
tt MASSACHUSETI'S
LABORATORY FOR INSTITIJTE OF -
COMPUTER SCIENCE TECHNOLOGY

'

MIT/LCS{fR.-393 ·

SYNTHESIS OF SELF-TIMED
VLSI CIRCUITS FROM

GRAPH-THEORETIC
SPECIFICATIONS

Tam-Anh Chu

June 1987

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

--- ··-··---~-~--- ----

This blank page was inserted to presenie pagination.

Synthesis of Self-timed VLSI Circuits
from Graph-theoretic Specifications

by

Tam-Anh Chu

B.S.E.E. Catholic University, Washington, D.C. (1979)

S.M. Massachusetts Institute of Technology (1981)

Submitted to the Department of
Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy
at the

Massachusetts Institute of Technology

June, 1987

© Tam-Anh Chu

The author hereby grants to M.I. T. permission to reproduce and
to distribute copies of this thesis document in whole or in part

Department of Electrical Engineering and Computer Science
May 11, 1987

Certified by---------------------------
Jack B. Dennis

Thesis Supervisor

Accepted by---------------------------
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Synthesis of Self-timed VLSI Circuits
from Graph-theoretic Specifications

by
Tam-Anh Chu

Submitted to the Department of Electrical Engineering and Computer Science
on May 11, 1987 in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Abstract

This thesis presents an approach for direct and efficient synthesis of self-timed (asyn­
chronous) control circuits from formal specifications called Signal Tranaition Graph.a (STGs).
Control circuits synthesized from this graph model are .apeetl-independent and capable of
perfoming concurrent operation. 'The property of speed-independence means that the cir­
cuit operates correctly regardless of variations in delays of logic gates, thus implying that
the circuit is hazard-free under any combination of gate delays. The capability of STGs
for explicitly specifying concurrent operations internal to a. control circuit is unique to this
model, unlike other approaches based on Finite State Ma.chines.

STGs are a form of interpreted Petri nets, in which transitions in a. net are interpreted
as transitions of signals in a control circuit. While other synthesis approaches based on
Petri nets have not been very successful, we have developed a number of analytical results
which establish the equivalence between the static structure of nets (their syntax) and
their underlying firing sequence semantics-an analytical approach called structure theory
of Petri nets. This equivalence permits the characterization of the low-level properties of
control circuits in terms of STG syntax: the properties of deadlock-free and hazard-free
of circuits are characterized as syntactic propeties of livene.u and persistency of STGs. A
preliminary STG specification of a control circuit can be modified into one which is live
and persistent, from which a deadlock-free and hazard-free logic implementation can be
derived mechanically.

STGs allow efficient synthesis of control circuits by using a method of decomposition
based on a graph-theoretic technique called contniction. Instead of implementing a logic
circuit from a STG directly, it can first be decomposed into a number of contracted nets,
one for each signal generated by the control circuit. A logic element can then be determined
from each contracted net, and the composition of logic elements produces the final circuit
implementation.

Thesis supervisor: Jack B. Dennis
Title: Professor of Computer Science and Engineering

Keywords: Asynchronous, self-timed speed-independent circuits; VLSI; Petri nets; struc­
ture theory; concurrency; finite automata.

1

l -

Acknowledgments

I would like to thank Jack Dennis, my thesis supervisor, for providing invaluable guid­
ance during the course of my thesis research. He had helped me formalize my ideas and
guided me through the maze of my own confusion. I have learned a great deal about
research, among many other things, from him.

Lance Glasser and Bill Dally, my thesis readers, deserve a lot of credits in shaping my
research. Lance taught me VLSI circuit design, and the importance of always reasoning
from first principles. Bill provided me with many useful comments and fresh perspectives
about the problem.

Special thanks to my friend Clement Leung who bas over the years given me advice
and guidance; his friendship and help have made my life much easier. The ideas in this
thesis originated from our early collaboration, and he deserves a. share of them.

Many present and pa.st members of the Computation Structures Group have helped me
and made my stay at MIT more fun; I would like to mention a few: Arvind, Bill Ackerman,
Andy Boughton, Suresh Jagannatha.n, Willie Lim, Guang-Rong Gao, Suhas Patil, Natalie
Tarbet, Kevin Theobald, Tom Wanuga, Earl Waldin.

My Vietnamese friends at MIT and Harvard have provided me with a second home
away from home, and I appreciate their support. Among them: Minh Ho8.ng for being a
good old buddy; Bfoh-Ng<_>e TriLn for her friendship, and also for her proofreading part of
the early draft of this thesis.

This thesis could not have been completed without the love and support of my parents,
my brother Nbi-Anh and sisters N~t-Anh and Ttl-Anh. To them, I would like to dedicate
this thesis.

The major pa.rt of this research was carried out under financial assistance from the
Hughes Doctoral Fellowship Program. This document was prepared using J.nEX and
equipments at the MIT Laboratory for Computer Science.

11

Contents

1 Introduction

1.1 Objectives .

1.2 Background

1.3 Problems with some previous models .

1.4 Main contributions of this work .

1.5 Experimental results .

1.6 Organization of thesis

2 An Informal Introduction

2.1 Petri Nets and Signal Transition Graphs .

2.1.1 Petri nets

2.1.2 Signal Transition Graphs

2.1.3 Relation between Petri nets and Signal Transition Graphs .

2.2 Semantics of nets/Behavioral equivalence

2.2.1 Behavioral Equivalence

2.2.2 Important Analytical Results for Nets

2.3 Properties of State graphs

2.3.1 State Graphs and Network Functions.

2.3.2 Liveness and Consistent State Assignment .

lll

1

1

2

5

7

8

11

16

18

18

23

25

27

28

29

34

34

35

lV

2.3.3 Persistency

2.3.4 A synthesis procedure

2.4 Decomposition by Net Contraction

2.5 A problem with state assignment

2.6 Summary

CONTENTS

36

38

39

44

45

3 Semantics and Temporal Relations of Nets 46

4

3.1 Petri Nets

3.1.1 A Brief Introduction .

3.1.2 Previous Results for Free-Choice nets

3.2 Firing Sequence Semantics of Free-Choice nets

3.2.1 Semantics

3.2.2 An algorithm for constructing reachability graphs .

3.3 Temporal Relations: Ordering, Concurrency and Conflict

3.3.1 Syntactic Characterization

47

47

50

53

53

55

58

58

3.3.2 Partition of the Temporal Relation and Correspondence to Reacha­
bility Graphs . 62

Signal Transition Graphs 68

4.1 Syntax and Semantics 68

4.1.1 Signal Transition Graphs 69

4.1.2 State Graphs 70

4.1.3 Network functions: Implementations of state graphs. 72

4.1.4 An Example 73

4.2 Obtaining state graphs from STGs 75

4.3 Composition 79

CONTENTS

5 Properties of State Graphs

5.1 Liveness ..

5.2 Persistency

5.2.1 Definition of Persistency .

5.2.2 Characterization of Persistency in STGs

5.3 A problem with state-assignment

6 Decomposition by Net Contraction

6.1 Contraction Algorithms

6.1.1 Contraction of Petri nets

6.1.2 Contraction of Finite Automata

6.2 Properties of Contraction

6.3 Decomposition by net contraction .

6.4 Application to Signal Transition Graphs

7 A Design Example

7.1 Specification of the Controller .

7.1.1 Behavior Specification

7 .1.2 STG specifications . .

7 .2 Synthesis from STG Specification .

7.2.1 Meeting liveness and persistency

7.2.2 Implementation using decomposition .

7.3 Summary

8 STGs with Non-input Choices

8.1 Introduction . .

8.2 The Basic Idea

v

83

83

84

85

89

94

97

98

98

101

104

110

118

121

122

123

124

126

126

130

136

138

138

140

Vl

9

CONTENTS

8.2.1 A fundamental problem with specifying non-input choices in state
graphs. 141

8.2.2 Specifying non-input choices in state graphs. 142

8.3 STGs with non-input choices

8.3.1 Syntax ...

8.3.2 Firing rule .

8.4 An example: a two-cycle FIFO controller

The Expansion Algorithm

9.1 Occurrence nets and Processes of nets

9.1.1 Occurrence nets

9.1.2 Processes of nets

9.1.3 A few results for processes of LSFC nets .

9.1.4 Processes of STGs

9.2 The expansion algorithm for STG /NCs

9.2.1 Unfolding and folding of free-choice nets .

9.2.2 The Expansion Algorithm·.

9.2.3 An example . . .

9.3 Properties of STG /NCs

9.4 Summary

145

145

146

147

152

153

153

154

157

158

161

162

165

169

172

179

10 Suggestions for further research 180

... All things entail rising and falling timing. You must
be able to discern this. In strategy there are various tim­
ing considera.tions. From the outset you must know the
applicable timing and the inapplicable timing, and from
among the large and small things a.nd the fast and slow
timings find the relevant timing, first seeing the distance
timing and the background timing. This is the main
thing in strategy. It ia eapecially important to know the
background timing, otherwi"e your "trategy will become
uncertain.

A Book of Five Ring"
Miyamoto Mwa.,hi

Vll

Vlll

... All Signal Tramition Graplu entail ri&ing and falling
&ignal tramitiom. You mwt be able to di&cern thia. In
our de&ign method, there are variow timing comider­
atiom. From the initial &pecification, you. m'U-'t know
the allowed timing and the diaallowed timing, and from
among the large and &mall circuit& and the fa&t and &low
logic gate& find the relevant timing, fir&t &eeing the dia­
tance timing and the timing protocol at the interface.
Thia ia the main thing in our deaign method. It ii eape­
cially important to know the timing protocol, otherwiae
your circuit& will not work.

Chapter 1

Introduction

1.1 0 b jectives

The ma.in objective of this research is the development of a design approach for asyn­

chronous self-timed VLSI digital systems. The core of our approach is a graph model

called Signal Tran8ition Graph~ (STGs). STGs allow the specification and efficient synthe­

sis of self-timed control circuits. Our approach produces ~peed-independent logic circuits

which can perform concurrent operations.

In the realm of VLSI, exploiting concurrency is a prerequisite to high-performance: as

systems become larger and more complex, one can no longer afford to ignore the parallelism

in control operations. The central control discipline which is well-accepted in present

approaches creates difficulties in high-performance systems by imposing an unnecessary

sequential order on the execution of control operations. In choosing a control discipline

which allows for parallel execution of unrelated operations, one naturally moves toward

a di.<Jtribu.ted control organization. Thus, instead of a large central controller, one has

numerous distributed control modules which can operate concurrently. STGs allow the

specification and synthesis of these types of control modules-not only that they can

operate concurrently, but also ea.ch module itself can perform several control operations in

parallel.

By speed-independent circuits, we mean those circuits whose correct operation is inde­

pendent of the delays of logic gates composing the circuits. One immediate consequence

1

2 CHAPTER 1. INTRODUCTION

of this property is that speed-independent circuits are always hazard-free. These types of

circuits are desirable in VLSI systems because it is usually difficult to fine-tune the delays

of logic gates to make an asynchronous digital circuit work properly. Perhaps most impor­

tantly, the use of speed-independent circuits enables the separation of the correctness of

systems from timing considerations (which inextricably depend on many physical factors

and phenomena in VLSI circuits). It is no coincidence that a number of research efforts

in silicon compilation have utilized speed-independent circuits as a basis for hardware

implementation [1,42].

STGs allow the direct and efficient synthesis of control circuits from formal specifica­

tions. Unlike previous efforts, the approach based on STGs produces a specification which

closely reflects the designer's intuition. Moreover, this approach produces efficient circuit

realizations by using a number of decomposition techniques. While speed-independent

circuits have been criticized for their inefficiency in implementation (and therefore speed

and performance), our experiences with applying this graph model. to designing VLSI chips

have been much more encouraging.

1.2 Background

We can categorize research works in self-timed systems according to two attributes: the

theoretical models on which the research is based, and the particular aspects chosen for

study. In terms of models, there are finite automata and Petri nets [39,41], and variations

of the two. With regard to aspects of study, the two chief areu of concern are composition

of systems from modular descriptions, and synthesis of modules from specifications. The

study of composition of systems from self-timed modules usually 8S8umes the presence of a

set of modules with a certain uniform communication discipline, and the investigation takes

a system point of view in exploring properties of systems composed from the modules. The

other area of concern concentrates on techniques for synthesis of control modules rather

than on the composition and communication aspect of systems.

Two prevalent concepts describing the properties of self-timed systems are delay-in.sen­

sitivity and speed-independence [35,36,37]. While these are commonly used interchangeably,

we often find that delay-insensitivity has connoted a stress on the communication aspect

and hence, the composition of systems. Thus, this terminology denotes an external prop-

1.2. BACKGROUND 3

erty of control modules. On the other hand, speed-independence is usually understood

as a property of control circuits which operate correctly regardless of variation in delays

of logic gates. Speed-independence emphasizes the synthesis aspect, hence is a. property

internal to control modules.

Regardless of the emphasis of these research works-whether on composition or on

synthesis-they require a. formal specification which must rest on the theoretical model

chosen. We have found that Petri nets provide a better starting point for formally spec­

ifying self-timed circuits, since Petri nets per se have capabilities for explicitly modeling

concurrency. Also, automata. theory originally concentrated on sequential systems. Not

until recently was the basic theory extended to cover aspects of concurrency, and not until

even later was it applied to the area of logic design.

Below, we briefly review some of the relevant works according to the outline above.

In short, each proposal identifies a basic model which also serves as its formal tool for

specification, and a focus of study (i.e. composition or synthesis). Interestingly, most

of the works deal with only one of the two areas; and none of them provides a coherent

framework for treating both synthesis and composition at the same time. This survey is

by no means exhaustive; it only serves to highlight the more relevant results which fit more

into our classification.

Most techniques for synthesis of asynchronous logic are based on either some form

of finite automata such 88 the Finite State Machine (FSM) model, or Petri nets. The

most outstanding work based on finite automata models can be traced back to Muller

[35,36,37], who originated the idea of speed-independent circuits. Recent work in trace

theory [42,53,51} can be considered 88 a systematic reformulation of Muller's idea: this

refinement is made possible because of the recent attempts to extend automata theory to

cover concurrent behavior of systems.

Concerning synthesis approaches based on Petri nets, one of the most important early

contributions was made by Patil and Dennis at MIT [15,17,16,38]. Patil invented asyn­

chronous logic arrays as a systematic method of directly implementing Petri nets [38]. In

an asynchronous logic array, columnB of wires are connected to storage elements to simu­

late the places of a net, while rows of wires decode the state of the columns to simulate

the occurrence of transitions. Thus, this method of implementation transfers the structure

of a net directly to hardware. Dennis has shown that Petri nets can be used to model

4 CHAPTER 1. INTRODUCTION

asynchronous hardware systeIDB at many levels of description in a very clear and easily

understood manner [15]. Dennis' description of the control logic of the Control Data 6600

computer, which embodied instruction look-a.head and interleaved execution, demonstrated

this technique. Dennis and Patil also elucidated an organization principle for asynchronous

hardware systeIDB in which a system is partitioned into data paths and distributed control

structures, the latter organized as asynchronous modules which communicate with each

other using certain signaling protocols [17,16]. Based on this organization principle, we

have successfully designed and fabricated a self-timed two-by-two packet router, a basic

component of a packet communication network [10].

Works at Washington University have also made important contributions to the study

of self-timed systeIDB, most importantly the use of macromotlulea proposed by Clark [11],

and experimental proof of metastability problem in synchronizers, together with design

techniques for alleviating this problem [7,13,47]. Most recently, Molnar et al. [34] proposed

the use of a form of Petri nets called I-net& for specifying behavior of control circuits, from

which Interface State Grapha (ISG) are derived by simulating the I-nets. ISGs can then

be encoded with binary states and serve as the basis for implementation of control circuits

as standard Huffman asynchronous state machines. This idea. was inspired by Seitz's

Machine-nets [46] but contained a number of improvements.

Work at CalTech by Seitz resurrected interest in self-timed systems in the VLSI era.,

as reported in a chapter of Mead and Conway's book Introduction to VLSI ayatema [32].

Currently, Martin [30) at CalTech proposed a design approach using constructs for non­

deterministic programming to specify hardware modules whose behaviors exhibit only se­

quencing and arbitration requirements. This approach uses a subset of Dijkstra's guarded

command language [18] to specify ea.ch process; concurrently cooperating processes are

described using notations similar to Hoa.re's CSP [25]. Heuristic procedures are used to

"compile" a hardware implementation from a module specification into an interconnection

of standard hardware templates such as And, Or, C-elements, etc. During the compilation,

the technique of reordering signal transitions in a sequence is used to improve implemen­

tation efficiency.

Recently, there have been works which use trace theory as a formalism for specifying

delay-insensitive circuits. Trace theory was pioneered by Ma.zurkievicz, who has recently

made further contributions to this theory [31]. Trace theory has been used in the COSY

1.3. PROBLEMS WITH SOME PREVIOUS MODELS 5

formalism invented by Campbell and Habermann [6] and in CSP. Rem, Snepscheut and

Udding at Eindhoven have demonstrated the use of trace theory for classifying and rea­

soning about composition of delay-insensitive circuits (42,53,51]. Trace theory has laid a

firm theoretical foundation for further investigation of properties of concurrent circuits, as

evidenced through recent works [5,45]. Perhaps one novel aspect of these works in com­

parison with the others is a method for classification of delay-insensitive circuits according

to properties of their trace structures [51].

There are a number of earlier works concerning the composition of systems from asyn­

chronous hardware modules; many were reported at the Project MAC Conference on Con­

current Systems and Parallel Computation (ACM, 1970). One notable study was made by

Keller at University of Utah, in which he proposed the use of a set of "universal" control

modules from which any control network can be constructed [28].

One of the important related works to self-timed systems is the use of temporal logic for

verification of asynchronous hardware structures [19]. Such techniques can be used fruit­

fully for correctness validation of self-timed circuits and systems composed from circuits.

It may also be a. candidate for a. formalism for specification and synthesis of self-timed

circuits.

1.3 Problems with some previous models

Below, we describe a number of well-known difficulties with some traditional approaches for

designing asynchronous circuits. In particular, we discuss problems with the FSM model

and with earlier attempts to apply Petri nets. By identifying these problems, we hope to

illustrate the difficult practice of designing asynchronous circuits; this will motivate the

search for remedies, some of which are provided by the approach we present in the following

chapters.

Traditionally, asynchronous circuits are designed using the FSM model. A method for

realization devised by Huffman uses a flow-table and a circuit model for implementing the

state machine, as described in textbooks such as [20]. This design approach is very difficult

to use, especially for synthesizing circuits with many input variables. So far, it has limited

applications because of problems ca.used by variations in gate delays, particular in the

'

6 CHAPTER 1. INTRODUCTION

feedback paths of the circuit. Some of the frequently cited disadvantages and limitations

of this implementation model are:

• The Huffman state machine cannot handle unre.stricted input changes. It was dis­

covered by Unger [52] that in the Huffma.n state machine, if two input transitions

occur within a time interval (i) less than min(DL + D1), then they can be consid­

ered as simultaneous, if (ii) greater than max(DL + D1) then they can be consid­

ered separate, and if (iii) less that max(DL + D1) and greater than min(DL + D1),
then the secondary state variable will not have settled and the circuit malfunctions;

maxDL, minDL denote the maximum and minimum delays of the combinational

logic, and maxDfl minD1 denote those of the feedback delays. (In general, minD1

has to be greater than zero.)

• The FSM model cannot describe concurrent behaviors directly. The FSM model and

the Huffman state machine are based on the use of central states. At any moment,

the machine resides in one state and it reacts to input excitations in different ways

depending on which state it is in. A serious drawback of this state-based approach is

that it is incapable of describing concurrency directly. The reason is that the notion

of concurrency is more conveniently expressed in terms of occurrences of events; at

the level of description of the FSM model, this phenomenon is difficult to see.

• The state assignment problem. Since it is difficult to match gate delays to achieve

simultaneous transition of state signals, one has to make sure that simultaneous

changes in state signals do not occur, or if they do, the circuit must be designed

such that it behaves the same no matter which sequences of state changes take place.

Hence most state assignment techniques only allow at most one signal change between

states. This is a well-known hard problem for which many heuristic techniques have

been proposed. State assignments serve another purpose in the implementation of

state machines, that of decomposition. This further complicates the issue, as an

optimal state assignment for decomposition may be in conflict with the requirement

for single signal changes betweeen states.

• The exponential dependence of the number of entries in the flow table on the num­

ber of input signals. Due to the absence of a controlling signal called a "clock", a

Huffman asynchronous state machine continuously senses the changes in the input

and produces changes at the output and the state variables. Therefore, in contrast

to a synchronous implementation of a state machine, an asynchronous implementa-

1.4. MAIN CONTRIBUTIONS OF THIS WORK 7

tion requires the listing of all input combinations in the flow table, resulting in the

exponential increase in the number of entries in the table.

There are a few early proposals for implementation of a.synchronous circuits from Petri

net specifications, most notably Patil's a.synchronous logic array and Seitz's Machine-nets.

Patil's proposal is more correetly viewed a.s a hardware implementation of Petri nets,

rather than implementation of a.synchronous circuits from net specifications, because his

technique basically replaces an element in a net with a hardware circuit which simulates

the behavior of that element. Hence the structure of the net is transferred directly to

hardware and there is no direct way to ensure that the resulting a.synchronous machine

meets all timing requirements. The operation of this type of asynchronous logic arrays

depend greatly on local timing, and meeting these timing constraints can sometimes be

difficult.

Seitz's Ma.chine-nets, on the other hand, serve only a.s specifications from which FSM

descriptions can be derived. The synthesis of a Huffman state ~hine from such a de­

scription still requires the standard techniques and therefore faces the same difficulties.

1.4 Main contributions of this work

We have developed a synthesis approach for self-timed control circuits from graph-theoretic

specifications called Signal Transition Grapha, a form of interpreted Petri nets. As will be
described in the rest of the thesis, our original contributions a.re the following.

• A set of new analytical results for Petri nets which allows the study of net proper­

ties purely from the syntax (or structure) of nets; we call this the structure theory

approach.

• The development of Signal Transition Graphs, a formal model for specification and

direct synthesis of self-timed control circuits with concurrent deterministic operation

and input choices.

• A decomposition technique of nets based on a graph-theoretic notion called con­

traction. This technique can be applied directly to Signal Transition Graphs, thus

allowing highly efficient implementations.

8 CHAPTER 1. INTRODUCTION

• An extension of the Signal Transition Graph model to allow the specification and

synthesis of data-dependent control circuits.

1.5 Experimental results

In early 1984, we set out to test our Signal Transition Graph model by designing and

fabricating two self-timed chips through MOSIS. The first chip is a two-by-two packet

router [10), a basic component of a communication network for a data:B.ow computer en­

visioned at MIT [14). The router was implemented in 3 micron CMOS technology with

2456 transistors and a layout area of 3.1 x 2.3mm2• A total of 46 routers were tested and

30 of them were fully operational with a maximum throughput rate of approximately 22

Mbytes/sec.1 The other chip fabricated was a self-timed ring buffer, a FIFO buffer with

an interesting distributed organization which reduces the latency of the buffer to one stage

delay [9). This ring buffer consists of 8 stages and 9-bit wide data paths. It was fabricated

in 4 micron NMOS technology and consumed an area of 3.15 x 2.25mm2 , including pads.

Six chips were received from MOSIS and tested; five were fully functional at a throughput

rate of approximately 4 MBytes/sec. These encouraging results indicate that our proposed

approach produces systems which are efficient both in terms of the amount of hardware

and speed, perhaps comparable to synchronous implementations.

Description of the Router

The block diagram of the router is shown in Fig. 1.1. It contains two FIFO queues to

hold packets sent in byte-serial format. Packets are of variable length, and an extra bit

called Last-byte is appended to each byte to delimit the packet boundary. This bit is "1"

for the last byte of a packet and "O" for all others. The first byte of a packet contains

the address information. The router decodes the address and forwards the packet to the

desired output port; an address bit of "O" will form a link from the current input port

to the upper output port, a "1" will form a link to the lower output port. There are

two system controllers, each consisting of a FSM and a dj,,tributed control structure. The

1 In [10], the maximum throughput rate for the routers was reported to be 11 Mbytes/sec. This figure
is for one input port. The above figure of 22 MBytes/sec reflects the fact that two input ports can process
packets cone urrently.

1.5. EXPERIMENTAL RESULTS 9

system controllers read the address and the La8t-byte signals, and generate control signals

for the output multiplexors. These control signals are determined from the first byte of a

packet and recycled for the remaining bytes. The two controllers also communicate with

each other, since packets from one input port may need to go to the opposite output port.

If packets from both input ports require the same output port at the same time, an arbiter

is used to resolve conflicts.

Two main data path modules are the multiplexors, and the self-timed registers which

constitute the FIFO's. These modules consist of a data circuit and a stage controller

which handles the timing and signaling protocol. These stage controllers are specified

using STGs from which speed-independent realizations can be obtained using our synthesis

techniques. The controllers contains control circuits which are also synthesized using the

same techniques. The Re8ou.rce Locking Module (RLM), a control module with data­

dependent operation is treated in an example in Chapter 9. This module is used together

with an arbiter [32) to control the access of the FIFO queues to the output multiplexors.

Description of the Ring buffer

The ring buffer is a FIFO queue organized in a two-dimensional or ring organization, as

shown in Fig. 1.2. This queue consists of M linear queues, each of L stages, and two token

ring8 for controlling input/output operation. The capacity of the queue is M x Land the

latency is proportional to L.

Writing into the FIFO queue is controlled by an Input token ring, formed by connecting

I-modules together into a ring. The ring is initialized such that only one I-module contains

the token, marking the next available empty register stage. Since the Write-reque8t signal,

carried on wire Wr, is connected to all I-modules, an important timing restriction is that

the token should not be passed on to the next module in the ring if the Write-requ.e8t

signal is still active. The Write-acknowledge on wire Wa is the output of an OR gate

(shown as a heavy bar with a + sign) whose inputs are acknowledge wires from all !­

modules. Similarly, reading from the FIFO is controlled by an Output token ring, formed

by connecting 0-modules together. Data written into the linear queues ripple to their

output side, ready to be gated onto the output bus. The Output ring is initialized such

that only one 0-module contains the token. This module then controls the timing and

10

Din.-u

Din.-d

regiater

Din.

Rin.

Ain

A REG module

FIFO

FIFO

Roat RO
R1

Aout Ain

CHAPTER 1. INTRODUCTION

Syatem controller

Syatem controller

11 , ,

A MUX module

Rout

Aout

Figure 1.1: Block diagram of the two-by-two packet router.

c- •• ·-

1.6. ORGANIZATION OF THESIS 11

signaling for gating of data to the output bus. The Read-reque.d signal on wire R,. is the

output of an OR gate whose inputs a.re requeat wires from all 0-modules. Another timing

restriction exists for the Output token ring: since the Rea.d-ticknowledge signal, carried

on wire Ra is broadcast to a.ll 0-modules, the token should not he passed on to the next

module while Read-acknowledge is still active.

Our FIFO queue design makes use of distributed control structures and local com­

munication. There a.re only a few types of modules in this design, with modules of each

type replicated as necessary to construct complete FIFO queues. The distributed control

structure allows the exploitation of concurrency. Concurrent read/write supports a higher

throughput rate. The FIFO queue is also completely data driven, hence no potential

read/write conflict exists and there is no need for any arbiter. The distributed control

organization of the FIFO lends itself naturally to a design U8ing asynchronous, self-timed

hardware modules. These control modules are specified using STGs and synthesized from

such specifications. The Ring buffer which we fabricated is one with minimal latency

(L = 1), with each of the linear queues containing exactly one stage. Registers in each

stage have inputs connected to the input data bus, and outputs connected to the output

data bus.

