
~ ·· · - ·

'

LABORATORY FOR tt· · ·~ MASSACHUSEITS · · INSTITIITE OF
COMPUTER SCIENCE TECHNOLOGY

MIT/LCS{fR-392

MAM: A SEMI-AUTOMATIC
DEBUGGING TOOL FOR

DISTRIBUTED PROGRAMS

Lawrence Kenneth Kolodney

June 1987 ·

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

This blank page was inserted to presenie pagination.

MAMIA811·1-.·· Tool

The...._. aer• ••••to ML!'. 1•11tltl,lt:-••.Jill111 MUi to._...
CC>P•.t•.._..·•n•11ta-l'QJtl1Mi.t:j£

MAM: A Semi-Automatic Debugging Tool
for Distributed Programs

by

Lawrence Kenneth Kolodney

Submitted to the
Department of Electrical Engineering and Computer Science

on January 22, 1Q87 in partial fulfillment of the requirements
for the Degrees of Master of Science and Bachelor of Science

Abstract

Traditional debuggers, designed to examine single process serial programs, do not
provide sufficient functionality for efficient debugging of distributed programs.
There are a number of fundamental differences in the way in which a
programmer understands the execution of a distributed programs, and a
debugger must present data to its user in light of that fact.

MAM, A Message Abstraction Monitor, is described here. MAM provides a user
with software tools needed to utilize a novel technique for debugging of
distributed programs. MAM permits a user to define high level abstractions on a
stream of messages transpiring between processes of a distributed program, using
a Message Abstraction Language (MAL). MAM analyzes a post-mortem journal
of such messages, attempting to impose user defined structures on them. The
user may then view the analyzed journal in a sequential manner, with a graphical
display indicating the relationships of various messages with respect to higher
level abstractions and to processes of the distributed program ..

MAM also provides "near-misstt detection allowing intelligent guesses to be
made, for matches in an error-laden journal. This near-miss facility results in
automatic detection of some programming errors.

The contributions of this research are a mechanism for the specification of
correct abstract communications, the use of this in "near-miss" recognition, and
the "play-back" nature of the presentation of this information for debugging
purposes.

Thesis Supervisors: Dr. Karen R. Sollins
Title: Research Scientist, Lab. for Computer Science

Mr. R. Mark Chilenskas
Title: Research Staff, GenRad Inc.

2

Acknowledgments

I would like to thank my thesis advisor, Karen Sollins, for her patient,

sympathetic and generally invaluable 88Bistance that she has provided me over

the past 17 months. Her editorial advice enforced needed intellectual discipline

on my sometimes vague thoughts. Her optimism, in the face of my own self­

doubt, provided me with faith to continue.

Richard Waters, who initially rescued me from the limbo of "advisorlessness,"

has my gratitude.

Franklyn Turbak, a gentleman and a scholar, kindly provided insightful criticism

of my writing.

Mark Chilenskas, my supervisor at GenRa.d, was instrumental in helping me to

develop the ideas in this thesis and in implementing them. His wealth of

technical knowledge, his accessible manner, and his constant encouragement a.re

all greatly appreciated.

To my parents, whose concern for and encouragement of my academic endeavors

has been unflagging, I off er a heartfelt, if redundant, "Thanks!"

Finally, I would be remiss if I did not note the vital contribution of my numerous

friends at Senior House dormitory, my on-campus home a.way from home, who,

when times got trying, fed me, sheltered me, and provided me with the emotional

support to continue work.

3

To my parents,

\Vho ta11ght me to give a damn.

4

Table of Contents

Chapter One: Introduction g

1.1 General Motivation g
1.2 Distributed Systems Improve Over Serial Ones 10
1.3 Debugging is Still an Art 10
1.4 A Message Abstraction Monitor 11
1.5 Previous Work 12

1.5.1 Event Description Languages 12
1.5.2 Runtime Stepping Control 13
1.5.3 Network Map 15
1.5.4 Movie Playback 15

1.6 Implementation Environment 15
1.6.1 Hardware Architecture 16
1.6.2 Software Architecture 16

1.6.2.1 The Message Server 16
1.6.2.2 Applications 17

1. 7 Plan of Thesis 17
1.8 Definition of Terms and Abbreviations 18

1.8.1 Terms 18
1.8.2 Abbreviations 20

Chapter Two: Background: The Problem of Debugging 22

2.1 Learning from Experience with Serial Debuggers 22
2.2 Parallel Debugging Presents Qualitatively Different Problems 24

2.2.1 Time Ordering is Not Total 24
2.2.2 Too Much Confusing Data 26

2.2.2.1 The Problem: Complexity, and No Explicit Structures 26
2.2.2.2 A Solution: Behavioral Abstraction 2Q

2.2.3 Non-linear Data 30
2.2.4 Dea.ling With Unexpected Behavior 31

2.3 Automatic Error Detection 32
2.4 Summary 33

Chapter Three: User View of MAM 34

3.1 The Analyzer: Message Abstraction Language 35
3.1.1 Abstraction Descriptions 35

5

3.1.2 A Model for Understanding Data: MAL Semantics 41
3.1.3 MAL Limitations 48

3.2 JDM: Journal Display Monitor 4g
3.2.1 Map 4g
3.2.2 Control 50
3.2.3 Status 54

3.3 Examples 55
3.3.1 Example: A Fixture Test 55
3.3.2 Example: A Dead Process Causes Communication Breakdown 57

3.4 Summary 58

Chapter Four: Algorithmic Details 60

4.1 Analyzer Implementation 60
4.1.1 Overview of Analyzer Algorithm 61
4.1.2 Data Structures 63

4.1.2.1 Messages 63
4.1.2.2 Message Recognition Demons 66
4.1.2.3 Transaction Recognition Demons 68
4.1.2.4 Paths, Matching, and "Faulty Transactions" 71

4.2 Display Monitor Implementation 78
4.2.1 Unbounded Data/Finite Screen 7g
4.2.2 Designing a Meaningful Display 80

4.2.2.1 What Should a Message Look Like? 80
4.2.2.2 How Should Messages Be Related? 81

4.2.3 Control in Terms of Abstractions 81
4.2.3.1 Keeping Track of Abstractions 82
4.2.3.2 Map Management 82

4.3 Summary 83

Chapter Five: Summary, Critique, and Future Work 86

5.1 Summary 86
5.2 Critique go

5.2.1 Error Detection is a Powerful Tool Ql

5.2.2 MAL Is Not Strong Enough, and Hard To Use Q2
5.2.3 The JDM Lacks Sufficient Display Power Q3
5.2.4 Control Mechanisms Are Not Ideal g4

5.3 Proposed Enhancements g4
5.3.1 MAL Language g4

5.3.1.1 A Syntax Checking Editor 04
5.3.1.2 A More Powerful Language Q6

5.3.2 Monitor g7

6

5.3.2.1 An Enhanced Display
5.3.2.2 Control In Terms of Substructures

5.4 Conclusion

Appendix A: MAL Frames:A Hypothetical Transaction

Appendix B: MAL Frames: An Actual Scenario

Appendix C: A Message Journal

Appendix D: The JDM Display

Appendix E: A BNF Grammar for MAL

7

97
98

98

gg

105

110

111

119

Table of Figures

Figure 3-1: A Sample Message Description
Figure 3-2: A Sample Transaction Description
Figure 3-3: A Journal to be Processed
Figure 3-4: A Message is Gob bled
Figure 3-5: A Transaction is Recognized
Figure 3-6: Journal is Processed
Figure 3-7: A Typical JDM Screen
Figure 3-8: JDM screen layout for Fig. 3-7
Figure 4-1: A Simple TRD, and MRD, Before Gobbling Message
Figure 4-2: A Simple TRD, and MRD, After Gobbling Messages

8

36
39
43
44
45
46

52
53
64

65

Chapter One

Introduction

1.1 General Motivation

Distributed, decentralized systems are rapidly becoming the architecture of choice

for state-of-the-art computer projects. As the exponentially growing demand for

computational throughput runs into the asymptotically limited power of

computer hardware, distribution of computational load provides an increasingly

attractive alternative to the striving for faster cycle times. Additionally, many

applications today, such as array processing and graphics, naturally lend

themselves to a distributed approach.

For these reasons, much work has been done recently on perfecting more

sophisticated and elaborate distributed computer systems. (See for example

[CCA80], [Hillis81], (Arvind80]) Unfortunately, while much progress has been

made in augmenting the computational power available to distributed

programmers, precious little has been done to insure that the ability to control

that power has increased at a similar pace.

Specifically, there is a need for intelligent debugging and monitoring tools for

distributed systems, such as have long been standard equipment for writers of

serial programs. This thesis describes an investigation into one approach to that

problem, and speculation as to future approaches.

g

----- ------ - -------------------------

1.2 Distributed Systems Improve Over Serial Ones

The term "distributed systems" encomp~ a large class of computer system

architectures, from tightly coupled highly parallel systems such as the Connection

Ma.chine [Hillis81), to networks with highly autonomous nodes, such as the

ARPAnet [Cerf83, DARPA81). All of them have in common the characteristic

that multiple processes are active simultaneously, and are working in

coordination with each other to achieve some global functionality.

Distributed systems provide potentially great increases in the throughput of

computer systems, without drastic increases in processor speeds. They do this at

a cost. By increasing the amount of activity in the system at a given moment,

the complexity of these systems increases rapidly. Not only is there a linear

increase in the amount of program data to be kept track of, but there is the

newly added factor of interconnections. The number of potential

interconnections increases quadratically as the number of nodes. Managing this

complexity and reducing it to a manageable level presents a challenge for

designers of debuggers for distributed systems.

1.3 Debugging is Still an Art

In many ways debugging is the step-child of computer science, a necessary evil.1

Very little theoretical work has been done on it. While debuggers today are quite

sophisticated by comparison to their predecessors of twenty years ago, there still

exists today no detailed theory of debugging. This is perhaps understandable

since, until recently, debuggers have done adequately without such a theory. In

the absence of a good theory, serial debuggers have been designed by intuition.

1 As Henry Leiberman has noted: Debugging is like sex, everybody does it, but nobody wants to
talk about it.

10

The serial debuggers which have been written in the past had a straightforward

task to perform: to provide a user with realtime control over the sequential

operation of a process, and to give the user information about the state of the

program. Debuggers today use the same basic techniques as those of the nineteen

sixties, the ma.in difference being the f orma.t of the display of information.

The execution of a distributed program involves types of data and interactions

which are not handled well by serial debuggers. Examples of novel, poorly

handled features include interprocess messages, simultaneous processes, and

implicit higher level transactions. Creating a debugging system for distributed

programs requires fundamental changes in the previous debugging paradigms. In

order to do this, it is first necessary to state, in abstract terms, exactly what

debuggers do. It is necessary to look at traditional serial debuggers, discover

general principles of debugging, and apply them to the distributed problem.

This will be examined further in Chapter 2.

1.4 A Message Abstraction Monitor

This thesis describes a Message Abstraction Monitor (MAM) which was designed

with the above issues in mind. The MAM system was designed specifically for a

distributed system under development at GenRa.d Inc. as the opera.ting system

for automatic test equipment (ATE).

MAM is a post-mortem analyzer which allows a user to inspect the message

journal of a distributed program execution in terms of high level abstractions

previously defined. This system uses the pa.radigm of behavioral abstraction

(Bates81), understanding program flow in terms of the message passing behavior

of individual processes, rather than program steps.

MAM consists of two modules, an Analyzer, written in Scheme (Abelson85), a

11

dialect of lisp, and a display monitor, written in C and utilizing the Sun

workstation graphics system. The analyzer "digests" a raw journal, by parsing it

in terms of abstractions provided by the user. The display unit uses graphics to

provide a movie-like playback of the digested journal.

MAM was designed as a prototype system. It does not provide the clean user

interface that would be required in a production debugging system. Rather it

was used to explore exactly what the needs of such a system might be, in terms

of analytical power and graphical display.

1.5 Previous Work

1.5.1 Event Description Languages

Various projects have used languages to describe interprocess communication on

a higher level than the single message. All have relatively simple language

descriptions, essentially extensions of regular expression descriptions.

The Event Definition Language (EDL)

[Bates81, Bates82, Bates82a, Bates83, Ba.tes86] was designed as part of a project

to investigate techniques for programming on distributed systems. EDL provides

a means of specifying, by means of regular expressions (with some extensions), a

hierarchy of abstract event types on a space of primitive interprocess events.

The authors introduce the notion of "Behavioral Abstraction", as an alternative

to state based debugging. Their idea is to think of modules in a distributed

system in terms of observable behavior (interprocess interaction), so that the

state of the machine is defined in terms of this behavioral information rather

than information about the program counter and variable bindings. In addition

to providing descriptions of events, EDL allows the specifying of predicates on

events so that filtering of uninteresting data can occur. EDL is intended as the

12

basis for a full debugger for distributed programs. Such a. system has been built

and is the subject of a thesis by Bates: [Bates86].

The MuTea.m Debugger [Baiardi83] implements another language for describing

events, this time in a distributed programming language. The debugging

language is an extension of the programming language itself, and the authors

give a rigorous analysis of the resulting semantics of this system.

Gertner [Gertner80) uses finite state machine descriptions to recognize

interprocess events. This work allows hierarchical descriptions by allowing lower­

level FSAs to be included as part of higher level descriptions. This system is

primarily concerned with monitoring network behavior for performance analysis,

rather than with debugging.

1.5.2 Runtime Stepping Control

A number of debuggers have been implemented which actually give the user

breakpoint and stepping control of a distributed system at runtime.

Smith [Smith81] implements an interprocess debugger for processes

communicating within a single processor. The debugging mechanism is an

integral part of the operating kernel of the message system. Since messages are

not being passed over a network, the kernel has complete control over the flow of

messages. The system takes advantage of this fact by allowing a much finer

grain of control than in other systems. Rather than have the transmissions of a

message be the atomic type of event, this system considers the crossing of certain

conceptual boundaries to be items of interest. For example, processes are

modeled as having some number of ports, queues for receiving messages, which

are internal to the process. Messages are sent to ports, rather than to processes.

A message may be "inside" of a process, but still outside any particular port.

The crossing of a message from the "ether" into a. process is considered an event

13

in this system. Crossing from that process into a particular port is considered

still another.

Smith's system allows the user to define demon recognizers, which monitor the

message traffic, and fire a set of commands when they recognize certain behavior.

These commands may set a new breakpoint, or insert "bogus" messages into the

stream. The demon facility allows the user to run the system at normal speed,

while still allowing control over execution.

[Schiffenbauer81) addressed the problem of global breakpoints in a physically

distributed system. Smith's approach would not work in such a system because

of the stochastic nature of network traffic. Setting a breakpoint at an arbitrary

time might cause messages to be lost, or received in an unexpected order.

Schiffenbauer used Lamport's [Lamport78) notion of logical clocks as a method

for insuring transparent message delivery, even in the presence of breakpoints.

Logical clocks insure that messages reach a program only at the same logical time

(i.e. relative to other messages) in its execution history as they would have in a

freely running system.

[Garcia-Molina.84) describes a system by which local logs of process activity are

kept, and then examined and coordinated later. A log is kept of the

"interesting" activities of each process. Some of these activities are recorded by

the system itself (such as process birth/death), while others are the responsibility

of the process itself to record. Thus, this system allows arbitrary data to be

stored in the process log, and avoids the problem of recognizing higher order

events by having the process write them out explicitly. This system also uses

logical clocks to coordinate the transaction logs.

After all the logs are recorded, they are treated as a distributed relational

database, and a user may make queries into it. However no facility is given for

reproducing program behavior from the records.

14

1.5.3 Network Map

[CCASO,pp. 113-122) describes a graphical system for monitoring network traffic

in a distributed database system. It contains general ideas for the graphical

representation of messages, including a network map format, use of color and

arrows to indicate data flow.

1.5.4 Movie Playback

The idea for a movie playback of the message journal was inspired by [Balzer6g),

which describes a system for movie-like playback of a single process program, but

without the use of graphics. The major idea in this system is to highlight

program lines on the sereen as they were being executed, while continually

updating a display of program variables.

1.6 Implementation Environment

This section describes the specific debugging task for which MAM was created at

Genrad. Although MAM was designed as a general purpose debugger, there are

certain assumptions made about the nature of the types of programs that might

need to be debugged, based on the design of the Genrad environment.

MAM was developed in response to a need at Genrad to understand the behavior

of the control software for a new product, the 2750 Automatic Electronic Tester.

The 2750 is controlled by three microprocessors connected via an ethernet, and

running multiple concurrent processes. Each process is responsible for a specific

well defined task, such as user interface, automatic test generation, or run time

control of the test hardware.

15

1.6.1 Hardware Architecture

Processes in the Genrad system are distributed between a Digital Equipment

Micro-Vax and a Sun Microsystems workstation based on a Motorola 68000

family processor. Systems run the UNIX opera.ting system. All messages are

transferred via ethernet hardware. No distinction is made between intra­

processor communication, and process communication between physically distinct

processors.

The Sun workstation acts primarily as a user interface. Its capabilities include

an advanced windowing system, and high resolution bitma.pped graphics. The

Vax acts as the central processor of the system, handling processing-intensive

jobs, and interfacing with the specialized hardware of the tester.

1.6.2 Software Architecture

1.6.2.1 The Message Server

All message traffic in the system is coordinated by a central message server. This

process handles queuing of messages and spawning of new processes.

Additionally, it generates a journal of all of its relevant activities. Specifically,

this includes message transfer and process for king. Because a request for forking

of processes is a behavior of equal importance to message passing from a

behavioral abstraction viewpoint, process for ks are stored in the journal in a way

which makes them indistinguishable from message transfers. In this way, a

process A requesting a fork to create process B is represented as a "pseudcr

message" of type "fork" from process A to process B.

