
LABORATORY FOR tt· MASSACHUSETTS
1 INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS{fR-390

DAT A REPLICATION IN
NESTED TRANSACTION

SYSTEMS

Kenneth J. Goldman

May 1987

515 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

l'ovf-ll·

Data Replication
•
Ill

Nested Transaction Systems

by

Kenneth J. Goldman
Sc.B., Brown University

(December, 1984)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE
IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1987

@Massachusetts Institute of Technology, 1987

Signature of Author--------------------------
Department of Electrical Engineering and Computer Science

May 6, 1987
Certified by-----------------------------

Nancy A. Lynch
Thesis Supervisor

Accepted by-----------------------------
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

Data Replication
.
1n

Nested Transaction Systems

by

Kenneth J. Goldman

Submitted to the
Department of Electrical Engineering and Computer Science

on May 6, 1987, in partial fulfillment of the requirements
for the Degree of

Master of Science in Computer Science

Abstract

3

Gifford's basic Quorum Consensus algorithm for data replication is generalized to ac­
commodate nested transactions and transaction failures (aborts). A formal description of
the generalized algorithm is presented using the new Lynch-Merritt input-output automa­
ton model for nested transaction systems. This formal description is used to construct a
complete (yet simple) proof of correctness that uses standard assertional techniques and
is based on a natural correctness condition. Nondeterminism is used in the algorithm de­
scription to yield a correctness proof that is independent of any particular programming
language or implementation. The presentation and proof treat issues of data replication
entirely separately from issues of concurrency control and recovery.

Keywords: data replication, nested transaction systems, input-output automata, models of
distributed computation.

Thesis supervisor: Nancy A. Lynch
Title: Ellen Swallow Richards Professor of Computer Science and Engineering

l___ ___ _

5

Acknowledgments

This thesis would not have been possible without all of the people who gave me help
and encouragement.

I am grateful to my advisor, Nancy Lynch, for suggesting this topic and for providing
many useful insights. I am also thankful for her patience in teaching me the importance of
rigor and detail, and for her careful reading of many drafts of this thesis.

The members of the Theory of Distributed Systems group, Brian Coan, Alan Fekete,
Mark Tuttle, and Jennifer Welch, were generous with their time in giving advice and tech­
nical help. In particular, I thank Alan Fekete and Jennifer Welch for their comments on
earlier drafts. Also, I would like to thank Bill Weihl and Sharon Perl for helpful discussions
during the early stages of this work.

My wife, Sally, has not only provided useful technical comments on this thesis, but also
has been an endless source of emotional support. Her understanding and encouragement
have contributed both to the quality of this project and to my pleasure in working on it.

This work was supported in part by the Office of Naval Research under Contract N00014-
85-K-0168, by the Office of Army Research under Contract DAAG29-84-K-0058, by the
National Science Foundation under Grants DCR-83-02391 and CCR-8611442, and by the
Defense Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125.

Kenneth Goldman was supported by an Office of Naval Research graduate fellowship.

Contents

1 Introduction

2 The Model

2.1 1/0 Automata and Systems

2.2 Nested Transaction Systems

2.3 Model Extensions for Replicated Data Systems

3 Fixed Quorum Consensus

3.1 Replicated Serial System .

3.2 Non-replicated Serial System

3.3 Correctness

3.4 Concurrent Replicated Systems

4 Reconfigurable Quorum Consensus

4.1 Reconfigurable Replicated Serial System

4.1.1 Data Managers

4.2

4.3

4.4

4.1.2 Coordinators

4.1.3 Transaction Managers

4.1.4 Spy Automata

4.1.5 Properties

Non-replicated Serial System

Correctness

Concurrent Replicated Systems

5 Conclusion

7

9

13

13

16

22

26

26

38

40

43

44

46

47
49

53

58

60

69

71

74

76

Chapter 1

Introduction

In distributed database systems, logical data items are often replicated in order to improve

availability, reliability and performance. Whenever replication is used, a replication algo­

rithm is required in order to ensure that the replication is transparent to the user programs.

In understanding replication algorithms, it is convenient to think of each logical data item

as being implemented by a collection of data managers (DMs) and transaction managers

(TMs). The DMs retain state information, and the collective state of the DMs defines the

current state of the logical data item. The user programs invoke TMs in order to read or

write the logical data item; the TMs accomplish this by physically accessing some subset

of the DMs.

One of the most well-known replication algorithms is Gifford's algorithm [Gi], which we

call Quorum Consensus. Based on Thomas [T], the ideas of this method underlie many

of the more recent and sophisticated replication techniques (e.g., [ASC,AT,ES,He]). In

Gifford's algorithm, each DM is assigned a certain number of votes and keeps as part of

its state a data value with an associated version number. Each logical data item x has an

associated configuration that consists of a pair of integers called read-quorum and write­

quorum. If v is the total number of votes assigned to DMs for x, then the configuration is

constrained so that read-quorum+ write-quorum> v. To read x, a TM collects the version­

numbers and values from enough DMs so that it has a read-quorum of votes; then it returns

the value associated with the highest version-number. To write x, a TM first collects the

9

10 CHAPTER 1. INTRODUCTION

version-numbers from enough DMs so that it has a read-quorum of votes; then, it writes its

value with a higher version number to a collection of DMs with a write-quorum of votes.

This method generalizes both the read-one/write-all and the read-majority /write-majority

algorithms.

Here, we adopt a slightly more general configuration strategy, which is justified by

Barbara and Garcia-Molina in [BaGa]: A configuration consists of a set of read-quorums

and a set of write-quorums. Each quorum is a set of DM names, and every read-quorum

must have a non-empty intersection with every write-quorum. To read a data item, a TM

accesses all the DMs in some read-quorum and chooses the value with the highest version

number. To write a data item, a TM first discovers the highest version number written so

far by accessing all the DMs in some read-quorum; then the TM increments that version

number by one and writes the new value and version number to all the DMs in some

write-quorum.

In this thesis, we generalize Gifford's algorithm in three fundamental ways. First, we

incorporate the concept of transaction nesting into the algorithm. Transaction nesting is

useful in its own right (for instance, as the basis of the distributed programming language

ARGUS [LHJLSW ,LiS,Mo, We]). In addition, it turns out that nested transactions provide

a useful way of understanding replication algorithms even if user transactions are not nested

(as in Gifford [Gi]). This is because the TM's themselves can be regarded as subtransactions

of the user transactions. Once one sees how to understand the algorithm in this way, it is

very natural to generalize the algorithm to allow nesting of user transactions as well. Second,

we extend the algorithm to accommodate transaction failures (aborts). Thus, for example,

an operation to access a logical data item can complete even if some of its associated DM

accesses abort. Finally, we provide a fully-developed version of the mechanism outlined by

Gifford for changing the read- and write-quorums dynamically. This capability, known as

reconfiguration, generally is used for coping with site or link failures. We obtain a single

algorithm that integrates all three generalizations.

We present our algorithm using the new framework of Lynch and Merritt [LM] for

modeling nested transaction concurrency control and recovery. For clarity, we present two

11

versions of the algorithm. In the first version, we assume that the configuration for each

data item is fixed and is known in advance to all the TMs that access that data item. The

second version includes the reconfiguration mechanism. The descriptions are clear, simple,

and unambiguous. A complete correctness proof is also included; it is short, natural, and

intuitive, yet completely rigorous.

An important reason for the simplicity of the proof is the fact that we are able to

separate the treatment of replication entirely from the treatment of concurrency control

and recovery. That is, we are able to consider the replication issues solely in the context of

serial systems. We prove that a system which includes the new replication algorithm and

which is serial at the level of the individual data copies "simulates" (in a strong sense) a

system which is serial at the level of the logical data items. In particular, it "looks the same"

to the user transactions. Since both systems involved in this simulation are serial systems,

the simulation proof is very simple, and is based on standard assertional techniques.

Of course, systems which are truly serial at the level of the data copies are of little

practical interest. However, previous work on nested transaction concurrency control and

recovery algorithms [Mo,R,LM,FLMW] has produced several interesting algorithms which

guarantee that a system appears to be serial, as far as the transactions can tell. Combining

any of these algorithms (at the copy level) with the new replication algorithm yields a

combined algorithm which appears to be non-replicated and serial (at the logical data item

level), as far as the user transactions can tell.

In fact, our results show that the replication algorithm can be combined with any

algorithm which guarantees "serializability" at the copy level, to yield a system which is

serializable at the logical item level. Thus, our work formalizes a frequently stated informal

claim that "quorum consensus works with any correct concurrency control algorithm. As

long as the algorithm produces serializable executions, quorum consensus will ensure that

the effect is just like an execution on a single copy database" [BHG].

The presentation and proof techniques presented here work so well that we expect they

will be of general use in simplifying the treatment of many other data replication algorithms

as well.

12 CHAPTER 1. INTRODUCTION

Related work, in addition to the papers already mentioned, includes some previous

attempts at rigorous presentation and proof of replicated data algorithms. Most notable

among these is the presentation and proof given by Bernstein, Hadzilacos, and Goodman

[BHG] of Gifford's basic algorithm. This work is based on serializability theory, a theory

which has made a significant contribution to the understanding of concurrency control.

This approach, however, does not appear to generalize easily to the case where nesting

and failures are allowed. Also, Herlihy [He] extends Gifford's algorithm to accommodate

abstract data types and offers a correctness proof. Again, nesting is not considered. This

thesis is part of a larger effort to unify the work in concurrency control and recovery, as

well as extend it to permit nesting [LM,FLMW ,HLMW].

The remainder of the thesis is organized as follows. In Chapter 2, we introduce the

computation model. Then, in Chapter 3, we describe the generalized version of Gifford's

algorithm without reconfiguration and prove its correctness. In Chapter 4, we expand on

these results to give the description and correctness proof of the complete algorithm (i.e.,

including reconfiguration). For both versions of the algorithm, we show that the correctness

of interesting non-serial replicated systems follows directly from these results. Chapter 5

contains a summary of our results and a brief discussion of possible further research.

Chapter 2

The Model

We use the I/O automaton model, due to Lynch-Merritt [LM] and Lynch-Tuttle [LT], as the

formal foundation for our work. We model components of a system by (possibly infinite­

state) nondeterministic automata that have operation names associated with their state

transitions. Communication among automata is described by identifying their operations.

We only prove properties of finite behavior, so a simple special case of the general model is

sufficient. Sections 2.1 and 2.2 provide a brief introduction to I/O automata and systems

that includes the definitions from [LM] and [LT] that are relevant to this work. Then, in

Section 2.3, we extend the model with some new definitions that are particularly useful for

modeling replicated data management algorithms.

2.1 1/0 Automata and Systems

The basic components of the model are 1/0 automata. An I/O automaton A has components

states(A), start(A), out(A), in(A), and steps(A). Here, states(A) is a set of states, of which

a subset start(A) is designated as the set of start states. The next two components are

disjoint sets: out(A) is the set of output operations, and in(A) is the set of input operations.

The union of these two sets is the set of operations of the automaton. Finally, steps(A) is

the transition relation of A, which is a set of triples of the form (s', 7r, s), where s' and s

are states, and 7r is an operation. This triple means that in state s', the automaton can

atomically perform operation 7r and change to state s. An element of the transition relation

13

14 CHAPTER 2. THE MODEL

is called a step of .A. If (s', 11", s) is a step of .A, we say that 11" is enabled in s'.

The output operations are intended to model the actions that are triggered by the

automaton itself, while the input operations model the actions that are triggered by the

environment of the automaton. We require the following condition, which says that an I/O

automaton must be prepared to receive any input operation at any time.

Input Condition: For each input operation 11" and each state s1
, there exist a state s and

a step (s', 11", s).

An execution of .A is a finite alternating sequence so, ?ri, si, 11"2, ... , Sn of states and opera­

tions of .A, where so is in start(.A) and each subsequence (si, ?ri+li Si+i) is in steps(.A). From

any execution, we can extract the schedule, which is the subsequence of the execution that

contains only the operations (e.g., ?ri, 11"2, ... , 11"n)· Because transitions to different states may

have the same operation, different executions may have the same schedule.

If S is any set of schedules (or property of schedules), then automaton .A is said to

preserve S provided that the following holds. If a = a 1
?r is any schedule of .A, where 11" is

an output operation and a' is in S, then a is in S. That is, .A is not the first to violate the

property described by S.

We model a system as a set of interacting components, each of which is an I/O automa­

ton. It is convenient and natural to view systems as I/O automata as well. Thus, we define

an operation that composes a set of I/O automata to yield a new I/O automaton.

A set of I/O automata may be composed to create a system S, provided that the sets of

output operations for the automata are disjoint. Thus, every output operation in S will be

triggered by exactly one component. The system S is itself an I/O automaton. A state of the

composed automaton is a tuple of states, one for each component, and the start states are

tuples consisting of start states of the components. The set of operations of S, ops(S), is the

union of the sets of operations of the component automata. The set of output operations of

S, out(S), is likewise the union of the sets of output operations of the component automata.

Finally, the set of input operations of S, in(S), is ops(S)- out(S), the set of operations of S

2.1. 1/0 AUTOMATA AND SYSTEMS 15

that are not output operations of S. The output operations of a system are intended to be

exactly those that are triggered by components of the system, while the input operations

of a system are those that are triggered by the system's environment.

The triple (s', :7r, s) is in the transition relation of S if and only if for each component

automaton A, one of the following two conditions holds. Either :7r is an operation of A,

and the projection of the step onto A is a step of A, or else :7r is not an operation of A,

and the state corresponding to A in tuple s' is identical to the state corresponding to A

in tuple s. Thus, each operation of the composed automaton is an operation of a subset

of the component automata. During the performance of an operation :7r of S, each of the

components which has operation :7r carries out the operation, while the remainder stay in

the same state. Again, the operation :7r is an output operation of the composition if it is the

output operation of a component - otherwise, :7r is an input operation of the composition.

An execution of a system is defined to be an execution of the composition of the automata

modeling the individual system components. If u is a sequence of operations of a system S

with component A, then ulA (read "u restricted to A") is the subsequence of u containing

exactly the operations of A. Clearly, if u is a schedule of S, then ulA is a schedule of A.

The following lemma, known as the Composition Lemma, expresses formally the notion

that an operation is under the control of the component of which it is an output.

Lemma 1 Let u' be a schedule of a system S, and let u = u 11r, where :7r is an output

operation of component A. If u I A is a schedule of A, then u is a schedule of S.

Proof: In [LM]. •

Let <T be a schedule of system S. We say that property P holds after u iff property P

holds for the final state of every execution of S whose schedule is u. We say that property

P holds forever after u iff property P holds for the final state of every execution of S whose

schedule has u as a prefix.

Let A be an automaton whose transition relation is restricted so that if (s1
, :7r, s1) and

(s1,1r,s2) are both in steps(A), then s1 = s2. If A has a unique initial state, then we say

that A is a state-deterministic automaton. That is, A is deterministic in the sense that its

state is a function of its schedule.

16 CHAPTER 2. THE MODEL

All of the automata that we define explicitly are state-deterministic. For such automata,

we will freely use the words "state s of A after schedule u" to denote the unique state of A

resulting from the execution of A whose schedule is u.

2.2 Nested Transaction Systems

To model nested transaction systems we use a system type, which is a tuple (T ,parent,O ,V).

T is the set of transaction names organized into a tree by the mapping parent:T ---+ T,

with To as the root. In referring to this tree, we use traditional terminology, such as

child, leaf, least common ancestor (lea), ancestor and descendant. (A transaction is its own

ancestor and descendant.) The leaves of T are called accesses. The set 0 is a partition of

the set of accesses, where each element (class) of the partition contains the accesses to a

particular object; each element of 0 denotes its corresponding object. Finally, V is the set

of values that may be returned by transactions. The tree structure is known in advance

by all the components of the system and can be thought of as a predefined naming scheme

for all possible transactions that might ever be invoked. In general, the tree is an infinite

structure, and only some of the transactions will take steps in any given execution.