1.6 Organization of thesis

After the two introductory Chapters 1 and 2, this thesis is organized into three parts.

Part I consists of Chapters 3-5, in which the basic theory of STGs is developed. This

part gives an introduction to Petri net theory, discusses a number of relevant new results

and shows how this theory is applied to STGs, a form of interpreted Petri nets. This is

followed by an investigation of properties of speed-independent circuits, which translate

to the properties of liveneaa and perai&ten.cy in STGs. The material developed in this part

allows the specification and synthesis of a basic type of speed-independent control circuit

from STG specifications; these circuits can perform concurrent deterministic operation and

(nondeterministic) input choices.

Part II, consisting of Chapters 6 and 7, discusses a novel technique for decomposition

of systems based on a notion called contraction. Here, the theoretical results for Petri nets

.,,..-.·~· ;>"

12 CHAPTER 1. INTRODUCTION

Wr

Wa -+-~~+-.---------........ ----------------------.... --or-gate

In.put

Data Bu

Un.ear queuea

often.9th L

-- In.put token. rin.g

R R R

R R R

• • •

R R R
Output

-- - Output token. ring

or-gate
---+-----------~1----------------------.....,~1--~~~~~~_. Rr
.._~~~~~--~~~~~~~~~~~~--~~~~~~~-Ra

Figure 1.2: Block diagram of the Ring buffer.

1.6. ORGANIZATION OF THESIS 13

are developed and then applied to STGs, as demonstrated through a design example.

Part III, consisting of Chapters 8 and 9, discusses an extension to the basic STG model

to allow the specification and synthesis of control circuits with data-dependent operation.

The main ideas are presented informally in Chapter 8, together with an example. Chapter

9 develops the formal theory for our extension.

Chapter 2 contains a summary of the STG model and the main theoretical results of

Parts I and II. This chapter gives a broad outline of the detailed description which follows

in Chapters 3 to 6. It is intended to provide enough knowledge of our methodology for

immediate applications. Chapter 7 contains a substantial design example which can be

studied without having to go through the technical details presented in Chapters 3-6.

Chapter 8 gives an informal presentation of the main idea of our extension of STGs to

allow the specification of data-dependent circuits. Thus, after Chapters 2 and 7, Chapter

8 can be read to provide an understanding of the extension.

The following is a more detailed description of each chapter.

Chapter 3. A number of new results are developed for a useful class of Petri nets called

live-safe free-choice nets; they constitute the theoretical basis for further investigation of

our STG model. First, relevant works in Petri nets theory are reviewed, with particular

emphasis on the study of Jtru.ctu.re theory, which is mainly concerned with the relation­

ship between the syntax (structure) and the underlying semantics of nets. This chapter

develops two new results: (a) It is demonstrated that the behavior of a free-choice net, as

characterized by its set of transition sequences, can be obtained by concurrently composing

the behavior of its component subnets. As a consequence, an algorithm is devised, allowing

the construction of finite automata directly from the structure of nets by composing finite

automata of subnets. (b) A relation called the temporal relation on the set of transitions

of a net is defined. This relation is characterized based on the structure of nets and it

allows for the syntactic determination of whether two transitions are ordered, concurrent

or in conflict.

Chapter 4. The materials developed in Chapter 3 are part of a formal theory based

on Petri nets, and they may be useful for other applications as well. For our purposes,

14 CHAPTER 1. INTRODUCTION

we interpret elements of nets as physical entities of digital circuits: transitions of nets

are identified with rising and falling transitions of signal.9 in circuits-hence the name

Signal Transition Grapha. In this chapter, we introduce the STG model, its syntax and

semantics, and our design approach for direct synthesis based on STGs. We introduce

state graphs and their properties related to physical switching circuits. The third concept

in this chapter is network functions, defined as the sets of logic functions describing the

operation of the circuits. Network functions can be determined directly from state graphs.

We also discuss state assignment, being the process of assigning binary values to states

in a finite automaton to produce a state graph. Although this is a well-known difficult

problem in the classical approach based on the Finite-State Machine (FSM) model, for

STGs it is done automatically for STGs by satisfying certain syntactic conditions.

Chapter 5. We discuss two important properties of state graphs and STGs called live­

ness and persistency. Liveness is related to the continuous operation without deadlock of

circuits; persistency is related to hazard-free operation of circuits. Persistency is strongly

tied to the notion of speed-independence: a circuit is speed-independent iff its STG speci­

fication is persistent. The equivalent syntactic characterization of liveness and persistency

a.re developed for STGs.

Chapter 6. A method of decomposition for nets called contraction is introduced. This al­

lows the decomposition of state graphs through decomposition of their STGs. The purpose

of decomposition of state graphs is to produce efficient implementations by minimizing the

interaction between variables in the state graphs. While there exist only complex heuristic

procedures for FSM approach, for STGs this can be carried easily using net contraction

based on some structural information from the STGs.

Chapter 7. This chapter concludes the second part of the thesis by providing a detailed

design example of a self-timed controller for a successive-approximation A-to-D converter.

We will go through the synthesis steps and illustrate the principles developed earlier. We

also discuss a number of design choices available during certain steps of the synthesis

process.

1.6. ORGANIZATION OF THESIS 15

Chapter 8. Parts I and II of the thesis provide the ground work which allows one to

specify circuit behavior in terms of STGs, obtain their state graphs and finally, produce

a correct and efficient implementation by satisfying liveness and persistency. However,

since STGs are based on free-choice nets, their expressive power is limited to that of

free-choice nets. Since free-choice nets can specify concurrent operations and free-choices

(nondeterministic choices), correspondingly, STGs can only specify concurrent operations

and input choices (The reason for considering free choice& in nets as input choice" in STGs

is that internally to a control circuit module, input choices appear nondeterministic.) In

order to specify circuit operation with internal choices (data-dependent operation), one

will need to rely on a more expressive class of Petri nets.

In Chapter 8, we con8ider an extension to the STG model which allows the specification

and synthesis of circuits with data-dependent operations. This extension marks a slight

departure from net theory, as it is a notational extension in STG to represent an aspect of

flow-control in state graphs, i.e., the ability to make a decision based on a priori knowledge

when arriving at a state with conflicts. We discuss this extension and its semantics in

terms of state graphs. Lastly, a design example of a two-cycle controller for first-in first­

out (FIFO) circuits is presen~ed. This controller is a data-dependent circuit which can

perform concurrent control operations.

Chapter 9. Chapter 9 describes an algorithm called expansion algorithm which allows

the transformation of a STG specifying data-dependent operation into one which has only

input choices. Another design example is given: the Re&ource Locking Module which is a

part of the controller of the Router discussed earlier.

Chapter 10. We discuss areas for further investigation with the aim toward a com­

prehensive approach for automatically compiling self-timed VLSI systems from high-level

descriptions. Another area of interest is that of optimization of asynchronous circuits based

on particular implementation technologies and design methodologies.

Chapter 2

Signal Transition Graphs: An
'

Informal Introduction

This thesis presents an approach for the synthesis of self-timed control circuits from formal

graph-theoretic specifications. The conventional approach consists of constructing a Finite

State Ma.chine (FSM) from some informal (e.g. textual) description and determining the

logic equations for state and output variables from the FSM, as illustrated in the left

branch of Fig. 2. la. Unlike this approach, the basic idea. of our approach can be described

as follows. From an informal description, we construct a. formal specification in terms of

graphs called Signal Transition Graphs (STGs), a. form of interpreted Petri net.t. STGs can

be considered as a higher level form of representation compared to FSMs in the following

sense: from a STG, one can obtain a. set of sequences of signal transitions which represent

the behavior of a circuit; ea.ch transition in every sequence corresponds to a control event

of a system. Under certain conditions, such a. set of sequences forms a regular set, that is,

it has an equivalent representation by a finite automaton. This finite automaton can be

used as a ha.sis for implementation, as illustrated in the right branch of Fig. 2. la. Thus,

STGs serve as a more abstract and succinct way of representing finite automata with

certain desirable properties. STGs are more abstract because these representations use

transitions and a binary relation called the cauaal relation between transitions to describe

behavior; the concept of state does not appear explicitly. Because of this, concurrency and

other control situations can be described in very compact form. STGs are more succinct

because they do not require a large number of states to describe concurrent occurrences of

control events, in contrast to the case of finite automata.

16

In.formal fleacription.

I 1G
State graplt.

~
FSM

~
Logic circait Logic cin:ait

(a) (b)

lift-,erauten.t
STG

lift-,erautcr&t
alatc-groplt.

'"4llod:-fne
apccfl-irwle,en.den.t

logic cin:•it ·

17

Figure 2.1: (a) Two approaches for synthesis of control circuits. (b) A technique for
guaranteeing correctness of implementation from high level specifications.

The finite automata derived from STGs are a form of interpreted finite automata called

state graph,,, in which states are interpreted as binary vectors of signal values and transi­

tions between states as signal transitions. State graphs can capture fundamental properties

of logic circuits-most importantly the deadlock-free and hazard-free properties. These

correspond to the properties of liveness and perai.stency, ~pectively. Since at the higher

level of representation of STGs, we do not deal with these low level issues directly, we

need to develop some method to ensure correct implementation. Our strategy is as fol­

lows: First, we study how fundamental properties of digital circuits can be characterized in

terms of state graphs. Then, by establishing a unique correspondence between STGs and

their state graph representations, these properties can be formalized as syntactic properties

of STGs, which can in turns be verified and satisfied at this level of specification. Hence,

by developing corresponding syntactic conditions for liveness and persistency for STGs,

we have a means for ensuring the correctness of an implementation from an abstract level

of specification. This idea is illustrated in Fig. 2.lb.

Another basic notion of our approach is that of behavioral equivalence. Some of the

previous approaches have used Petri nets not only as a specification but also as a direct

basis for implementation, in the sense that the .structure of a net is directly transferred to

hardware. In constrast, we use nets only as a behavioral specification from which a set

of transition sequences with certain properties can be derived. Thus nets are considered

as language generating devices. Even though this idea has often been studied from the

viewpoint of formal language theory, our concern is much more focused and limited to

direct and practical applications.

18 CHAPTER 2. AN INFORMAL INTRODUCTION

This chapter gives an informal introduction to Petri net theory and sununarizes a num­

ber of new results, including a simple method for determining the set of transition sequences

and its equivalent finite automaton directly from the structure of a net, and a syntactic

characterization of the temporal relation between transitions in a net. These results can be

applied to STGs as they are merely a form of interpreted Petri nets. The chapter describes

properties of state graphs, liveness and persistency, and their equivalent characterization

in STGs. Lastly, it presents a method of decomposition based on the notion of contraction;

such a decomposition technique is the key to efficient implementation.

2.1 Petri Nets and Signal Transition Graphs

2.1.1 Petri nets

A Petri net is a bipartite directed graph, consisting of a finite set of transitions T, a finite

set of places P and a flow relation F ~ P x TUT x P specifying a. binary relation between

transitions and places. A net is shown in Fig. 2.2a, in which transitions are drawn as bars,

places as circles, and the flow relation as directed arcs. One conunon restriction is that a

net be strongly connected in the graph-theoretic sense.

Transitions can usually be interpreted as certain events in a control system, while places

as the local conditions which become true or cease to be true due to the occurrence of some

actions, as specified by the flow relation. A transition has input and output places, e.g.

])3, p4 are input places of t 3 ;]J5, P6 its output places. Similarly, a place has input and output

transitions, e.g. t 1 is the only input transition of J>.3, t3 its only output transition. The net

in Fig. 2.2a is a particular instance of an important subclass of nets called marked graph.a,

capable of describing systems with deterministic concurrent operation.

A net as presented above describes the static structure of a control system. Its dynamic

behavior is captured by its markings and the firing rule which transforms one marking to

another. A marking M is a collection of places corresponding to the local conditions

which hold at a particular moment; it is represented graphically as solid circles called

tokens residing in these places. The initial marking is denoted as M0 ; in Fig. 2.2a, M0

corresponds to {.Pi, .P2}. The fl.ring rule is the rule for "executing" a net: A transition is

enabled if each of its input places contains at least one token. An enabled transition may

2.1. PETRI NETS AND SIGNAL TRANSITION GRAPHS

t6

(a)

(c)

a- -
l f

:x~
l 1000 0100

(e) (f)

t5
{p5,p8}

L4
{p7,p8}

(b)

c ab

·1°Yrr1 0 0 0 1 0
1 0 1 1 1

K-map
(g)

~ 0101 ~
b d

19

Figure 2.2: (a) A Petri net and (b) its reachability graph. (c) A STG which is an interpreted
net of the net in (a), and (d) its state graph. (e) A STG of a circuit with input choices
and (f) its state graph.

20 CHAPTER 2. AN INFORMAL INTRODUCTION

occur or fire; its firing consumes one token from each input place and puts one token in

each output place. In Fig. 2.2a, both transitions ti, t2 are enabled in the initial marking

M 0 , the firing of ti moves the token from Pl to 1>3, the firing of t2 moves the token from P2

to p4.

The result of the execution of the net can be described by a form of interpreted finite

automata called reachability graphs, as shown in Fig. 2.2b. Each node represents a state

corresponding to a marking of the net; a labeled arc between nodes indicates the transition

from one marking to another due to the firing of a.n enabled transition. Also, the initial

state (corresponding to the initial marking of the net) is circled.

This example illustrates two important points. First, unlike the FSM model, nets can

specify concurrent control actions: if two transitions are enabled in the same marking

and the firing of one does not interfere with the enabling condition of the other, given

enough time, both transitions will eventually fire. In Fig. 2.2a, the fact that ti and t2

are concurrent means that both transition sequences (or firing sequences) ... t1 t 2 ••• and

... t2ti ... are possible; they show up in the reachability graph of the net. Secondly, the

net's operation is totally asynchronous, as the firing of transitions depends solely on the

availabity of tokens at their input places.

We will stress the transition sequence semantics of nets: a net defines a set of transition

sequences. For example, the set of sequences specified by the net in Fig. 2.2a can be given

by a regular expression

where for transitions a and b, allb (concurrent composition) denotes the set {ab, ba}, ab

(concatenation) denotes {ab} and a• (Kleene closure) denotes { f, a, aa, ... } ; f is the empty

sequence.

Properties of nets

Two important behavioral properties of a net with an initial marking are safeness and

liveness, defined as follows. For a net with an initial marking M 0 , it is safe iff in any marking

reachable from M 0 , every place contains no more than one token. For our purpose, only

finite safe nets are of practical interest. A finite safe net is live iff its reachability graph is

strongly connected and each transition in T is enabled in some marking of the reachability

2.1. PETRI NETS AND SIGNAL TRANSITION GRAPHS

t1

pl

(a)

{p1,pl}

t1

{pl,pl}

{p1,p1}

{p1,p3}

t!

{p3,p3}

Figure 2.3: (a) An unsafe net and (b) its reachability graph.

21

graph. Note that this restrictive notion of liveness applies only to finite safe nets, and

further it requires that all markings be reproducible.i The purpose of this requirement is

to permit one to disregard the transient behavior during initialization of nets.

We consider safeness as a fundamental restriction on nets; without it one cannot relate

the structure of a net to the actual behavior which the net intends to describe. Fig. 2.3a is

a simple example of an unsafe net, whose structure is intended to specify a choice between

control actions ti and t2 • This would have been the case had place Pl contained only one

token. However, due to the fa.ct that place Pl contains two tokens, ti and t2 each can fire

twice consecutively, or both of them can fire concurrently. This behavior is recorded in

the reachability graph shown in Fig.2.3b, with each marking described by a multiset of

marked places (instead of a set) due to the multiplicity of tokens in the places.

Unsafe nets create another fundamental problem in that the set of transition sequences

derived from an unsafe net may not have an equivalent finite automata (FA) representation

in case the number of tokens in any place grows without bound.

Subclasses of nets and Structure theory

We will be concerned with three important subclasses of nets called marked graphs (MG),

state machines (SM) and free-choice (FC) nets. A marked graph is a net in which each

place has at most one input transition and at most one output transition. Marked graphs

represent the structure of deterministic concurrent systems. The dual notion of marked

graphs is that of state machines. A state machine is a net in which each transition has

at most one input place and at most one output place. State machines represent the

1In Fig. 2.4a, the initial marking {PJ.,p4 } is a live-safe one; however, this marking is not reproducible.

22 CHAPTER 2. AN INFORMAL INTRODUCTION

{b) MG-compon.en.ta (c) SM-compon.en.ta

Figure 2.4: (a) A LSFC net, (b) its MG-components resulting from MG-reductions and
(c) its SM-components resulting from SM-reductions.

structure of nondeterministic sequential systems. A free-choice net is a net such that if

any two transitions t1 and t2 share the same input place p, then p is the unique input place

of both t1 and t 2 • Examples are shown in Fig. 2.4, where (a) is a FC net, (b) consists of

marked graphs and (c) of state machines. We will restrict ourselves to a subclass of FC

Petri nets as specifications of control systems which exhibit concurrent operations. FC

nets represent an appropriate blend of concurrency and choice in specifying behaviors of

circuits, and at the same time can be analyzed without much difficulty.

Structure theory is a branch of net theory which emphasizes the relationship between

the structure (syntax) of nets and their behavior (semantics). In our view, structure theory

is vital to the practical use of nets, for it allows the characterization of dynamic properties

of nets in terms of static (syntactic) ones. Hack [24] has devised a reduction algorithm

which allows the decomposition of a free-choice net into sets of structural components:

a FC net can be decomposed into a set of state-machine (SM) components or a set of

2.1. PETRI NETS AND SIGNAL TRANSITION GRAPHS 23

marked graph (MG) components, as shown in Fig. 2.4. An important theorem developed

by Hack which is the cornerstone of the structure theory of Petri nets can be informally

stated as follows. If a FC net is live and safe, then the set of MG-components resulting

from MG-reductions cover" the net. Alternatively, the set of SM-components resulting

from SM-reductions also covers the net. On the other hand, if a FC net is either nonlive

or unsafe, then some reduction does not cover the net or is empty, or some component is

not strongly connected. For example, the FC net in Fig.2.4 is live-safe and its SM-and

MG-components both cover the net.

Hence, by using this theorem, we can determine if a net is live-safe by decomposing

it into structural components. Later chapters describe more fully other important appli­

cations of this theorem. Specifically, by using Hack's theorem, we developed techniques

for constructing a finite automaton directly from the structure of a net, and a syntactic

characterization of the temporal relation, as will be described below.

2.1.2 Signal Transition Graphs

For the purpose of specifying behaviors of digital control circuits, we use a form of inter­

preted Petri nets called Signal Tran.sition Graph& (STGs), which are nets with transitions

interpreted as rising and falling transitions of signals of a control circuit. Fig. 2.4c shows

an example of a STG of a circuit with the set of signals denoted by J = {a, b, c }. This STG

is one interpretation of the net in Fig. 2.2a, where the set of transitions T is interpreted

as the set of .signal transition" J x { +, -}. Since a control circuit has input, internal and

output signals, we partition the set of signal transitions in the same way, and in the graph­

ical representation, transitions of input signals are underlined. The fundamental difference

between transitions of input and non-input (= internal + output) signals is that the former

are caused by the external environment while the latter by the system.

For simplicity, in a STG, we represent each transition by its name instead of using a

bar with a label. Another important graphical abbreviation for STGs is that every place

with one input and one output transition is not drawn explicitly; instead an arc is drawn

directly between these transitions. Such an arc directly represents an instance of the cawal

relation, denoted by R, between transitions; informally, t1Rt2 (read t 1 cawe" t 2) can be

understood as: the firing of t1 brings the system into a state (marking) in which t2 is

24 CHAPTER 2. AN INFORMAL INTRODUCTION

enabled (and hence may fire).

The reason for using the causal relation a.nd ignoring places with one input a.nd one

output transitions is that, from the viewpoint of firing sequence semantics, the behavior of

a net (or STG) is adequately defined by its set of transition sequences. For a sufficiently

expressive class of nets called live.safe free· choice (LSFC) nets, we will be able to show that

their sets of firing sequences are regular in the sense that the latter have equivalent finite

automata representations. For example, the STG in Fig. 2.2c defines a set of sequences

which has the equivalent finite automaton (FA) shown in Fig. 2.2d, which is isomorphic

to the reachability graph of Fig. 2.2b. This FA can be interpreted into a date graph by

(i) identifying transitions between states with signal transitions and (ii) assigning binary

vectors representing the values of signals in the circuit to nodes. For state graphs, this

state assignment is very simple a.nd ca.n be carried out mechanically, as will be described

later.

The STG in Fig. 2.2c specifies the behavior of a control circuit with deterministic

concurrent operation. Fig. 2.2e shows another STG specification of a trivial circuit with

input choices; its state graph is shown in Fig. 2.2f. The input choice is specified by a

place with two output transitions a+ and b+, which are transitions of input signals a and

b. Whenever p is marked, then both output transitions are enabled and one is chosen

nondeterministically to fire; its firing will disable the other transition. In Petri nets, such a

situation is called a free choice. In STGs, we limit output transitions of a free.choice place

to those of input signals because internal to a system, a choice ma.de externally would

appear as if it is nondeterministic.

We have the following important remarks concerning the formalization of STGs as

interpreted Petri nets.

First, STGs are nets with interpreted transitions but places have no interpretation; in

particular, we do not interpret places as states of signals resulting from the firing of signal

transitions. The reason is illustrated in the following example. In Fig. 2.2a, transition ti

is interpreted as a+. Suppose further that its output place P3 is interpreted as signal a

becoming a logical "1". Then whenever ti fires, indicating a positive transition of a, place

P3 is marked with a token indicating that signal a has become 1. Note, however, than

when t 3 fires subsequently, this token is taken away, implying that signal a is no longer a.t

value 1. In reality this is not true because the value of a will not change until a_ occurs.

2.1. PETRI NETS AND SIGNAL TRANSITION GRAPHS 25

This is an important observation to which we shall return later.

Second, despite the fact that STGs are interpreted nets, we have chosen to call our graph

model Signal Transition Graphs, rather than Nets, in order to emphasize the important role

of the static structure of nets in our application. A Petri net can be viewed as consisting of

an underlying structure which is a graph, and a marking which indicates the distribution

of tokens in the graph at some moment. Structure theory, as mentioned earlier, allows

the direct association of static net structures to their underlying semantics. This thesis

develops a number of techniques for manipulating the structure of nets (with little concerns

about markings) which allow direct synthesis of the underlying finite automata.

2.1.3 Relation between Petri nets and Signal Transition Graphs

It is important to note that STGs can be considered simply as a class of LSFC nets with

certain structural restrictions due to the interpretation of transitions. One such restriction

is that STGs always contain an even number of transitions due to the fact that associated

with every signal is a pair of signal transitions. Another restriction arises from the need

to simulate the interface behavior of a control circuit: in a STG, if t is a transition of an

input signal, then we require that t have exactly one transition, say t', which ca.uses it:

t' Rt; furthermore, t' must be a transition of an output signal. In Fig. 2.2c, each transition

of input signals a, b is caused by exactly one transition of output signal c. There are other

restrictions which we will present later.

Just as a STG is an interpreted net, its state graph is an interpreted FA which can

be obtained in a similar fashion as reachability graphs. The relationship between nets,

STGs and state graphs is depicted in Fig. 2.5. The top pa.rt of this figure is a syntactic or

structural classification of nets. For instance, the class of FC nets is a subset of the class

of Petri nets, and so on. LSFC nets a.re a subclass of FC nets, with the properties of live­

safeness characterized structurally by Rack's reduction theorem mentioned at the end of

Section 2.1.1. STGs constitute a subclass of LSFC nets. The subset of live-persistent STGs

corresponds to those STGs whose state graphs a.re live and persistent. Live and persistent

state graphs can be transformed into deadlock-free and hazard-free (speed-independent)

logic circuits, as indicated by arrow (5).

The middle part of Fig. 2.5 contains classes of finite automata, which can be considered

26 CHAPTER 2. AN INFORMAL INTRODUCTION

Petri neta

Frec-c/&oice l!'Cl MU
Finite Safe FC MU

Live Sa/• FCMu
STGa

lAH-pcr.Utcai
STG1

~

J~

(1) (2) (3) (4)
1~

FA 1~

Liw FA ~

Statc_t~l&I ~

u ... ,u,utc•
State fNPM

(s) r
Dca4lock· frc•

Spccd-inclepcadcnt
Logic cirr:t,U.

Figure 2.5: Structural classification of classes of nets and their equivalent finite automata.

2.2. SEMANTICS OF NETS/BEHAVIORAL EQUNALENCE 27

as the low-level semantics of nets. The two-headed arrows indicate the equivalence between

them and classes of nets. Earlier, we stated that safe nets have equivalent FA representa­

tions; such an equivalence is indicated by arrow (1) for finite safe FC nets. The class of

LSFC nets have equivalent FA which are live, as indicated by arrow (2), this equivalence

is the subject of investigation of Section 2. Of main interest in Fig. 2.5 is the equivalence

indicated by arrow (4) between live-persistent STGs and state graphs; this equivalence is

studied in Section 3.

It is crucial to realize that while safeness can be considered purely as a net-syntactic

property, liveness and persistency a.re defined as properties of finite automata.. Thus, live­

sa.fe FC nets are safe FC nets whose FA are live; similarly, live-persistent STGs are STGs

whose state graphs a.re live and persistent. The important point is that even though liveness

and persistency are defined as properties of state graphs, one can derive the equivalent

syntactic conditions for STGs, just as in the case of LSFC nets. For LSFC nets, the

syntactic conditions for live and safeness are stated in Ha.ck's decomposition theorem.

2.2 Semantics of nets/Behavioral equivalence

There are two approaches to defining the semantics of Petri nets: one based on sequences

of transitions (firing sequences), the other on partial orders of transitions and places. For

safe nets, their semantics can be given both in terms of firing sequences and partial orders:

By using the firing rule and an initial marking, one can simulate the operation of a Petri

net to obtain the firing sequences; on the other hand, Petri nets can be unfolded into

partial orders called processes [23].

We will be mainly interested in the firing sequence semantics of Petri nets. One fre­

quently cited problem with using firing sequence semantics is illustrated in the following:

Given a set of firing sequences describing the behavior of a very simple system {ab, ba}

(Fig. 2.6a), it is unclear whether this set corresponds to a net in which a and b a.re con­

current (Fig. 2.6b) or in conflict (Fig. 2.6c), where all transitions a.re labeled.

It is clear that this problem arises due to the labeling of two transitions with the same

labels in Fig. 2.6c. If such a labeling is disallowed, problems of this kind will never arise

and the system {ab, ba} always corresponds to the case of concurrency. Hence we allow

28 CHAPTER 2. AN INFORMAL INTRODUCTION

t1

ti

(a) (b)

Figure 2.6: (a) The equivalent FA of the set {ab, ba} and two interpretations: (b) con­
currency, where 1(t1) = a, 1(t2) = b; 1 is a labeling function, (c) conflict, where
1(t1) = 1(t4) = a, 1(t2) = 1(t3) = b.

only unlabeled tranJition JequenceJ. In the formulation of STGs, instead of using a labeling

function to label transitions of a net with signal transitions, i.e. 1 : T -+ J x { +, -}, we

have chosen to make a direct interpretation: T = J x { +, - } to avoid the problem just

mentioned.

2.2.1 Behavioral Equivalence

For our purpose of synthesis from net specifications, the main advantage of using sequence

semantics is that it allows freedom in the implementation from a specification. Given a net

specification of a control systems, any other net which exhibits the same set of transition

sequences as the original one is considered equivalent to it; this is the notion of behavioral

equivalence. The like notion of "structural equivalence" is not a particular useful one, as it

requires two nets which are equivalent in this sense to have identical structures. The simple

example in Fig. 2. 7 shows two nets which are behavioral equivalent but not so structurally.