The journal output of the message server is stored in a frame-based database
J

system known as The Navigator. Each frame in the journal corresponds to a

single message transfer, and contains slots for relevant descriptive information of

that transfer. These frames are described in more detail in Chapter 3.

16

1.6.2.2 Applications

A number of specialized modules make up the operating system in this tester.

They include:

• A user interface task (UIT) for screen management.

•A number of user interface nodes (UIN) for individual window
management.

•A run time system for the tester (RTS) to interface between the
software and the specialized runtime hardware.

•A run time executive (RTE) to control the runtime hardware.

•An automatic test generation program (ATG), for generating test
instructions, given descriptions of circuit boards.

• A diagnostic system (DIAG) for analyzing results of board tests.

• A test set development coordinator (TSD), a global program
coordination module.

The interactions between these various modules vary greatly. The user interface

uses asynchronous messages to other tasks at varying intervals. The run time

system and executive are in close communication, with loads of up to 3 messages

per second expected. In contrast, the automatic test genera.tor may send one

message in an hour.

1. 7 Plan of Thesis

The rest of this thesis describes the motivation behind MAM, its functionality,

and the issues that arose during implementation. Some realistic debugging case

studies a.re also presented.

Chapter 2 discusses general issues in debugger design and how using an event

17

based view requires a modification of the traditional debugging paradigm. It

introduces the notions of program object data and program control data, and

highlights the overlap between the two in the behavioral abstraction paradigm.

Chapter 3 presents a user view of MAM, essentially a user's manual. It defines

MAL, the Message Abstraction Language for describing behavioral abstractions,

and describes the Journal Display Monitor, the graphical display interface.

Examples of debugging practice are given with respect to some case studies.

Chapter 4 provides implementation details of the MAM systems, including the

algorithms used by demon recognizers to analyze the input journal.

Chapter 5 critiques the current MAM implementation, and proposes future

extensions. It discusses the results of the research conducted, particularly how

the MAM performed with respect to the original expectations. A number of

extensions are proposed, including an input editor for MAL, improved language

features and improved display features.

1.8 Definition of Terms and Abbreviations

There are a number of terms and abbreviations used frequently throughout this

thesis whose meaning may be ambiguous. They are defined below:

1.8.1 Terms

Control Data Information describing the state of a program's computation

which is not generally involved in the computation itself. Typical examples of

control data are the current program line number and pending procedure calls on

a stack. See also Object Data.

Debugger A software tool for debugging computer programs. Not to be

confused with the person doing the debugging, the user.

18

DlaVlnted 81'••• A coaputer ••*• la wlalell two or more computer

proeesaes workiDg la uaJaon to provide ; •• .me.. DWl>u&ed

systema take many lonna, from very kla.., eallll•cl ,aaeJa ea She ARPA.ut,

in which nodes are~~ ~~ aeli •
..... ·· :' -_ ,,.,

the ~ W..Wae le wWch _.. Mlailtlltly ~ la t8e

worklup of the ~. The d.iatlbtated ·-·1.1111 :4'
1
._. •• ,. la tW. work are

those which fall...,,...,.. betweea .·ti...-..4IV11n1• ID pricnllar, it Is

concerned with .,.._ wllicll .Wse • ,._. , {LAN) aad a oenval

meea.c• server, a.ad iavolve au~ •••c• 111uh,t1 to provide a eiagJe

•nice to a

EveatAme81ageora~

Event N......._ A 1&u11:p ..- r,_ 08!1 •n:11R a *8 MAL,_r to

another,~ -, ''[:1:11~ ~.

F.Wt7 Tnta•Mtl• A ...,_. ol ·•• (lllP, _. ckrtWet from the

cieaer1pt1on ot.,.. ,......,,_..,.lu.Ilt··6fl-.llilt.L•~..,.iMetl .,pa ot
error. It ls wuaed tlali a fadT vr•·1-:i1:iM1l~•r••'* • eoaapW!ag a . ' . . - -· . - '·. ·: . ~

valid trauaction.

Mar ••A.._•••• which is tnltf,.,_g14ftI .. :•!1:pua• to ,.eta.er la a
dlRrlbuW .,.._, w11llf ._.. .. •li!ll,...,·, ••nr!illll,,.uy Jaaw 11

propertiea aa ld, a •Ml•. w or._ •r!ln_l1~~·--··~J.,, -1

M111• .. ID A _._ woelated, .. · •.•• .,;>:*ffl!J,• .. c1 .. ocl ., ,,,...,..,..., ,,.... ~•x•*•••·· , ..
recipleat of a uuasp-.W .-.-.tt.ftn1n•lint•1ti1ililf'••·

"c ' ' • • • ,- __ • ·' "'. \:::')i,~_.: ,:'." <': < <

tt

UUJJLtJS

Message Name An unique identifier assigned to an inatance of a message type

that has been recognized during a journal analysis. Such names are constructed

by concatenating the message type with the timestamp of the message instance.

Message Type A class of messages defined for debugging purpo8ea. A message

type is described by an MD. Characteristics which define a message type may

include the message id, the sender and the recipients of a message.

Object Data Information on which a computer program is explicitly operating.

Typical examples of these include program variables and data structures. See

al8o Control Data.

Serial Debugger A program designed to aid in the debugging of serial

programs. Serial debuggers typically provide the user with runtime control over

a program, allowing the use of tracing, breakpoints, and data dumping.

Transaction The sending of one or more messages between two or more

processes to achieve some particular purpose. Transactions can be classified into

types using a Message Abstraction Language.

1.8.2 Abbreviations

AD Abstraction Description. The basic unit of a MAL input file. Either a MD

or a TD.

ATG Automatic Test Generation. One of the program process types in the

GenRad system.

DIAG Diagnostics. One of the program process types in the GenRad system.

JDM Journal Display Monitor. The MAM module which displays processed

journal data on a graphics screen.

20

MAL Message Abstraction Language. The language for describing transaction

and message types.

MAM Message Abstraction Monitor. The program described in this thesis.

MD Message Description. A MAL construct describing an abstract message type.

MRD Message Recognition Demon. A SCHEME message passing object which

handles the recognition of an instance of a message type described in an MD.

NF A Non-deterministic Finite State Automaton. A model of computation useful

in pattern matching.

RTE Runtime Executive. One of the program process types in the GenRa.d

system.

RTS Runtime System. One of the program process types in the GenRad system.

TD Transaction Description.

transaction type.

A MAL construct describing an abstract

TSD Test Set Development. One of the program process types in the GenRad

system.

TRD Transaction Recognition Demon. A SCHEME message passing object

which handles the recognition of an instance of a transaction type described in a

TD.

UIN User Interface Node. One of the program process types in the GenRa.d

system.

UIT User Interface Task. One of the program process types in the GenRad

system.

21

-· ·--··---------------------------

Chapter Two

Background: The Problem of Debugging

This chapter describes the theoretical issues which must be faced by the designer

of a debugger for distributed programs, and gives brief descriptions of how MAM

addresses them.

2.1 Learning from Experience with Serial Debuggers

Before setting about the task of designing a debugging tool, it is useful to ask

what the process of debugging is all about. Programmers have quite a bit of

experience debugging serial programs, as well as an intuitive understanding of

that process. With distributed programs, however, there are a number of issues

which make for a qualitatively different (and harder) problem. On a high

enough level, though, the goals and methods in both domains are essentially the

same. This section examines the general methods of debuggers for serial

programs (serial debuggers).

The primary goal of a debugging session is to determine if the program is "doing

the right thing", and if it is not, to discover the internal mechanism that is

failing to operate in the desired manner. The test for "doing the right thing" is .,

frequently just an informal comparison, by the user, of expected input/output

behavior with that which is observed. Once an anomalous behavior pattern is

noted, the programmer makes an hypothesis (possibly a very vague one), as to

the internal cause of this problem, and attempts to make the necessary program

modifications.

22

In this scenario, the debugger acts as a passive tool in the ha.nds of the user. The

debugger provides acceas to the program, but little or no interpretation of the

results of running it.2 Three features of a debugger allow the user to access the

internal world of the program to check and further refine his hypothesis:

•Data Dump/Display/Alteration: A program might be executing the right

statements, but those statements might not be performing the correct action on

data, (i.e. some procedure is being used in the wrong way because of a

misunderstanding by the programmer). Monitoring real-time changes in variable

state, or analyzing a post-mortem dump of variable values can help spot the

defective program line(s).

•Stepping/Breakpoints: It is frequently useful to run through a small section of

code, and then to examine the partial results of the computation. A breakpoint

feature allows the user to put a marker on a particular instruction, causing an

interrupt of the program whenever that instruction is reached. A stepper can be

thought of as a degenerate case of the breakpoint, where a marker is placed on

every instruction.

•Program Line Execution Trace: A breakpoint leaves the user with partial

computation data, but does not indicate that program control pa.th which led to

it. Sometimes this information can be inferred from the resulting partial

computation, but often it cannot. Since a program may execute millions of

instructions in a single run, it is often impractical to go through large portions of

it at single-stepping speed in order to follow the exact thread of control. Tracing

is a next-best attempt to infer the actual thread of control. Key instructions of

the program can be marked so that their execution is flagged.

2Perhaps the word debugger is an inappropriate name for this type of program, since it is the
human user that actually does the debugging.

23

The first of these features gives access to program object data , while the second

and third give access to program control data information. 3 A typical debugging

session involves first using the control functionality of the debugger to maneuver

to a certain logical point in the program, and then observe program data. This

cycle may be iterated a number of times at different levels of detail until the

fa ult is found.

2.2 Parallel Debugging Presents Qualitatively Different

Problems

2.2.1 Time Ordering is Not Total

In a distributed system, using the serial debugging paradigm is not always

feasible. The program control operations (stepping, breakpoint and trace) all

depend on a total ordering of program statement execution times. The idea of a

step or breakpoint is meaningful only if there is a unambiguous successor to any

given program step. Steppers and tracers are useful insofar as they give the user

an idea of the logical sequence of instructions executed.

In a distributed message passing system, there may be no total ordering of

program statements, only a partial ordering. In the logic of distributed

programs, it is sometimes impossible to predict, and irrelevant to know, the

relative ordering of two program statements in separate processes [Lamport,

1978]. For example, if two processes, running on physically separate systems,

execute program statements at times very close to each other, it is impossible to

determine remotely which occurred first. The reason is that the time for a signal

306,iect data refers to the data that the program is computing on (e.g. variable values, data
structures), while control data refers to the •bidden• information which is maintained by the
computer to actually run the program (e.g. subroutine returns, program counter, procedure call
stacks)

24

indicating such a statement execution to reach a. monitoring process is a. random

variable, affected by the statistical characteristics of the message transmission

medium. However, as Lamport has shown, this relative ordering is important

only among the class of program statements whose relative ordering can be

detected in (i.e. has some meaningful effect on) the resultant functional behavior

of the program. Fortunately, this class of instructions is limited to those

program statements which are involved in interprocess communication.

The solution, then, to the problem of controlling a non-total ordering of program

steps, is to raise the view of the debugger to a level at which only interprocess

communication actions are visible. Schiffenbauer [Schiffenbauer81] has offered

one possible solution to this problem by recognizing that at a high enough level

of abstraction, processes can be seen as interacting in a coordinated fashion. By

thinking of individual processes as black-boxes, and treating them solely in terms

of their message-p88Sing behavior, Schiffenbauer has created a system where

single stepping a distributed program, in terms of a logical clock determined by

message dependencies, is possible.

Schiff enbauer's system is complex and not general. Because it operates as a

realtime debugger, it must be concerned with debugger tranBparency, the

maintenance of the illusion that the debugger does not exist. Nothing that the

debugger does should have any effect on the logical behavior of the program.

However, if a debugging program is merely one process among many competing

for the resources of the distributed system that it is delMl&ging, it cannot help

but have some effect on the runtime environment of the other processes, and

thus on their behavior. This problem can only be overcome, as Schiffenbauer

demonstrates, by making the debugger an integral pa.rt of the message passing

system. All messages pass through and are routed by the debugger. Parts of the

debugger reside on every processor in the system to maintain control over

individual processes under control of the central debugger.

25

MAM avoids the issues of timing and transparency by examining the distributed

process in a post-mortem fashion. MAM does no obser,vation of actual messages

on the network; rather, it examines the journal produced by a central message

server. This journaling is performed as a side effect of the interprocess

communication facility, and thus entails no additional expense. The problem of

transparency is no longer an issue, since MAM does not have any a.ff ect on the

program at runtime. Since MAM is a genera.I pattern recognizer, it can easily be

customized for a variety of distributed environments; it requires no funds.mental

modifications to the system it is examining.

MAM addresses the problem of ordering somewhat differently than does the

Schiffenbauer system. Schiffenbauer avoids the need to "arbitrate" the timing of

program steps in separate processes by abstracting processes and only looking at

their external behavior. But it is still necessary to arbitrate the external timings,

and this is done by logical clocks. With MAM the arbitration issue does not

occur, since a de facto ordering is automatically imposed on interprocess

communication by the journaling mechanism. Since this mechanism is an

integral part of the system being debugged, there is no loss of transparency as a

result.

2.2.2 Too Much Confusing Data

2.2.2.1 The Problem: Complexity, and No Explicit Structures

An important goal of serial debuggers is to limit the a.mount of program

information presented to the user, and to present it in a manner meaningful to

the user, in terms of the abstractions in the user's model of program behavior4
•

4For example, a LISP debugger that traced progralll8 in terlll8 of machine language instructions
would be providing complete information, but it would not fit the programmer's model, which is
that of a LISP interpreter environment.

26

This problem of controlling information overload is compounded in a distributed

environment. The amount of relevant data. is multiplied by the number of

processes, and the program state information is now much more complex than a

simple stack of procedure calls and program counter number.

Data. overload can come in two forms: too much object data, which makes data

dumping difficult, and too much control data, which makes tracing or

breakpointing harder. In a debugger such as MAM, which adopts Schiffenba.uer's

notion of process-as-black-box, the problems of tracing and of data dumping a.re,

however, essentially identical. The reason for this is that, if the finest grain of

program steps a.re thought of as being the time between messages passing

between processes, (these messages being the data of the program), the task of

tracing a program is reduced to displaying the data being transferred between

processes at a. high enough level of abstraction. 5 It can be seen then that the

MAM solution to the problem of partially ordered instructions, using message

transmissions as instruction boundaries, also helps to limit to some extent the

amount of data that it must process. All program behavior which is not

discernible from I/O behavior is abstracted away, so that the only important

information a.bout the program is the list of messages which are sent between its

component parts. However, if our goal is to display message traffic for a lengthy

program run, distributed debuggers (debuggers for distributed programs) will run

into the same problem that serial debuggers face, namely a. glut of data., and no

means to understand it.

5Tbe distinction between control and data is somewhat fuzzy. Usually it is possible to tell
where in the logic of a program a process is by observing certain landmarks. In most cues, these
landmarks are single program step executions. ID thia case, since program steps are being
abstracted away steps, the lowest level of landmark we have is the interprocess message. Seeing a
message indicates where in the logic of the program a computation is. The lack of fme-grained
observation causes all of the program behavior between messages to be treated as an atomic
action.

27

----------------------~-~~-~-

Simply printing out identifiers for all messages that were passed during a

program run would give the user a behavioral description of the program

execution, but the sheer amount of uninterpreted data would make further

analysis difficult. It would be analogous in a serial system to printing out every

machine language instruction executed. In serial debuggers, this problem is

avoided by giving the debugger knowledge of the higher level abstractions used

in the programming language. Often, special object code is generated which tells

the debugger of the relationship between machine language instructions and lines

of source code. This allows the trace facility of a debugger to represent the

execution of hundreds of lines of machine code by a single source program

statement. Most debuggers today go one step further, allowing the user to treat

the execution of user-defined procedure calls as atomic actions, allowing control

in terms of high level abstractions.

Unfortunately, the high level abstractions in a message passing system a.re often

not explicit in the code of the program. For example, a very common

transaction in any system is a request for data. Process A sends a message to

Process B, requesting a certain piece of data, Process B sends that data to

Process A and (optionally) awaits an acknowledgment. This sequence of two (or

three) messages represents a logical, functional unit. The programmers of the

system expect it to happen at certain times, and its absence (or malfunction)

would indicate a program bug. But there is not enough intrinsic information in

these three messages to indicate that they are necessarily related in a logical way.

If there a.re many processes using the system, it is unlikely that these messages

will occur serially without interruption. While it is true that they will all have

the same sender and return addresses, these do not necessarily give enough

information to distinguish between adjacent or intertwined transactions.

28

2.2.2.2 A Solution: Behavioral Abstraction

Peter Bates has developed an approach to distributed debugging called

Behavioral AbBtraction, which addresses some of the issues mentioned above.

Behavioral abstraction involves viewing a program solely in terms of the message

passing behavior of its component processes, - specifically inter-process

communications. These interprocess interactions, usually in the form of

messages, can be used as the basis for building up abstract transaction types.

A standard set of transactions will be associated with many distributed

computing environments. A transaction is the message passing analogue of a

procedure. That is to say, a transaction is a ,set of primitive actions that can be

thought of, functionally, as a single unit, corresponding, on some level, to a single

service or action. When a programmer is analyzing the behavior of a

complicated message passing system, it will be these high-level transactions which

will form the basis of understanding. It is only natural then, that in a debugging

system, transactions should form the evidence of program control flow.

Since transactions are not explicit, in that they depend largely on the users own

model of program behavior, a language for describing and identifying them is

needed. Regular expressions are a natural means of description for transactions,

as they describe classes of strings which do not require recursive descriptions

(self-calls). Many distributed systems lend themselves to this form of description.

In particular, those systems which utilize a synchronous paradigm in which

processes either block for acknowledgments or ignore them, thus eliminating the

possibility of a backlog of messages, can be described in such a fashion.