The root transaction To plays a special role in this theory. The root models the envi­

ronment of the nested transaction system (the "external world") from which requests for

transactions originate and to which the results of these transactions are reported. Since

it has no parent, To may neither commit nor abort. The classical transactions of concur­

rency control theory (without nesting) appear in our model as the children of To. (In other

work on nested transactions, such as Argus, the children of To are often called "top-level"

transactions.) Even in the context of classical theory (with no additional nesting) it is

convenient to introduce the root transaction to model the environment in which the rest of

the transaction system runs, with operations that describe the invocation and return of the

classical transactions. It is natural to reason about To in the same way as about all of the

other transactions.

The internal nodes of the tree model transactions whose function is to create and manage

subtransactions, but not to access data directly. The only transactions which actually access

2.2. NESTED TRANSACTION SYSTEMS 17

data are the leaves of the transaction tree, and thus they are called "accesses". The partition

0 simply identifies those transactions which access the same object.

The systems we describe are serial systems. A serial system is the composition of a set of

I/O automata. This set contains a transaction for each internal node of the transaction tree,

a basic object for each element of 0, and a serial scheduler for the given system type. The

system primitives are the transaction automata and the basic objects; these describe user

programs and data, respectively. The serial scheduler controls communication between the

primitives, and thereby defines the allowable orders in which the primitives may take steps.

All three types of system components are modelled as I/O automata. These automata are

described below. (If Xis a basic object associated with an element X of the partition 0,

and Tis an access in X, we write TEaccesses(X) and say that "Tis an access to X" .)

Non-access Transactions: Transactions are modelled as I/O automata. In modeling

transactions, we consider it very important not to constrain them unnecessarily; thus, we

do not want to require that they be expressible as programs in any particular high-level

programming language. Modeling the transactions as I/O automata allows us to state

exactly the properties that are needed, without introducing unnecessary restrictions or

complicated semantics.

A non-access transaction T is modelled as an I/O automaton, with the following oper­

ations:

Input operations: CREATE(T)
COMMIT(T',v), where T'Echildren(T) and vE V
ABORT(T'), where T'Echildren(T)

Output operations: REQUEST-CREATE(T'), where T'Echildren(T)
REQUEST-COMMIT(T,v), where vE V

The CREATE input operation "wakes up" the transaction. The REQUEST-CREATE

output operation is a request by T to create a particular child transaction 1 . The COMMIT

1Note that there is no provision for T to pass information to its child in this request. In a programming
language, T might be permitted to pass parameter values to a subtransaction. Although this may be a
convenient descriptive aid, it is not necessary to include in it the underlying formal model. Instead, we
consider transactions that have different input parameters to be different transactions.

18 CHAPTER 2. THE MODEL

input operation reports to T the successful completion of one of its children, and returns

a value recording the results of that child's execution. The ABORT input operation re­

ports to T the unsuccessful completion of one of its children, without returning any other

information. We call COMMIT(T',v), for any v, and ABORT(T') return operations for

transaction T'. The REQUEST-COMMIT operation is an announcement by T that it has

finished its work, and includes a value for reporting the results of that work to its parent.

It is convenient to use two separate operations, REQUEST-CREATE and CREATE, to

describe what takes place when a subtransaction is activated. The REQUEST-CREATE

is an operation of the transaction's parent, while the actual CREATE takes place at the

subtransaction itself. In actual distributed systems such as Argus [LiS], this separation does

occur, and the distinction will be important in our results and proofs. Similar remarks hold

for the REQUEST-COMMIT and COMMIT operations, which occur at at transaction and

its parent, respectively.

We leave the executions of particular transaction automata largely unspecified; the

choice of which children to create, and what value to return, will depend on the particular

implementation. However, it is convenient to assume that schedules of transaction automata

obey certain syntactic constraints. Thus, transaction automata are required to preserve

well-formedness, as defined below.

We recursively define well-formedness for sequences of operations of a transaction T.

Namely, the empty schedule is well-formed. Also, if a= a 1
7r is a sequence of operations of

T, where 7r is a single operation, then a is well-formed provided that a' is well-formed, and

the following hold:

• If 7r is CREATE(T), then

1. there is no CREATE(T) in a'.

• If 7r is COMMIT(T',v) or ABORT(T') for a child T' of T, then

1. REQUEST-CREATE(T') appears in a' and

2. there is no return operation for T' in a'.

2.2. NESTED TRANSACTION SYSTEMS 19

• If 1r is REQUEST-CREATE(T') for a child T' of T, then

1. there is no REQUEST-CREATE(T') in a.1

2. there is no REQUEST-COMMIT for Tin a.1 and

3. CREATE(T) appears in a.1•

• If 11" is a REQUEST-COMMIT for T, then

1. there is no REQUEST-COMMIT for Tin a.1 and

2. CREATE(T) appears in a.'.

These restrictions are very basic; they simply say that a transaction is created at most

once, does not receive repeated (or conflicting) notification of the fates of its children, and

does not receive information about the fate of any child whose creation it has not requested.

Also, a transaction performs output operations neither before it is created nor after it has

requested to commit, and a transaction does not request the creation of any given child

more than once.

Except for these minimal conditions, there are no restrictions on allowable transaction

behavior. For example, the model allows a transaction to request to commit without dis­

covering the fate of all subtransactions whose creation it has requested. Also, a transaction

can request creation of new subtransactions at any time, without regard to its state of

knowledge about subtransactions whose creation it has previously requested. Particular

programming languages may choose to impose additional restrictions on transaction behav­

ior. (An example is Argus, which suspends activity in transactions until subtransactions

complete.) However, our results do not require such restrictions.

Basic Objects: Since access transactions model abstract operations on shared data ob­

jects, we associate a single I/O automaton with each object, rather than one with each

access. The operations of a basic object automaton X are the invocation and return opera­

tions of the its access transactions:

20

Input operations:
Output operations:

CHAPTER 2. THE MODEL

CREATE(T), for T E accesses(X)
REQUEST-COMMIT(T,v), for TE accesses(X) and v EV

Let a be a sequence of operations of basic object X. Then an access T to X is said to

be pending in a provided that there is a CREATE(T) but no REQUEST-COMMIT for T

ma.

It is convenient to require that schedules of basic objects satisfy certain syntactic con­

ditions. Thus, each basic object is required to preserve well-formedness, which is defined

recursively as follows.

The empty schedule is well-formed. If a = a' 7r is a sequence of operations of basic object

X, where 7r is a single operation, then a is well-formed provided that a' is well-formed, and

the following conditions hold.

• If 7r is CREATE(T) then

1. there is no CREATE(T) in a', and

2. there are no pending accesses in a'.

• If 1r is a REQUEST-COMMIT for T then

1. there is no REQUEST-COMMIT for Tin a', and

2. CREATE(T) appears in a'.

That is, the schedules of basic objects are restricted to consist of alternating CREATE

and REQUEST-COMMIT operations, starting with a CREATE, and with each (CREATE,

REQUEST-COMMIT) pair having the same access transaction, where each access transac­

tion has at most one CREATE.

Serial Scheduler: The serial scheduler is a fully specified automaton. The serial sched­

uler can choose nondeterministically to abort any transaction T after parent(T) has issued

a REQUEST-CREATE(T) operation, as long as T has not actually been created. Thus,

the "semantics" of an abort(T) operation are that T was never created. Furthermore, a

2.2. NESTED TRANSACTION SYSTEMS 21

transaction can only be created if (1) it has not already been created, (2) its parent has

requested its creation, and (3) all of its created siblings have returned. In other words,

the scheduler runs transactions according to a depth-first traversal of the transaction tree.

Finally, the scheduler cannot commit a transaction until all of the transaction's children

have returned. The formal definition of the serial scheduler, adapted from [LM,FLMW], is

as follows.

The state of the serial scheduler has components create-requested, created, commit­

requested, committed, aborted, and returned. Commit-requested is a set of (transac­

tion,value) pairs, and the rest are sets of transaction names. Initially, create-requested

= {To}, and the other sets are empty.

The steps of the transition relation for each automaton we define are exactly those triples

(s1
, 1r, s) satisfying the pre- and postconditions listed, where 1r is the indicated operation. If

a component of s is not mentioned in the postcondition, then it is taken to be the same in

s as ins'.

Input operations: REQUEST-CREATE(T)
REQUEST-COMMIT(T,v)

Output operations: CREATE(T)
COMMIT(T,v)
ABORT(T)

• REQUEST-CREATE(T)

Postcondition: create-requested(s) = create-requested(s') u {T}

• REQUEST-COMMIT(T,v)

Postcondition:

• CREATE(T)
Precondition:

Postcondition:

• COMMIT(T,v)

commit-requested(s) = commit-requested(s') U {(T,v)}

TE create-requested(s') - (created(s') U aborted(s'))
siblings(T) n created(s') ~ returned(s')
created(s) = created(s') U {T}

22

Precondition:

Postcondition:

• ABORT(T)
Precondition:

Postcondition:

(T,v) E commit-requested(s')
T ¢ returned(s')

CHAPTER 2. THE MODEL

children(T) n create-requested(s') ~ returned(s')
committed(s) = committed(s') U {(T,v)}
returned(s) = returned(s') U {T}

TE create-requested(s') - (created(s') U aborted(s'))
siblings(T) n created(s') ~ returned(s')
aborted(s) = aborted(s') U {T}
returned(s) = returned(s') U {T}

Let S be a serial system, and let a be a sequence of operations of S. We say that a is

well-formed iff its projection at every primitive is well-formed. If a is a schedule of S, then

a is a serial schedule. In [LM], it is shown that all serial schedules are well-formed.

Let S be a serial system, and let I be an arbitrary sequence of operations. We say that

I is serially correct with respect to S for transaction T provided that 1IT = alT for some

schedule a of S.

2.3 Model Extensions for Replicated Data Systems

In this section, we add to the model some definitions that are useful for formalizing and

understanding replicated data management algorithms.

In order to understand why these particular definitions are useful, it is helpful to keep

in mind the general proof strategy we use. As explained in Chapter 1, for each algorithm

considered we first construct a serial system in which database items are implemented

as multiple replicas, where access to the replicas is controlled by the replication algorithm.

Then, we construct a serial system (with the same user transactions) in which each database

item is implemented as a single replica. Finally, we prove that each user transaction2 in

the replicated system has the same execution as its corresponding transaction in the non­

replicated system.

2 For each system, we will define formally what is meant by a user transaction in terms of the system
type. In general, however, one may think of user transactions as all the non-access transactions that do not
model part of the replication algorithm. As a rule, user transactions are those transactions which we do not
describe with fully-specified automata.

2.3. MODEL EXTENSIONS FOR REPLICATED DATA SYSTEMS 23

We have already discussed serial systems and provided formal definitions for transac­

tions, accesses, and executions. However, in order to give a more precise meaning to the

above description of our proof strategy, we need formal definitions for "database item,''

"replica,'' and "corresponding transaction."

Logical Data Items: We refer to database items as "logical data items" to distinguish

them from their physical counterparts, the replicas.

A logical data item x is a variable, whose type is the tuple (Vz, i z). The set Vz is the

domain of possible values for x, and iz E Vz is the initial value of x. We require that a

special undefined value, nil, be an element of Vz, and that a special place-holder symbol,

l_, not be an element of Vz.

Read-write Objects: Each replica is modelled as a fully specified basic object called

a read-write object, where the domain and initial value depend upon the particular data

replication management algorithm and the type of the logical data item. Before we can

specify read-write object automata, we require the following definition.

If d and d' are data values from a domain DU {_l_}, then do d' is defined to be d if d'

is _l_, and d' otherwise. If t = (di, d2, ...) and t1 = (dL d~, ...) are tuples of the same type,

then we define tot' to be the tuple (d1 od~, d2 od~, ...). This operator allows us to overwrite

certain components of a tuple while leaving the other components unchanged.

We now define the concept of a read-write object with domain D and initial value d.

The state of a read-write object 0 with domain D with initial value d E D consists of

two components, active and data. The variable active (initially nil) holds the name of the

current access to 0. Data holds an element of D (initially d). Every read-write object has a

set of accesses, denoted accesses(O). Each access T to a read-write object has the attributes

kind(T) E {read,write} and data(T) E D. When kind(T) =write, data(T) is the data to

be written.

Input operations:
Output operations:

CREATE(T), where TE accesses(O)
REQUEST-COMMIT(T,v), where TE accesses(O)

24

• CREATE(T), for TE accesses(O)

Postcondition: active(s) = T

• REQUEST-COMMIT(T,v), for kind(T) = read
Precondition: active(s') = T

v = data(s')
Postcondition: active(s) = nil

CHAPTER 2. THE MODEL

• REQUEST-COMMIT(T,v), for kind(T) =write and data(T) = d
Precondition: active(s') = T

v =nil
Postcondition: data(s) = data(s') o d

active(s) = nil

A read-write object accepts read and write accesses. For read accesses, it returns the

value in the data component of its state. For write accesses, it applies the write value to

its data value using the o operator. For example, if its current data value is (a, b) and it

processes a write access with data (c, _L), the resulting data component of its state will be

(c, b).

If TEaccesses(O), we say that O(T)=O. That is, we use O(T) to denote the read-write

object to which T is an access.

Lemma 2 Read-write objects are basic objects.

Proof: It suffices to show that read-write objects preserve well-formedness of schedules.

Let 0 be a read-write object. Let a = a 17r be a schedule of 0, where 7r = REQUEST­

COMMIT(T,v), and assume that a' is well-formed. We must show that: (1) CREATE(T)

occurs in a', and (2) no REQUEST-COMMIT for T occurs in a'. These properties are

guaranteed by the use of the variable active. A precondition for REQUEST-COMMIT

for T is that active = T. Since only a CREATE(T) can cause active to equal T, part (1)

holds. Assume, for contradiction, that a REQUEST-COMMIT for T occurs in a'. By part

(1), the REQUEST-COMMIT for T must occur after a CREATE(T). A postcondition of

REQUEST-COMMIT for Tis that active= nil. Therefore, the state of 0 after a' has active

T, because well-formedness implies that a' contains at most one CREATE(T) operation.

2.3. MODEL EXTENSIONS FOR REPLICATED DATA SYSTEMS 25

However, if active f- T, then 7r (REQUEST-COMMIT for T) is not enabled in 0 after a.'.
But a.1

7r is a schedule of 0, giving us a contradiction. Thus, part (2) holds. •
Extensions of Systems: We want to define formally the notion of "corresponding trans­

actions" so that we can be precise in our comparisons of each pair of replicated and non­

replicated systems. That is, for certain pairs of systems, we would like a function that maps

each transaction of one system to some transaction in the other system. In order for this

function to be well-defined, we must impose certain restrictions on the system types of the

two systems.

Let S' and S be two systems with system types :E' and :E, respectively. System type :E'

is an extension of system type :E if the transaction tree of :E is a subgraph of the transaction

tree of :E' and both trees have the same root. If :E' is an extension of :E, then we say that

system S' is an extension of system S.

If system S' is an extension of system S, relating the transactions in the two systems

is easy. We define function Yss• : Ts ---+ Ts• to map transactions in S to their same-named

transactions in S'. The inverse, Ys•s, is a partial function unless S and S' have the same

transaction tree.

Configurations: As a final addition to the model, we introduce the following general

definitions, which are central to the algorithms we study.

Let S be any arbitrary set, and let Q be the power set 28 . We define configurations(S)

to be the set of all pairs of the form (r, w), where r, w ~ Q. (We sometimes refer tor and

w as sets of read-quorums and write-quorums, respectively.) The set legal(S) is defined

to be the set of all elements (r, w) of configurations(S) such that every element of r has a

non-empty intersection with every element of w.

