diagnosis. If however, the jaundice had occurred 20 years ago,
then for the human expert, the diagnosis would not be a leading element of the
current differential diagnosis.

The point made by these examples is that the ability to use a large vu.riety
of temporal information permits a dramatic pruning of the problem space—the
number of hypotheses to be considered. This is important both because it lightens
the computational burden of the expert system, and also because it cuts down
requests for patient information and tests that might involve extra financial costs
and unnecessary patient morbidity. This pruning of the problem space also has
the secondary effect of producing a more focused and human-like diagnostic style,

as many obviously unreasonable hypotheses are almost lmmndistdy excluded from
serious consideration.

1.1.2 Organization of the Diagnostic Task

The examples above illustrate some of the different genres of temporal ezpression
that can be found in a patient history. To discuss the various roles of temporal
reasoning in patient history-driven diagnosis, I have arbitrarily, divided this task
into five distinct phases. As described below, these phases may appear to follow each
othermhneuuqucna,butudhcammdinﬂgmlz.ﬂnnwbcmnmple,
cyclic paths through these phases.

Initial Data Gathering

The first phase of the diagnostic task is that of data-collection, or history-taking.
The activity in this phase is largely driven by the data collected, rather than by any
hypothesis of the patient’s pathophysiological status. This is to be distinguished
from the later phases of the diagnostic task, after the evocation of hypotheses,
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ABDOMINAL o Neonatal jaundiee
PAIN
(a)

s Abdominal pain is
after appendectomy

TRANSFUSION JAUNDICE e Transfusion is after
epssarian seetion

(b)

ABDOMINAL
PAIN
' e Jaundiee followed
BLOOD
TRANSFUSION transfusion by
JAUNDICE one day
(e) ;
ABDOMINAL
45 DAYS PAIN
‘
BLOOD 20 18
TRANSFUSION yosrs ago
2 s JAUNDICE

Figure 1.1: Misdiagnoses of Hepatitis B
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Figure 1.2: Phases in the Taking of a Patient History.
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when the line of questioning is directed by the content of the actively considered
hypotheses.? The “compiled” data-driven protocol is an evolutionary product of
the collective clinical experience which suggests those questions that are always
worthwhile asking in response to a particular clinical presentation. For instance,
a patient describing chest pain, will usually be asked about its location, radiation,
and quality. The temporal data will include the duration of the pain, time of day
of onset, temporal relation to precipitating events, and if recurrent, the length of
time between episodes.

In general, to avoid being misled by erroneous data, the data-gathering phase,
taking place as it does before much investment of diagnostic effort, is an opportune
occasion to detect errors. Temporal ressoning can serve in this effort by identifying
at least one class of inconsistency. For example, in our earlier transcript of the
fictitious office visit, Mrs. W.’s statement that J. was tachypneic two days after he
was “fussy” (Sunday) contradicts the assertion that the onset of J.’s anorexia was
on Monday and yet occurred at the same time as the onset of tachypnea (Tuesday).

Evocation

Following history-taking, the next diagnostic phase is that of hypothesis evocation
or triggering. From the rather large problem-space of diagnostic categories, an
expert-system (and for that matter, a human expert) must select a manageably
small number of hypotheses.? This can be achieved by selecting classes of hypothe-
ses based on characteristic constellations of findings in the patient history. For
instance, if a patient describes sweating, and a sensation “like a ton of bricks on my
chest,” this should immediately trigger (bring into considerstion) the hypothesis of
myocardial infarction (MI). These constellations of findings include characteristic
temporal patterns. Chest pain lasting not more than one or two seconds or more
than one or two hours is consistent with several diagnostic possibilities, including
cervical osteoarthritis, but is atypical for angina.

3This is illustrated in figure 1.2, where the control arrows illusirate requests for patient infor-
mation at several stages, as well as loops from hypothesis investigation to protocol-driven data-
collection.

3See Newsll and Simon [42] for a discussion of the limits of cognition and computational resource
alike in managing multiple hypothesss. '
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Elaboration

Once a hypothesis is triggered, the next phase of diagnosis begins, that of elabo-
ration. Each triggered hypothesis usually consists of a broad category of distinct
diseases, usually with some pathophysiological pathways in common. Each distinct
pathophysiological pathway within the triggered hypothesis is a hypothesis unto
itself. The latter hypothesis will be referred to as a subhypothesis. The process of

extracting the different subhypotheses within the trw hypothesis is the process
of elaboration.

Asmhlubhypothuhnprmumdmdinialcouru,ntummythe
case that each of the subhypotheses has different temporal constraints. A patient
with angina pectoris, for instance, may subsequently suffer a sudden MI, or first
have congestive heart failure (CHF) before the MI, or immediately suffer a fatal
arthythmia. The duration of the interval from onset of angina to a locally stable
state (death or recovery) therefore depends on which clinical course is followed. To
return to the office visit example, the duration of J.’s asthma will depend on the
subpopulation of asthmatics to which he belongs.

Instantiation

Each of the subhypotheses extracted from the triggered hypothesis is a template
for a possible clinical course. To model a particular patient, the data obtained
from the patient must be fitted in some way to the subhypotheses, to provide a
coherent support for the described condition of the patient. The process of con-
structing a patient model, matching findings to events in the subhypothesis, is that
of instantiation, the fourth of the five phases of patient history based diagnosis.

Patient-specific data further constrains the temporal relations in the subhy-
potheses, and also anchors the subhypotheses to the present. In J.’s visit to Dr.
C.’s office, the patient data specifies that the “current” visit occurred after these
findings of anorexia and tachypnea were noted, and defors therapy was instituted.
This specification anchors the subhypothesis with respect to the present. This may
seem obvious, and yet it prevents unreasonable diagnostic behavior such as seeking
therapeutic effect before therapeutic intervention or asking whether J. suffers of
asthma as an adult.
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Ranking Patient Models

After the creation of several patient models, it becomes possible to proceed to the
next diagnostic phase, that of selecting the correct diagnosis or at least ranking
these models with respect to their likelihood. Many diagnostic strategies can be
brought to bear in this phase to facilitate ranking or confirming a patient model.
The goal that these strategies have in common is to determine which datum would
be most effective in narrowing the number of diagnostic possibilities or further
differentiating the more likely from the less likely. '

Temporal information often costs little to acquire and can also serve the vari-
ous diagnostic strategies* to distinguish between patient models. In distinguishing
between an acute and a recent MI, it would be useful to obtain serial SGOT mea-
surements to determine whether the SGOT peak was approaching (the SGOT peak
occurs within 24-48 hours of an MI) or past. In the same vein, during J.’s visit to
Dr. C.’s office, a history of recurrence, especially in association with a particular
season, would support the diagnosis of asthma rather than bronchiolitis. Otherwise,
in the acute phase, without these temporal clues, these two clinical entities are often
indistinguishable.

1.2 Technical Goals

What then must be required of a temporal representation and reasoner to enable
the emulation of the breadth of expression and the behavior described above?

1.2.1 Breadth of Representation

Several efforts in temporal reasoning have made use of heterogeneous internal rep-
resentations [25,41] to represent the heterogeneity of temporal expression found in
the patient history. One of the shortcomings of these representations is the dif-
ficulty in determining the order and combination in which the different temporal
representations are to be used to retrieve temporal information. The difficulty lies
in deciding which combination will be the most efficient, ensuring that the temporal
informatbnrotrkvod-heomhtentwiththemtofthotmporddﬂabmmdu

$The general form of these strategies (e.g. CONFIRN, mu-m,ndnmmn) has been
described by Patil [45] and Pople [50].
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precise as possible. Making this decision becomes far easier if all temporal asser-
tions are maintained within a single representation and manipulated by a single,
simple inference mechanism. Consequently, one of the earliest objectives of this
research was the development of a uniform underlying representation to see if it
could support the necessary breadth of expression.

1.2.2 Computational Feasibility

The computational burden of temporal “reasoning” increases rapidly with the num-
ber of events represented in the temporal data base. Several schemes have been
developed to work around this problem. Most of the approaches have involved vari-
ations on the “divide and conquer” theme. In such cases, the temporal data base
is clustered according to a particular scheme, into blocks—usually of contiguous
intervals. Temporal reasoning is then restricted locally to each block. Allen’s (1]
clustering scheme generates hierarchies of intervals where each interval is DURING the
interval that is immediately superior to it in the hierarchy. Vere’s [58] hierarchies
consist of events associated with activities of a planner. The temporal hierarchy
built from the planner’s activities mirrors the goal-subgoal hierarchy of the planner.
In both systems, retrieval of temporal information relating events in different blocks
involves some form of search.

Each clustering scheme must be judged by several criteria. First, to what extent
do the various application domains fall naturally into the imposed hierarchy? Sec-
ond, to what degree does the clustering scheme lead to retrieval of inconsistent and
imprecise temporal relations? Finally, can the clusters be generated automatically?
For pragmatic reasons, a lot of the work on TUP was done to answer the preceding
questions. : S

1.2.3 Interaction of Temporal and Atemporal Reasoning:
Domain Independence

It was not at all obvious, at the onset of this project, that temporal data and
inferences could be neatly separated from the other conceptual elements of an expert
system. Causality, for instance, would appear to intrinsically impose some degree of
temporal ordering on events. It was therefore unclear whether temporal reasoning
could be isolated and packaged separately or would necessarily have to be tightly
coupled with other reasoning mechanisms of a host expert system. If temporal
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reasoning could not be isolated in an autonomous package with a standard interface,
it would be unlikely that a general solution could be attained to satisfy various
expert systems whose representation of causality was as much at variance as say
qualitative simulation [20,13,17] and causal association [51,50,46,31]. Achieving a
domain and system-independent solution therefore became a major focus of this
work.

1.3 Results

Which of the preceding objectives have been achieved? First, the various forms
used to specify temporal position within a patient history (heretofore called tempo-
ral descriptors) have been identified. A uniform representation, based on the range
relation has been developed, embhofwtmmumporﬂ descriptors nec-
essary for producing a patient history. These include quantitative and qualitative
relations betwesn any arbitrary combination of points and intervals, references to
common temporal yardsticks, references to the present, persistence and alternate
temporal hypotheses. A Temporal Utility Package (TUP) has been constructed that
recognises assertions of all the patient history temporal descriptors and translates
themintormgerdationfom TUP then performs all the required temporal rea-
soning and consistency checking, using a form of constraint propagation. TUP also
possesses a number of temporal retrieval functions and temporal predicates.

TUP features a standard interface that permits the host system to dictate the de-
sired clustering of the temporal data base for the reasons of computational feasibility
mentioned previously. During TUP’s developmaent, it became clear that although
TUP permits any clustering scheme to be implamented, only the few that conform
to a particular set of requirements (discussed at length in the following chapter)
will be successful in yielding the desired reduction in computational load. One of
these requirements is that events within the same cluster be more closely® related
to each other than to events in other clusters. Several expert system technologies,
by their nature, provide an organising principle with which temporal clustering can
be guided. In this report, an implemented expert system is described that uses
its causal aggregation hisrarchy (similar to thoss found in other second generation
expert systems such as ABEL [46]) to control the automatic generation of temporal
clusters. Planners, frame-based mm and qualitative simulators also possess

5 Again, discussion of the exact meaning of this is defarred to the next chapter (section 2.4).
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structures that can be employed to automatically guide temporal clustering. These
latter instances are discussed in this report but have not been implemented. Also, a
number of intriguing cognitive analogies to the temporal clustering schemes appear
in the literature. These are discussed in chapter 5.

Reasoning about alternate hypotheses, medical or otherwise, involves examining
different outcomes. Each of these outcomes—in medicine, the pathophysiological
history—has associated event durations that usually vary with each hypothesis. TUP
provides a context mechanism that permits the assignment of temporal assertions
to alternate temporal hypotheses. THRIPHT (Temporal Hypothesis Reasoning In
Patient History- Taking) the medical expert system used as an investigative vehicle,
automatically creates contexts for each patient model generated.

1.3.1 Expert System Demonstration

THRIPHT was constructed both to demonstrate TUP’s capabilities and to provide a
vehicle for investigating the properties of the diagnostic process when the patient
models are equipped with a systematic representation of temporal relationships.
What THRIPHT really does is best described by returning to the five phases of the
diagnostic task, outlined in section 1.1.2. It is in the course of the data-gathering
phase, that patient’s assertions are processed by TUP and converted into range
relation form. By virtue of the constraint propagation process that follows each
temporal assertion, temporal inconsistencies or contradictions are identified imme-
diately, and the user/patient given the option of which assertion to withdraw.

Hypotheses are evoked in the following phase by means of “triggers” linked to
hypothesis templates. Each trigger tests the patient assertions accumulated in the
data-gathering phase. Naturally, the triggers can test for temporal relations that are
deduced from the assertions, even if not explicitly asserted. The triggers themselves
are arbitrary boolean combinations of temporal and atemporal predicates.

Each hypothesis template is represented as a directed, acyclic graph of event
nodes linked by associational or causal links. Within each such template, exclusion
relations specify which events are mutually exclusive. These exclusion relations
are used in the hypothesis elaboration process to generate distinct and mutually
exclusive subhypotheses. ’

Temporal information is associated with each event in the hypothesis template.
This information includes specification of the temporal antecedence of causally an-
tecedent events, event durations and other a priors temporal knowledge. On elab-
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oration, the temporal information is carried forward to each subhypothesis and a
temporal context generated from this information. It is at this point, during the
generation of temporal contexts, that the temporal data is clustered. THRIPHT
communicates to TUP the causal aggregation information that TUP then uses for
defining the temporal clusters. |

During instantiation, the patient data is bound to each subhypothesis. This
involves employing the temporal relations, obtained in the initial history-taking, to
modify the default assumptions of the subhypotheses.

As outlined previously, the primary goal of the diagnostic strategies of the fifth
phase of patient history-driven diagnosis is to find features of the competing hy-
potheses that distinguish them from one another and then to obtain patient data
related to the differing expectations of the respective patient models. Timing, of
course, is one such feature and therefore in addition to distinguishing patient mod-
els by the presence or absence of supporting findings, the diagnostic strategies seek
differences in temporal distances between events. This diagnostic strategy loop
has only been partially implemented, principally because of the effort required to
elaborate such strategies, even without temporally sophisticated capabilities.

1.4 Organization

The following chapter describes the representation and reasoning mechanism of
TUP. Comparisons to previous work in this area are made as the issues arise. I
also discuss, in general terms, how TUP would interact with various expert system
technologies.

Chapter 3 describes the spocxﬁcs of a temporally oriented expert system—
- THRIPHT—and the temponlly explicit patient record, and how these interact with
TUP.

In addition to the benefits of added expressive power and generality of reasoning
that temporal reasoning can bring to an expert system, developing an expert system,
so endowed, with domain knowledge, places a much larger burden on the knowledge
engineer. In chapter 4, the challenge of extracting temporal knowlodge from the
literature and delivering it to an expert system is examined.

. There have been several studies, in the discipline of cognitive science, of tem-
poral reasoning. It becomes tempting, because of similarities that appear, to draw
analogies between the experimental resuits of cognitive science and the behavior
of TUP. However, the results are not without controversy, even within the ranks
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of cognitive scientists, as is the relevance of these experiments to human behavior.
More on this in chapter 5. '

Chapter 6 recapitulates the results of the work. Areas of weakness are noted
and promising directions for future work in this area are pointed out.

Appendix A is a compilation of several tables, too large to include in the main
body of text, and includes conversions between point and interval definitions, and
the definitions of TUP predicates, assertions and retrieval functions. Appendix B
contains a list of temporal assertions used in a causal hypothesis. Appendix C
provides selected definitions of the abbreviations used in this report.



2. The Temporal Utility Package

The Temporal Utility Package (TUP) is designed to perform domain and system-
independent temporal reasoning. TUP’s internal mpruantatm and reasoning mech-
anisms are described in this chapter.

2.1 The Range Relation

The range relation (or RREL in TUPese) is a first-order object in TUP’s representa-
tion. It is from this object that all the other types of temporal representation are
built. Range relations specify the upper and lower bounds on the temporal distance
between two points in time. The range rcla.tion is specified in TUP’s syntax using
the form below: : '

Form 1

(RREL <first point> <second point>
<lower > <upper bound>
<context>)

Individual points are identified in this form by lists of qualifier-value pairs. The
qualifiers can specify whether the point represents a point event or the beginning or
end of an interval. Qualifiers may also specify that a point is a member of a cluster
(see section 2.4) or is a point along a particular temporal yardstick (see section 2.6).

Bounds on the range relation can have all values from positive to negative infin-
ity. Numerical values can be in any time unit from seconds, minutes, to centuries,
even though all these values are canonically stored in seconds. The value of the
lower bound must however never exceed that of the upper bound. If TUP makes a
temporal deduction that violates this rule (see section 2.2.4), it is always taken to
mean that there are inconsistent or contradictory temporal assertions.

As mentioned in the introduction, contexts permit the representation of alter-
nate temporal assertions. The context specified in the RREL assertion of form 1 can
be any object—atomic symbol or hypothesis. If not specified in an assertion, it
defaults to REALITY.

17
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2.1.1 Diagrams and Descriptions

Some explanation is required for the diagrams and English “translations” that ac-
company the temporal assertions in the examples that follow. The diagrams will ini-
tially only serve to illustrate the graphic format used to describe the RREL. However,
as the assertions increase in number and more complex features are demonstrated,
these diagrams will become the primary vehicle for analysing the consequences of
the assertions. The mapping from RREL to English is a delicate matter and is the
major reason for the graphic illustration of the temporal relationship. The problem
stems from the richness of meaning of the English language. This richness makes it
all too easy to attach meaning to temporal assertions other than is present in the
formal syntax (or diagram). In example 1 (page 19) for instance, I am careful to
avoid making any allusion to the position of irritability or anorexia with respect to
the present.! Specifying the position with respect to the present would require the
assertion of at least one more RREL (as described in section 2.1.2). Consequently, the
English translation provided should be viewed as an aid in comprehending the tem-
poral relations; the graphic representation however should be examined to obtain
the strict interpretation.

Regarding the diagrams themselves, two different graphical representations of
the temporal relations were considered—time-line and directed graph, both illus-
trated in Figure 2.1, In time-line diagrams the points are visually ordered with
respect to a reference point, with a scaled lower and upper bound displayed for
each point. The directed graph diagrams do not necessarily visually convey infor-
mation of the temporal order, but rather permit inspection of individual point to
point temporal relations. Time-line diagrams have several weaknesses, at least for
the purposes of illustrating reasoning with RRELs. As all temporal relations are
illustrated with respect to a reference point, it is difficult (without additional dia-
grams that use other reference points) to appreciate temporal relations other than
those that involve the reference point. This is especially true when the upper and
lower bounds do not share the same sign.? Also, to understand how TUP makes
its temporal deductions, it is important to visualise the connectivity between the
RRELs. This is particularly useful in following how TUP clusters the temporal data
base.

For the reasons above, except for example 1, I have illustrated temporal relations

1As in “preceded” or *will precede.”

3j.e. a point occurs before or after the reference point.
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exclusively with the directed graph format. However, to the degree it is possible,
I have attempted to visually convey the ordering information using the directed
graph format, by having earlier points above, or to the left of, later time points.

2.1.2 Examples

The description of TUP’s reasoning mechanisms will be a lot clearer and better
motivated if we first look at several RREL examples.

Example 1

ANGREXIA) (TYPE END-

(RREL ?MHE IRRITABILITY) (TYPE BEGIN-INTERVAL))
NANE INTERVAL))
2 DAYS) (8 DAYS))

Example 1 corresponds to the assertion that the beginning of irritability precedes
the end of anorexia by two to three days.

Example 2

(RREL (?MME SLEEP-TERRORS) (TYPE BEGIN-INTERVAL))
2 NAME AVWAKE) (TYPE END-INTERVAL))
3 HOURS) (-1 HOURS))

Example 2 corresponds to: the onset of sleep terrors occurs one to three hours
after the end of awakeness.

Example 3

(RREL ggum AS‘!’M-I; STYPE END-INTERVAL))
AME ASTHMA-2) (TYPE BEGIN-INTERVAL))
+EPSILON) (+INFINITY))
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WITH RESPECT TO <IRRITABILITY
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Figure 2.1: Time-Line and Graph Form of Temporal Diagram
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3 HOURS
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Figure 2.2: Illustration of assertion of example 2.
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Figure 2.3: Illustratioh of assertion of example 3.
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This assertion has a lower bound ¢, a quantity that TUP takes to be smaller
than any numerical value the computer can represent. Temporal reasoning with
such values is described in section 2.2.2. The assertion of example 3 corresponds
to: the attack of asthma episode number two can occur any time after® asthma
episode number one. Note that although the upper bound of the RREL is +oo, in
any complete expert system that would use TUP, this bound would be constrained
to the maximum life expectancy of the individual. In THRIPHT'’s knowledge bases,
many event intervals are asserted to occur during the interval of LIFE. Since LIFE
(really the RREL that relates the beginning and end of the interval) has an upper
bound of longevity generously set at 120 years and 237 days [52], most temporal
relations of pathophysiological events become finite after constraint propagation
(described in section 2.2.2). ’

Example 4

(RREL ((REFSYS CALENDAR)
REFSYSPORN "8 p.m., Sunday, April 27th, 1986)
(TYPE POINT)) -
((RAME IRRITABILITY) (TYPE BEGIN-INTERVAL))
-1 HOURS) (+1 HOURB))

Example 4 introduces the temporal “yardstick”. Although any number of such
yardsticks can be defined, at the moment TUP only includes definitions of the calen-
dar, ages, developmental stages, and life-landmarks. Within TUP these yardsticks
are implemented as mini-experts that know enough about their own reference sys-
tem (the temporal yardstick) to be able to assert RRELs between points belonging
to the same reference system—discussion of details is deferred until section 2.6.
The CALENDAR reference system recognises all forms that evaluate to points on the
date-line whereas DEVELOPMENT accepts all defined stiges of development including
embryonic, fetal, infancy, early and late childhood, early and late adolescence and
adulthood. In referring to a temporal yardstick, TUP requires a form (REFSYSFORN)
that evaluates to a point on the yardstick and a selection of yardstick (reference
system or REFSYS in TUPese). Example 4 can therefore be interpreted as: the onset
of irritability occurs between 7 and 9 p.m. on April 27th, 1086.

3From unmcdutoly after, to infinitely far in the future.
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8 P.M., SUNDAY, | ]

+1 HOURS
APRIL 27TH, 1986 :
)

1 HOURS ’(MABILITYJ’

- ar o o w a w> A - -

Reference system

name and memli‘orship

Figure 2.4: Illustration of assertion of example 4.