There is also a need in transaction descriptions for hierarchical descriptions. On

the highest level, transactions may contain hundreds of individual messages.

Once a user has isolated a problem within one of these top level transactions, a

finer grain of viewing may be required. Thus, the user will need access to lower

level (but not necessarily primitive) events which make up the transaction.

Eventually, it is likely that a. single message (or la.ck thereof) will be found to be

the culprit; finding that message by way of iteratively increasing the amount of

detail is a natural way to go about that task.

In order to present message traffic in a useful way, MAM uses high level

abstractions (transactions) to encapsulate detail. These abstractions are specified

using expressions in Message Abstraction Language (MAL). Judicious use of this

Message Abstraction Language (MAL), will allow the user to be shown only that

data. which is of immediate interest, and only in an informative format.

2.2.3 Non-linear Data

Most serial debuggers simply print status messages on a. terminal in some

straightforward way. The very nature of a serial program makes the use of a

linear stream of messages quite a. natural representation of program dynamics.

With a distributed debugger it is essential to be able to represent a. situation in

which many different things are happening at once. Certainly, there a.re schemes

which could do this by printing out messages on a terminal, but experience and

current understanding of human cognition6 would indicate that a graphical

display of such data would be more useful.

The MAM display format is that of a network map. The various processes of the

distributed program that are being monitored a.re displayed as nodes on a

network, with connecting lines indicating the flow of various messages. Messages

6 [Model79], p. 12:• ... human physiology and psychology ... reveal a strong visual bias in the
human organism . . . sensory information is highly organised before it reaches the parts of the
brain associated with abstraction, analysis and other components of thought. The significance for
monitoring facilities or these information proceuing characteristics or the human brain is that the
pictorial, or analogical, preeentation or information is often more effective than presentation in
the more abstract, symbolic modes.•

30

are displayed in the context of the higher level transaction of which they are a

part.

2.2.4 Dealing With Unexpected Behavior

As mentioned previously, using behavioral abstraction has the effect of making

the object data of the debugger view the same as the control data. The user

depends on the values of object data to determine the state of the control

mechanism of the program. This has the unfortunate effect of tying the ability

to understand the control mechanisms of the program to the ability to recognize

valid data. The monitor can only describe what is happening within the

program insofar as it can recognize the sequence of events that it observes.

Since MAM is designed to be used as a debugging aid, it is to be expected that

some of the data to be analyzed by it will be faulty. High level transactions may

be incomplete, or have extraneous messages in them. Messages may be sent

which have unrecognizable types. Coordination problems may cause an incorrect

ordering of messages. However, only in a. pathological case will what appears be

totally uninterpretable.

MAM has a language for describing recognizable events. It is expected that there

will only be perhaps a few dozen such events of interest, and maintaining a

library of them would be simple. However, it is also necessary for MAM to

recognize the aforementioned "faulty" transactions, which are frequently caused

by the very bug for which the user is searching. Yet to create a library of "bad"

transactions would seem a Herculean task. Given the variety of ways in which

high level transactions might be "corrupted" it would seem to indicate orders of

magnitude difference in the amount of information needed.

The 11 faulty transaction problem 11 is solved by making certain assumptions about

the appearance of faulty transactions. One can think of transactions (essentially

31

'··"";

strings of messages) as having locations in a. metric space. It can be expected

that in the space of strings of messages, those points indicating valid transactions

are sufficiently distant that one could (conceptually) draw large error circles

a.round those points without overlap. Simple algorithms can be used to generate

points in those "error margins", solely from data about valid points or, better, to

determine whether an unrecognized pattern fits within the valid scope of one of

the error margins of an bona fide transaction.

In more concrete terms, there are a number of ways to make the message

specifications more "fuzzy", such as permitting transaction recognition in the

presence of some limited number of unrecognizable messages, or of missing ones.

MAM currently recognizes transactions that a.re faulty in one subcomponent of

the defining pattern of the transaction. This missing component may consist of

single missing message, or, in the case of a transaction built up of smaller

transactions, a large number of messages. Since messages within a functional

transaction tend to be causally related to ea.ch other, it seems much more likely

that multi-message faults would occur within such units, rather than a.cross

them, thus making the single sub-transaction tolerance of MAM likely to catch

common errors.

2.3 Automatic Error Detection

The functionality in MAM for recognition of faulty transactions permits, as an

obvious side effect, the automatic detection of program errors by the system.

This provides a significant service that is not available in serial debuggers. In

serial debugging systems, the only errors which are explicitly flagged by the

system a.re those which cause runtime errors, typically involving bad data. types.

Most types of semantic errors, or errors in logic, a.re left to the user to detect.

In a journal processed by MAM, any transaction which seems to be faulty will be

32

flagged. This immediately indicates for the user the general location of the

problem. By then observing the situation on progressively lower levels of

abstraction, the user can eventually pinpoint the exact cause of the problem.

2.4 Summary

In this chapter the theoretical and practical motivation for a new approach to

distributed debugging, have been laid out. The process of debugging is first

characterized in a general way, taking experience with serial debugging as a

basis. The roles of breakpoints, tracing, and data dumping a.re examined.

From this starting point the problems encountered in distributed debugging are

examined, and the areas in which the serial debugging paradigm breaks down are

discussed. The major problems discussed include: maintaining debugger

transparency in a distributed environment, displaying complex data in a

manageable and meaningful way, and (given a "black box" solution to the to

previous problems) how to handle unexpected program behavior gracefully.

Two major innovations were introduced to address these problems. Behavioral

Abstraction, the method of understanding program behavior only in terms of

interprocess communication, serves both to avoid transparency and timing issues,

and to keep the a.mount of data down to a manageable size. A network map

further reduces the problem of data glut by presenting the results of behavioral

abstraction in an intuitive and simple manner.

In addition, a third innovation is introduced as a necessary side effect of the

prior two. This is automatic error detection, which allows the debugging

program to detect semantic errors and errors in logic, which were only manually

detectable in serial systems.

33

Chapter Three

User View of MAM

This chapter describes the "user view" of MAM. "User view" is a more general

term than "user interface", encompassing not only the operational details of that

interface, but also the underlying model which the user must possess in order to

utilize MAM properly. This includes the semantics of the Message Abstraction

Language, as well as the "graphical semantics" of the network map display.

Using MAM is a two step-process, involving first the analysis of a message

journal, followed by the subsequent interactive diaplay of the result of that

analysis. Two separate programs were written to accomplish these discrete tasks.

The Analyzer, which was written in Scheme, a dialect of Lisp, takes two

inputs: a message journal, in the form of a Navigator7 library file, and a

Message Abstraction Language (MAL) input file, describing message abstractions.

It operates in a non-interactive fashion, and outputs a modified library file,

containing the original journal, plus information a.bout the abstractions it has

detected there. The Analyzer scans the journal for instances of transactions that

have been defined in the MAL input file, marking their elements in the journal.

Additionally, faulty transactions, those which come close enough to matching

specifications to be considered "near-misses", are also marked.

Once the analysis is done, the user may actually begin to use the journal data. to

debug the program at hand. This is done using the Journal Display Monitor

7 The Navigator is a frame representation language data base system system available at
GenRad.

34

(JDM), an interactive Sungraphics8 based system, written in the C programming

language. The JDM permits the user to display sequentially the behavior

represented in the journal, at different speeds, at different grains, and at a

number of different levels of abstraction.9 The rest of this chapter gives a

detailed description of the use of MAM.

3.1 The Analyzer: Message Abstraction Language

A standardized user interface for the Analyzer was never developed. It was

assumed that syntactically and semantically correct MAL expressions would be

prepared offline in a form readable by the program. This "no frills" approach to

interpreting MAL expressions me.de implementations easier, but, not

unexpectedly, caused many problems in actual debugging sessions. A proposal

for a more intelligent interface is discussed in Chapter 5. The aspect of the

analyzer of greatest interest, then, is MAL itself. The rest of this section

describes MAL, its syntax, its semantics, and the process of building up data

descriptions.

3.1.1 Abstraction Descriptions

MAL is a descriptive language. A MAL input file consists of a series of

Abstraction Descriptions (ADs). An abstraction description is a list of items

which characterize an abstraction that has been defined on the space of

interprocess messages, giving the analyzer sufficient information to recognize

unambiguously those abstractions. MAL allows for two distinct types of ADs,

Transaction Descriptions (TDs), and Message Descriptions (MDs)

8sungraphics is a registered trademark of Sun Microsystems Inc.

9•Speed• refers to the realtime speed at which the data is shown, •grain• refers to the amount
of detail shown about a particular abstraction being displayed, and •level of abstraction•
indicates which level in the hierarchy of abstract transaction types the user is interested in
examining.

35

An MD (See Figure 3-1 for an example10) is the basic building block of a. high

level AD. An MD pattern is matched by a single message which appears in the

input stream, although there may be more than one particular type of message

which would satisfy a particular MD. An MD allows the user to focus upon those

aspects of individual messages which a.re important in the recognition scheme,

while abstracting a.way from other details. For instance, it may be useful to

define a certain message type as having a particular message id, as well as being

sent by a particular process type, ,but having a recipient of unspecified type .

...... A.Q•:

MUIMI ID: Ill

SINDll: llJ

llCIPllNT(S): •

CONTINT:

Figure 3-l:A Sample Message Description

lOThe representation in figure 3-1 provides an easy to read format for diaplay of MD data, but
does not represent the actual text that is provided to the ADalyser. See Appendix E Cor details on
the actual input Cormat.

36

A MD frame consists of the following slots:

Name: to identify the abstraction for use in higher level ones. Name is a unique

identifier, selected by the user. In the figure, the name of the MD is

button-message.

Message ID: a number which is the minimal form of type identification for a

journal message. Every message has a message id, and it is this number which

indicates to a recipient of a message how to handle it. The current

implementation of MAL only allows for a single message id to be specified in an

MD, so that message types are closely associated with message ids. However, a

more general system would allow null or multiple entries in this slot, thus

allowing a message type to include messages with a varieties of ids.

In the figure the message id is QOI. Note that there is not necessarily a one-to­

one mapping between message ids and message types. In the figure, the abstract

message type button-message must have a message id of QOl, and a sender of

type UIT (User Interface Task). A message with an id of QOl but with a

different sender type is not a message of this type. It is conceivable that the

message id QOl might be used in the protocol between two other process types

with a different meaning associated with it.11

Sender: constraints on the identity of the sender of the message. This slot may

contain a '*', indicating that any process type is acceptable, or it may contain a

list of process types, indicating that the sender must be from among those. In

the figure, the sender is constrained to be a UIT process.

11Understanding the difference between meuqe id and meuage type can be confusing.
The message id is an artifact of the message, determined by protocols used by the designer of the
program being debugged. The message type is associated with a class of messages which are
described by an MD, and is the textual name for that cl888.

37

Recipients: constraints on the identity of the recipients of the message. Similar

to sender, except that multiple expressions a.re allowed, one for ea.ch recipient. In

the figure there is one allowed recipient, and it has no constraint on its identity.

Message Contents: constraint on the actual contents of the message. This slot

is currently unimplemented. Possible constraints might include specification of

the contents or certain positions in the message, length or the message, etc.

Higher level abstractions, which are composed of multiple messages, are described

by TDs (See Figure 3-2 for an example12). A TD describes, in terms of other

TDs and MDs, a pattern of message traffic associated with a particular

transaction. TDs are the primary construct for allowing the user to impose a

structure on a message stream. Since a TD can ref er to other TDs, a hierarchy

or abstraction levels can be built up.

A TD consists of the following frame slots:

Name: as in the MD case, a unique identifier, selected by the user. In the

example shown in Figure 3-2, the name is atg00interaction.

Level: an integer assigned to the abstraction by the user. In an abstraction

hierarchy, individual abstractions can be thought or as having a level number,

such that all abstractions on a particular level only ref er to abstractions on a

lower level. Levels are primarily important in display playback, allowing

selective attention to abstractions on an appropriate level. Since MAM has no

way to infer the level intended by the user, it must be explicitly named.

Actors: a list of process parameters (actors) and associated constraints. Like an

12The representation in figure 3-2 provides an euy to read format for display of TD data, but
does not represent the actual text that is provided to the Analyzer. See Appendix E for details on
the input format.

38

'l'LUfaACl'JONa

LIYIL: 1

ALIMU: -......,: <ten • 8ff)
....... : (................. II&&)
-.S'9 rht1": ~ .., II&&) : , _ ... ••>

PATTl•N: <•1111.., .,_....._ ..._......._ <• s.• »

TIMIOUT:-.

ACTOn: ..,: 111
••: m
Ida: ID

Figure 3-2:A Sample Transaction Description

l\ID, a TD can place constraints on the identity of the processes involved in it.

In an l\ID, the role of processes in the description of constraints is relatively

simple, each process being either the sender or recipient of the single message to

which the l\ID refers. In the case of a TD, a more complex role is played, since a

single process can act as a sender and recipient of many messages in the course of

a transaction. By thinking of each of these processes as an actor (with a

particular role to play), and assigning it a name, it can be "tracked" throughout

the course of the transaction. Giving an actor an "identity" insures the

consistency of processes in a transaction. In the example figure there are three

actors defined: app, uit, and uin. Each is constrained to be a process of a

particular type, ATG, UIT, and UIN, respectively. Note that the actor names

may or may not be identical to the types which they are constrained to

3g

represent. The choice depends on how the user views the role of the process. In

the example, the app(lication) actor is viewed not as an ATG process per se, but

rather as an application task attempting to establish a. window. The uit and uin

tasks are viewed as tasks performing special functions associated with their types,

and are thus named accordingly.

Aliases: a list of the elements out of which the pattern for the transaction will

be composed. They are called aliases because they assign a symbol or alias to

represent a complex "call" to another TD. Aliases do not add any descriptive

power to the TD abstraction, but do increase readability by allowing listing and

naming of the elements involved, ~nd by permitting simplification of the syntax

of the regular expression specification. In the example, there a.re four aliases.

The first create-app, expands to a fork request by an unspecified process of the

app task. In the other three cases, the parameters are constrained to be one of

the actors enumerated in the actors slot. Note how constraint comes into play

here: the second parameter to the create-app must be identical to the first

parameter to the open-window transaction.

Pattern: a modified regular expression made up of the elements defined in the

alias section. In their canonical form, regular expressions consist of an alphabet

of symbols, and some combining operators: Kleene start, disjunction, and

parentheses. In MAL patterns, the regular expressions do not consist of patterns

of atomic symbols. Rather, they consist of alias symbols, which are expanded

out into parameterized subpatterns. This makes the task of pattern matching

more complex, since each potential matching element is constrained not only by

the current symbol in the pattern, but also by the instantiated para.meters in

previously matched elements. The pattern represented in Figure 3-2 consists of a.

create-app transaction, followed by a open-window transaction and

describe-window transaction, and zero or more interact transactions.

40

Timeout: a.n integer representing the maximum number of milliseconds that a.

transaction might ta.lee to complete. This provides addition constraint on the

recognition of valid transactions.

3.1.2 A Model for Understanding Data: MAL Semantics

MAL syntax provides a method for description of static relations between data.

abstractions, and this gives a. good flavor or what can be described by the

language. However, this information is not enough to permit the user to write

full system descriptions. An analogy can be made between MAL and PROLOG.

Both a.re descriptive languages, which can be used to describe formal relations

among data.. However, to understand the behavior of a PROLOG program, it is

necessary to know more than the rules of first order logic (the static relations).

It is also necessary to understand theorem proving and the unification algorithm

(the dynamics of the engine).

The MAL recognizer is based on a demon model of recognition. Ea.ch AD is used

as a template to spawn demons, specialized recognizers whose job it is to scan the

world for instances of its associated abstraction. Demons do this by "gobbling

up" instances of transaction components as they occur (in time, as the journal is

scanned), and keeping track of what other items need to be recognized to form a

completed abstraction. When a recognizer demon does find itself with a finished

item, it signals this to the world, by announcing its completion to other demons.

In this way, demons which might use this particular abstraction as an element

can gobble it up in turn.

One instance of every demon is spawned as each message is read in. Demons

which accept a sub-part continue to scan for the rest of the journal. Those

which do not are immediately killed. When the end of the journal is reached,

those demons which have found completed transactions then mark their sub­

parts as members of the larger entity.

41

In Figures 3-3 through 3-6 a schematic representation of the transaction

recognition process is given. The details of demon structure have been

eliminated for clarity.13 In Figure 3-3, a schematic diagram of the actors

involved in journal processing, including transaction demons, message demons,

and the messages themselves, is presented. In Figure 3-4, a Message Demon

"gobbles" a message which matches its specification, and marks that message

with its tag. It in turn is gobbled by a transaction demon which creates a link to

it.

In Figure 3-5, the second journal message has been gobbled, and its

corresponding message demon has in turn been gobbled by a transaction demon.

The transaction demon, having completed its pattern, now is gobbled by a

transaction demon of a higher level. Finally in Figure 3-6, the entire journal has

been scanned, and all patterns are complete. Note that all abstraction

information is contained both in the tags on messages, as well as in a global list.

Those demons which start but never finish are considered to represent near

misses of the type "incomplete transaction." This consideration actually involves

an assumption, namely that different transaction types are sufficiently

orthogonal so that no pattern recognizer would inadvertently recognize some part

of a valid transaction as an incomplete instance of some other transaction. This

assumption can easily be justified by the observation that any sequence of

messages that is ambiguous to a recognizer demon would also have been

13The two moet important omissions in these diagrams are a description of the birth and death
of demons, and a proper representation of the method by which messages are muked for
membership. The diagrams show a static set of demons awaiting input. In actuality, many
demons are created each time a new message is read in from the journal. Only thoee which
actually accept input remain alive to continue pattern matching. It is only those •survivors•
which are represented in the figures. Marking of meeage membership in a tranaaction, which
conceptually occurs aa IOOll aa a message is scanned (aa is ehown in the figures), does not actually
occur until journal scanning haa been completed. Thia allows arbitration between competing
partial recognitions.