We say that every element of configurations(S) is a configuration of S, and that every

element of legal(S) is a legal configuration of S.

Notation: We let N denote the set of non-negative integers (i.e., {0,1,2, ... }).

Chapter 3

Fixed Quorum Consensus

In this chapter, we formalize and prove the correctness of a generalized version of Gifford's

algorithm without reconfiguration, as described in the introduction. In Section 3.1, we

define system B, a replicated serial system that uses the fixed quorum consensus algorithm

to manage replicas, and prove some properties of its schedules. Then, in Section 3.2,

we define a corresponding non-replicated serial system, named system A. We prove the

correctness of the fixed quorum consensus algorithm in Section 3.3 by showing that system

B simulates system A in a strong sense. Finally, in Section 3.4, we show that non-serial

replicated systems are correct.

3.1 Replicated Serial System

The replicated serial system defined in this section is an ordinary serial system in which

certain logical data items are replicated. That is, they are implemented as several basic

objects (replicas), rather than just one. We impose a restriction on the transaction tree so

that all accesses to the replicas are the children of transaction manager automata (TMs),

which we define explicitly. The TMs model the Quorum Consensus algorithm itself. We

model the read and write operations of the algorithm by providing two kinds of TMs, read­

TMs and write-TMs. We place no restrictions on the remaining automata, except that they

preserve well-formedness. The system is formally defined as follows.

Fix I, a set of logical data items. We define system B to be a serial system of type

26

3.1. REPLICATED SERIAL SYSTEM 27

(T, parent, 0, V). For each element x of I, we define:

• dm(x), a subset of 0,

• acc(x), a subset of the accesses in T

• tm,.(x) and tmw(x), disjoint subsets of the non-accesses in T,

• config(x), a legal configuration of dm(x).

Let tm(x) = tm,.(x) U tmw(x). We require that acc(x) is exactly the set of all accesses

to objects in dm(x). In our replicated serial system, the replicas for x will be associated

with the members of dm(x), and the logical accesses to x will be managed by automata

associated with the members of tm(x). Since we want all accesses to replicas for x to be

controlled by the replication algorithm, we require that TE acc(x) iff parent(T)E tm(x).

Finally, for all pairs x, y E I, we require that dm(x) n dm(y) = 0.
We define the user transactions in B to be the set of non-access transactions in T that

are not in tm{ x) for all x E I. We refer to accesses in ace(x) for all x E I as replica accesses,

and to the remaining accesses in T as non-replica accesses.

Figure 3.1 provides an example of a possible transaction tree for system B.

In system B, each member of dm(x) has a corresponding data manager automaton {DM)

for x, each member of tm,.(x) has an associated read-TM automaton for x, and each member

of tmw(x) has an associated write-TM automaton for x. From the restrictions on the system

type, then, the members of acc(x) are the accesses to the DMs for x. Furthermore, the

accesses to DMs for x are exactly the children of the TMs for x. DMs and TMs for x are

described below.

Data Managers: The set of data managers for logical data item x models the set of

physical replicas of x. Each DM is a read-write object that keeps a version-number and a

value for x. The formal definition follows.

If xis a logical data item, a DM for xis a read-write object over domain Dz = N XVz with

initial data (0, iz). We refer to each member of Dz as a (version-number,value) pair. (For

28 CHAPTER 3. FIXED QUORUM CONSENSUS

Figure 3.1: A possible transaction tree for system B. Transactions are labeled as follows:
U = user transaction; TM= transaction manager; a, b = non-replica accesses; x1 = replica
access to replica 1 of logical data item x, etc.

vE Dz, we use the record notation v.version-number and v.value to refer to the components

of v.)

Lemma 3 DMs are basic objects.

Proof: Immediate from Lemma 2. •

Recall that we have restricted the system type of B so that accesses to DMs for x are

invoked only by TMs for x. We now define read-TMs and write-TMs for x.

3.1. REPLICATED SERIAL SYSTEM 29

Read TMs: Let x be a logical data item in 1. The purpose of a read-TM for x is to

perform a logical read access to x. A read-TM for x invokes read accesses to multiple DMs

for x. It then returns the "current" value of x, which it calculates from the information

returned by the read accesses. In Lemma 8, we show that read-TMs in system B do, in

fact, return the proper value of x. That is, a read-TM returns the value that would be

expected, given the sequence of logical write accesses to x that precedes its invocation.

A read-TM T for x has state components awake, data, requested, and read, where awake

is a boolean value, data is a value in the domain Dz, requested is a subset of acc(x), and

read is a subset of dm(x). Initially, data is (O,iz), awake is false, and requested and read

are both empty.

Note: Whenever an undefined variable (for example, q in the REQUEST-COMMIT

operation of the following automaton) appears in the pre- and/or postconditions for an

operation, then that variable has an implicit existential quantifier (i.e., there exists a q such

that ...).

Input operations: CREATE(T)
COMMIT(T',v), where T' E children(T) and v E Dz
ABORT(T'), where T' E children(T)

Output operations: REQUEST-CREATE(T'), where T' E children(T)
REQUEST-COMMIT(T,v), where v E Dz

• CREATE(T)

Postcondition: awake(s) = true

• REQUEST-CREATE(T'), where kind(T') =read
Precondition: awake(s') = true

T' rf_ requested(s')
Postcondition: requested(s) = requested(s') U {T'}

• COMMIT(T',v)
Postcondition:

• ABORT(T')

read(s) = read(s') U {O(T')}
if v.version-number > data(s').version-number then data(s) = v

Postcondition: (no change)

30

• REQUEST-COMMIT(T,v)
Precondition: awake(s') = true

q E config(x).r
q ~ read(s')

CHAPTER 3. FIXED QUORUM CONSENSUS

v = data(s').value
Postcondition: awake(s) = false

A read-TM collects data from some number of DMs for x, always keeping the data from

the DM with the highest version number seen so far. When a read-quorum of DMs has

been seen, the read-TM may request to commit and return its data.

It is interesting to note the extensive use of nondeterminism in this algorithm. For

example, the read-TM does not set out to access any particular read-quorum in the con­

figuration. Rather, the read-TM simply invokes any number of accesses to any of the DMs

until it happens to notice that COMMIT operations have been received from some read­

quorum of DMs. Also, since it is not necessary for correctness (as opposed to efficiency) for

the read-TM to remember which of its children have aborted, the ABORT(T') operation

has no postconditions.

The nondeterminism allows for greater generality of our results. However, one would

not want to implement read-TMs this loosely in a real system. For the sake of efficiency, one

would want to limit the number of accesses invoked by a read-TM. For example, one would

want the read-TM to invoke accesses with some particular read-quorum in mind. Also, one

would not want the read-TM to invoke an access to a DM from which it has already received

information. Similarly, one might not want the read-TM to invoke an access to a DM if

several previous accesses to that DM have aborted. The important point, however, is that

all of our results apply even if such heuristics are added. Our proofs depend only upon the

fact that all operations performed satisfy the preconditions and postconditions we define.

Write TMs: Let x be a logical data item in I. The purpose of a write-TM for x is

to perform a logical write access to x. The formal description of a write-TM automaton

follows.

A write-TM T for x has state components awake, data, read-requested, write-requested,

read and written, where awake is a boolean variable, data is an element of Dz, read-

3.1. REPLICATED SERIAL SYSTEM 31

requested and write-requested are subsets of acc(x), and read and written are subsets of

dm(x). Initially, data = (0, iz), awake is false, and the sets are empty. Every write-TM

T for x has an associated value value(T) E V:i:, the value to be written to the logical data

item.

Input operations: CREATE(T)
COMMIT(T',v), where T' E children(T) and vE Dz
ABORT(T'), where T' E children(T)

Output operations: REQUEST-CREATE(T'), where T' E children(T)
REQUEST-COMMIT(T,v), where v = nil

• CREATE(T)

Postcondition: awake(s) = true

• REQUEST-CREATE(T'), where kind(T') =read
Precondition: awake(s') = true

T' ¢. read-requested(s')
Postcondition: read-requested(s) = read-requested(s') U {T'}

• COMMIT(T',v), where kind(T') =read
Postcondition: if write-requested(s') = {} then

read(s) = read(s') U {O(T')}
if v.version-number > data(s').version-number then

data(s).version-number = v .version-number

• REQUEST-CREATE(T'), where kind(T') =write and data(T') = d
Precondition: awake(s') = true

q E config(x).r
q ~ read(s')
d = (data(s').version-number+l,value(T))
T' ¢. write-requested(s')

Postcondition: write-requested(s) = write-requested(s') U {T'}

• COMMIT(T',v), where kind(T') =write

Postcondition: written(s) = written(s') U {O(T')}

• ABORT(T')

Postcondition: (no change)

32

• REQUEST-COMMIT(T,v)
Precondition: awake= true

v =nil
q E config(x).w

q ~ written(s')
Postcondition: awake = false

CHAPTER 3. FIXED QUORUM CONSENSUS

A write-TM invokes read accesses to some number of DMs for x, keeping track of

the highest version number returned. Once information from a read-quorum of DMs has

been collected, the write-TM may begin invoking write accesses. (See the REQUEST­

CREATE(T') operation.) The version-number of each write access invoked is one greater

than the version-number in the data component of the write-TM's state, and the value of

each write access invoked is value(T). Once COMMIT operations have been received from

a write-quorum of DMs, the write-TM may request to commit.

It is possible that some read accesses to the DMs may not commit until after the write­

™ has already invoked one or more write accesses. Thus, some read accesses may actually

return the data that was written to the DMs on behalf of the write-TM itself. Therefore,

in order to prevent the write-TM from seeing the data it wrote and incorrectly increasing

its version-number, the COMMIT operation for read accesses is defined so that the state of

the write-TM is modified only if no write accesses have been invoked.

Our discussion of the nondeterminism in read-TMs also applies to write-TMs, as well

as to all other automata we define.

Lemma 4 TMs are transactions.

Proof: Let T be one of these automata. It suffices to show that T preserves well­

formedness. Let a = a 1
7f be a schedule of T where 'If is an output operation, and assume that

a' is well-formed. We need to show that: (1) CREATE(T) occurs in a', (2) no REQUEST­

COMMIT operation for T occurs in a', and (3) if 'If is a REQUEST-CREATE(T') operation,

then no REQUEST-CREATE(T') occurs in a'. By the definition of T, no output operation

can be issued if awake = false and only the CREATE operation can set awake to true.

Therefore, part (1) is true. Only the REQUEST-COMMIT operation can set awake to false

and by definition of well-formed schedule, a' can contain at most one CREATE operation.

3.1. REPLICATED SERIAL SYSTEM 33

(Once awake becomes false, it remains false forever.) Therefore, part (2) holds. Whenever

a REQUEST-CREATE(T') operation is performed, that fact is remembered permanently

in the state of T. A precondition for REQUEST-CREATE(T') is that T' has not previously

been created by T. Since T= parent(T'), only T may issue a REQUEST-CREATE(T')

operation. Therefore, part (3) holds. •
Lemma 5 Schedules of system B are well-formed.

Proof: By Lemmas 3 and 4, DMs are basic objects and TMs are transactions. Therefore,

system B is a serial system. In [LM], it is proved that all schedules of serial systems are

well-formed. •

The following definitions are useful for describing the logical accesses to the logical data

items in system B and for setting up inductive arguments about these logical accesses.

Access sequence: This definition formalizes the intuitive notion of a sequence of logical

accesses to x.

Let (3 be a sequence of operations of system B, and let x be a logical data item in I.

Then the access sequence of x in (3, denoted access(x, (3), is defined to be the subsequence of

(3 containing the CREATE and REQUEST-COMMIT operations for the members of tm(x).

Logical state: The following definition formalizes the intuitive notion of the "current

state" of a logical data item, the expected return value of a logical read.

Let (3 be a sequence of operations of system B, and let x be a logical data item

m I. The logical state of x after (3, denoted logical-state(x, (3), is defined to be either

value(T) if REQUEST-COMMIT(T,v) is the last REQUEST-COMMIT operation for a

write-TM in access(x, (3), or ix if no REQUEST-COMMIT operation for a write-TM occurs

in access (x, (3).

Current version number: Let (3 be a sequence of operations of system B, and let

x be a logical data item in I. Let last(x, (3) denote the subset of ace(x) such that for

each member T of last(x, (3), REQUEST-COMMIT for Tis the last REQUEST-COMMIT

34 CHAPTER 3. FIXED QUORUM CONSENSUS

operation for a write access to O(T) in {3. 1 The current version number of x after (3, denoted

current-vn(x, (3), is defined as follows. If last(x, (3) is non-empty, then current-vn(x, (3) is

the maximum over all TElast(x, (3) of data(T).version-number. Otherwise, current-vn(x, {3)

= 0.

Lemma 6 If f3 is a schedule of B and x is a logical data item in I, then access(x, (3)

begins with a CREATE operation for some TM in tm(x) and continues alternately with

REQUEST-COMMIT and CREATE operations for TMs in tm(x) such that each REQUEST­

COMMIT for Tis preceded immediately by a CREATE(T) operation.

Proof: By definition, access(x, (3) contains only CREATE and REQUEST-COMMIT

operations for TMs in tm(x). By Lemma 5, f3 is a well-formed schedule, so each REQUEST­

COMMIT for T must be preceded by a CREATE(T) operation. Finally, since f3 is a serial

schedule, all operations for a given transaction must be contiguous. •
Lemma 1 Let x be a logical data item, and let f3 be a schedule of B. Then the following

property holds after (3: The highest version number among the states of all DMs in dm(x)

is current-vn(x, (3).

Proof: Since DMs are read-write objects, the only operation that can change the

version-number in the state of a DM 0 for x is a REQUEST-COMMIT for T operation,

where O(T) = 0 and Tis a write access. More specifically, the version-number in the state

of a DM 0 after f3 is data(T).version-number, where REQUEST-COMMIT for T is the

last such REQUEST-COMMIT in (3. In the definition of current-vn(x, (3), the set last(x, (3)

contains the last write access for each DM in dm(x) that has a REQUEST-COMMIT for a

write access in (3. Therefore, the maximum over all TElast(x, [3) of data(T).version-number

is the highest version number among the states of all DMs in dm(x) after (3. This maximum

is exactly the definition of current-vn(x, (3). •

The following lemma is the key to the proof of Theorem 10. Condition 1 is only needed

for carrying through the inductive argument. The important part of the lemma is Con­

dition 2, which tells us that each read-TM returns the value expected as dictated by the
1 Note that the cardinality of last(x, .B) equals the number of DMs for x having write accesses that request

to commit in .B.

3.1. REPLICATED SERIAL SYSTEM 35

previous logical write operations. That is, each read-TM returns the logical-state of the

data item. Because the system is serial, we are able to carry out a simple inductive proof

using standard assertional techniques. In the proof of this lemma, as well as the proofs of

the remaining lemmas and theorems, we formally consider all details except the precondi­

tions and postconditions for the operations of the basic objects; because their behavior is

so simple, these operations receive only informal treatment.

Lemma 8 Let x be a logical data item in I. Let f3 be a schedule of B such that access(x, /3)
is of even length.

1. The following properties hold after /3:

(a) There exists a write-quorum q E config(x).w such that for all DMs 0 E q, if d is

the data component of 0, then a.version-number= current-vn(x, /3).

(b) For all DMs 0 E dm(x), if dis the data component of 0, then cl.version-number

= current-vn(x, /3) implies that a.value = logical-state(x, /3).

2. If /3 ends in REQUEST-COMMIT(T,v) with TE tmr(x), then v = logical-state(x, /3).

Proof: By induction on the length of {3.

Base case: Let /3 be the empty schedule. By definition, current-vn(x, /3) = 0 and logical­

state(x, /3) = iz. Initially, all DMs in dm(x) have version-number = 0 and value = iz by

the definition of a DM. Therefore, the states after f3 of all the DMs in every q E config(x).w

have version-number= current-vn(x, /3) and value= logical-state(x, /3). Thus, part 1 holds.