Example 5

(RREL iégﬁ%‘ W;Pzgglgémt EID;I)ITERVAL)
SYS DEVELOPMENT) ( POINT))

CONTEXT-1)

(RREL. g NAME ASTHMA-PROKE) (TYPE -INTERVAL)
REFSYSFORN "END-ADOLESCERCE"
' REFSYS DEVELOPNENT) ( POINT))
(-INFINITY) (-EPSILON) .
CONTEXT-2)

An extremely simple use of the context mechanism is illustrated by example 5.
Two alternate assertions are given to describe the relation between the end of adoles-
cence and the end of the asthma-prone interval. In the first assertion, in CONTEXT-1,
the asthma-prone period ends with adolescence; in the second (CONTEXT-2) it ends
any time after the end of adolescence.. Whereas in example 5, the context slot is
bound to an isolated atomic symbol, it is used by THRIPHT to bind full-fledged,
structured hypotheses.
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Although the role of asserting temporal position with respect to the present
will not become apparent until the section dealing with temporal reasoning, ex-
ample 6 presents a preliminary introduction. The RelationToPresent assertional
form (form 2) is translated to the two RRELs shown. The first RREL establishes the
relation between the current instance of the present (represented by a point whose
event name is a unique NOW) and the onset of asthma. The second RREL asserts the
relation between this latest instance of the present and the current time obtained
from the host computer. The latter point is treated identically to other points on
the calendar reference system. Example 6 then roughly corresponds to: asthma
began twelve to thirteen months ago.

Form 2

(RelationToPresent
<point> <lower bound> <upper bound> <context>)

Example 6

(RelationToPresent
(NAME ASTHMA) (TYPE BEGIN-INTERVAL))
+12 MONTHS) (+13 MONTHS))

translates to:

; (TYPE BEGIN-INTERVAL)
-13 MONTHS) (-12 MONTES))

(RREL ((REFSYS CALENDAR)
REFSYSFORM (DATE;) (TYPE POINT))
((NAME (LatestNow)) (TYPE BEGIN-INTERVAL))
(0 SECOXDS) (O SECONDS))

(RREL éﬁm.-: (GENSYM NOW)) (TYPE POINT))
g NAME ASTHMA)
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[ <ASTHMA } m NOWOO1

Figure 2.5: Illustration of assertion of example 6.

On many occasions, one may wish to directly assert temporal relations between
intervals without explicitly specifying the position of the onset and end of each inter-
val. Just such a functionality is provided by the interval-based temporal reasoners,
developed by Allen (1] and Vilain [61], that employ thirteen different interval rela-
tions. These thirteen relations can be conveniently used in TUP (form 3) as shown
in example 7.

Form 3

(INTREL
< > < >
SREE el glagerd v
<context>)

Example 7

(INTREL ((WAME IRRITABILITY)) ((NAME ANOREXIA)) OVERLAPS)

translates to:
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(RREL ((NAME IRRITABILITY) (TYPE BEGIN-INTERVAL))
((NAME ANOREXIA) (TYPE BEGIN-INTERVAL))
(+EPSILOR) (+INFINITY))

(RREL (gnmx IRRITABILITY) (TYPE END-INTERVAL))
((NANE ANOREXIA) (TYPE END-INTERVAL))
(+EPSILON) (+INFINITY))

(RREL (élM IRRITABILITY) (TYPE END-INTERVAL))
((NAME ANOREXIA) (TYPE BEGIN-INTERVAL))
(-INFINITY) (-EPSILON))

EIRRITABILITY «NOREX!A )
= ]

e e

Figure 2.6: Illustration of assertion of example 7.

Note that with the INTREL assertion, TUP automatically asserts the
additional default temporal relations between the beginning and end
of each interval (using ASSERT-INTERVAL as in form 4).

All tlﬁrteen conversions from interval to point-based representation are tabu-
lated in appendix A. TUP also provides a short-hand means of creating intervals,
the ASSERT-INTERVAL form (form 4).

Form 4

(ASSERT-INTERVAL <interval specification> <context>)

translates to:
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(RREL ((<point specification>) (TYPE BEGIN-INTERVAL))
((<point specification>) (TYPE END-INTERVAL))

(O SECONDS) (+INFINITY)
<context>)

The examples above show a variety of temporal assertions that are represented
internally in a single uniform manner. The method by which this internal represen-
tation performs temporal reasoning is discussed in the following section.

2.2 Generating Temporal Inferences

Every time additional temporal information is acquired, new relations may be gen-
erated or any of the temporal relations, currently represented in the data base,
modified. In this section, I describe how these inferences are computed.

2.2.1 Range Addition

If an RREL is asserted that shares a point with another RREL, TUP attemptis range
addstion to calculate the bounds on a third RREL—that between the two unshared
points. Range addition is simply the calculation of the sum of the two lower bounds
and the sum of the two upper bounds. The rules for range addition for all values
including co and ¢ are given in table A.2 in appendix A.

Let us take, for instance, the assertions of example 8, in which the assertion is
made that the onset of irritability precedes the onset of anorexia by two to three
days and that the duration of anorexia is three to four days. The lower and upper
bounds on the third relation, (diagrammed in Figure 2.7), as calculated by range
addition, are five days and seven days respectively.

Example 8

NAME ANOREXIA) (TYPE BEGIN-INTERVAL))
2 DAYS) (3 DAYS))

(RREL (imm MOREKIA; ng BEGIN-INTERVAL))
g NAME ANOREXIA) (TYPE END-INTERVAL))
3 DAYS) (4 DAYS))

(RREL ESIM IRRITABILITY) (TYPE BEGIN-INTERVAL))
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2.2.2 Constraint Propagation

If an RREL ry, such that ¢ —2+ 5, is asserted between two points i, j which are already
~ related by i —+j TUP determines if ry constrains r;. An RREL is constrained if the
values of its upper and lower bounds are brought closer together, be it by increas-
ing the lower bound, decreasing the upper bound or both. A state of maximum
constraint is achieved when the values of the upper and lower bounds are identical.
If the lower bound is greater than the upper bound, the temporal data base is in
internal contradiction (is inconsistent).

To continue with the example, if it is subsequently asserted that the delay from
the onset of irritability to the end of anorexia is exactly five days (as in example 9),
then the RREL originally computed can be modified—or constrained. Here, the
bounds on the new assertion (example 9) are narrower than those of the RREL that
was obtained through the range-addition of the RRELs of example 8. And so, the
RREL is constrained (see Figure 2.8).

Example 9

NAME ANGREXIA) (TYPE END-INTERVAL))

(RREL ggum IRRITABILITY) (TYPE BEGIN-INTERVAL))
& DAYS) (6 DAYS))

Every time an RREL is constrained, range addition is attempted with each of
the RREL’s neighbors (RRELs with one time point in common). This range addition
may either constrain a previously asserted RREL, create a new one if no prior one
exists, or do nothing if the range addition does not constrain extant bounds. In
this example, the first neighbor that might be chosen is the first RREL of example 8.
This results in a range addition of (-3 days, -2 days) and (5 days, § days) for a
result of (+2 days, +3 days). Fig. 2.9 shows that this result constrains the upper
bound of the RREL between the beginning and end of anorexia to three days. As
this process of constraint and range addition is recursively repeated every time an
RREL is constrained (whereby constraint propagation), this latest constraint causes
yet another range addition: (-3 days, -3 days) and (5 days, 5 days) with a result of
(2 days, 2 days) that constrains the corresponding RREL as illustrated in Fig. 2.10.

Although TUP attempts the remaining range additions, there obviously cannot
be any additional constraint propagation as all three RRELs are maximally con-
strained. As Vilain and Kauts [59] have shown, such a constraint propagation
scheme has order n® time complexity. In outline, constraint propagation causes
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Figure 2.8: Initial Constraint.
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Figure 2.9: First propagation of constraint.
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Figure 2.11: Propagation of the “OVERLAPS” Assertions.
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Figure 2.12: Constraining the “OVERLAPS” assertion.
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where 7y, ry are RRELs which were used in a range addition to calculate the bounds
on ry, and /b, ub are the results of that range addition. These supports are used, as
described in the following section, to trace the inference paths from any RREL to the
original external assertions on which the bounds of that RREL depends. A similar
scheme was described by McDermott [36]

2.2.4 Contradiction Handling

If, during the process of constraint propagation, a contradiction is detected, the
contradiction handler is invoked. The contradiction handler’s basic strategy is to
offer a list of externally asserted RRELs for withdrawal and to continue to do so until
no more contradictions are detected.

Withdrawal of an assertion involves more than merely deleting a single RREL. TUP
has to examine all other RRELs for which the externally withdrawn* RREL (that we
will call the inconsistent RREL) was a support. If this withdrawal of support causes a
decrease in constraint in a second RAEL, then this RREL must in turn be (temporarily)
~ withdrawn from all supports. This process recurees until there ceases to be any
further decrease in constraint. Subsequently, all those RRELs whose constraint was
weakened by the withdrawal of the inconsistent RREL are automatically re-asserted
by TUP (with consequent constraint propagation). '

This process of dependency-directed backtracking is computationally expensive,
and is therefore only intended for use in small applications involving only a few
hypotheses. Otherwise, for large, realistically-sised applications, such as medical
diagnosis, the context mechanism is used as it permits several hypotheses to be
repeatedly examined and compared with each other at minimal cost.

One of the more challenging tasks, as yet unresclved, is the automatic selection
of the inconsistent RREL to be withdrawn. One method is to attempt to withdraw
those premises, of those in mutual contradiction, that are least supported by other
RRELs. As many such methods that solely rely on the domain-independent, syntac-
tic information of the temporal data base, this method is incomplete and unreliable.
Domain knowledge is required to understand why s particular temporal assertion
is unressonable. We know for instance, that acute hepatitis B would have to follow
rather than precede infection with the Hepatitis B virus, but this would not be
obvious from the temporal relations alone—we had to know something about hep-

4That is, withdrawn explicitly by user or expert system rather than by TUP’s inference
mechanisms.
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atitis, or infections in general. It is precisely to provide this external or “real-world”
knowledge that THRIPHT is equipped with temporal templates for each hypothesis
(described in section 3.4).

Linear Programming and Contradiction Handling

Linear programming has been considered as an alternative to constraint propaga-
tion [34] to perform temporal deduction. As noted by Valdés-Péres [57], full linear
programming presents some difficulties. One of these is the problem of defining
which sets of assertions are in contradiction. TUP determines this by tracing back
the dependencies that lead to the contradiction; it is not apparent how this can
be accomplished using the Simplex algorithm. Other drawbacks of the full linear
programming techniques include what Valdés-Péres termas the “lack of implemen-
tational congeniality.” That is, if we represent events using some particular
representation, then the use of Simplex requires some properties of these events
to be represented in a set of wholly different data structures. Integrating the two
representations can be at the very least difficult, and leads to knowledge structures
that are less than obvious to the knowledge enginesr. Also, the complexity and
unintuitive nature of the operations of the Simplex algorithm does not permit an
expert system which uses the algorithm to readily generate an explanation of its
deductive process. This contrasts with the deductions made through constraint
propagation, where a backwards trace through the supports of an RREL provides a
reasonable explanation of how the bounds were computed.

2.2.5 Tools for Studying Constraint Propagation

During TUP’s design, I developed some tools to follow the consequences of constraint
propagation upon the temporal relations already entered in the knowledge base. I
have subsequently found these tools to be useful in guiding temporal knowledge
engineering (see chapter 4). '

Loop Formation

A loop in TUP is constituted of a set of n externally asserted RRELs joining n time
points to form a closed graph as illustrated in Figure 2.18. The simplest loop is
that with three RRELs, but of course it can involve any number of RRELs. The
interest of loop formation is that it is only when loops are formed that RRELs are
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constrained® and therefore that the externally asserted RRELs are modified. If this is
not immediately apparent, consider the simplest case—two RRELs, as in example 8.
The only circumstance in which a third, distinct, externally asserted RREL will cause
constraint propagation is if it joins the two points (BEGIN IRRITABILITY) and
(END ANOREXIA) to form a loop. This third RREL, which closes the loop, provides
an alternate path for the computation of the temporal distance between the two
points. .

In the general case, when an externally asserted RREL closes a loop of any size,
it provides an alternate computation path for the bounds of all the other RRELs
that are members of the loop. Thus in the simplest case, the closure of the loop
with the third RREL can constrain the two previously asserted RRELs. Constraint
propagation will also spread throughout larger loops and can propagate to the
members of intersecting loops.

In the current implementation, mhhhlkhh,mm;udmhdwm,
externally asserted ARELs. This enables the visual detection of loops by the knowl-
edge engineer, and permits her to direct her efforts in knowledge acquisition to those
RRELs that might close loops and therefore constrain the temporal data base. I have
found this particularly helpful in modifying underconstrained diseass hypotheses.

The Constraint Index

The constraint index (CI) is a measure of the constraint of an RREL. It is calculated
bymmwmmumuammadumwm
sum of the absolute value of the same bounds.

jub -1y
bl + 28]

For instance, the first RREL of example 8 has a constraint index of (3 — 2) days
divided by (3 + 2) days or 0.2. By the formula, the more constrained an RREL is,
the lower its constraint index. -
The CI is calculated so that even when two RRELs have bounds separated by
an identical distance, the RREL that covers a larger time scale has the lower CI. In
this way the RREL that relates events years apart is rated as more constrained than
one relating events months apart even if the difference between the upper and lower
bounds of both is an identical sumber of days.

CI=

Smmmumumwmm.mmmymm.
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Legend

———f Member of loop - might be constrained
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~———0-—3 An RREL that eould close the loop
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Figure 2.13: Loop Formation
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TUP can calculate the cumulative sum of the CI's for specified groups of points
(form. 5). This is known as the group constraint index (or global constraint index
when it includes the whole temporal data base).

Form 8§

(CI <point list>)

The CI is useful for the knowledge engineer, because it enables quick identifi-
cation of those parts of the temporal knowledge base that are poorly constrained.
With the graphical display of loops, it provides an efficient tool for building highly
constrained knowledge bases. Also, it can be used for the performance clustering
heuristic, described in section 2.5.4.

2.3 RREL Retrieval

If, instead of values between positive and negative infinity, the bounds of an RREL
are given as TUP variables as in form 6, TUP attempis to retrieve the values for those
bounds instead of asserting them and binds the retrieved values to the variables.
If only one of the bounds is an unbound TUP variable, TUP first asserts the RREL
replacing the variable bound with infinity (positive if upper bound and negative if
lower bound), performs the retrieval operation, and then binds the retrieved value
of that bound to the variable. ’

Form 6

(RREL <point 1> <point 2> ?7<LB-var> ?7<UB-var> <context>)

In a temporal knowledge base with exhaustive constraint propagation, this re-
trieval computation simply returns the one RREL linking the two points specified.
As described below (section 2.4), the retrieval process becomes somewhat more
involved with clustering.

TUP also provides retrieval functions for temporal relations built on the RREL.
For instance, if an unbound TUP variable instead of an interval type is specified in
an INTREL, TUP tests the RRELs between the two intervals and returns the interval
relation that is consistent with the RREL relationships. If, as is often the case, the
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RRELs are insufficiently constrained, TUP returns a disjunction of interval relations
that are consistent with that state of constraint. Oonmmfromnngemhtmm
tomtervalralntiomcanbcfoundint&bbA3

2.4 Restricting Constraint Propag&tion

Temporal reasoning, as described in the preceding section, is uniform and straight-
forward. Unfortunately, computation of constraint propagation becomes burden-
some in typical medical applications where sach hypothesis contains hundreds of
events. With the first attempts at developing applications that use constraint-
propagating temporal reasoners, more attention has been paid to the tractability
issue. It has become apparent that the time complaxity is in large part due to the
attempt to achieve breadth of expression while ensuring complete and consistent
temporal inference. Valdés-Péres [87] and Vilain and Kauts [59] have examined this
tradwﬁmdh;veahodcnlepodwuﬁeutmmwmwithordc
u=tmmpmummmmmm

Unfortunately, even n? myhmmm To process, in real-time,
several simultaneous hypotheses, each involving hundreds of events, requires a much
shallower performance curve. The improved pecformance is necessary as TUP is
meant to be an accessory program for an expert system and not the primary com-
putational activity.

Other than this pragmatic objection to unrestricted constraint propagation,
there are several reasons to believe that such constrsint propagation is not nec-
essary. -

With unrestricted constraint propagation, all temporal relations are used to
obtain maximum constraint. Nonstheless, experience with TUP has shown that
in practice, only a small fraction of temporal relations in the data base need be
used to obtain maximum constraint (more on that later in this section). Perhaps
non-coincidentally, this obssrvation dovetalls with our intuition that we do not use
or review all our remembered events to estimate the temporal distance from one
event to another. This intuition appears to be borne out by cognitive experiments
described in chapter 5.

Most temporal reasoners use some form of dhidemquw’tonllowtemw
ral inference to be performed on subssts of the events (clusters of the temporal data
onerous. In those temporal inference engines that use constraint propagation, the
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usual approach is to select a cluster of events and then precompute (through con-
straint propagation) the relations between them. Thus, to overcome the complexity
of his interval-based constraint propagation algorithm, Allen [1] uses the reference
snterval to cluster intervals in a during hierarchy. Constraint propagation is limited
to reference intervals such that relations between intervals in different reference in-
tervals must be obtained by means of a search procedure. Allen notes that “If one
is careful about structuring the reference hierarchy, this [local constraint propaga-
tion and the search procedure] can be done with little loss of information from the
original complete propagation scheme.”

Similarly, to manage the steep growth in execution time of the DEVISER I plan-
ner, Vere [58] employs a form of temporal clustering. DEVISER II associates a
temporal scope with each goal activity. This allows the planner to exploit the goal
hierarchy by selectively retrieving events within the temporal scope of the goal
activity. One of the advantages of Vere’s solution is that it does not require the
knowledge engineer to perform the difficult and laborious task of temporal cluster-
ing. |

Unlike Allen’s and Vere’s temporal reasoners, those of Mittal [41] and Kahn [25]
both have heterogeneous representations and cluster schemes. Mittal’s temporal
data base maintains three nested types of temporal organisation: event clusters
(events clustered around a selected time), episodes (event clusters organised around
key events) and episode clusters (clusters of recurrent episodes). All three of these
aggregation methods perform a role equivalent to clustering; by grouping events
according to some particular criteria, the retrieval mechanism can quickly focus
on a small subset of the total data base. Kahn'’s [25] temporal reasoner has three
parallel representations: before-after chains, the date-line and the position of events
relative to key events. The third representation clusters those events for which the
key event has shared importance.

The heterogensous internal representations suffer from fundamental difficulties
in retrieval, namely the problem in deciding which representations to use and in
which order to use them to obtain the most precise temporal information.® In their
implementations, such data bases use several heuristics to make retrieval decisions,
for example employing those representations or rcpuienta.tion combina.tiona that
are most frequently successful.

In the sections that follow, I describe how TUP implementl clusters and then

Se.g. it is & priors difficult to decide whether the effort of searching before-afier chains will provide
more precise information than searching the date-line to respond to a particular query.
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how thesé clusters can be automatically generated.

2.4.1 Impiémentation of Clustering: The Reference Set

In the point specification in an RREL assertion, one of the qualifiers available is
the REFSET that specifies reference set membership. Events can belong to more
than one reference set, and therefore a reference set qualifier can specify a list of
memberships as in example 11.7

Example 11

~BEART - mL—mosxs) ))
((NANE e-nm) PR INTERVAL
1oIsesE))) ’

R oy

(RREL (gmu OS‘I'BOPIIIA) (TYPE BEGIN-INTERVAL)

(RREL (gwu DYSPNEA) (TYPE BEGIN-INTERVAL)
REFSET DISEASE

(OSTEOPOROSIS
¢ ‘MENOPAUSE-ONSET’*) (REFSYS DEVELOPMENT)
TYPE POINT))
(-6 YEARB) (O YEARS))

Definstions:

e Osteopenia — decreased bone density. ,

¢ Rheumatic fever — an acute disease that follows infection with
specific types of the streptococcal bacterium sometimes leading
to cardsac snvolvement.

e Rheumatic heart disease — heart disease caused by rheumatsc
Jever. '
e Dyspnea— shoriness of breath. One of the many etiologies for
dyspnea is heart disease.

Given two RRELs r; and r; such that s —+ ; and j —» k, reference sets modify
constraint propagation by only calculating the range addition of -+ 5 and j -+ £
if the intersection of the reference set membership of points s,k is non-null. This

"These temporal assertions are meant to describe events in an individual patient model, and not
a population kypothesis.
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effectively limits constraint propagation to single reference sets unless there is a
significant degree of overlap between reference sets. Even then, as shown in Fig-
ure 2.14, propagation can only spread from one reference set to another if an RREL
within the overlapping area is constrained. Note that points within reference sets
are exhaustively interconnected by RRELs. '

[3

: T f
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Figure 2.14: Effect of Reference Set Conﬂmttkm upon Constraint Propagation.

Once the temporal data base is clustered into reference sets, the relation between
two points can no longer be simply obtained by retrieving the one RREL that directly
links the two. Instead TUP must use a variant of the “best-first” graph search. In
TUP, the best-first search attempts to find that path between the two points specified
that provides the most constrained values for the temporsl relation. This search is
guided by a cost evaluator that determines which node expansion (i.e. which RREL
to select) will give the minimum cumulative cost.

The A° search {19} could be implemented if, mlddxtiontocostofthepath
searched so far, the cost evaluation function would estimate the cost of the path
remaining to be traveled. In the current implementation, only the first part is
calculated (by repeated range-additions). A first cut at obtaining a function that
estimates the cost of the path remaining to be traversed would be to make very
large cost estimates for thoss paths that traverse reference sets that do not connect
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to the goal point.® - Another, unimplemented, method for increasing the efficiency
of the search would be to make it bidirectional—starting searches from both points
and meeting in between [20].

When the search explores a reference set, it only requires one node expansion
because of the exhaustive interconnections within reference sets. Also, by definition,
it never takes more than the traversal of one RREL to move from one reference set
to another. Therefore, in the worst case, the maximum depth of the search is twice
the number of reference sets.

2.4.2 Costs of Clustering

Clustering the temporal data base does incur some costs in terms of the quality of
temporal information retrieved. These costs are minimised by judicious selection
of the reference sets. Discussion of the criteria for the selection of reference set
membership is deferred to section 2.4.4.

As RRELs in separate reference sets do not affect® their respective state of con-
~ straint, an RREL wholly within a reference set is no longer guaranteed to be max-
imally constrained. In practice, if the criteria for the selection of reference set
membership are followed closely, assertions of RRELs within a reference set will con-
tribute most, if not all the constraints within the reference set, and consequently
little is lost by ignoring temporal relations outside the reference set. Even so, if
the RREL retrieved is desemed insufficiently constrained by the user or expert sys-
tem, a best-first search can be initiated!® that will use information throughout the
temporal data base, rather than just within the reference set. '

For the same reasons that maximum constraint can no longer be guaranteed
for RRELs contained within a single reference set, no guarantee can be made for
data base-wide temporal consistency. However, since constraint propagation within
reference sets does ensure local consistency, many inconsistencies will be detected.

In the unlikely event that an undetected inter-reference set inconsistency occurs,
there is no easy solution short of eliminating the reference sets and permitting
unrestricted constraint propagation. Even in this rare eventuality, I think this
inconsistency will not be of major consequence to the performance of the host

$A precompiled comnectivity map of reference sets could be used for this purpose.
9Except occasionally in the cases of overlapping refevence sets discussed above.