42

Fl ...

C1 ;' 111. •

._ I

- I

P.-..: A IC

C JI Uf. R

1 aiu

--= I

P1ltllll: ••

c ,,,, •

- .
1'n« - 1'n« -

Figure 3-3:A Journal to be Processed

43

_ ... oa

r-

~ '
,_: Ill

I I •11

~ &IC

c f "' •

.._ I

~ ..
Cr .. llf: •

.._ I

1We: -

.._ ,
Tnc ..

Figure 3-4:A Message is Gobbled

44

~I

Tr,.: m

M•••MOTllml
Me.ace N 0 Tllm 2
Trunctioa A 0 Tbm 1

ft

,..._: NI

*-: I

N.-: I

"--= ••

(q / •••

--= • --= •

Figure 3-S:A Transaction. is Recognized

45

Na.: c

~:ID

LIU Qf 'llftn:ad -.a.:
M wonm.1
M N0Tlme2
'l'rlU&Ctioa A. • nm. 1 ·-M e00Tbm3
M POTlme4

~ I

Trauadion B 0 Time 3 , : llG

M--.eQOTime5
M ROT'imel

C1 1l11M: -
Trauactioa C 0 Tbm 5
Tranaaction X 0 Time 1

n

*-: l Nim: I N-: c:

P.a.: II I : • • ,...,.: e I

N-= I Nim: • ~:I

Figure 3-6:Journal is Processed

46

ambiguous in the original message stream on the network. Since it can be

assumed that a programmer is not going to develop an ambiguous message

protocol, it can also be assumed that message streams resulting from such a

program will not be ambiguous.

Although the patterns that each transaction recognition demon recognizes are

described by regular expressions, the class of patterns that MAM can recognize

cannot be fully understood using only the terminology of regular languages.

Because each item in the input stream is parameterized by process types, there is,

in effect, an infinite input alpha.bet of symbols, which is divided into a finite set

of classes. Recognition is not simply a matter ot pattern ~a.tching, but also of

constraint propagation. Ea.ch element of a pattern that is read in and accepted

constrains which elements of the classes specified in other parts of the pattern

may be accepted. This is done by requiring that para.meter names shared by

elements of a pattern have consistent bindings.

MAL patterns also differ from regular expressions in that they specify, not only a

regular language, but also, implicitly, a language of "near misses" that are

associated with elements of the "true language." These near misses include not

only incomplete tra.nsactions, as already noted, but also "missing element"

transactions. A MAL recognizer demon will recognize, as a near miss, any stream

of sub-parts which would have resulted in a complete transaction had one more

sub-part been present in the stream.

Explicit descriptions of such error patterns are generally quite complex. A

missing element can be not only a single message, but an entire sub-transaction.

Thus, patterns which are arbitrarily different from those described by the true

language may be valid error patterns, depending on how sub-transactions were

specified. Degenerate cases of totally meaningless error languages are unlikely to

occur, however, since a programmer is likely to specify transactions in terms of

47

sub-transactions which are functionally meaningful (since this is the easiest way

to describe a transaction). A language generated by the absence of one

meaningful piece of the true language is likely to be meaningful as well.

3.1.3 MAL Limitations

Although MAL can describe a large class of transaction types that are likely to

be encountered in a distributed system, there are certain classes of transactions

which MAL is too weak to handle. Because MAL is essentially a regular

expression recognizer, it is unable to recognize patterns which require a

remembering of unbounded state information. Typical of this class of

expressions is the form: A nBn. In a network message stream, such a pattern

could correspond to the output of a process which queues its input, processing

messages and replying to them in a FIFO fashion. A transaction involving

queued input could not be described in MAL.

MAL is also restricted in describing dependencies between transactions. In the

present system, the only constraints that can be invoked are those which are

implied by a sharing of parameters (processes) by events within a transaction. A

transaction recognizer has no access to global information that might predicate

the validity of the existence of a transaction. For example, it might be useful to

describe a certain transaction type as being valid only after some other

transaction had finished executing, or involving a process that had NOT been a

party to some certain other transaction.

Such limitations do not prevent the use of MAM in the situations described, they

merely limit the correspondence between the descriptions that can be created and

the user's model of the behavior of the system, since certain natural mental

representations are not describable.

48

.-. ~ .'

3.2 JDM: Journal Display Monitor

The JDM provides a. meaningful and easy to use dynamic representation of a

message journal, in terms of the abstractions described in a. MAL tile. In the

JDM user view, the message journal can be thought of as a. motion picture, and

the JDM as a viewing system. The user may play-back the journal record at

various speeds, rewind and start over, and zoom in for a more detailed look at

the action.

Figure 3-7 shows an example of an actual JDM display screen. Figure 3-8

describes the layout of that screen. The screen is divided up into three sections:

map (lower left), control {at top), and status (at right).

The map section contains a network map representation of the flow of messages

in the journal. The control section contains various switches and meters. The

status section is used to display explanatory status messages as the display

progresses.

3.2.1 Map

The primary component of the screen is the network map. It provides a

graphical representation or the message traffic that is captured in the journal

being displayed.

Nodes in the network represent processes that are "active." An active process is

one that is participating in a transaction on the current display level that has not

yet completed. A process node first appears on the screen when the transaction

of which it is a pa.rt begins in the journal, and remains displayed until that

transaction finishes.

The relationship between nodes is represented by lines connecting them. Two

nodes get connected if the transaction which ca.used them to be displayed

4g

involved passing a message between their 8S80Ciated processes. When the

message is actually encountered, the line is highlighted and labeled with the

message type. Since there can be multiple recipients for a single message, more

than one line may be labeled at one time.

The entire structure of a transaction can be gathered from the connections of its

nodes. It can be assumed that the transaction of interest is composed of the

transitive closure of n(a), the relation that maps nodes to other nodes to which

they are simply connected. This assumption is justified by the intuitive notion

that transactions involve communications between members, so if two processes

are in the same transaction, there will be some chain of communication between

them. or course it would be possible to define transactions without such a chain,

but it would not be a very useful thing to do.

In the example, two transactions are being displayed on the map simultaneously.

A transaction called describe-windowl6, involving the processes UIN666 and

TSD22 started at time 16, while the transaction open-windowl7 involving the

three processes UINll, ATG2, and UITlO started at time 17.

3.2.2 Control

In addition to the main map display, the JDM provides the user with some

additional graphical information.

There are two binary mode switches. These control the continuity and the grain

characteristics of the display. If the continuity mode is step, then the user must

manually advance the display after each step, by selecting the step switch with

the mouse. If it is in run mode, successive steps are displayed until the mode is

switched to step again, or until the end of the journal is reached, at which time

the system reverts to step mode automatically. The speed of display in run

mode may be varied by the user, as described below. In the example, the

continuity mode is step.
50

The grain mode controls the amount of detail that is displayed in the map and

status sections by determining the smallest time unit for each step. If the mode

is message then the journal is stepped through message by message. Each

message line is highlighted as a message passes along it, and a name label

(indicating message type) is flashed over the line. The status area displays

starts and ends of transactions at the appropriate level. Transaction structures

are still drawn in the map display. In transaction mode, the grain is

determined by the current transaction level. At each step, a search is ma.de for

the next transaction of the current level in the journal and it is displayed. Its

name is listed in the status area, along with the names of its component parts.

The transaction is displayed until the display clock passes the death date of of

the transaction. A valuable extension to this would be to flash the individual

transactions as they occurred, but this was not implemented. In the example,

the grain mode is transaction.

In addition to the mode switches, the control area also contains two settable

meters, for controlling virtual time display clock and display delay. The journal

position meter is scaled in units of time determined by the journaling

mechanism, and spans the period encompassed in the actual journal. Its value is

ref erred to as the journal virtual time since it represents the current time in the

JDM's virtual recapitulation of journal activity. By setting the meter to a

particular time, the user can have the scanner begin displaying the journal at an

arbitrary point. As the journal is displayed, the meter is constantly updated to

give the user a graphical indication of the position of the scan relative to the

start and end of the journal. The display delay meter determines the rapidity of

display in run mode. Delays can range from approximately one-half second to

five seconds per transaction. In the example, the delay is set to 51 (out of 100),

while the journal virtual time is 17.

Finally, there is the level choice feature. This consists of a set of labeled

51

CONTROL AREA

r -,
L.J

r -,
L .J

PROCESS UNUSED
NODE NODE

LOCATION

r -,
L.J

NODE TRANSACTION
LABEL LABEL
(PROCESS
NAME}

Figure 3-8:JDM screen layout for Fig. 3-7

53

graphical switches, ea.ch corresponding to one of the transaction level numbers

represented in the journal, plus a 0 level for single message display . By selecting

one of these, the user determines the level of transactions that will be displayed.

In this example, the level choice switch is set to level 3.

3.2.3 Status

The status section consists of a. sidebar for messages which a.re used in

conjunction with the map display. AB data gets displayed on the map, notations

for them get written to the status area. The map acts as a. dynamic movie

playback of the journal. This has the advantage or providing a realistic feeling

for the behavior or the program. Its drawback is that the data it displays is

ephemeral. The status area provides a more permanent record of what has

recently transpired, thus augmenting the user's understanding from the map.

Status messages consist of four parts: a name, a time, an auxiliary message, and

a. structural outline. A status message is generated each time an abstraction is

displayed on the map. The name describes a transaction or message that has

appeared in the journal, the time refers to the time at which the starting message

of the event was recorded in the journal during the run of the program, and the

auxiliary message gives information concerning any irregularities in the

transaction (such as missing messages). The fourth part, the structural outline,

only appears when the JDM is in transaction mode. It lists, in the order

encountered, the elements which make up the transaction. Status messages also

appear when the end of a. transaction is reached, announcing that end.

In the example, the side bar contains five status messages. The first three are for

a transaction called ATG-INTERACTION15, which was an incomplete

transaction, and which ended at timestep 21. It appears on the screen three

times because the user went over the section of the journal containing the

54

transaction three times before continuing. The first two times were in message

mode, so no structure is displayed. Because ATG-INTERACTION15 is

incomplete due to having reached a dead end, no ending status message is

displayed for it. The last two status messages, for DESCRmE-WINDOW16

and OPEN-WINDOW! 7 correspond to the two transactions displayed on the

screen, and so there are no ending status messages for them either.

3.3 Examples

In this section two examples from the GenRad environment a.re described. The

first example represents a contrived example, meant to demonstrate the

descriptive power of the MAL language. The second example represents a real

instance in which an error, to which behavioral abstraction techniques could be

applied, occurred. For this second example, an actual debugging session is

presented.

3.3.1 Example: A Fixture Test

In this scenario, the 2750 tester is performing one of its functions, a "fixture

test." A fixture test is a process by which a printed circuit board is tested, using

a variety of methods, to make sure that it works properly. Since the primary

task of the 2750 is testing printed circuit boards, this is a. very frequently

occurring event in its normal operation.

A process known as "test set development" (TSD) serves as the system monitor,

and interacts with the machine operator. When the operator indicates that a

board needs to be tested, he indicates the type of boa.rd to be tested, and

initiates the board test sequence. It is that sequence that is described below:

55

Board-Teat-Sequence: The TSD ini tial1zes the system to ·begin board
testing. It then activates the board •tixture.•i4 Following this,
one or more test programs15 are run on the board, until enough test
data has generated. An exit sequence then returns the test hardware
to its idle state.

Although this scenario can, in the simplest case, consist of only four major

actions, its smallest manifestation involves 30 separate messages being passed. In

between the top level description and the message level description, there are a

number of intermediate levels on which the scenario can be described in

increasing detail.

As might be expected, a complex transaction can be viewed from a variety of

perspectives, high level and low level. The exact form of the translation of an

informal description of a distributed program scenario into a formal description

depends in large part on the particular debugging needs of the user. One

particular formalization of the above scenario is presented in Appendix A.

In this example, some of the general practical rules for designing MAL input files

are demonstrated. The file is headed by a single top-level procedure

Board-Test-Sequence, which describes the entire series of events which the

user expects to transpire. Because all of the other events "hang" off of the

Board-Test-Sequence transaction, certain global constraints can be enforced,

such as consistency identities for the actor processes: tsd, rte, rts, diag, ui.

Another feature to be observed is that while some transactions, such as

Open-Window might be described as general purpose transactions (in that they

, 14A fixture is a custom made device that interfaces between a particular type of board and the
tester.

15Test programs are suites of physical tests on the board. They are run by a special purpose
run time processor, and are not considered independent processes that are part of the distributed
program.

56

can apply in a variety of contexts), others, such as Load-Fixture describe a very

specific sequence of events. In general there will be, for some distributed

program environment, a collection of general purpose transaction descriptions,

which can be re-used between debugging sessions. It will, however, generally be

necessary to make descriptions specific to particular debugging tasks.

3.3.2 Example: A Dead Process Causes Communication Breakdown

One of the tasks that is performed by the distributed program described above is

window management. The system works with a bitmapped Sun workstation, and

a variety of windows, corresponding to separate subtasks, may be active at any

given time. From time to time, a process may require that a new window be

created. This is done by a. sequence of messages between the requesting process

and special user interface processes.

In the scenario outlined below, problems were being encountered in a specific

instance of establishing a window. A particular task, the Automatic Tut

Generator (ATG), was attempting to establish a window, but was experiencing a

breakdown in communication with that window after it was generated. To

investigate the problem, a set of transaction descriptions were created which

dealt only with that part of the program which was of interest, namely the

window interactions.

The sequence is as follows:
ATG-Wlndow-Interaetions The ATG appl1cat1on 1• created. It requests
that a Window be created. That Y1Ddow 1• created, and 1nforu that
calling proceaa (ATG) of 1t• charact.er1at1cs. A aequence of zero or
aore Window 1nt.eract1on aeaaagea are aent froa the Uaer Inter fa~ Taak
(UIT) to the ATG.

In practice the above sequence did not occur, and so MAM was used to determine

the cause. In Appendix B the MAL input file for the debugging session is shown,

57

Appendix C shows the actual journal of messages of interest, while in Appendix

D, screens from the actual debugging session can be found.

What did happen in practice is the following: In the process of creating a window

for an application, the user interface task (UIT) created a special task, a User

Interface Node (UIN), specifically to handle communication between the

application task and the window being created. The UIN created in this case,

due to a bug in the software, was exiting itself unilaterally. The UIT, seeing that

the UIN task it had created had died, restarted it, but with a new process id

number. AP. a result, this new UIN task continued to operate the window, but its

messages to the application task were ignored, because it had the wrong process

id number. From the user's point of view, this made it seem as though the ATG

task was ignoring user input.

In the debugging process, the MAM was used to first detect the fa.ct that the top

level transaction was not being completed. This indicated that the problem was

not in the ATG ignoring input, but in the input not reaching the ATG in the

first place (i.e. the creation of a logical channel between the window and the

ATG was never accomplished). This incomplete ATG interaction was detected

automatically as a dead-end interaction by MAM. Then the view was shifted to

lower levels, until the actual problem was determined.

3.4 Summary

This chapter presents the user's view of MAM, consisting of a description of the

Message Abstraction Language (MAL), and the Journal Display Monitor. The

syntax and semantics of MAL were described as well as examples of its usage.

The graphics screen of the JDM was described, giving a full description of its

features and functionality.

58

The MAL language permits the user to describe a hierarchy of transaction to be

scanned for in a message journal. Transactions are described in terms of

modified regular expressions, the components of which may consist of other

transactions or individual messages. Because transaction descriptions are

parameterized according to the processes involved, transaction descriptions may

constrain the identities of processes involved.

The MAL analyzer acts by scanning the message journal for message types that

it recognizes. When a message is recognized, a constraint is propagated through

a system of transaction demons each of which is scanning for a particular type of

transaction. When a transaction is recognized as complete, a downward

propagation of this information ensues, resulting in a marking of all appropriate

messages as members.

MAL is limited by its regular pattern expressions. Certain useful classes of

transactions, such as those which involve queueing, cannot be represented.

Additionally, more general constraints, such as numerical size or the absence of

certain elements, cannot be expressed.

The JDM is the means by which MAM conveys its results back to the user. It

consists of a graphical system for displaying a network map corresponding to the

distributed program being debugged. The display is divided up into three main

areas, the map itself, a control area by which the user manipulates the display,

and a status area for explanatory messages.

Debugging with the JDM, as with serial debuggers, involves an iterative

narrowing of the scope of observation. During the scan of the journal, a faulty

transaction will be noticed in some high level. The journal can then be

rescanned locally at progressively lower levels until the actually location of the

fault is found.

5g

WJQJJ1$M#l,U!l J¥$ U!l2$t&!Jij(. . •. · ~ ...
' - .. ·~ ·. ~-' -' '· - - '".. . .• - ' . . ~ . '

... - ~ - - ~

~ c, ~ - ,..,. ,..., - "l': ~ • ' - '~ - ~ ,. . LtS&44tt. taoa:;aaAJt•k 14 .. H•

This chapter disc- the details ot ta. batl• •• of ihe MAL Aaalfler,
and the Jowal D.,_ MoaiW (JQM). ··· 1'Jae ~,_ la a program

wriUen la Sclleme, a dialed ot Uep, aa4 • a n•rr•. P••• .__.ltwcl
approaeh to recoplliaa,..,.. • ..,..1111••'- ••aw• .. c PNPMl
which uWI• llea'rilr $M ha~ pt;1trs• .. ,_ worklu'a&loa. The

m> .,. ... 1awr.. it.u1rc1t a_.. WJ-1lf•J o• ·loli:t·*1t Npipter.