Since /3 is empty, it does not end in a REQUEST-COMMIT operation of a read-TM for x.

So, part 2 holds vacuously.

Induction: Let /3 = {31r, where access(x, r) begins with the last CREATE operation

m access(x, /3). Assume that the Lemma holds for {31
• By Lemma 6 and the fact that

access(x, /3) is of even length, access(x, r) = (CREATE(T I), REQUEST-COMMIT(T /,v I))

for some T1 E tm(x) and VJ E Vz. We note the following facts about T1:

Fact 1: All accesses in r to DMs in dm(x) are descendants of TI.

Proof: Since /3 is a serial schedule, Ti is the only TM in tm(x) whose descendants

36 CHAPTER 3. FIXED QUORUM CONSENSUS

have operations in r. Furthermore, the system type of B is constrained so that all

accesses to DMs in dm(x) are children of TMs in tm(x).

Fact 2: Let s be the state of TI after any prefix of {3. If read(s) is non-empty, then

data(s).version-number and data(s).value contain the highest version-number and as­

sociated value among the states of the DMs in read(s) after f:i'.
Proof: By definition, a DM 0 is added to the read component of TI only as

the result of a COMMIT(T',v') operation, where parent(T') = T f, T' is a read ac­

cess, O(T) = 0, and T1 has not invoked any prior REQUEST-CREATEs for write

accesses2 • Since (:i is well-formed, all such COMMIT(T' ,v') operations must occur in

r. By Fact 1, all accesses to 0 that take place in r are children of TI. Since TI invokes

no write accesses prior to the COMMIT(T',v') operation, the data components of the

DMs in dm(x) for the COMMIT(T',v') operation are the same as after {31
• Therefore,

v' is the data component of the state of 0 after f:i'. By definition, TI retains the

maximum version-number (and its associated value) among all the return values of

COMMIT for T' operations that result in O(T') being added to the read component.

Fact 9: Let s be the state of TI after any prefix of (:i. If read (s) contains some

read quorum r E config(x).r, then data(s).version-number = current-vn(x, {31
) and

data(s).value = logical-state(x, f:i').
Proof: By the induction hypothesis, there exists some write-quorum w E config(x).w

such that the states of all DMs in wafter {31 have version-number= current-vn(x,{3'),

and every DM with version-number current-vn(x, f:i') has value = logical-state(x, f:i').
By Lemma 7, current-vn(x, f:i') is the highest version number among all DMs in dm(x).

Since config(x) is a legal configuration of dm(x), r and w must have a non-empty in­

tersection. So, read(s) must contain at least one DM in w. Therefore, by Fact 2,

data(s).version-number = current-vn(x, f:i') and data(s).value = logical-state(x, f:i').

From Fact 1, we know that all accesses to DMs for x in r are children of T !· Therefore,

in order to prove that the induction hypothesis holds for (:i, we merely need to demonstrate

that TI preserves the properties stated. There are two possibilities for T 1:

2 This final condition is trivially true when TI is a read-TM.

3.1. REPLICATED SERIAL SYSTEM 37

• If T f is a read-TM, then logical-state(x, ,8) = logical-state(x, ,B') by definition. Also,

since T f invokes only read accesses, the version-number and value components of the

states of the DMs in dm(x) after ,8 are the same as after ,81
, and current-vn(x, ,8) =

current-vn(x, ,81
). Therefore, part 1 of the Lemma holds for ,8.

Let Sf be the state of Tf when Tf issues its REQUEST-COMMIT operation.

The preconditions for REQUEST-COMMIT require that read(sf) contain some read­

quorum r E config(x).r. Therefore, by Fact 3, data(sf).value = logical-state(x,,8'),

which equals logical-state(x,,8). By definition, Vf = data(sf).value, so part 2 of the

Lemma holds for ,8.

• If Tf is a write-TM, then logical-state(x,,8) = value(Tf) by definition. We note the

following fact about T f:

Fact 4: For all write accesses T' invoked by Tf, data(T') = (current-vn(x,,B')+l,

value(T f)).

Proof: Let Sw be the state of Tf when it issues REQUEST-CREATE(T').

By definition, data(T') = (data(sw).version-number+l,value(Tf)). The precon­

dition for the REQUEST-CREATE(T') operation requires that read(sw) con­

tain some read quorum q E config(x).r. Therefore, by Fact 3, data(sw).version­

number = current-vn(x, ,81
).

Let Sf be the state of Tf when Tf issues its REQUEST-COMMIT operation. The

preconditions for REQUEST-COMMIT require that written(sf) contain some write­

quorum w E config(x).w. Furthermore, no DM is added to the written component

of the state of T f unless a write access to that DM has committed to T f. So, r

must contain a REQUEST-COMMIT operation for a write access to each DM in w.

After a COMMIT of a write access T' to a DM, the data component of that DM is

equal to data(T'). Therefore, by Fact 4, the states after ,8 of all the DMs in w must

have value= value(Tf) and version-number = current-vn(x,,B')+l. (By Fact 1, Tf

is the only transaction that issues write accesses to DMs in dm(x) in T.) By Lemma

7, current-vn(x, ,B') is the highest version-number among the states of DMs in dm(x)

after ,B'. Since every write access in r to DMs in dm(x) has version-number= current-

38 CHAPTER 3. FIXED QUORUM CONSENSUS

vn(x, .8')+1, we know that this is the highest version-number among DMs in dm(x)

after ,8. That is, current-vn(x, .8')+1 = current-vn(x, ,8). Therefore, since value(T I)

= logical-state(x, .8), part 1 of the Lemma holds. Since TI is not a read-TM, .8 does

not end with a REQUEST-COMMIT of a read-TM for x, so part 2 holds vacuously.

Thus, the Lemma holds in both cases. •
3.2 Non-replicated Serial System

As the basis of our correctness condition, we define non-replicated serial system A of type

(TA,parentA,OA,VA) in terms of replicated serial system B of type (TB,parentB,OB,VB). 8

System A is identical to System B, except that logical accesses to objects in I (which are

implemented as TMs in system B) are implemented as accesses in system A, and the logical

data items in I (which are implemented as collections of DMs in system B) are implemented

as single read-write objects in system A. These changes are reflected in the system type,

which is formally defined as follows:

• TA= TB - (u acc(x))
zEJ

• parentA = parentB restricted to TA

• OA = OB - (LJ dm(x)) U {tm(x)lx E J}
zEJ

Informally, to construct the type of system A from that of system B, we first remove

from T all the accesses to the DMs for objects in I. As a result, all the TMs for objects in

I become leaves in T and are therefore accesses. Next, we remove from 0 all the DMs for

objects in 1. Also, we partition all the accesses that were formerly TMs according to their

logical data item. Each class of this partition is a new object in 0. Thus, each logical data

item is implemented by a single object.

3 We introduce the subscripts to distinguish the components of A from the components of B.

3.2. NON-REPLICATED SERIAL SYSTEM 39

Figure 3.2: The transaction tree for system A that corresponds to the transaction tree for
B shown in Figure 3.1. Transactions are labeled as follows:
U = user transaction; a, b, x, y = accesses.

Figure 3.2 illustrates the transaction tree for system A that corresponds to the transac­

tion tree for system B given in Figure 3.1.

We would like to relate transactions in system B to those in system A. Recall that the

function TAB is well-defined, provided that system B is an extension of system A. Thus,

we prove the following lemma.

Lemma 9 System B is an extension of system A.

Proof: We need to show that TA ~ TB and that TA has the same root as TB. Since

TA= TB - (LJ:z:Elacc(x)), we know that TA~ TB. Furthermore, TA and TB must have the

same root, unless the root of TB is in acc(x) for some x E J. However, every member of

acc(x) is a child of some member of tm(x), so no access in acc(x) for any x E 1 could be

40 CHAPTER 3. FIXED QUORUM CONSENSUS

the root of TB. •
We define user transactions in system A to be all non-access transactions in TA. We

note that Tis a user transaction in system B iff 1BA(T) is a user transaction in system A.

This is because if Tis a TM in system B, then 1BA(T) is an access transaction.

Transactions and objects in system A have the same corresponding automata as in

system B, except that for all x E J, the following hold:

1. The object corresponding to tm(x) is modelled as a read-write object 0 over domain

Vz with initial value iz. (We refer to this particular read-write object as O(x).)

2. For each transaction TE tm(x), 1BA(T) is an access to O(x) such that

(a) if Tis a read-TM, then 1BA(T) is a read access, and

(b) if Tis a write-TM, then 1BA(T) is a write access with data(1BA(T)) = value(T).

3.3 Correctness

In this section, we prove that system B is correct by showing that user transactions cannot

distinguish between replicated serial system B and non-replicated serial system A.

Theorem 10 Let (3 be a schedule of replicated serial system B. There exists a schedule a

of non-replicated serial system A such that the following two conditions hold.

1. For all objects 0 in system B that are not in dm(x) for any x, ajO = (3j0.

2. For all user transactions Tin system B, aj1BA(T) = (3jT.

Proof: We construct a by removing from (3 all the REQUEST-CREATE(T), CRE­

ATE(T), REQUEST-COMMIT(T,v), COMMIT(T,v), and ABORT(T) operations for all

transactions T in acc(x) for all x E J. Clearly, the two conditions hold. What needs to be

proved is that a is a schedule of A. We proceed by induction on the length of (3.

Base case: Suppose (3 is empty. Then a is also empty and is therefore a schedule of A.

Induction: Let (3 = {311rf3, where the claim holds for {31
• Let a= ci'lra, where a' is the

schedule of A corresponding to (31
• There are five cases for 'lrf3·

3.3. CORRECTNESS 41

1. Invocations, Operations, and Returns of Replica Accesses: If 7rp is a REQUEST­

CREATE(T), CREATE(T), REQUEST-COMMIT(T,v), COMMIT(T,v), or ABORT(T)

operation where T is in acc(x) and x E I, then by the construction 'Ira is empty.

Therefore, a is the same as a', which is a schedule of A.

2. REQUEST-COMMITs for Non-Replica Accesses: If 1rf3 is a REQUEST-COMMIT

for a non-replica access T, then by the construction 'Ira = 1r13. By Part 1 of the in­

duction hypothesis, a'IO = ,B'IO. Since 0 is modelled by the same automaton in both

systems A and B, the states of 0 after a' and after ,81 are the same. Furthermore,

1BA(T) is modelled by the same automaton as T. Therefore, since the preconditions

for 1r /3 are satisfied in the state of T after ,81
, they must also be satisfied in the state of

1BA(T) after a1
• Therefore al1BA(T) is a schedule of 1BA(T). So, by the Composition

Lemma (Lemma 1), a is a schedule of A.

3. Output Operations of User Transactions: If 'lrf3 is an output operation of some

user transaction T, then by the construction 'Ira = 7rp. By Part 2 of the induction

hypothesis, a'l1BA(T) = ,B'l(T). Furthermore, 1BA(T) is modelled by the same au­

tomaton as T. Therefore, since the preconditions for 1rf3 are satisfied in the state of

T after ,8', they must also be satisfied in the state of 1BA(T) after a'. Therefore,

al1BA(T) is a schedule of 1BA(T). So, by the Composition Lemma, a is a schedule of

A.

4. Output Operations of TMs (except those already covered by Case 1): If 'lrf3 is a

REQUEST-COMMIT(T,v), where TE tm(x) for some x EI, then by the construc­

tion 'Ira = 1rp. By the definition of system A, 1BA(T) is an access to a read-write

object. The only precondition for a REQUEST-COMMIT of T, then, is that T has

been created. By the construction and the fact that ,8 is a well-formed schedule, CRE­

ATE(T) occurs in a'. Therefore, the precondition for REQUEST-COMMIT(T,v') is

satisfied in A for some v'.

If T is a write-TM, then v = v' = nil. We need to show that v = v' if T is

a read-TM. By Lemma 8, we know that v = logical-state(x, ,B'). By definition of a

read-write object, v' is the value in the state of O(x) after a'. We observe that, by

42 CHAPTER 3. FIXED QUORUM CONSENSUS

the construction, a'IO(x) = access(x,,8'). So, by definition of system A, the last write

access in a' to O(x) has the same value as the last write-TM in ,8'. Hence, the value

in the state of O(x) after a' is logical-state(x,,8'). Therefore, v = v'. (If there is no

write-TM in access(x, ,8'), then there are no write accesses to O(x) in a'. In this case,

the value in the state of O(x) after a' is iz, which is logical-state(x,,8').)

5. Output Operations of the Scheduler (except those already covered by Case 1):

If 7rp is a CREATE(T), a COMMIT for T, or an ABORT(T), where T is a user

transaction, T is a non-replica access, or T E tm(x) for some x E I, then by the

construction 7r a = 7r f3.

If 'lrf3 is a CREATE(T) or ABORT(T), then the preconditions for 7ra are (1) there

must be a REQUEST-CREATE(T) in a' but no CREATE(T) or ABORT(T) in a',
and (2) all siblings of 1BA(T) with creates in a' must have returned (committed

or aborted) in a'. Since ,8 is a well-formed schedule, REQUEST-CREATE(T) is in

,81
, and, by the construction, is in a' as well. Similarly, since no CREATE(T) or

ABORT(T) can occur in ,8', none can occur in a' either. Therefore, precondition (1)

is satisfied. By the construction, all commits and aborts in a' of siblings of 1BA(T)

must also appear in ,8'. So, since ,8 is well-formed, precondition (2) must also be

satisfied.

If 'lrf3 is a COMMIT(T,v), then the preconditions for 7ra are (1) a REQUEST­

COMMIT(T,v) must occur in a', (2) 1BA(T) cannot have a COMMIT or ABORT

in a', and (3) any children invoked by 1BA(T) must have returned in a'. Using the

same argument as above, by the construction and the fact that ,8 is well-formed,

preconditions (1) and (2) must be satisfied. If Tis a non-replica access or T E tm(x)

for some x E I, then 1BA(T) cannot have any children in A. If Tis a user transaction,

then all return operations of the children of T in ,8' are, by the construction, included

in a'. Therefore, since ,8 is well-formed, precondition (3) must be satisfied.

In all cases, a is a schedule of A. •

3.4. CONCURRENT REPLICATED SYSTEMS 43

3.4 Concurrent Replicated Systems

So far, we have been able to deal exclusively with serial systems in order to simplify our

reasoning. We now complete the correctness proof by showing that non-serial replicated

systems are correct. Recall the definition of serial correctness: Let S be a serial system, and

let I be an arbitrary sequence of operations. We say that / is serially correct with respect

to S for transaction T provided that / IT = u IT for some schedule u of S.

With the following theorem, we show that given a correct concurrency control algorithm,

combining that algorithm with our replication algorithm yields a correct system. This

theorem allows us to achieve a complete separation of the issues of concurrency control and

recovery from the issues of replication. In other words, one may prove a concurrency control

algorithm correct, then separately prove a replication algorithm correct for serial systems,

and finally apply this theorem to show that the (combined) concurrent replicated system

is correct. The modularity of this proof method permits us to ignore all the complicated

interactions of the two algorithms that one would need to consider in a direct proof that

the concurrent replicated system simulates a non-replicated serial system.

Theorem 11 Let C be any system that has the same type as system B, and let the set of

user transactions in C be the same as in B. Assume that all schedules I of C are serially

correct with respect to serial system B for all non-orphan4 non-access transactions. Then

all schedules / of C are serially correct with respect to system A for all non-orphan user

transactions.