If one is concerned only about the behavior (in terms of transition sequences), then the net

in Fig. 2.7a contains a redundant place which can be removed without altering the net's

behavior.

From a technical point of view, sequence semantics are easier to handle than semantics

based on processes. As will be made clear in this thesis, most results for LSFC nets

are proven by considering their sets of transition sequences. These include important

properties such as liveness, and properties concerning the composition and decomposition

of nets.

2.2. SEMANTICS OF NETS/BEHAVIORAL EQUNALENCE 29

t1

,

t9

(a) (b)

Figure 2.7: Two nets which are behaviorally equivalent.

2.2.2 Important Analytical Results for Nets

In this section, we summarize a number of fundamental results which are proven in Chapter

3. These results serve as the basis for later developments. One important result is the

following

The set of firing sequences of a LSFC net is regular, i.e. it has an equivalent

finite automata representation.

Algorithm for constructing finite automata for LSFC nets

The above result is proven by demonstrating a procedure for constructing an equivalent

automaton from a LSFC net; the basis for such a construction algorithm is given by the

following result (Theorem 3.8):

The equivalent finite automaton of a LSFC net is obtained by weaving (concurrent­

composing) the finite automata of a set of SM-component& which cover the net.

Note that a FA equivalent to a state machine is identical to the state machine itself

and hence, can be readily derived from the SM-components of a LSFC net. Let F Si and

F S2 denote sets of transition sequences of two finite automata F Ai and F A2 , respectively.

The weave of F Si and F S2 is defined as (Def. 3. 7)

30 CHAPTER 2. AN INFORMAL INTRODUCTION

t6 t6

(a) (b) (c)

Fig\\re 2.8: (a) The set of covering SM-components for the net in Fig. 2.2a. (b) The
equivalent FA of the SM-components and (c) their weave, which results in the equivalent
FA of the net in Fig. 2.2a.

where Ti and T2 are sets of transitions of the FA; u rTi denotes the projection of a sequence

u onto the set '.li. The weave of two FA, F Ai llF A2 , is defined as a FA whose set of

transition sequences is given by FSillFS2 •

The marked graph in Fig. 2.2a is a special case of LSFC nets, which can be decomposed

into a set of covering SM-components (Fig. 2.8a), each being a simple cycle containing one

token. The FA corresponding to these SM-components are shown in Fig. 2.8b; their weave

results in the FA for the marked graph, as indicated in Fig. 2.8c.

Temporal relation in LSFC nets

Another result of fundamental importance developed in this thesis could be categorized

as a result in the structure theory of Petri nets. Given a LSFC net, it is generally not

possible to tell whether two transitions are ordered or concurrent merely by inspecting the

structure of the net. For instance, the marked graph shown in Fig. 2.9 (called a necklace of

length 4) has three different initial markings as indicated, each resulting in a distinct set of

firing sequences; that is, this net has three equivalent classes of live-safe markings-every

two markings in each class are mutually reachable. In case (a), the set of firing sequences

is given by the expression (tit2t3t4)*; in case (b), it is (tit4t 3t2)*; lastly in case (c), it is

2.2. SEMANTICS OF NETS/BEHAVIORAL EQUIVALENCE 31

(a) (b) (c)

Figure 2.9: (a) AFC net with three different equivalent classes of live-safe markings. Some
of its SM-components contain two or three tokens.

t2((t1 1!t3)(t2 1!t4))*. In cases (a) and (b) all transitions are ordered, even though they are

ordered in different ways. In case (c), t1 and t 3 are concurrent, and so are t2 and t 4 • For

each of these cases, there exists a set of covering SM-components which are simple cycles

with one token. Note, however, that there are also cycles with two or three tokens. Since

by definition a state machine net must contains exactly one token, such a cycle with two

tokens is not a legitimate SM-component.

In order to allow for syntactic characterization of the temporal relation between tran­

sitions in a net, we shall make the following fundamental restriction. The original result

by Hack, as described in his Well-formedness theorem, states that a FC net is live-safe iff

when SM-reductions are applied to it (i) every SM-reduction is a. collection of one or more

marked SM-components and (ii) the reductions cover the net. Note that this condition

does not require that every SM-component of the net contains one token each; it is possible

for aome SM-components to contain more than one token, as illustrated by the example

above.

Our temporal characterization based on syntax only works for nets which satisfy the

one-token SM reatriction:

Every SM-component of a LSFC net containa exactly one token.

Hence, if net satisfies this restriction, any of ita SM-componenu containing more than

one token is unaafe and will cause the net to be unsafe. In this thesis, we will be mainly

interested in LSFC nets which meet this restriction. This is not as restrictive as it seems:

32 CHAPTER 2. AN INFORMAL INTRODUCTION

First, any LSFC nets not satisfying this restriction can usually be decomposed into subnets,

each of which satifies it. Secondly, many other models of concurrent systems including CSP

[25], path expressions [6], etc. require that every basic module be a sequential process­

concurrency is achieved by having many sequential modules communicating with each

other. In contrast, our one-token SM restriction does not require each basic module to be

a sequential process. The advantages for introducing this restriction are:

• It allows a. simple and useful characterization of the temporal relation between tran­

sitions based solely on the structure of the net. One example of this characterization

is that two transitions a.re ordered iff they belong to the same simple cycle in a LSFC

net. Such a characterization is correct only when every simple cycle contains exactly

one token.

• Each net in this class of nets has exactly one equivalence class of live-safe markings

and furthermore, the equivalence class can be determined directly from the structure

of the net. This has profound implications since in general, a LSFC net may have

more than one equivalence class of live-safe markings if some of its SM-components

contain more than one token (an example has been given in Fig. 2.9). The problem

of determining all different classes of live-safe markings is a. major difficulty in net

theory [Hol74]. Moreover, if a net has only one equivalence class of markings, it is

possible to determine all markings in this class directly from the structure of the

net. Therefore, the concept of an initial marking serves merely as an indicator of

the starting state of a net and plays no significant role in the synthesis from net

specifications.

Under the one token SM restriction to LSFC nets, we can define a relation called the

temporal relation tr = T x T. The temporal relation is a binary relation on the set of

transitions (and can be extended to include places) of a. LSFC net, and is defined based

on the structure of nets. It allows one to determine syntactically whether two transitions

are ordered, concurrent or in conflict.

In the following, we give the net-syntactic definition of symmetric binary relations

Ii, co, cf and de on the set of transitions; they stand for ordered, concurrent, conflict

and direct-conflict, respectively. In a LSFC net, two transitions t and t' are (a) ordered,

denoted as { t, t'} E Ii iff there exists a simple cycle containing both of them; (b) concurrent,

2.2. SEMANTICS OF NETS/BEHAVIORAL EQUNALENCE 33

<···::; 0. t M-- IMl t' • ..
·" t t'"" t ... "' t

"' (a) (b) (c)

Figure 2.10: Portion of a reachability graph showing t and t' are (a) in direct-conflict (b)
concurrent (c) ordered or in indirect-conflict.

denoted as { t, t'} E co, iff there exists a MG-component containing both of them, but not

in the same simple cycle; (c) otherwise, they a.re in conflict, denoted as { t, t'} E cf. One

special case of conflicts is a direct conflict, denoted by { t, t'} E de, iff there exists a place of

which t and t' are output transitions. For example, in Fig. 2.4, {ti, t4} E Ii, { t5, t6} E co,

{t2, t3} E cf and {ti, t2} Ede.

The above classifications of the temporal relation are based on the syntax of LSFC

nets. It can be proven that these correspond to the normal understanding of ordering,

concurrency. and conflict in terms of firing sequences. For a LSFC net, there exists a cor­

respondence between an element of the temporal .relation and a situation in a reachability

graph of the net, as illustrated in Fig. 2.10. In this figure, dotted arcs are used to indi­

cate explicitly those transitions which cannot occur; dashed arcs indicate directed paths

between markings.

Another result concerning this syntactic characterization is the following. In a LSFC

net satisfying the one-token SM restriction, if we define the temporal relation on the set of

transitions as tr= T x T, then it can be shown that (Theorem 3.16):

Ii, co and cf partition the temporal relation tr into diJjoint subset8, and tr =
Ii U co U cf.

The above syntactic characterization plays an effective and complementary role to the

construction algorithm developed earlier: In a net, while the temporal relation allows the

syntactic characterization of a behavior specification (i.e. whether certain control events

are concurrent or in conflict, etc.), the finite automaton obtained from the net provides

the basis for further analysis and synthesis. Hence, we have introduced enough analytical

results to permit the use of nets as formal specifications of control systems, which can be

34 CHAPTER 2. AN INFORMAL INTRODUCTION

viewed as high level representations of finite automata for the purpose of implementation.

2.3 Properties of State graphs

In this section, we briefly discuss interpreted finite automata called state graphs and their

logic implementations, as described by network functions. A network function is simply

a set of logic equations for non-input signals in a circuit, and it can be obtained directly

from a state graph.

We will further explore two important properties of state graphs called liveness and

persistency and derive corresponding conditions on STGs. As mentioned earlier, these

will appear as syntactic conditions on STGs, and by satisfying them, correct hardware

implementation is guaranteed: simply, a control circuit is deadlock-free and hazard-free if

its STG specification is live and persistent.

2.3.1 State Graphs and Network Functions

In the construction of an equivalent FA from a set of sequences, a state is an abstract

concept, defined as an equivalence class of sequences with the same postfixes; there is no

apparent relationship between a state and the transitions enabled in it. However, for state

graphs obtained from a STG, not only do we require that it be a FA equivalent to the set

of sequences defined by a STG, but we also require that states be interpreted as binary

vectors representing the values of signals in a circuit. There is a direct connection between

states and transitions: states are vectors of values of a set of signals, whereas transitions

are transitions of the same set of signals. For example, in Fig. 2.2d, the control circuit

is comprised of the set of signals J = {a, b, c}. Hence in its state graph, every state is

interpreted as a binary vector representing the values of signals in the ordered set (a, b, c}
and every transition is a signal transition in J x { +,, -}. Such a connection requires that

every states be assigned values in a manner consistent with transitions from s. For a signal

j E J, let s(j) denote the binary value of signal j in states, and j. denote a transition of

j (either i+ or j_). Also let s[t)s' assert that the occurrence of transition t in a states

takes the system to another states'; tis said to be enabled in states. In a state graph, if

s[t)s' where t = j., thens, s' and t must together satisfy the following condition: if t = i+

2.3. PROPERTIES OF STATE GRAPHS 35

then s(j) = O, s'(j) = 1; if t = j_ then s(j) , 1, s'(j) = 0. In which case, the triple (s, t, s'}

is called consistent, and s, s' are adjacent. For example, in Fig. 2.2d, s = 000, t = b+ and

s' = 010.

A state graph is said to have a consistent state assignment iff the above condition holds

for all states in the state graph. A state graph has a corresponding logic implementa­

tion described by a network function which can be determined from the state graph. A

network function consists of a set of logic equations, one for ea.ch non-input signals to be

implemented.

In a state graph, the logic equation for every non-input signal j can be determined as

follows. For states s, s' and transition t such that s[t}s', s' is called a nezt-state of s. For a

signal j, its implied value in state s, denoted by f (s, j), is determined by: if t is a transition

of signal j, i.e. t = j., then f(s,j) = s(j); otherwise f(s,j) = s(j), where s(j) denotes the

complement of s(j). Notice that in a state graph, it is often the case that a state s has

more than one next-states s'; however, ea.ch state can have exactly one implied value. The

logic equation for j is determined from the set of implied values of j in all states. This

can be done conveniently by transferring the state graph to a Karnaugh map (K-map)

such that in a square of the K-map corresponding to some states, the implied value of s

is written. For example, to determine the logic equation for signal c, the state graph in

Fig. 2.2d can be transferred to a K-map; and it can b_e verified easily that c = a.b+c(a+b).

This is illustrated in Fig. 2.2g, and the logic function is precisely that of a C-element.

2.3.2 Liveness and Consistent State Assignment

In the process of obtaining a state graph from an STG, we first determine the equivalent

FA of the STG and then perform state assignment for the FA. Performing state assign­

ment is essentially interpreting the FA. In the last section, the concept of consistent state

assignments has been described. It follows that in every simple cycle of a state graph with

consistent state assignment, the numbers oft and t transitions must be equal, and t, t must

alternate; where t, t denote a pair of complementary signal transitions. We have derived

the following corresponding condition on a STG for its state graph to have a consistent

state assignment (Theorem 4.8).

36 CHAPTER 2. AN INFORMAL INTRODUCTION

A state graph of a STG has a consistent state assignment ijf every pair of

transitions t, l is ordered.

The continual operation without deadlocking of control systems is the property of

liveness. A state graph of a control system is called live iff its uninterpreted FA is strongly

connected and has a consistent state assignment. If the state graph is strongly connected

then all of its transitions occur infinitely often in some transition sequences.

A STG is said to be live iff its state graph is live. The syntactic conditions on a STG

so that its state graph is live are the following. (Theorem 5.1)

A STG is live iff (i) its uninterpreted net is a LSFC net, and {ii) every pair of

transitions t, l is ordered.

Condition (i) guarantees that the FA is strongly connected; condition (ii) guarantees that

the interpreted FA (i.e. the state graph) has a consistent state assignment. Recall that a

strongly connected FA is said to be live. An example of a live STG and its state graph are

given in Fig. 2.2 above.

2.3.3 Persistency

Persistency is one of the most important properties of state graphs. Persistency is an

important concept because it is the essential property of speed-independent circuits. It

is also the most complicated to deal with because there may be a number of mechanisms

involved.

In a state graph, a transition is persistent iff when it is enabled, the occurrence of some

other transition does not disable it. This situation is illustrated in Fig. 2.1 la: transitions

t and u are enabled in state 8 and 8[t}81, 8[u)82. t is persistent, as the occurrence of u

does not disable it. On the other hand, u is non-persistent because it is disabled by an

occurrence of t and hence not enabled in 8 1 • The disabling of u must have been caused by

the occurrence of transition t, as tis the only transition which occurs in going from state

s to 8 1 • In which case, t must be a transition of an input to a logic element of which u is

a transition of its output signal.

2.3. PROPERTIES OF STATE GRAPHS

T
i
T

t
V".

(b)

i r
~ .. y _

t-,

(c)

37

T

(d) (e)

Figure 2.11: (a) A non-persistent state graph and (b) its corresponding STG. (c) By adding
a persistency constraint, non-persistency can be eliminated from the state graph (d). (e)
To maintain the concurrency between u and t, an internal transition x can be introduced.

We have developed the corresponding syntactic characterization on STG for non­

persistency, as illustrated for a live STG in Fig. 2.llb: (Theorem 5.4)

In the state graph (Fig. !.11a}, tranaition u ia non-persiatent iff in the corre­

.sponding STG, t, u are concurrent and lRu.

This can be appreciated by considering the corresponding hardware implementation:

the course of action lRu is implemented by a hardware element with t as one of its input

transitions and u is a transition of its output signal. Concurrency between t and u implies

that while the hardware element is reacting to t to cause u, t may be occurring simultane­

ously at the input of that hardware element. This is commonly known as a race condition

in hardware circuits and can lead to malfunction.

A per.si.stency constraint is an ordering constraint between two transitions, namely from

u tot as illustrated in Fig. 2.llc, used for eliminating this non-persistent behavior. The

resulting state graph in Fig. 2.1 ld is persistent.

A general condition of our design methodology is that transitions of input signals to

the system are always assumed to be persistent. The reason for this assumption is that

even if two transition& of input signals appear to be enabled in the same state, in the larger

system comprising the original system and its environment, they may indeed be enabled

in different states.

38 CHAPTER 2. AN INFORMAL INTRODUCTION

A STG is said to be persistent iff its state graph is persistent. Hence,

A STG i& persistent iff for every non-input signal j, every transition of j caused

by a transition x is ordered with x.

A remark about Persistency.

Earlier, when introducing STGs as a form of interpreted Petri nets, we mentioned a reason

why places a.re not interpreted a.s states of signals. This is indeed a fundamental limitation

of our attempt to use LSFC nets to model behavior of logic circuits. As a matter of fa.ct,

STGs cannot model circuits which have hazards because these circuits correspond to non­

persistent STGs. Consider the STG in Fig. 2.llb. Without a persistency constraint from

u to t (a.s indicated in Fig. 2.llc), the following problem would arise. After transition t
fires, each of its output places (not shown) gets a. token. Since u and ta.re concurrent, the

token on the left branch may move to the input place of t while u ha.s not fired. Since t
and tare transitions of the same signal (say j), what should really happen when t fires

subsequently is that the token at the input place of u also disappears. This is because the

presence of this token should be used to indicate the state of signal j after t fires. Since t

has fired, changing the state of j again, this token must disappear.

It is clear that such a disappearing token is not allowed by the firing rule of Petri nets.

Hence in order not to have to deal with this problem, we require that all transitions in

a net (except those of input signals) satisfy the persistent constraint. The ramification

of this restriction is that STGs cannot model arbiters and similar circuits with hazards.

Note, however, that this does not include circuits with input choices which can still be

specified by STGs (a.s illustrated by Fig. 2.2e). Hence, an arbitration can always be turned

into an input choice by using an external arbiter.

2.3.4 A synthesis procedure

The following synthesis procedure summarizes the ideas discussed so far. From a textual

description of a control circuit, we perform the following steps.

(1) Construct a STG specification according to the description.

2.4. DECOMPOSITION BY NET CONTRACTION 39

(2) Check the syntax of the STG for liveness.

(3) Check the syntax of the STG for persistency. (If non-persistency exists, eliminate it

by adding persistency constraints and/ or additional internal signals.)

(4) Check the syntax of the STG for state assignment problems.

(5) Derive the equivalent FA of the STG and perform state assignment to produce a state

graph. (If the STG is live then its state graph has a consistent state assignment.)

(6) Determine the network function from the state graph.

The logic circuit is simply the realization of the network function. The phase of trans­

forming a live-persistent STG into a logic circuit can be done mechanically. However,

transforming an initial STG specification into a live-persistent one may require interac­

tions with the designer. Even though checking for liveness and persistency of STGs can be

performed by simply checking the syntax of STGs, there is usually more than one way to

eliminate deadlocks and non-persistency. For example, non-persistency in Fig 2.11 b can be

eliminated either (i) by adding a persistency constraint directly to the STG (Fig. 2.lld)

or (ii) by first introducing an internal transition x and then adding the persistency con­

straint. In case (i), concurrency in the specification is reduced, thus reducing the number

of transition sequences allowed. In the second case, concurrency is maintained at the cost

of introducing more signal transitions (and hence more hardware). Whichever choice is

better-limited concurrency vs. external behavioral equivalence-is to be decided by the

designer.

We caution the reader that step (4) is another possible mechanism which may cause

non-persistency in the state graph; it is a by-product of the state assignment process and

has no relation to the sequencing specification of a STG. Nonetheless, we still can establish

a syntactic characterization of this problem for STGs, as presented in Chapter 5. In Section

2.5, we present an example of this problem and discuss its implications.

2.4 Decomposition by Net Contraction

The above synthesis procedure simply consists of going from a live-persistent STG to a

state graph then to a logic implementation. There is a simple method for decomposing

the state graph into smaller subgraphs, from which an efficient implementation can be

40 CHAPTER 2. AN INFORMAL INTRODUCTION

obtained. This decomposition technique is based on a graph-theoretic operation called

contraction. The general strategy is illustrated in Fig. 2.12 which shows the steps for the

synthesis of a trigger module, a control module for implementing pipelined operation of a

processign system.

The STG specification of this module (Fig. 2.12a) satisfies the syntactic properties of

liveness and persistency. Its state graph is shown in Fig. 2.12b, from which an implementa­

tion can be obtained (Fig. 2.12e). This path a-b-e adheres to the synthesis steps described

previously, where no decomposition is used. The alternate path a-c-d-e demonstrates our

decomposition technique, as described below.

First, for each signal to be implemented in {Ia, Or}, a contracted net is determined for

it, as shown in Fig. 2.12c. In the STG, transitions of signal Ia are cau8ed by transitions

of signals Ir and Or, but not Oa. Thus in the contracted net of I 11 , transitions of 0 11

can be eliminated. Besides transitions of signal Ia, the contracted net of Ia only contains

transitions of signals which cawe transitions of 111 in the original STG. These signals

{Ir, Or} form the input 8et of Ia, denoted as I(I11). In the implementation (Fig. 2.12e),

signals in this set are input signals to the logic element Ia. A contracted net is obtained

by removing unwanted transitions from the original STG, in such a way that the temporal

relation between remaining transitions is preserved. The left STG in Fig. 2.12c is the

contracted net of Ia, obtained by removing transitions of signal Oai similarly, the right

STG is the contracted net of Or, obtained by removing transitions of signal Ir. The

dashed arcs in the contracted nets of (c) indicate redundant causal constraints which can

be removed.

It is important to note that in the contracted net of a signal j, only transitions of j are

considered as output, other transitions in the input set of j, I(j), are considered as input,,

to the logic element j. The implication is that 8ince tran&itiona in I(j) are input.,, they

are per8i8tent. Their persistency must be guaranteed by other part of the circuit which

has its own corresponding contracted net.

Using exactly the same technique as before, each contracted net produces a state graph

from which the logic equation for a signal can be determined. In this example, the final

hardware circuits are the same whether decomposition is used or not. However, in general,

the circuit obtained from decomposition is usually more efficient.

2.4. DECOMPOSITION BY NET CONTRACTION 41

The dashed arrows from (a) to (c) and from (b) to (d) indicate net contractions and

state graph contractions, respectively. The arrows from (b) to (d) indicate the fundamental

reason this technique of decomposition yields a logic circuit with the same behavior as

one obtained without decomposition: state graphs obtained from the contracted nets are

themselves contracted versions of the state graph in (b). A contracted ata.te graph is

obtained by simply "ignoring" the uninteresting transitions.

The major net-theoretic results which serve as the basis of this decomposition technique

are the following (Fig. 2.13a). Let E denote a LSFC net satisfying the one-token SM

restriction, and ~ its equivalent FA. Let {E~, ... , E~} be a set of contracted nets of E such

that each Ei contains a subset T, ~ T, where Tis the set of transitions of E. A contraction

preserves the temporal relation if two transitions which are ordered (concurrent, in conflict)

in the original STG remain so in the contracted net. For each Ei, let ~i be its equivalent

FA. Then (Theorem 6.11)

If the contraction& preserve the temporal relation, then every ~i is a contracted

state graph of~.

The state graphs in { ~~, ... , ~~} form a collection of concurrently operating state ma­

chines. The aggregate behavior of this collection is defined as the concurrent composition

of all components, obtained by weaving them: ~~II .. · II~~.

The following result establishes the behavioral equivalence between the LSFC net and

its set of contracted nets. (Theorem 6.12)

If the causal relation of every pair of tranaitions in E (i.e. Vt, t' E T : tRt') ia

present in some contracted net, then ~ and ~rn ... 11~~ are identical.

Since STGs are a syntactic subclass of LSFC nets, the above result can be applied

directly to STGs, as indicated by Fig. 2.13b. The logic circuits obtained by two methods

are equivalent in the sense that they have the same behavior, as expressed in terms of sets

of transition sequences.

42

(b)

CHAPTER 2. AN INFORMAL INTRODUCTION

(a)

·------------' -----' --',,
',remove
'\ OA+,Oa­
', ,,
\~

(

I~r

1:-L-.to"

(c)
I
I
I
I
I

--.... remove
.......... Ir+,Ir­....

Or-
(d)

~ Ia Oa

(e)

Figure 2.12: (a) STG specification of a trigger module. The final implementation can
be obtained through the normal path a-b--e, or through decomposition by contraction
a-c-d-e.

2.4. DECOMPOSITION BY NET CONTRACTION 43

Live-perauten.t

A~~
State ,,..,1 {SG} { STG .1• sro,, STG,.j

(a)

f sa1 , sa1 , ... , sa,.J

'i·/
Logic cin:vit 4 .. Logic circuit

(area. e~ien.t}

(b)

Figure 2.13: (a) The equivalent FA of contracted nets are identical to the contraction of
the original FA. (b) Application of the result in (a) to STGs.

A remark about contraction vs. reduction

Earlier in this chapter, we mentioned Hack's reduction algorithm which, when applied to

a LSFC net, produces a set of MG-components or SM-components. In addition, we have

shown that the equivalent FA of a LSFC net can be obtained by weaving the equivalent

FA of a set of covering SM-components.

The result stated above for net contraction indicates that the equivalent FA of a LSFC

net can also be obtained by weaving the equivalent FA of a set of contracted nets which

"cover" the original STG (in the sense defined above).

The main difference between these two methods of decomposition is that in reduction,

a net is decomposed into subnets which are either state machines or marked graphs, while

in contraction, subnets a.re not necessarily required to be state machines or marked graphs,

even though it is possible. Subnets resulting from net contractions can be anything, de­

pending on which transitions are eliminated. In fact, reduction can be considered as a

special case of contraction: in a SM- (MG-) reduction, the set of transitions which remain

all belong to the same SM- (MG-) component; by using contraction to eliminate other

transitions, the desired SM- (MG-) component can be obtained. Note, however, that the

contraction technique proposed only works for LSFC nets which satisfy the one-token SM

restriction.

44 CHAPTER 2. AN INFORMAL INTRODUCTION

2.5 A problem with state assignment

Previously, we discussed conditions under which a STG has a con,,istent state assignment.

Below, we will use an example to illustrate a side-effect of state assignment which can some­

times give rise to non-persistency in state graphs. In contra.st, the kind of non-persistency

which we described earlier is a result of the interaction between concurrent signal transi­

tions, and therefore, it is directly related to the sequencing requirement specified by an

STG. Thus, even though both phenomena may give rise to non-persistency in state graphs,

their mechanisms are completely different. We will call this the state assignment problem

and the other non-persistency in STGs to distinguish them.

Fig. 2.14a is a STG, being a simple cycle tiRt2 ••• RtnRti, with an initial marking M0 in

which place (tn, ti) is marked. Its equivalent FA (Fig. 2.14b) is a simple cycle, represented

by the sequence so[ti)si[t2) ... sn-i[tn)s0 • Suppose that there exists some transition ti, 1 <
i < n, such that the set B = {ti, t2 , ••• , ti} has the property that Vx ET: x E B ¢>- x EB,

i.e. B forms a subset which contains both the rising and falling transitions of a number of

signals. Such a set is called a complementary set.

Then when state assignment is carried out, states s0 and Si will have the same binary

representation (Fig. 2.14c). This is because if any transition t; in B occurs, then f; must

also have occurred. Thus in the state graph, both ti and ti+t are enabled in the same state

and hence, are in direct conflict. There are two cases:

(a) If both ti and ti+t are transitions of input signals, then they are persistent. (This is

due to the previous assumption that external transitions be persistent.)

(b) If either ti or ti+l or both are transitions of non-input signals then non-persistency

results.

Case (b) above represents an undesirable situation and it cannot be fixed by a persistency

constraint as discussed earlier. In order to eliminate this case of non-persistency, one has

to introduce additional bit to the binary vectors to allow the distinction between states

s0 and Si· This means that it may be necessary to add another internal signal to the

set of signals J. For example, one can insert a new signal transition x anywhere in the

chain tiRt2 ... Rtn, thus ensuring that it no longer forms a complementary set. A specific

example is given in Section 7.2.2 to illustrate this step.

2.6. SUMMARY

(a)

/

(

'

45

(c}

Figure 2.14: (a) A STG, (b) its equivalent FA and (c) the state graph resulting from state
assignment.

The above problem also applies to contracted nets of a STG. Even if a STG contains no

complementary sets, in a contracted net, new complementary sets may be created when

transitions are removed from the STG. In which case, one can use the same technique

of introducing additional internal signal to eliminate non-persistency in a contracted net.