4.1 Analyser lmplw••tioa

The MAL J\aal7ler Ol*'Mel oa a ol ._.. • ••, mart. theal with

data whieh ideQtlty tJaem. • ol;'81a)U: 1';11!'3efilD .. wt
'. '.- . •: ':

The bulk ot ihe work la the Analper Ill ._ lJy •••111 pwiaa objects

(Abelaon85, pp. 140-lGJ. Wlaieh - ... ,...,.,IJll I aa4, ihelr

la~ co8*ala '1we ,_.. pattt•·--·•;'IQr••·•Hm ·ooat._..,
uaiil a ftaal·OGe is ~te

1'1. ae-.. a ,-.. --· --··•·tir!!l!!l•tJli•,. wi*
M....-- to,,_._.,1111IJlntrn1·'".~:.:· ····.··~"-•• •••••
requindtiO WilWlllU ... llfllifl ... • ,1·,,·x·,··/·•" h'

local-~

•.1.1 Overview ol ~ ~

The objects that esist la ~ Scheme worl4 ere•d 1IJ dMr Anl7ler are: a Ziet1of

tranaaction oucnptiou, & Mt ot,, ~-~-
demoM (TRDa), m••..,. ,...,.tion ,...}, a joumal ota,..,
~ion patna, wt ~ .,...._.fn>-Mil)llh) . The followma
is the top level algori~ for p~ &J...-l:

FOR eacJa 1a J'GURllAI.:
IUt$1lU&Ce Wt• -.d 'ft>.
IanMUMe - fer eu1l m.
FOR -.ell IR> ~Uat.ed:

AH eacll - 1IO Mc.pt tH ~ ·a111•p.

In this way, each journal m..age ls ~ •. ..., '1 tae a.aalyser.

Each MRD au the tolowlag algori$Jua fctrc ••••ftlal •••ac•
u =· ... w ,. -11nt:1Ja1._.1••·.,......••• Hllpl•t•••••· ,. .. ;

Acuft.
Set. , ••• :,....•~

rm all ••••·~••t•=
llot1f7 - of ,., " ••

With a properly wrlttea MAL f'Ue, ._. ·•• HJ(\11 ... H accepted by a siqle

MBD, the oae eorM1110lldl111 to lte ••• . ._.. Qalr:· tiltl au MRD wWch

accepts the current me•ace remaiu e .-,._ * na ol die ~

proceat. The rest are diacvded.

Each TRD hu the followin& algoritlua ter ..._...., ~iou:
At.t.eapi to enead . all owr.- •••••-•--·)l:nll •
•1111 Maie aoun._.
IP UJ pata U --Ill :

IF aaJ PA'l'll l'lfl'NIDM .. ,...,JMil ll.$1M r•••IH"• 'l'llD:
,. ai1 •••· au.•1 MM JIJlll -.~.

lo'tlfJ - 9f W.tn•td..• llU l. 1-.
., 1;1a1S ,.,

IL.SI
ir TID .. ••.uct oa cer.at U•••*"i ._:

1111 na.

01

During the scan of the journal many TRDs will be created. Only those which

accept an element (by extending an acceptance path), remain alive. Those which

actually complete a pattern, (by coming to the end of a.n acceptance path),

inform other TRDs, so that they, in turn, may be subsumed as part of larger

transactions, as the MRDs were before them.

When the end of the journal is reached, a process of committal takes place, in

which the tentative relationships that have been developed a.re finalized. This

works as follows:
FOR each extant TRD:

IF TRD has a tentative winning path THEN:
Nark all elements of transaction with
membership tag.

ELSE IF TRD has a •faulty path•
with a missing element THEN:

Mark all element.a of transaction with
•faulty transaction: missing element•
membership tag.

ELSE
Make longest partial path the winning path.
Mark all eleaents with
•faulty transaction: dead end• membership tag.

Element marking is the means by which message data are marked for

membership in larger transactions. Those elements of a transaction which are

transactions themselves (as opposed to messages), simply "forward" the marking

messages they receive, thus guaranteeing that messages a.re eventually ma.rked.17

While announcements of pa.th completion occur as soon as a tentative completed

path is discovered, marking of elements is delayed until the end of the journal

scan. This ensures that all sub-elements, including those discovered after a

tentative completion, are appropriately marked.

17 For a.n example or how this works, refer to Figure 3-6. In this example, the TRD labeled X
sends marking messages to its three elements, the TRDs labeled A, B, and C. These three in
turn send a message to their children, the six MDs, indicating that those MDs are part or the
transaction recognized by the TRD labeled A. In this way all messages which are patt or a
transaction ultimately get marked by that transaction, even though the TRD itselr has no direct
knowledge or those messages.

62

After all messages have been marked, global data is generated, by scanning all of

the marked messages, and extracting birth and death information about all

found transactions, and the elements of those transactions. This allows the JDM

later to use both bottom-up and top-down information in its display algorithm.

4.1.2 Data Structures

Figures 4-1 and 4-2 show some demons and associated data structures, both

before and after a message acceptance. Figure 4-1, represents the state of those

objects before the MRD has attempted to accept the message datum. Figure 4-2

shows the resulting relationships after acceptance. The TRD shown,

describe-window25, and the MRD shown, do-frame25 were created on

timestep 25, just as the message datum was about to be scanned. Since the

message datum matches the constraints of the MR.D's associated MD, namely

that it have a message id of 1080, and a recipient of type UIN, it is "gobbled"

by the MRD. The MRD is in turn gobbled by the TRD, since it matches the

leading element in the TRD's pattern, namely a do-frame whose second

parameter is of type UIN.

4:.1.2.1 Messages

MesBages are Scheme data structures which capture the important information

about the journal message entries provided as input to the Analyzer. Initially,

messages contain information corresponding to that represented in the

unprocessed journal. During the course of the analysis, messages are marked by

recognizer demons, as to their membership in various abstract structures. At the

end of the analysis, these marked messages are written back out as a processed

journal.

A message initially consists of a message id, a sender, a list of receivers, a

timestamp, and its contents. This is all of the data that is typically found in

63

TJLANI. UCOGNITJON D&MON

NAMI: ducr1111e·wia11Mr21

TIMllTAMlt(ll•TH): ID.

TIMllTAMP(DIATH):
DllC•IPTO•:
COMMITTID: lo

PR091.IM: ID.

PATHI:
WINNING PATH: m

NAMSI_..

LIVIL: I

AUMl9: , c..-u- cl.t.•• Ilia)
"'17: (Ilia-~ Ilia &1.t.-)

TIMIOUT: ao

ACTOn: Ilia: UII
cl.t.••: •

MTT'lb: (.... "'1J)

ITAQC: ID.

CUTAINTY: ID.

U•llH: ID.
.,_.,.., NIL

IDs ·-

Ilia: UD
c1U..: •

_.... <AWi)

....... 'I(•)• (VU U) ,.. ... ~ . ----·-- - - - - - -Tll"a m

.,.._. m

MU9ot8I: ID. IDs 191

DIK9TOll: - -'- -. •
SIN... ID. --+--...:7~ liMC:ll'....,(.)1 lfD

•ICINNT(9)1 ID. CGNIMH1

This figure represents the state of the deacribe-window TRD created at
timestep 25 in the scenario presented in Appendix B, immediately before the
current message datum is checked. Both the TRD and the MRD are in their
virgin states, with initial para.meters determined by their associated TD and MD
respectively. The TRD has a virgin path associated with it which at its starting
point.

Figure 4-l:A Simple TRD, and MRD, Before .Gobbling Message

64

NAMl1~ TIMll,........,..,I •
TIMll1'Mll'fllMJi UIO
~

WllllNlllHIMTM1

....._. ._
I I I•

- «m•
IL G1Mr -&&>

...... 11 USSUf
I •

•

11 IClll MIU> ,.,. -....-.--- ...,

.. --..
!IClllflta•.

a1 ui a

This figure represents the state of the. deacribe-window TRD created at
timestep 25 in the scenario presented in Appendix B, at the end of journal
analysis. The do-frame25 MRD has been gobbled by the path of the
describe-window25 TRD. The state represented indicates that a faulty
transaction has been recognized, with a timeout at 100. In the TRD, the
timestamps have been set, indicating that the first message of the transaction
was seen at timestep 25, and the timeout was recognized at 100. The
committed flag is set to YES, indicating that ~he demon is no longer open for
modification. The path pattern has been modified to indicate a traversal past
the send element in the pattern. The path parameters have been modified to
indicate the new constraints for specific processes.

Figure 4-2:A Simple TRD, and MRD, After Gobbling Messages

65

the journal of a distributed system. A message also contains four writable slots

which contain information about how the message relates to the rest of the

journal. These are: starts, ends, memberships, and message-type. Starts,

ends, and memberships are lists of transaction labels, indicating, respectively,

transactions of which the message is the initial element, terminal element and

intermediary element. The message-type is a slot filled in by a Message

Recognition Demon (see below), which labels it with a name, consisting of a. user

defined type and a timestamp. This user defined type is independent of any

intrinsic type information the message may contain.

An example of a message datum is represented in Figures 4-1 and 4-2. In the

figure 4-1, the message can be seen in its virgin state, with the externally

supplied characteristics, id, sender, recipient, and timestamp represented.

Since the datum has not been marked yet, its type and tags slots remain empty.

In 4-2, the figure has been marked, both by the MRD do-t'rame25, and the

TRD describe-window25. The type slot indicates the type of MRD which

accepted the datum. The tags slot indicates that this message is the starting

element of a the transaction called describe-window25.

4.1.2.2 Message Recognition Demons

An MRD is an object whose job it is to recognize a particular type of message

object, as defined in a MD. The data contained in an MRD includes the full

MAL MD for its associated message type (see chapter 3). It also includes

writable slots for the message name, consisting of its type and timestamp, the

message object itself, and a parameter list consisting of the processes which

were involved in the sending of its message.

In recognizing a message type, an MRD performs two major tasks: it marks

individual messages with user-defined names and it initiates a propagation of

66

constraints which eventually results in the matching of user-defined transaction

patterns. As each message is encountered in the scanning process, an instance of

each type of MRD described in the MAL input file is spawned. Typically, all of

these demons will "die" except one. Although there is no mechanism for

preventing more than one demon from accepting a particular message, this would

indicate a poorly specified MAL file, and the ensuing behavior is not well defined

(i.e. the information contained in a message should indicate its type

unambiguously, MAL specifications which indicate two possible types for a

message are clearly faulty.) Avoidance or such conflicts is discussed further in

Chapter 5.

A demon remains alive by "gobbling" a message. The message datum becomes

a part of the internal data of the demon and is marked with the demon's unique

name. The demon then broadcasts its existence to all of those TRDs which have

indicated an interest in the message type of that demon.18 TRDs may then in

turn gobble the MRD, thus incorporating it into the transaction.

When an MRD broadcasts to higher level demons, it transmits not only its type,

but also a parameter list, containing the names or the processes involved in

sending or receiving the message. This para.meter list is essential to the

acceptance process of the TRDs, since it allows a demon to determine the

relationship between the current message and ones that it may have already

accepted as part of a pattern. Thus a message which fits into a transaction

pattern by virtue of its type may still be rejected because, for example, the

sender does not match that of a previous message related to it in the pattern.

18Tbe system is optimized in a way such that only those TRDs which may potentially accept
an event notification a.re notified of it. This potential is determined when the TRD is created. A
global list, associating event types with current demons, is updated so that the TRD is listed as
being •interested• in all event types which are mentioned in its pattern.

67

Parameters are determined by the specific processes involved in sending and

receiving the MR.D's meeaage. The MRD binds ea.ch para.meter to a process.

The sender process is bound to the sender para.meter. However, since there may

be more than one receiver of a message, and thus more than one receiver

parameter, the match of receivers with para.meter names requires use of

constraints to eliminate possible false matches.

In the definition of the MRD, each parameter is associated with a set of

constraints on the type of process to which it may be bound. While a particular

parameter might be able to be bound to more than one process from the

message, it can be 8Sl!lumed that any meaningful MRD definition will be such

that the ordering of the receiver parameters is irrelevant, or sufficient constraint

is provided to eliminate all but one possible match. In the case of sufficient

constraints this is done using an algorithm which generates "buckets" of all

possible matches for ea.ch parameter, and then empties the buckets of already

matched items, until each bucket has one unambiguous result remaining.

In Figure 4-1, an MRD labeled do-frame25 is represented in its virgin state. In

Figure 4-2, the results of its scan are shown. The message slot now points to

the message it has accepted. The sender and reclplent(s) slots now contain the

process names culled from the message datum.

4:.1.2.3 Transaction Recognition Demons

The transaction recognition demon (I'RD) is, in many ways, analogous to the

MRD. It starts out with a user-provided pattern data, and data slots for

containing objects which match the pattern. It too searches for a certain class of

data to pass before it, and when that occurs, informs other demons of its success.

As with MRDs, all TRD types are instantiated as ea.ch item is read from the

message journal. A TRD can get killed immediately, if the input that spawned it

68

does not indicate a possible pattern start. However, those TRDs that survive this

"birth" process, remain active for the rest of the journal scan.

Unlike MR.Ds, TRDs never directly access message objects. All information that

a TRD receives come either from MR.Ds, or from other TRDs. In this way,

TRDs act as redirectors and modifiers of the flow of information initiated by an

MRD recognition.

A TRD exists as long as there is a possible completion of its pattern. For the

purposes of transaction pattern recognition, the sole criterion for this standard is

whether the demon's pattern recognizer gobbled any element on the timestep

that it was created on. This rule is based on the assumption that there will be

little overlap among element types between transactions, especially for initial

pattern elements. Since every demon type is instantiated at every timestep, a

demon which had not gobbled anything previously would be redundant.

TRDs keep track of potential pattern matches by means of data structures called

paths, which are described in the next section. Each path represents

conceptually a possible route through a finite state ma.chine diagram for

recognizing the regular expression associated with the TRD. All possible paths

are maintained for the life of the demon.

When the journal has been completely scanned, every extant TRD is sent a

"commit" message. On receiving this, a demon examines its possible paths and

determines one which becomes its "winning path." Paths are ranked in the

following priority: completed paths, paths representing "near misses", and

incomplete paths. An unambiguous transaction description should not allow for

more than one complete path. If multiple near misses or incompletes are at

issue, a random choice is made. The commit sequence is necessary so that

partially completed patterns are not counted as incomplete paths until the

journal is exhausted.

69

If a demon recognizes a valid complete pattern, it sends a message to all TRDs

indicating its recognition, thus allowing this information to propagate up to
-:*,

higher levels. There is no need for the demon to wait for the commit message,

since the recognition of a complete, non-faulty, transaction is unambiguous.

Higher level TRDs now have the opportunity to gobble this completed TRD and

make it a part of a greater pattern.

The TRD also transmits a parameter liat in a similar fashion to the MRDs.

There is no positional ambiguity about the parameters in this case, however,

since the parameters of a TRD are determined explicitly in the TD, and do not

depend on the raw, randomly ordered recipients list of a message datum.

Figures 4-1 and 4-2 demonstrate how a TRD is modified during the recognition

process. In this particular instance, the TRD involved ends up matching a faulty

transaction (see Section 4.1.2.4). After the MRD, do-frame25, accepted the

message datum, it signaled its acceptance to the TRD, which attempted to

expand its path (see Section 4.1.2.4) using that MRD. Since the path did

expand, the TRD remained alive, however no further elements were accepted.

Thus, when it came time to commit, this demon had no completed paths,

however its timeout interval had expired, and so it returned its longest path as a

"timeout" faulty transaction.19

19The careful observer will note that the TRD wu •born• at time 20, •died• at time 100, yet
had at timeout interval of 25. The reason for thia diaerepaney ia due to the mechanism by which
timeouts are registered. A TRD will timeout if either: 1) it attempts to gobble an event when its
timeout interval has passed, or 2) it receives a •commit• me919&P alter its timeout interval has
ended, and has no complete paths. The death date ia choeen to be the journal time at which such
an event occurs. This time is likely not to be the birthdate plus the timeout interval.

70

4.1.2.4 Paths, Matching, and "Faulty Transactions"

A TRD is initialized with a single empty path and proceeds to accept event­

notifications. At ea.ch event-notification, attempts are ma.de at genera.ting

extended paths by an algorithm which attempts to fit the current input into one

of the current paths. When a path is successfully extended, the algorithm is said

to have matched the input to a path.

The matching algorithm recognizes regular expressions by simulating a modified

nondeterministic finite state machine. Each path data structure represents a

state in the NF A that might have been reached by the current input. When an

input is checked, all possible routes from the current state a.re checked. If any of

them can be traversed with the current input, then a new path is generated.

Some states may have two valid outgoing paths (as in the case of a disjunction),

so the number of paths tends to increase as the age of a TRD increases. This

increase tends, however, to be fairly small, as the number of possible

interpretations of partial message data tends to be small as well.

The following section describes the algorithm by which TRDs match an input

stream of events to a particular pattern. It describes the path data. structure,

which holds the result of a partial match, and the matching procedure itself,

which creates new paths.

The Path Data Structure

A path consists of the following substructures: a list of elements, a pattern, a

stack, a list of actors, a list of parameters, a certainty, a missing element.

When a virgin path is created, it contains only a pattern and associated

parameters, which are copied directly from the TRD data. The matcher takes

the path, and an event notification to be matched, and generates a set of possible

successors to that path which include that event. Each new path may differ in

the following ways:

71

•Elements will now be updated to include the event tested. Elements consists

of the actual demons gobbled, in the order of appearance. This information is

used in a completed path for marking membership in lower level demons.

•The old pattern will be transformed into a new one, the matching of which

would be consistent with the matching of the prior pattern before encountering

the current event (i.e. corresponding to the "rest" of the pattern to be matched).

In a simple pattern consisting of a sequence of symbols, this would mean

removing the symbol just matched. In a pattern containing a Kleene star

operator, two paths are generated, one with a pattern minus the first expression

(indicating a "zero repetition match"), as well as one with the argument to the

Kleene star operator substituted for the operator expression (preparing to match

at least one instance of the argument).