Proof: An immediate consequence of Theorem 10. •
So, any concurrency control algorithm that provides serializability at the level of the

copies may be combined with the Fixed Quorum Consensus replica management algorithm

to produce a correct system. Interesting concurrency control algorithms that satisfy this

condition include Reed's multi-version timestamp concurrency control algorithm [R] and

Moss' two phase locking algorithm with separate read and write locks [Mo]. (See also the

correctness proof given by Fekete et al. [FLMW].)

4 A a transaction T is an orphan in I if ABORT(T') occurs in I for some ancestor T' of T.

Chapter 4

Reconfigurable Quorum
Consensus

We now extend the results of Chapter 3 to systems that permit reconfiguration. That is,

we permit the read- and write-quorums to change dynamically, rather than fixing them for

the entire execution. This flexibility is important for coping with site and link failures in

practical systems. For example, if some DMs are down, we may want to change the quorums

so that logical accesses can be processed in spite of the failures.

We redefine systems A and B and present proofs analogous to those for the fixed con­

figuration systems. In doing so, some interesting new considerations arise: As before, the

logical accesses are described in terms of read- and write-TMs. However, we also need a

new kind of TM, called a reconfigure-TM, to effect changes in the quorums. We would

like the reconfigure-TMs to be modelled as transactions for the sake of uniformity, and to

be positioned in the tree as children of the user transactions in order to model the correct

atomicity requirements. For instance, if T and T' are TMs for x that are invoked by the

same user transaction, we would like to permit reconfiguration of x to take place between

the COMMIT of T and the CREATE of T'. However, the reconfigure-TMs are special in

that their invocations and returns are not to be controlled, or even seen, by the user trans­

actions. Rather, they are intended to run spontaneously and transparently from the user's

point of view. So, we want the reconfigure-TMs to be positioned in the tree as children of

the user transactions, but we do not want the user programs to be aware of their invocations

44

45

and returns.

This conflict introduces a modelling problem. We solve the problem by associating a spy

automaton with each user transaction. The spy wakes up with the associated transaction

and nondeterministically invokes reconfigure-TMs until the associated transaction requests

to commit. In this way, we capture formally the notions of spontaneity and transparency

while at the same time modelling the proper atomicity requirements.

Gifford's reconfiguration algorithm works as follows. 1 In addition to a value and a

version number, each replica of x contains a configuration and a generation number. The

value and version number are initialized as in the non-reconfiguration case, and all replicas

of x initially hold the same configuration and generation number.

To perform a logical read of x, a TM reads DMs for x, keeping in its state the value v

and version number t from the DM with the highest version number seen, the configuration

c and generation number g from the copy with the highest generation number seen, and the

set d of the names of the DMs read. If the TM reaches a state in which c has a read-quorum

that is a subset of d, then the TM returns v.

To perform a logical write of x with new value v', a TM again reads DMs for x, keeping

in its state the version number t from the DM with the highest version number seen, the

configuration c and generation number g from the DM with the highest generation number

seen, and the set d of the names of the DMs read. If the TM reaches a state in which c

has a read-quorum that is a subset of d, then the TM computes the new version number

t' = t + 1 and writes v' along with t' to some write-quorum of DMs in c.

To reconfigure x with new configuration c', a TM first reads DMs for x and computes

v, t, c, g, and d, just as for a logical read. If the TM reaches a state in which c has a

read-quorum that is a subset of d, then the TM does the following. It writes v and t to a

write-quorum inc', and it writes c' and g' = g + 1 to a write-quorum in c.2

We generalize Gifford's reconfiguration algorithm in the same ways that we generalized

the fixed quorum consensus algorithm in the previous chapter. A formal description of the

1In [Gi], Gifford describes the algorithm in terms of votes. However, we substitute the more general
configuration definition.

2 The description in [Gi] actually requires that the new configuration be written to both an old and a new
write-quorum. However, we find that it is only necessary to write this information to an old write-quorum.

46 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

generalized algorithm follows. Because of the additional complication involved in reconfig­

uration and in order to avoid needless repetition of code, we separate the read, write, and

reconfigure tasks of the TMs into modules called coordinators. This is done most natu­

rally by introducing another level of nesting, providing additional evidence of the power of

nesting as a modelling tool.

The formalisms and proofs of this section follow the same pattern as those of the previous

section.

4.1 Reconfigurable Replicated Serial System

Like the fixed configuration system, the replicated serial system defined in this section is

an ordinary serial system in which certain logical data items are replicated. We impose

a restriction on the transaction tree that all accesses to the replicas are the children of

coordinator automata, which are, in turn, children of TMs. Together, the coordinators and

TMs model the Quorum Consensus algorithm itself. We model the logical operations of the

algorithm by providing three kinds of TMs: read-TMs, write-TMs, and reconfigure-TMs.

The system type is formally defined as follows.

Fix J, a set of logical data items. We define system B to be a serial system of type

(T, parent, 0, V). For each element x of I, we define:

• dm(x), a subset of 0,

• ace (x), a subset of the accesses in T,

• co(x), a subset of the non-accesses in T,

• tmr (x), tmw (x), and tmrec (x), disjoint subsets of the non-accesses in T,

• config(x), a legal configuration of x.

Let tm(x) = tmr(x) U tmw(x) U tmrec(x). We require that acc(x) is exactly the set of all

accesses to objects in dm(x). Also, we require that TEacc(x) iff parent(T)Eco(x), and that

TEco(x) iff parent(T)Etm(x). That is, the accesses to DMs for x are exactly the children

4.1. RECONFIGURABLE REPLICATED SERIAL SYSTEM 47

of the coordinators for x, which are, in turn, exactly the children of the TMs for x. Finally,

for all pairs x, y E 1, we require that dm(x) n dm(y) = 0. As a notational convenience, we

sometimes drop the "(x)" in dm(x), acc(x), etc. to denote the union of these sets over all

x E 1. For example, tmrec is the union over all x E 1 of tmrec(x).

The set of user transactions in system B consists of all non-access transactions that are

neither in co nor tm. We refer to accesses in ace as replica accesses, and to the remaining

accesses in T as non-replica accesses.

Figure 4.1 provides an example of a possible transaction tree for system B.

Each member of dm(x) has an associated DM automaton for x. Each member of co(x)

has an associated read-coordinator, write-coordinator, or reconfigure-coordinator automa­

ton for x. The members of tm,.(x), tmw(x), and tmrec(x) have associated read-TM, write­

TM, and reconfigure-TM automata for x, respectively.

Each user transaction T has an associated automaton that is the composition of a user

automaton and a spy automaton Tspy· The user automaton may be any arbitrary automaton

that satisfies the definition of a transaction, and does not have REQUEST-CREATE(T'),

COMMIT for T', or ABORT(T') operations defined for any reconfigure-TM T'. The set

spies refers to the collection of all spy automata in system B.

To avoid confusion, the reader should note that "user transaction" refers to the name in

T, whereas "user transaction automaton" refers to the automaton itself (the composition

of the user automaton and the spy automaton).

To access x, a transaction invokes some read- or write-TM in tm(x). This TM invokes

one or more coordinators, each of which invokes read or write accesses to multiple DMs. The

definitions constrain T so that all accesses to x must proceed in this fashion; no high-level

transaction, for example, can directly invoke a coordinator for x or an access to a DM for

x. DMs, coordinators, TMs, and spy automata are described in the next four subsections.

4.1.1 Data Managers

As before, the set of data managers for logical data item x models the set of physical

replicas of x. Each DM is a read-write object that keeps a version-number, a value, a

48 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

Figure 4.1: A possible transaction tree for system B. Transactions are labeled as follows:
U = user transaction; TM = transaction manager; C = coordinator; a, b = non-replica
accesses; x1 = access to replica 1 of logical data item x, etc.

generation-number, and a configuration for x. The formal definition follows.

If x is a logical data item in I, a DM for x in system B is a read-write object over

domain Dz = N X Vz X N X legal(dm(x)) and with initial data (0, iz, 0, config(x)). We

refer to each member of Dz as a (version-number, value, generation-number, configuration)

quadruple.

Lemma 12 DMs are basic objects.

Proof: Immediate from Lemma 2. •

4.1. RECONFIGURABLE REPLICATED SERIAL SYSTEM 49

4.1.2 Coordinators

We now define the coordinators, which form the intermediate level of nesting between the

replica accesses and the TMs. There are three types of coordinators: read, write, and

reconfigure. Following the three coordinator definitions, we will define the TMs.

Read Coordinators: Let x be a logical data item in I. The purpose of a read-coordinator

is to calculate the "current" version-number, value, generation-number, and configuration

of x on the basis of the data returned by the read accesses it invokes.

Read-coordinator T has state components awake, data, requested, and read, where

awake is a boolean variable, data is in the domain Dz, requested is a subset of acc(x), and

read is a subset of dm(x). Initially, awake is false, data is (0, ..l, 0, config(x)), and requested

and read are both empty.

Input operations: CREATE(T)
COMMIT(T',v), where T' E children(T) and v E Dz
ABORT{T'), where T' E children(T)

Output operations: REQUEST-CREATE{T'), where T' E children(T)
REQUEST-COMMIT(T,v), where v E Dz

• CREATE(T)

Postcondition: awake(s) = true

• REQUEST-CREATE{T'), where kind(T') =read
Precondition: awake{s') = true

T' ¢ requested(s')
Postcondition: requested(s) = requested{s') U {T'}

• COMMIT{T',v)
Postcondition: read(s) = read(s') U {O{T')}

if (v.version-number > data(s').version-number) then
data(s).version-number = v.version-number
data(s).value = v.value

if (v .generation-number > data(s').generation-number) then
data(s) .generation-number = v .generation-number
data(s) .configuration = v .configuration

50 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

• ABORT(T')

Postcondition: (no change)

• REQUEST-COMMIT(T,v)
Precondition: awake(s') = true

q E data(s').configuration.r
q ~ read(s')
v = data(s')

Postcondition: awake(s) =false

A read-coordinator collects data from DMs for x, and keeps track of the configuration

from the DM with the highest generation number and the value from the DM with the high­

est version number seen so far. Whenever the read-coordinator reaches a state in which some

read-quorum in the current configuration (i.e., some member of data(s').configuration.r) is

a subset of the DMs it has seen (i.e., read(s')), then the read-coordinator may request to

commit and return its data. The reader should compare the code above with the code for

read-TMs in Chapter 3.

Write Coordinators: Let x be a logical data item in I. The purpose of a write­

coordinator is to write a given value to a write-quorum of DMs for x in a given configuration

of dm(x).

A write-coordinator T has state components awake, requested, and written, where awake

is a boolean variable, requested is a subset of acc(x), and written is a subset of dm(x).

Initially, awake is false and the sets are empty. Every write-coordinator T for x has an

associated value value{T) E Vz, an associated version-number version-number(T) E N, and

an associated configuration configuration{T) E legal(dm(x)).

Input operations: CREATE(T)
COMMIT(T',v), where T' E children(T)
ABORT(T'), where T' E children(T)

Output operations: REQUEST-CREATE(T'), where T' E children(T)
REQUEST-COMMIT(T,v), where v = nil

4.1. RECONFIGURABLE REPLICATED SERIAL SYSTEM

• CREATE(T)

Postcondition: awake(s) = true

• REQUEST-CREATE(T'), where kind(T') =write and data(T') = d
Precondition: awake(s') = true

d = (version-number(T),value(T),J_, j_)
T' fj_ requested(s')

Postcondition: requested(s) = requested(s') U {T'}

• COMMIT(T',v)

Postcondition: written(s) = written(s') U {O(T')}

• ABORT(T')

Postcondition: (no change)

• REQUEST-COMMIT(T,v)
Precondition: awake(s') = true

v =nil
q E configuration(T).w
q ~ written(s')

Postcondition: awake= false

51

When created, a write-coordinator begins invoking write accesses to DMs for x, over­

writing the version-numbers and values at the DMs with its version-number and value, but

leaving the generation-numbers and configurations at the DMs unchanged. After writing to

a write-quorum of DMs according to its configuration, the write-coordinator may request

to commit.

Reconfigure Coordinators: Let x be a logical data item in I. The purpose of a

reconfigure-coordinator is to write a given new configuration for x along with a given gen­

eration number to a write-quorum of DMs in a given old configuration for x.

A reconfigure-coordinator T has state components awake, requested, and written, where

awake is a boolean variables, requested is a subset of acc(x), and written is a subset of dm(x).

Initially, awake is false and the sets are empty. Every reconfigure-coordinator T for x has

associated configurations new-configuration(T), old-configuration(T) E legal (dm(x)), and

an associated generation-number generation-number(T) E N.

52 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

Input operations: CREATE(T)
COMMIT(T',v), where T' E children(T)
ABORT(T'), where T' E children(T)

Output operations: REQUEST-CREATE(T'), where T' E children(T)
REQUEST-COMMIT(T,v), where v =nil

• CREATE(T)

Postcondition: awake(s) = true

• REQUEST-CREATE(T'), where kind(T') =write and data(T') = d
Precondition: awake(s') = true

d = (1-, perp,generation-number(T), new-configuration(T))
T' tf_ requested(s')

Postcondition: requested(s) = requested(s') U {T'}

• COMMIT(T',v)

Postcondition: written(s) = written(s') U {O(T')}

• ABORT(T')

Postcondition: (no change)

• REQUEST-COMMIT(T,v)
Precondition: awake(s') = true

v =nil
q E old-configuration(T).w
q ~ written(s')

Postcondition: awake = false

When created, a reconfigure-coordinator begins invoking write accesses to the DMs for x,

writing its generation-numbers and new-configurations to the DMs, but leaving the version

numbers and values unchanged. When an old write-quorum of DMs has been written,

according to its old-configuration, the reconfigure-coordinator may request to commit. This

is an optimization over Gifford's algorithm. Gifford requires that the new configuration be

written a new write-quorum, as well as to an old write-quorum.

Lemma 13 Coordinators are transactions.

Proof: The proof is identical to that of Lemma 4. •

4.1. RECONFIGURABLE REPLICATED SERIAL SYSTEM 53

4.1.3 Transaction Managers

We now define the three kinds of TMs: read, write, and reconfigure. Read- and write-TMs

are invoked by user automata in order to perform logical reads and writes to logical data

items. Reconfigure-TMs are invoked by spy automata, which are defined following the TM

definitions.

Read TMs: Let x be a logical data item in 1. The purpose of a read-TM is to perform

a logical read access to x on behalf of a user transaction.

Read-TM T has state components awake, data, requested, and read, where awake and

read are boolean variables, data is in the domain Dz, and requested is a subset of co(x).

Initially, the booleans are false, data is undefined, and requested is empty.

Input operations: CREATE(T)
COMMIT(T',v), where T' E children(T) and v E Dz
ABORT(T'), where T' E children(T)

Output operations: REQUEST-CREATE(T'), where T' E children(T)
REQUEST-COMMIT(T,v), where v E Dz

• CREATE(T)

Postcondition: awake(s) = true

• REQUEST-CREATE(T'), where T' is a read-coordinator
Precondition: awake(s') = true

read(s') = false
T' ti. requested(s')

Postcondition: requested(s) = requested(s') U {T'}

• COMMIT(T',v)
Postcondition:

• ABORT(T')

if read(s') = false then
data(s) = v
read(s) = true

Postcondition: (no change)

54 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

• REQUEST-COMMIT(T,v)
Precondition: awake(s') = true

read(s') = true
v = data(s').value

Postcondition: awake(s) = false

A read-TM invokes any number of read-coordinators. After one or more these coor­

dinators commits, the read-TM may commit, returning the value component of the data

returned by the first committing read-coordinator.

Write TMs: Let x be a logical data item in I. The purpose of a write-TM for x is to

perform a logical write access to x on behalf of a user transaction.

Write-TM T has state components awake, data, requested, read, and written, where

awake, read, and written are boolean variables, data is in the domain Dz, and requested

is a subset of co(x). Initially, the booleans are false, data is undefined, and requested is

empty. Every write-TM T has an associated value value(T).