Chapter 7 provides an example for this.

2.6 Summary

In this chapter, we have outlined an approach for synthesis of self-timed control circuits

from STG specifications. While transforming a live-persistent STG into a logic circuit can

be done mechanically, ensuring liveness and persistency of STGs is a more complex task

which may require interactions with the designer. Nonetheless, these interactions only

mean that there are usually more than one way to guarantee liveness and persistency and

choosing the optimal solution is the task left to the designer.

One added complication arises from our technique for decomposition which produces

contracted nets from a STG. Of the three properties which one has to satisfy: liveness,

persistency (of STG) and the state-assignment problem, we have proven in the thesis that

(i) if liveness and persistency are met by a STG, then they are automatically met by its

contracted nets, and (ii) even if a STG does not have any state-assignment problem, its

contracted nets may due to the removal of transitions.

Chapter 3

Semantics and Temporal Relations of
Nets

Petri net theory constitutes one active area of research in the description, modeling and

analysis of concurrent systems. Petri nets allow the modeling of sequential and non­

sequential behaviors of systems by providing two distinct types of elements for representing

states and transitions. Even though Petri nets are a powerful model of concurrent systems,

their analysis is often difficult due to the generality allowed in these specifications. We

will restrict ourselves to a subclass of Petri nets called Free-Choice (FC) nets and will

use them as specifications of systems which exhibit concurrent operations. Free-Choice

nets represent an appropriate blend of concurrency and choice in specifying behaviors of

systems, and at the same time can be analyzed without much difficulty.

In the previous chapter, we have argued for the use of firing sequence semantics of nets.

This chapter provides the formal statements and proofs of the results presented earlier.

Two new results described earlier for the class of LSFC nets are developed: (1) An al­

gorithm for constructing a finite automaton directly from the atru.cture of a net. Such a

finite automaton corresponds precisely to the reachability graph of that net. (2) A charac­

terization, based on the structure of a net, of a temporal relation on its set of transitions.

The temporal relation can be partitioned into disjoint subsets of ordering, concurrency

and conflict, each of which has a unique corresponding situation in the reachability graph.

The rest of this chapter is organized as follows. Section 2 gives a brief introduction to

Petri net theory and summarizes important and-recent results. The structure and firing

46

3.1. PETRI NETS 47

rules of Petri nets are defined; important subclasses of nets called marked graphs, state

machines and free choice nets are identified. Then a number of results for LSFC nets are

summarized, from works of Hack, Best, Thiagarajan and Voss. These are refered to as the

structure theory of LSFC nets, one based on the static structure of the nets rather than

on their dynamic behaviors as described by the firing rule.

Section 3 discusses a semantics of nets based on sets of firing sequences. We show that

the set of firing sequences of a live safe free choice net can be determined directly from

those of component state-machines by weaving them. This allows us to devise a simple

algorithm for direct construction of the reachability graph from the structural components

of a net.

Section 4 defines a binary relation called temporal relation in terms of net syntax and

discusses a number of important properties. We then establish one-to-one correspondence

between subsets of this relation (ordering, concurrency and conflict) with unique situations

in the reachability graph.

3.1 Petri Nets

3.1.1 A Brief Introduction

This section provides a brief introduction to net theory. Most of the materials in this

section are adapted from [24,41,44].

A Petri net is a triple N = {P, T, F) where

• PUT =I- 0 and P n T = 0, and

• F ~ (P x T) U (T x P) such that dom(F) U range(F) =PUT.

P is the set of places, T is the set of transitions and P U T is the set of element,, of N.

The relation Fis called the flow relation. In graphical representation, places are drawn as

circles, transitions as bars and the ftow relation as directed arcs. Let x be an element of

N, then

• ·x = {y E PUT I {y,x) E F} is the preset of x,

48 CHAPTER 3. SEMANTICS AND TEMPORAL RELATIONS OF NETS

• x· = {y E PUT I {x,y} E F} is the po1t1et of x.

For a place x, ·x and x· are often referred to as sets of input and output transitions of

x, respectively. Similarly, for a transition x, ·x and x· are often referred to as sets of input

and output places of x, respectively. This dot notation is extended to sets of elements in

the obvious way. If p E P and IP· I > 1 then pis called a. 1hared place, where IXI denotes

the cardinality of set X. To facilitate the task of analysis and presentation, two common

restrictions on a Petri net N = {P, T, F} are that it be pure and 1imple:1

• N is pure iff'v'x,y E PUT: {x,y) E F ::? {y,x) fl F.

• N is simple iff 'v'x, y E PUT : (·x = ·y A x· = y·) ::? x = y. Another related property

is place-simple: 'v'x,y E P: (·x = ·y A x· = y·)::? x = y.

In light of the fact that we are mostly interested in behavior of nets in terms of firing

sequences, place-simplicity is a more reasonable restriction, whereas simplicity is a rather

stringent requirement in that it disallows the specification of certain types of choices. In

summary, all nets considered are tacitly assumed to satisfy the following restrictions, unless

explicitly stated otherwise:

Restriction 3.1 All net1 considered are finite, strongly-connected, pure and place-simple.

We will be mainly concerned with three important subclasses of nets called marked

graphs (MG), state machine1 (SM) and free-choice (FC) nets. A marked graph is a net

in which each place has at most one input transition and at most one output transition:

'v'p E P : I ·pl, IP· I ~ 1. Marked graphs represent the structure of deterministic concurrent

systems. The dual notion of marked graphs is that of state machines. A state machine

is a. net in which each transition has at most one input place and at most one output

place: 'v't E T : I· ti, It· I ~ 1. State machines represent the structure of nondeterministic

sequential systems. A free-choice net is a net such that if any two transitions t1 and t 2

share the same input place p, i.e. IP· I > 1, then pis the unique input place of both t1 and

t2: 'v'p E p: IP· I> 1::? ·(p·) = {p}.

1 Note that this definition of "simple" is differently from Commoner's simple nets, which are called
asymmetric-choice nets [44).

3.1. PETRI NETS 49

The states of a system whose structure is modeled by a. net are represented by markings.

A marking of a. net N is a. function M : P -+ {O, 1, 2 ... }. In diagrams, the marking M

is indicated by placing M(p) tokens (drawn as dots) on each place p. If a place contains

tokens, it is marked, otherwise, it is blank. Function M is extended to sets of places such

that M(P) = EpeP M(p). A transition tis enabled a.t the marking Miff each input place

oft is marked at M, i.e. Vp E ·t: M(p) > 0. When the enabled transition t fires at M, a

new marking M' is reached which is given by

{

M(p) - 1 if p E ·t - t·
Vp E P: M'(p) = M(p) + 1 if p Et· - · t

M(p) otherwise

The transformation of M into M' through the firing oft is denoted as M[t)M'. Let

T• be the set of all finite-length sequences of symbols in T. Let M 0 be a marking of the

net N and o- = tot1 t2 ••• t,. E T* a sequence of transitions. Then o- is a firing sequence at

M 0 if£ there exist markings Mi, M2 , ••• , M,.+l of N such that Mi{ti)Mi+l for 0 < i $ n.

As usual, Mo[o-)Mn+1 denotes the transformation of M 0 into M,.+l by firing o- at M 0 • By

convention, for every marking M of N, M[E)M, where E denotes the empty sequence.

The forward marking class of a marking M of a net N is denoted as (M) and is the

smallest class of markings of N given by:

• ME (M} and

• if M' E (M) and for some t ET: M'[t)M", then M" E (M}.

A net N = (P, T, F) with an initial marking M 0 is usually represented as a quadruple

E = (P, T, F, M 0). N is called the underlying net of E and usually denoted as N'f'..

Two important behavioral properties of a net with an initial marking are liveness and

safety.

Definition 3.2 Let E = (P, T, F, Mo) be a net with an initial marking M 0 . Then

• E is live iif VM' E [Mo), Vt ET: 3M" E (M') such that t is enabled at M".

• :E is safe ijf VM' E [M0}, Vp E P: M'(p) $ 1.

50 CHAPTER 3. SEMANTICS AND TEMPORAL RELATIONS OF NETS

3.1.2 Previous Results for Free-Choice nets

Given a Petri net with an initial marking, the firing rule can be applied to transform the

net from one marking into a new marking by firing enabled transitions. in the net. The

reachability graph is a graph in which nodes are markings and arcs between nodes represent

firings of transitions; this graph is a state transition graph which readily captures the

behavior of the net. Although for general Petri nets, reachability graphs can be obtained

by exhaustively firing enabled transitions at a marking to produce new markings, for the

class of FC nets, much can be deduced directly from their structure without reference to

any particular initial marking, provided that the net is live and safe. In this section, we

summarize a number of relevant results for FC nets.

Reduction algorithms for Free-Choice nets.

Hack [24] devised two simple algorithms for structurally reducing a free choice net into its

component marked graphs or state machines.

A marked graph allocation (MG allocation) over a free choice net N = {P, T, F) is a

function A : P -+ T such that Vp E P : A(p) E p·. Thus for every place in a net, only

one of its output transitions is allocated, the rest are called unallocated transitions. Let

Et and Ep denote the sets of eliminated transitions and places, respectively. The marked

graph reduction (MG reduction) algorithm involves the following steps. 'tip E P, Vt E T :

1. Delete all unallocated transitions: p · -{A(p)} ~Et.

2. Delete places with all input transitions already deleted: ·p ~ Et ¢:> p E Ep.

3. Delete transitions with at least one input place deleted: ·t n E,, =/:- 0 ¢:> t E E.,.

Repeat steps 2 and 3 until they a.re no longer applicable. A marked graph resulting from

the reduction is called a MG-component.

A state-machine allocation (SM allocation) over a free choice net N = (P, T, F) is a

function B : T -+ P such that Vt E T : B(t) E ·t. The state machine reduction (SM

reduction) algorithm involves the following steps. 'tip E P, Vt ET:

1. Delete all unallocated places: ·t - {B(t)} ~ Ep.

3.1. PETRI NETS 51

(b) MG-compotunu (c) SM-comP,Oft.eflU

Figure 3.1: (a) A LSFC net (b) Its MG components resulting from MG-reductions and (c)
Its SM components resulting from SM-reductions.

2. Delete transitions with all output places already deleted: t· s; E,, # t E Et.

3. Delete places with at least one output transition deleted: p · nEt '# 0 # p E E,,.

Repeat steps 2 and 3 until they are no longer applicable. A state machine resulting

from the reduction is called a SM-component. An example (taken from [4]) of MG and SM

reduction of a LSFC net is shown in Fig. 3.1.

Useful results for Free·Choice nets.

For FC nets, a number of useful results have been proven. They are stated below as

preliminaries to further investigation. The following theorem is due to Hack, phrased in

different form by [49].

Theorem 3.3 Let :E = (P, T, F, Mo} be a LSFC net and x an element of Nr,. Then

52 CHAPTER 3. SEMANTICS AND TEMPORAL RELATIONS OF NETS

• there exists a MG-component Ni = (Pi, Ti, Fi) of NE such that x E Pi U Ti,

• there exists a SM-component N2 = (P2 , T2, F2) of NE such that x E P2 U T2 •

This theorem states that if a FC net is live and safe, then the set of MG-components

resulting from MG-reductions covers the net. Alternatively, the set of SM-components

resulting from SM-reductions also covers the net. On the other hand, if a FC net is

either nonlive or unsafe, then some reduction does not cover the net or is empty, or some

component is not strongly connected.

Another useful theorem from the theory of marked graphs (12] states that (a) for every

marking M reachable from the initial marking M0 , there always exists a firing sequence u

which brings the net from M back to itself, and (b) any such firing sequence u must fire all

transitions in the net at least once and exactly the same number of times. This theorem

is formalized below.

For a sequence u ET* and Ti ~ T, ufTi denotes the projection (or restriction) of u

onto set Ti. If t E T is a transition then #(uf t) is the number of occurrences oft in u.

For a set of transitions Ti, #(ufTi) = LteTi #(uf t). For a net with an initial marking

E = (P, T, F, M0), FS(E) denotes the set of all firing sequences of E. The following

theorem states that in a live-safe marked graph, (a) for every marking M reachable from

M 0 , there exists a firing sequence which brings the net from M back to itself, and (b) every

such firing sequence contains at lea.st one instance of each transition.

Theorem 3.4 Let E = (P, T, F, M0) be a live-safe marked graph. Then,

(a) \IM E (Mo) 3u ET*: M(u)M and
(b) (\lu I M[u)M)(\/t E T) : #(uf t) = k, for some k ;:::: 1.

There are a number of recent results concerning the structural properties of LSFC nets.

We mention below two theorems from (49]; these are important for later developments in

the thesis. Let M be a marking of a net N, and Pi ~ P. Then Mf Pi denotes the

submarking obtained by restricting M to Pi.

Informally, the theorem below states that the behavior of a SM-component-as charac­

terized by firing sequences-is not constrained in any way by the composite FC net. The

set of firing sequences of a SM-component Ei is the same as that of the composite net

3.2. FIRING SEQUENCE SEMANTICS OF FREE-CHOICE NETS 53

restricted to the transitions in T1 . Thus a LSFC net can be considered as a set of state

machines which operate concurrently and synchronize with each other occasionally.

Theorem 3.5 Let E = (P, T, F, Mo) be a LSFC net, and av.ppoae E1 = (Pi, Ti, Fi, MJ) is

a SM-component of E, where MJ = M0 rP1 • Then

where by definition FS(EHT1 = {o-rT1 Io- E FS(E)}.

The following theorem states that each MG-component in a LSFC net can be activated

at some marking and it is a LS marked graph under that marking.

Theorem 3.6 Let E = (P, T, F, M0} be a LSFC net a.nd N1 = (Pi, Ti, F1 } be a MG­

component of E. Then there ezista a ma.ricing ME [Mo) such. that E1 = (Pi, T1' F1 , M 1} is

a live safe ma.riced graph, where M 1 = Mr P1 .

3.2 Firing Sequence Semantics of Free-Choice nets

One main result of this section is a theorem stating the relation between the behavior

of a LSFC net and those of the component subnets constituting the original net. The

behavior of nets will be characterized in terms of sets of firing sequ~nces. We will show

that these sets are regular by demonstrating a procedure for constructing their equivalent

finite automata (FA). For nets, these FA correspond precisely to the reachability graphs

whose vertices represent the markings of nets, and arcs between vertices the transitions

from one marking to another due to the firing of some transition in the net. This theorem

provides an algorithm for obtaining the equivalent FA directly from the structure of a

LSFC net, instead of having to determine every marking from the firing rule.

3.2.1 Semantics

Theorem 3.5 states that the set of firing sequences of a SM-component E1 is the same

as that of the composite net restricted to the transitions in T1 . Thus a LSFC net can be

54 CHAPTER 3. SEMANTICS AND TEMPORAL RELATIONS OF NETS

considered as a. set of state machines which operate concurrently and synchronize with each

other occasionally. Given this fundamental viewpoint, we can characterize the behavior of

a LSFC net as a. composition of firing sequences of the component state machines.

Before discussing the theorem, we present a convenient operator ca.lied weave for com­

bining firing sequences of concurrently opera.ting nets. For a net E, FS(E) denotes its set

of firing sequences.

Definition 3.7 Let E1 = (Pi,Ti,F1,MJ) and E2 = (P2,T2,F2,MJ) be two neu. The

weave of two seu of firing sequences FS(E1) and FS(E2) u given by

FS(E1) II FS(E2) = {u E (T1 u T2)* I urT1 E FS(E1) " urT2 E FS(E2)}.

Weaving is idempotent, commutative and associative. If T1 n T2 = 0, weaving is exactly

the shuffle of two sets of sequences. The weave opera.tor has been used in [25,53] as

a convenient means of describing "synchronized concurrency" between two sequences of

events, such that distinct events in two sequences can occur concurently in any order, but

their common events must occur in synchrony. In these formulations, the set of firing

sequences is always accompanied by the set of events to form a pair (T, F S) called a trace

structure, where F S ~ T*. The inclusion of the set of transitions T is necessary in order

for weave to be associative. In our formulation, the corresponding trace structure of a

LSFC net E = {P,T,F,M0 } is given by (T,FS(E)).

Theorem 3.3 shows that for a LSFC net, there exists a set of one-token SM-components

which cover it. The existence of these components is essential to the correctness of the

following theorem.

Theorem 3.8 Let E = (P, T, F, Mo) be a LSFC net, {E1, E2, ... , En} be a set of one­

token SM-component,, which covers the net, where Ei = (P,, T,, Fi, M~) and M~ = M0 rP,,

1 $ i $ n. Then

FS(E) = FS(E1) II FS(E2) II·.· II FS(En)·

Proof Let FS' = FS(E1)llFS(E2)ll ... llFS(En)· We need to show that FS(E) = FS'.

(a) FS(E) ~ FS' : Theorem 3.5 states that if E is a LSFC net then for every SM­

component E,, 1 < i $ n: FS(E,) = FS(E)r'.11. Hence, u E FS(E)::::? urTi E FS(EH7i =
FS(E,), which further implies that u E FS'. Therefore FS(E) ~ FS'.

3.2. FIRING SEQUENCE SEMANTICS OF FREE-CHOICE NETS 55

(b) FS' £;; FS(E) : We need to show that every sequence u E T* such that uf7i E

FS(Ei), 1 ~ i < n, is a firing sequence of E, i.e. u E FS(E). This is done by induction

on lul.

Basis: lul = 0. Trivial.

Induction step: Assume that u = ut E T*, where ufTi E FS(Ei), 1 ~ i ~ n and

u E FS(E). Let M' be a marking of E such that M0[«7)M'. We proceed to show that at

M', if t is enabled in every SM-component which contains it, then t is also enabled in E.

In which case, ut is a firing sequence of E.

Let p E ·t, then there must exist some SM-component E; containing p, as the SM~

components cover the net. Because E; is a SM-component, it must also contain t. Since

utfT; is a firing sequence of E;, it follows that p must be marked at M'. By applying the

same reasoning, we deduce that every input place oft must be marked. Hence at M', tis

enabled in E. I

Even though no proof exists, we believe that the above theorem should apply also to a

superclass of FS nets called State-Machine Decomposable (SMD) nets.

3.2.2 An algorithm for constructing reachability graphs

So far, we have demonstrated that the set of firing sequences of a LSFC net can be obtained

by weaving those of its SM-components. It will be shown in this section that the set of

firing sequences of any LSFC net is regular by demonstrating the existence of a finite

automaton (FA) which accepts or generates such a set of firing sequences. The result of

Theorem 3.8 above provides an algorithm for constructing a FA directly from the structure

of the net.

We start first with a description of the algorithm itself. For a LSFC net E, ~(E)

denotes its equivalent FA (which is the same as its reachability graph).

Algorithm 3.9 Let E = (P, T, F, M0) be a LSFC net and {E1 , E2 , ••• , En} be a set of

one-token SM-components which covers the net. Then

56 CHAPTER 3. SEMANTICS AND TEMPORAL RELATIONS OF NETS

Figure 3.2: (a.) the state machines of SM-components from Fig. 3.1, a.nd (b) the weave of
two state ma.chines, yielding the reachability graph of the LSFC net in Fig. 3.1.

where ~PJi)ll~(E;) denotes the weave of two state machines, as described subsequently.

Fig. 3.2 shows construction of the equivalent FA of the LSFC net in Fig. 3.1 by weaving

the state machines corresponding to the SM -components. The regular expressions for the

component state machines are

The regular expression for the LSFC net is EillE2 a.nd can be determined directly from

the state graph in (b) 88 E11lE2 = ((t1(t3llt4)lt2(tsllt6))to)*.

Note that if Ei is a. SM-component, then ~(Ei) is the same 88 Ei itself, except for a few

representational changes. In this case, FS(Ei) ca.n be represented by a regular expression

involving the opera.tors concatenation, union, and Kleene cloaure (denoted respectively by

juxtaposition, bar j, and star *·) The construction algorithm in the a.hove definition is

more convenient and direct tha.n the alternate approach of manipulating the set of firing

sequencess a.nd expressions, as suggested by Theorem 3.8. It is more convenient because

all state machine components already exist; they need not be constructed from their sets

of firing sequences.

First, we describe a. more conventional representation of state ma.chines. Recall that

if a. LSFC net E = (P, T, F, M0) is a state machine then VM E [Mo) : M(P) = 1 and

Vt E T : I . ti = It . I = 1.

Definition 3.10 Let E = (P, T, F, M0) be a state machine. Then the finite automaton

corresponding to E is given by ~(E) = (S, T, 8, s0 , q) where ,

3.2. FIRING SEQUENCE SEMANTICS OF FREE-CHOICE NETS 57

• For P = {Po,PJ., ... ,pn}, S = { {Po}, {Pi}, ... , {pn} } is the set of states,

• so = {p I Mo(P) = 1} is the initial state,

• q = {so} is set of final states,

• 8 : S x T -+ S a partial function called tran.,ition function defined -''Uch that Vt E

T, VPJ.,P'J E P:
(PI, t} E F /\ (t,P'J} E F # 8(si, t) = s2,

where s1 = {PJ.}, s2 = {P'J}.

In graphical representation, states in S are drawn as small solid circles. The initial

state is circled to distinguish it from the rest. The transition function is indicated by arcs

between states, labeled with the appropriate transitions. Also by convention, Vs E S :

8(s, e) = s. For clarity these arcs are omitted for every state s.

Let A be a regular set of firing sequences, then FA(A) will be used to denote the

corresponding finite automaton. For a LS net E, F S(E) denotes its set of firing sequences

and FA(FS(E)) denotes its finite a~tomaton. Thus FA(FS(E)) = ~(E). The weave of

two finite automata is defined subsequently. In order to keep the definition general, the

transition relation A ~ S x T x S will be used instead of the usual transition relation

8: S x T-+ S.2

Definition 3.11 Let E1 and E2 be nets with "eta of firing sequences E1 = FS(E1) and

E2 = FS(E2) and finite automata

~(E1) - F A(E1) - (Si, Ti, Ai, s~, q1 }

~(E2) - F A(E2) - (82, T2, A2, s~, q2}

(a) The weave of~(Ei) and ~(E2) is given by

~(E1) II ~(E2)de/ FA(E}llE2).

(b) The finite automaton corresponding to the weave of E1 and E2 is given by

2 A finite automaton with a transition relation is generally nondeterministic, while one with a transition
function is deterministic. Converting from a nondeterministic finite automaton to a deterministic one is
straightforward, using such well-known techniques as the subset constraction method.

58 CHAPTER 3. SEMANTICS AND TEMPORAL RELATIONS OF NETS

The inclusion of the empty transition e. for all states s : (s, e., s) E Do is essential for

the concise characterization of a weave's state machine. By using the e.-transitions, one

avoids the distinction between different cases corresponding to t E Ti - T2 , t E T2 -Ti a.nd

t E Tin T2 • The above definition is essentially due to [53].

3.3 Temporal Relations: Ordering, Concurrency and
Conflict

Under the one-token SM restriction on a LSFC net, one can determine directly from

its structure whether two transitions are ordered, concurrent, or in conflict. Since we

are only interested in nets which are strongly connected directed graphs, these temporal

characterizations will be different from those based on partial orders which correspond to

acyclic graphs. We will first define these sub-relations based on the structure of LSFC nets

and then discuss their meaning and correspondence to situations in reachability graphs.

As mentioned in Chapter 2, this syntactic characterization only works for LSFC nets

with the additional restriction which we call one-token SM re.striction, given again below.

In fact, all results proven in this section assume this restriction.

Restriction 3.12 (One-token SM) The cla"" of LSFC neu corMidered i" "uch that for

a net in th~ clu.,, every one of ii,, SM-componenu contain& ezactly one token.

3.3.1 Syntactic Characterization

Below we define symmetric binary relations Ii, co, cf and de on the set of transitions

T; they stand for ordering, concurrent, conflict and direct-conflict, respectively. A "imple

path in a net N is a path xix2 ••• Xn f;; N such that Xi -:f:. x;, 1 :$; i -:f:. j :$; n. A "imple cycle

in N is a simple pa.th xix2 ••• Xn ~ N with Xi= Xn· An element x belonging to a cycle or

path II is written as x E II.

3.3. TEMPORAL RELATIONS: ORDERING, CONCURRENCY AND CONFLICT 59

to id
ti Ii id
t2 Ii de id
t3 Ii Ii cf id
t. Ii Ii cf co id
ts Ii cf Ii cf cf id
t6 Ii cf Ii cl cf co id

Table 3.1: The temporal relation of the LSFC net in Fig. 3.1.

Definition 3.13 Let l:: = (P, T, F, Mo) be a LSFC net aatisfying the one-token SM re­
striction. For diatinct transition.a t, t' E T :

(a) t and t' are ordered, denoted aa { t, t'} E Ii, iff there exiau a simple cycle in E to

which both t and t' belong.

(b) t and t' are concurrent, denoted as {t, t'} E co, iff {t, t'} ¢ Ii and there exists a

MG-component of E to which both t and t' belong.

(c) t and t' are in conflict, denoted aa {t,t'} E cf, iff

1. either { t, t'} ¢ Ii and there exiats a SM-component to which both t and t' belong,

2. or there exist& no SM-component or MG-component containing both t and t'.

In the characterization of concurrency, the existence of a MG-component is required

in order for two transitions to be concurrent (statement b). However, in case of conflicts,

the existence of a SM-component is sufficient but not necessary for two transitions to be

in conflict. Statement d2 indicates that two transitions are also in conflict if no reduction

produces a subnet-be it a SM-component or a MG-component-which contains both

of them. Intuitively, this makes sense, as two concurrent transitions must always occur

together; this implies the existence of a such an MG-component. On the other hand, if

two transitions are in conflict, the occurrence of one exclude that of the other. Hence it is

possible that they do not both belong to any structural component of the net at all.

60 CHAPTER 3. SEMANTICS AND TEMPORAL RELATIONS OF NETS

Applying the above definition to the FC net of Fig. 3.1, we can construct Table 3.1.

Since the relations are symmetric, half of the table is implied by the other half. Note

also that { t 4 , t5 } and { t 3 , t6 } belong to cf, but they do not both belong to any SM- or

MG-component.

One special case of (c) is the direct- conflict relation: t and t' (t =/:- t') are in direct­

conflict, denoted as { t, t'} E de, iff ·t n ·t' =/:- 0. In the above definition, de ~ cf: according

to the FC hypothesis, there exists place p which is a unique shared place of t and t',
therefore they cannot belong to the same simple cycle and furthermore, they must belong

to the same SM-component. Also, define id as {{x,x}} ~ T x T and id ~Ii. Another

useful derived relation is idc = cf - de: If two transitions t and t' are in conflict but not

in direct conflict, then { t, t'} E idc and then they are said to be in indirect conflict.

In a LS marked graph E = (P, T, F, M 0), a cut C is a maximal set of elements in PUT

which are pairwise not contained in the same simple cycle. That is, if we extend the binary

relation r E {Ii, co, cf} to (P U T) x (P U T) then a cut C ~ P U T is defined such that

{
\lx,y EC: {x,y} Eco and
\lz E (PUT)- C,3x EC: {x,z} ¢co.

A t-cu.t Ct ~ T consists of all transitions which can fire concurrently at some marking of

the net. A p-cu.t GP~ P consists of all places that can be marked at the same time. The

following lemma states that in a LS marked graph, any LS marking M marks all places of

a p-cut and leaves other places blank.