•The stack might be pushed or popped. The stack contains pairs of "test

points" and "return points" and is used to allow backtracking in the case of a

Kleene star expression. When a Kleene star expression is encountered, the

current position (return point) in the path is pushed on the stack, along with the

entire pattern which succeeds the Kleene star expression (test point). A new

pattern is generated with the Kleene star argument substituted for the Kleene

star expression. When the test point is reached in this new path pattern, it

ca.uses a. pop of the stack, and the original return point is restored as the pattern,

thus allowing repetitive matches of the (possibly complex) Kleene star expression.

•The certainty of a path can be set to one of three possible values: true,

maybe, or nil. It initially starts out as nil, and does not get set until its entire

pattern has been matched. It is set to maybe it the stack is non-empty (i.e. it

is still possible to accept more input via a Kleene star expression) and the pattern

is empty. If both the pattern and stack a.re empty, then it is certain that the

pa.th is finished, and certainty is set to true. A path which is true or maybe

72

can make a TRD broadcast of its completion to the world. A path which is

maybe may also continue to gobble data which fit its pattern.

•The missing element slot may be filled by a pattern symbol which, if

matched, would have completed the transaction. This only happens if the pa.th

expression succeeding it was matched, thus indicating a possible "near miss"

match (see section on "Atomic Symbol Matching" for details on how this works).

Matching Algorithm

A pattern consists of a list of subexpressions (see BNF grammar in Appendix E),

each of which may be one of the following: an atomic symbol, a disjunction, a

Kleene star expression, or a zero/one expruaion. Each of these, save the atomic

symbol case, indicates some choice of possible matches, and can be analyzed by

being broken down into constituent parts, and generating new paths for each

alternative. The matcher works by cheeking the first subexpression of the

pattern. If it is an atomic symbol, then a symbol match is attempted (see

below). If the subexpression is complex, then it is expanded into a set of simpler

expressions corresponding to the possible matches represented by that operator.

This is repeated until all generated patterns contain atomic symbols as their first

expressions, at which time symbol matches a.re attempted on the newly generated

paths.

When the analyzer attempts to expand a pattern headed by a complex

expression, it first divides the pattern up into three parts. The operator of the

complex expression, the argument{s) of the complex expression (i.e. the thing on

which the operator is operating), and the rest of the pattern (i.e. everything in

the pattern list except the first expression). The complex expressions are

expanded as follows:

The disjunction operator $OR indicates that either of two subpatterns may be

73

matched at the current point in the matching. It is expanded by generating two

new paths, each one containing one of the two arguments of the disjunction

appended to the rest of the pattern.

The zero/one opera.tor ! indicates zero or one instance of the subexpression

argument may be matched, and this is expanded by generating two paths, one

missing the zero/one expression, and one having the argument appended to the

rest of the pattern.

The Kleene Star operator * indicates that zero or more instances of the

argument may be matched. In a nondeterministic finite state automaton (see for

example (Lewis81}), this would be represented by having a "loop" back to the

state at which the argument begins to be recognized, as well as a null transition

edge which permits skipping of the recognition entirely. This is implemented in

the path model by using a stack. (A stack is necessary because Kleene star

expressions may be nested.) A Kleene star operator causes the matcher to

generate two new paths, one with the expression eliminated, and one with the

argument of the expression appended to the rest. At the same time, a pair

consisting of the current position in the pattern and a pointer to the rest of the

pattern is pushed onto the path stack. Using this "end/return pair" the matcher

generates, whenever the endpoint specified by the stack pointer is reached, a new

path identical to the one that existed before the argument to the Kleene star

operator was matched. This has the effect of simulating the looping seen in

NFAs.

Atomic Symbol Matching

It is at the moment of atomic symbol matching where decisions as to whether an

event becomes a transaction element take place. It is also at this point in the

pattern matching process that faulty patterns are checked.

74

If the initial subexpression of a pattern is a.n atomic symbol then it is tested

against the current input event. If it matches, then a new pattern is generated,

minus that initial subexpression. If an empty path results, then a complete

match has occurred. If no match is made against the first expression, then the

pattern is expanded once again, only with the first expression missing. If this

new expansion results in an atomic match, then the resulting pa.th become a

faulty match path, with the missing expression noted in its missing element

slot.

Symbols are matched against subexpression notifications by first expanding them

into the subexpression calls for which they a.re aliases. A subexpression call

consists of either a TRD or an MRD type name, followed by a list of parameter

names. If the type of the demon (i.e. the type of transaction or message it

represents) matches the type of the subexpression call then the parameters of the

call a.re checked against the parameter list of the calling demon.

Those parameters which are as yet uninsta.ntiated a.re tested by comparing the

process type of the potential matching process to the constraints detailed in the

constraint expression for that parameter variable. If there is a match the

parameter is 11 instantiated 11 by replacing its original constraint with a constraint

11 binding 11 it to the matching process. Later in the pattern match (in this

particular pa.th) this para.meter is required to match the same process. This

insures para.meter consistency across subexpressions within a pattern.

Already bound parameters are simply checked against the previously matched

process. If the potential matching process is the same as that which previously

matched the para.meter than there exists a valid match.

If the type of the potential matching event is of the correct type, and all of its

parameters satisfy the constraints, then a symbol is considered to be matched.

75

When this matching occurs, a new path is generated, consisting of the old path,

minus the symbol just matched. This corresponds to the rest of the pattern to

be matched.

Matching "Faulty Transactions"

The recognition mechanism in each transaction demon takes into account the

fact that not all transaction descriptions will accurately describe the behavior

represented in the journal. Some will describe expected behavior that never

materializes. Others describe behavior, which materializes, but in a way slightly

different from what is expected. It is analysis of these "faulty transactions"

which presents the hardest recognition problem.

Because "faulty transactions" are derived from the definitions of bona fide

transactions, there is a high degree of correspondence between the technical

presence in a journal of a bona fide transaction and its faulty versions. That is

to say, any time that a transaction can be recognized in a journal, any number of

faulty versions of that transaction could certainly be incorrectly recognized as

well (e. g. the transaction minus one of its elements could be recognized as a

faulty transaction by ignoring the actual presence of that element). Thus it is

necessary to allow these faulty recognitions to stand only in the absence of a

"better" alternative.

Incorrect faulty recognitions are prevented by making the following assumption;

no transactions of different types begins with identical messages types. 20 This

can be done in the GenRad environment because of a protocol in which each

20Note: This is not the same as identical message ids. The message type is defined by a
Message Description (MD) in the MAL input file, and may be valid only for certain types of
sending or receiving processes.

76

transaction type begins with a unique message type. 21 Given this non-ambiguity

assumption, it can be assumed that on any given level, only one transaction

recognition demon (TRD) will remain alive for any given creation time, since any

triggering event at that time should be accepted as an initial element by demons

of only one certain type. Given this result, it can be seen that a particular

partial path recognition need only be checked against other paths within a

demon to see if it should be allowed to stand.

This disambiguation is performed at the end of the scanning processes. All

demons are sent a "commit" message. When such a message is received, the

demon checks all of its paths, checking first for complete recognitions. If no

recognitions are found, than a check is made for "missing one element" matches.

Finally, if none of these are found a search is done for incompletes and timeouts.

As soon as one of these searches turns up a match, that match becomes the

winning match of the demon. If the match is a complete match, then a

completion announcement is triggered, as well as a marking of elements. If a

faulty match is found, only the marking takes place, as transactions are

considered not to include faulty events in their matches. 22 Since completely

matching paths are checked for first, faulty matches only manifest themselves in

the absence of a complete match.

Example Path Sequence

21 A more general system, to handle cases where such an 8ll8Umption cannot be made, can be
easily constructed with minor changes to the recognizer system. The primary change would
require the addition or a means or choosing between multiple completed demons at a particular
abstraction level, whoee patterns start at the same timestamp. This could be accomplished by a
check or pattern lengths or succeMful demons, and accepting only that demon with the longest
path (indicating that it was a more complete representation or the events).

22However the absence or such a event could cause a •missing one element• faulty transaction
recognition in a higher level TRD.

77

In Figures 4-1 and 4-2 a path for a simple pattern is represented. This pattern

has two elements, send and reply, which alias to (do-frame client uin) and

(uin-comdone uin client) respectively. When the MRD is accepted, it matches

the send symbol, since the alias pattern contains the same message type and the

parameter constraints allow for the parameters of the MRD. Thus, in Figure 4-2,

the resultant path shows a new pattern, with the aend symbol {having already

been matched), removed, and with the parameters instantiated to be those of the

MRD accepted. Since there are no •-operators in the pattern, the stack is not

used, and since the path never completes {it is a dead-end), certainty and

missing slots remain nil.

4.2 Display Monitor Implementation

This section describes the implementation details of the Journal Display Monitor

(JDM), the graphical system for displaying the results of journal analysis. The

task of the JDM requires that it display data in a fairly detailed manner, but this

goal is constrained by the need to provide rapid data access and display update,

as well as by the limited size of the graphics screen. Most of the information

needed for data display is generated by the MAL analyzer, however there is still

a significant amount of run-time computation that must be done by the JDM.

This fact constrains the detail with which data can be displayed, making the

JDM less effective than it might otherwise be. The rest of this section discusses a

number of specific design issues which came up in the development of this

system. AB well as the solutions used in this work. These solutions provide a

step in the direction of addressing the user-interface issues here, however what

constitutes an ideal display is still an open question.

78

4.2.1 Unbounded Data/Finite Screen

A transaction journal might be arbitrarily large, yet because of the finite size of

the screen, only small portions of it may be displayed at once. Human factors

considerations also dictate that too much data on the screen at one time would

decrease to user comprehension.

Data may be large in two ways. There may be many things going on at once, or

many things may happen over an extended period of time. The former problem

is the more vexing of the two, since a "movie-playback" paradigm requires that

all data for a particular time slice be displayed simultaneously. If a single

transaction has many processes (nodes) participating in it, or many tran.sactions

occur simultaneously, the ability of the system to display the state of the

computation intelligently would be limited.

This problem is addressed in the JDM by assuming arbitrarily that no more than

eight nodes would be active at any given time. Eight was chosen as the

maximum number of node lacations that could be exist on the screen in order to

retain legibility and a comfortable user interface.

The length of the journal is also of concern. Specifically, as more processes a.re

referenced in the journal, the task of assigning node slots to them in a consistent

manner becomes more difficult. Although process nodes only appear on the

screen when they are part of a current transaction, they may continue to exist in

the interim between two transactions. When a node is subsequently redisplayed,

as part of some new transaction, it is desirable that its slot position he the same

as it was previously. This maintains the integrity of the visual representation.

Unfortunately, this is not always possible, since other intervening nodes may

have taken the slot in the interim. The slot allocation algorithm is designed to

minimize this possibility. When a node needs to be displayed, a table of

7g

previously displayed nodes is first checked to see whether the node has been

displayed previously. If it has, than the most recent display slot is reused. Only

if that location is already taken, or if the process has never been displayed

before, is a random location chosen.

If no more than eight nodes are represented in the course of the journal, then

this system is guaranteed to place each node in the same unique slot each time it

is displayed. If more than eight nodes are displayed during the course of a

display session, then there is a small possibility that nodes will get "bumped."

4.2.2 Designing a Meaningful Display

As Model [Model7g) has noted, graphical display can be, potentially, a much

more powerful means of displaying complex data to a user than straight text.

Unfortunately, there is very little in the way of a systematic method for

determining the ideal display format for a particular type of data.

4.2.2.1 What Should a Message Look Like?

A message has two properties, vis a' vis the display. It is a transient occurrence,

yet it is a building block of a larger object (a transaction), which is less transient.

As a result, there are conflicting goals: to indicate the transient nature of the

message by displaying it for only a short period of time, yet also to keep its

relationship to the larger transaction known for the lifetime of the transaction.

The solution in the JDM is to display transactions in terms of their messages,

and to highlight the individual messages as they occur. This is done by fiashing

the name of the message type over the line in the network that represents it, and

making that line momentarily bolder.

80

4.2.2.2 How Should Meaages Be Related?

The entire structure of a transaction is based on the actual messages which pass

between processes. These are the glue which bind processes to each other, and it

is in terms of message passing relations that processes are connected in the

display screen. The JDM uses a single bi-directional line connecting two process

nodes to indicate that, at some point in the currently displayed transaction, a

message is sent from one of the pair to the other. Entire transactions are

recognized by a collection of nodes linked together.

This method is easy to understand and requires relatively little computation.

The journal is scanned for the start of a transaction, and when one is found,

each process involved in that transaction is assigned a node on the screen. Then

each process is checked to see with which other processes it will communicate

during the life of the transaction, and a line is drawn for each case.

4.2.3 Control in Terms of Abstractions

Aside from the actual generation of graphic images, the major computational

task of the JDM is to keep track of the dynamic status of messages with respect

to the data currently displayed on the screen. Ideally, a control mechanism for a

display system will allow specification of controlling commands in terms of a

mental model that the user has of the data being displayed. It should not be

necessary to perform any on-the-fly conversions of data in order to converse with

the debugger. That is to say, if the user understands the journal to be a

sequence of certain high level transactions, he should be able to control the flow

of the display of that journal, in terms of those transactions (e.g. a command to

go to the start of the next transaction), without having to compute any lower

level information about them (e.g. their start or finish times).

Although the "flow" of the journal is determined by the stream of individual

81

messages encountered, what the user expects is a stream of abstractions. The

JDM attempts to maintain an illusion of "movie-playback" on the selected

abstraction level by providing a rapid sequence of transactions displayed and

maintaining the map structure across transaction boundaries (i.e. there is no

repainting of the screen).

4:.2.3.1 Keeping Track of Abstractions

Part of the data generated by the Analyzer is a list of etJent data structuru.

Each structure describes an instance of some event found in the journal by the

analyzer. The information included is: level, start time, end time, the elements

of the transaction, its size, and, in the case of a f a.ulty transaction, an error

message. Using this information, when the start of an abstraction is encountered

in the journal, the entire structure of the transaction can be displayed, without it

having to be computed. That is to say, it can be displayed in terms of its

elements.

4.2.3.2 Map Management

When an abstraction is displayed, many graphical objects a.re placed on the map

screen. These must be tracked. In an n-actor transaction, n map nodes are

displayed, as well as up to n(n-1)/2 connecting lines. Some of these nodes may

disappear at different times than others in the same transaction (if, for example,

transactions involving the same node are intertwined). There a.re two structures

which keep the display accurate, the actor display array and the pending,

transaction array.

The actor display array maintains the status of each of eight potential nodes.

This information includes whether or not the node is currently being used, what

the last actor to use the node was and, if the node is in use, the number of

transactions currently being displayed of which the node is a pa.rt. Whenever an

82

actor node is modified (either by activating it, or adding connections), its

corresponding status structure is updated. When a node's number of connections

is zero, it is erased. If an actor is about to be displayed, all nodes are checked to

see where (if any place) it was last displayed, and that node is chosen, if possible.

The pending transaction array contains structures which keep track of all of the

parts of a transaction currently being displayed on the screen. Ea.ch element

contains a transaction data structure as described in the previous section, a list of

map locations of the members of the transaction, and a. list of messages which

make up the transaction. As each message is encountered in the journal, pending

transactions are checked to see if the message is a member. If it is, the

appropriate line is flashed on the screen (determined by the locations of recipient

nodes). If the message is the last message in the transaction, then all nodes

involved in the transaction have their transaction count lowered, and those with

a count of zero are erased.

4.3 Summary

This chapter presents a detailed look at the structure and implementation of

MAM. MAM consists of two separate modules, an Analyzer for scanning a

journal file and recognizing transactions in it, and a Journal Display Monitor, for

displaying the results of the analysis. Understanding the implementation, at

least on a structural level, is necessary because it provides the user with a more

complete model of usage of the MAM tools.

The Analyzer uses a message passing model of programming in order to recognize

user defined transaction in a journal file. Software demons are created which

recognize particular types of abstractions which have been defined in a file of

abstraction definitions. Abstraction definitions come in two flavors, transaction

definitions and message definitions.

83

Recognizer demons are passive collectors of syntactic information. Demons

receive messages from other demons, indicating events that have been recognized.

The demons use those recognition messages to build up higher level abstractions,

sending out their own recognition messages in turn. Such sequences of message

passing are initiated by message demons, which scan the journal directly for

messages of some class.

Transaction demons recognize patterns by simulating non-deterministic finite

state machines. The inputs to these machines consist of event recognition

messages, which are matched to pattern symbols. Matches a.re contingent not

only on event type, but also on the parameters of the event (i.e. the processes

involved in it), which must meet certain constraints. These constraints may be

user specified, or they may be cause by the previous insta.ntiation of a parameter.

Demons also contain mechanisms for recognizing so-called "faulty" events.

These are events which contain most of the elements of a pattern, but fail by

missing a given element, by not finishing in the time specified by a timeout field,

or by simply partially completing. Checks a.re made for partial matches alter the

scanning of the journal has been completed. By using a "non-ambiguity

assumption" partial matches need only be checked against complete matches

within a particular demon, thus making the task of weeding out false faulty

transaction matches relatively simple.

The Journal Display Monitor uses a movie-like graphics display to represent the

flow of transactions read from a journal that has been pre-processed by the

Analyzer. The primary issues involved in the JDM implementation were ones of

ergonomics. The data to be displayed was readily available and required little

additional computation. The primary problem was one of presenting the data in

a way which was intuitively useful to the user.

84

------ ---------------------------------------

The three major issues are ones of user control, display design, and screen

management. A user's mental model of the behavior of a distributed program

may be very complex, involving many levels of understanding, and control of the

display should be possible at any of these levels. The actual representations are

also important, as they must correspond in some useful way to the structure of

the transactions being displayed.