Input operations: CREATE(T)
COMMIT(T',v), where T' E children(T) and v E Dz
ABORT(T'), where T' E children(T)

Output operations: REQUEST-CREATE(T'), where T' E children(T)
REQUEST-COMMIT(T,v), where v = nil

• CREATE(T)

Postcondition: awake(s) = true

• REQUEST-CREATE(T'), where T' is a read-coordinator
Precondition: awake(s') = true

T' ¢. requested(s')
Postcondition: requested(s) = requested(s') U {T'}

• COMMIT(T',v), where T' is a read-coordinator
Postcondition: if read(s') = false then

data(s) = v
read(s) = true

4.1. RECONFIGURABLE REPLICATED SERIAL SYSTEM

• REQUEST-CREATE(T'), where T' is a write-coordinator
Precondition: awake(s') = true

read(s') = true
value(T') = value(T)
version-number(T') = data(s') .version-number+ 1
configuration(T') = data(s') .configuration
T' fl: requested(s')

Postcondition: requested(s) = requested(s') U {T'}

• COMMIT(T',v), where T' is a write-coordinator

Postcondition: written(s') = true

• ABORT(T')

Postcondition: (no change)

• REQUEST-COMMIT(T,v)
Precondition: awake(s') = true

written(s') = true
v =nil

Postcondition: awake(s) =false

55

A write-TM invokes some number of read-coordinators; when the first read-coordinator

commits, the write-TM remembers the data returned. The write-TM then has the option

of invoking any number of write coordinators, using the configuration and version-number

(incremented by one) it remembered from the first committing read-coordinator, along

with its particular data value. In order for the write-TM to commit, at least one of the

write-coordinators must have committed.

Reconfigure TMs: Let x be a logical data item in I. The purpose of a reconfigure-TM is

to change the "current" configuration of x to a given target configuration and to propagate

the current value and version number as necessary.

Reconfigure-TM T has state components awake, data, requested, read, and written,

where awake, read and written are boolean variables, data is in the domain Dz, and re­

quested is a subset of co(x). Initially, the booleans are false, data is undefined, and requested

56 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

is empty. Every reconfigure-TM T has an associated configuration target-configuration(T)

E legal(dm(x)).

Input operations: CREATE(T)
COMMIT(T',v), where T' E children(T) and v E Dz
ABORT(T'), where T' E children(T)

Output operations: REQUEST-CREATE(T'), where T' E children(T)
REQUEST-COMMIT(T,v), where v = nil

• CREATE(T)

Postcondition: awake(s') = true

• REQUEST-CREATE(T'), where T' is a read-coordinator
Precondition: awake(s') = true

T' cf. requested(s')
Postcondition: requested(s) = requested(s') U {T'}

• COMMIT(T',v), where T' is a read-coordinator
Postcondition: if read(s') = false then

data(s) = v
read(s) = true

• REQUEST-CREATE(T'), where T' is a write-coordinator
Precondition: awake(s') = true

read(s') = true
value(T') = data(s').value
version-number(T') = data(s').version-number
configuration(T') = target-configuration(T)
T' cf. requested(s')

Postcondition: requested(s) = requested(s') U {T'}

• COMMIT(T',v), where T' is a write-coordinator

Postcondition: written(s') = true

• REQUEST-CREATE(T'), where T' is a reconfigure-coordinator

4.1. RECONFIGURABLE REPLICATED SERIAL SYSTEM

Precondition: awake(s') = true
read(s') = true
old-configuration(T') = data(s ').configuration
new-configuration(T') = target-configuration(T)
generation-number(T') = data(s') .generation-number+ 1
T' <t. requested(s')

Postcondition: requested(s) = requested(s') U {T'}

• COMMIT(T',v), where T' is a reconfigure-coordinator

Postcondition: (no change)

• ABORT(T')

Postcondition: (no change)

• REQUEST-COMMIT(T,v)
Precondition: awake(s') = true

written(s') = true
v =nil

Postcondition: awake(s) = false

57

A reconfigure-TM invokes some number of read-coordinators; when the first read­

coordinator commits, the reconfigure-TM remembers the data returned. Then, the reconfigure­

TM may invoke any number of write coordinators with its target-configuration, and with the

value and version number from the data returned by the first committing read-coordinator.

Also, the TM may invoke any number of reconfigure-coordinators, where the old configura­

tion and old generation number are those from the first committing read-coordinator and

the new configuration is the TM's target-configuration. In order to commit, at least one

write-coordinator must have committed.3

Lemma 14 TMs are transactions.

Proof: The proof is identical to that of Lemma 4. •
Recall that reconfigure-TMs are invoked only by spy automata, which are composed

with user automata to form user transaction automata. (See Lemma 15.) Spy automata

are defined as follows.
3 There is no need to wait for a reconfigure-coordinator to commit: Should all the reconfigure-coordinators

abort, the reconfigure-TM would have merely propagated the current value.

58 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

4.1.4 Spy Automata

The spy automaton T spy associated with user transaction T has state components awake

and create-requested, where awake is a boolean and create-requested is a subset of tmrec·

Initially, awake is false and create-requested is empty.

Input operations: CREATE(T)
COMMIT(T',v), where T' E children(T)
ABORT(T'), where T' E children(T)
REQUEST-COMMIT(T,v)

Output operations: REQUEST-CREATE(T'), where T' E children(T)

• CREATE(T)

Postcondition: awake(s) = true

• REQUEST-CREATE(T'), where T' is a reconfigure-TM
Precondition: awake(s') = true

T' ¢. create-requested(s')
Postcondition: create-requested(s) = create-requested(s') U {T'}

• COMMIT(T',v)

Postcondition: (no change)

• ABORT(T')

Postcondition: (no change)

• REQUEST-COMMIT(T,v)

Postcondition: awake(s) = false

Note that a spy is not a transaction automaton, but rather one piece of a transaction.

It wakes up when its associated transaction T is created and goes to sleep when T requests

to commit. That is, the spy automaton does not request to commit; instead, it receives

REQUEST-COMMIT(T,v) as an input operation.

While a spy automaton is awake, it may invoke any number of reconfigure-TMs. In

this way, the model formalizes the spontaneous invocation of reconfigure-TMs. The user

automaton associated with a given spy has no control over the configurations of the logical

4.1. RECONFIGURABLE REPLICATED SERIAL SYSTEM 59

data items. In fact, the user automaton cannot directly observe changes in configurations

because it has no input operations that could reveal this information.

It is interesting that in our definition of the spy automaton, the choice of when to change

configuration and which new configuration to use is completely general (i.e., nondetermin­

istic). However, one might wish to add a heuristic for making judicious choices about when

and how to intervene. This may involve adding new input operations and state components

to the spy that would allow it to record the CREATE, COMMIT, and ABORT patterns of

accesses to the logical data items. The nondeterminism of the spy automaton allows such

heuristics to be added without compromising the validity of our results.

Lemma 15 Let user automaton T be a transaction that does not have any REQUEST­

CREATE(T') operations defined where T' is a reconfigure-TM. Then the composition, also

named T, of user automaton T with spy automaton TBPll is also a transaction.

Proof: It suffices to show that the composition preserves well-formedness. Let a = a 1
7r

be a schedule of the composition where 7r is an output operation of the composition, and

assume that a' is well-formed. We need to show that: (1) CREATE(T) occurs in a', (2)

no REQUEST-COMMIT operation occurs in a', and (3) if 7r is a REQUEST-CREATE(T')

operation, then no REQUEST-CREATE(T') occurs in a'.
Since user automaton Tis a transaction, we know that it cannot issue an output operation

unless CREATE(T) occurs in a'. By definition, T BPI/ can issue no output operation unless

its awake flag is true, and only a CREATE(T) operation can set awake to true. Therefore,

neither user automaton T nor T BPI/ can issue an output operation unless CREATE(T) occurs

in a'. So, part (1) holds for the composition.

Similarly, for part (2), we know that if 7r is an output operation of user automaton T then

no REQUEST-COMMIT for T occurs in a' because the user automaton is a transaction

and TBPll does not issue REQUEST-COMMIT for T operations. TBPll can issue no output

operation if the awake flag is false, and only a REQUEST-COMMIT for T operation can

cause the awake flag to become false. Since a' is well-formed, it can contain at most one

CREATE(T) operation. So, once awake becomes false, it is false forever. Therefore, neither

user automaton T nor TBPll can issue an output operation if REQUEST-COMMIT for T

60 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

occurs in o/. Thus, part (2) holds for the composition.

Finally, we note that user automaton T does not invoke reconfigure-TMs and T BPI/ invokes

only reconfigure-TMs. So, it is sufficient to show that part (3) holds for user automaton

T and T BPI/ independently. We know that part (3) holds for the user automaton, because

it is a transaction. Whenever it issues a REQUEST-CREATE(T'), T 8p 11 puts T' into its

create-requested list, and nothing is ever removed from the create-requested list. Since a

precondition for REQUEST-CREATE(T') is that T' is not in the create-requested list, part

(3) must hold for Tspt1· Therefore, part (3) holds for the composition. •

4.1.5 Properties

In this subsection, we prove several interesting properties of system B. Most of the subsec­

tion is devoted to the proof of Lemma 20, which is central to our correctness argument.

Lemma 16 Schedules of system B are well-formed.

Proof: By Lemmas 12, 13, and 14, DMs are basic objects, and coordinators and TMs are

transactions. Furthermore, by Lemma 15, all the remaining members of Tare transactions.

Therefore, system B is a serial system. By [LM], all schedules of serial systems are well­

formed. •

We now present definitions to describe the logical accesses to the logical data items in

system B. These definitions are analogous to those for the fixed configuration system.

Access sequence: Let (3 be a sequence of operations of system B, and let x be a logical

data item in I. Then the access sequence of x in (3, denoted access(x, (3), is defined to be

the subsequence of (3 containing the CREATE and REQUEST-COMMIT operations for the

members of tm(x).

Logical state: Let (3 be a sequence of operations of system B, and let x be a logical

data item in I. The logical state of x after (3, denoted logical-state(x, (3), is defined to be

either value(T) if REQUEST-COMMIT(T,v) is the last REQUEST-COMMIT operation

4.1. RECONFIGURABLE REPLICATED SERIAL SYSTEM 61

for a write-TM in access(x, (3), or iz if no REQUEST-COMMIT operation for a write-TM

occurs in access(x, (3).

Current version number: Let f3 be a sequence of operations of system B, and let

x be a logical data item in I. Let last(x, (3) denote the subset of acc(x) such that for

each member T of last(x,(3), REQUEST-COMMIT for Tis the last REQUEST-COMMIT

operation for a write access to O(T) in f3 with data(T).version-number:f:l_ 4 . The current

version number of x after (3, denoted current-vn(x, (3), is defined as follows. If last(x, (3) is

non-empty, then current-vn(x,(3) is the maximum over all TElast(x,(3) of data(T).version­

number. Otherwise, current-vn(x, (3) = 0.

Current generation number: Let f3 be a sequence of operations of system B, and let x

be a logical data item in I. Let last(x, (3) denote the subset of acc(x) such that for each mem­

ber T of last(x,(3), REQUEST-COMMIT for Tis the last REQUEST-COMMIT operation

for a write access to O(T) in f3 with data(T).generation-number:f:l_ 5 . The current generation

number of x after (3, denoted current-gn(x, (3), is defined as follows. If last(x, (3) is non-empty,

then current-gn(x,(3) is the maximum over all TElast(x,(3) of data(T).generation-number.

Otherwise, current-gn(x, (3) = 0.

Lemma 17 If f3 is a schedule of B and x is a logical data item in I, then access(x, (3)

begins with a CREATE operation for some TM in tm(x) and continues alternately with

REQUEST-COMMIT and CREATE operations for TMs in tm(x) such that each REQUEST­

COMMIT for T is preceded immediately by a CREATE(T) operation.

Proof: By definition, access(x, (3) contains only CREATE and REQUEST-COMMIT

operations for TMs in tm(x). By Lemma 16, f3 is a well-formed schedule, so each REQUEST­

COMMIT for T must be preceded by a CREATE(T) operation. Finally, since f3 is a serial

schedule, all operations for a given transaction must be contiguous. •
4 This last condition allows us to consider only those write accesses which change the version number at

aDM
5 Here, we are only interested in those write accesses which change the generation number at a DM

62 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

Lemma 18 Let x be a logical data item, and let /3 be a schedule of B. Then the following

property holds after /3: The highest version number among the states of all DMs in dm(x)

is current-vn(x, /3).
Proof: Since DMs are read-write objects, the only operation that can change the version­

number in the state of a DM 0 for x is a REQUEST-COMMIT for T operation, where

O(T) = 0 and T is a write access with data(T).version-number#1-. More specifically, the

version-number in the state of a DM 0 after /3 is data(T).version-number, where REQUEST­

COMMIT for Tis the last such REQUEST-COMMIT in /3. In the definition of current­

vn(x, /3), the set last(x,/3) contains the last write access with version-number#1- for each

DM in dm(x) that has a REQUEST-COMMIT for such a write access in /3. Therefore, the

maximum over all TElast(x, /3) of data(T).version-number is the highest version number

among the states of all DMs in dm(x) after f3. This maximum is exactly the definition of

current-vn(x, /3). (If no such REQUEST-COMMITs occur in /3, then all DMs have their

initial version-number, which is 0 by definition.) •
Lemma 19 Let x be a logical data item, and let /3 be a schedule of B. Then the following

property holds after /3: The highest generation number among the states of all DMs in

dm(x) is current-gn(x, /3).
Proof: Analogous to that of Lemma 18. •
The main lemma is again proved by induction on the length of /3. We take advantage of

the nesting structure in the proof by proving simple assertions about the sub-transactions

of the TMs, and then using these simple assertions to prove the main assertions about

the TMs. As before, the first condition is only used for carrying through the inductive

argument. The important part of the lemma is the second condition, which tells us that

read-TMs return the proper value.

Lemma 20 Let x be a logical data item in I. Let /3 be a schedule of B such that access(x, /3)
is of even length.

1. The following properties hold after /3:

4.1. RECONFIGURABLE REPLICATED SERIAL SYSTEM 63

(a) For all DMs 0 E dm(x), if d is the data component of 0, and d.generation­

number < current-gn(x, (3), then there exists some write-quorum q E d.configuration.w

such that for all DMs 0 1 E q, if d' is the data component of 0 1 then d'.generation­

number > cl.generation-number.

(b) For all pairs of DMs Oi, 02 E dm(x), if di and d2 are the data components

of Oi and 02, then di .generation-number = d2 .generation-number implies that

di.configuration = d2.configuration. Let logical-config(x, (3) denote the unique

configuration held by all DMs with generation-number= current-gn(x,(3).

(c) There exists a write-quorum q Elogical-config(x, (3).w such that for all DMs 0 E

q, if d is the data component of 0, then d. version-number = current-vn(x, (3).

(d) For all DMs 0 E dm(x), if dis the data component of 0, then cl.version-number

= current-vn(x, (3) implies that cl.value = logical-state(x, (3).

2. If (3 ends in REQUEST-COMMIT(T,v) with TE tmr(x), then v = logical-state(x, (3).

Proof: By induction on the length of (3.

Base case: Let (3 be the empty schedule. By definition, current-gn(x, f3) = 0, current­

vn(x, {3) = 0, and logical-state(x,{3) = iz. Initially, all DMs in dm(x) have generation­

number = 0, configuration= config(x), version-number= 0 and value= iz by the definition

of a DM. Therefore, logical-config(x, (3) = config(x). Furthermore, the states after f3 of all

the DMs in every q E config(x).w have generation-number= current-gn(x,{3), configuration

= config(x), version-number= current-vn(x,(3), and value= logical-state(x,(3). Thus, part

1 holds. Since (3 is empty, it does not end in a REQUEST-COMMIT operation of a read-TM

for x. So, part 2 holds vacuously.