Lemma 3.14 Let E = (P, T, F, M0) be a LS marked graph aat~fying the one-token SM

reatriction. Then every life-aafe marking M E [Mo) marked all placea of a p-cut Gp and

none else. That ~' there eziau Gp such that

{
1 \Ip E Cp

M(p) = 0 otherwise

Proof Let {017 ••• , On} be the set of simple cycles in Nr; where ni = (Pi, Ti, .Fi). Since E

is a marked graph, each place is uniquely identified by its unique input and unique output

transitions. Hence a marked graph can be considered as a directed graph with vertices

corresponding to transitions and arcs corresponding to places. Therefore by definition, a

cut GP is a maximal set of arcs such that no two belong to the same simple cycle. Hence,

3.3. TEMPORAL RELATIONS: ORDERING, CONCURRENCY AND CONFLICT 61

every simple cycle in {!l1 , ..• , !ln} must contain exactly one arc in CP, i.e. Vi E {l, ... , n} :

IPi n CPI = 1. Consider a marking M which marks all places in CP and none else. Then

under the one-token SM restriction, M is a live-safe marking because each simple cycle ni
contains exactly one token. I

It has been shown in [27] that for LS marked graphs with the property that every

simple cycle contains exactly one token, there exists a unique equivalence class of life-safe

markings: any two markings in this equivalence class are mutually reachable from one

another. This equivalence class is precisely the set of all p-cuts { Cp} of a LS marked

graph, including those which are singleton sets (ICPI = 1).

The above result for marked graphs can be generalized to LSFC nets in a straightfor­

ward manner. According to Theorem 3.6, every SM-component can be activated at some

marking and it operates as a LS marked graph. Hence

Theorem 3.15 Let :E = (P, T, F, M0) be a LSFC net satisfying the one-token SM restric­

tion. Then every life-safe marking M E [Mo) mark,, all places of a p-cut Gp of some

MG-component.

Some Examples. The above definition of the temporal relation indicates that one can

determine the· relation between two transitions only by looking at the global structure of

a LSFC net. In Fig. 4a, it appears that C = {Pt,PJ,P3,P4 } forms a p-cut in some net;

however as shown in Fig. 4b, C is not a p-cut if there are two simple cycles --one containing

ti, t 2 , the other t3 , t4- which do not share some common transition. This is because PJ

and P3 are contained in a simple cycle and are therefore ordered. C is a p-cut only when

there exists at least one transition u shared by the cycles, as shown in Fig. 4c.

In another example (Fig. 4d), place p appears to be a redundant place [2] and could

be removed without changing the behavior of the net. However, Fig. 4e shows that if pis

removed then the simple cycle t 1pt4P4t 2])Jt3p5 t1 would no longer exist; in which case t1 and

t4 would become concurrent. Thus in this particular case, the removal of p does indeed

change the behavior of the net drastically and therefore it is not redundant.

62 CHAPTER 3. SEMANTICS AND TEMPORAL RELATIONS OF NETS

(a)

p

p5

P4 (e)

Figure 3.3: (a) C = {Pt,P.2,J13,p4 } appears to be a p-cut in some net. However (b) C is not
a p-cut unless (c) there exists a shared transition u. (d) Place p appears to be a redundant
place. However, in (e) it is not.

3.3.2 Partition of the Temporal Relation and Correspondence to
Reachability Graphs

As shown next, the above syntactic characterizations partition the temporal relation, de­

fined as tr = T x T, into disjoint subsets of ordering, concurrency and conflict, as is

illustrated by Fig. 3.4. The subset co represents the non-sequential behavior, Ii U cf repre­

sents the sequential behavior of the net. For LS marked graphs, cf= 0 and tr = Ii U co.

For LS state machines, co = 0 and tr = Ii U cf.

Theorem 3.16 Let :E = (P, T, F, M0 } be a LSFC net satisfying the one-token SM restric­

tion, and tr = T x T be called the temporal relation. Then Ii, co and cf partition tr into

disjoint subsets:
(a) Ii U co U cf = tr, and
(b) Ii n co = Ii n cf = co n cf = 0.

Proof Statement (a) trivially follows from the definitions, and so do Ii n co = 0 and

Ii n cf = 0. It remains to show that con cf = 0. To establish this fact, it suffices to

3.3. TEMPORAL RELATIONS: ORDERING, CONCURRENCY AND CONFLICT 63

Figure 3.4: Partitions of the temporal relation tr.

show that in a LSFC net satisfying the one-token SM restriction, if two transitions do

not belong to a simple cycle then they cannot belong to some MG-component and some

SM-component at the same time. (In case two transitions are in conflict by not belonging

to any structural component at all, it is trivial to see that they cannot be concurrent.)

Let Nr, denote the underlying structure of E. First, note that if two transitions t and

t' do belong to a simple cycle in Nr, then t and t' must belong to a simple cycle in some

MG-component Ni = (Pi, Ti, F1) and in some SM-component N2 = (P2, T2, F2), because

both MG and SM reduction cover the net. Thus, if t and t' do not belong to any simple

cycle in N, they do not belong to a simple cycle in any MG-component or SM-component.

In this case, we show that if t and t' belong to both N1 and N 2 then the net is either unsafe

or nonlive.

If t, t' E T1 but no simple cycle containing both of them, then there must exist some

u E Ti such that t, u E ni and t', u E n~, where ni, n~ are distinct simple cycles in Ni

(Fig. 3.5). If t, t' E T2 but no simple cycle containing both of them, then there must exist

some p E P2 such that t,p E f22 and t',p En~, where n2,n~ are distinct simple cycles in

N2 (Fig. 3.5).

Since Ni is a MG-component of a LSFC net, according to Theorem 3.6, there exists a

marking which activates Ni and Ni will operate as a live-safe marked graph. Since t and

t' do not belong to the same simple cycle, according to Theorem 3.15, in Ni there exists

a p-cut which corresponds to a marking ME [Mo) under which both t and t' are enabled.

Hence at M, all input places of t and t' are marked. Since the cycles n2 and n~ in N2

64 CHAPTER 3. SEMANTICS AND TEMPORAL RELATIONS OF NETS

SM-component N1

Figure 3.5: Proof of Theorem 3.16.

contain transitions t and t' respectively, they must each contains one input place of t or

t'. Since all input places of t and t' are marked, the SM-component N2 contains at least

two tokens. Under the one-token SM restriction, this would lead to unsafeness. On the

other hand, if N2 contains only one token then only one of t, t' can possibly be enabled;

this implies that u cannot be enabled subsequently, leading to a deadlock. I

The above classifications of the temporal relation are based on the syntax of LSFC nets.

We now attempt to connect these classifications to the normal understanding of ordering,

concurrency and conflict in terms of firing sequences. It will be shown that for LSFC nets,

there exists a unique correspondence between an element of the temporal relation and a

situation in a reachability graph of a net.

The following theorem gives the characterization of ordering, concurrency and conflict

in terms of reachability graphs, or equivalently, firing sequences. Fig. 3.6 contains graphs

illustrating these cases, in which vertices representing markings, solid arcs transitions be­

tween markings. The dotted arcs indicate explicitly those transitions which cannot occur;

dashed arcs indicate a path between two markings.

A cycle in a reachability graph is characterized by M1 [t1)M2[t2) ••• [tn_ 1)Mn where

M1 = Mn; u = tit2 ... tn-1 is a firing sequence such that Mi[u)M1 • If furthermore Mi =f=

M;, 1 :::; i =f= j :::; n then it is a $imple cycle; in this case, u is called the firing sequence

corresponding to a simple cycle. In the following theorem and its proof, we use u to denote

such a firing sequence.

3.3. TEMPORAL RELATIONS: ORDERING, CONCURRENCY AND CONFLICT 65

/···::~;
~-··t

(a)

~
~

(b)

t t' •. "-- ... "
tj•.. t"• .•
~ ~

(c)

Figure 3.6: t, t' are (a) in direct-conflict (de) (b) concurrent (co) (c) ordered or in indi­
rect-conflict (Ii U idc).

Theorem 3.17 Let E = {P, T, F, M0 } be a LSFC net satisfying the one-token SM restric-

tion. Then Vt, t' ET:

(a) {t, t'} Ede
(b) {t, t'} Eco
(c) { t, t'} E Ii U idc
(d) {t, t'} E idc

¢:}

¢:}

¢:}

<=

3M E [Mo} : M[t} /\ M[t'} /\ -.M[tt'} /\ -.M[t't}
3M E [Mo} : M[tt') /\ M[t't}
/!JM E [Mo) : M[t) /\ M[t')
(/!JM E [Mo): M[t) A M[t')) A (/!Ju ET*: t, t' Eu),

where u is a firing sequence corresponding to a simple cycle in the reachability graph of E.

Parts (a) and (b) state that if two transitions are either concurrent or in direct conflict,

then there is a marking in which both are enabled. Part (c) states that if two transitions

are either ordered or in indirect conflict then they are never enabled in the same marking.

Thus by inspecting the local structure of the reachability graph, it is possible to determine

when two transitions are either concurrent or in direct conflict. However, ordering cannot

be distinguished from indirect conflict. Part (d) further states that in order to discern

these two cases, the global structure of the reachability graph needs be inspected: for

every two transitions t and t', if there exists no marking M in which both transitions are

enabled and furthermore, there exists no firing sequence u corresponding to a simple cycle

in the reachability graph such that t, t' E u, then t and t' are in indirect conflict.

Proof of Theorem 9.17. Part (a). (:::})If {t,t'} Ede then in Ny:,, there exists no simple

cycle containing both t and t', and there exists some SM-component N2 such that t, t' E T2·

Every such SM-component must contain exactly one token. Furthermore according to the

FC hypothesis, 3p E P2 : p· = {t, t'} and 3M E [Mo} : M(p) = 1. Hence M[t) and M[t').

Moreover, since the firing of either t or t' will remove the token in p, M[tt') and M[tt')

cannot be true.

(<=) If M[t) /\ M[t'}, and tt' and tt' are not firing sequences then it must be the case

that ·t n ·t' -:f:. 0. For suppose that ·t n ·t' = 0. Then since M[t} /\ M[t'}, all places in ·t U ·t'

66 CHAPTER 3. SEMANTICS AND TEMPORAL RELATIONS OF NETS

must contain tokens. However this implies that M[tt') AM[t't), a contradiction. Therefore,

it must be the case that 3p E P: ·t n ·t' = {p} and hence {t, t'} Ede.

Part (b). Note that M[tt') A M[t't) => M[t) A M[t') according to the definition of firing

sequences.

(=>) If { t, t'} E co then in NE there exists no simple cycle containing both t and t', and

there exists some MG-component Ni such that t, t' E Ti. Since t and t' belong to different

simple cycles of a marked graph Ni, ·t n ·t' = t · nt'· = 0 and furthermore, ·t n ·t' s; Cp,

where Cp is a p-cut in Ni. Therefore, according to Lemma 3.14, 3M E [Mo) : M(p) =
1 Vp E ·t U ·t'. Clearly, at M both t and t' are enabled independently, thus proving the

necessary condition.

(<=) First, we show that ·t n ·t' = t · nt'· = 0. Suppose that ·t n ·t' =f 0, then due to the

FC hypothesis, 3p E P : ·t n ·t' = {p}. Then according to Part (a.), tt' and t't cannot be

firing sequence--a contradiction. Hence ·t n ·t' = 0. From ·t n ·t' = 0, using the fact that

the net is safe, we show that t · nt'· = 0. For if t · nt'· =f 0 then 3p E P: p Et· nt' .. Since

both t and t' are enabled, they can fire concurrently, placing two tokens in p and the net

is unsafe.

Now we proceed to show that t and t' must belong to distinct simple cycles of some

MG-component Ni. t and t' cannot both belong to any simple cycle n, for if they do then

n must contain at least two tokens, each from an input place of t and t'; under the one­

token SM restriction, this leads to unsafe behavior. Hence according to Theorem 3.16, they

must belong to distinct simpe cycles of either a MG-component Ni or a SM-component

N2 • However, if N2 existed, it would contain at least two tokens, one from each input place

of t and t'. This causes unsafe behavior. Therefore they must belong to distinct cycles of

Ni and hence by definition, { t, t'} E co.

Part (c). From parts (a) and (b), it follows immediately that

{t, t'} Eco Ude ¢? 3M E [Mo): M[t) A M(t'),

which means that if two transitions are either concurrent or in direct conflict, then there is a

marking in which both are enabled. To prove (c), note that (/!AM E [Mo) : M[t) A M(t')) ¢?

{ t, t'} ¢ co U de ¢? { t, t'} E tr - co U de = Ii U (cf - de) = Ii U idc.

3.3. TEMPORAL RELATIONS: ORDERING, CONCURRENCY AND CONFLICT 67

Part (d). From (c), we have {JM: M[t) A M[t') ::::} {t,t'} E Ii U idc. We claim that

(J3u E T* : t, t' E a) ::::} { t, t'} E cf. The result follows immediately.

To verify the claim, note that if { t, t'} E Ii U co then there exists a MG-component N1

containing both t and t'. According to Theorem 3.4, Vu E T; I (3M E [Mo) : M[u)M) : a

must contain all transitions in T1 • Since t, t' E Ti, it follows that t, t' E u. Also, since

T1 ~ T, we have {t, t'} E Ii U co ::::} 3u ET*: t, t' Eu. Or equivalently,

(J3u ET*: t, t' Ea) ::::} {t, t'} ¢Ii U co # {t, t'} E cf.

I

Chapter 4

Signal Transition Graphs

In this chapter, we iniroduce the Signal Transition Graph model. STGs correspond to

the class of LSFC nets with interpreted transitions: transitions in nets are interpreted as

tran,,itiom of signal,, in logic circuits. Most results for LSFC nets developed in the last

chapter apply directly to STGs. Note that we only deal with LSFC nets which satisfy the

one-token SM restriction.

We start out in Section 1 by giving the syntax and semantics of STGs. Briefly, a

STG is a formal behavioral specification of a. control circuit from which a set of transition

sequences can be gene1ated. Such a set has an equivalent finite automata. representation

called a. state graph. From state graphs, one can determine the network function, which

is a collection of logic functions describi~ the behavior of signals in the circuit. Section 2

discusses state asaignment, the procedure for obtaining state graphs from STGs. Section

3 touches upon the area of composition of control modules.

4.1 Syntax and S~mantics

Signal Transition Gra.Jiis a.re a formal behavioral specification of control circuits whose

operation may involve ordering, concurrency and conflicts. A digital circuit (or network)

is an interconnection of logic elements, each having one output terminal and a number of

input terminals. Every input terminal is connected to either an input terminal of the entire

network, or to an output terminal of another logic element in the network. The set of all

68

4.1. SYNTAX AND SEMANTICS 69

terminals of a network is called the set of signals. Let J denote such a set of signals, then

J can be partitioned into the set of input signals J1, the set of output signals J 0 and the

set of internal signals JN. It is sometimes convenient to use the set of non-input signals,

J NI = JN U Jo =j:. 0 to reflect the intention that changes in input signals are exogenous

while changes in non-input signals are caused by the network.

The set of signal transitions is defined as T = J x { +, - } . For every signal j E J, there

is a pair of signal transitions {j+,i-} associated with it. We also adopt the notation that

if tis used to denote i+ then t denotes j_ and vice versa. When the direction of transition

is not important, j. is used to denote a transition of signal j (either i+ or j_). The set of

signal transitions Tis likewise partitioned into T1 = h x { +, -}, TN = JN x { +, - } and

To= Jo x { +, -}. In order to distinguish between input and non-input signal transitions

in a graphical representation, transitions in T1 are underlined.

4.1.1 Signal Transition Graphs

A Signal Transition Graph (STG) is a Petri net in which transitions are identified with

signal transitions in a network whose set of signals is J.

Definition 4.1 {Signal Transition Graphs) Let J be a set of signals of a network. A

Signal Transition Graph defined on J is a Petri net :EJ = (P, T, F, M0) with T = Jx{ +, -}.

Furthermore, a Signal Transition Graph is said to be well-formed if (i) it is a LSFC

net satisfying the one-token SM restriction and (ii) if a place p has more than one output

transition, then all output transitions of p must be transitions of input signals, i.e. Vp E

p : IP. I > 1 => p: ~ T1.

In the sequel, well-formed STGs will be referred to simply as STGs unless stated otherwise.

Obviously, in a STG, ITI = 2k where k is a positive interger. The restriction Vp E P :
IP · I > 1 => p- ~ T1 indicates that all signal transitions which are in direct conflict

must be input ones, i.e. free choices are input choices. This allows STGs to specify the

behavior of circuits whose operation involves sequentiality, deterministic concurrency and

nondeterministic input choices.1

1 In Chapter 8, we will extend the syntax of STG to allow the specification of internal choices. In these
cases, one element from a set of output transitions of a place is chosen to be fired depending on the holding

70 CHAPTER 4. SIGNAL TRANSITION GRAPHS

As mentioned in Chapter 2, the graphical representation of STGs will differ from Petri

nets in two accounts: (i) A transition in STGs is not depicted as a bar but by its name

instead. (ii) Any place p in STGs with one input and one output transition, e.g. ·p = {ti}

and p· = { t2}, will not be drawn. An arc going directly from ti to t2 will be drawn

instead: ti ---+ t2 • Such an arc is an instance of the caw al relation R ~ T x T, such that

tiRt2 # 3p E P: (ti,p) E F /\ (p, t2) E F.

4.1.2 State Graphs

The semantics of STGs are given in terms of sets of transition sequences. STGs define

sets of transition sequences which have equivalent FA representations called state graphs.

These can be obtained by applying the results for LSFC nets described in Chapter 3.

For a FA~ generated from a LSFC net :E, there is a corresponding state graph, denoted

by ~ J generated from the STG :Ei, where :Ei is an interpretation of the LSFC net :E. State

graphs are defined as follows.

Definition 4.2 (State Graphs) Let J = {ji,j2 , ••• ,jn} be a set of signals of a circuit.

A state graph defined on J is given by ~ J = (S, T, h, s 0), 2 where

• S is the set of states, defined as S = {s Is: J---+ {O, 1} }; every s ES is a function

s : J ---+ {O, 1} and (s(ji), s(h), ... , s(jn)} is a binary vector of signal values in state

s.

• s0 E S is the initial state of the circuit.

• T = J x { +, - } is the set of signal tran8itions.

• h : S x T ---+ S is a partial function called the transition function, having the property

that Vs, s' E S, Vt E T such that h(s, t) = s' :

if t = i+ then s(j) = 0 and s'(j) = 1
if t = j_ then s(j) = 1 and s'(j) = 0.

States s and s' are called adjacent; s' is a next-state of s.

of a certain condition in the circuit; the choices are no longer nondeterministic.
2Here, instead of describing a state graph as a 5-tuple (S, T,6,so, q), we adopt the convention to drop q

(the set of final states) if q ={so}.

4.1. SYNTAX AND SEMANTICS 71

As noted in Chapter 2, in the construction of an equivalent FA from a set of sequences,

a state is an abstract concept, defined as an equivalence class of sequences with the same

postfixes; there is no apparent relationship between a state and the transitions enabled in

it. However, for state graphs obtained from a STG, not only do we require that it be a

FA equivalent to the set of sequences defined by a STG, but we also require that states

be interpreted as binary vectora repreaenting the 11alues of signals in a circuit. There is a

direct connection between states and transitions: states are vectors of values of a set of

signals, whereas transitions are transitions of the same set of signals.

In the above definition, the transition function is extended to 8 : S x T* --+ S such

that fort ET and u ET*, 8(s, tu)= 8(s', u) wheres'= 8(s, t). Also, Vs E S, 8(s, e) = s.

By considering states as equivalent to markings, we can adopt the notations in Chapter 2:

s' = 8(s, t) # s[t)s'; s' = 8(s,u) # s[u)s'; [s) denotes the set of states reachable from

s, etc. Graphically, s[t)s' is represented as ·__.!_,.~; s[u)s' as :--!.+~. A transition t is said

to be enabled in state s if s[t); an enabled transition may occur or fire.

We denote the state graph of a STG EJ as ()J. The notions of ordering, concurrency and

conflict in STGs and their correspondence in state graphs are exactly the same as those for

LSFC nets. The following result is the restatement of Theorem 2.2 with markings replaced

by atatea.

Theorem 4.3 Let EJ = {P, T, F, M0) be a STG and () J = {S, T, 8, S0 } iu atate graph.

Vt,t' ET:

(a) {t, t'} Ede
(b) {t, t'} Eco
(c) {t, t'} E Ii U idc
(d) {t, t'} E idc

3s E [so) : s[t) /\ s[t') /\ -.s[tt'} /\ -.s[t't}
3s E [so) : s[tt'} /\ s[t't}
;Es E [s0) : s[t) /\ s[t')
<= (;Es E [so): s[t) /\ s[t')) /\(;Eu ET*: t, t' Eu)

where u is a firing aequence correaponding to a aimple cycle in <)(EJ).

We will return to more discussion of properties of state graphs in the next chapter. In order

to give a complete picture of our direction, we describe next the network function, being

a set of Boolean equations derived from the state graph. The network function describes

the states of every signal in a digital network.

72 CHAPTER 4. SIGNAL TRANSITION GRAPHS

4.1.3 Network functions: Implementations of state graphs.

Similar to Muller [36], we define a digital network as an interconnection of a finite number

of logic elements of unbounded delays and containing no clocks, i.e. operation is asyn­

chronous. However, we extend his autonomous networks (those with no inputs) to cover

cases with inputs as well as internal signals.

A logic element implements one signal of the control circuit. It is a logic circuit with

one output and one or more inputs and is allowed to have memory, i.e. it may have internal

feedback wires. The delay model used is one in which a logic gate can be modeled as an

infinitely fast combinational circuit followed by a delay (of unbounded value) at the output,

and wires with no delays. In practice, these assumptions hold; long wires which are highly

capacitive can be modeled explicitly as delay circuits if necessary.

Definition 4.4 (Network Functions) Let ~J = (S,T,8,s0) be a state graph defined on

J, a set of signals of a network. Then f : S x J-+ {O, 1} is a partial function called the

network function, defined as follows:

(a) For j E J, s E S, J(s,j) is called the implied value of signal j in states, defined

such that:
f (') _ { s'(j) if 3s' E S : s[j.)s'

S,J - s(j) otherwise.

(b) The set of all implied values for signal j, f(j) = {f(s,j) I s E [s0}} is the logic

function of signal j.

(c) Hence the network function can be considered as a collection of logic functions of all

signals in J: f = {/(j) I j E J}.

Remarks on Definition 4.4.

1. The implied value of a signal j in state s is given by (a). If there are states s~, s~

such that s[t1 }s~ and s[t2}s~ for some ti, t2 ET, then there a.re two cases:

• If either ti or t2 is a transition of j, for instance ti = j. and t2 '# j., then s~(j) '#
s~(j) = s(j). In which case we always choose s~(j) as the value for f(s,j), which is

the value resulting from the transition of signal j itself.

4.1. SYNTAX AND SEMANTICS 73

• If neither of tll t 2 is a transition of signal j then sHi) = s~(j) = s(j) and the implied

value of j in states is the same: f(s,j) = s(j).

2. Even though network functions are defined for all signals, only those for non-input

signals are necessary for the logic implementation of the networks. This is because only

non-input transitions in TNI are generated by logic elements in the networks. If 6(s, t)

is defined for some state s E S and signal transition t E TN1 then the occurrence oft is

caused by the logic elements whenever the network gets into states. Furthermore, since

the firing of t depends on the delays of the logic elements, it cannot be controlled externally.

However, if t E T1 then whenever the network is in states, it waits for the occurrence of

input transition t which is caused by the environment. The means for the environment

to detect that the network is in state s is through a communication protocol between

the environment and the network. The logic functions for input signals only indicate how

external transitions from the environment should interact with the logic network according

to the specification.

3. The logic function f(j) of signal j is a Boolean function in IJI variables describing

the logic element (whose output is) j. Logic element j may have fewer inputs than jJj.
This fact does not invalidate our model, for we simply choose f(j) as a function that does

not explicitly depend upon all of its variables. This can be accomplished by decomposing

the state graph to minimize the interdependence between variables which appear as out­

put and input of a logic element. A state graphs obtained from a well-formed STG can

be decomposed in a straightforward manner using the causal relation R defined on the

STG. This technique yields very efficient implementation of networks and will be dicussed

subsequently in Chapter 6.

4.1.4 An Example

We have presented the syntax of STG, its semantics in terms of state graphs and the

network function which describes the logic implementation of the circuit. In this example,

we show a STG specification of a C-element, its state graph and network function. Fig. 4.la

shows a circuit with inputs a, b and output c. Thus, its set of signals is J = {a, b, c},

and Ji = {a, b} and J 0 = { c}. The behavior of this circuit is described by the STG in

Fig. 4.1 b. Since its corresponding uninterpreted net is a marked graph, no places are drawn

74 CHAPTER 4. ·SIGNAL TRANSITION GRAPHS

a» c c

b (a)

(d)

010

ab

'ii~~
a+ + T-map

-v
c+

A
a- b-

~

(c)
c ab

''f1Ti1°1 0 0 0 1 0
1 0 1 1 1 101

(b) K-map

Figure 4.1: (a) AC-element, (b) A STG specification and (c) its state graph. (c) The
transition map and K-map.

explicitly; they are uniquely determined by their input and output transitions. The arcs

constitute the causal relation R. In the initial marking M 0 , places (c_, a+) and (c_, b+)
are marked. The set of transition sequences specified by this STG is given by the regular

expression (a+c+a_c_ llb+c+b_c_)*, which can be simplified to ((a+llb+)c+(a-llb-)c_)*. The

corresponding state graph is given in Fig. 4.lc. The initial state s0 is such that s0 [a+) and

so[b+)·

In a state graph, the logic equation for every non-input signal j is determined from the

set of implied values of j in all states: { /(s, j) I s E [so) } . This can be done conveniently

by transferring the state graph to a type of Kama.ugh maps (K-map) called tran..ition

map (T-map), such that every state of the state graph has a corresponding square in the

K-map, and state transitions are indicated by arcs between squares. Then for each signal j

to be determined, the T-map is converted to a K-ma.p for j as follows: every square in the

T-map (corresponding to a state s) is entered with the implied value of signal j in state s,
f(s, j). The logic equation for j can be readily determined from the resulting K-map. For

example, the logic equation for signal c is determined from the state graph in Fig. 4.lc by

transfering it to a T-map and K-map (Fig 4.ld) from which, c = a.b + c(a + b). This is

precisely the logic function of a C-element.

Note the intimate relationship between a state graph and its logic implementation:

states in a state graphs are simply collections of values of signals in a circuit, and transitions

4.2. OBTAINING STATE GRAPHS FROM STGS 75

simply transitions of signals in the same circuit. In fact, one can construct a state graph

for any circuit. However, we are only interested in circuits whose state graphs satisfy the

properties of liveness and persistency. In the next chapter we will study these properties

of state graphs and determine their characterizations in STGs.

4.2 Obtaining state graphs from STGs

Let EJ = {P, T, F, M0) be a STG. Then E denotes its uninterpreted net, also represented

by {P, T, F, Mo) but T is given no particular interpretation. Since E is a LSFC net its

equivalent FA, denoted by~' can be determined using the construction algorithm discussed

in Chapter 3. The state graph of EJ, denoted by ~ J, can then be obtained by assigning

binary values to states of ~.

Let ~ = (S', T, 8', s~) denote the above equivalent FA. Then the state graph ~J -

{S, T, 8, s0) can be obtained by interpreting states in S' as binary vectors representing

values of signals in J. This interpretation is the state assignment process, which can be

described by a partial function a: S'-+ S, called the atate.auignment function (Fig. 4.2).

This function is defined such that

• Every atate s' in~ maps to a binary atate s in ~J: Vs' E [s~) ~ S' 3s ES: a(s') = s.

• Every transition 8'(s~, t) = s~ in~ mapa to 8(s1 , t) = 8 2 in ~J, where 8 1 = a(sD,

82 = a(8~).