The control problem is vexing because it involves a tradeoff, between speed and

functionality. In order to give the user maximal control, a great deal of record

keeping would be required, so that the program could keep track not only of

transactions that were being displayed on the screen, but also of those that were

not. This would allow a user to switch levels arbitrarily at any time in the

display. However, the current implementation does not support such a scheme.

Instead, only the current message and currently displayed transaction are

tracked. This allows the user control on a per message basis, or by entire

transactions on a given level.

The representation problem is difficult because there are very little in the way of

hard design rules to follow. A simple map representation is used, augmented by

a textual "commentary" of the abstractions being displayed. Nodes on the map

correspond to processes of the distributed program, while lines connecting the

nodes represent messages passing between them.

Map management involves not only keeping track of the various graphical

objects on the screen, and keeping that screen display current, it also involves

making sure that screen changes preserve the integrity of the screen

representation over time. The primary task is to insure that the correspondence

of screen nodes remains static over time. This is done by keeping a record of

previous correspondences, and reusing them as much as is possible.

85

Chapter Five

Summary, Critique, and Future Work

The work presented in this thesis is the result of an investigation into improving

the tools available to debuggers of distributed softwa.re systems. Because of the

paucity of research into the field of distributed debugging, there was no firm

foundation of tested strategies on which to build improvements. Instead, some

ideas were taken from the few ad hoc approaches which had been tried in the

past, but most of the work proceeded from scratch. The result, the Message

Abstraction Monitor, provided an implementation with which to empirically

judge the value of the approaches used.

This chapter is divided into four sections: The first is a summary of the work

performed, the second is a critique of the MAM tool, the third suggests future

improvements and extensions, the fourth one is a concluding statement.

5.1 Summary

This thesis presents the results of an investigation into debugging distributed

programs. Debugging distributed programs is similar in some ways to debugging

serial programs, but there are some important differences which must be

addressed. A number of researchers have attempted different approaches to this

problem in the past, using a variety of techniques, none of them particula.rly

satisfactory. MAM, a program developed as part of this investigation, combines

a number of techniques from previous works, as well as developing a novel

approach to the problem of faulty data.

86

Serial debuggers are fairly well understood and all implement the same basic

paradigm. They allow the user to trace, step and dump. It would be useful to

be able to do the same for a distributed program, however those functions are

less well-defined in that domain. One does not want to consider individual

program line steps in a distributed program, because they are not well ordered.

'Instead, it is useful to look at processes as black boxes and debug them from a

functional standpoint. The goal is to understand a program simply from the

input/output behavior of individual processes. This introduces the complication

that program object data and the indications of program flow control (control

data) are one and the same, and understanding the fiow of a program becomes

dependent on interpreting the data that it produces. There a.re two new issues

that this "behavioral abstraction" approach brings to the fore: 1) The data. is a

raw stream of messages, and usually not very meaningful to the user in this

form. There is no "source code" to which to return in order to make sense of a

dump the way a program line debugger does. 2) If there a.re mistakes in the

data, that is messages which do not correspond to any program behavior that is

expected, the debuggers grasp on the control fiow of the program is lost. These

two observation must be taken into account when designing a distributed

debugging tool.

MAM is an attempt to address the issues brought up in the last paragraph. It

allows the user to specify abstractions for which to scan in a journal of messages.

MAM provides a program for scanning that journal and marking it according to

the abstractions provided, and it provides a method for "playing back" that

journal in a graphical display monitor, allowing the user to understand what

happened in the journal in terms of his model of the behavior of the program,

rather than in terms of the details of message passing interaction. It includes a

method for automatic recognition of "near-miss" transactions, which are faulty

in some way, but which are a close fit to the expected transaction.

87

MAM is a custom implementation for a particular task, namely debugging a

distributed programming system which was being developed at Genrad. This

system involved a suite of programs, with zero or more instantiations of each

program running at any given time. These programs communicated by sending

messages (synchronous and asynchronous) back and forth on an ethernet. A

central message server coordinated communication between processes. There

were no explicit layers or enforced high level conventions in the network, just a

single protocol for sending and receiving messages. The central message server

generated a log of events for use in debugging. These events consisted of

messages, forking of tasks, and restarts. Using this journal as the means of

getting "into" the program operation, as opposed to some real-time intervention,

seemed the cleanest approach.

MAM consists of two parts: an Analyzer written in Scheme, and a Journal

Display Monitor written in C using the Sun Windows package. The Scheme

program is non-interactive. It is given an input file of Abstraction Descriptions,

written in MAL (Message Abstraction Language), and a journal produced by the

message server. It outputs a modified journal, with messages marked according

to their membership in various abstract entities, as well as some global

information.

MAL allows the user to define message abstractions and build up higher level

transaction types. This is done by specifying regular expressions whose

components are "calls" to lower level abstractions and, ultimately, to single

message. In this manner a whole hierarchy of descriptions can be created.

Errors and near-misses are detected using simple rules for partially completed

transactions and transactions missing one element. Such "faulty" transactions

are included in the output file and displayed as events in the journal playback.

The display system takes the finished journal and displays it on a graphics

88

terminal. It can be thought of as an enhanced movie playback of the journal,

with the user controlling both the speed of playback, and the "magnification"

(level) at which it is viewed. The user can jump between levels, and move

backwards in time, thus allowing him to focus on the problem. The various

processes involved are displayed as nodes on a map, those which communicate

are connected with lines, and those lines are highlighted as messages appear. A

sidebar gives a running record of activity as it happens in the virtual time of the

display.

Because of certain assumptions about the nature of the data being recognized,

the semantics of the MAL are simpler than they might otherwise be. For

example, it can be assumed that any pattern for which a search is performed

must be recognizable by the processes that a.re listening for messages. This

allows the Analyzer to ignore the mathematically possible but pathological cases

for recognition. Even with such constraints, there are still possibilities for

ambiguity, due to the nature of the language. Certain assumptions have been

made about the most likely interpretations of ambiguous cases.

The notion of a near miss is not well defined. It is not just a matter of syntactic

difference, but also of semantic difference. It was assumed that a faulty

abstraction would, on some level, simply be a single missing abstraction, so the

system merely recognizes abstractions minus no more than one of its expected

components.

The abstraction recognizer of MAM was implemented using a message-passing

programming model. Each abstraction is used to spawn demons, which scan the

journal as it "passes by." When a demon recognizes an abstract entity, it

informs the world, so that its information can be utilized by other demons. Each

demon keeps track of the current state of its recognition by data structures

called "paths." Each path kept by a demon corresponds to a possible

8Q

interpretation of the data. Since data is assumed to be unambiguous by the end

of the journal, false paths can be eliminated. An algorithm for eliminating false

paths was developed.

The Journal Display Monitor system had a number of interesting implementation

issues. Specifically, determining the type of graphics display that would be most

effective in giving the user some intuition about the nature of the journal was

difficult, due to a lack of a strong theory on the subject. It was found that trying

to keep processes at the same physical location in the map (even if there was a

hiatus during which the process was not displayed) was very helpful. A system

of priorities for node assignment was developed for this. There were also some

questions about how to implement the two "modes", namely message and

transaction. In message mode, the display proceeded one message at a time

(although the entire transaction structure was displayed). In transaction mode,

the grain was the entire transaction. The problem here is that this really is not

the duality wanted. Transaction mode should display a transaction in terma of

its elements (with the actual pattern displayed on the sidebar). This was

difficult due to the way in which transaction data was stored.

5.2 Critique

MAM provides three primary innovations towards distributed debugging: a

specification/ description language for interprocess events, a graphical display

system for journal play back, and automatic error detection. The MAL language

analyzer provides a scheme for specifying debugging data structures which are

not implicit in the program (i.e. they depend on the user's understanding of the

program semantics, and cannot be automatically generated from the structure of

program or its output). More specifically, it uses behavioral abatraction, treating

interprocess communication as the finest grain of program control. The JDM

90

uses a graphical network map display as the means of representing the dynamic

behavior of a distributed system. It also provides the user with control of the

display in terms of high level abstractions. Because the MAL analyzer can

recognize "near-misses", it is able to pinpoint the sources of unexpected behavior

in a distributed system.

5.2.1 Error Detection is a Powerful Tool

MAM, as its name suggests, was originally envisioned primarily as a monitor.

Users would observe a processed journal, using the JDM, and check what they

saw against expectations. In fact, the most useful feature of MAM, in practice,

appears to be the "near-miss" error detection capability. This is particularly

true with the large class of errors which result from coordination a.nd stray

message problems.

Because of the hierarchical structure of MAL specifications, almost all

"reasonable" message streams come close to matching user defined abstractions;

(the more faulty messages in the stream, the higher the level of abstraction

needed to abstract all faulty messages into a single faulty transaction). Thus, the

user is likely to find that the MAM can pinpoint the exact location of most faulty

behavior automatically.

It is important to note that useful errors were found with MAM using a very

simple error checking scheme. One-missing-element, a.nd transaction-dead were

the only tests used by MAM. Perhaps with a more sophisticated error checking

technique, even better results might be obtained.

91

5.2.2 MAL Is Not Strong Enough, and Hard To Use

The descriptive power of MAL is limited in part by its similarity to a regular

language, and in part by features native to it. Like other regular languages,

MAL expressions cannot express the need to keep track of unbounded state

information. MAL expressions cannot capture the notion of something that is

"pending." In a system such as the one implemented at GenRad, where every

send must be acknowledged, issues of pending results generally do not come into

play.

It is easy, however, to conceive of a system in which valid transactions could only

be described in terms of nested calls. Such a system would involve a client and a.

server. The client sends, at random intervals, various requests for service, to

which the server must, before the transaction ends, respond. A valid transaction

would be one in which all requests eventually receive a response. MAL

expressions would be unable to represent this.

Even in a system with acknowledgments, a similar problem could occur if, for

example, some action in a transaction depended on the number of previous

transactions observed. This observation leads to another perceived shortcoming,

the inability to calculate. In a more general system, statistics about the messages

observed, such as the number of them, could be put into variables, and used as

predicates in recognizing transactions. This might be useful in a situation where

a transaction is only valid in case a certain number of transactions of another

type have already been observed.

Negation is not implemented in MAL. It is impossible to describe a pattern

position as NOT being a certain type. Because regular expressions are defined on

finite alphabets, NOT clauses in a regular language are just syntactic sugar23 But

23Take for example the a regular language on the alphabet (A B C). To say that a symbol is
NOT(A) is equivalent to saying that is is OR(B C).

g2

the alphabet for MAL is arbitrarily large (since symbols are parameterized), and

thus NOT is indispensable. It might be useful, for example, to indicate that a

pattern position should not be matched by an event type with particular

parameters, although the events of that type in general could match.

Another problem which was discovered, and which is inherent to all description

languages, is the frequency of errors in the abstraction descriptions themselves.

In debugging a large program, abstraction descriptions can be rather large, and

subject to errors. In using MAM, it was found that as much time was spent

debugging the MAL input file as was spent debugging the actual distributed

program. This was due in large part to the lack of synta.x checking in the MAL

analyzer. A scheme for overcoming this problem is discussed in the next section.

5.2.3 The JDM Lacks Sufficient Display Power

The JDM is la.eking in some respects as well. The control mechanisms a.re

somewhat crude, relative to the complexity of the data. The screen display,

while useful in interpreting the data, requires further work to make it ma.ximally

useful to the user.

The JDM allows two types of flow control modes. In transaction mode,

transactions are flashed atomically, for a. single instant, and then erased, the

display moving on to the next transaction at that level. In message mode,

transactions are displayed, and then each of the messages comprising that

transaction is highlighted as the journal time progresses. Neither of these modes

displays the transaction aa it is understood btJ the user, as a sequence of abstract

elements. This is due to the inability of the display system to represent that

amount of information at one time.

g3

5.2.4: Control Mechanisms Are Not Ideal

The lack of understanding of transactions in terms of events presented a problem

for control, as well as display. Ideally, the control level and the display level

should be independent. That is to say, the level of transactions that are being

displayed on the map does not necessarily need to be the same as the level of

transaction being used as the timestep in transaction mode. In the current

implementation these levels are the same.

The control/display combination that might be the most useful addition would

allow the user to display transactions on a particular level, and control the flow

of the display in terms of events which are the lexical constituents of the

transaction pattern, regardless of which level they are on.

Another problem with the JDM concerned changes of level. A frequently used

debugging technique involves progressively lowering the abstraction level number,

in order to home in on the faulty message. The JDM is incapable of maintaining

a meaningful screen display across level changes. That results from the fact that

the JDM does not keep track of the current transactions in levels other than the

one that it is currently displaying, and as a result cannot display transactions at

other levels without encountering them while at their level.

5.3 Proposed Enhancements

5.3.l MAL Language

5.3.1.1 A Syntax Checking Editor

As mentioned previously, the major difficulty in using MAM effectively came

from the difficulty in insuring the validity of the MAL specifications. In actual

g4

test runs, detecting errors in MAL syntax and typographical errors in the input

file were responsible for the majority of time spent in the debugging process. In

complicated systems, with perhaps tens or hundreds of events defined, errors in

the semantic content of .ADs are likely to become significant as well.

One can imagine a number of safeguards that could be built into the Analyzer to

recognize problematic abstraction descriptions. Simple syntax checking is easily

implementable and quick, given the very simple structure of MAL expressions.

More important, however, would be what might he called "consistency"

checking. Many of the MAL errors encountered involved misspelled words or

errors of omission in transaction patterns. :Mistakes such as these cannot be

caught using syntax checking alone. Instead, checks can be made, using certain

heuristics, to insure that expressions appear •reasonable."

One such heuristic involves insuring that every alias defined in a. transaction is

actually used in the pattern associated with it. Another involves checking that

elements are of a lower level than the transaction that encompasses them.

Misspelled process types (which are used in aliases to constrain the identities of

parameters) can he caught by maintaining a master list of valid process types.

Even with error checking, the user is still presented with the problem of typing

in a specification file, running it through the analyzer, finding the errors, and

rechecking. Such a routine is likely to add time to the debugging process, rather

than make it easier. Fortunately, the simplicity of the MAL language makes a

better solution feasible.

A syntax-directed editor [Teitelbaum79) is a system which guides a user in

generating code for a language, using knowledge of the syntax of that language.

A syntax-directed editor is likely to prove very valuable in a future version of

MAM, due to the simple and regular structure of MAL expressions. The

structure of MAL expressions is essentially that of frames, with slots to be filled.

g5

The content of each slot is at least partially dependent on the values of other

slots. AB a result of this fact constraints can be utilized while MAL expressions

are being written, in order to force the user to write valid expressions.

Such an editor might also be used to enforce overall coherence in the input file.

For example, a test could be performed on the level attribute of various

transaction definitions. In the current implementation, the level attribute is set

at the whim of the user, but this can lead to problems. For levels to be

meaningful, there should be a partial ordering on the transactions, such that a

transaction only con ta.ins elements on a lower level. This enforces a more

important rule, namely that transactions should not have so-called "cyclical

definitions." That is to say, an event should not refer to its pa.rent transaction

in one of its elements. The editor could check for this by constructing a graph of

the relationships of transactions, and then checking for cycles.

Some form of machine assistance in the creation of abstraction descriptions seems

vital to the creation of a feasible abstraction based debugging monitor. For any

program of modest complexity, the abstraction descriptions will compare in size

to the program itself. If creation and debugging of the abstraction descriptions

takes more than a negligible amount of time, the entire project is for naught.

5.3.1.2 A More Powerful Language

The MAL language could be improved to make it more powerful. This would be

done at the cost of more difficult journal analysis. Making a richer language

would also entail more complicated pattern expressions, thus complicating the

task of generating such expressions correctly.

The most obvious enhancement would be to abandon the restriction that MAL

patterns be regular expressions. Instead, expressions with the expressive power of

turing machines (i.e. a full-fledged programming language) could be used. Such

Q6

expressions could have local variables, perform arbitrary tests on the input

{which would still be subexpressions). Less ambitious improvements might add

features to the language such as stacking, negation, etc.

5.3.2 Monitor

5.3.2.1 An Enhanced Display

A major difficulty in designing the monitor display was the inability to display

enough information on the screen at any given time. The intormation available

about the state of computation is multi-layered and hierarchical. This aspect is

very difficult to display on the current screen without creating unacceptable

clutter.

A solution to this problem lies in the use of a color-display monitor. As it stands

now, the JDM has no way of displaying multiple levels of structure on the screen

at once. A color coded display would help to solve that problem, using distinct

colors to represent levels.

Alternatively, multiple abstraction levels could be displayed simultaneously by

using a multiply-windowed display screen, with each window devoted to the

display of a single level. The major impediment to this scenario is screen size.

Having the five to ten windows that might be common in such a situation on

single display screen would seriously limit the size of such windows, thus limiting

the detail of display in those windows. However a limited system allowing a

smaller fixed number of windows is quite feasible.

g7

5.3.2.2 Control In Terms of Substructures

The current control mechanism of the JDM is primitive by comparison to the

richness of description it is capable of displaying. The flow of control is managed

in two modes, which allow a message by message time grain, or the display of

entire transactions at the current level as atomic units. Ideally, such control

should be more general, using more of the constructs generated by the analyzer.

Specifically, the following scheme might be implemented: Another mode

subtransaction is added to the two, message and transaction, which already

exist. In this mode, there exists a current level, just as in the other two. But

in this case, it is not the transactions at the current level that are displayed one

at a time, but the elements which make up the current transactions on the

current level. In conjunction with a color display, the map could be further

improved by highlighting those nodes which participate in a particular event, as

it is occurring.

5.4 Conclusion

The MAM project was an empirical investigation into an approach to the

debugging of distributed systems, a field almost devoid of previous theoretical

work. The resulting work is significant in that it explores some of the areas for

which a theory might later be developed, user interface, abstraction languages,

error detection. Of these three areas, the work presented here on error detection

is the most novel. The combination of the three areas provides a valuable

contribution to the debugging of distributed systems.