Induction: Let (3 = f3'r, where access(x, r) begins with the last CREATE operation

in access(x,{3). Assume that the Lemma holds for (31
• By Lemma 17 and the fact that

access(x,(3) is of even length, access(x,r) = (CREATE(T1), REQUEST-COMMIT(T1,v1))

for some Tt E tm(x) and VJ E Vz. We note the following facts about Ti:

Fact 1: All accesses in r to DMs in dm(x) are descendants of T /·

Proof: Since f3 is a serial schedule, Tt is the only TM in tm(x) whose descendants

64 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

have operations in r. Furthermore, the system type of B is constrained so that all

accesses to DMs in dm(x) are descendants of TMs in tm(x).

Since TI requests to commit in r, we know by definition of TI that at least one read­

coordinator, a child of TI, must commit to TI in r. Let T' be the first read-coordinator

that commits to TI in r, and let r' be the portion of r up to and including the COMMIT

for T'.

Fact 2: If s is the state of T' just after a read access commits to T' in r1
, then

1. data(s).generation-number and data(s).configuration contain the highest generation­

number and associated configuration among DMs in read(s), and

2. data(s).version-number and data(s).value contain the highest version-number

and associated value among DMs in read(s).

Proof: This fact holds because T' retains the maximum generation-number and

version-number (seen so far) and their respective configuration and value upon each

commit of a read access. Since T' is the first child that commits to TI and since T'

invokes only read accesses, the data components of all DMs observed by T' must be

the same during r' as after (3'.

Fact 9: The data component of the state of Ti forever after {31r1 is (current-vn(x, (3'),

logical-state(x, (3'), current-gn(x, (3'), logical-config(x, {31
)).

Proof: Let s' be the state of T' when T' issues its REQUEST-COMMIT oper­

ation. Together, part 1 of Fact 2 and part (Ia) of the induction hypothesis imply

that read(s') cannot contain a read-quorum according to data(s').configuration unless

data(s').generation-number = current-gn(x, (3'). By definition, T' cannot commit un­

less read(s') contains a read-quorum in data(s').configuration.r. Therefore, by part

(lb) of the induction hypothesis, we know that read(s') contains some read-quorum

r in data(s').configuration = logical-config(x,(31).r. By part (le) of the induction hy­

pothesis, we know that there exists some write-quorum w E logical-config(x, (3').w such

that the states after (3' of all DMs in w have version-number= current-vn(x, {31
). Since

4.1. RECONFIGURABLE REPLICATED SERIAL SYSTEM 65

logical-config(x, (31
) is a legal configuration, r and w must have a non-empty intersec­

tion. So, by part 2 of Fact 2, data(s').version-number = current-vn(x, (3'). Therefore,

by part (ld) of the induction hypothesis, data(s').value = logical-state(x,(31
).

When T' commits, the data component of the state of Ti becomes data(s'). By

definition, once T' commits, the data component of the state of TI never changes.

Therefore, Fact 3 is proved.

From Fact 1, we know that all accesses to DMs for x in rare children of T,. Therefore,

in order to prove that the induction hypothesis holds for f3, we merely need to demonstrate

that TI preserves the properties stated. There are three possibilities for T 1:

• If TI is a read-TM, then TI invokes only read-coordinators, which invoke only read

accesses. So, current-vn(x, (3) = current-vn(x, (3') and current-gn(x, (3) = current­

gn(x, (31
). Furthermore, the data components of the states of the DMs are the same

after f3 as after (3'. Therefore, part 1 of the Lemma holds for (3. By definition, TI

cannot request to commit until at least one of its read-coordinators commits. Since

T' is the first committing read-coordinator, the REQUEST-COMMIT for T1 must

occur at some point after (31r 1
• When TI commits, it returns the value in the data

component of its state. By Fact 3, this value is logical-state(x, (3'). Since TI is a

read-TM, logical-state(x, (3) = logical-state(x, (3') by definition. Thus, part 2 of the

Lemma holds for f3.

• If T1 is a write-TM, then we note the following facts:

Fact 4: All write-coordinators T for x invoked in T have version-number(T)

= current-vn(x,(3')+1, value(T) = value(T1), and configuration(Tw) =logical­

config(x, (3').

Proof: Lets be the state of Ti when it issues REQUEST-CREATE(T). Then

by definition of a write-TM, version-number(T) = data(s).version-number+l,

value(T) = value(T1), and configuration(T) = data(s).configuration. By def­

inition, TI cannot invoke a write-coordinator until at least one of its read­

coordinators commits. So, all REQUEST-CREATEs for write-coordinators in T

66 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

occur after {31r 1
• Therefore, by Fact 3, data(s).version-number = current-vn(x, {3')

and data(s).configuration = logical-config(x, {31
). Thus, Fact 4 holds.

Fact 5: If Tis a write access for x invoked in r, then data(T) = (current-vn(x, (3),

logical-state(x, {3) ,1-, 1-), and current-vn(x, f3) > current-vn(x, {3').

Proof: The type of system B is constrained so that T is invoked by some

write-coordinator for x. Therefore, by Fact 4 and the definition of a write­

coordinator, data(T) = (current-vn(x, {3')+ 1, value(T I) ,1-, 1-). Therefore, since

current-vn(x,{3')+1 is the highest (only) version-number for x written in r, it

follows from Lemma 18 and the definition of current-vn that current-vn(x, {3)

= current-vn(x,{3')+1. Since T1 is a write-TM, logical-state(x,{3) = value(T1)·

Thus, Fact 5 is proved.

By Fact 5, the generation-numbers and configurations in the states of DMs for x

are not changed during r, and current-gn(x, {3) = current-gn(x, {31
). Therefore, parts

(la) and (lb) of the Lemma hold after {3. (Note that logical-config(x,{31
) =logical­

config(x, {3).)

By definition, TI cannot request to commit until at least one of its write-coordinators

commits. Let Tw be the first write-coordinator that commits to Ti, and let r 11 be the

portion of r up to and including the COMMIT of Tw. By definition, Tw cannot re­

quest to commit until it has received COMMITs for write accesses to a write quorum

of DMs in configuration(Tw)· By Fact 4, configuration(Tw) = logical-config(x,{3'),

which equals logical-config(x, f3). Therefore, by Fact 5, parts (le) and (ld) of the

Lemma hold after {31 r".
We now show that part 1 of the Lemma still holds after {31r. By Fact 5, any

write-coordinators that may execute in r after r11 merely propagate the new value and

version number. Any read-coordinators that may execute in r after r" cannot change

the values at the DMs, since they do not invoke write accesses. Therefore, part 1 of

the Lemma holds after {31 r = f3.
Since T1 is not a read-TM, part 2 holds vacuously.

• If TI is a reconfigure-TM, then we note the following facts:

4.1. RECONFIGURABLE REPLICATED SERIAL SYSTEM 67

Fact 6: All write-coordinators Tw for x invoked in r have have version-number(Tw)

= current-vn(x, (3'), value(Tw) = logical-state(x, (31
), and configuration(Tw) =

logical-config(x, (3'). Furthermore, all reconfigure-coordinators Tree for x invoked

in r have generation-number(Trec) = current-gn(x, (3')+1, old-configuration(Trec)

= logical-config(x, (3'), and new-configuration(T rec) = target-configuration(T I).

Proof: Analogous to that of Fact 4.

Fact 7: If T is a write access invoked by a write-coordinator for x in r, then

data(T) = (current-vn(x, (3), logical-state(x, (3), l_, l_}.

Proof: By Fact 6 and the definition of a write-coordinator, data(T) = (current­

vn(x, (3'), logical-state(x, (3'), l_, j_). Since these are the only write accesses in r

that modify the version-number components in the states of DMs for x, we know

by Lemma 18 and the definition of current-vn that current-vn(x, (3) = current­

vn(x, (3'). Since TI is a reconfigure-TM, logical-state(x, (3) = logical-state(x, (3')

by definition.

Fact 8: If T is a write access invoked by a reconfigure-coordinator for x in r,

then data(T) = (l_, l_,current-gn(x, (3),logical-config(x, (3)), and current-gn(x, (3)

> current-gn(x, (3').

Proof: By Fact 6 and the definition of a reconfigure-coordinator, data(T) =

(l_, l_, current-gn(x, (3')+ 1,target-configuration(T 1)). Therefore, since current­

gn(x, (3')+1 is the highest (only) generation-number for x written in r, it follows

from Lemma 19 and the definition of current-gn that current-gn(x, (3) =current­

gn(x, (3')+ 1. Also, target-configuration(T I) is the configuration associated with

current-gn(x, (3), which is logical-config(x, (3) by definition.

By definition, TI cannot request to commit until at least one of its write-coordinators

commits. Let Tw be the first write-coordinator that commits to T1, and let r" be the

portion of r up to and including the COMMIT of T w. We claim that part 1 of the

induction hypothesis holds after (31r 11
• There are two cases:

1. If r 11 does not contain a COMMIT of a reconfigure-coordinator, then by Fact 7,

any write accesses invoked in r" simply propagate the current value and version

68 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

number, so part 1 still holds.

2. If r" does contain one or more COMMITs of reconfigure-coordinators, then each

reconfigure-coordinator Tree cannot commit until it has received COMMIT oper­

ations for write accesses to a write-quorum w of DMs in old-configuration(Trec).

We now show that part (la) of the lemma holds after {31r 11
• There are two

classes of DMs to consider: (1) All DMs that have generation-number= current­

gn(x, {31
) after {31r 11 must have configuration= logical-config(x, {31

) by Fact 8 and

part (la) of the induction hypothesis. By Fact 6, old-configuration(Tw) =logical­

config(x, {31
). Therefore, w E logical-config(x, {31).w, so part (la) holds. (2) For

all DMs that have generation-number < current-gn(x, {3'), we know by Fact 8

and Lemma 19 that no DM's generation-number could have been decreased in

r". So, by part (la) of the induction hypothesis, part (la) still holds.

By Fact 8 and Lemma 19, we know that all write accesses for x in r 11 with

generation-number#J_ have a generation-number greater than (and therefore dif­

ferent from) any generation-number for x in {31
• Furthermore, since all such write

accesses have the same generation-number and configuration, we know by part

(lb) of the induction hypothesis that part (lb) still holds. By definition, Tw

cannot request to commit until it has received COMMIT operations for write

accesses to a write quorum of DMs in configuration(Tw)· Therefore, by Fact 7,

parts (le) and (ld) hold after {31r 11
•

Thus, claim is true in both cases, so part 1 of the lemma holds after {31 r 11
•

By Fact 7, any write-coordinators that may execute in r after r" merely propagate

the new value and version number, so they preserve part 1 of the induction hypothesis.

Similarly, by Fact 8, any reconfigure-coordinators that may execute in r after r"

merely propagate the new configuration and generation-number. And certainly any

read-coordinators that may execute in r after r" cannot change the data components

of the DMs. Therefore, part 1 of the induction hypothesis holds when T J commits.

Since T J is not a read-TM, part 2 holds vacuously.

For all three possibilities of T J, the lemma holds after {3. •

4.2. NON-REPLICATED SERIAL SYSTEM 69

4.2 Non-replicated Serial System

We define non-replicated serial system A of type (TA,parentA,OA,VA) in terms of replicated

serial system B of type (TB,parentB,OB,VB). The transactions that were read-TMs and

write-TMs for objects in 1 in system B become accesses in system A, and the collection of

DMs for each object in 1 in system Bare replaced by a single read-write object in system A.

The reconfigure-TMs, coordinators and accesses from system B are not present in system

A. More formally, the system type is:

• TA= TB - (LJ acc(x)) - (LJ co(x)) - (LJ tmrec(x))
xEI xEI xEI

• parentA = parentB restricted to TA

• OA =OB - (LJ dm(x)) U {tmr(x) U tmw(x) U tmrec(x)lx E J}
xEI

Informally, to construct the type of system A from that of system B, we first remove

from T all the coordinators, all the reconfigure-TMs, and all the accesses to the DMs for

objects in J. As a result, all the TMs for objects in 1 become leaves in T and are therefore

accesses. Next, we remove from 0 all the DMs for objects in J. {Effectively, this has already

been done by removing the corresponding accesses.) Finally, we partition all the accesses

that were formerly TMs according to their logical data item. Each class of this partition is

a new object in 0. Thus, each logical data item is implemented by a single object.

Figure 4.2 illustrates the transaction tree for system A that corresponds to the transac­

tion tree for system B given in Figure 4.1.

The following lemma tells us that that the function 1AB is well-defined. This allows us

to relate transactions in system B to those in system A.

Lemma 21 System B is an extension of system A.

70 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

Figure 4.2: The transaction tree for system A that corresponds to the transaction tree for
B shown in Figure 4.1. Transactions are labeled as follows:
U = user transaction; a, b, x, y = accesses.

Proof: Since TA = TB - {U:z:Elacc(x)) - (U:z:Elco{x)) - (U:z:Eltmrec(x)), we know that

TA ~ TB. Furthermore, TA and TB must have the same root, unless the root of TB is in

acc(x), co(x), or tmrec(x) for some x E !. However, every member of acc(x) is a child of

some member of co(x), which in turn is a child of some member of tm(x). In addition,

every member of tmrec(x) is a child of some user transaction. So none of the transactions

in acc(x), co(x), or tmrec(x) for any x EI could be the root of TB. •

We define user transactions in system A to be all non-access transactions in TA· Just

as for the fixed configuration systems, we note that T is a user transaction in system B

iff 1BA(T) is a user transaction in system A. Transactions and objects in system A are

modelled in the same way as in system B, except that for all x E I,

1. the object corresponding to tm(x) has an associated read-write object 0 over domain

Vz (We refer to this particular read-write object as O{x).),

2. for each transaction TE tm(x) where Tis a read-TM or write-TM, 1BA(T) is an access

to O(x) such that

4.3. CORRECTNESS 71

(a) if Tis a read-TM, then 1BA(T) is a read-access, and

(b) if Tis a write-TM, 1BA(T) is a write-access with data(1BA(T)) = value(T).

Furthermore, if T is a user transaction, then it is modelled by the same user automaton as

in system B, but without an associated spy automaton.

4.3 Correctness

In this section, we show that user transactions cannot distinguish between replicated serial

system B and non-replicated serial system A. The proof is analogous to that of Theorem

10, but this time making use of Lemma 20. We are only interested in the correspondence

between the schedules of the user automata in systems A and B. So, in Condition 2 of the

theorem, we only require that the user automata, rather than the user transactions, have

the same schedules.

Theorem 22 Let {3 be a schedule of replicated serial system B. There exists a schedule a

of non-replicated serial system A such that the following two conditions hold.

l. For all objects 0 in system B that are not in dm(x) for any x, ajO = {3j0.

2. For all user transactions Tin system B, ai1BA(T) = ,BITuser, where Tuser is the user

automaton associated with T.

Proof: We construct a by removing from {3 all the REQUEST-CREATE(T), CRE­

ATE(T), REQUEST-COMMIT(T,v), COMMIT(T,v), and ABORT(T) operations for all

transactions Tin acc(x), co(x), and tmrec(x), for all x E J. Clearly, the two conditions

hold. What needs to be proved is that a is a schedule of A. We proceed by induction on

the length of {3.

Base case: Suppose ,8 is empty. Then a is also empty and is therefore a schedule of A.

Induction: Let {3 = ,817rf3, where the claim holds for ,81
• Let a= a 1

7ra, where a' is the

schedule of A corresponding to {31
• There are five cases for 7r /3.

72 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

1. Invocations, Operations, and Returns of Replica Accesses, Coordinators,

and Reconfigure-TMs: If 1rp is a REQUEST-CREATE(T), CREATE(T), REQUEST­

COMMIT(T,v), COMMIT(T,v), or ABORT(T) operation where Tis in acc(x), co(x),

or tmrec (x), and x E I, then by the construction 1r a is empty. Therefore, a is the

same as a', which is a schedule of A.