10Recall that the search is automatically performed if the tamporal relation desired is of two points
with non-intersecting reference set membership.
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expert system. Using the most recent example, if one of the RRELs within the
rheumatic heart disease reference set were to be inconsistent with the RRELs in the
osteoporosis reference set, this probably would not impede diagnosis of either of
the two conditions as long as the reference sets were internally consistent (which is
guaranteed by constraint propagation).

2.4.3 Computational Savings

What then are the computational savings that one can expect from the use of refer-
ence sets? With two hundred point events in a hypothesis, unrestricted constraint
propagation would create approximately twenty thousand RRELs. The same two
hundred points clustered into twenty reference sets of ten points each would gener-
ate approximately one thousand RRELs. That is, the number of RRELs grows linearly
with thénmbudmum&nwithﬁummofﬂummbcdwents.

The space savings are much less than the savings in the time required for prop-
Wmaﬂthcm&dnhshcotbmpummﬁmfotmdntpmpumon
increases with the cube of the number of events. With reference sets of uniform size
the time for constraint propagation grows linearly with the number of events.!!

The impact of these savings can be appreciated by considering the performance
of TUP with a hundred point events. Without reference sets, the space capacity of
the machine!? was excesded after more than one hour of computation whereas with
ten reference sets, of ten points each, the time for constraint propagation was 45
seconds. ‘ ~

2.4.4 Design of a Temporal Clustering Heurlstic

The overriding motivation in the design of a clustering heuristic was that it re-
fiect the goal that led to the creation of clusters in the first place: computational
tractability. In the context of constraint-propagation-based reasoners this means
that relations that are retrieved often should be precomputed whereas infrequently
retrieved relations can span clusters and therefore require search. This clustering
by frequency of retrieval differs markedly from schames that cluster by temporal
location. Akboughtmponlprainﬂtyormtkuﬁymymuﬁchstenwith

110f course, Mmhawﬂlbonﬂ“!wdthq“umﬂymtom require
mtc-ufmntmreh.

135 XEROX 1108 ruaning INTERLISP D.
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the desired properties, there are many domain applications where this will not be
the case. '

With most clustering schemes, if the knowledge engineer is not careful, too many
of the relations retrieved will require the relatively expensive search procedure.
In the case of Allen’s reasoner, since relations between intervals within the same
reference interval are computed locally, there may exist inference paths that include
interval relations outside the reference interval that would infer a more constrained
relation. Similarly, inconsistencies that would be detected by the original constraint
propagation algorithm might be overlocked. The knowledge engineer must therefore
be careful not to omit from a reference interval those intervals and relations that
might increase the constraint of the relations contained. Deciding o priors which
of the relations will be retrieved frequently is, as Allen suggests, a difficult task.
It requires that the knowledge engineer understand and anticipate much of the
dynamics of the performance program. In a medical expert system this involves
knowing which temporal relations might be pivotal in differentiating hypotheses.

Take for example the case of a sixty-year-old woman who has received a blood
transfusion and has jaundice. An incidental finding of osteopenia is noted on the
basis of an abdominal X-ray taken during the work-up. A medical expert or ex-
pert system should consider the possibility of a blood-borne viral liver infection
and in differentiating this hypothesis from other causes of jsundice, the temporal
relation between the transfusion and the onset of jaundice will be much more im-
portant than the relation between the jaundice and osteopenis. The former will be
therefore retrieved more frequently for comparison with other hypotheses than the
latter. Fortunately, in many applications much information about the mutual im-
portance of events is already encoded in the knowledge structures. This knowledge
engineering practice was advocated by Bobrow and Winograd {6, page 267]:

One of the fundamental problems in artificial intelligence is the “combi-
natorial explosion.” A large knowledge base provides an exponentially
expanding set of possible reasoning chains for finding desired informa-
tion. We baelieve that the solution to this problem must be found by
dealing with it directly through explicit concern with the sccesssbility of
information. The representation language must provide the user with
a set of facilities for controlling the way in which memory structures
are stored, so that there will be a correspondence between “saliance” or
“relevance” and the information accessed by procedures for search and
reasoning operating under processing resource limitations.
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Even if such correspondence is not always a conscious concern of the design-
ers of knowledge representations, the demands of computational tractability will
frequently push development in that direction. Otherwise, the combinatorial explo-
sion, mentioned above, will grossly impair t.hc performance of the applications that
use the representation.

The parallel between salience and the wcunbility of information in knowledge
structures can be exploited by temporal reasoners to create clusters or cluster hi-
erarchies that parallel those of the atemporal structures. The Salience Clustering
Heuristic (SCH) does just that.

To obtain the expected improvement in performance with SCH, the knowledge
structures must fulfill the criteria listed below. These are illustrated in the example
in Section 2.4.1.

e Parallel salience. There must be correspondence between atemporal and
temporal salience. That is, in the particular application being considered,
there must be some explicitly represented atemporal organising principle that
groups together the events linked by important (frequently retrieved) temporal
relations. Although in most planner, object-oriented, and process representa-
tions such correspondence exists, this is not necessarily the case.

o Cluster Sise. The maximum cluster sise depends on the particular flavor
and implementation of temporal inference, the machine it is implemented on,
and the maximum time for temporal inference that is acceptable to the user
of the performance program.

¢ Disjointness. If there is too much overlap between clusters, and constraint
propagation frequently spreads through the areas of overlap, then the effective
cluster sise will be significantly increased. SCH therefore works best when the
clusters are mostly disjoint.

2.5 Automatic Generation of Reference Sets

THRIPHT uses SCH to derive reference set membership from the causal aggregation
hierarchy used in representing each hypothesis (Figure 2.15, page 47). The imple-
mentation details are deferred to chapter 3, page 82. Here, I discuss whether the
causal aggregation hierarchy is an adequate substrate for SCH by examining the
applicability criteria itemized above, but first, a few definitions are in order.
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Causal links, as-used here, are skeletal versions of those used in the ABEL pro-
gram. That is, a causal link is a relation between two events such that the onset of
the causally antecedent event is simultaneous with, or before the onset of the causal
consequent and the likelihood of the causal consequent occurring is increased if the
causal antecedent occurs.’® Although a truly usable implementation of a diagnostic
medical expert system would require a more powerful representation of causal as-
sociation, I have found this definition sufficient to demonstrate the role of temporal
reasoning in causal-association-based systems.

A causal aggregate is a summary of the description of a disease course at a more
detailed level. As in ABEL, the more detailed level is represented by a network of
events, which themselves may be causal aggregates, interconnected by causal links.

Parallel salience: Each causal link, by its nature, has an associated set of
temporal constraints, minimally that the onset of the effect follows, or is simults-
neous with the onset of the cause. For reasons of computational parsimony and
epistemic sufficiency, only the relevant causal links are explicitly represented. In
this application, medical diagnosis, the important causal links are those that are
characteristic of disease hypotheses. The time constraints between cause and ef-
fect are intrinsic to this characterisation. Since the organising principle—causal
aggregation—encapsulates networks of causal links within an abstracted descrip-
tion these aggregated links must have some mutual relevance. The paraliel between
the relevance of causal links and temporal relations ensures that temporal clusters
based upon causal aggregation will group mutually relevant temporal relations.

An example: as diagrammed in Figure 2.15, Inoculation and Jaundice will fall
within the reference set Prodrome/Acute-Hepatitis. The temporal relationship
between the two is important for arriving at the diagnosis of hepatitis B since it
permits a whole host of other hypotheses to be dismissed (or at least ranked low -
in the differential diagnosis). In the case of a patient with a history of transfusion
(the putative inoculation) followed by prodromal signs and symptoms (e.g., malaise,
chills and fever), if the delay between transfusion and jaundice is between 50 days
and 7 months (a range corresponding to the viral incubation period) the hypothesis
of blood-borne hepatitis B gains weight. If the prodromal symptoms follow the
transfusion by couple of days, a blood-type mismatch is much more likely.

In contrast, the temporal relation between the inoculation and the onset of
recovery (which do not share reference sets) is considerably less useful for diagnostic

13i.¢. p[consegquent] < plconsequent|antecedent]
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purposes because it is so variable (and can extend to a lifespan if the patient develops
chronic active hepatitis). This illustrates another property of parallel salience: that
mmunhmmﬂmhcmmuwymmmmmb.m
clusters. Why this is so is unclear: perhaps more effort is invested in obtaining and
asserting more precise estimates of the temporal relationships that are characteristic
of a disease and on which diagnosis might hinge. Alternatively, events that are
closely related to a particular causal mechanism might have less variable timing with
respect to one other than with respect to events that are only indirectly related to
that mechanism.!* In any case, this is useful as it means that most of the constraint
in the computation of an RREL can be obtained locally within a cluster. This helps
minimise the loss of information that Allen mentions regarding reference intervals.

Cluster Size: The number of events that are included within a reference set
depends upon the number of levels of the causal aggregation hierarchy that sCH
uses. With unabbreviated medical hypotheses, sach causal aggregate has five to
fifteen elements. In the current implementation of TUP this is at the upper bound
to achieve anything approaching real-time performance. Consequently, THRIPHT
directs SCH to gather only the immediate elaboration of a causal aggregate within
a reference set. '

Disjointness: Within a particular hypothesis, only one or two events are shared
by causal aggregations. The effective cluster sise is therefore approximately the
same size as the reference set membership.

It seems then that events with the samme immaediate causal aggregation share
the criterion of relevance necessary for membership within the same reference set.
Note that temporally distant events (as in our earlier example of rheumatic fever
and mitral stenosis) may share the same immediate causal aggregate and therefore
share reference sets. Also, the component events of a causal aggregate are not
necessarily DURING the aggregate. thutamthimmmtouﬂ.paﬁti-
B infection persists into the recovery period.

2.5.1 Using Other Knowledge Representations

Most if not all knowledge structures are built with some regard to processing re-
source limitations and thus indirectly to the salience of the entities within the knowl-
edge structures.This includes the whole spectrum of knowledge representations:
‘causal aggregation hierarchies [45,50], structured object representations [6,48,40)

14{ o. In which there are several intermediary mechanioms.
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goal structures of planners [58], qualitative system descriptions [17,29,13] and the
more recent hybrid knowledge representations such as KRYPTON (7] and KL-TWO
[60]. When, as in the previous example from THRIPHT, temporal salience follows
atemporal relevance, SCH can be brought to bear. I outline below some of the
promising candidates to which SCH can be applied.

2.56.2 Qualitative Reasoning

In qualitative simulations [17,30,13] the number of events, and associated temporal
relations, grows rapidly with the number of processes modeled, especially if there
is significant interaction between these processes. Williams’s [64] approach to mak-
ing temporal queries computationally tractable is to generate justification histories.
These histories maintain the dependencies between the quantity values at differ-
ent times. Temporal reasoning can therefore be safely restricted to those events
that share membership in a justification history. Nevertheless, in large simulations
such as models of human physiology, the extent of interaction between processes
will create justification histories that qunconuhtoommymt: for reasonable
performmce in temporal reasoning.

H, however, can exploit the effort already invested to “chunk® process de-
ncriptions a la Qualitative Process Theory [17] by using the parameter histories (17,
page 28| associated with the Individuals in a process description (Figure 2.16)
to determine reference set membership. By definition, the Individuals (and as-
sociated parameters) in a process description (s.4 and path in the example) have
greater shared relevance!® than they have with other individuals in other process
descriptions.

What about SCH’s requirement for parallel temporal and atemporal salience?
Clearly, this depends on the application so let us take a typical medical application
of qualitative simulation: explanation of the causal mechanism of pathophysiological
phenomena [29)].

An adequate explanation of the causal behavior of a system must include a
partial order, if not quantitative chronology, of the events in the behavior. It is es-
pecially important, if the explanation is to be consistent, that the timing of events
which are tightly coupled (closely related to a shared mechanism) be as precise
and consistent as possible. It is less important to ensure precision and consistency

15In describing a particular mechanism.
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process: fluid-flow

Indi v"d“:l: : contained-liquid
d a contained-liquid

path a fluid-path, Fluid-Connection(s,.d,path)
Proconditim

aligned(path)
QuantityConditions:

A[Pressure(s)] > A[Pressure(d)]

R.hﬁonﬁt flow-rate be a quantity.
flow-rate PROPORTIONAL-TO A[Pressure(s)] - A[Pressure(d)]

Influences:
I+ shonnt-ot (d; . A tlow-nto} )
I-(Amount-of(s), A{flow-rate))

: A fluid path is aligned only if either it has no valves
i Or every valve is open

Figure 2.16: Process Description of Fluid Flow.

between events that are less tightly coupled or related to completely separate mech-
anisms. For instance, there is a greater noed for precision in describing the timing of
. decreased oncotic pressure!® and subsequent increase in transudation!” than for the
timing of decreased oncotic pressure and the onset of a low protein diet.}® Precision
in the timing of decreased oncotic pressure and the tremor events of Parkinson’s
disease is even less important as their respective mechanisms are distantly, if at all,
related. In this last case, timing information would not contribute to the under-
standing of the dynamics of either mechanism.

Observe that we sesm to have more precise temporal information (RRELs with a
lower constraint index) about tightly coupled events than about loosely coupled or
unrelated events. As in the case of causal-association networks, this is likely due to

‘”Ihuunuﬂyndi'tothlonmuu:uwhan nun-<|uuﬁqnnnu¢h1muduun set up by
constituents of a mediumn such as blood or interstitial fluid.

"ﬂohdunhMleaMMm«tbum
or hydrostatic gradieat.

18Which, in severe cases, can lead, through several intermediate mechanisms, to decreased oncotic
pressure.
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the greater effort invested in gﬁui&n&g nonr.l«:uu«i& the

temporal relationships of those events which are tightly coupled to, and therefore

gﬂg«ggg!@?vg% mechanism. Or, each additional
%ggvgfag adds an increment to the variability
of the temporal relation between those events.

gvﬁ%ggég%g@moﬁsgg

process description and lump them in a reference set 8o that their temporal relations
Eugvziww%vg%%%gtﬁ&??

ent processes are obtained by search. Thoss processes that interact, and therefore

share parameter histories, gg%n&ﬂg-& As in
most applications of SCH, the usual caveats regarding potential loss of information
apply.

2.56.3 mugou-

‘wgr-.«onv- g&vﬂ&%ggggg&g

tering effective. That is, most of the temporal relations asserted within a plan :

5?%5?-&%%8&3; ere’s
oﬁggtﬂf Application of 3CH to a planner goal hierarchy simply
involves declaring a goal to be a reference set of the subtres of goals it subsumes.
_Hrogﬁﬁnﬂvﬁlrga?gaﬂ%g That is, 8CH
is applied recursively until the number of planned events in each subtree is within
E-aoovovv range.

2.5.4 H.J.E?E»Bmmm ybrid Representation Hubnd ges

Languages such as KRL [6] and KL-ONE (8] have the breadth of expression to provide |

many taxonomic distinctions with which to drive SCH. Whether this taxonomical

Take KRL’s %gﬂuggg&mﬁogv.il
ﬁpﬂfaggﬂ customer. By definition, the components of a
perspective share a common view or relevance. Temporal salience may follow that
.Bvo.&rw %?E—a?g%;mﬁgﬁ!&a%.
tive (e.g %gﬁg ) have greater mutual salience than they have
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with customer perspective events (e.g. book purchases). If the reference sets gen-
~ erated by perspectives are too large they can be subdivided using other taxonomic
structures of the language such as the Set0f set membership specification.

KL-ONE and its derivatives attempt to distinguish between the descriptive, ter-
minological component of a representation and the assertional component. KRYP-
TON implements the former as the TBox and the latter as the ABox. The TBox is
used to build descriptions of the world, “the formal equivalent of noun phrases such
as ‘a person with at least three children’” |7, page 418] from which the logical con-
sequences (such as subsumption and disjointness) of assertions made in the ABox
can be retrieved. The TBox provides a rich terminology with which to describe
the roles that concepts fill and the manner in which concepts are specialised. This
tummobgyproﬁd.mmdmwkhw%wmpmphwithlhued
salience. For instance, concepts which fill the same role

Unlike process descriptions and causal-link-based hypotheses, these last repre-
sentations are much more general and domain independent. The parallel between
the atemporal clustering and the shared salience of the temporal relations is do-
main dependent and may not always hold. Therefore, a knowledge engineer cannot
borrow knowledge structures from other applications and hope to effectively use
SCH without first verifying that the parallel holds in the new application.

Performance Driven Clustering

All the above cases use domain-dependent knowledge of tha salient decomposition
of the domain knowledge to drive the clustering of the temporal data-base. Could

this clustering be done automatically and yet wholly hmdiy to TUP thhout
knowledge of the domain?

At the beginning of the discussion on clustering the temporal data-base, I as-

serted that creating a cluster on the basis of a purely temporal criterion—especially
temporal proximity—was unhelpful as it did not capture any notion of mutual rele-
vance of the member events of the cluster. However, in the course of my work in this
area, it has became apparent that TUP has access to seversl clues to the domain-
dependent salient decomposition even while restricting itself to introspection upon
its own operations. First, the frequency of retrieval and assertion of certain RRELs
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relative to others in the data-base provides strong guidelines for the correct!? refer-
ence set configuration. Second, the pattern of distribution of the constraint index
would also point to the correct reference set decomposition; those connected? por-
tions of the data-base possessing a sigrificantly lower CI should be assigned to the
same reference set.

A version of TUP, modified to perform temporal clustering in the manner de-
scribed above (performance-driven clustering), would start with a collection of as-
sertions upon which no constraint propagation had been performed. All retrievals
at this initial stage would use the search mechanism. After additional RRELs would
be asserted, performance would degrade as the search paths became progressively
longer. Upon reaching a threshold of poor performance, the performance-driven-
clustering version of TUP would bring to bear several heuristics for clustering the
data-base into reference sets. Once the reference sets were defined, constraint prop-
agation would be initiated within each reference set. The boundaries of these ref-
erence sets would be re-evaluated by the heuristics as additional data were ac-
cumulated and more queries made. As the configuration of these reference sets
approached the natural decomposition of the knowledge in the application domun,
the reference set configuration would become increasingly stable.

The heuristics that would be employed would have to be precisely tuned so that
the criteria for reference set membership were neither too stringent nor too lax.
The high-level strategies would, however, be:

e If a group of connected, externally asserted RRELs have an individual assertion
rateztxmuhi;hatthanothullﬂ.stowhkhtheymconmtod then make
areferenceutoutdthemcmbmofthhpoup

o If a group of connected, externally asserted RRELs have an individual retrieval
rate y times higher than other RRELs to which they are connected, then make
a reference set out of the members of this group. :

e I a group of connected, externally asserted RRELs have an individual con-
straint index & times less than other RRELs to which they are connected, then
make a reference set out of the members of this group.

19Recall that RRELs within reference sets are much cheaper to reirieve than inter-reference set

RRELs and therefore it is desirable to have frequently asserted sad retrieved RRELs within a reference
set. .

0Points connected by externally asserted RRELs.
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o If a proportion n of the reference sets have memberships greater than m
events, modify the thresholds of the first three heuristics to make reference
set membership more stringent.

e If a proportion s of the reference sets have memberships less than j events,
modify the thresholds of the first three heuristics to make reference set mem-
bership more lax.

I find this scheme of performance-driven-clustering quite intriguing, because it
creates a temporally-oriented memory that progressively organises itself so that -
those temporal relations that connect events that are closely related are those that
are the most easily retrisved. It also guarantess temporal consistency for those tem-
poral relations that coanect closely related events. In contrast, temporal relations
thatmrmlyrctrhnd,betmmﬁth&tmnotmyrmttoommhc
require considerable effort (search) for retrieval.

2.6 Referenée Systems and Reference Sets

The earlier description of the commonly used tamporal yardsticks (reference sys-
tems) such as the calendar, was purposefully left incomplete pending the discussion
of constraint propagation and the the role of reference sets. I omitted the fact that
when the mini-expert of sach reference system asserts temporal relations between
members of a reference system, constraint propagation causes the exhaustive in-
terlinking of all members of this reference system. This constraint propagation is
restricted to the reference system by the creation of a reference set that contains
only members of the reference system. This reference set is created by the mini- ,
expert which appends to each point asserted a reference set whose name is that of
the reference system as in example 12.

Example 12

(RREL (imm cu.un
:); . May 20th, 1986")
gmmm *10 p.m., May 20th, 1086")

cu.mm;
(2!0(!!8) (2 ROURS))
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These mini-experts have knowledge of the temporal distance between points
in a particular reference system and are implemented as black-boxes that only
provide TUP with the distance between two points, specified in canonical form.
The internal operation of these black-boxes is quite varied, the CALENDAR mini-
expert uses a simple formula to obtain temporal distance between points whereas the
DEVELOPMENTAL mini-expert has its private temporal context with range relations
from which it obtains this distance information. '

Early in TUP’s development, one of the problems that arose was the inability to
use reference system information from within (non-reference system) reference sets
without having recourse to a search. In Figure 2.17 (a) the RREL linking points a
and b is less constrained than the RREL that could be obtained if a search which
included the reference system information (along the path a — d1 — d2 — b) was
performed. Nevertheless, since retrieval of an RREL between two point events in
the same reference set is done directly and without search, the reference system
information is not employed.

In general, one would like to be able to always use reference system information
to constrain RRELs within reference sets because these reference systems are ubig-
uitous, and particularly because the constraint indax of these reference systems is
usually very low. The CALENDAR reference system, for instance, has a total con--
straint index of sero as all relations within that system are maximally constrained.

The solution adopted involves adding points of a reference system to the ref-
erence set of those events to which they are related by external assertions (Fig-
ure 2.17 (b)). By dint of constraint propagation, the RREL between a and b is then
appropriately constrained by the calendar information. Note that because of the
restrictions on constraint propagation imposed by reference sets, range addition is
not attempted between RRELs exclusively in the X reference set and those exclu-
sively in the CALENDAR’s reference set. Therefore the only way that constraint could
propagate from the X reference set to the CALENDAR’s reference set would be if an
RREL within the region of reference set intersection were to be constrained.

As reference systems have a low CI, the direction of constraint propagation is
usually from the reference system to the local reference set. Only rarely does it occur
that RRELs within a reference set constrain relations in a reference system. When it
does, as might happen for instance, if a reference set were to contain an assertion of
early DEATH then one would want all reference sets that contained events bounded
by DEATH to be appropriately constrained. This in fact is what would happen under
the rules of constraint propagation as modified for reference sets.
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Figure 2.17: Use of Reference System Information.
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Note that the solution adopted remains true to the lestmotif of reference sets—
that only closely related event points be included in the same reference sets. In this
case, only those points in the reference system that are externally asserted to be
related to points in a reference set are included in that reference set.

2.6.1 The PRESENT Reference Set

Assertions of the relationships of events with respect to the present are typically
found throughout the temporal data-base, involving events of several different ref-
erence sets. Also, as most instances of the present are generated by means of the
RelationToPresent assertion, most MOV events will be directly linked to a time
and date. Consequently, just as reference systems are a source of tight constraint,
50 are references to the present. Therefore, the same solution adopted for reference
sets was implemented for NOV instances. That is, all instances of NOW are made
(by RelationToPresent) to be members of the PRESENT reference set. Also, as for
reference systems, the same instance of ¥OV is made a member of the reference set
of the point specified in the RelationToPresent assertion. Also, by the mechanism
described in the previous section, the reference set information of this ¥O¥ point
is appended onto the reference set membership of the CALENDAR point that repre-
sents the current time and date . The final result is illustrated in example 13, the
complete version of example 6.