08

Appendix A

MAL Frames:A Hypothetical Transaction

The MAL frames presented in this appendix represent transaction descriptions

for a hypothetical debugging scenario, which is used to demonstrate some of the

descriptive abilities of the MAM system.

There are seven TD frames listed, board-teat-sequence, lnit-ftxture, init-rte,

run-program, quit, teat-result, and open-window, as well as ten MD frames.

Together, they serve to describe the following algorithm:
Bowd _Teet_ Sequences The TSD ini tializea the eystaa to begin board
tasting. It than activates the board •fixture.•24 Following this,
one or aore test prograas26 are run on the board. until enough test
data has bean generated. An axi t sequence then return• the test
hardware to its idle state.

The frame board-test-sequence, at level 5, serves as the top level or root frame

and its pattern describes the entire transaction from a high level view. Notice

how the *-operator is used to indicate that one or more run-program transactions

may occur as part of this transaction, as noted in the description above.

The children transactions, assigned to level 4, a.re those which a.re elements of

board-test-result, including load-ftxture, inlt-rte, run-program, and quit.

The remaining transactions, open-window and test-result, are conceptually

24 A fixture is a custom made device that interfaces between a particular type of board and the
tester.

25Test programs are suites of physical tests on the board. They are run by the special purpoee
run time procesaor, and are not considered independent proceeaee that are part of the distributed
program.

gg

elements of level 4 transactions, and so are given the still lower level of 2. 26

26Note that there are no transaction of level 3. There is no requirement that level numbers be
consecutive integers. Leaving certain level numbers unused allows addition of more levels later
on, if more detail is needed.

100

Tm.AMUCTION1

....................

LIVIL: I

ALIAllS: iai•-~•: Ciai•·ne w n. ..-. U.S u>
1 ... -ftlnn: (lellll-t&IMn_, ~ ,,,.....,
tu.•: '"" - u ...,

TIMIOUT: 1011

ACTOU: W: -n.: 111
.... : l!I
U.,:llM
u:m

'l'&A.M8A.CTIO!ft

LIVIL: '
MIMD:

ACTOB: W: • ... : : ..
&I.II: 1111
u:m

101

TLUf8.A.CTION1

LIVIL:

ALIMU: tr-11: (1* ,
n-11: (1 ,
n-11: (IS.ta,
.,...,1: Cit.le "9 u..>

PATTllN:

TIMIOUT: too

ACTOl8: ... : m
l'h:&m
"9:m
U.S: DUI

na·,.••
LIVIL: &

ALIMU: '~= <na ... n.>
rw: (na u de>
..-.: <nan.na> . ,_.••.a..: c-.......u,.. n.u..>

TIMIOUT: •

ACTOllS: ... : m
l'h:m ... :.
u:m
U.S: DUI

102

LIVIL: ' Al.....: '""..u,
"'""": cu"..., :c....,
....... :c....,

TIMIOUT: ,.

ACTOM: ru: ..
ru:m
M19:IUI
u:m
w:m

Lava: I

ALMaU: •: e...it * ...,
NI (-'I,......,

PATTllltli en.a

ACTWl ftl:•

.........
LIVIL: I

n.:m
M19: IUI

AL ... IS: na: C1••• .. .aa...MMG
, :Cfm,
.... c.....u.,

TIMIOUT:•

ACTOM: .u.: •
..... :m
-....1111

103

Ma8A.Q•

fut!:

MESSAGI ID: 210

SINDIR: •
RICIPllNT(S): •

CONTINT:

MZSSAQBs

MIUAGllD: zao

SINDEi: •

RICIPllNT(I): •

CONTI NT:

MESSAGE ID: •

llNDll: •

RECIPllNT(I): •

CONTENT:

·-·
MISSAGI ID: •

SEN DIR: an
RICIPllNT(I): •

CONTENT:

MS88A.G•

..--na-"'
MlasAGllD: -llNDll: •
HCIPllNT(I): nr

CONTI NT:

MW.MllD: 21t

llNDIR: •

UCIPllNT(I): •

CONTI NT:

MWMllD: •

llNDla: •

RICIPllNT(S): •

CONTINT:

104

NM8.4Qlb

e-wt.a·nt-uk

MWAGllD: 200

SINDIR: UII

RICIPllNT(S): •

CONTENT:

MUSA.QI::

MUIAGI ID: :uo

llNDIR: •

RICIPllNT(S): •

CONTINT:

MUI.AGE ID: m>

llNDll: •

llCIPllNT(S): •

CONTINT:

Appendix B

MAL Frames: An Actual Scenario

The MAL frames presented in this appendix represent transaction descriptions

for an actual debugging scenario, which was encountered during the development

of the GenRad system. It describes transactions found in the journal described

in Appendix C.

There are four TD frames listed, describe-window, atg-interaction,

interact-choices, a.nd open-window, as well as seven MD frames. Together,

they serve to describe the following algorithm:
ATG Window _Interaction: The ATG application is created. It
requeat• that a window be created. That window is creat.ed, and
informs the calling process (ATG) of its chara.cteristics. A sequence
of zero or more window interaction aessagea is sent fro• the Ueer
Inter /ace Ta8k (UIT) to the ATG.

In this scenario, the root frame is atg-interaction, which describes the open

ended pattern of three initialization transactions, followed by zero or more I/O

interactions.

Since this transaction contains fewer parts than that presented in Appendix A,

the "level" structure is not as clear. In this case, the elements of

atg-interaction are "general purpose" transaction types, which are used in a

variety of situations, and whose levels a.re determined by their functionality,

a.part from their usage in any particular context. Thus two transactions,

describe-window and open-window are assigned levels of 3, which in this case

was used for transactions involving setting up user interface windows.

Interact-choices, however, was assigned to level 2, which was used for

105

transactions involved 111 lower-level real-time communication between a window

and an application.

lOG

TLUIUCTIONa

LIVIL: 1

ALIMO: __.....,: <tmi • ..,, :<.,......_.., .. ,ua> : (.............._..,_,
~: (latlftft•911•- ... ••>

PATTllN: <_...,, .,_....._ ..._.._ <• u._...»

TIMIOUT: lOIOI

ACTOIS: ..,: &11
•1': nt
ua:IU

LIVIL: a

ALIASD: nt: <.,......u... .-...>
, : (ftltl,
.a:c..........._...-.....u...>

PATTON: <nt ''*""' u1E>

·TIMIOUT:•

ACTOIS: .u...: •
.-.:m
-....:m

107

TLUf8A.CTION:

LIVIL: 1

ALIAllS: ... : <~ .Uld w>
"flJ: Cua·...._. ua .U••>

PATTllN: c ... "'11>

TIMIOUT: •

ACTO•: ua:m
.U••: •

TUNUC'.l'IONl

LIVIL: a

ALIAID: ._._: on .. •11• u• .u.t>
w:U...)

PATTIM: <.__ ->

TIMIOUT: 111

ACTOD: .u.n: •
••: m

108

,
....,,. ns•..-• •

••••••• • r

Allllllllf'tlt: •

wt•ft'l

.......
•• A

nrn1•11•• •
•• , ... 1 • -
CllJIMh - ~;· .

.......
m«•

Ulll.t•• ·• .. ,... -
n11m1••1ftaJ:.
•"'8"1:.

c•\:c:::.;:~ k

•

100

1 ::1•1u·u,·

·it~.·--
:,,Jilllt:• •·• .. .• , .• ~ .. ·:••• ...): ..
"

" ; .. ',. """ .

. ,:,l_.11.-.

•'•'•'°'~--··*·'·~.~% .. ''•'·· : i

. .: ~:IJlli:n••·• , •
f, .• 1111:11· -

.; ..••• i

. ', \•-· l!tP:'J•

Appendix C

A Message Journal

This list of messages represents a segment of a message journal generated by a

program in the GenRad system. The frames represent the messages observed

while the program was attempting a transaction of type atg-interaction,

described in Appendix B. Two of the messages, numbers 2 and 4, are not part of

the transaction, but are part of another transaction which was taking place

simultaneously (note that the processes involved are distinct from those in the

rest of the segment). With each message is listed its type, as described in

Appendix B. This information is, of course, not included in the unprocessed

journal, but is included here for readability.

Msg. # Msg. ID Sender Recipient(s) Time (Type)

1 210 (MSG 99) (ATG 2) 16 fork

2 1080 (TSO 22) (UIN 686) 16 do-frame

3 200 (ATG 2) (UIT 10) 17 open-w1n-req

4 996 (UIN 666) (TSO 22) 18 u1n-comdone

5 210 (UIT 10) (UIN 11) 19 fork

6 200 (UIN 11) (ATG 2) 21 open-w1n-req-ack

7 1080 (ATG 2) (UIN 11) 25 do-frame

8 996 (UIN 22) (ATG 2) 100 u1n-comdone

110

Appendix D

The JDM Display

The following sequence of frames from the JDM display demonstrates a section of

an actual debugging session, using the events defined in Appendix B, and the

journal listed in Appendix C.

In the first frame (p. 114), the abstraction level is set to 5, thus the only

abstraction of interest is the transaction atg-interaction. The abstraction level

selector allows choices for levels 0 (single message level), 3, or 5, since those are

the levels of transactions discovered by the Analyzer. The level 2 transaction,

interact-choices, was not found in the journal, and so level 2 is not one of the

choices.

The status window indicates that the journal contains a faulty version of

atg-interaction, starting at timestep 15, and reaching a "dead end" at timestep

21. It also notes that the transaction consists of two elements, a fork message

(indicated by level O} at time 15, and an open-window transaction at level 3,

beginning at timestep 17. The map indicates that four processes a.re active in the

atg-interaction15 transaction: MSG99, UINll, ATG2, and UITlO.

In the following frame (p. 115), the level has been switched to 3, and the first

level 3 transaction, describe-window16, is displayed. By noting the labels of

the process nodes, the user can determine that this transaction does not involve

the same processes as atg-interaction15, and is not of concern in this

111

debugging session.27 In the third frame (p. 116) the first element of

atg-interactionlo, open-windowl 7 is displayed. Note that the screen still

displays the representation for describe-wlndowl6, since that transaction has

not ended yet.

In frame four (p. 117), the cause of the "dead end" noted at level five in the first

frame is revealed. The third element of atg-interaction15,

describe-window25, is shown to be faulty. Specifically, a do-frame message

was sent out at time 25, but no uin-comdone message was received in return.

Thus process ATG2 never receives a reply from process UINll.

The JDM display screens up through frame four pinpoint for the user the source

of the problem. In frame five (p. 118), a clue is given as to the cause. Frame

five shows another faulty describe-window transaction, this one missing its first

message, rather than its second. Significantly, the uin-comdone message is

being sent to ATG2, which should have been waiting for a uin-comdone

message from process UINll. But the sender in this case is a new UIN process,

UIN22.

The display sequence described above eventually led to a discovery of the

problem: in the process of creating a window for an application, the user

interface task (UIT) created a special task, a User Inter /ace Node (VIN),

specifically to handle communication between the application task and the

window being created. The UIN created in this case, due to a bug in the

software, was exiting itself unilaterally. The UIT, seeing that the UIN task it

had created had died, restarted it, but with a new process id number. AB a

result, this new UIN task continued to operate the window, but its messages to

27 This could also be determined by noting the elements listed under atg-interaction15 in the
status area, and noting that deacribe-windowlO is not among them.

112

the application task were ig11orecl, because it had the wrong process id number.

From the user's point of view, this made it seem as though the ATC task was

ignoring user input.

113

114

115

117

Appendix E

A BNF Grammar for MAL

What follows is a BNF grammar for the MAL expressions used in the MAM

implementation. The expressions described are similar in syntax to lists in

Scheme. They are designed as such in order to maximize ease of parsing by the

Scheme-based Analyzer. They are not, however, easy to read, and the examples

of MAL forms shown in Appendices A and B use a more readable representation.

The exact format of MAL expressions is relatively inconsequential, relative to

understanding the language. What is important, and what is captured in this

grammar, is the structure of the elements which make up MAL expressions.

Reserved symbols: () $OR ! *

event_ description

transaction_description

message_description

name

level

actors

.. -.. -

transaction_ description

I message_description

(name level (actors)

(aliases) (pattern) timeout)

(name msgid (sender)

(rec1ps) contents)

string

integer

(actor) I (actor) actors

ug

actor n ... -

proc .. 1_tfP•

al1&M•

&11&8

al1U_

ev•nt_aaae

ar111st

ttaeou1i

., ·. ,' ~- ' ."<.:t--;-~

{, _,-, ;,'

: :• " •.• ,~ ... ,/
t ;~.-.--~,,._l.in

,'_ !- ,::··.· •.; • • r• ·.-·., -· '>- ·'

;. :)":""-~- :·;_:.:.

::= ~'-~··

. '·. . - -: : . ···•1t• l· ---~:.i•-'" ·. ' . ' ~ ' --~-·-~. _.. ;'- ~-'! .

: :•

: :•

: :•

: :·•

: :•

: :•

_.·,

.• W111t11 ;*··--. --· S..t •:gr. c,~ ~· > . ··. ":: ·· .. :...a- -W- •

• .. • .. ' 1 · .. '/.11$"1 .. ' .

.l.····•:t•lii···--~}-... :_ ... :j:. ~:~f-~.:·,t·:·-·.:~l ~}-..-!: '

' ·~:

sender - process_ type_ list

recips - (process_ type_ list)

I (process_type_list) recips

contents - <undefined>

string - character I character name

integer - digit I digit integer

character - A I B I c I D I E I F I G

I H I I I J I K I L I M I N

0 p I Q I R I s I T I u
v w I x y I z I digit

digit - 0 1 2 3 4 5 6

7 8 g

121

References

[Abelson85]

[Arvind80]

[Baiardi83]

[Balzer6Q]

[Bates81]

[Bates82]

[Bates82a]

[Bates83)

Abelson, Harold and Gerald Sussman.
Structure and Interpretation of Computer Programs.
MIT Press, 1985.

Arvind, Vinod Kathail, and Keshav Pingali.
A Data/low Architecture with Tagged Tokens.
Technical Report MIT/LCS/TM-174, MIT Laboratory for

Computer Science, Sept., 1980.

Baiardi, F ., et. al.
Development of a Debugger For a Concurrent Language.
In Proceedings of the ACM SJGSOFT/SIGPLAN Notices

Software Engineering Symposium on High-Level
Debugging. ACM, March, 1983.

Balzer, R. M.
EXDAMS - EXtendable Debugging and Monitoring System.
In Proceedings of AFIPS Spring Joint Computer Conference.

AFIPS, 1Q69.

Bates, Peter, Victor Lesser, and Jack Wileden.
A Language to Support Debugging in Distributed Systems.
Technical Report TR-81-07, Dept. of Computer and Information

Science, U. of Mass. Amherst., 1981.

Bates, Peter and Jack Wileden.
An Approach to High-Level Debugging of Distributed Systems.
Technical Report TR-82-35, Dept. of Computer and Information

Science, U. of Mass. Amherst., December, 1982.

Bates, Peter and Jack Wileden.
EDL: A Basis for Distributed System Debugging Tools.
In Proceedings, 15th Hawaii Intl. Con/. on Systems Sciences.

1982.

Bates, Peter, Victor Lesser, and Jack Wileden.
A Debugging Tool For Distributed Systems.
In Proceedings, 1982 Phoenix Con/. on Computers and

Communication. 1Q83.

122

[Bates86)

[CCA80)

[Cerf83)

[DARPA81)

Bates, Peter C.
Debugging Programs in a Distributed System Environment.
Technical Report, Computer and Information Science Dept.,

University of Massachusetts, Amherst, January, 1986.

Computer Corp. of America.
A Distributed Database Management S11stem for Command

and Control ApplicatiornJ: Final Technical Report - Part 1.
Technical Report CCA-80-03, Computer Corp. of America,

1980.

Cerf, V. and E. Cain.
The DOD Internet Architecture.
Computer Networks 7:307-318, October, 1083.

Defense Advanced Research Projects Agency.
A History of the ARPAnet: The First Decade.
Technical Report AD Al 15440, Defense Tech. Info Center,

April, 1081.

[Garcia-Molina84)

[Gertner80)

[Hillis81)

[Lamport78)

[Lewis81)

Garcia-Molina, H., Frank Germano, Jr., and Walter H. Kohler.
Debugging a Distributed Computing System.
IEEE Trans. of Software Engineering SE-10(2), March, 1084.

Gertner, Ilya..
Performance Evaluation of Communicating Processes.
Technical Report TR-76, Dept. of Computer Science, University

of Rochester, May, 1980.

Hillis, W. Daniel.
The Connection Machine.
Technical Report AIM-646, MIT, Sept., 1981.

Lamport, Leslie.
Time, Clocks, and the Ordering of Events in a Distributed

System.
CACM 21(7), July, 1978.

Lewis, Harry and Christos Papadimitriou.
Elements of the Theory of Computation.
Prentice-Hall, 1981.

123

(Model79] Model, Mitchell.

(Schiffenbauer81]

Monitoring Sy8tem Behavi.or in a Complex Computational
Environment.

Technical Report CSL-7Q-l, Xerox PARC, January, 1979.

Schiff enbauer, Robert.
Interactive Debugging in a Distributed Computational

Environment.
Technical Report TR-264, Massachusetts Institute Technology

LCS, September, 1981.

(Smith81] Smith, Edward S.
Debugging Techniquu for Communicating, Loosely-Coupled

Procease8.
Technical Report TRlOO, Department of Computer Science,

University of Rochester, December, 1981.

(Teitelbaum79] Teitelbaum, Tim.
The Cornell Program Synthuizer: A Microcomputer

Implementation of PL/CS.
Technical Report TR 7Q-370, Department of Computer Science,

Cornell University, June, ig7g,

124