A state assignment such that 8 satisfies the condition stated in Definition 4.2 is called

consiatent. The essential idea is that in a state graph ~J, if 8[t)81 then according to the

physical behavior of digital circuits: if t = i+ then 8(j) = 0 and 81(j) = 1; if t = j_ then

s(j) = 1 and s'(j) = 0. The triple {s, t, s') is said to be consiatent. Formally, a consistent

state assignment for a state graph can be defined as follows.

Definition 4.5 (Consistent state assignment) Let ~ = (S', T, 8', 8~) be an uninter·

preted FA and ~J = (S, T,8,s0) be a state graph obtained from~. Then ~J has a conaistent

state assignment iff there exiats a atate assignment function a : S' -+ S satiafying

VteT,Vs~,s;es': whenever sat)s; then (a(sD,t,a(s;)) iscon8iatent.

76 CHAPTER 4. SIGNAL TRANSITION GRAPHS

.Equivalcn.t FA State fr&pl&

Figure 4.2: The state assignment function a maps a state in the FA to a binary state in
the state graph.

Since the transition function his defined such that if h(s1 , t) = s 2 then s1 and s2 are adjacent

states, it immediately follows that in a state graph with a consistent assignment, every

cycle (a path starting from some state and ending at itself) must contain equal numbers

of positive and negative instances of any signal transition and they must alternate. Hence,

we have the following

Lemma 4.6 Let ~J = (S, T, h, s0) be a state graph. Then ~J has a consistent state as­

signment iff for every state s E S and for every firing sequence u E T* such that s[u)s:

Vt T { #(uf t) = #(ufl) = k and
E either u f { t, l} = (tl)k or u f { t, l} = (tt)k,

for some integer k > 0.

In case a transition t does not appear in a sequence u then k = 0 and the above condition

holds vacuously. It turns out that there is a direct way to ensure consistent state assignment

from STGs. Below, we state the conditions on a STG in order for its state graph to have

a consistent state assignment. First we consider the subclass of STGs corresponding to

live-safe marked graphs.

Lemma 4. 7 Let EJ = (P, T, F, M0) be a STG whose uninterpreted net i8 a live-safe

marked graph. Then it8 8tate graph ~ J ha8 a consistent state assignment iff every pair

of tran8itions t, t E T i8 ordered: { t, l} E Ii.

4.2. OBTAINING STATE GRAPHS FROM STGS 77

Fig. 4.3a shows a STG with consistent state assignment; Fig. 4.3b is a STG with no

consistent state assignment because there are transitions b+, b_ which are concurrent; its

state graph contains a states with s[b+) and s[b_) and hence no value of s(b) can be chosen

such that both b+ and b_ are consistent for s.

Proof. (::::}) 3t E T : { t, t} F/. Ii ::::} cp J does not have a consistent assignment: Since EJ is

a marked graph, { t, t} F/. Ii ::::} { t, t} E co. This implies that 3s E [so) : s[t)s' /\ s[t}s", for

some s', s" E S. Obviously, if {s, t, s') is consistent then {s, l, s") cannot be, and vice versa.

Hence cp J cannot have a consistent state assignment.

(<=) Vt E T : { t, t} E Ii ::::} cp J has a consistent assignment: According to Theorem 3.8,

the set of firing sequences of EJ can be obtained by veawing those of its SM-components.

Since EJ is a marked graph, these SM-components are simple cycles. Since t, tare ordered,

they must belong to some simple cycle n in Nr:,. Hence the firing sequence defined by n
must have the following form (given in terms of regular expressions): either (... t . .. t . ..)*
or (... t ... t ...)*, depending on which place in n contains a token in the initial marking.

Choose any firing sequence u ET* of EJ such that s1 [u)s1 for some s1 E [s0). Since EJ
is a marked graph, Theorem 3.4 shows that u must contain an instance of every transition

in T. Furthermore, as discussed in the above paragraph, for every pair of transitions t, t,
either uf{t,t} = tt or uf{t,t} = tt. Hence according to Lemma 4.7, cpJ has a consistent

state assignment. I

The above result can be generalized to the class of STGs corresponding to LSFC nets.

Theorem 4.8 Let EJ be a STG and cp J i~ state graph. Then cp J has a consistent state

assignment iff every pair of transitions t, tis ordered in EJ.

Fig. 4.3c shows another STG with consistent state assignment which specifies input

choices; its uninterpreted net is a LSFC net. Note the requirement that every pair of

transitions { t, t} be ordered in every MG-component containing them. Due to this rather

stringent requirement for consistent state assignment, the expressive power of STGs for

specifying input choices is limited.

Proof. Let EJ = (P, T, F, M0). According to Theorem 3.6, there exists for each MG­

component Ni = (Pi, Ti, Fi) a marking Mi E [Mo) at which Ni operates as a live-safe

78

(a)

c-
A
a+ b+ v

b-

a-
011

, CHAPTER 4. SIGNAL TRANSITION GRAPHS

(b)

:=er
A-

A
b- b+
v

c+
:+
l

c-

c+
a-

(c)

a--.fl-. c
b~d

11-
+ !-c-x
a+ b+
+ c+ l+

Figure 4.3: (a) A STG with consistent state assignment. (b) A STG without consistent
state assignment because b+ a.nd b_ are concurrent. (c) Another STG specifying input
choices which has a consistent state assignment.

4.3. COMPOSITION 79

marked graph. Hence, the net EJ can operate deterministically in one MG-component N;

and switches over to another, N; say, at some appropriate marking M. Marking M must

mark some place p which is a free-choice place (i.e. IP· I > 1) such that some transitions

t; ET;, t; ET; must be output transitions of p.

Since every MG-component N; can be operated continuously from some marking M;,

the set of firing sequences generated by (N;, (M; r P;)) must have an equivalent state graph,

which in turn must also be a part of the state graph of EJ. Therefore, for the state graph

of EJ to have a consistent assignment, it is required that the state graph ~; of every

MG-component (N;, (M;rP;)) have a consistent assignment. Using the result from Lemma

4. 7 above, we conclude that every pair of signal transitions t, t must be ordered in every

MG-component N; to which they belong. It then follows from the definition of ordering

that t, tare ordered. I

4.3 Composition

As stated earlier, the objective of this thesis is to develop techniques for direct synthesis

of control circuits from STG specifications. Within this scope, the study of composition

of control modules will be touched upon lightly. A great deal of work in different aspects

of composition of control modules has been carried out; most relevant to our application

is one based on the formalism of trace theory [25,53]. Since we have established the

correspondence between net syntax and its underlying trace (firing sequence) semantics,

adapting these results to our framework is straightforward. Even though composition is

of fundamental importance for validating the correctness of systems constructed from an

interconnection of control modules it is outside the scope of our immediate concern.

We advocate the use of STGs for direct synthesis of control modules in a system

organization with di&tribu.ted control &tru.ctu.re&. In these systems, the control section is

partitioned into a number of control modules which communicate with one another using

a communication discipline such as the reque&t/acknowledge protocol. Once the control

modules have been identified clearly, their behavior is expressed in STG notations. Every

module has its own STG specification which defines its internal behavior with respect to

the interface with other modules. The interface between a module and its external world

constitutes a boundary between a module and its environment.

80 CHAPTER 4. SIGNAL TRANSITION GRAPHS

Interface behavior. Fig. 4.4a shows a simple case of module/environment interface.

The module A shown consists of one input link {Iri Ia} and one output link {Or, Oa},

where a link is a. pair of request/acknowledge signals. We use the convention that for a

link L, { Lri La} denotes its request/acknowledge signal pair. The behavior of module A

at the interface is specified by {Ia+---. L-,Ia----. L+} and {Or+---. (k_,Or----. !k+} at

the input link I and output link 0, respectively; the arrows ---. are members of the cause.I

relation R defined earlier. In general, we have the following rule for specifying the interface

for STGs: every transition t of an input signal can be caused only by a transition of an

output signal, u say, and furthermore, there can be exactly one u causing t. More formally,

in a STG it is required that for every t E TI, there exiata exactly one u such that u ---. t

and u E To. The reason for allowing only one transition to cause an input transition is

that we only attempt to simulate the interface behavior by such a temporal constraint;

input transitions are actually caused by the environment.

Composition. Given two control modules which are connected together at some link,

one can determine the behavior of the composite system by composing the individual

behavior of each module. The only type of composition required here is the concurrent

composition [25]. Informally, the concurrent composition of two STGs involves merging

them together by "fusing" transitions in two nets; these fused transitions become internal

transitions of the composite net.

An example to illustrate this composition is given in Figures 4.4b and c. Fig.4.4b shows

two modules A and B and parts of their STGs which specify the interface behavior. The

composition of these STGs produces a new STG (Fig. 4.4c) which no longer corresponds

to a free-choice net: transitions r 1+ and r2+ are no longer enabled in the same marking.

This illustrates the following important concept: When two input transitions in the STG

specification of a module are in direct conflict (and therefore represent a nondeterminutic

choice}, they may actually represent external choices which are totally determinutic in the

composite net consisting of the module and ita environment. This is exactly the reason

why we restrict free-choices in a net to transitions of input signals.

In the following definition of concurrent composition of two STGs, T1i, Toi and TNi

denote the subsets of input, output and internal transitions, respectively, of the set of

transitions Ti.

4.3. COMPOSITION 81

:l 5:B
IJ I. ~ =1

:r:•
11 •

Ir Or
(b) (c)

Ia Oa a+ a+ a+

1 _6_
(a) A r1+ ~

:i+ 11+ STG of B

' l
ri+ re+

STG of A STG of AllB

Figure 4.4: (a) A control module with an input link and an output link. (b) Two control
modules with connected communation links and (c) their composition.

Definition 4.9 Let EJ1 = (P1 , Ti, Fi, MJ) and EJ2 = (P2 , T2 , F2 , MJ) be STG specifica­

tions of two control modules, with the restriction that

The concurrent composition of EJ1 and EJ2 is denoted by EJ = EJ1 llEJ2. Let EJ -

(P, T, F, M0), then it is defined as follows:

• T=Jx{+,-}.

Using Theorem 3.8, the set of transition sequences of the composite net is simply the

weave of the individual sets, provided the latter are of STGs corresponding live-safe marked

graphs. Equivalently, the finite automaton of the composite net is the weave of those of

the individual nets.

Theorem 4.10 Let EJ1 , EJ2 be STGs whose uninterpreted nets are live-safe marked

82 CHAPTER 4. SIGNAL TRANSITION GRAPHS

graphs, and ~J1 , ~J2 be their state graphs. Let EJ = EJ1 llEJ2 and ~J denote its state

graph. Then ~J = ~Jill~J2, the weave of two state machines given by Def. 9.11.

Note that this result does not generalize to composition of STGs whose uninterpreted nets

are LSFC nets because, as we have illustrated through Fig. 4.4, the composition of two

LSFC nets results in a net which may no longer be free-choice. Also, the above theorem

does not guarantee that the composite net EJ is live-safe even if EJ1 and EJ2 are live-safe.

It may be the case that when two nets are composed, a new simple cycle which contains no

token is created in the composite net, leading to a deadlock. However, the theorem does

provide a method for verifying whether the composite net is live: EJ is live if the weave of

none of the firing sequences results in an empty set.

Chapter 5

Properties of State Graphs

In this chapter, we further explore two important properties of state graphs called live­

ness and persistency. They are important because they correspond to the properties of

deadlock-free and hazard-free in the circuit implementations of state graphs. Since we have

established the equivalence between STGs and a class of state graphs, we can characterize

these properties in terms of STGs; these will appear as ayntactic conditions on STGs.
I

Liveness will be considered in Section 1 as it is the simpler to derive of the two properties.

Section 2 discusses persistency and its corresponding characterization in STGs. Section 3

describes a problem related to state asssignment and a remedy for this problem.

5.1 Liveness

As discussed in Chapter 2, we will be using a rather restrictive notion of liveness for state

graphs. Simply a state graph is live iff it is strongly connected, and each transition is

enabled in some state of the state graph. This implies that every state reachable from the

initial state of the system is reproducible, i.e. the set of states form an equivalent class in

which every two states are mutually reachable. This notion of liveness implies that every

transition in the circuit can be enabled infinitely often because it is enabled in at least one

state which can be reached from any other state of the circuit.

Definition 5.1 (Liveness of state graphs) A state graph defined on a set of aignal J,

~ J = (S, T, 8, so), is live iif it is strongly connected and for each t E T, there exists s E [so)

83

84 CHAPTER 5. PROPERTIES OF STATE GRAPHS

such that s[t).

In state graphs, states and transitions are intimately related, as they represent binary

valu.es and transitions of the same set of signals of a control circuit, respectively. In Section

4.2, we discussed a property of state graphs which requires that every triple (s, t, s'), where

s[t)s', be consistent. A live state graph must be strongly connected and must have a

consistent state assignment.

Based on this definition, the condition on a STG such that its state graph is live can

be derived easily. A STG satisfying this liveness condition will simply be called live. Let

EJ denote a STG and E its uninterpreted net. Then the state graph ~ J of EJ is obtained

by performing state assignment on the finite automaton~ derived from the net E. For

the state graph ~ J to be live, it must be strongly connected and have a consistent state

assignment. ~J is strongly connected iff E is a live-safe net; furthermore, because the

largest class of nets considered is FC nets, E has to be a LSFC net.

The preceding argument simply states that a STG is live iff it is well-formed and its

state graph has a consistent state assignment. This establishes the following theorem

Theorem 5.2 (Liveness condition for STGs) Let EJ be a STG and E its uninter­

preted net. Then EJ is live iff

• E is a live-safe free-choice net, and

• In EJ, every pair of transitions t, tis ordered. {Th.is is precisely the condition for the

state graph of 'EJ to have a consistent state assignment, aa stated in Theorem 4.8.)

5 .2 Persistency

Persistency one of the most important properties of state graphs, as it is the essential

property of speed-independent circuits. In Section 2.3, we have briefly discussed this

property and its equivalent characterization in STGs. In this section, we will go into detail

of how this equivalence is established.

5.2. PERSISTENCY 85

First, we define the concepts of enabling and di8abling between transitions in unin­

terpreted finite automata. These general concepts apply to all interpreted FA, including

reachability graphs and state graphs. Let (S, T, 6, s0) be a FA, where S denotes a set

of states and T a set of transitions, both with no particular interpretation. Also let

TE(s) = { t I s[t)} denote the set of transitions enabled in a states E S.

• In states, t enable.5 t' (denoted as tEt') iff3s' ES: s[t)s'[t') /\. t' ¢ TE(s) /\. t ¢ TE(s')

(Fig. 5.la).

• In state s, t di8able.5 t' (denoted as tDt') iff 3s' E S : s[t}s' /\. s[t'} /\. t' ¢ TE(s')

(Fig. 5.lb).

Simply, tEt' in s means that the occurrence of t in state s brings the system to another

state s' in which t' is enabled; tDt' in s means that the occurrence of t in state s-in which

t' is also enabled-brings the system to another state s' in which t' is no longer enabled.

We also use tEt' and tDt' to denote •(tEt') and •(tDt'), respectively. Using this notation,

the situation in Fig. 5.lb can be denoted as tDt' /\. t'Dt.

Generally, in a FA, some transition may have several appearances (instances). Further­

more there are a variety of ways two transitions may interact with each other. For example,

there may be instances of transitions t and t' such that tEt' in some state s, and other

instances such that tDt' in some other states'. However, for FA generated from LSFC

nets and STGs, we have established their equivalence in Theorem 3.17, which indicates

that any situation in a FA has a corresponding characterization in a net. For example, if

tRt' (where R is the causal relation defined in Chapters 2 and 4) in a LSFC net then in

its FA, an equivalent instance of tEt' must exist, and further there can be no instance of

tDt'. The above result is formally stated as follows. Let E = (P, T, F, Mo} be a LSFC net

and ~ = (S, T, 6, s0) its FA. Then for every t, t' E T : tRt' in E <=> (3s E S : tEt' in ~).

5.2.1 Definition of Persistency

The property of persistency is defined differently for uninterpreted and interpreted FA-the

latter being state graphs. The reason is that in state graphs, transitions are divided into

those of input and non-input signals, whereas no such distinction exists for uninterpreted

FA.

86 CHAPTER 5. PROPERTIES OF STATE GRAPHS

s•

B

a'

(a) tEt' ins (b) tDt' ins

Figure 5.1: (a) An instance oft enables t' ins. (b) An instance oft disables t' ins. Dotted
arcs are used to indicate transitions which cannot occur in certain states.

For uninterpreted FA, a transition is said to be persistent if none of its instances in a

finite automaton is ever disabled by any other transition; otherwise, it is non-persistent.

For example, transition t in Fig. 5.1 b is persistent, while t' is non-persistent.

For state graphs, the above definition applies only to transitions of non-input signals;

transitions of input signals are always assumed to be persistent. This assumption is based

on a. property of state graphs ca.I.led the external persistency property, the justification for

which will be given shortly.

Definition 5.3 (Persistency in State Graphs) In a state graph ~J = (S,T,8,s0):

• Every t E T1 is persistent.

• t E TN1 is persistent iff Vs, s' E S, Vt' E T : s[t) /\ s[t'}s' => s'[t}; otherwise, t is

non-persistent.

• ~ J is persistent iff every transition in T is persistent.

An immediate implication of the external persistency property is that it permits the speci­

fication of input choices in a state graph. Fig. 5.2b shows an example with an input choice

between transitions a+ and b+, the corresponding circuit is shown in Fig. 5.2a.

J ustiftcation for the External Persistency Property. This intuitive property indeed

has a logical justification which is based on the relationship between states and transitions

in a state graph. In Fig. 5.2b, states are vectors containing the binary values of signals in

(a, b, c, d, e, /}. From state s1 = 000000, the firing of transition c+ brings the circuit to state

5.2. PERSISTENCY 87

c

a

{ (a)

tl+

! •+·< ::: :: c+
'1

OIHJOOO

e+.

(b) i (d)

000000 .•• c+. a+.,. cl+
/J, '~ 1 c+

000
000000 ••• c+. • •• b+11 • e+11 • ... ,.

1
,.

I (c) (e)

Figure 5.2: (a) A control circuit with an input choice involving signal a, band (b) part of its
state graph. (c) Part of the state graph of the circuit, taken together with its environment.
Contraction of the state graph in (b) involves: (d) removing unwanted transitions a+, b+, f +
and (e) contract the state graph.

88 CHAPTER 5. PROPERTIES OF STATE GRAPHS

s2 = 001000, in which both a+ and b+ are enabled. Since a and b are external signal, it can

be assumed that the environment has additional knowledge to deterministically choose

only one of their transitions to fire. This assumption is justifiable as the environment

must have enough information to recognize that a+ and b+ are not in really enabled in

the same state, even though this is how it appears to the circuit. That is, if the circuit

and the environment are taken together as a system, then additional signals must exist

in the environment such that states S1 and S2 can be "split" into { si, sr} and { S~, sn, as

shown in Fig. 5.2c. Thus, in the more complete system consisting of the original one and

its environment, a+ and b+ are in fact not enabled in the same state as it appeared in the

original one.

This fundamental relationship between states and transitions in a state graph is also

the basis for a method of decomposition called contraction. It rests on the same principle

which relates states and transitions, but instead of considering a system together with its

environment, a subcomponent of the system is isolated and its behavior extracted from that

of the original state graph. For example, if one is interested in the component consisting

only of signals { c, d, e} of the circuit in Fig. 5.2a, then a state graph describing its behavior

can be derived from in the state graph in Fig. 5.2b as follows. Since other signals {a, b, f}
do not belong to this subcomponent, their transitions can be removed from the state graph;

this is done by replacing them with E (the silent transition) as indicated in Fig. 5.2d. Now

each state in the resulting state graph is reduced to a vector of (c, d, e). The result is that

states connected by E-tra.nsitions will have identical binary representations, because these

E a.re transitions of signals which do not belong to this subcomponent. Therefore, they can

be collapsed together into one state, as indicated in Fig. 5.2e. In this state graph of the

subcomponent, d+ and e+ will appear as if they represent an external choice, because they

are enabled in the same state. The external persistency property dictates that they are

persistent, as it is indeed the case. The subject of decomposition using contraction is an

important aspect of our synthesis approach. It is discussed in further detail in Chapter 6.

In summary, the external persistency property has two important consequences: (i)

transitions of input signals to a control circuit module can always be assumed to be per­

sistent, and (ii) input signals to a logic element within a. module can be assumed likewise.

In the design of self-timed control circuit, the notion of persistency is fundamental as it

is the essential property of speed-independent circuits. Chapter 4 shows that from a state

5.2. PERSISTENCY 89

graph, one can define a network function which give.s a logic implementation of a digital

circuit. This leads to the definition of &peed-independence.

Definition 5.4 {Speed-independence) Let ~ J = (S, T, 6, s0 } be a Jtate graph defined

over a aet of Jignala J, and f : S x J --+ {O, 1} the network function derived from ~J.

Then the logic circuit which implement& f iJ speed-independent iff every tranJition t E T

iJ peraiatent.

Thus one important consideration in specifying behaviors of speed-independent circuits is

to guarantee that all transitions in a STG specification are persistent.

5.2.2 Characterization of Persistency in STGs

We have defined the property of persistency in state graphs. Below we give its char­

acterization in STGs. First we pre.sent this syntactic characterization and then give its

justification.

Non-persistency in STGs

Fig. 5.3a illustrate.s a case with u being non-persistent in a state s; it is disabled by a

transition t. Using previous notations, this is written as: tDu A uDt. The equivalent

characterization in STG is given in Fig. 5.3b, in which t, u are concurrent and t cause.s u.1

As explained in Chapter 2, this non-persistency is the re.sult of the interaction of concurrent

signal transitions. Intuitively, the course of action tRu can be implemented by a logic

element with input i and output j, where t = i. and u = j •. Concurrency between u and t

implie.s that while the logic element is reacting to transition t of signal i to cause transition

u of output j, another transition t of i may be occurring simultaneously at the input of logic

element j (Fig. 5.3c). This is commonly known as a race condition in hardware circuits

and can lead to malfunction. Thus, we have the following syntactic characterization of

1 Note the difference between this characterization of non-persistency for STGs and that for LSFC nets. In
the latter, a transition tis non-persistent only if it is an output transition of a free-choice place. Furthermore,
in a LSFC net, if tDu then uDt and vice versa, because in this case, both t and u must share the same input
place.

90 CHAPTER 5. PROPERTIES OF STATE GRAPHS

non-persistency in STGs. Recall that TN1 denotes the subset of transitions of non-input

signals.

Theorem 5.5 (Non-persistency in STGs) Let E1 = (P, T, F, Mo) be a live STG and

cl> J = (S, T, h, so) it& .5tate graph. Then for t E T and u E TN1:

(3s ES: tDu /\ uDt) # (fRu /\ {t,u} Eco).

The proof of this theorem is based on a property of state graph called input-cawing-output,

which states that i is an input signal to logic element j iff some transition of i enables or

disables some transition of j. Let J(j) denote the set of input signals to a logic element

whose output is j; I(j) is called the input .5et of j. Formally, the input-cawing-output

property states that:

i E J(j) # (i.Ej.) V (i.Dj.).

First, we discuss the proof of the above theorem, then we will give an explanation of this

property.

Proof. Let t = i. and u = j •. (<=) If there is no interaction due to the causal relationship

between transitions of signals i and j then the condition { t, u} E co implies 3s E S :

s[u)s"[t) /\ s[t)s'[u). WearguethatduetothecausalrelationfRu, thecondition{t,u} Eco

implies 3s E S : s[u)s"[t) /\ s[t)s' but not s'[u}; i.e. u cannot be enabled in s' or

equivalently, tDu.

According to a result developed earlier in this section, the condition fRu implies that

fEu. Furthermore according to the input-cawing-output property, it also implies that i is

an input to logic element j. Since the STG is live, f and t are ordered and hence t must

fire some time after f. Also, since t and u are concurrent, there must be a state s in which

both t and u are enabled. Ats, the firing oft must disable u because u are enabled by f

and the firing of t changes the state which results from the firing of f.

(=>) Since there exists a. state s in which both t and u are enabled, it follows that either

they are concurrent or in direct-conflict. If they are in direct-conflict then tDu /\ uDt.

However, since we have tDu /\ uDt, this is not the case, hence { t, u} E co. Furthermore,

according to the input-cawing-output property, tDu => i E I(j) => either tRu or fRu. But

since both t and u are enabled in states, it cannot be the case that tRu. Hence it must

be that fRu. Thus, we have { t, u} E co /\ fRu. I

5.2. PERSISTENCY 91

. /\ 1 .. Ii.: {7u irCJ; 0/ a' a• t
(c) (a) (b)

.)\ - - - - , t

CJ> • • ;r./ J

,. (d)
t

(f) (e)

Figure 5.3: Characterization of non-persistency in (a) a state graph, (b) its STG and (c)
as hazards in the hardware circuit. The persistency constra.int (shown as a bold arrow)
in (e) eliminates non-persistency from the state graph (d); harzard is eliminated from the
hardware circuit (f). Note that t = i. and u = j •.

92 CHAPTER 5. PROPERTIES OF STATE GRAPHS

The Input-causing-Output Property. This property reflects the way hardware cir­

cuits behave; it is based on the fact that two transitions can enable or disable each other if

and only if one is the input to the other .. ,For every signal j E J, let I(j) denote the set of

input signals to logic element j. In the following, we give an explanation of this property

and show that the input set I(j), as defined above, is indeed equivalent to {i E JI i.Rj.},
the set of signals whose transitions cause those of j in a STG. This equivalence is the key

to our decomposition technique introduced in Chapter 6.

The input-causing-output property states that Vi E J, Vj E JN1 (J is the set of signals):

i E J(j) # 3s ES: i.Ej. Vi.Dj. ins. Lett= i. and u = j •. The=> direction is obvious:

if transitions of i cannot enable or disable those of j then i can be eliminated from the set

of input signals to logic element j.

i E J(j) <= tEu. Again, consider Fig. 5.la, in which s[t)s'[u). Note that i is the only

signal which changes in going from s to s'. Since u is not enabled in s but it is in s', u

must have been disabled due to the transition of signal i. This is possible only if i is an

input to logic element j.

i E J(j) <= tDu. In Fig. 5.lb, there exist states s, s', s" such that s[t)s' and s[u)s", but

u ¢ TE(s'). In state s transition u is enabled, but in s', it is not. Since the only signal

which changes going from s to s' is i, u must have been disabled by the transition of signal

i. This this is only possible if signal i is an input to the logic element j. I

An implication of the above property is the equality I(j) = {i E JI i.Rj.}, which can

be derived as follows. Recall that I(j) denotes the input set of logic element j.

From the above characterization of non-persistency, (3s ES: tDu /\ uDt) # (fRu /\

{ t, u} E co), it is evident that the condition for a transition t to disable another transition

u is that t causes u. Lett= i. and u = j., then tDu # i.Dj. and tRu # i.Ej •. Hence

we have i.Ej. => i.Dj.. From the input causing output property, we have that since

i.Ej. => i.Dj.: I(j) = {i E JI i.Ej.} = {i E JI i.Rj.}.

A syntactic condition for persistency in STGs: the Persistency constraint

There are two mechanisms which give rise to non-persistency. One of which has been char­

acterized above; it arises due to the interaction of concurrent signal transitions which are

_; .. -. ~-- ' ' ; ~"

5.2. PERSISTENCY 93

parts of the sequencing specification. This violation of persiatency can always be eliminated

by intrcxlucing additional ordering constraints into the specification. Such constraints are

called peraiatency conatrainu and are discussed below. The other type of non-persistency

is a by-prcxluct of the state assignment process, and can only be eliminated by introduc­

ing additional bits to differentiate supposedly distinct states, as will be discussed in more

detail in the next section.