Example 13

- (RelationToPresent
((NAME ASTHMA) (TYPE BEGII-I VAL)
REFSET IRA g

(RESPIRATORY-
(+12 NONTHS) (+13 mm:s))

translates to:

(RREL ((NAME (GENSYM KOW)) (TYPE POINT)

: REPSET (PRESENT RESPIRATORY-DISTRESS))
((NAME ASTEMA) (TYPE BEGIN- VAL
REFSET (RESPIRATORY-DISTRESS)))

(-13 MONTHS) (-12 MONTHS))

(RREL ((REFSYS CALENDAR)
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(REFSYSFORM (DATE)) (TYPE POINT)

REFSET (CALENDAR PRESENT RESPIMTORY-DISTRESS)))
((NAME (Latestlow)) (TYPE mn-xtm AL

REFSET (PRESENT RESPIRATORY-DISTAESS)))
(0 SECONDS) (O SECOWDS))

2.7 Predicates and Retrieval Functions

Up to this point, I have described much of TUP’s functionality, without touching
upon the practical aspects of using TUP in a medical expert system. Although the
RREL can be used to assert and retrieve all temporal information, the direct use of
the RREL form in most applications is at the best cumbersome. For this reason,
TUP’s implementation includes a broad variety of predicates for testing different
kinds of temporal relationships and a few specialined retrieval functions.

- 2.7.1 Predicates

The nature of the RREL makes for two kinds of tests of temporal relations. One
kind determines whether the specified conditions could possibly be true while the
other kind tests whether these conditions are strictly true. For each TUP predicate,
there consequently is a corresponding strict' and a relaxed version. Take the
. WITHIN-P predicate, it tests whether two time points fall within s specified distance
of one another as in form 7. In the strict version (8-WITHIN-P), the predicate
returns “true” only if both the upper and lower bounds of the RREL between the
two time points are less than or equal to the specified distance. The relaxed version
(WITHIN-P), will return “true™ as long as one of the two bounds is less than or equal
to the specified distance. Subsequent constraint propagation may further constrain
the RREL such that the WITHIN-P predicate might return “false.” By definition,
as S-WITHIN-P is the strict version of the predicate, it never changes the value it
returns from “true” to “fales”, no matter how much the tested RREL is constrained.
In practice, the relaxed predicate versions are the pragmatic choice for knowledge
Mhm&atﬁdmﬁmwhmwmwhmbmm
All the implemented TUP predicates are described in appendix A.

Form 7
(WITHIN-P <point 1> <point 2> <distance> <context>)

7

3‘Donoudbyn'8'pnixtothpudkm’anm.
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2.7.2 Event Retrieval

TUP implements event retrieval (as opposed to RREL retrieval) with the GETEVENT
function which has the form:

Form 8

(GETEVENT <point specification> <filter> <context>)

where the filter is a boolean combination of TUP predicates. If the point speci-
fications (e.g. reference set membership) match a point (or points), and the filter
returns “true”, then the point(s) matched are returned by the function. This per-
mxtstheretrhmlnotonlyofevcntsofnputicuhttypcornm,butahowithu
specific temporal relationship with respect to other events.

FINDBETWEEN and FINDPOSITION

There are some applications in which one is interested in the event(s) that occur |
during an interval’® and the ordinal position of an event in a set of events. The
FINDBETWEEN and FINDPOSITION functions (see form 9) provide this capability.

Form 9

(FINDBETWEEN <point 1> <point 2> <scope> <context>)

(FINDPOSITION <point> <point set> <context>)

The FINDBETWEEN function obtains the intersection of all the events returned
by GETEVENET that are after the first point, with all the events before the second
point. There is a strict and relaxed version of this function, the only difference
being whether strict or relaxed BEFORE-P and AFTER-P predicates are employed;
the relaxed version of FINDBETWEEN tends, of course, to return a greater number of
events.

22B4¢ it either a specific interval on the calendar reference system or simply the interval between -
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When someone asks, “What has happened today?” your answer will depend on
what category of events you believe the questioner is referring to. To a doctor you
might enumerate the various symptoms you have experisnced, while to a business
associate you might enumerate the transactions of the day. The scope parameter
of the FINDBETWEEN function permits the specification of a list of reference sets to
which the function should be applied. In addition to delimiting the categories that
FINDBETWEEN will be applied to, this scoping reduces the expense of a very expensive
computation. Of course, if necessary the scope can be specified to include the whole
temporal knowledge-base. ‘

FINDPOSITION returns the ordinal position of a time point in a set of time points.
It does this simply by counting the number of events in the set that are BEFORE-P3?
the specified point. There is no need for scoping as the scope implicitly only includes
the points that are members of the point set. I have found however, that in most
realistic, large applications, the point set is too large to be directly specified, but
instead is used with the FINDBETWEEN function as in example 14.3 Therefore, in
practice, the FINDPOSITION function incurs approximately 50% more computational
expense than FINDBETWERN. As discussed in chapter 5, this phenomenon has its
parallel in human cognition.

| Example 14

(FINDPOSITION
(GETEVENT g(mm !’EV!B) (mz BEGIN-INTERVAL))
8-AFTER-BY-P

X FEVER ~INTRRVAL
(G THomLytToN (T sty HRATAL)

(FINDBETWEEN ( ’:‘;:::ﬁ: W SALBDAR)

+ALL-DIS

Although these functions are indeed very expensive relative to other TUP re-
trieval operations, it is my experience, at least in the domain of medical diagnosis,
that they are infrequently needed.

33The strict version S-FINDPOBITION that uses §-BEFORE-P is aleo implemented.

2¢Note the use of the filter by the GRTEVENT fanction as well as the scoping of the FINDBRTVEEN
fanction. Context slots have been left at their defanlt value. .
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2.8 Persistence

Any event in THRIPHT has a persistence that is bounded by the interval in TUP to
which it is associated. Often there is some initial knowledge of the extent of this
persistence (e.g. we know a priors that cardiac angina without ischemia does not
last several hours) that is an intrinsic property of the event. Also, the persistence of
an event is bound by the persistence of other events (e.g. the duration of diabetes
mellitus is limited to an individual’s lifespan). This is represented in TUP by having
the end of one interval tied (with an RREL) to another. The mutual restriction
of persistence that this interdependence represents is taken care of by constraint
propagation. For instance, every time the lifespan duration is shortened, so is the
persistence of diabetes mellitus.

There are, however, many events whose persistence remains completely un-
known. TUP makes the same assumption in this regard that a lot of people would
make: that the persistence extends to infinity—at least until further knowledge is
gained about the intrinsic persistence of such an event or the persistence of another
event to which it is tied. For example, the duration of the interval that represents -
the persistence of the planet Earth’s existence will have an upper bound of +o0o0. To
hedge the bet, there could be another event—the destruction of the Earth— whoee
corresponding interval would have an onset simultansous to the end of the existence
of the planet. The moment the discovery was made that planets such as the earth
had a specified limited lifespan or that there would be planetary destruction in less
than infinite time, the infinite persistence of Earth’s existence would be constrained
accordingly.

2.9 Unresolved Issues

TUP has been designed to express temporal knowledge as generally as possible while
maintaining a simple underlying temporal representation. Even so, TUP’s perfor-
mance falls short in the representation of certain kinds of temporal information,
specifically: recurrent events, probabilistic distribution of temporal bounds and
parametrisation of bounds.
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2.9.1 Reasoning With Temporal Uni:ertainty

Several temporal reasoning systems, capable of hypothetical reasoning through the
use of contexts or some form of backtracking (or both) are billed as endowed with
the ability to reason with temporal uncertainty. In some sense this claim is correct,
but only in a restricted sense—as will be explained shortly.

Let us see what kind of reasoning about temporal uncertainty is permitted by
context and backtracking mechanisms. If the temporal representation is used in
an assertional mode, a backtracking mechanism permits the temporal reasoner to
correct prior assumptions as additional, possibly unexpected, information is ob-
~ tained. In this sense, the temporal reasoner is handling uncertainty as it responds
to events whose occurrence cannot be fully anticipated. If the temporal representa-
tion is used in a descriptive or terminological manner, alternate, distinct temporal
hypotheses can be described as well as the logical (temporal) conclusions that derive
from specific temporal relationships. Here again, the temporal reasoner can be de-
scribed as reasoning about temporal uncertainty, because it handles the uncertainty
over the “real” timing of events by representing several different possible temporal
configurations.

THRIPHT exhibits both the assertional and terminological methods of dealing
with uncertainty in its use of TUP’s reasoning mechanism and representation. In the
data-gathering (first) phase of history-driven-diagnosis, inconsistencies detected by

" TUP cause the withdrawal of one or more RRELs and the subsequent recomputation of
the consequent temporal relations. The terminological representation of uncertainty

is illustrated by THRIPHT’s alternate causal/temporal hypotheses generated in the
elaboration phase.

Encoding Probabilistic Information

Both of the above methodologies for representing temporal uncertainty are too weak
to express more detailed temporal knowledge. In particular they do not allow an
expert system to make use of probability estimates of temporal relations. In this
section, I sketch some of the challenges of providing such a capability.

Let us take two RRELs used in previous examples, and suppose that we could
assign a prior probability of p; to the temporal relationship of the first RREL and p, to
the second RREL (see example 15). What would be the probability of the third RREL
linking onset of anorexia and end of irritability? To begin with, the question itself
is flawed, because the semantics of RRELs are such that the RREL bounds between
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two point events are not determined probabilistically, but are the fixed limits for
that temporal relation in a specific TUP context. Any other interpretation renders
the results of the range addition operation meaningless.

Example 15

(RREL 52“”@ IRRITABILITY) (TYPE BEGI“IITZEVAL))
NAME ANOREXIA) (TYPE BEGIN-INTERVAL))
(2 DAYS) (S DAYS) (Prior: P1))

(RREL ilm uomng iTYP! BEGIN-INTERVAL))
ANE ANOREXTA) (TYPE END-INTERVAL))
72 ROURS) (96 HOURS) (Prior: P2))

We can, however, redefine the semantics of the RREL so0 that in our example,
the interpretation of the first RREL becomes: “There is a probability p, that the
temporal distance between the onset of irritability and the onset of anorexia lies
in the range of two to three days.” The operation equivalent to range addition
should then either calculate the bounds of the third RREL at a pre-set probability
p3 or calculate the probability p3 for a particular pair of bounds. Either of these
two operations really requires not just a single probability estimate, but in fact
the probability distribution of the temporal distance for each pair of event points.
Since the probability distribution of a calculated RREL depends on the probability
distributions of the two RRELs used for the calculation, this capability would require
that TUP be capable of performing the equivalent of range addition on any pair of
arbitrary probability distributions.

Let us go a step further, and imagine that the probability distributions, over the
full range of temporal distances, were represented for each RREL. Just as in the case
of the range addition calculation, there would be several combinations of RRELs that
could be used to calculate a particular probability distribution. The problem would
then arise of how to resolve the differences between the probability distributions
calculated from different RREL combinations.

Although this is a difficult problem, in the absence of a solution, the manner in
which temporal reasoners deal with temporal uncertainty will remain, at best, ad
hoe and subject to inconsistent interpretations. In this respect, the recent work in
mathematical reasoning with partially specified systems of equations®® appears to
be a promising line of research. If we could provide the reasoner with the general

28 As exemplified by Sacks’ [53] Qualitstive Mathematical Reasoner.
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form of the distribution (e.g. normal distribution) as well as a few values along this
curve (e.g. 76% of individuals have symptom z within five days of symptom y),
this might sufficiently constrain the set of consistent probability distributions to the
point that useful temporal calculations could be made with them.Note, however,
that in medicine at least, temporal information of quality sufficient to construct
a temporal distribution is scarce,?® and therefore probabilistic temporal reasoning
would be infrequently useful.

2.9.2 Recurring Events

Due to the significant difficulties in providing a general facility for reasoning about
recurrent events, few temporal reasoners have tackled this problem. Describing
these will be simplified by first defining a recurrence as an event that occurs more
than once in a temporal context. A collection of recurrences constitute a recurrent
pattern, _

In one cut at the problem of representing recurrences, u.ll recurrences are enu-
merated (asserted), as is the interval of the recurrent pattern of which they are
members (as is done by Mittal [41]). As a result, the recurrences appear to the
temporal reasoner no differently than other, non-recurring events. The interval of
the recurrent pattern similarly appears as just another interval with temporal rela-
tions arranged so that each recurrence is during that interval. It is hardly feasible,
however, to enumerate highly repetitive recurrent patterns with large numbers of
recurrences (e.g. the cardiac rhythm).

Kandrashina’s [26] “T-Model,” partially implemented in the VOSTOK system,
follows another approach to the representation of recurrent events. In this approach,
several different types of recurrent patterns (“chains” in the T-model representation)
are defined, and a set of generic relations between these patterns is specified. As in
Figure 2.18(a), the “chains” of the P waves and QRS complexes are synchronized in
a particular relationship (ALTERNATION in T-model terminology) with respect to one
other during the course of the normal recurring pattern of cardiac electrochemical
activity.

Where this last approach performs poorly is in specifying occasional modifi-
cations in the temporal relations of the recurrent pattern. Take for example, an

36Notable exceptions include the survival curves for various diseases and compilations such as the
"Denver Developmental Screening Test [18] whick charts the percantile of patients that manifest a
particular sign of development at different ages.
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Inereased P-R Interval

Figure 2.18: Patterns of P Waves and QRS Complexu in ALTERNATION.

electronic recording of thousands of cardiac cycles, in which one (Figure 2.18(b))
or more recurrences have prolonged P-R intervals. It is difficult to use a generic
recurrence representation, of the T-model type, to represent this information and
in particular to make such temporal deductions as:

o The temporal relations between the events on opposite sides of the perturbed
recurrence. This requires combining the generic information of the recurrent
pattern and that of the local variations of that pattern.

o The total duration of the pattern.

Obviously, a constraint propagation mechanism could make all these inferences,
but only if all recurrences were enumerated-—hardly an elegant solution and gener-
ally not feasible.

What is required is a dichotomous temporal reasoning system. One part would
represent, by explicit enumeration, those temporal relations that differ from the re-
current pattern. The other side of the system would represent the generic recurrent
patterns. A mapping would have to be maintained, linking the recurrent patterns
to the enumerated events. One of the major difficulties in the design of such a
system would be to maintain the mapping and spotting inconsistencies between the
two halves of the dichotomous representation.

THRIPHT and TUP together implement a poor man’s version of the above scheme.
TUP maintains the temporal relations of the enumerated portions of the recurrent
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patterns. THRIPHT maintains recurrent patterns as abstracted events?” with ad hoe
specification of the maximum number of references and the bounds on the interval
containing the entire recurrent pattern. Clearly, this is not satisfactory, and the
implementation of the system, described above, is one of the more pressing items
on the agenda for further research in temporal reasoning.

2.9.3 Parameterized Bounds

In a patient history, there rarely is any need, or sufficient medical knowledge, for the
use of parameterised bounds. However, when the diagnostic domain is one of the
more thoroughly investigated physiologies, such as acid-base homeostasis, there is
sufficiently detailed medical knowledge to take advantage of parameterised bounds
of the kind illustrated in form 10. As shown, instead of explicit numerical values,
the bounds are represented as functions of vectors of gquantities.

Form 10

(RREL <point one> <point two> £(Q1) g(Q2))

The implementation of parameterised bounds would require that every time the
value of a quantity changed, all RRELs whose bounds depended upon that quan-
tity would have to be updated. If the constraint of these RRELs were to increase,
constraint propagation would proceed as previcusly described. If the change in the
quantity caused a decrease in constraint in any uzu TUP would behave as if it
were withdrawing these RRELs.*®

The fact that TUP does not represent RRELs as probability distributions cre-
ates some difficuity in using parameterized bounds. Take for instance, the use of
parameterised bounds to describe such functional dependencies as the expected pe-
riod of survival of an individual exposed to high levels of radiation, as it varies
with the cumulative exposure and the nature of this radiation. Unfortunately, be-
cause the temporal estimates that arise from parameterised bounds are usually of a

37Which then become the reference sets of the recurrences.

“nummmmmwmm“awwdumm
state of the RRELs whose constraint had been weakened.
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probabilistic nature,?® temporal inference errors would be generated, as previously
discussed.

2%In the case of the radiation exposure, there is a probability distribution of survival for each
exposure level.



3. Application of TUP to Medical
Diagnosis

THRIPHT is a medical expert system prototype, developed in order to investigate
the kinds of temporal reasoning required for the task of medical diagnosis. Early
in its design, I made the decision to avoid a relatively simple graft of TUP onto a
“vanilla” rule-based system. This would have involved adding TUP predicates to
those already available for the construction of rules, and permitting the assertion
of TUP temporal relationships in the data base as in example 16.! As the limited
range of knowledge representation and the limited control structure that such a
system provides would have been inadequate to support the scope of the multi-
stage diagnostic task outlined in the introductory chapter, I have instead chosen
to build a prototype expert system using several of the “second generation” AIM
technologies. These include: causal aggregation hierarchies (e.g. ABEL [46] and
CADUCEUS [50]), knowledge structures for reasoning about hypothesis evocation
distinct from those employed to perform causal reasoning within a hypothesis (e.g.
CADUCEUS’ constrictor and causal hierarchies), and the concurrent construction of
several alternate patient models rather than building and dismissing hypotheses one
after another. This system—THRIPHT—is skeletal, incomplete and far more brittle
than the systems whose concepts it borrows. It has the merit, however, of bringing
together in one system the features that are necessary for the investigation of the
temporal issues in medical diagnosis.?

Example 16

IF (BEFORE-NOW-P
( ?MME JAUNDICE)
TYPE BEGIN-INTERVAL)))

%ND
BEFORE-NOW-P

1Before the medically knowledgeable reader protests, I emphasise that this example is meant to
‘illustrate the use of TUP predicates and assertions in a rule and not define the necessary criteria for
hepatitis.

2Its implementation also had the merit of not exceeding the available (my own) man-power.

68
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(EIME IV-DRUG-ABUSE)
TYPE BEGIR-INTERVAL)))

%S-!EPORE-P NAME IV-DRUG-ABUSE)
¢ TYPE BEGIN-IRTERVAL))
((NAME JAUNDICE)
TYPE BEGIN-INTERVAL))

}uuatioa'rm
CvPE BEGTA-INTRavAL
(+EPSILON) (*IlrIlITY;;

Whereas the previous chapter dealt principally with temporal representation
and isolated examples of temporal reasoning in the medical domain, in this chap-
ter the interaction between the temporal reasoning system (TUP) and a medical
expert system (THRIPHT) and the role of this interaction in the various phases of
diagnosis is emphasised. For this purpose, we return to the scheme (elaborated in
chapter 1) for decomposing the task of history-driven diagnosia. I repeat that this
is a pragmatic but still rather arbitrary division of labor in the diagnostic process.
I do not claim any close anslogy to human cognition or that this scheme is any
more “correct” than others. It does howevar conveniently organise the exploration
ddﬂcﬁtwwddhmmmw“ﬁﬂwmmwumofmmy
“second generation® AIM systems.

3.1 Data Collection

In the course of AIM research, several different paradigms for obtaining patient data
have been experimented with. On one extreme, there are inflexible, “dictatorial”
systems that specify what information they require, and are unable to perform fur-
ther diagnostic activity until these requirements are met. On the other extreme, the
passive systems accept whatever data is proferred (or is availsble) and then proceed
to make whatever conclusions are possible with this information. In between, the
mixed initiative programs sccept all information volunteered but may also prompt
the user to provide some pertinent details.

In the current implementation of THRIPHT, the data-collection phueulngely of
the passive type, wheress during the hypothesis evaluation phase it is of the mixed
initiative type. In earlier versions of THRIPEY, the mixed initiative paradigm was
also adopted for the data~collection phase so that a few heuristics could be used to
ensure the consistency and precision of the data. If externally asserted RREL’s were
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found to have a CI much higher than average, THRIPHT would phrase a question to
attempt to obtain more constrained information. Similarly, THRIPHT would check
selected derived RREL’s by asking the user if the derived information corresponded
to her understanding of the temporal distribution of events.* THRIPHT would also
initiate a “canned” set of questions for significant findings; for instance if melena*
was reported, this would cause THRIPHT to query the user about related events
such as pallor, loss of weight or anemia. As described earlier, THRIPHT has been
designed as if it were to operate in the background of an automated medical record
-system using the information gathered to check if any important or likely diagnostic
hypotheses had been omitted. Therefore, the current version of THRIPHT is purely
passive in its data-gathering phase.

All assertions that are made to THRIPHT in this data-gathering phase are as-
serted as RREL’s in the REALITY context—the default when no context is specified.
Constraint propagation is performed upon the assertion of each RREL. This per-
‘mits the frequent temporal inconsistencies in the history to be detected early in
the diagnostic process before any significant effort is wasted upon hypotheses based
upon erroneous data. As this data-collection occurs prior to the generation of any
hypotheses there isn’t any applicable domain knowledge to guide the clustering of
the temporal data base into reference sets. During this phase, reference sets could
only be generated arbitrarily and with a higher risk of missing important inconsis-
tencies. For this reason, all RREL’s are asserted within the same reference set to
ensure global consistency. As this phase usually involves no more than 20-30 point
~ events,® exhaustive range addition is not too computationally demanding.

Whether implicitly (through the tense of a verb) or explicitly, most temporal
assertions obtained in the patient history contain a reference to the temporal po-
sition of the specified event(s) with respect to the present. To represent this, the
RelationToPresent assertion is used with virtually every datum gathered in this
first phase. For instance, the phrase “the onset of fever degan two days before the
rash” not only indicates the relative position of the fever and rash but also the fact
that the onset of the fever occurred prior to the present. Example 17 provides the

_’For instance if the patient asserted that the fever happened two to three days before the rash
and the rash four days before the jaundice, the patient could be asked if she believed that the fever
preceded the janndice by six to seven days.

4Stool stained by blood pigments.

SExperienced physicians will generate a small group of working hypotheses [27] early in the taking
of a patient history.
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equivalent assertions in TUPese.

Example 17

(RREL ((NANME FEVER) (TYPE BEGIN-INTERVAL))
((NAME RASH) mg ‘BEGIN-INTERVAL))
2 DAYS) (2 DAYS))

(RELATIONTOPRESENT i(um FEVER) (TYPE BEGIN-INTERVAL))
+EPSILON) (+INFINITY))

The consequence of the ubiquitous reference to the present is that all events
in the history become solidly anchored with respect to the present and indirectly
(by means of the expansion of the RelationToPresent assertion—see example 6
on page 24) to the calendar reference system. As the calendar reference system
has a very low overall constraint index, these frequent references to the preaent are
helpful in constraining the temporal relations of the patient history.