2. REQUEST-COMMITs for Non-Replica Accesses: If 1rp is a REQUEST-COMMIT

for a non-replica access T, then by the construction 'Ira = 1rp. By Part 1 of the in­

duction hypothesis, a'IO = .B'IO. Since 0 is modelled by the same automaton in both

systems A and B, the states of 0 after a' and after .B' are the same. Furthermore,

1BA(T) is modelled by the same automaton as T. Therefore, since the preconditions

for 1r f3 are satisfied in the state of T after .8', they must also be satisfied in the state of

1BA(T) after a'. Therefore al1BA(T) is a schedule of 1BA(T). So, by the Composition

Lemma (Lemma 1), a is a schedule of A.

3. Output Operations of User Transactions: If 'lrf3 is an output operation of some

user transaction T, then by the construction 'Ira = 1rp. By Part 2 of the induction

hypothesis, a'l1BA(T) = .B'l(T). Furthermore, 1BA(T) is modelled by the same au­

tomaton as T. Therefore, since the preconditions for 'lrf3 are satisfied in the state of

T after .B', they must also be satisfied in the state of 1BA(T) after a'. Therefore,

al1BA(T) is a schedule of 1BA(T). So, by the Composition Lemma, a is a schedule of

A.

4. Output Operations of TMs (except those already covered by Case 1): If 7rp is a

REQUEST-COMMIT(T,v), where Tis in tmr(x) or tmw(x) for some x E J, then by

the construction 'Ira = 1rp. By the definition of system A, 1BA(T) is an access to a

read-write object. The only precondition for a REQUEST-COMMIT of T, then, is

that T has been created. By the construction and the fact that .B is a well-formed

schedule, CREATE(T) occurs in a'. Therefore, the precondition for REQUEST­

COMMIT(T,v') is satisfied in A for some v'.

If T is a write-TM, then v = v' = nil. We need to show that v = v1 if T is a

read-TM. By Lemma 20, we know that v = logical-state(x, .B'). By definition of a

4.3. CORRECTNESS 73

read-write object, v' is the value in the state of 0(x) after o.1• We observe that, by

the construction, o.'IO(x) = access(x, fi'). So, by definition of system A, the last write

access in o.1 to O(x) has the same value as the last write-TM in fi'. Hence, the value

in the state of 0(x) after o.1 is logical-state(x, .B'). Therefore, v = v'. (If there is no

write-TM in access (x, .B'), then there are no write accesses to 0 (x) in o.1• In this case,

the value in the state of O(x) after o.1 is i:~, which is logical-state(x, .B').)

5. Output Operations of the Scheduler (except those already covered by Case 1):

If 1r13 is a CREATE(T), a COMMIT for T, or an ABORT(T), where T is a user

transaction, Tis a non-replica access, or Tis in tmr(x) or tmw(x) for some x EI,

then by the construction 1f a = 1f 13.

If 'lrf3 is a CREATE(T) or ABORT(T), then the preconditions for 'lra are (1) there

must be a REQUEST-CREATE(T) in o.1 but no CREATE(T) or ABORT(T) in o.1,

and (2) all siblings of 1BA(T) with creates in o.1 must have returned (committed

or aborted) in o.1• Since .B is a well-formed schedule, REQUEST-CREATE(T) is in

fi', and, by the construction, is in o.1 as well. Similarly, since no CREATE(T) or

ABORT(T) can occur in .B', none can occur in o.1 either. Therefore, precondition (1)

is satisfied. By the construction, all commits and aborts in o.1 of siblings of 1BA(T)

must also appear in .B'. So, since .B is well-formed, precondition (2) must also be

satisfied.

If 1r13 is a COMMIT(T,v), then the preconditions for 'lra are (1) a REQUEST­

COMMIT(T,v) must occur in o.1, (2) 1BA(T) cannot have a COMMIT or ABORT

in a', and (3) any children invoked by 1BA(T) must have returned in o.1• Using the

same argument as above, by the construction and the fact that .B is well-formed,

preconditions (1) and (2) must be satisfied. If T is a non-replica access or T is in

tmr (x) or tmw (x) for some x E I, then 1BA (T) cannot have any children in A. If T

is a user transaction, then all return operations of the children of Tin fi' are, by the

construction, included in o.1
• Therefore, since.Bis well-formed, precondition (3) must

be satisfied.

In all cases, a is a schedule of A. •

74 CHAPTER 4. RECONFIGURABLE QUORUM CONSENSUS

4.4 Concurrent Replicated Systems

Just as for the fixed configuration algorithm, we now complete the correctness argument

by showing that non-serial replicated systems are correct. We proved in the simulation

argument of Theorem 22 that in every schedule of system B, the user automata have

the same schedules as their corresponding transactions in some schedule of system A. In

particular, we proved a property only of the user automata, not of the user transactions

(which include the spies). Since it is the user automata alone that model the users of the

system, this property is all that was required for correctness. (In fact, it would have made

no sense to include the spies, since their output operations are not even defined in system

A.)

For the correctness of non-serial systems, we continue this pattern and again consider

only the user automata. To this end, we introduce the following operator, which removes,

from any sequence of operations, those operations of the spy automata that are not also

operations of the user automata.

Let C be any system having the same type as system B, and let I be a sequence of

operations of system C. Then hide(I) denotes the subsequence of I containing all operations

except the REQUEST-CREATE(T), COMMIT for T, and ABORT(T) operations with

TEtmrec·

With this definition, we can now state the final theorem.

Theorem 23 Let C be any system that has the same type as system B, and let the set of

user transaction automata in C be the same as in B. Assume that all schedules I of C are

serially correct with respect to serial system B for all non-orphan non-access transactions.

Then for all schedules / of C, hide(I) is serially correct with respect to system A for all

non-orphan user transactions.

Proof: An immediate consequence of Theorem 22, and the fact that the hide operator

removes from / exactly those operations of the user transaction automata (composition of

user automata and spies) in system C that are not operations of the user automata (without

the spies). •

r'1l•l' .. \'l!u111.s:c11tJ1µgpg ,Jt11:ra: n.~r • .. MU !tlfl.llkt. •1•11111L1JMJl!llllt t# J . UJ!ll. Lt\ ., Mi lQIJl$!lh,.J¢$L ... J . . c: .i JUD .. $ k4UMA··.u !LUQlll

4.4. CONCUR.RJ:NT UPLIOA.T.SD SYSTBllS

So, UJ ccmcurreq OOD8ol_ .. , 11 ilu, M dae ol tlae

copiee ..., - c-lri••• I Ml ••.•• :lu:r rt•1,.11

algorRlam to.,.....•~ 8JU 1ro 'Dlt I •If• ia l).rtl11 t.4 flf _. uu•••CJ
c:oaUol ..,_itlrm• lfp&n ._. • wll.

Chapter 5

Conclusion

We have presented a precise description and rigorous correctness proof for a generalization of

Gifford's data replication algorithm that accommodates nested transactions and transaction

failures. The algorithm was described using the new Lynch-Merritt input-output automaton

model for nested transaction systems, and the correctness proof was constructed directly

from this description.

The algorithm was decomposed into simple modules that were arranged naturally in a

tree structure. This use of nesting as a modelling tool enabled us to use standard assertional

techniques to prove properties of transactions based upon the properties of their children.

Each module was described in terms of an automaton that made extensive use of nonde­

terminism. Although one would not actually implement a system in this way, the nondeter­

minism permitted us to construct a correctness proof that was independent of any particular

programming language or implementation. In other words, the nondeterministic automata

describe the basic requirements of the algorithm, and our proof implies the correctness of

any specific implementation that meets these requirements.

The modularity of the proof strategy permitted us to separate the concerns ofreplication

from those of concurrency control and recovery. Our arguments were simple, in part, because

of this separation. That is, we were able to deal exclusively with serial systems in order

to simplify our reasoning. Then, to complete the proof, we presented a simple theorem

which stated that combining any correct concurrency control algorithm with our replication

76

77

algorithm yields a correct system.

This work has identified a general framework for proving the correctness of data repli­

cation algorithms in nested transaction systems. One begins by constructing a formal de­

scription of the algorithm in terms of a nested transaction system built from 1/0 automata.

Then, one uses the appropriate definitions to show that each logical read access returns

the proper value. Next, one constructs a corresponding serial system without replication,

and proves that the user transactions in that system have the same executions as the user

automata in the replicated system. Finally, one proves separately the correctness of the

concurrency control algorithm, and applies a result analogous to Theorem 23 to show that

the combined system is correct.

One possible direction for further work involves usmg this general technique to add

transaction nesting to other, more complicated, data replication schemes, and prove the

resulting algorithms correct. Some interesting examples include the "Virtual Partition"

approach of Abbadi and Toueg [AT], and Herlihy's "General Quorum Consensus" [He].

Some replication algorithms guarantee weaker correctness conditions than the one pre­

sented here for Gifford's algorithm. It would be interesting to see what impact these weaker

correctness conditions would have on the proof structure that we have presented.

Bibliography

[ASC] El Abbadi, A., Skeen, D. and Cristian, F ., "An Efficient Fault-Tolerant Protocol
for Replicated Data Management", Proc. 4th A CM Symposium on Principles of
Database Systems, Portland, Oregon, March 1985, pp. 215-229.

[AT] El Abbadi, A. and Toueg, S., "Maintaining Availability in Partitioned Replicated
Databases", Proc. 5th ACM Symposium on Principles of Database Systems, 1986.

[BaGa] Barbara, D., and Garcia-Molina, H., "Mutual Exclusion in Partitioned Distributed
Systems," Technical Report, Department of Computer Science, Princeton Univer­
sity, TR-346, July 1985.

[BBG] Beeri, C., Bernstein, P.A., and Goodman, N., "A Model for Concurrency in Nested
Transaction Systems,'' Technical Report, Wang Institute TR-86-03, March 1986.

[BBGLS] Beeri, C., Bernstein, P. A., Goodman, N., Lai, M. Y., and Shasha, D. E., "A
Concurrency Control Theory for Nested Transactions," Proc. 1989 Second An­
nual A CM Symposium on Principles of Distributed Computing, Montreal, Quebec,
Canada, August 17-19, 1983, pp. 45-62.

[BeGo] ''Bernstein, P.A., and Goodman, N., "Concurrency Control in Distributed Database
Systems," ACM Computing Surveys 13,2 (June 1981), pp. 185-221.

[BHG] Bernstein, P. A., Hadzilacos, V., and Goodman, N., Concurrency Control and
Recovery in Database Systems, Addison-Wesley, 1986.

[ES] Eager, D. and Sevcik, K., "Robustness in Distributed Database Systems", Trans­
actions on Database Systems, 8,3 (September 1983), pp. 354-381.

[FLMW] Fekete, A., Lynch, N., Merritt, M., and Weihl, W., "Nested Transactions and
Read/Write Locking," Proc. 6th A CM Symposium on Principles of Database Sys­
tems, March, 1987.

[Gi] Gifford, D., "Weighted Voting for Replicated Data", Proc. of the 7th Symposium
on Operating Systems Principles, December, 1979.

78

BIBLIOGRAPHY 79

[He] Herlihy, M., "Replication Methods for Abstract Data Types," Technical Report
MIT/LCS/TR-319, MIT Laboratory for Computer Science, Cambridge, MA, May
1984.

[HLMW] Herlihy, M., Lynch, N., Merritt, M., and Weihl, W., "On the Correctness of
Orphan Elimination Algorithms," submitted for publication.

[LHJLSW] Liskov, B., Herlihy, M., Johnson, P., Leavens, G., Scheifler, R., and Weihl, W.,
"Preliminary Argus Reference Manual," Programming Methodology Group Memo
39, October 1983.

[LiS] Liskov, B., and Scheifler, R., "Guardians and Actions: Linguistic Support for
Robust, Distributed Programs", ACM Transactions on Programming Languages
and Systems Vol. 5, No. 3, July 1983, pp. 381-404.

[LM] Lynch, N., and Merritt, M., "Introduction to the Theory of Nested Transactions,"
Technical Report MIT /LCS /TR-367, MIT Laboratory for Computer Science, Cam­
bridge, MA., July 1986.

[Ly] Lynch, N. A., "Concurrency Control For Resilient Nested Transactions,'' Advances
in Computing Research 3, 1986, pp. 335-373.

[LT] Lynch, N. and Tuttle, M., "Hierarchical Correctness Proofs for Distributed Al­
gorithms," Technical Report MIT/LCS/TR-387, MIT Laboratory for Computer
Science, Cambridge, MA., April 1987. Also to appear in Proc. of the 6th Sympo­
sium on Principles of Distributed Computing, August 1987.

[Mo] Moss, J. E. B., "Nested Transactions: An Approach To Reliable Distributed Com­
puting," Ph.D. Thesis, Technical Report MIT/LCS/TR-260, MIT Laboratory for
Computer Science, Cambridge, MA., April 1981. Also, published by MIT Press,
March 1985.

[R] Reed, D. P., "Implementing Atomic Actions on Decentralized Data", ACM Trans.
on Computing Systems, Vol. 1, No. 1, pp. 3-23.

[T] Thomas, R. H., "A Majority Consensus Approach to Concurrency Control for
Multiple Copy Databases," ACM Trans. on Database Systems, Vol. 4, No. 2, June
1979, pp. 180-209.

[We] Weihl, W. E., "Specification and Implementation of Atomic Data Types," Ph.D
Thesis, Technical Report/MIT/LCS/TR-314, MIT Laboratory for Computer Sci­
ence, Cambridge, MA., March 1984.

Uncl.:issified
SECUqlTY CLASSIFICATION OF Tl-iiS PAGE

REPORT DOCUMENTATION PAGE
1 a REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION I AVAILABILITY OF REPORT

2b DECLASSIFICATION I DOWNGRADING SCHEDULE Approved for public release; distribution

is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR-390 DOD/DARPA ff N00014-85-K-0168,
N00014-83-K-0125

6a. NAME OF PERFORMING ORGANIZA TIOi'4 6b OFFICE SYMBOL la. NAME OF MONITORING ORGANIZATION

Laboratory for Computer (If applicable)
Office

Science
of Naval Research/Department of Navy

6c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, NA 02139 Arlington, VA 22217

Ba. NAME OF FUNDING I SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA/DOD

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217 ELEMENT NO. NO NO ACCESSION NO.

11 Tl TLE {Include Security Classlf1ca rionj

Data Replication in Nested Transaction Systems

12. PERSONAL AUTHOR(S)

Goldman, Kenneth J.
13a. TYPE OF REPORT t 3b TIME COVERED }14 DATE OF REPORT (Year, Month, Day) Ts PAGE COUNT

Technical FROM_ TO 1987 May 79
16. SUPPLEMENTARY NOTATION

17 COSA Tl CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP data replication, nested transaction systems, input-output
automata, models of distributed computation

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Giffords's basic Quorum Consensus algorithm for data replication is generalized to
accomodate nested transactions and transaction failures (aborts). A formal description of
the generalized algorithm is presented using the new Lynch-Merritt input-ouput automaton
model for nested transaction systems, This formal description is used to construct a
complete (yet simple) proof of correctness that uses standard assertional techniques and
is based on a natural correctness condition, Nondeterminism is used in the algorithm
description to yield a correctness proof that is independent of any particular programming
language or implementation. The presentation and proof treat issues of data replication
entirely separately from issues of concurrency control and recovery •

.20 DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

Q UNCLASSIFIED/UNLIMITED D SAME AS RPT D DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 122c. OFFICE SYMBOL

Judy_ Little Publications Coordinator (617) 253-5894

DD FORM 1473, 84 MAR 83 APR ed1t1on may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other ed1t1ons are obsolete

Unclassified