As illustrated in Fig. 5.3a, transition u is non-persistent as it is caused by t, but at the

same time it is concurrent with t. In order to eliminate non-persistency in this case, we can

intrcxluce an ordering constraint between u and t so that they are no longer concurrent;

this is shown in Fig. 5.3e as the bold arrow, and it is ca.lled a peraiatency conatraint. In

its state graph (Fig. 5.3d), u becomes persistent because no instance oft can disable it.

In the hardware implementation, the intrcxluction of a persistency constraint corresponds

to adding a feedback signal from the output j to the input of logic element i, as shown in

Fig. 5.3e. We can formalize this as follows.

In EJ, let R ~ T x T denote the causal relation. An R-path is defined as a simple path

tiRt2R ... Rtn., for ti E T, 1 ~ i ~ n and ti i= tn.. Then R+ denotes the tranaitive cloau.re

of R, i.e., \Ix, y ET : xR+y <=> 3R-path from x toy. Since EJ is strongly connected, R+

is not a particularly useful concept, for \Ix, y E T : xR+y /\ yR+x. Hence, we define the

following directed transitive closure Jl!> :

\Ix, y E T(x i= y) : xll!>y iff there e:r:iau an R-path from x to y which doea not contain

y.

The existence of an R-path from x to y will be depicted graphically as x --+p y.

Definition 5.6 (Persistency Constraints) Let EJ be a STG aa defined earlier. Then

\Ix E T, Vy E TN1 such that xRy: the R-path au.ch that yll!>x is called a persistency

constraint.

It can be seen that the presence of a persistency constraint creates a simple cycle which

contains x, x and y so that they are ordered. Using in conjunction with the external

persistency property, persistency constraints provide the condition on STGs such that

their state graphs a.re persistent. An STG satisfying this condition will be simply called a

peraiatent STG.

. ~ -·- ~ . '•.

94 CHAPTER 5. PROPERTIES OF STATE GRAPHS

Theorem 5. 7 Let EJ = (P, T, F, M0} be a STG. Then EJ i,, persistent iff

Vx ET, Vy E TN1 : xRy => yJr>x.

5.3 A problem with state-assignment

As mentioned earlier, non-persistency may sometimes arise in a state graph due to state

assignments. Nevertheless, we do not incorporate this latter phenomenon into Theorem 5. 7

because it is a by-product of state assignments and is by no means related to the required

sequencing specification of a STG. In Section 2.5, we have introduced this problem. In

this section, we discuss it in more detail.

We generalize the example presented in Section 2.5 to STGs corresponding to marked

graphs and LSFC nets. Let E = (P, T, F, Mo} be a LS marked graph and C, C' be cuts

in E. Then the interval between two cuts, denoted by [C, C1, is defined as the subset of

PUT which belongs to all simple paths from an element in C to one in C':

[c' C'] def { p T I h x E U x E pat Y1Y2 • • • Yni
Y1 E C,y2 EC',
Yi =/. yj, for 1 :5 i =f. j :5 n
and Yi, Y; E P U T}

An example of an interval between p-cuts Cp and c; is shown in Fig. 5.4a, where

Cp = { (x, t1}, (x, ta}} and c; = { (x, ta}, (t2 , t4}, (t2, y) }. It can be seen that [C11, c;J n T =
{ti, ti, t2, l2}.

In a STG, a complementary set B ~Tis defined such that Vx ET: x EB<=> x EB.

That is, B contains both the rising and falling transitions of a signal. In a live STG

corresponding to a marked graph, for every p-cut Cp, [C,,, Cp] forms a complementary set.

Then the state assignment problem arises if the following conditions are true in the STG,

as illustrated below.

In Fig. 5.4b, markings Mand M' correspond top-cuts CP and c;, respectively. Since

(C11 , c;J forms a complementary set, from the binary state s corresponding to M, the firing

sequence t1t2t1 t2 leads to a binary states' which is identical to s. Thus in the state graph,

5.3. A PROBLEM WITH STATE-ASSIGNMENT 95

any transition enabled in state s is also enabled ins', and vice versa. In Fig. 5.4b, if t1 is

a transition of a non-input signal, it may oscillate as long as t 3 has not occurred.

On the other hand, the interval [Cp1 , c;1J also forms a complementary set, causing the

markings M1 and M{ (corresponding to Cp1 and c;1 , respectively) to have the same binary

representation. Hence in the state graph, there is a binary state in which both t1 and t4 are

enabled. If either t1 or t4 is a transition of a non-input signal, non-persitency will result.

In the following lemma, for sets A and B, A + B denotes their symmetric difference:

A+B = (A-B) U(B-A) = AUB-AnB.

Lemma 5.8 Let EJ = (P, T, F, M0} be a STG whose uninterpreted net is a LS marked

graph. Then EJ has a state assignment problem if there exist distinct p-cuts GP, c; and

transition t E TN1 such that

(a) [Gp, c;] form3 a complementary set, and
(b) te(Cp·+C;·)/\·t~CpuC;

Proof. Let M, M' E [Mo} denote the marking under which Gp and c; are marked, re­

spectively. Consider any firing sequence u E T* such that M[u}M', then u must fire all

transitions in [Gp, c;J. Let s, s' be binary representations of M, M', respectively; s and

s' are states in '°PJ. Since [Gp, c;] forms a complementary set, if u contains transitions x

then it must also contain x. Hences= s' and thus every transition t such that ·t ~ Gp or

·t ~ c; is enabled in s. There are two cases:

• if transition t belongs to Gp· nc;. then it is enabled in both markings Mand M'.

Hence the fact that M and M' have the same binary state cannot cause any problem.

• Therefore, only in case t E (Gp · -c; ·) U (c; · -Gp·) that t is enabled in one marking

but not the other. Thus if both markings have the same binary representation, t will

be enabled in some state which it is not supposed to. If t E TNI then EJ has a state

assignment problem. I

This result generalizes directly to STGs which are LSFC nets. As discussed in Chapter

3, Theorem 3.6 state.a that in a LSFC net, every MG-component can operate indepen­

dently in its subset of live-safe markings. Hence for LSFC nets, the above conditions for

persistency must be satisfied by every MG-component of the net.

96 CHAPTER 5. PROPERTIES OF STATE GRAPHS

• x 7c.1 , p t1\ .. _ ... ,'
I \ ,
r " ... / ts tf-fj/< _ -f!1

; ... C'
I p1

t1 ,' ,' t-l
~: /

I I
M'

te :.'
I

(a) ,

Figure 5.4: (a) A part of a marked graph with p-cuts resulting in non-persistency due to
state assignment and (b) its state graph. Note that markings Mand M' have the same
binary representation.

Theorem 5.9 Let ~J = (P, T, F, Mo) be a STG. Then ~J has a Jtate aJJignment problem

if there exiJt distinct p-cuts Cp, c; in Jome MG-component and a transition t E TN1 such

that
(a) [Cp, c;J forms a complementary Jet and
(b) t E (Cp· + c;·) A ·t ~ Cpuc;

Chapter 6

Decomposition by Net Contraction

This chapter develops one major result for the structure theory of nets. It discusses

a novel method of decomposition of finite automata, using a. graph-theoretic technique

called contraction. We are only concerned with finite automata. which are derived from

LSFC nets, and for convenience, they will be referred to simply as FA in this chapter.

This method does not decompose the FA directly; instead, it contracts the nets to produce

smaller ones and then generates FA for these smaller nets.

The purpose of decomposition of FA is to facilitate analysis and synthesis of systems

in an effective manner. One specific application of decomposition is in the implementation

of control circuits. Efficient implementations can be obtained by decomposing the state

graphs to minimize the interaction between variables corresponding to signals of the circuit.

For state graphs (which a.re FA derived from STGs) there is a straightforward method of

decomposition based on the cawal relation in the STGs. STGs and state graphs can

be decomposed by performing contraction on them to produce a number of contracted

graphs; ea.ch of which contains the minimum amount of information required for the correct

implementation of each signal in the circuit.

As explained earlier, we a.re mainly interested in the behavior of nets as given by se~s of

transition sequences. From this viewpoint, an abstraction of net behavior basically involves

the removal of unwanted transitions from the sequences. Hence, our abstraction method

will involve contracting a net by eliminating unwanted transitions from it.

In Section 1, we describe two contraction algorithms, one for Petri nets and one for finite

97

98 CHAPTER 6. DECOMPOSITION BY NET CONTRACTION

automata corresponding to reachability graphs. An example will be given to illustrate the

operations involved in these algorithms. In Section 2, we study the conditions under which

certain properties of nets are preserved. These include live and safe-ness, and a property

called tr-preserving, indicating the preservation of the temporal relation in contracted

nets. In Section 3, we develop a major result which establish the equivalence between the

behavior of a set of contracted nets and the behavior of the original net. In Section 4, these

net-theoretic results are applied to STGs to provide a simple method for decomposition of

state graphs, from which highly efficient implementations can be obtained.

It is important to note that these results only apply to nets which satisfy all the re­

strictions of structure theory stated so far in the thesis. To recapitulate, these restrictions

on nets consist of the following: {i) finiteness and safeneu (ii) the use of unlabeled transi­

tion sequences and (iii) the one-token SM restriction. The most important of these is the

one-token restriction because, as discussed in Chapters 2 and 3, the temporal relation can

only be defined for nets satisfying this restriction. In this chapter, all results developed

are based on this restriction.

6.1 Contraction Algorithms

6.1.1 Contraction of Petri nets

In this section, we describe contraction algorithms for free-choice nets and their FA. The

essential idea in these algorithms is to consider only the subset of transitions of direct

interest and ignore the rest. A contracted net contains only transitions of interest, and

other transitions are eliminated by performing "local surgery" to remove one transition

at a time. It should be stressed that contraction is different from reduction of nets for

obtaining component subnets as described earlier in Chapter 2.

Let 'E = {P, T, F, M0} be a LSFC net, T' ~ T be the subset of transitions of interest.

Then 'E/T' denotes the T'-contracted net of 'E. In the following contraction algorithm, the

set X = T-T' will be eliminated from 'E, resulting in E' = E/T'. The algorithm eliminates

one transition in X at a time and is applied iteratively to the net until all transitions in X

are removed. In each iteration, the elimination of a transition te E X only affects places

in ·te Ute· and arcs connected to these places, the rest of the net remains unchanged.

6.1. CONTRACTION ALGORITHMS 99

Algorithm 6.1 (Net contraction) Let E = (P, T, F, Mo) be a net and T' = T - { te}·

The T'-contracted net ofE, E' = (P',T',F',M/,) is obtained as follows.

(a) Collapse input and output places of te to create a new set of places P':

Let P' = ·te x te·, i.e., Vpi E ·te'VP; E te·: let p' = {pi,P;} E P'.

(b) Redefine the flow relation between these new places and the rest of the net:

Vpi E p'(E P') if 3t ET': (t,pi) E F then (t,p') E F',
Vp; E p'(E P') if 3t ET': (p;, t} E F then (p', t) E F'.

(c) Replace the remaining part of the net:

Add P1 = P - (·te Ute·) to P'. Add F n (P1 x T' UT' x P1) to F'.

(d) Determine the new initial marking: Vp' E P': M/,(p') = EJ>EP' Mo(p).

Some examples of net contraction are given in Fig. 6.5, where (a) is a contraction on

a part of a marked graph, (b) a state machine and (c) a free-choice net. Note that a

contracted net of a free-choice net may no longer satisfy the free-choice axiom; however, it

is still behaviorally equivalent to a free-choice net. Even though we trust that the results

developed here also apply to these nets which are non-FC (but behaviorally FC, and the

like), to avoid net-theoretic difficulties, we will require that contraction be only applied to

transitions which do not create non-FC structures in contracted nets.

Notes. After every iteration of the algorithm, the contracted net E' must be checked

for place-simple- and pure-nessi If there exist distinct places Pl and P<J in E' such that

(·Pi= ·P<J) A (Pi·= P<J·), then it is legitimate to remove either Pl or P'l to make E' simple.

If there exist a transition t and a place pin E' such that p· = {t} and ·p = {t}, then

the self-loop containing p, t can be eliminated by removing p, thus keeping the contracted

net pure. This is also a legitimate operation because p is connected only to t and no

other transition; p is often called a side condition. On the other hand, place p cannot be

eliminated if it has other input or output transitions different from t. In which case the

resulting contracted net is impure. Hence, even if the original net E is pure, E' may not be.

Below we provide some restrictions on the contraction algorithm so that these undesirable

situations will not occur.

100 CHAPTER 6. DECOMPOSITION BY NET CONTRACTION

t1 ti ti t1 ti

p1 pl p1 p1 pl
t1

tc

pS P4

ta "' ta "'
~ (a) ~ (c)

ti
t1 ti

t1

{11,'8} {pl,'8}

"'
Figure 6.1: Examples of contraction on (a) a marked graph, (b) a state machine and (c) a
free-choice net.

Restriction 6.2 (on net contraction) In the above contraction algorithm, a transition

te can be eliminated only if it sati&fies the following conditions.

(a) No place p E (-te Ute·) can be an input place of transition t E {te) (Fig. 6.2 a):

(b) No place p' E (-te Ute·) can be an output place of transition t' E (te·} (Fig. 6.2b):

It is easy to verify that these situtations create either impurities or deadlocks in con­

tracted nets and hence should not be allowed. In the above algorithm, if there exists a

place Pi E ·te such that Pi is also an input place oft E {te), then since the net is safe,

this leads to a deadlock. On the other hand, if there exists a place p; E te· such that p; is

also an input place oft E -(·te), then the path tpitep;t exists (where Pi E t · n · te)· After te

is eliminated, there will be a self-loop tp't where p' = {pi,P;}, resutling in an impure net.

As a matter of fact, these situations are so unnatural that it is reasonable to put forth

6.1. CONTRACTION ALGORITHMS

I
I
\

/

' \

--""' '

' '
(a)

101

Figure 6.2: Elimination of te is disallowed if some input or output place of te is also (a)
input place oft or (b) output place oft'. The dashed arcs are those causing these violations.

an additional requirement for nets, which is that all transitions in a net satisfy the above

restriction.

6.1.2 Contraction of Finite Automata

An example has been given in Chapter 5 (in the subsection entitled "Justification for the

External Persistency Property") to illustrate the main idea behind contractions of state

graphs. Below, we consider contraction in more general terms as applied to uninterpreted

FA. One can define a. contraction on FA by restricting the set of transitions to a subset

of interest and replacing the rest with f, the silent transition. In general, since a FA

may have more than one instance of any transition, such an operation on FA may result in

nondeterminism in the contracted FA if there is a state with more than one emanating arcs,

each labeled with the same transition (including the silent transition f). For the purpose

of implementation, we are only interested in systems whose behaviors are described by

deterministic finite automata. Hence these nondeterministic FA need to be converted

to deterministic ones. Instead of using common method such as the .m.bset construction

method to produce a deterministic automaton, we use the following two simple rules which

are actually properties of the transition function of state graphs. They have been discussed

informally before in Chapter 5, and are stated in formal terms below. Let ~ = (S, T, 6, s0 , q)
be a FA, then it is required that

(a) 'v's,s'ES,'v'tETU{f}: (s'=fi(s,t)At=f) {::} s=s'.

102 CHAPTER 6. DECOMPOSITION BY NET CONTRACTION

1_ - 1' <'•i •11')? " 8 ... \
I I , • ,... ...',ti ... i I
' I .. ,,, --- I ' ij,_, t

~.
,_, 11

" t + + t • 1• ... 1' I • M1'

Figure 6.3: Illustration of rules for contraction of FA.

(b) Vslls2,s~,s~ ES, Vti,t2 ET: s~ = S(si,t1) As~= S(s2, t2) A (t1 = t2) => (s1 = s2 ~

s~ = s~).

Rule (a) states that if two states are connected by a e-transition, then they can be collapsed

into one "super-state" (Fig. 6.3a). Rule (b) can be rephrased as two sub-rules: if (i) s1 = s2

and ti = t2 then s~, s~ must be the same and can be collapsed into one state (Fig. 6.3b);

similarly, if (ii) s~ = s~ and t1 = t2 then si, s2 must be the same and can be collapsed

into one state (Fig. 6.3c). The reasoning behind these rules has been described in Chapter

5: silent transitions correspond to transitions of signals not considered in the state of the

module of interest and hence, they are eliminated from the state vectors.

In a nondeterministic FA (S,T,Ll,s0 ,q) where Ll ~ S x (TU {e}) x S, we say that an

€-path exists from state s1 to Sm denoted as s1[E ... E)sn, if there exists a path s1s2 ... Sn

such that (si, €, si+1) E Ll, 1 ~ i < n. Note that Vs E S: s[€)s and hence there is always

a zero-length €-path from any states to itself. In the following algorithm, let 4> and 4>/T'

denote a FA and its T'-contracted FA. The idea of the algorithm is to replace transitions

to be removed with e and then collapsed states connected by €-paths into a super-state;

nondeterminism can be resolved by applying the above rules; the new initial state will be

one which contains the original initial state. In contrast to the contraction algorithm for

nets which removes one transition at a time, the algorithm for FA involves the removal of

all instances of a transition. The simple reason for this difference is that in a net, each

transition in T is required to have exactly one appearance, whereas in a FA, it can appear

many times.

Algorithm 6.3 (Contraction of Finite Automata) Let 4> = (S, T, S, s0 , q) and T' ~

T. The T'-contracted FA o/4>, 4>' = 4>/T' = (S',T',S',s~,q'), i& obtained aa followa.

6.1. CONTRACTION ALGORITHMS 103

(a) Relabel unwanted transitions with e: let A ~ S x (T U { e}) x S such that

Vs, s' E S, Vt ET: 8(s, t) = s' => (s, tfT', s') EA.

(b) Collapse into a auperstate all states connected with e-patha: Vsi, s2 E S such that

si[e ... e)s2 or s2[e ... e)si, define s' E S' (~ P(S), the power aet of S) such that

si, s2 Es'.

(c) Redefine transition relation: Define A'~ S' x T' x S' such that Vs ES, Vt ET:

(3si E s' E S' : (s, t, si) E A) => (s, t, s') E A'

(3si E s' E S' : (s,, t, s) E A) => (s', t, s) E A'.

(e) The new tranaition function is obtained aa followa. Define 8' : S' x T' -+ S' such that

Vs, s' E S', Vt ET': (s, t, s') E A' => 8'(s, t) = s'.

The new initial atate and the new aet of final atates are

s~ - s' E S' if s0 E s',

q' - { s' E S' I s' n q "I 0}.

An example. Fig. 6.4a and Fig. 6.4b are a live-safe marked graph and its state graph,

where T = {t0 , ti, ... , t 8 , t9}. For the sake of clarity, places are not drawn explicitly. By

performing T'-contraction, where T' = T - { t2, t6}, the net is contracted to one shown in

Fig. 6.4c. The removal of transition t6 results in the replacement of four old places by four

new ones. Similarly, the removal of t2 causes places (ti, t2) and {t2, t4) to be collapsed into

a new place (ti, t4).

The state graph of Fig. 6.4a is given in b. By performing T'-contraction on this state

graph, a new one is obtained as shown in Fig. 6.4d. The operation involves replacing t2 and

t6 with silent transitions e and then collapsing states connected by e-transitions together.

Note that the contracted state graph in Fig. 6.4d is also the state graph of the contracted

104 CHAPTER 6. DECOMPOSITION BY NET CONTRACTION

t!J t!J

ts ts

t8 t8

(c)

NmDft fl, f6

t9 ti

(d)

Figure 6.4: (a) Contraction on this FC net yields (c). (b) Contraction of this state graph
yields (d). In this example, (d) is also the state graph of (c).

net in Fig. 6.4c. Thus in abstracting the behavior of a net, one can choose either the path

a-b-d or a-c-d. In generally, the latter path is computationally more efficient because a

net always contains no more transitions than its state graph. In this example, contraction

on the net requires the removal of two transitions, while contraction on the state graph

requires four (three instances of t2 , one of t6). In the next section, we will examine the

conditions such that both paths yield the same state graph. By satisfying this condition,

one can choose the more efficient path a-c-d most of the time.

6.2. PROPERTIES OF CONTRACTION 105

6.2 Properties of Contraction

Not every subset T' ~ T yields a useful or even meaningful contraction on a net. We need

to choose subsets with restrictions such that the contracted net preserves certain impor­

tant properties of the original net. We will study the conditions under which contraction

preserves live and safe-ness and the temporal relation on remaining transitions of a con­

tracted net. Due to the level of complexity involved, we will consider separate cases for

state machines, marked graphs and lastly, free-choice nets.

In the following, let :E = (P, T, F, Mo) be a. LSFC net, :E' = (P', T', F', M~) = E/T' be

the T'-contracted net of :E. First we introduce the notion of preservation of the temporal

relation called tr-preserving.

Definition 6.4 Let :E be a LSFC net sat~fying the one-token SM restriction, and E' =
:E/T' be it.s T'-contracted net. Let tr= liUcoUcf and tr'= li'Uco'Ucf' be the temporal

relation,, in :E and E', respectively. Then the T'-contraction on :E is tr-preserving iff

Ii' ~ Ii /\ co' ~ co /\ cf' ~ cf.

Note that this definition does not require that direct conflicts be preserved. The reason for

this is related to the way one defines the boundary of a control circuit module, as explained

in Chapter 5.

Below, the condition for tr-preservation for state ma.chines is derived. The removal of

transition te from a state machine will affect only two places: the input and output places

of te, because in state machines each transition has exactly one input and one output place

(Fig. '6.5).

Lemma 6.5 Let :E be a live-safe state machine, :E' be its T' -contracted net, T' = T - { te}.

Let {Pi}= ·te and {p;} = te·, then the T'-contraction on :E ~tr-preserving iff

IPi. I = 1 v I· P;I = 1.

This lemma essentially requires that the input place of the removed transition have exactly

one output transition, or its output have exactly one input transition. If both places violate

106 CHAPTER 6. DECOMPOSITION BY NET CONTRACTION

this condition (Fig. 6.5a) then the removal of te results in a net in which the temporal

relation no longer preserves (Fig. 6.5b).

Proof. First, note that since te has only one input and one output place, the removal of te

results in merging these two places into a new one. Hence if E be a. live-safe state machine

then E' is also a live-safe state machine because E' is strongly connected and contains

exactly one token.

(=>) Suppose that 3ti, t; E T : Pi' = { te, ti} /\ ·p; = { te, t;} (Fig. 6.5), we show that

Ii'¢. Ii and cf'¢. cf.

If {ti, t;} E cf then there exists no simple cycle in E containing both ti, t;. In E',

Pi and P; are collapsed into p' = {Pi,p;} and we have {t;,p'), {p', ti) E F'. Since E' is

strongly connected, there must be a simple cycle containing both ti, t;, i.e. {ti, t;} E Ii' or

{ti, t;} ¢cf'. Hence cf'¢. cf.

If {ti, t;} E Ii then there exists a simple cycle in E containing both ti, t;. There must

be a simple pa.th IT' from P; to Pi because E is live. Because ti and t; a.re contained in a

simple cycle, there must be another simple pa.th IT from ti tot; which does not intersect

IT': IT and IT' form such a simple cycle (Fig. 6.5a). Let t(:F ti) E IT and t'(:F t;) E IT', then

it is also true that { t, t'} E Ii. In E', Pi and p; are collapsed into a new place p' (Fig. 6.5b)

and t, t' no longer belong to the same simple cycle. Hence {t, t'} E cf, or {t, t'} ¢Ii'. So

Ii'¢. Ii. Note further that a new firing sequence ... t;ti ... is introduced in E'.

(<=) It can be verified easily that if either Pi' = { te} or ·p; = {te} then the collapsing

of Pi and P; in a new place does not affect the relation between any two transitions. Thus

Ii'~ Ii and cf'~ cf. I

The condition for tr-preservation for marked graphs is more complicated due to the

fact that every transition in a marked graph may have more than one input and output

places.

Lemma 6.6 Let E be a live-safe marked graph satisfying the one-token SM restriction,

E' be its T'-contracted net, T' = T - {te}· Then T'-contraction on E is tr-preserving iff

'Vti E {te), 'Vt; E (te}, there ezist simple cycles !11 = t,pite ... t, and !l2 = t; ... tep;t; such

that l!l1 n !l2I > 1 (Fig. 6.6a).

6.2. PROPERTIES OF CONTRACTION 107

--
/ \

..-

4 t; ~+
\ (b) -

Figure 6.5: Proof of Lemma 6.5. (a) A state machine E withp.- = {te, ti} and ·p; = {te, t;}.
(b) The state machine E', resulted from collapsing Pi and p; into p'.

Essentially, the above lemma states that T'-contraction is tr-preserving iff there exists

a pair of simple cycles--one containing ti, te, the other t;, te-which intersect at another

transition different from te. Fig. 6.6a shows a marked graph which violates this condition:

the cycles n1 and n2 intersect at only one transition te. In which case, the removal of te
creates a new simple cycle (Fig. 6.6b) which totally alters the temporal relation. Since

places in a marked graphs a.re uniquely identified by their input and output transitions, in

order to simplify notations in the following proof, we use the cawal relation Ras defined

earlier. Recall that tiRt; # 3p E P: {ti, p}, {p, t;} E F.

Proof. For every t, t' -:/:- te, if { t, t'} E Ii then there exists a simple cycle containing both

of them. Then it is easy to see that { t, t'} E Ii' because contracting te cannot remove any

simple cycle from the net. Thus we only need to show that under the condition stated,

co'~ co.

First, note that Cp = ·te and c; = te· are p-cuts, and every t E ·Gp is ordered with at

least one t' E c;., i.e., {t,t'} E Ii. Hence, if {ti,t;} Eco then 3t' E c;.: {ti,t'} E Ii and

3t E ·Cp: { t, t;} E Ii. In other words, there exist simple cycles Oi, 0 2 such that ti, t' E !21

and t, t; E !22; Oi, 0 2 must intersect at te (Fig. 6.6a).

(=>)Suppose that n1 n 0 2 = {te}· Then in E', the removal of te introduces tiRt',
tiRt;, tRt' and tRt; (Fig. 6.6b). This introduces a new simple cycle tit; . .. tt' ... ti. Hence

{ t,, t;} ft co'. Note further that this cycle always contains two tokens; under the one-token

SM restriction, this results in unsafe behaviors.

({=) Suppose that 3u E T : 0 1 n 0 2 = { te, u}. Then in E', even though the removal

of te still introduces tiRt', tiRt;, tRt' and tRt;, this only creates the non-simple cycle

108 CHAPTER 6. DECOMPOSITION BY NET CONTRACTION

(a) (b)

Figure 6.6: Proof of Lemma 6.6 (a) A marked graph E before contraction and (b) its
contracted graph E'.

tit; ... u ... tt' ... u ... ti. Hence no new simple cycle is created and {ti, t;} Eco'. I

The following result comes immediately from the proof of the last lemmata.

Corollary 6. 7 Let E be a live-safe marked graph (or state machine) satisfying the one­

token SM restriction, E' be its T'-contracted net, T' = T- {te}· If T'-contraction on Eis

tr-preserving then E' is also a live-safe marked graph (state machine).

Using lemmata 6.5 and 6.6, we can derive the following conditions for tr-preservation

for LSFC nets.

Theorem 6.8 Let E be a LSFC net satisfying the one-token SM restriction, E' be its T' -

contracted net, T' = T - {te}· Then T'-contraction on E is tr-preserving iff the following

two conditions are true:

(a) \:/pi E ·te: IPi ·I= 1 or \:Ip; E te·: I· P;I = 1.

(b) \:/ti E {te) Vt; E (te}: there exist simple cycles !11 = tipite ... ti and !12 = t; ... tep;t;

such that 1n1 n n21 > i.

Proof. (a) The proof for this part is similar to that of Lemma 6.5 for state machine, except

that for LSFC net, lte ·I ~ 1 and I· tel~ 1. According to Lemma 6.5, T'-contraction is not

tr-preserving iff

3pi E ·te, 3p; E te· : IPi · I > 1 A I· P;I > 1.