3.2 Hypothesis Evocation

There usually are many hypotheses that include findings that correspond to those
in the patient history and yet which a human expert would only briefly consider,
if at all. One reason for this is that for a large class of hypotheses, their temporal
patterns are wildly at variance with the chronology of the events in the patient
history. Therefore, to correctly trigger hypotheses for further consideration, the
expert system must be sensitive to the temporal configuration of events in the
patient history. Unsatisfactory results will ensue if just the presence or absence of
events is used to evoke a hypothesis. This is clearly illustrated by the three examples
of mistaken diagnosis of trmfunon—bome acute hepatitis B in the introductory
chapter.

Temporal Errors In Human Expertise

Human beings who ignore temporal course are subject to the same errors and inef-
ficiencies to which temporally unsophisticated expert systems are prone. One such
error will have occurred to anyone who has taken several patient histories. A pa-
tient will mention several symptoms, say a prior episode of jaundice and malaise,
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and is then asked routine questions to refine the diagnosis—in this case whether
the patient has received blood transfusions. An affirmative answer will occasionally
incorrectly lead the interviewer to believe that she is on the right track only to
discover that the event happened at a time other than one relevant to the hypoth-
esis (e.g. the transfusion occurred after the jaundice). That is, the hypotheses the
interviewer considers may lead her to expectations that, without sufficient temporal
cues, will be incorrectly matched to findings reported by the patient. The converse
phenomenon will also occur: the patient omits a symptom because it is outside
the temporal window the patient considers to be relevant. A classical case of this
is the patient who has been diagnosed as having had a myocardial infarction or
end-stage emphysema and is asked if he smokes. Often the patient will respond in
the negative, and it only becomes apparent, later in the interview, that the patient
started to abstain a month previously, after a fifty-year, two-pack-a-day history of
smoking.

The Usual Approach

- When a medical expert system is developed, the system’s inability to recognize a
wide variety of temporal patterns of disease leads the knowledge engineer to assume,
often implicitly, one or both of the following two “solutions”.

The first solution is to assume that the user will go some distance in arriving
at a diagnosis and therefore only “feed” the expert system those events that are
pertinent to the present illness. In a complete patient history that includes multiple
visits® such assumptions can lead to erroneous conclusions. For example, MYCIN
tests for a bacteroides infection with the following rule [12):

It (1) the infection is primary-bacteremia, and
(2) the site of culture is one of the sterilesites, and
(3) the suspected portal of entry of the organisa is the
gastrointestinal tract,

then there is suggestive evidence (.7) that the identity of the
organism is bacteroides.

Regardless of when the primary bacteremia occurs it can bind to the correspond-
ing slot in the rule. Therefore, even if the primary-bacteremia happened months
before the current culture was obtained, MYCIN would come to the same conclusion

® Afterall, one of the goals of AIM is to produce programs that operate over the whole lifetime of
a patient and that take into account eveats of clinical importance throughout.
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as if the bacteremia had happened just a few hours before the culture. Also, if the
patient had multiple episodes of primary bacteremia, each of the bacteremia events
could be matched to the antecedent part of the rule. The user is therefore expected
to assert bacteremia only if the episode was recent enough to be relevant to the
present illness. In doing so, the user has to engage in diagnostic activity because
temporal proximity does not necessarily imply relevance to the present iliness.” For
instance, an episode of acute rheumatic fever that causes valvular disease 30 years
later should be reported to the expert system even if it is not temporally proximate
to the present illness. If we intend to develop AIM systems that can work with naive
users we cannot shift it any of the responsibility for racognizing relevant findings
from the expert system.

An alternate solution, and problbly the one most commonly employed, is to
permit the program to trigger freely upon the whole patient history and let the
expert system discover® at a later phase that the facts do not quite fit. For instance,
if the post-transfusion hepatitis B hypothesis was triggered by the jaundice that had
occurred in infancy and and a recent transfusion during caesarian section, the fact
that the serologies (for the various hepatitis B antigens and antibodies) were all
negative would most likely cause the hepatitis hypothesis to be ranked low, if at
all, in the differential diagnosis. This method, however, involves the exploration
of many solutions (and requests for information) that are irrelevant at a glance to
clinicians familiar with the disease chronology. Often, even if all the atemporal
information is available and is used, the expert system will be unable to make
distinctions for which temporal representation is necessary. It is apparent, then,
that providing expert systems with the capability to represent and reason about
the temporal course of disease permits a significant pruning of the dugnomc search
space—even at the hypothesis triggering phase.

Consequently, if a large-scale diagnostic program is endowed with the ability to

TThis criticism of MYOCIN may appear unfair since the system “backward-chains” from the hy-
potheses to the dats snd therefore the timing of the eveats caa be explicitly checked by querying
the user. There are several faws with this approach: (1) the user or data base must provide the
assertions. (2) in this form of backward-chaining, MYCIN would exhaustively ask questions of the
timing of events in each hypothesis considered. This is unacceptable if a patient history is to be
taken from a patisnt whose underlying problem is unknown-—-backward-chaining would then have
to be initiated from too many hypotheses. (3) if the rule is wsed in a forward-chaining mode, my
original claim, that the user has to take an active role in generating the differential diagnosis, holds.

$On purely atemporal grounds.
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support sophisticated temporal reasoning, its diagnostic style shows a greater degree
of focus; that is, a more relevant set and smaller number of diagnostic hypotheses
are considered.

‘How Much is Gained?

Let us put aside, for the moment, the reduction in the number of questions that a
more focused diagnostic style would bring to ask the following question: To what ex-
tent does the use of temporally sophisticated hypothesis evocation lead to improved
expert system performance?

One way I could show that the compntatmnﬂ savings are substantial would be
to pit THRIPHT against an expert system without the capability for temporal rea-
soning. Both systems would be presented with a set of run-of-the-mill cases that
a physician might see in the course of a week’s practice. The time that each ex-
pert system would require to reach a final diagnosis on this typical case-load would
provide statistical evidence of the relative performance of the two systems. This
method has not been tried because THRIPHT lacks a broad knowledge base and,
as mentioned before, the ranking (fifth) phase of diagnosis is only partially imple-
mented. Nonetheless, the scope of the reduction in computation can be conveyed
by considering the three following sets of high-prevalence findings.

1. Take the findings of a non-specific rash and bee-sting. Very many patient
histories will contain both of these events. There are many causes of a rash
but only a small percentage of these will be caused by a bee-sting. However,
if a medical expert system is unable to check whether the rash followed the
bee-sting by a few minutes, it will have to give further consideration to the
hypothesis of an allergic reaction secondary to a bee-sting in most, if not all,
histories which contain both findings.

2. Many women will lactate during the course of their lives. The vast majority
will do so towards the end of their pregnancy and during nursing. A physician
will not consider pathological causes of lactation, such as thyroid disease or
a pituitary adenoma, if the lactation occurs during these periods when it is
expected.’ However, a temporally incompetent expert system will have to

9Unless tlu diseases have progressed to the point where they are clinically manifest in ways othor
than lactation.
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further investigate all these cases thereby using additional computational and
clinical resources.

3. Many patients who are administered antihypertensive drugs will have rebound
rises in their blood pressure if they are weaned too quickly from their medica-
tion. This will occur when the therapy is either terminated or a different drug
is selected. The new medication might be given in insuficient dosage or lacks
efficacy for that patient. As there are many other causes for increased blood
pressure, unless the change in medication precedes the rise in blood pressure
by a specified period, it is a waste of computational and clinical resources to
devote more effort to a hypothesis based upon changes in antihypertensive
medication.

In general, many findings which are common in the general population are also
drug side-effects. Each drug has a characteristic delay between its administra-
tion and the effects/side-effects. If an expert system is able to represent this
delay and then match it against the timing in the patient history® then the
hypotheses of drug-induced effects need only be considered in a small fraction
of the prevalent cases of the findings.

These examples illustrate how historical items lose their specificity if they are
stripped of the description of their place in a characteristic chronology. At least
in medicine, precedence information alone is insufficient to adequately characterize
such chronologies and the quantitative timing information imparted by RRELs is
required.

Early Solutions

Developers of early AIM programs were cognisant of the need for some sort of tem-
poral representation for triggering hypotheses. The Present lliness Program(PIP)
[48] for instance was modified [55] so that features of hypothesis frames such as
causal and associational links could have a temporal qualifier. To this end, the
time-line was divided into five periods: PAST, RECENT-PAST, NOW, NEAR-FUTURE and
FUTURE. This enabled PIP to represent disease chronologies such as the development
of chronic glomerulonephritis (CGN) in the FUTURE from acute glomerulonephri-
tis (AGN) NOW. PIP could then automatically infer when features characteristic of

10And, if ﬁocuury, derive the necessary timing information from prior temporal assertions in the
patient history. '
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a hypothesis could be expected with respect to the present. Consequently, PIP
would not ask the user questions about features occurring during CGN if AGN was
hypothesized to occur NOV.

This ad hoc solution has limitations: a large number of disease states have to
be created,!!, calculations of relative temporal position lead to loss of temporal
precision,!? and quantitative temporal information, as opposed to simple ordering
information, cannot be represented or reasoned with in this manner. Other ap-
‘proaches have employed the precedence relations between causal antecedents and
consequents but, with branches in the causal chains, many inter-event temporal
relations are indeterminate.

THRIPHT'S approach

THRIPHT triggers take full advantage of TUP's richness of temporal expression. A
THRIPHT trigger can consist of any boolean combination of predicates, temporal or
atemporal. Hypotheses are triggered only if characteristic collections of signs and
symptoms are present and only if they are in a temporal configuration compatible
with the hypothesized disease. Example 18 illustrates part of the trigger for the
Hepatitis B hypothesis. This example roughly corresponds to “consider acute hep-
atitis B secondary to intravenous drug abuse if (in addition to the other criteria
not shown) jaundice has been manifested, intravenous drug abuse did not end be-
fore the previous seven months, and the onset of drug abuse preceded the onset of
jaundice by at least two months.”'® Observe that all predicates (by default) test
the REALITY context. Also, the trigger in example 18 has been written with the
relaxed version of the TUP predicates 50 as to make the trigger more sensitive (and
less specific).

Those TUP queries that employ the RelationToPresent retrieval form (see sec-
tion A.1.4) generate, as side-effects, additional assertions. So these will not clutter
up the patient history, a query context is created! for these side-effect assertions.

11 Egpecially if temporal distinctions, finer than the five pariods provided, are to be made.

134.g. If a clinical feature X is asserted to occur in the NEAR-FUTURR with respect to the AGN
hypothesis, MHAGN&MMMW&&MM,P@M:&W
if X would occur NO¥ or in the NRAR-PUTURE.

13The two and seven mounths refer to the minimum and maximum incubation times, respectively,
of the virus.

I4THRIPHT simply adds the context specification to the new points.
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The query-context shares with the REALITY context the assertions of the patient his-
tory. After the queries are completed the side-effects can be eliminated by ga.rbage-
collecting the contents of the query context.

Example 18

(AND

(BEFORE-NOW-BY-P
(NAME JAUNDICE) (TYPE BEGIN-INTERVAL))
+EPSILON) (+INFINITY))

(BEFORE-NOW-BY-P

(NAME IV-DRUG-ABUSE) (TYPE END-INTERVAL))

~INFINITY) (+7 MONTHS))

(BEFORE-BY-P

génm IV-DRUG-ABUSE) (TYPE BEGIN-INTERVAL))
NAME JAUNDICE) (TYPE BEGIN-INTERVAL))
+2 MONTHB) (+IKFINITY)))

Unstructured collections of triggers will tend to cause far too many hypothesis
triggers to be tested and then too many of these to be successfully activated. Several
schemes have been elaborated, the most successful of which has been to create
disease classification hierarchies so that only the relevant disease categories are
even considered for triggering. The scheme adopted for THRIPHT is a variant of the
one used in MDX [10] in which there is a community of specialist programs organized
in hierarchical fashion. In the MDX system, each specialist attempts to establish
or refine a diagnosis. THRIPHT instead uses the hierarchy to shrink the number of
hypothesis triggered and then considered for further diagnostic activity.

In general, each node in the hierarchy represents a category of pathophysiological
pathways (diseases) which should be considered if certain conditions (the trigger) are
satisfied. Each node really has three associated triggers: RULE-OUT, NECESSARY and
SUFFICIENT. If the conditions of the RULE-OUT trigger are satisfied, the hypothesis
is excluded from further consideration. In the current implementation, triggers
are categorical links between findings and hypotheses so that satisfaction of either
of the NECESSARY and SUFFICIENT triggers causes the active consideration of the
hypotheses with which they are associated.

Evaluation of triggers proceeds from the broadest categories to the more speuﬁc
Every time the trigger conditions of a node (pathophysiological hypothesis) in the
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Figure 3.1: Part of the Tangled Hierarchy of Triggers.
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tangled hiérarchy are satisfied, all the triggers of the specialized instances!® of that
node are evaluated to ascertain whether one or more of these narrower hypotheses
should be considered. This is repeated recursively until the most specialized nodes
have been triggered. Once this is achieved, only the pathophysiological hypothe-
ses at the most specializsed triggered nodes are processed in the next—hypothesis
elaboration—phase. :

Regarding the sample tangled hierarchy in figure 3.1, note that THRIPHT does
not compel the user to enter the jaundice as ADULT-JAUNDICE or INFANT-JAUKDICE
as many systems do.!® Rather than forcing the generation of many compound terms,
THRIPHT enables the knowledge enginesr to employ TUP predicates to test for the
temporal relation of findings (e.g. jaundice to age). These temporal relations may
have been directly asserted in the medical record or indirectly obtained from other
temporal relations by means of TUP’s inference mechanism.

3.3 Elaboration

Hypotheses that are triggered in the evocation phase are in fact collections of patho-
physiological pathways (see figure 2.15, page 47). What brings together these patho-
physiological pathways depends upon the classification principle used in the trigger
hierarchy. It may be that these pathways share clinical manifestations, share etiol-
ogy and/or share pathophysiological mechanisms. The purpose of this, the elabo-
ration phase, and the phases that follow, is to manipulate these pathophysiological
subhypotheses so that they may be distinguished from one another. The partic-
ular role of the elaboration phase is to separate each of these subhypotheses, as
diagrammed in figure 3.3. ’

Some of these subhypotheses are compatible with one another. In the hepatitis
B hypothesis there are subhypotheses with jaundice and with an immune response,
each of which can occur by themselves or together. Other courses, such as immediate
convalescence after the acute phase of hepatitis, and chronic active hepatitis are
by definition mutually exclusive. During the elaboration phase, the compatible
pathways (subhypotheses) are grouped together in classes of compatible hypotheses
whereas mutually exclusive subhypotheses are segregated into competing classes of

185.b. Daughter nodes trigger subsets of the diseases their parent(s) triggers. The daughter nodes
are therefore linked to their pareat(s) by AKO links.

16In those cases when at least some ad Aoc attempt is made to include temporal information.
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hypotheses.

3.3.1 Deﬁning Mutually Exclusive Courses

The exercise of representing the course of disease as an entity that progressively
changes over time makes it very clear that few dissases are truly mutually exclusive.
A program that does not represent disease chronclogy might represent matabolic
acidosis and metabolic alkalosis as mutually exclusive pathophysiological disease
states. However, a patient can have both, as in the case of the patient suffering from
aspirin intoxication, because the mutually exclusive events are not cotemporal. One
of the criteria for the mutual exclusivity of hypotheses is therefore the cotemporality
of mutually exclusive events. Dean’s [14] temporal ressoner is designed towards
detecting just such cotemporality. In practice however, determining cotemporality
of events in independent hypotheses is difficult. One problem is that each hypothesis
has to be anchored with respect to a shared point in time, such as the present, which
the hypotheses are not until instantiated as patiant models. Therefore it is a priors
almost!? impossible to rule-out the co-existence of two diseases, in one patient, just
because the two diseases contain mutually exclusive events. The only information
that we can obtain a priors is that some diseases might only very rarely occur in the
same patient. Obviously this does not have the same strength as asserting logical
contradiction.

Emwhmtwohypoth“mmchorodwithmputtotheprmt it is not
easy to determine if logically contradictory events are cotemporal unless the events
are tightly constrained. Otherwise, especially if the contradictory events are of brief
duration, the temporal information may be insufficiently constrained to determine
whether the two events are strictly cotemporal. _

Even if it can be determined that contradictory events are cotemporal, there
remains the problem of kesping the temporal reasoner free of domain-dependent
reasoning. In the general case, it will not work to simply permit the most recent
assertion to “clip® the duration of the earlier, opposing sssertion. What is needed
uadomm-dcpndmtmofwdu&ﬁngthard&tinhﬁdm.mﬁhﬁhoodof
the conflicting events.

The heuristic solution implemented in THRIPHET is one that is not satisfactory
in the general case. That is, ‘those event pairs that the knowledge engineer knows

17 Almost, becanse some dissases by definition cannot occur in the same lifstime as another disease,
as in the case of systemic lupus erythematosus and rheumatoid arthritis.
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to be always contradictory, or for which the probability of occurring in the same
patient is known to be very amall, are labeled as mutually exclusive in the THRIPHT

wuea.omnov‘ THRIPHT traverses the causal aggregation hierarchy to ensure that

all events in this hierarchy below the two explicitly contradictory events are also

marked as contradictory. It also labels all the causal consequents of each event to

be mutually exclusive. Even though this is an ad Aoe solution, it works in most
cases. Take, for example, two of the possible sequalae to Hepatitis B: the chronic
active state and the chronic carrier state. Although it is conceivable that in a single
lifetime, a patient might have both (but at different times), it might be a waste of
computational resources to consider this possibility.

A more principled solution would be to prune those combinations of hypotheses
calculated to be of low probability. Howsver, as TERIPHET is not equipped with the
capability to represent and reason probabilistically about events, this solution is
not available. Even if THRIPHT did have such a capability, it is doubtful whether
the probabilities for all the disease combinations would be available (see Ssolovits
and Pauker [58]).

3.3.2 Generating Contexts

For each class of compatible hypotheses, there is an associsted temporal context.
This context contains the defauit temporal constraints upon the component events
of these hypothesss. These consiraints are defanit ones in the sense that they
represent the bounds on the temporal relations for the entire subpopulation of
patients described by a particular hypothesis. In the case of any individual patient,
these bounds are usually further constrained. . _

amwuv.me.- Default Temporal Assertions

_ogﬂgnﬁgggww??g% THRIPRT
~ automatically asserts those temporal relationships that are obvious. For instance,
m each event in the knowledge base, a corresponding interval is asserted!® Also,
monégggﬁuikﬁagt;«ovgﬁa
onset of the effect. Similarly, the cnset of sach manifestation is asserted to be no
earlier than the onset of the pathephysiological event that it manifests. The clinical

??gigggglﬁgg% +00 between onset .
and end of the interval. . \
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manifestation of a causal antecedent many occasionally follow the manifestation
of a causal consequent and so prior assertions are not automatically made about
temporal relationships between manifestations.

Constraints Set by the Knowledge Engineer

THRIPHT permits the knowledge engineer to bind any number of temporal con-
straints to each event and between any two events in & hypothesis. These constraints
can be any assertional form known to TUP. Upon elaboration of a hypothesis, all
these temporal constraints are asserted so long as they constrain events within the
same compatible hypothesis class. THRIPHT appends the hypothesis class object to
each temporal assertion made so that the hypothesis class becomes the temporal
context of these assertions. As a result, each hypothesis class becomes paired with a
temporal context. This pairing demonstrates the separation between the temporal
and atemporal parts of each pathophysiological sub-hypothesis.

3.3.3 Generating Reference Sets

During the generation of temporal contexts, THRIPHT provides the information
that TUP uses to organize the events into reference sets. In the implementation,
the REFSET specification is appended to each point specified in each RREL prior to
assertion in a hypothesis context. The constraint propagation that follows is then
restricted to these reference sets. '

As discussed earlier, the causal aggregation hierarchy is used to determine refer-
ence set membership. First, the value of the NAME descriptor in a temporal assertion
is used to obtain the corresponding (event) node in the THRIPHT causal network.
All that is then required to obtain the reference set identification is to find the
node’s immediate causal aggregation. If the node belongs to more than one causal
aggregation, the corresponding time points will have multiple reference set mem-
berships.

3.4 Instantiation

The hypotheses elaborated from the composite hypotheses (that were triggered by
the patient findings) are not patient specific. Rather they represent shared char-
acteristics of patient populations with the hypothesized disease courses. It is only
when these hypotheses are modified with the information that was obtained from
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the patient (history) that the hypotheses become patient-specific. A hypothesis
modified with such patient information becomes a patient (specific) model.

3.4.1 Consequences of Constraining a Hypothesis Context

In the creation of a patient model, THRIPHT adds the RREL’s gathered in the patient
history to those of the temporal contexts paired to each hypothesis (hypothesis
context). TUP responds as usual to these additions (assertions) by propagating
the constraints through each of these contexts. The global constraint index of a
hypothesis context will be significantly decreased since the temporal relationships
between events in the patient history will be generally far more constrained than
the corresponding relationships in the kypothesis contexts.

Another consequence of constraint propagation during instantiation is that the
hypothesis contexts become anchored with respect to the present. All that is re-
quired is that there be at laast one RAEL in the patient history that relates an event
to the present or to the calendar.®

To illustrate, take but one RREL from the Hepatitis B chronic-active hypothesis as
in example 19. If the patient history includes the information of example 20, upon
instantiation the patient model will include the information that the inoculation
occurred four weeks ago and the onset of symptoms 50 to 180 days later (that TUP
will deduce to be approximately three to twenty-two wesks in the future).

Example 19

oan. (o8 postarion (e M IRV
50 M’!’l) (180 -DAYS)
CHRONIC-ACTIVE)

Example 20

(Rohtion‘fo?rtmt’ &mx Igoc(:guma; (TYPE BEGIN-INTERVAL))

19TUP uses the reak-time clock of the host system, by employing the CALENDAR reference system
(see section 2.1.2) to infer the position of points on the calendar with respect to the present.
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One important consequence of the constraint propagation during instantiation
is that the constzaints of the patient history may be found by TUP to be inconsistent
with those of the hypothesis context. Thus, even before the hypothesis evaluation
phase, some patient models may be dismissed because of temporal inconsistency.
In the last example, if the patient history were also to contain the information of
example 21, this would place the onset of symptoms within four weeks of inoc-
ulation which is inconsistent with the minimum time specified in the hypothesis
context (example 19). TUP’s constraint propagation mechanism would discover this
inconsistency upon assertion of the inconsistent RREL. This illustrates yet again
that providing medical expert systems with & sophisticated temporal utility can
greatly reduce the problem space that has to be searched—in this case by imme-
diately dismissing temporally inconsistent patient models. An AIM system not so
equipped would fail to recognise that the patient data of this last example was
inconsistent with the Hepatitis B hypothesis and would therefore go on to expend
needless computational effort in attempting to confirm or rule it out.

Example 21

(RelationToPresent
((NAME SYNPTOMATIC)
TYPE BEGIN-INTERVAL))
(2 DAYS; (3 DAYS)
REALITY

Multiple Findings, Multiple Event Instances

The process of discarding temporally inconsistent patient models goes a long way to
solving the problem of binding muitiple instances of findings in the patient history
to multiple occurrences of the same finding in a hypothesis context. To wit: in
chronic-active hepatitis there may be a febrile episode during the acute period after
inoculation and several episodes later during the chronic active phase. The patient
data may also contain reports of one or more episodes of fever. A medical expert
system not equipped with a temporal reasoner has to create a patient model for
each of the possible combinations of bindings of findings from the patient history
to events in the disease hypotheses. By employing a temporal reasoner such as
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TUP, discrépancies between the patient history and the hypothesis context®® are all
detected by the consistency check in the constraint propagation process. THRIPHT is
therefore able to discard all those binding configurations that are a priori temporally
untenable.

3.5 Ranking Patient Models

Ranking hypotheses in THRIPHT is roughly patterned after the examples of ABEL
and CADUCEUS, in that the process can be viewed as a repeating loop which has
three components: patient model evaluation, finding features of the patient mod-
els that makes them distinct from others—differentiation—and obtaining patient
information to exploit the distinguishing features. THRIPHT's use of temporal in-
formation in this phase, because it accentuates the differences between patient mod-
els, causes a more rapid convergence to a “correct” differential diagnosis. It also
qualitatively changes the diagnostic style of the expert system, as described in the
following sections. ' o

Unlike the four other phases described in this chapter, this phase has not been
fully implemented—the main issues involved in such an effort lie outside the scope
of the present research effort.

3.56.1 Evaluating Hypotheses

To evaluate a set of hypotheses is to assign a partial order to the members of this set
according to the degree of belief in the extent to which each hypothesis accurately
reflects reality—in this case the patient’s state of health. In the absence of temporal
reasoning, medical expert systems focus on scoring hypotheses based on the findings
that match events in the hypotheses and those unaccounted for in the hypotheses.
TUP, in addition, enables an evaluation of temporal consistency of each hypothesis
with the patient data every time the evaluation-differentiation-information loop is

sse¢ the range relation is devoid of probabilistic information, the global
constraint index of each hypothesis context cannot be also used by a rank scor-
ing function. That one patient model should have a more constrained hypothesis
context than another does not necessarily signify a better fit of patient data to hy-

| ”hmm,dm«podﬁonwithm to the present.
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pothesized pathophysiology. Therefore, other than the consistency check, temporal
information, as it is represented in TUP provides little help in calculating a rank
of a hypothesis. Note this does not prevent ranking the hypothesis on atemporal
features, as other AIM programs have done.

Information Gathering

Temporal “common sense” in information gathering is important. A medical expert
system does not inspire confidence when it requests information obtainable only in
the distant future. Nor does it make sense for such a system to repeatedly check
for the presence of an event that (to a human) is definitely in the past. THRIPHT
has the potential to avoid this sort of blunder because the hypothesis contexts
of the patient models are almost always anchored to the present. Consequently,
when some datum is to be obtained to distinguish one patient mode! form another,
THRIPHT can determine whether the information about the corresponding event is
in the past, straddles the present or is in the future. By judicious use of a few
heuristics, this knowledge can cause THRIPHT to exhibit temporal “common sense”
in its information seeking behavior. For example:

o Do not consider (not just defer) seeking information about events more distant
than m seconds in the future.

e Defer uckin; information about events more distant than n but closer than
m seconds in the future.

¢ If an event has a temporal relation to the present that has a lower bound that
places the event in the past and an upper bound that places it in the future,
be persistent about seeking information about this event.

e Do not aggressively and repetitively seek information about past events that
are reported to be unknown.

In diagnosing a jaundiced neonate, THRIPHT could then ask if the serum bilirubin
had fallen but would not ask if the patient’s liver had yet attained adult function.

3.56.2 Differentiating Between Patient Models

The differences found between patient models drives the diagnostic process in this
phase. These differences determine which patient data would be most eﬂective in
. further separating the scores of the patient models in the differential diagnosis.
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TUP’s temporal representation enables THRIPHT to distinguish between hypothe-
ses that differ in the order of events. For instance, the (traumatic) limb amputation
that leads to infection and the infection that leads to (therapeutic) limb amputa-
tion. Distinctions made between hypotheses that show the same ordering of events
but with quantitatively different temporal distribution are also frequently useful.
In neonatal jaundice, if the neonate has breast milk jaundice, the serum bilirubin
(pigment responsible for jaundics) concentration rises progressively from the fourth
day of life and reaches a maximum by 18 days of life. Jaundice due to maternal-
infant Rh incompatibility is clinically manifest in the first day of life. PhAysiologic
Jaundsce occurs after the first day of life but ends within a week of birth (in the full
term infant). Temporal representations such as TUP’s can capture these differences
in clinical course and expert systems such as THRIPHT can locate them, thereby
improving diagnostic acuity.

3.6 Annotated Example

In the preceding discussion, I have described the mechanisms of operation of the
individual pieces of the diagnostic engine. In contrast, the example below is meant
to provide a feel for how these various pieces it together in the process of diagnosing
a patient.

This annotated transcript describes user antries and THRIPHT’s response. Since,
during the course of my research, I purposely did not touch upon the issues of tem-
poral expression in natural language, TERIPHT lacks a “user-friendly” interface.
Therefore, the English rendering I have given of the dialog with THRIPHT, corre-
sponds to Lisp-forms intelligible to TUP and THRIPRT. Where appropriate, I show
the forms used and diagram some of the structures generated by THRIPHT.

The example is a fictitious episode in which a patient’s history is taken at 8
a.m., July 5th 1086. Items from the patient history are rendered in a sans serif type
style, THRIPHT's responses in bold type style and my comments in stalics.

Beginning of the date-gathering phase
0. The patient was 45 years old on July 1st. 1986.
Equivalently:
(RREL ((REFSYSFORM ‘‘45 YEARS OLD'’)
REFSYS Au;
TYPE POINT))
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((w-'svsronu *¢00:01 a.m., July ist, 1986'’)
(azrsvs LENDAR)
(TYPE -P

¥T)
(o SECOIDB) (¢)) SECONDS))

This assertion permits TUP to respond to gueries about the patient’s age now, or
at any other time, and with reapect to any other event.

1. The patient received a blood transfusion 9 to 12 weeks ago
Egusvalently:

(RelationToPresent (élm BLOOD-TRANSFUSION)
Il-xlmvu.))
(9 WEEKS) (12 WEEXS

The ezpansion of RelationToPresent is given on page £4. The (DATE) form in
- the ezpansion would evaluate to the current date and time: “8 a.m., July 5th 1986”

2. Onset of jaundice occurred 8 to 9 weeks after the transfusion.
Egusvalently:

(RREL ((NAME BLOOD-TRARSFUSION)
TYPE BECIN-INTERVAL))
((NAME JAUNDICE)
TYPE BEGIN-INTERVAL))
(8 WEEKS) (9 WEEKS))
3. The onset of jaundice was first manifest in the mormn;. between 8 and 10 o’clock
on June 5th, 1986

Egusvalently:

(RREL ((REFSYSFORM "8 a.m., June 5th, 1986")
BEPSYB AR) )
TYPE POINT)
( NMR JAUNDICE)
mn-zlmm.;)
(O SECGNDS) (2 BOURS)

Redundant data are proferred.

4. Inconsistent temporal information: statements 1., 2., and 3. are
inconsistent. Please withdraw one or more of the statements before
proceeding.
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TUP detects that the bounds are inconsistent. Statements 1. and 2. v)ould have the
jauud{u occurring as early as June 7th, and as recently as the present (July 5th,
1986). This is inconsistent with statement 3.

5.Statement 3. is incorrect. the onset of jaundice was first manifest at 8 o’clock, in
the morning, on June 28th, 1986

The RREL of statement 3. is withdrawn and the new RREL ss asserted with the
result shown in Figure 3.2.31

With this assertion the data-gathering phase ends, and the hypothesis evocation
phase begins. A paraphrase of THRIPHT s reasoning is only given when a condition
of a trigger is satisfied.

6. As the onset of jaundice has occurred, THRIPHT is considering
jaundice-associated syndromaes.

The topmost node in the THRIPHT s trigger Aierarchy, shown on page 78, has a
SUFFICIENT condition that is satisfied by the palient data:
(BEFORE-NOW-P |

( EIM JAUNDICE)
TYPE BEGII-‘IITI:RVAL) ))

This condstion brings up for consideration the next most general nodes whose
triggers assume that the patient history includes the onset of an episode of
Jaundice. This represents the effect of my decision that the ssolated assertion of
Jaundice in the future (i.c. speculation) will not cause active consideration of
Jaundice-associated syndromes.

7. As the age of the patient is greater than one year THRIPHT is
considering adult jaundice and has ruled out infant jaundice.

The adult jaundice trigger has a SUFPICIENT condition that is satisfied:

(AND - ,
(RREL ((REFSYSFORM "1 year old")
REFSYS AGE
TYPE POINT))
((NAME DUMMY-POINT)

311 the disease hypothesis for hapatitis B, the pareateral introduction of the infectious agent is
represented by INOCULATION rather than a BLOOD-TRANSFUSION. The transfusion events are con-
sequently substituted with inoculation events. Although this synonym matching could be done
automatically, in the carreat implemenatation, I have to provide the substitution.
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Figure 3.2: The Patient History
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(TYPE POINT))
(O _SECO¥DS) (O SECONDS))
(8-BEFORE-NO¥-P
((REFSYSFORM "1 year old")

525!‘8?8 AGE;
TYPE POINT))))

The first assertion is made to intern the 1 year old point so that TUP may then
perform the constraint propagation that wsll link that age to the calendar. Recall
that the assertions generated during THRIPHT gueries are in the query contezt and
can easily be flushed. |

The snfant jaundsce trigger has a RULE-OUT condition that is sdentical to that of
the SUFFICIENT condition of adult jaundice save for the substitution of
S-AFTER-NOW for 8-BEPORE-NOV.

8. As the transfusion preceded the jaundice, THRIPHT is considering -
PARENTERALLY-BORNE VIRAL HEEPATITIS. As time between the onset of
jaundice and transfusion is greater than two weeks, THRIPHT Is ruling
'~ out BLOOD-TYPE-INCONPATIBILITY.

The trigger for viral hepatitis caused by mmnﬁ’ inoeulation with the virus has,
as a sufficient condition, a check that the transfusion precedes jaundice. Although
instances have been reported, Aepatitis A infections infrequently occur as a result of
parenteral snoculation; the fecal-oral routs is more ecommon. Nonetheless, just as |
have omstted many Aypotheses that should be considered, I have included hepatitss
A for demonstration.

The blood-type incompatibility trigger has the following RULE-OUT condstion:

(BEFORE-BY-P
NAME TRANSFUSION) (TYPE BEGIN-INTERVAL))
IAIE JAUNDICR) ( BEGIN-INTERVAL))
2 WEEKS) (+INFINITY

Note that the above condition does not test the relation to the present since this
has been done by the JAUNDICE-ASSOCIATED SYNDROMES trigger.

9. As the transfusion preceded ths jaundice by more than two weeks
and less than 120 days, THRIPHT is considering ¥ON-A, NON-B HEPATITIS.
As the transfusion preceded the jaundice by more than 50 days and less
than 180 days, THRIPHT is considering EEPATITIS TYPE B. As the

23By means other than ingestion, usually intramuscular or intravenous injection.
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transfusion preceded the jaundice by more than 45 days, THRIPHT has
ruled-out HEPATITIS A. '

The three triggers have sufficient and rule-out conditions that test for the

respective delays between the onset of yaundice and the transfusion. Observe that it

~ 18 only the hypothesis of parenterally inoculated Aepatitis A that has been ruled out,
not all etiologies of hepatitis A. If this example were to be complete, I would show

“how another hepatitis A Aypothesis (with a different inoculation mechanism) was
triggered through another path down the trigger hicrarchy. '

As the hepatitis B and non-A,non-B hepatitis triggers are terminal nodes in the
trigger hierarchy, the hypotheses associated with these triggers are evoked and the
elaboration phase begins.?®

10. HEPATITIS TYPE B has been elaborated into three mutually exclusive
subhypotheses. NON-A, XOX-B HEPATITIS has been elaborated into three
mutually exclusive subhypotheses.

As illustrated in figure £.15 (page 47), the hepatitis B hypothesis has three
mutually contradictory courses. The first courss H, goes from acute disease to
resolution In the second course Hy the acute episode is followed by a period of
smoldering disease—chronic active. The third pathophysiological pathway Hy
includes clinical resolution with the maintenance of a chronic earrier state. In

- faet, there are more than three alternate courses® but these are not modeled.
Elaboration creates a separate class (as discussed on page 80) for each mutually
ezclusive hypothesis. The result is shown in Figure 3.3. ‘

To those readers who are wondering whether the entibody (anﬁ-HBc) to the
hepatitis B surface antigen (HBsAg) should not be mads mutually exclusive to the
chronic active or chronic pereistent courses, I point out that thare are cases where
the antibody Aas been detected sn these chronic courses but only when the HBsAg
antigen has not besn detected [43]. THRIPET s knowledge base reflects this by
asserting that the end of the period of detectable HBsAg precedes the beginning of
the period of detestable anis-HBs.

33 Again, for demonstration purposss, I have ignored hypotheses which should be considered, even
in the absence of additional data. A physician would, in this case, seriously consider the hypotheses
of chemical hepatitis.

e.g. Thodmnumnaum,mmcuu,mhmcnchmnkmnm
and there also is a chronic persistent state.
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_zox.?zol.u HEPATITIS |

Mutual exelusion

Causal link

Causal elaboration
(from aggregate to
eomponents)

Figure 3.4: Triggered hypothesis for non-A, non-B hepttitﬁ
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11. NON-A, NON-B VIRAL HEPATITIS has been elaborated into three
mutually exclusive subhypotheses.

The non-A, non-B hepatitis hypothesis has a ssimslar causal structure to hepatitis B
(Figure 8.4). At this level of detail, the only difference is that there are no antigens
or antibodies. None are modeled as the presumed agent has not been identified.

12. Now beginning instantiation of all subhypotheses...

For each of the mutually ezclusive subhypotheses, THRIPHT creates a temporal
contezt. The RRELs are linked to event descriptions®® and therefore RRELs attached
to mutually exclusive events are asserted in different contexts. For H,, the RRELs
assocsated with the events of the subhypothesis are listed in appendiz B.

Each point in each RREL is then given ons or more reference set memberships
which it shares with all svents that share the same causal aggregate(s). THRIPHT
then sends the RRELs to TUP to be asserted and thesr constraints propagated. The
result, for Hy is shown in Figure 3.5. Observe how SCH has taken the “chunking”
pattern of the causal aggregation hierarchy of the H, hypothesis and translated it
into reference sets. Clearly, the prodrome/acute-hepatitis reference set is the
largest with five intervals (10 points). The simmune response and wviral replication
reference sets would be of comparable sise sf I had modeled the many antigens and
antsbodies that are synthesized during an infection.

Subsequently, temporal assertions of the patient history are added to each context
and propagated. Note that since the events of the patient history are anchored with
respect to the present, the events of the instantiated hypotheses become anchored as
well. For instance, if the patient fits into H; population of patients with hepatitis
B, the end of jaundice can be expected from two weeks before to § weeks after the
present (the time when the history was taken).

This process is executed for all subhypotheses.
13. Now beginning hypothesis ranking...

The implementation of the last diagnostic phase is incomplete. Nevertheless,
given the instantiated hypotheses in this example, I will take the opportunity
to demonstrate that even when atemporal differences between hypotheses can be
found, they are often insufficient.

25 As implemented, RRELs are added to a hypothesis by using a mouse to “button” an event in a
graphical display of the causal graph and thea adding a TUP assertion to the temporal assertion slot
of that event node in the graph. .
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Figure 3.5: Instantiated Hypothesis Without Patient History
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To determine whether the present iliness was non-A, non-B hepatitis or hepati-
tis B it would be help THRIPHT to find out if and when HBsAG and/or anti-HBs
had been detected. To an expert sysiem, without TUP’s capabilities at hand, cor-
rectly posing the question and then interpreting the answer would be very difficuit.
Suppose both antigen and antibody had been detected. Whether this represented
a bout of hepatitis B prior to the present iliness or the resolution of the present
illness would depend on the timing with respect to the present of these events. The
HBsAg would have to be detected between one to two months after the transfusion
and the anti-HBs would have to be detected after the HBsAg.

So, mwh&aﬁndinghcpodﬁchmdhun,thotmponldmmnmay
bcnudodtointcpmtboﬂadh;::hlnaorm



4. Temporal Knowledge Base
Engineering

The capability for temporal reasoning significantly improves an expert system’s
performance: the number of hypotheses considered decreases dramatically (see
page 74), diagnostic style becomes more human-like, and greater finesse is achieved
in distinguishing between hypotheses. The cost of such an improvement is a much
larger effort in knowledge base engineering than required previously. The major part
of the effort arises not in the task of constructing the knowledge structures, but in
obtaining the required temporal information. In this chapter, I point out some of
the difficulties that a knowledge engineer will have in creating temporally-oriented
knowledge bases. I also discuss how I have dealt with these obstacles during my
experience in using THRIPHT. To illustrate some of the techniques used, I examine
(in section 4.4) an excerpt from a medical text and proceed to identify the temporal
information it contains.

4.1 Implicit “Common Senag”

It happens, not infrequently, that a neophyte knowledge engineer will set out to
represent a body of expertise, expecting that the domain knowledge will be found
in some documents used by the domain expert or used to train domain experts.
What she soon discovers, especially if the application is broad and realistic, is that
a large fraction of the knowledge needed to make the expert system emulate the
expert’s behavior is not to be found in any document. Nor will it be elaborated by
the expert at least during the first few attempts at debriefing, or protocol analysis.

4.1.1 “Common Sense” Temporal Knowledge

One of the reasons for this phenomenon is that there is a lot of “expert’s knowledge,
~ that is routinely needed for survival in the world, so commmonplace that we are rarely
conscious of our use of it. That an object should continue to exist even when it is not
perceptible to our senses, that there is a distinction between internal (intrapsychic)
events and events external to the individual are not inherently obvious concepts to

98
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an expert system or to a new-born child. To fail to acquire such knowledge of the
world is to fundamentally handicap performance. Due to its almost universal use,
such expertise is known as “commeon sense.” A large body of temporal knowledge
is common sense and is therefore difficult to identify and formalise.

In medicine, in addition to the common sense knowledge that most people share,
there is the basic medical knowledge that is acquired early in medical school edu-
cation and upon which further knowledge acquisition depends. In the professional
literature, the basic concepts are usually left implicit and therefore require that the
reader be sufficiently trained to understand the explicit information. There is no
surprise, then, if an expert system solely built from the information in a medical
reference book should fail to simulate a physician’s performance. This is also true
of the temporal component of medical knowledge. }

In a compendium of the infectious diseases, the duration of the incubation pe-
riod and the duration of the prodrome might be documented with the smplicst
understanding that the onset of the incubation period precedes the onset of the
disease prodrome. Similarly, in a discussion of the possible clinical courses of my-
mmmtmmwmmmwmubMMa
and hypoxemia may be omitted. _

The pervasiveness and volume of this implicit information means that for ev-
ery temporal relationship obtained from the domain expert or domain documenta-
tion, the knowledge engineer has to consider what additional temporal relationships
might be taken for granted and how such information is to be obtained.

4.2 Adberence to TUP Semantics

In chapter 2, I explained how strict adherence to TUP semantics was necessary if
TUP’s inferences were to be at all meaningful. I discuss here a few of the circum-
stances in which a knowledge engineer might be led into distorting these semantics.

4.2.1 RRELBounds

Gmtummmtdthetmpordcontntmamdkdknowkdubmpermm
more acute differentistion between hypotheses. In the construction of a knowledge
base, it is therefore generally desirable to assert RRELs with bounds that are as
constrained as possible. It is important however, not to-do so in contravention of
the RREL bound semantics. For instance, one can find in a medical text book that:
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Treatment [of Haemophslus ducreys infection] with tetracyclines or sul-
fonamides often results in healing in 2 weeks [24, page 215].

The temptation is to construct an RREL as in example 22 with an upper bound
of two weeks. Recall however that RREL bounds are the limits on the separation
between events within a hypothesis. If the bounds of temporal relations that are
“often” observed are asserted in TUP, all consequent temporal inferences no longer
have the expected meaning. It then becomes impossible to know what to make of
an inconsistency or in fact any temporal inference.

Enmple 22

(RREL illm MITIBIOTIC-TREAMIT) (TYPE BEGIN-INTERVAL))
NAME (‘"Pg END-INTERVAL))
+EPSILON (*2

Even if probabilistic information could be encoded in RRELs it is not clear how
this notion of “often” would be encoded. Instead, the knowledge engineer must
determine what the extreme values are for each of the bounds, in this case the max-
imum delay between onset of treatment and clinical cure. If these extreme values
cannot be obtained, and no safe estimate can be made, the knowledge engineer may
have to be satisfied with just encoding the precedence information (a lower bound
of +EPSILON and an upper bound of +INFINITY). This precedence information alone
will go a long way in helping to distinguish hypotheses. Also, as explained in chap-
ter 2, other constraints such as lifespan will cause all events with infinite bounds to
be considerably constrained after constraint propagation. As a result, instantiated
hypotheses—patient models—do not contain assertions that the patient will heal in
infinite time.! '

4.2.2 Loose Bounds and Alternate Contexts

TUP provides two ways of representing uncertain temporal knowledge. One way is
to assert a range within which the temporal relation must lie. The other way is
tomeﬂmcdlkm,ominmhmtmtowm&ﬂumtpmxble
ranges. Although it is not always clear-cut, there are some reliable guidelines by
which one can decide which method to use.

1This might be accurate only from a rather tasteless perspective.
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Setting bounds of a temporal relation is equivalent to asserting that no sub-
population of individuals can be identified within the larger population about which
more precise (or constrained) assertions could be made. If, however, such distinct
subpopulations are identified or at least known to exist, then the bounds particular
to each sub-population can be asserted in RRELs in alternate contexts. For example,
the delay between the onset of clinical hepatitis and the inoculation with virus,
might be some function of the host’s immune system activity, nutritional status
and numerous other constitutional factors. Until medical science discovers what
this function is, or identifies populations of patient with different incubation times,
all that can be said of the delay is that it is bounded by 50 to 180 days. The state
of knowledge is different for the duration of detectable serum Hepatitis B Surface
Antigen (HBsAg). Here, several distinct populations are known to exist and have
been identified. In the population of patients whose disease fully resolves, HBsAg
disappears approximately within a year of viral exposure. In those unfortunate
enough to develop chronic-active hepatitis, the HBsAg levels may persist for several
years. It is appropriate in this case to aseert an RREL for the duration of HBsAg in
each population, each in its respective context.? ~ )

Subpopulations of Temporal Percentiles

Contexts permit a limited representation of the a priors probabilities of bounds on
RRELs. They are of some use in those few occasions when systematic population-
wide studies have been made of the temporal progression of events in life and disease.
The Denver Developmental Screening Test (DDST) [18] is one such study. |

The DDST is designed to provide the pediatrician with a set of landmarks that
will permit the evaluation of the developmental progress of the child. The DDST
provides, for each behavior, the time by which 25%, 50%, 75% and 90% of the
population will have a reached the stage at which the behavior can be observed.
This information could be represented in THRIPHT by having a separate context for
each distinct percentile. There would then be a hypothesis for children falling in
the first quartile, second quartile, third quartile and so on. If a child was found to
begin to say “mama” or “dada” after 8} months, the percentile knowledge would
enable THRIPHT to determine that for that particular test of language, the child.
was in the slowest quartile.

31f this is not clear, consider that once a distinct sub-population is identified, it is a new hypothesis
unto iteelf and therefore requires its own patient modsel and associated temporal context.
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4.3 Volume of Relevant Information

After just a brief experience with temporal knowledge engineering, it becomes clear
that for every event/state in the atemporal knowledge base, there are very many
temporal relations that have to be encoded. One of the reasons for this is that the
global constraint index of a THRIPHT hypothesis has to be quite low to simulate the
temporal precision with which human beings distinguish between differing disease
chronologies. Usually, individual RRELs (before constraint propagation) have rela-
tively high constraint indexes, so that in practice the way to achieve a low global
constraint index is to aspert several RRELs between each event and the other events
in the hypothuunthatthouuamchmcofbopcrdbnmdconuquent
constraint propagation.?

Although intuition is often sufficient to determine whether the event positions in
a disease chronology have been sufficiently constrained, in practice the knowledge
engineer may be misled by common sense knowledge* and overlook some relations
that would significantly reduce the global constraint index. I have found in the
development of the THRIPHET knowledge bases that is it best to use TUP as an
interactive tool to determine if an adequate number of sufficiently constrained tem-
poral relations have been entered. TUP can demonstrate loop creation, measure
the global constraint index and verify whether the assertions have produced the

expected ordering of events in the hypothesis. o

4.4 Example

The example I have chosen to illustrate some of the techniques in temporal knowl-
edge acquisition has been taken verbatim from a widely used textbook of medicine
[22]. It is part of the description of the clinical manifestations of pinta—a skin
infection with a chronic course. The only modification of the textbook material is
the use of bold-face, italic fonts and underlining to identify different types of tem-
poral information. Underlining highlights events, italics denotc temporal cues and
boldface indicates alternate contexts.

The incubation period in experimental pinta is 7 to 21 days. In man,

the snitsal manifestation is a small papule developing by extension or
3Mhthmdmwmmumhhmmmm
“e.g. She may take for granted that virus incubation follows the inoculation.
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by coalescence with satellite lesions into a scaly maculopapular lesion.
There is regional lymphadenopathy. A generalised erythrosquamous
rash develops three to nine months after infection and can be of the
“wandering” type... One to thres years after the instial lesion, sizable
dyschromic macules develop. These late legions develop from secondary
pintides orindependently, and pass from glate blue through violet to
brown and white—the final achromic phase of the pathogenic process.

This is the clinical course of the population of individuals suffering from pinta.
This corresponds to THRIPHT’s composite hypotheses. Since only instantiated
hypotheses—patient models—contain events that actually happen to a specific in-
dividual, only a patient model can contain temporal relations with respect to the
present.® Consequently, in the above excerpt, there are no references to the present.

At first, the natural language equivalents to the events and temporal relations of
TUP might be surprising. In TUP’s representation, an event is any interval or point
in time that is identifiable or distinguished in some way from contiguous temporal
points or intervals. In this sense coalescence with satellite legions is as much an
event as the incubation period. Sometimes the references to events are elliptical; in
the example, the color glate blue is an ellipsis for “the period during which there
are slate blue skin lesions.” Care has to be taken to ensure that paraphrases of an
event (e.g. late lesions and sisable dyschromic macules) be either translated into
the same canonical event in TUP or that the paraphrased events be made temporally
equivalent.® The temporal cues are also not those one usually associates with the
specification of temporal position; nonetheless, initial, final as well as the verbs pass
and develops communicate much of the temporal information in the example.

It is apparent that the author of the text quoted above has made some (reason-
able) assumptions about the medical knowledge of the reader. The assumptions,
however, leave gaps in the temporal knowledge base that the unwary knowledge
engineer may mise or have difficulty with. For instance there is in the example the
statement that “There is regional lymphadenopathy.” To locate this event’s tempo-
ral position in the knowledge base requires additional (assumed) knowledge—that

5Even though this is uwsually the case, it is not sirictly true. A population hypothesis could
describe the relation between a clinical syndrome and a specific date (e.g. the high incidence of
Parkisonismn after the 1918 outbreak of influensa.) and TUP would compute the position of all
events in the hypothesis with respect to the pressat. ’

%i.¢., If the events are intervals, RRELs are asserted that make the onset and end of the paraphrases
simultaneous.
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lymphadenopathy will follow onset of infection. More than general medical knowl-
edge is needed to further constrain the temporal position of the lymphadenopathy,
but perhaps further constraint is unnecessary for the diagnostic task.”

4.5 Fi b&ﬂm wbmanob e Sets

We gnﬁ&iﬁtggssg t in & THRIPHT knowledge
base and which TUPcould then use to drive the generation of reference sets. At the
«ov.Bon t level, there is pinta which is an aggregate of all the possible pathophys-
iological courses of the disease. A level down, there are the major aggregates of
Fmoazon. generalizsed secondary (erythrosquamous) rash and the late-lesion phase.
We can go yet further and resolve the (acute and initial) infection aggregate into its
components: the incubation period, the initial papule, the extension or coalescence
with satellite lesions and the scaly maculopapular lesion. A similar decomposition
can be made for the other aggregates.

If the domain-dependent organising principle that TUP uses to generate reference
sets, reflects a natural decomposition, then the reference sets will have the property )

_ of usually Sugﬁazﬁggzw%gv&p_%gvg?
closely interrelated events of that domain.

In this example, the more constrained relations tend to occur between events
sharing the same reference set. In fact, in the example, events that share reference
sets are the only ones with aﬁ»mgg‘gi%?oggma

, and are therefore more constrained than the qualitatively ordered temporal relations
of events in separate reference sets. Specifically; the onset and end of incubation

share the same reference set: infection; the secondary rash and infection also share
the same reference set: Pinta; the late lesions and the infection also share the Pinta
reference set.®

"Perhaps becanse the duration of regional lymphadenopathy is sufficiently variable and not suf-
ggiegi%gtrég.

SNote however that in the example, it is the initial lesion (and not infection) that is explicitly
related to the late Jesioms. [ would argue that the anthor of the pinta article was referring to the lesion
as the manifestation of an otherwise clinically silant infoction and thevelore the two evenis in this
context could be takem to be synouymons. Furthermore, in comparison to the relation between the
initial and late lesions which is ou the order of years, the initisl lesion and infection are cotemporal.
Either synonymity or cotemporality would justify my substitusion. glg&%
the Salience Clustering Heuristic is not infallible, and this might be ome case where it has slipped
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Presumably, the purpose of a medical text is to sufficiently inform the clinician so
that he will have at least the minimum information required to make a diagnosis. In
this light, the fact that most temporal relations in the example are of the qualitative
ordering variety tells us that even relatively unconstrained temporal relations are
sufficient for much of the diagnostic task. Only those few relations that are critical
in differentiating one disease from other are given numerical bounds. Note that
most of the temporal qualifiers in this example only specify the ordering of the
onset of intervals, rather than the relative position of interval endings. This ‘may
be because the latter ordering provides less diagnostic mformataon o

4.6 Growth in the Number of Contexts

The bold-faced items in the example mark branches into alternate subhypotheses
and associated temporal contexts. At every such branch, the number of possible
contexts doubles. In the example, there are three branch points and, therefore,
eight contexts are required to represent the temporal relations of all the pounble
pathophysiological progressions.

Large hypotheses, such as I have developed for diseases like hepatitis B, will
obviously generate a very large number of contexts. For this reason, if real-time
performance is expected of the expert system, then the more likely subhypotheses
(and associated temporal contexts) would have to be heuristically selected.

4.7 Summary

The purposes for which this chapter was written include guidance and forewarning
in negotiating some of the difficulties of temporally sophisticated knowledge engi-
neering. I end the chapter by emphasising the forewarning., The example I have
used here is one small part of the available knowledge of a relatively uncomplicated
disease course. Full-fledged hypotheses, such as are required to diagnose diseases on
the order of the hepatitides or ischemic heart disease, are major endeavors requiring
at least double the effort of their atemporal versions. This effort arises not in the

up.

9Most probably because the duration and therefors ending of the various intervals is much more
variable, and therefore less specific, than their onset.
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entry of such knowledge but in identifying and acquiring the knowledge. The payoff,
of course, is quantitatively and qualitatively improved diagnostic performance.



e

5. Time In Human Cognition

Well into completing my work on TUP and THRIPHT, I became curious as to what
was known about the cognitive mechanisms that human beings might employ for
temporal reasoning. My interest was quite specific: I wished to see to what extent
the fundamental computational limitations of temporal reasoning that I had been
faced with in TUP’s development (e.g. the explosion of the number of poesible
temporal deductions) and the solutions I had found, (e.g. reference sets) had their
analogies in the human cognitive process. This is not to say that I had a literal-
minded expectation of an electrochemical equivalent of the RREL subject to waves of
constraint propagation spreading through neuronal networks. I was instead looking
for the manifestations of the generic problems associated with temporal reasoning.

There has been a significant effort made in cognitive science in the area of
temporal reasoning and representation. Much of it is contested even within:the
discipline. For instance, in attempting to define the attributes of information that
give us our notions of time, several hypotheses have been proposed with varying
degrees of success and amounts of supporting experimental evidence. Among these:
the amount of memory storage space occupied by an interval of time [44], the effort
required to retrieve the event [5] or the intrinsic order of the events represented [39)].

5.1 Extent of Temporal Computation

To obtain the temporal position of one event relative to another, all event relations
that are stored can potentially serve to derive this information. Only a few of
these relations will provide the most precise estimate of temporal position or one
sufficiently precise to be useful. To find these few useful temporal relations, a large
computational investment has to be made. This investment can be made when the
temporal dats is first accumulated (as in constraint propagation), upon retrieval
(as in search) or both (as implemented in TUP). Erickson [15] postulates that
in the process of responding to a temporal query, there are distinct subprocesses:
retrieving information from memory, coding order information and comparing the
retrieved order information with that in the query. Blankenship [3] argues that
“encoding information in long-term memory does not automatically incorporate
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information about when the storage' took place.” Order judgments may have to
be inferred using various context-dependent sequence rules. Michon and Jackson
[39] point out that there are several cues associated with events that permit the
retrieval of order such as causal antecedent/consequent relationships.

Regardless of when and how this computational investment occurs, it grows
rapidly with the amount of temporal information (number of events) stored. The
critical quantity of information beyond which the computational burden becomes
unacceptable depends on the reasoning mechanisms, the representation of temporal
information and the performance expected. I feel safe in hypothesising that this
critical quantity is less than the total amount of temporal information stored in
the human memory. That is, it would be extremaly surprising if the temporal
informatwnrmrdincuﬂmtl.toudinthebrﬁnmuudtodetermimthe
relative position of two particular events.

A survey of the cognitive science literature reveals ttrong evidence that sup-
ports the notion of local temporal reasoning contained within “chunked” groups -
of events. One line of evidence involves the relatively recent work on cognitive
streaming. When the human information processor has to simultaneously handle
an overwhelming amount of information, the information is split into several infor-
mation patierns—cognitive streams. Attention is rapidly switched between streams
to maintain an illusion of “real-time” continuity. Bregman [9] in his seminal work
on auditory streams provides strong support for the hypothesis that streaming oc-
curs in the auditory process. Among the factors that determine to which of the
streams auditory events are added, Bregman describes similarity of spectral com-
position. Moreover, he finds significant differences in the strength and accuracy of
the perception of ordering of auditory events in different streams as compared to
events in the same stream. Thatu.themnuyofthomﬁonoford«mgu
more accurate between events that are more closely related.

Michon and Jackson [39] have further investigated cognitive streams and the
recall of temporal ordering information as it is affected by event (word) catego-
rization. In their experiments an attempt was made to induce cognitive stream-
ing by presenting the subjects with large numbers of svents in a relatively short
period. Of particular interest, the experimental evidence sesms to demonstrate
that the separation of events into cognitive streams does in fact happen, but only
if the events are clonly related (what Michon and Jackson refer to as meaning-

1Ofm¢vontup¢nuodbythubjoccmml-ﬁnc In Blankenship’s experiments, the events
were jigsaw pussle tasks.
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fulness) which in these experiments, signifies shared word category membership.
Significantly, between-category ordering judgments are correct less frequently than
within-category ordering judgments. In a similar vein, Blankenship’s [3, page 40|
experiments show that pair order judgments are much more accurate, and arrived
at much faster, if the event pairs have a “context.”?

Although I cannot go any further than noting the analogy, it is at the very
least intriguing that TUP’s solution for managing the temporal relations between
large number of events is to group events together in reference sets. Temporal
“relations between events in different reference sets are not guaranteed to be consis-
tent and furthermore the performance gains expected from reference sets are only
accrued if the members of reference sets share some organising feature or salience—
meaningfuiness or “context.” '

One of the reasons to be careful in pushing the analogy any further than I
have already is that the human performance in temporal reasoning may be just a
epiphenomenon of the more general effacts of “chunking” observed in the memory
storage process.’ For example, Patterson, Maltser and Mandler [47] have shown
that shorter interresponse times (IRTs) occur between items in the same “chunk”
than between items in different chunks. The growth of the duration in between-
group IRTs depends upon the search mechanism used and is more controversial,
Pollio, Richards and Lucas [49] and Patterson et al. [47] for instance have devel-
oped a probabilistic search model to account for their observed exponential growth
of between-group IRTs with output pasition, whereas McCauley and Kellas [35]
observe a linear growth. It is because of these paraliels between the performance
characteristics of these general retrieval operations and those of temporal recall that
it is difficult to isolate the effects of the human temporal reasoning mechanisms.

In Blaskenship’s experiments, events with a context were jigsaw pussle solving tasks in “which
the subject saw progressively more and more [of the total pussie|®. The “non-context” pussle was
seen by the subject caly one segment at a timm.

SEvea 90, I cannot but point out that TUP's “chunking” of temporal relationships into reference
sets is also just a reflection of the mare genersl, atemporal “chunking” of the domain application,
be it THRIPHT's cansal hisrarchy, » X1-ONE classification hierarchy or a planner’s goal tres.
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5.2 Constraint from Background Temporal Infor-

mation

When THRIPHT instantiates a hypothesis so that it becomes a patient model, the
temporal relations in the patient history may constrain those of the pathophysiolog-
ical hypothesis and vice versa. This process represents a mapping of certain events
in the pathophysiological hypothesis to reported events in the patient history. If
the mapping is a correct one, then the temporal information from these two sources
may make reciprocal contributions to the knowledge of ordering/position of events
from each source. If a patient reports malaise and fever after a blood transfusion
(without stating how much earlier the transfusion occurred), if non-A, non-B hep-
atitis is one of the hypotheses considered, then the period* between malaise and
transfusion can be bounded between forty-five and sixty days. Most generally, if
TUP is given two different temporal sets of RREL’s, and then a few events from one
set are temporally associated to events in the other set, very often the relations of
both sets of RREL’s will be constrained if they are asserted in the same context.

A parallel phenomenon may have been observed in human subjects by Guenter
and Linton {21]. Subjects were shown sequences of unrelated pictures and then asked
to recall the temporal location of these pictures. If a recorded short story that bore
no relation to the pictures was provided simultaneously with the projection of the
pictures, temporal performance was improved. Guenter and Linton view the story
as having provided temporal tags for the pictures. My view, which is consistent
with Guenter and Linton’s interpretation, is that the set of story phrases had more
constrained® temporal relationships to one another than the pictures had between
each other. Consequently, the story line could constrain the temporal relationships
of the pictures, analogous to the manner in which the findings obtained from a
patient with hepatitis, constrains the temporal relations of the hepatitis hypothesis.

5.3 Relative Performance of Retrieval Tasks

Of all the temporal retrieval operations that TUP can perform, the one that requires
the least computational resources is the determination of the position of one point

4Only within that hypothesis.

S5Since the phrases were related to one another as part of a story line unlike the pictures that
were unrelated to ome another.
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in time relative to another. If the two points are in the same reference set, all that is
required is a direct retrieval of the one RREL that links the two points. If the points
are in different reference sets, a search is performed. The qualitative® equivalent of
the operation is known in the cognitive science literature as an order judgment.

The determination of which set of events occur between two time points is
performed by the TUP FINDBETWEEN function; the cognitive science equivalent is a
lag judgment. This function is considerably more expensive (for TUP) than range
relation retrieval as it involves determining the position of each of the events with
respect to the two time points.

An event’s ordinal position in a set of events can be obtained using TUP’s
FINDPOSITION—also known as a position judgment. It has about one and a half of
the cost of a FINDBETWEEN computation, as described in section 2.7.2.

This ranking of computational effort is neither inevitable nor necessary. If events
were represented by specifying, for each event, a list of those events that occurred
before it and those that occurred after it, then position judgment would require the
least effort (just counting how many events preceded a particular point in time).
Order would be next in computational expense—the point with the shorter “before”
list would be the earlier point. Lag would be most expensive (intersection of the
“after” list of the earlier point with the “before” list of the later point).

In the development of TUP the choice of temporal relationship for the primary
underlying representation, was determined by what I perceived to be the kind of
temporal information available (in the medical literature) and by the kind that was
most important and most frequently used in making temporal distinctions between
(medical) hypotheses. :

Experimental evidence points to the similarity in the ordering of difficulty of
these tasks in human beings to that in TUP. The work of Jackson and Michon (23],
for instance, shows ordering judgments to be less difficult than position and lag
judgments. Lag judgments also appear to require less time than position judgments.

Although teleological arguments are not very helpful in supporting hypotheses,
the coherence they provide is nonetheless satisfying. In this spirit, one could hypoth-
esise that the mechanisms developed through the biological, evolutionary process
would select those cognitive mechanisms that produce the best performance for the
kind of temporal reasoning that man most frequently performs. It might be then
that recogniging the ordering of event pairs is much more frequently necessary than

SQualitative only that the ordering but not temporal distance is measured.
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are lag judgments in going about the business of survival.

5.4 Summary

Artificial intelligence and cognitive science are sister disciplines. Although the
methodology and some of the goals may differ, there is a shared interest in the
mechanisms of cognition. However it is only in a limited number of areas, such
as vision, that the common interest has produced some synergistic interactions
with interesting results. My own brief survey of the literature of cognitive science
suggests that temporal reasoning is another area that may be ripe for the multidis-
ciplinary approach. In this chapter I touched upon analogies in the performance of
TUP and human beings. How this analogy in performance bears on similarities in
representation or reasoning mechanisms is not at all apparent, but suggests further
investigations to be pursued in this area. |



6. Conclusion

6.1 The Problem

Very early in my study of automated diagnostic systems and in particular medical
expert systems, it became rather obvious that a crucial component of the diag-
nostic armamentarium—disease chronology—was not accessible using the available
knowledge-engineering tools. As diseases are not static collections of signs, symp-
toms and pathophysiological states, but dynamic processes with specific temporal
patterns, such a deficiency appeared to be a fundamental obstacle to achieving
human-like style and human-like performance.

Without access to temporal information about the p;ticnt and temporal knowl-
edge of disease, expert systems consider hypotheses that account for the findings
but not in the particular order or temporal configuration observed. From the per-
spective of the human expert such an expert system asks questions that have no
apparent bearing on the patient’s condition. This reflects that, in the absence
of temporal information, many hypotheses are pursued that would be otherwise
quickly dismissed by a human expert, or temporally sophisticated expert system.
Even if the atemporal discrepancies between the patient data and the expert sys-
tem’s hypotheses eventually become gross enough to permit the exclusion of the
incorrect hypotheses, too many questions are asked und too much computational
resources are expended in doing so. :

Unnecessary generation of questions during an expert system’s performmce is
intrinsically undesirable. Many questions may require diagnostic procedures that
have their own cost—discomfort, morbidity, mortality and financial. Also, an expert
system that asks too many questions, most of which may seem unrelated to the
patient’s problem will be unacceptable to the health-care provider because of the
attention the system would demand and because such performance would engender
a lack of confidence in the diagnostic conclusions. Temporal knowledge by no means
eliminates all superfluous questions, but it does prune a large proportion of these.

Lack of temporal representation also implies a lack of a principled distinction
between past, present and future. For the diagnostic program, this again leads to the
generation of obviously unanswerable questiona, for instance regarding the distant
future. It also excludes the possibility of a temporally quantified prognosis. For the
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medical expert system which plans therapeutic interventions, lack of knowledge of
the position of events with respect to the present will lead to absurdities such as
making plans to modify the past.

The crux of expert system technology is the explicit representation of all the
knowledge that a human expert uses to perform. It is not surprising that in the
absence of an explicit representation of an aspect of human reasoning as ubiquitous
as temporal reasoning, the expert system should fail to consistently model expert
performance. This failure is not restricted to diagnostic and planning performance,
but extends to justification, explanation and outcome representation.

6.2 The Plan

In the current literature of knowledge-based systems, there is an almost ritualistic
paying of obeisance to the merit of temporal representation or the problems that
arise in its absence. In most cases, this is the extent of the concern with the
issue. Frequently, an ad Aoc solution will be described that works for a particular
application for most of the test cases. On the other end of the spectrum, a number of
coherent and principled temporal logics have been devised that usually provide little
guidance or assurance about the use of such systems in implementing the necessary
functionality (in Al systems that deal with real-world situations). The design and
implementation of TUP and THRIPHT was aimed at providing and demonstrating
this functionality without sacrificing generality.

While I developed the tools that would enable expert systems to perform tem-
poral reasoning, three major issues became apparent. The first is the task of sup-
porting the heterogeneity of temporal expression nesded for real-world applications.
My intent was to do so with a amall number of temporal primitives, manipulated by
a few temporal operators. Parsimony and simplicity in the underlying representa-
tion was emphasised because of the need for a well-understood, uniform method to
determine the combination of temporal assertions that produced the most precise
estimate of temporal location. The same simplicity would also permit temporal
consistency to be readily determined. '

The second issue or problem manifested itself in TUP’: initial trials. It was
apparent that the number of temporal deductions made in realistic applications
' made temporal reasoning pragmatically infeasible. The obvious solution was to
divide the temporal knowledge base into smaller, manageable pieces. The real
challenge lay in devising a method for temporal clustering what would minimize
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the loss of precision and consistency in Eo%mouunoﬁg without requiring a

~ large investment of effort on the part of the knowledge engineer.

" The _- t of the three issues and Egn—ogor&gnog was the inte-
nn tion of temporal reasoning into a medical expert system. It had to be determined

gvﬁ&é«o&mf&ig?%ggsggg
expert system. One of the themes that recurs in expert systems is that successful
system development depends on clear distinctions between the different types of
knowledge. Thus, in nﬁ?iﬂg ‘the operations of the inference engine are
encoded independently! and are distinct from the domain knowledge. For the same

reasons, it was apparent that temporal reasoning would have to be independent and

gg%i%% Such autonomy necessitated the |

a&?gggalﬁsggﬁsgg atem-
poral and temporal.? A skeletal second generation expert system—THRIPET—had
to be developed to investigate the way in which an autonomous temporal reasoner
14 ) ; «

6.3 The Outcome
Once the attempt was made, it was surprising just how clear a distinction th
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systems. ?ggﬂlggﬂgg was possible to

ggggg%Agvviﬂﬁng atemporal ‘

domain hypothesis represented. This distinction {iluminates some of the previous ef-
forts in knowledge-based systems. For exampls, in Riager and Grinberg’s [51] causal
representation for their “Commonsenss Algorithm®, several different relations were

identifled. Many of the relations were further categorised by the temporal re ES: )
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statechange... For the one shot form, A or T is required only momen-
tarily.

Ignoring the gating conditions® THRIPHT could model a continuous causal link
with a vanilla THRIPHT causal-link and the following constraints:

(RREL ((NAME A; (TYPE BEGIH-IHTBRVAL;)
((RANE 8) (TYPE BEGIN-INTERVAL)
(+EPSILON) (+INFINITY))

mn (aie 8 (e BV
O SECONDS) O SECONDS))

Similarly, a one shot causal link would be modeled with these temporal constraints:*

(RREL &HM A; (TYPE BEGII-IITBRVAL;)
NANE 8) (TYPE BEGIN-INTERVAL)
(+EPSILON) (+INFINITY))

(RREL ((NAME A; ﬁm END-INTERVAL))
((NAME A) (TYPE BEGIN-INTERVAL))
(0 SECONDS) O SECONDS))

The separation of the temporal representation from the causal representation
makes it feasible for THRIPHT to represent the full (infinite) range of possible tem-
poral configurations between cause and effect instead of restricting these to two
‘categories. Moreover, TUP frees the causal reasoner from the details of managing
temporal information by automatically performing those temporal inferences that
derive from any combination of cause-effect temporal relationships.

Those aspects of expert system reasoning that were found to be purely temporal
and domain-independent were gathered into a package of utilities—TUP. TUP builds
its representation on top of two object primitives, the point event and the range
relation. Intervals, points, qualitative and quantitative temporal relations, position
with respect to the present, common temporal yardsticks, persistence and alternate
temporal configurations are all supported by the TUP primitives. The simplicity of
the underlying representation makes it easy to determine the precision and consis-
tency of temporal information in the knowledge-base. It also enables TUP to readily

3These could be added to THRIPET’s causal links, but in any case their presence is not relevant
to the present discussion. ‘

‘In the second RREL, describing the duration of the action A, the seroes in the bounds could be
replaced by +¢ depending on the interpretation one wished to impose.
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retrieve the combination of temporal relations that is most precise in calculating
the temporal location of an event (with respect to another event).

TUP’s clustering scheme—reference sets—was arrived at somewhat serendipi-
tously. Examination of a sample temporal knowledge base revealed that clustering
that followed the performance criterion® would parallel the clustering of the atem-
poral portion of the domain knowledge base. In retrospect, the parallel between the
atemporal and temporal decomposition of the knowledge base is not surprising. As
explained in chapter 2, both types of clustering are driven by the need to establish
correspondence between “salience” or “relevance” and the structure of the knowl-
edge base 50 as to permit efficient access to the knowledge. THRIPHT illustrates how
the atemporal decomposition of the domain knowledge—causal aggregation—can be
used to automatically guide the temporal decomposition. It has since become clear
that the causal aggregation hierarchy is just one of the knowledge structures that
are available to guide temporal clustering. As previously discussed, the structure
of the frame-based systems, plans, the hybrid knowledge representation lmguages,
and process descriptions can serve the same purpose.

In addition to increasing the power of an expert system, temporal reuomng
considerably loosens the bonds that less expressive expert systems place on the
knowledge engineer. Temporal knowledge is so ubiquitous that to attempt to fit it
into an ad hoc representation of temporal sequencs is frustrating. Although TUP’s
general-purpose temporal representation eliminates this problem, it creates a new
obligation for the knowledge engineer—to go out and extract this same ubiquitous
temporal information.

6.4 Complications

TUP’s design and implementation addresses many of the issues in automated tem-
poral ressoning, with some notable exceptions. Of these the one I feel to be the
most important is the lack of an elegant and general utility for representing recur-
rent events. In the absence of such a utility, I have had to settle for a very limited
capability as described in section 2.9.2. Nonetheless, in the same section, I mention
some promising methods.

TUP’s temporal relation, the range relation is devoid of probabilistic information.
In many domain applications, systematic temporal probabilistic information is not

5i.e. The frequency of retrieval of individual temporal relations.
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available. This is fortunate because implementing the capability to reason with
probabilistic temporal information is a formidable task. The goals of generality and
robustness require, however, that the representation and reasoning mechanisms for
such a capability be eventually implemented.

6.5 The Prognosis

Early in the development of expert systems technology, it was recognized that ex-
plicit representation of domain-specific knowledge enabled the solution of a large
class of problems that were intractable using general purpose problem solvers. From
the initial realization that“In the knowledge lies the power” there has developed a
corollary axiom (or article of faith): the performance of an expert system is lim-
ited and brittle to the extent to which the knowledge representation compels the
knowledge engineer to distort the semantics of the domain knowledge. That is,
a representation language must mirror the semantics of the type of knowledge it
represents.

This is not only true of the expert system’s performance, but also of its de-
velopment and debugging. Consequently there has been a broad effort to create a
nosology of the different types of knowledge that an expert uses and therefore that
an expert system should explicitly represent. The study of the different types of
knowledge in an expert system has included: identifying and representing expert
system strategies [11]; explicitly representing the preferences that lead to the goal
structure of a decision-maker [63]; explicitly representing the causal aggregation
hierarchy of hypotheses [50,46], representing the domain principles that justify the
expert performance [54] and explicitly representing spatial relationships [37]. The
work that has led to this thesis has been similarly motivated. I have sought to iden-
tify that part of the knowledge base that involves temporal information and then
gone on to provide an autonomous utility for reasoning about it in a consistent and
principled manner. As temporal knowledge is ubiquitous, and particularly so in a
patient history, the need for such a capability is great. Nevertheless, like the other
types of reasoning just mentioned, temporal reasoning is necessary but not suffi-
cient. My goals will therefore have been well satisfied if the the knowledge gained
here becomes part of the knowledge engineer’s armamentarium for the development
of the next generation of expert systems.
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A. Tables and Summaries

A.1 Predicates and Retrieval Functions

Thelhtbclawmmmaﬁmthcmionuudtad-nﬁbothpndicﬁumdfuncﬁom. All
descriptions omit the context specification, which is an optional argument. All predicates are
shown in their relaxed versions. The strict vezsions include an “S-" prefix to the predicate
namse. '

e <p1>, <p2> and <point> are point specifications.

e <1b>, <ub> are lower and upper bounds respectively.

e <limit> is a single bound.

e <filter> is any combination of predicates that returns a boolean value.
o <scope> is a list of reference sets. o

e <point set>isa list of points.

e 7X and 7Y are TUP variables.

e <iat1> and <int2> are mtorvd specifications.

A.1.1 Predicates

e (BEFORE-P <p1> <p2>)
Is <p1> before <p2>?

o (AFTER-P <p1> <p2>)
Is <p1> after <p>?

o (BEFORE-BY-P <pi1> <p2> <1b> <ub>)
Is <p1> before <p2> by the specified amount?

o (AFTER-BY-P <p1> <p2> <1b> <udb>)
Is <p1> after <p2> by the specified amount?

e (WITHIN-P <p1> <p2> <limit>)
Is <p1> within the <limit> distance of <p2>?
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o (BEFORE-NOW-P <p1>)
Is <p1> mtho past?

o (AFTER-NOW-P <p1>)
Is <p1> in the future?

e (BEFORE-NOW-BY-P <p1> <1b> <ub>)
Is <p1> in the past in the specified range?

e (AFTER-NOW-BY-P <p1> <1b> <ub>)
Is <p1> in the future in the specified range?

A.1.2 Assertions

e (RREL <p1> <p2> <1b> <ub>)
Assert range relation between <p1> and <p2>.

e (ASSERT-INTERVAL <int1>)
Assert the end points of the interval with bounds of 0,+0c0.

e (INTREL <int1> <int2> <iaterval relation>)
Assert the two intervals with RRELs between the end points of the intervals corre-
sponding to the specified interval relation.

o (RelationToPresent <pi> <1b> <ub>)
Assert the RREL between <p1> and the present.

A.1.3 Point Functions

e (GETEVENT <pi> <filter>)
Obtain the point consistent with the <p1> specification if £11ter is true.

e (FINDBETWEEN <p1> <p2> <scope>)
Obtain the points between <p1> and <p2> that are in scope.

o (FINDPOSITION <point> <point set>)
Obtain the ordinal position of point in point set.

A.1.4 Relation Retrieval

e (RREL <p1> <p2> 7X ?7T7) '
Return the bounds on the RREL between <p1> and <p2> and also bind the returned

values to the TUP variables.




A.1. PREDICATES AND RETRIEVAL FUNCTIONS 121

e (INTREL <int1> <int2> 7X)
Return a list of interval relations which are consistent with the RRELs between int1
nnd int2. Also bind the returned list to the TUP variable.

o (RelationToPresent <p1> ?X ?Y)
Return the bounds on the RREL between <p1> and the current instance of NOW and
bind the returned value to the TUP variable. Every time this query is evaluated a
new instance of NOW is generated and its relationship to the current time, obtained
from the host computer real-time clock, is asserted. This side-effect is necessary for
an accurats answer.

e (LB-OF <p1> <p2>)
Rntumtholamrboundonthallll.botwnnq;bmdq»

e (UB-OF <p1> <p2>)
Return the upper bound on the RREL between <p1> and <p2>.
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A.2 Range Addition

The table below illustrates the rules of range addition for all the different values for the two
bounds. {,n and m can be any signed number of seconds. [ is distinguished in that it can
be any number other than sero.

First bound | Second bound Range Addition
te —e —e€ I the two bounds are lower bounds,
¢ if the two bounds are upper bounds.
+e€ | i
0 +e +€
0 —~€ ~€
+€ +€ +€
n m n+m
n +00 +o0
n —00 —00
—00 —00 ~—00
+o00 +o00 +00
+00 —oo —oo if the two bounds are Iqwer bounds,
+o0 if the two bounds are upper bounds.

Table A.1: Range Addition
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A.3 Interval to Range Relation Conversion

Interval Relation Equivalent RRELs

(INTREL
{?’”‘3 ‘;; RREL ((NANE A) (TYPE END-INTERVAL))
NAME B NANE BEGIN- INTERVAL)
BE¥ORE) f ismn.mv) INFINITY)) )
{
(INTREL | (RREL ((NAME A) (TYPE BEGIN-INTERVAL))
(uae an (NAME B) gml END- VAL))
NAME B -INFINITY) (-EPSILON
AFTER)
(INTREL (RREL ((mu A) (TYPE BEGIN-INTERVAL))
“mm A;g CNAME ; BEGIN- VAL))
NAME B A INIrYS CEroriom))
DURING)

uzt. NAME A rm _KND-INTERVAL))
( 2 (¢ Agm At ) ( ey
+EPSILON) (+mum))

Table A.2: Interval Relation To RREL Conversions
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Interval Relation || Equivalent RRELs
(INTREL (RREL ((NAME A) (TYPE BEGIN-INTERVAL))
NAME A ; 2( NAME B) (TYPE BEGIN-INTERV u.))
éoﬁﬁnﬁ +EPSILON) (+INFINITY))
RREL ((NAME A rm m- AL))
¢ E(uﬁ B) ( ;
~-INFINITY) (~mm))
INTREL RREL NAME A IYPE mn-x VAL))
(sémmtg (s(u(én) (rv)nﬁmxl- ;
¢ NANE gi +EPSILON) (omnm))
(RREL ((mu A) (TYPE END-INTERVAL))
2( %'(m: BRGIN-INTRRVAL))
-INFINI ILON))
(CNANE A) (TYPE EMD-INTERVAL))
AME B) (TYPE END-INTERVAL))
iomn.mn (+INFINITY))
(INTREL (RREL ((NAME A) (mx BEGIN-INTERVAL))
s NAME A;; i(mu B) (TYPE BEGIN-INTERVAL))
NAME B INFINITY) (-EPSILON))
OVERLAPPED-BY)

m (-
(n?. NAME 4) (TYPE llD*IlTl’VAL))
5 | ’ B) (T%Pé m
-INFINITY) (-EPSILON
((NAME A) (TYPE BEGIN-INTERVAL))

NANE B) (TYPE BEGIN-INTERVAL))

(
fm ILON) (+INFINITY))
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Interval Relation

Equivalent RRELs

" 1
STARTED-BY)

(RREL ((NAME A) (TYPE BEGIN-INTERVAL))
s(lwm B) (TYPE BEGIN-INTERVAL))
O SECONDS) (O SECONDS))

(nm ((l ) (TYPE END-INTERVAL))
2( TYPE RND-INTERVAL))
Iu!l) (+mnun))

(RREL ((IM A) (TYPE BEGIN-INTERVAL))
i(li ) (TYPE BEGIN-INTERVAL))
szcma) (0 8ECONDS))

RREL ((NAMK A) (TYPE END-INTERVAL))
(NAME B) ; m-umvu.))
~INFINITY (-mn.ot

o g (8 SR
i 0 SECONDS) (0 SECONDS)

(BI.EL ((MAME A) (TYPE BEGIN-INTERVAL))
2 ANE B) ( ~BEGIN-INTERVAL))
~INFINITY) (-mm)
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Interval Relation " Equivalent RRELs

(INTREL | n?. ((mm A) (TYPE m-rnmvu))
i ?mm A ; s mr. m-nt?w

NAME B
FINISHED-BY)
(nn. ((mn B) (TYPE BEGIN-INTERVAL))
{( (TYPE BRGIN-INTERVAL))
mrzu'm (-EPSILON))

(INTREL ((NAME A) (TYPE BEGIN-INTERVAL))

zélulﬁ: A ; 2 NAME B) (TYPE BEGIN-INTERVAL))
NAME B O SECONDS) (O SECONDS))
EQUALS)
s I et - Ty L)
2 ncom§ () s&u))

(INTREL (RREL ((NAME A) (TYPE END-INTERVAL))
((NAME A;; “’m B) (TYPE BEGIN-INTERVAL))
((NAME B 0 sEcowps) (0 )

18)

INTREL NAME A) (TYPE BEGIN-INTERVAL))

¢ s?mm A ; ¢ i m(é B) ('l%!'é END-INTERVAL))

nug)n ) (O SEcoWDs))
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A.4 Range Relation to Interval Relation Conver—

sion

RREL Assertion

Consistent

INTRELs

(RREL ((NANE A) (TYPE BEGIN-INTERVAL))
S(Hm B) (TYPE BEGIN-INTERVAL))
+EPSILON) (+INFINITY))

BEFORE OVERLAPS
MEETS CONTAINS

FINISHED-BY
STARTS
( ((MAME A) (TYPE BEQIN-INTERVAL)) STARIED-BY
(NAME B) (TYPE BEGIN-INTERVAL)) EQUAL
0 SECONDS) (O
_ AFTER _
(RREL ((RMME 4) (TYPE nxcu-xmw.)) OVERLAPPED-BY
(IO 3) (TTPE BEGIN-TNTERVAL)) MEETS FINISHES
BEFURE OVERLAPS
(RBEL (OMANE A) (TYPE BEGLE-INTERVAL)) NEETS
(QHAME B) (TTPE EKD-INTERVAL)) OVERLAPPED-BY
Eroron oy FINISHES BTARTS
FINISRED-BY
STARTED-BY
CONTAINS
CONTAINED-BY

Table A.3: RREL to Interval Relation Conversions
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RREL Assertion

Consistent INTRELs

(RREL ((NAME A) (TYPE BEGIN-INTERVAL))
2( NANE B) (TYPE END-INTERVAL))
O SECONDS) (O SECONDS))

EQUAL MET-BY

(RREL. ({NAME A) (TYPE mn-lmvu))
S(Nm B) (TYPE END-INTERVAL))
-INFINITY) (-EPSILON))

(RREL ((NAME A) (TYPE END- INTERVAL))
i(nm B) (TYPE BEGIN-INTERVAL))
+EPSILON) (+INFINITY))

EQUAL MEETS
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RREL Aassertion

Consistent INTRELs

(BREL ((NAME A) (TYPE END-INTERVAL))
(CEAE D) (TTPE BEGIN INTERVAL)
-INFINITY) (-EPSILON))

AFTER QVERLAPS
OVERLAPPED-BY
CONTAINS DURING
MET-BY EQUAL
FINISHES
FINISHED-BY
STARTS
STARTED-BY

(RREL ((NAME A) (TYPE END-INTERVAL))
s(lﬂl B) (TYPE ERD-INTERVAL))
+EPSILON) (+INFINITY))

BEFORE OVERLAPS
NEETS DURING
STARTS

EQUAL FINISHES

(RREL ((NAME A) (TYPE END-INTERVAL)) FINISEED-BY
(NAME B) (TYPE KND-INTERVAL))
0 SECONDS) (0 BECONDS))
CONTAINS
OVERLAPPED-BY
(RREL ((NAME A) (TYPE END-INTERVAL)) g

STARTED-BY



B. RRELs of the Annotated
Example

B.1 RRELs of a Subhy- (ss ((naux azcoveR)

(RREL

(RREL

(RREL

(RREL

(RREL

(RREL

TYPE BEGIN-INTERVAL))

pothesis of Hepati- CCTAPE ERD-IRTRRVAL

tis B

((NAME IROCULATION)
gml EGII-IITII.VAL))

(6 NINUTES ug (1 DAY% )

((NAME DECR-EEPATIC-FUNCTIOR)
TYPE BEGIN-INTERVAL
((NAME DECR-HEPATIC-FUNCTION)

TYPE END-INTERVAL)
(1 MONTHS) (6 MONTES))

((NAME HBSAG)

TYPE BEGIN-INTERVAL))
((NAME HBSAG)

(TYPE m—nmw.);
(1 MONTHS) (7 MONTHS))

NANE ANTI-HBS
(im: I“H&WVM))

TYP! l!g INTERVAL))
(+EPSILON) (+INFINITY))

o

(dPﬂILg‘ +INFINY ))

( llll! VI!AL IIPLIGA'!'IOI)

IM vmx.ng%x‘gnon
(1 IIJITM) (e mm;)

- (+EPSILON) (+mnrpm

INTERVAL))
((RAME ununs B)

(m’n&‘ %‘{urﬂ)

(RREL ((MAME JAUNDICE)
< PR SHIIEII}'RVAL))
TYPE KND-INTERVAL)
(] m) (4 vms;)

(RREL (ilm R!?ATITIB B)

(RREL ((NAME HBSAG)
( TYPR m-xg?)vu))
TYPE BEGIN-INTERVAL
(0 sECoNDs) (2 WEEXS )g)

(RREL ((MAME INOCULATION)
m Il nmvu.))

SRS M >

(RREL ((NANE DEATH
TYPE BEGIN-INTERVAL
((RAME BEPATITIS B)
TYPL END- INTERVAL))
(O SECONDS) (O SECONDS))

INTERVAL))

% EATITI! B) I EERvAL))
SECOMDS))

(RREL ((WAME INMOCULATION)
g'm: BEGIN-
(0 sEcowns) (0
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(BRREL

(RREL

(RREL

(RREL

(RREL

((NAME DEATH)
TYPE BEGIN-INTERVAL))
((NAME DEA
e

E¥D- VAL))
($INFINITY) (+DINFINITY))

i

NAME ’mx TION)
¢ % mu?‘ L))

e
(1 MONTES) (2 MONTRS)

((NAME ~BEPATIC-FUNCTION)
S g
e

; (*mmomurgtvﬂ”

(RREL

(RREL

(RREL

((NAME VIRAL-REPLICATION)

TYPR BEGIN-INTERVAL)
((MAME -

PR £
(+EPSILON) (411!1117“1.;
((NANE VM*ISPLIGATIO!)

TYPE BEGIR-INTERVAL))
((RANE

e - INTERVAL
(+EPSILON) (1 DAYS))

ilu m

(mwg ;omm

))

(RREL
(CAME HEPATITIS-B)
TYPR BRGIN-INTERVAL))

AN mmucun-muxus)
ITFE K- INTERVAL
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B.2 Notes on the RRELs

1. HBSAG and ANTI-EBS refer to detectable levels of the hepatitis B surface anti-
gen and antibody respectively.

2. IMMUNE-RESPONSE is an aggregate of the causally-connected set of events that
are part of the immune system’s response to the viral infection. For the
purpose of demonstration, I have not represented any of these component
events except for the ANTI-EBS in either the RRELs or in the atemporal causal
hypothesis.

B.3 Temporal Assertions from the Patient His-

tory

(RelationToPresent (ilﬂll inocuurmu)
TYPE BEGIN-INTERVAL))
(0 WEEKB) (12 WERXS))

(RREL ((NAME INOCULATION)
E BRGIN-INTERVAL))

((NAME JAUNDICE
TYPE mn-n';nvu.))
(8 WEEXS) (O WERKS))
(RREL ((REFBYSFORN ‘' ‘45 YEARS OLD’')
REFSYS AGE
TYPE POINT))
‘‘00:01 A.M., JULY 18T, 1086'°)

smm
TYPE POINT))
- (0 SECONDS) (O SECONDS))

(RREL ((NAME JAUNDICE) VAL))
((REPSYSPORM I‘Q:w A.M., JUNE 28TH, 1086'’)
(TeoE Pocary

(O SECONDS) (0 SEKCONDS))
B.4 Notes on the Assertions of the Patient His-
tory

1. In the disease hypothesis for hepatitis B, the parenteral introduction of the
infectious agent is represented as INOCULATION rather than a blood transfu-



B.4. NOTES ON THE ASSERTIONS OF THE PATIENT HISTORY 133
sion. Although this synonym matching could be done automatically, in the
current implementation I have to provide the substitution.

2. Observe, in Figure 3.2, that the CALENDAR mini-expert calculates the tem-
poral distance between the three date points. TUP’s constraint propagation
algorithm does the rest.



C. Abbreviations

Abbreviation Dtion

The Range Relation is the TUP primitive for representing the
temporal distance between two points.

The Reference Set restricts constraint propagation to those
points that share set membership.

Reference Systems are commonly used temporal “yardsticks”
such as the calendar, age, or stages in human development.
The Salience Clustering Heuristic exploits the correspondence
between the salience of information and its accessibility in
knowledge structures and the parallel between atemporal and
temporal salience to guide the automatic generation of refer-
ence sets.

| The Temporal Utility Package supports assertions and queries
to a data base of temporal information.

Temporal Hypothesis Reasoning In Patient History Taking: a
diagnostic medical expert system prototype built to demon-
strate the use of TUP.

Table C.1: Abbreviations

|

REFSET

REFSYS

SCH

TUP

THRIPHT

134
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