6.2. PROPERTIES OF CONTRACTION 109

Hence in order for cf'~ cf, the negation of the above statement must be true; in the case

of LSFC nets, this yields (a).

(b) The proof for this pa.rt is similar to that of Lemma 6.6 for marked graph. However,

for LSFC net if {ti, t;} ¢ Ii, besides the possibility that {t,, t;} E co, one also has to

consider the case of {ti, t;} E cf. However, in this latter case if condition (a) is satisfied

then {ti, t;} E cf'. Furthermore, if {ti, t;} E cf then there exist two simple cycles ni and

n2 which intersect at Pi, te and p;; hence 1n1 nn2I > 1 and this is consistent with condition

(b). I

The contraction being tr-preserving implies that local change due to the removal of te
does not affect the global structure of the net: no new simple cyle can result in E' due

to contraction, and hence if a simple cycle in Nr, contains a token, then it still contains a

token in Nr,•. This implies that the contracted net is also live-safe.

The main result of this section is that if E is a LSFC net and E' is its contracted net

such that the contraction is tr-preserving then E' is also live-safe. To prove this we first

show the following lemma. In the sequel, we will denote the set of firing sequences of a net

Ei by FSi, that of a contracted net Ej by FSj.

Lemma 6.9 Let E be a LSFC net aat~fying the one-token SM reatriction, and E' = E/T',

where T' = T - { te} and T' -contraction ia tr-preaerving. Then for every SM-component

E1 of E, there eziata a SM-component E~ of E' auch that E~ = E1/T' and FSf = FS1 rT',
and vice veraa.

Proof Note that a SM-component comprises of a set of simple cycles which intersect each

other at places.

We need to show that (1) for every SM-component E1 of E, there exists a SM-component

E~ of E1 such that E~ = E1/T' and furthermore, FS~ = FS1 rT', and that (2) the contracted

net E' can have no more SM-components than E. If these two facts are true then the lemma

1s proven.

Consider any SM-component E1 which contains te, then in E1 there exists a simple

cycle n containing te. In n, let Pi, P; be the input and output place of te, respectively.

Since E 1 is an SM-component, all transitions connected to Pi and P; also belong to Ei.

110 CHAPTER 6. DECOMPOSITION BY NET CONTRACTION

Now, eliminate te from E.

1. When te is eliminated from the SM-component Ei, every simple cycle containing

te gets contracted to a new one with te removed and places Pi,Pi collapsed into a new

place p' = {pi,P;}. All transitions previously connected to Pi and p;, except te, are now

connected to p' instead. Hence in the contracted net, every cycle in E1 containing te

becomes a contracted cycle with te removed, and other cycles in E1 which intersect at Pi

and p; will now intersect at p' instead. Thus in the contracted net there is a SM-component

E~ which contains all transitions of E1 except te. By the definition of net contraction, we

have E~ = Eif T'.

Since the contraction is tr-preserving, condition (b) of Lemma 6.8 guarantees that

contraction does not create any "new" simple cycle in the contracted net E' (new in the

sense that it combines previous simple cycles containing concurrent transitions into a new

cycle in which these transitions become ordered) and further, any cycle in E containing

a token will contracts into a cycle containing a token also. Since the contracted SM­

component E~ is composed of some of these contracted simple cycles, it is live-safe. Also

since condition (a) of Lemma 6.8 is satisfied, F S~ = F 81 fT'.

2. Again, condition (b) of Lemma 6.8 guarantees that no "new" cycle is created in the

contracted net E'. If such a. new cycle were created then a new SM-component must exist

in E', because every cycle is contained in some SM-component. Since no such new cycle is

created by contraction, no new SM-component can result. This implies that the number

of SM-components in the contracted net E' can be no more than that in the original net

E. I

The above result leads to the following theorem.

Theorem 6.10 Let E be a LSFC net satisfying the one-token SM restriction, and E' =
E/T' its contracted net,where T'-contraction is tr-preserving. Then E' is also live-safe.

Proof. Since the contraction is tr-preserving, according to Lemma. 6.9, every SM-component

of E' contains one token each and together they cover E'. Hence according to Hack's the-

orem, E' is live-safe. I

6.3. DECOMPOSITION BY NET CONTRACTION 111

6.3 Decomposition by net contraction

The significance of tr-preserving contractions is that it provides two alternatives for de­

composing (by contraction) FA corresponding to reachability graphs of LSFC nets. On

one hand, we could perform a desired contraction directly on a FA; on the other hand, we

could contract a net and then generate a FA from the contracted net. It turns out the

latter approach is almost always more efficient computationally. In case of nets being state

machines, contraction on such nets and their FA amounts to the same operation. The

reason it is more efficient than contracting a FA directly is that in a net, each transition

is allowed to appear exactly once, whereas in a FA, each transition may appear several

times. Hence removal of transitions from a net is much easier than removal of transitions

from a FA.

Theorem 6.11 Let :E be a LSFC net satisfying the one-token SM reatriction, :E' be ita

T'-contracted net, T' = T - { te}· If T'-contraction on :E is tr-preaerving then

FS(:E') = FS(:E)fT' or equivalently ~(:E') = ~(:E)/T'.

Proof N"£ and N"£' are identical except for transition te, places in ·teUte· and arcs connected

to these elements (see Fig. 6.7). Let ti denote a transition in ·(·te) and t; one in (te·)·.

Then if u = <r1titet;<r2 is a firing sequence in FS(:E), both sequences <71ti and t;u2 must

belong to FS(:E) and FS(:E') because these sequences do not involve te.

Hence, in order to show that FS(:E') = FS(E)fT', we only need to establish the

correspondence between every minimal length sequence titet; in :E with another tit; in :E'.

Only minimal length sequences need be considered because any transition concurrent with

ti can be fired before it, any transition concurrent with t; can be fired after it. Also, we

need not be concerned with transitions t (-:f:. te) which are output transitions of places in

·te or input transitions of places in te· (Fig. 6. 7c); it can be easily verified that the removal

of te does not affect firing sequences containing tit or tt;.

Hence our task is to demonstrate the correspondence between titet; in :E and tit; in :E'.

In :E, some input places oft; comes from te, some from other transitions; let this latter set

of input places be P1(= ·t; - te-). Due to the FC hypothesis, there are no arcs between

any places in P1 and te (Fig. 6.7a.). In :E', since places in P1 are not connected tote by any

arcs, they remain the same; hence input places oft; come from P1 and ·te x te· (Fig. 6. 7b).

112 CHAPTER 6. DECOMPOSITION BY NET CONTRACTION

(a) FS(E)fT' s;;; FS(E') : We show that for every firing sequence Mi[ti)Me[te)M;[t;)

in E, there exists MI[ti)Mj[t;) in E'.

In E, Mi[ti)Me[te)M;[t;) is given: At marking Mi all input places of ti are marked.

Since the firing of ti leads to Me[te), at Me every place in ·te - ti· must have been marked

by the concurrent firing of transitions in ·(·te -ti·). The firing of te leads to M;[t;); at M;
all places in ·t; are marked. Since the firing of te marks only te·, at Me all places in P1

must have already been marked by the time ti fires; some of it may have been marked by

the firing of some transition concurrent with ti, or even by ti itself.

In E', let us construct MI(ti)Mj[t;): Let Mi', MJ be markings such that MI[ti)MJ. We

know that MI exists because it is the same as Mi except for places in ·te x te·· Recall

that Restriction 6.2 on net contraction states that none of the places in ·te x te· can be

an input place to ti. Therefore, if ti is enabled in Mi, it is also enabled in MI. The firing

of ti at MI marks ·te x te· and possibly some of the previously unmarked places of P1 (as

explained above), so that all places of P1 are marked. Therefore all input places oft; are

marked, leading to MJ; at this marking, t; is enabled: MJ[t;). We have thus constructed

M[[ti)MJ[t;).

(b) FS(E') s;;; FS(E)fT' : We show that for every firing sequence M[[ti)Mj[t;) in E'

(where ti E ·p', t; E p'· for some p' E ·te x te·), one can construct Mi[ti)Me[te)M;[t;} in E.

In E', since Mj[t;}, at MJ all places in ·t; are marked. We can break ·t; into P1 and

P2 = ·t; - P1, the latter being a subset of ·te x te-. Then for every p' E P2, Mj(p') = 1.

Since only P2 is marked by the firing of ti, P1 must have already been marked when ti fires.

Now in E, let us construct Mi[ti)Me[te)M;[t;): Since p' = {pi,p;} for some Pi E ·te, P; E

te·, in E there exists a marking M; under which p; is marked. Since P; is an output place

of te, M; must result from the firing of te. This implies the existence of another marking

Me which enable te. Thus at Me all places of ·te are marked, including Pi· Therefore we

must have a marking Mi[ti) at which all places in ·te except Pi are marked; since ·te is a

p-cut, ·te - {Pi} can be marked before Pi by those transitions concurrent with ti. Thus we

have constructed Mi[ti)Me[te)M;[t;). I

The preceding results suggest the following method of abstraction for LSFC nets. Sup•

pose we are interested in the behavior of a subset of transitions U s;;; T of LSFC net E.

6.3. DECOMPOSITION BY NET CONTRACTION 113

(b}

Figure 6.7: Proof of Theorem 6.11 (a) The part of a free-choice net where contraction will
occur and (b) its contracted net. (c) Cases which need not be considered.

Then we choose the smallest subset T' such that U s;;; T' s;;; T and T' -contraction on E is

tr-preserving. Then the T'-contracted FA of E, ~(E)/T', is guaranteed to be identical to

the FA of the contracted net E' = E/T'.

Below, we develop one major result for this chapter concerning the behavioral equiv­

alence of a LSFC net E and a set of contracted nets of E. We will adopt the following

notational convention: (i) for a net E, its set of firing sequences is denoted by FS, its

causal relation by R; similarly, (ii) for a SM-component Ei, they are FS, and R,; finally,

(iii) for a contracted net Ej, they are FSj and Rj.

Theorem 6.12 Let E = (P, T, F, Mo} be a LSFC net satisfying the one-token SM restric­

tion, and {E~, E~, ... , E:n} be a set of contracted nets of E, where Ej = E/TJ, TJ s;;; T, for

1 $; j $; m.

For 1 $; j < m, if {i) TJ-contraction i" tr-preserving and (ii) the 1.mion of cau.,,al

relations Rj covers R, i.e. U; Rj 2 R, then

F s = F s~ II F s~ II ... 11 F s:n.

The example in Fig. 6.8 illustrates this theorem. The top leftmost net is a LSFC net E

which is a marked graph. Also for convenience, we use the graphical abbreviation for STGs

to show this net. The rest of the top row contains three SM-components {Ei, E2 , E3}, while

the rest of the left column contains two contracted nets of E: {E~, E;}. In the contracted

nets, solid arcs corresponding to part of the causal relation which are present in the original

net E; the union of these solid arcs "cover" all arcs in E. The dashed arcs in the contracted

114 CHAPTER 6. DECOMPOSITION BY NET CONTRACTION

nets represent members of the causal relation which have no correspondence in E. Also,

both contractions are tr-preserving.

The above theorem states that the set of firing sequences of E is the identical to one

obtained by weaving sets of firing sequences of the contracted nets {E~, E~}.

The significance of this theorem is that it allows net to be decomposed into smaller

nets in any arbitrary way, and each can be used for the purpose of synthesis or analysis. If

the conditions stated in the theorem are met, then the behavior of the original net can be

obtained by concurrently composing (weaving) the behavior of the smaller nets. Since we

have shown that for LSFC nets, every set of firing sequences FS has an equivalent finite

automaton (), the above theorem implies that

Proof of Theorem 6.1e. Let {Ei, E2 , ••• , En}' be the set of all SM-components of E. Ac­

cording to Theorem 3.8, the weave of sets of firing sequences of the SM-components gives

the set of firing sequences of the net, i.e.,

Hence, every contracted net Ej (1 ::; j ::; m) can be decomposed into n not necessarily

distinct SM-components {Ej,i}, 1 ::; i ::; n such that

FS'; = FS';,1 II FS';,2 II·.· II FS';,n,

where F Sj,i denotes the set of firing sequences of Ej,i. {This is illustrated in Fig. 6.8,

where a contracted net in each row of the first column is decomposed into SM-components

shown in other columns to its right. Note that even though some of the SM-components

are the same, we list them separately to show that they are contracted version of the

SM-components on the first row, according to Lemma 6.9.)

As indicated above, according to Lemma 6.9, for every SM-component Ej,i of the con­

tracted net Ej, there exists a SM-component Ei of E such that Ej,i = Ei/TJ. It is easy

to see that if the union of arcs in {Ej} cover E (U; R; ~ R), then arcs in {Ej,i} cover the

SM-component Ei: U; Rj,i ;;2 ~. In order to proceed with the rest of the proof, we need

the following

6.3. DECOMPOSITION BY NET CONTRACTION

A LSFC net

t1

~
ts tJ

~
v

t1 ,,,,.....

> ' v
,,,,,,.- ,-

I V '
I t1 \
I ~ \

• ti tJ +
\~I
,_tj t~_/

,. -
I ~

I t1
1/
• ti

\ ~
\ tj -

SM-component&

t1

~
tJ

/

'

,. -
I 't

I t1

I " • t8

\ /
\ tj -

115

t5

/

Figure 6.8: An example to illustrate the proof of Theorem 6.12. The first row contains a
LSFC net Eon the leftmost column, and three SM-components E1 , E2 , E3 • Below the first
column are two contracted nets Ei, E~.

116 CHAPTER 6. DECOMPOSITION BY NET CONTRACTION

Proposition 6.13 For every SM-component Ei as defined in the previous paragraph:

FSi = FSLi II FS~,i 11 · .. II FS:n,i, where FS';,i denote& the set of firing sequences of the

contracted SM-component Ej,i = EifTJ, as defined in the previow paragraph.

By replacing the right-hand side of the a.hove equation for each F Si in the equation

for F S, and using the fact that weaving is associative and commutative, we obtain the

following expression for FS: (the terms in this expression have been rearranged such that

each column i contains sets of firing sequences of the contracted nets of the SM-component

Ei)·

FS - FS1 II II FSi II · · · II FSn
- FSL1 II II FS~. II··· II FS~n II ·' •

FS~,1 II II FS~-·' II · · · II FS~,n II
II

FS~ 1 ,, II II FS~. ,,, II··· II FS';,n II
II

Fs:n.1 II II Fs:n,i II··· II Fs:nn· .
Notice that according to Proposition 6.13, each row j yields the set of firing sequences of

the contracted net Ej. Hence

F s = F s~ II ... 11 F sj II ... 11 F s:n.

I

Proof of Proposition 6.19. The proof is carried out for the case with two contracted nets:

let E be a LS state machine and E~ = E/T{, E~ = E/T; be its contracted nets such that

the contractions are tr-preserving and ~ UR~ 2 R (a.n example is given in Fig. 6.9).

Let the sets of firing sequence of E, E~ and E~ be FS, FS~ and FS~, respectively. For

convenience, let FS = { Ui }, FS~ = { 'Yi } and FS~ = { /3i }. Since the contractions

are tr-preserving, according to Theorem 6.11, we have FS~ = FS/T{ and FS~ = FS/T{,

implying that for every sequence Ui E FS, there exist one sequence 'Yi E FS~ and another

/3i E FS~ such that 'Yi= uifT{, /3i = uifT;. (For example, in Fig. 6.9, for u1 = abcf, there

exist 'Yi = abcf and {31 = acf; for u2 = adef, there exist "'(2 =adj and /32 = adef).

Since these nets are SMs, if sequence t1 t2 ••• tn E FS then (ti, ti+i) E R for 1 ~ i < n,

and vice versa. Therefore if the causal relations R~, ~ cover R, then the above sequences

6.3. DECOMPOSITION BY NET CONTRACTION

a

,.6,
b d + ..
c e

v
I

A LS state machine

a

,.6,
b d
t I
c I

'r:/
I

Its contracted nets

117

Figure 6.9: An example illustrating the weave of two contracted nets of a live-safe state
machine.

Take any two firing sequences which do not correspond to part of the same simple

cycle in E. Since E is a state machine, they represent choices in E. Then these two

sequences correspond to part of two distinct cycles ni and n; which intersect, as indicated

in Fig. 6.10. Let O'i and O'; denote their firing sequences, respectively. Let X = (O';IO';),
this is a set which can be constructed for any two sequences representing choices in E.

Since the contractions are tr-preserving, in E~ and E~ respectively, one can construct

X1 = ("Yih;) and X2 = (.B;l.8;), where /i, ,8; are defined in the first paragraph of the proof

(see Fig 6.10). If we can show that X = X 1 llX2 , then it follows that FS = FsrnFs~.

X1llX2 - { O' ET* I crfT; E {/;,/;} A O'fT; E {,8;,,8;}}

- { O' E T* I (O' fT; = "Yi v O' fT; = "Y;) A (O' fT; = .Bi v O' fT; = .8;) }

- { O' ET* I (O'fTI = /i A O'fT; = ,8;) V (O'fT; =/;A crfT; = .8;)

V(O'fT; = /i A O"fT; = .8;) V (crfT; =/;A crfT; = ,8;) }

- { O' ET* I (O'fTI = /i A O'fT; =.Bi) v (O'fT; = /j A O'fT; = .8;)} u
{ O' E T* I (O' fT; = /i AO' fT; = .8;) v (O'fT; = /j AO' fT; = ,8;) }

- { O'i, O'j } u {} = { O'i, O'j } = x.

1 It is more correct to write {'yi}ll{.Bi} = {<Ti} instead; however the above simplified notations are used for
the sake of clarity.

118 CHAPTER 6. DECOMPOSITION BY NET CONTRACTION

A LS state machine Its contracted nets

Figure 6.10: Proof of Proposition 6.13.

In the la.st line above, we need to show that

Let Y = { u ET* I (ufT{ = ')'i/\ufT~ = /3;)} and Z = { u ET* I (ufT{ = -y;/\ufT~ = /3i) }.

Below we show that Y = {}; exactly the samE: technique can be used to show that Z = {}.

First, note that since 0 1 and 0 2 are two distinct intersecting cycles, there must exist

some t which belongs to both cycles, some t1 which belongs solely to Oi and and some t2

which belongs solely to 0 2 , as indicated in Fig. 6.10. Furthermore, the conditions that (i)

contractions are tr-preserving and (ii) ~um covers R together imply that there exist

such t, ti, t2 which belong to both Ei and E~ (see Fig. 6.10): Condition (i) indicates that

the structure of the net is preserved. Recall from Lemma 6.5 that it is illegal to remove

all transitions on either branch of the contracted nets, therefore there must be some ti, t2

which remain in the left and right branches of the contracted nets. Condition (ii) implies

that there must exist such ti, t2 which belong to both contracted nets: if no such ti, t2 exist,
\

Ri Um does not cover R. Therefore, we have (i) { t, ti, t2 } ~ T{ n T~ and (ii) sequences

'Yi = ... t ... t1 ... , /3; = ... t . .. t2 ...

From the definition of Y : u E Y => ufT{ = 'Yi/\ ufT~ = /3;. From (i) and (ii), it

follows that

Clearly both equalities cannot hold simultaneously and hence, no such sequence u can

exist, thus implying that Y = {}. I

6.4. APPLICATION TO SIGNAL TRANSITION GRAPHS 119

6.4 Application to Signal Transition Graphs

Given a STG, one can derive from it a state graph by following the procedure outlined

in a previous chapter. In order for the implementation obtained from the state graph to

be deadlock-free and hazard-free, the STG specification is required to satisfy livenes1 and

per1istency. As discussed earlier, from the state graph, one can proceed to implementation

by determining the network function which consists of a set of logic functions, one for each

signal. The logic function of a signal can be obtained by determining, for every state in

the state graph, the implied value of that signal; the logic function is precisely the set of

all implied values of a signal.

There is a better alternative to the approach outlined above, being that of decompo­

sition. In contrast to other decomposition methods such as those applied to the FSM

model, a very simple alternative exists for state graphs derived from STGs. This alternate

decomposition technique uses the causal relation in the STG to decompose its state graph,

as described below.

Let EJ be a STG and ~ J its state graph, both defined on a set of signals J which

can be partitioned into J = J1 U JN U J0 -the sets of input, internal and output signals,

respectively. For every signal i E J, the input 1et of i, denoted by I(i), is defined as

I(i) - {j E J I j.Ri.}

- {j E J I i+Ri+ v i+RL v j_Ri+ v j_Ri_}

where R is the causal relation in EJ (In Chapter 5, we have provided the justification for

relating this subset j.Ri. of the causal relation to the set of input of i). Thus I(i) is the

set of signals whose transitions cause transitions of signal i.

Since in EJ, I(i) constitutes the set of signals whose transitions cause those of i, the

logic element i can be implemented as a logic function with one output variable i and

input variables in I(i). Since input signals are given, we need be concerned only with the

implementation of non-input signals, i.e. those in JN1 =JN U Jo. Thus a straightforward

decomposition algorithm for state graphs consist of the following steps.

Algorithm 6.14 (Decomposition of state graphs) Let EJ be a STG and ~J be its

state grapL. For every non-input signal i E JN1, let J'(i) = {i} U J(i) and T'(i) =

120 CHAPTER 6. DECOMPOSITION BY NET CONTRACTION

J'(i) x { +, -}. The "et of decompo,,ed "tate graph" of ~J i,, given by

{ ~'(i) Ii E JN1 },

where ~'(i) = ~J/T'(i), the T'(i)-contracted "tate graph of ~J.

It is easy to see that if that if the STG has a consistent state assignment, then so do the

contracted state graphs obtained from the a.hove algorithm. This is due to the fact that in

a. state graph, if a. transition tis removed, then so is t as they are transitions of the same

signal. Thus in every cycle in a state graph, every remaining pair of transitions x, x still

alternate. Thus,

Lemma 6.15 Let ~ J be a state graph and { ~'(i) } it" "et of contracted "tate graphs, as

defined above. Then if~ J ha,, a consistent date auignment, every ~'(i) has a consistent

state as,,ignment.

Based on the results developed in the previous section, there is a better way to de~

termine the contracted state graphs. This is carried out by not performing contraction

directly on the state graph ~J, but by first obtaining contracted neu from the STG EJ.

These will produce the same contracted state graphs if contractions on nets preserve the

temporal relation. Hence, the following decomposition algorithm based on net contraction

is more efficient.

Algorithm 6.16 (Decomposition by net contraction) Let EJ = (P, T, F, Mo) and

~J = (S, T,6,s0) be a STG and its state graph. For every non-in~ut "ignal i E JN1,

let

J'(i) = {i} Ul(i) and T'(i) = J'(i) x {+,-}.

Then the set of contracted JJtate graph" { ~'(i) I i E J NI } can be obtai1ied a" follow,,. For

i E JN1,

(a) Determine E'(i) = EJ/T'(i) and iu state graph ~(E'(i)).

(b) If T'(i)-contraction is tr-preserving then ~'(i) is identically ~(E'(i)). Otherwi,,e, add

appropriate signals from j E J - J'(i) to J'(i) "uch that the rq,,ulting contraction

becomes tr-preserving. Then perform "tep (a) again.

6.4. APPLICATION TO SIGNAL TRANSITION GRAPHS 121

An important note. In a contracted net E'(i) (defined over the subset of signals J'(i) =
{i} U J(i)) we consider i as the only output signal, all signals in J(i) a.re input. Hence in

E'(i), I(i) x { +, - } constitutes the set of transitions of input signals, while { i+, i_} the set

of transitions of output signals. This fact has important implication concerning persistency

of contracted nets: in a contracted net for signal i, we only need to verify the persistency

of transitions of i but not those of I(i) as the latter are assumed to be persistent. Their

persistency must be guaranteed by other contracted nets which represent other part of the

control circuit. An example illustrating this point can be found in Chapter 7.

Chapter 7

A Design Example

As mentioned in Chapter 1, we advocate the use of STGs as a tool for specification and di­

rect realization of distributed control modules which form the control structure of a system

organized around the distributed control principle. We have been able to provide some real

proofs of our approach by using STGs in the design of complete concurrent VLSI systems.

These include a self-timed packet router with a maximum measured throughput rate of 22

Mbytes/sec [10] and a self-timed FIFO queue with a novel distributed organization and a

measured throughput rate of 4 Mbytes/sec [9].

In this chapter, we stress another application area of asynchronous self-timed logic

which is more conventional than the distributed organization proposed above. As an

example, we examine the design of a self-timed controller for an A-to-D converter. First,

this example serves to demonstrate that STGs can be useful for designing asynchronous

logic in general, and secondly it is sufficiently complex to highlight most of the important

and interesting features of our synthesis approach. This design was first published in [8}.

Asynchronous control logic has found applications mostly in areas where the system

inputs are inherently asynchronous. Some examples are vision VLSI systems [48] and

interface circuits to asynchronous peripheral devices such as a disk drive. In these systems,

asynchronous control circuits provide a modular interface which greatly facilitates system

integration. In other cases, asynchronous circuits are almost indispensable and provides

the highest operation rate possible; these include timing chains in dynamic and static

memory devices [54] and even thoee used in synchronous microprocessors to generate extra

cycles [22]. Given its usefulness, asynchronous logic has not been popular because of the

122

7.1. SPECIFICATION OF THE CONTROLLER 123

difficulties in its design and maintenance. In Chapter 1, several well-known problems with

the Finite State Machine model and its implementation of asynchronous circuits have been

summarized.

This chapter is organized as follows. In Section 1, we briefly compare different design

alternatives for A/D converters and discuss the advantage of one with self-timed operation.

The behavior of the self-timed controller for the A/D converter is then presented and the

construction of a STG specification is described. In Section 2, the synthesis procedure and

implementation of the controller are discussed in detail Finally, Section 3 provides a few

remarks on the use of STGs for direct synthesis of control circuits.

7 .1 Specification of the Controller

A/D converters are subject to synchronizer failure because they make use of amplifiers

as comparators; these a.re either high-gain or regenerative bistable amplifiers. When the

input voltage Vin is close to the reference voltage Vre/ (Fig. 7.1), the response time of

the comparator becomes unbounded and its output may take an unbounded a.mount of

time to settle at a valid voltage level (0 or 1). This type of failure has been observed in

commercial A/D converters [50}. The synchronizer problem has been studied extensively,

and it is well-known that if the circuit is required to produce a valid output within a

certain time then there is a finite probability 'P that the output will be invalid at that

time (13]. 'P decreases exponentially as the time allowed for the synchronizer to resolve

is increased. For an N-bit converter using regenerative comparators, the analysis in [21}

gives the following lower bounds on the worst-case conversion time Twc in terms of the

fault probability 'P. For flash converters, Twc > N ln 2- ln 'P, where Twc is normalized to

some time constant of the comparator. For clocked successive approximation converters,

Twc > N(N ln2 - ln 'P), simply because they take N steps to perform one conversion.

For self-timed successive approximation converters, not all conversion steps a.re marginally

close to the reference voltage, hence some conversions will be fast and some slow. As shown

in [21], the self-timed successive approximation converter becomes significantly faster than

clocked successive-approximation converters for very low 'P a.nd large N.

124

twe/

''"'

comparator

Zr Lr

CHAPTER 7. A DESIGN EXAMPLE

LB

r---
1
I

C/L

wre/

--,

I

I
I

I
I
I

_J

- I
1elf-timal conlrolle r I

t-------+------------------1

Figure 7.1: Block diagram of the successive-approximation A/D converter.

7.1.1 Behavior Specification

The block diagram of the successive approximation A/D converter is shown in Figure 7.1.

The comparator senses the difference between the input voltage Vin and the reference

voltage Vre/ and produces a 1-bit result. The comparator has a control input Zr which

balances it at the beginning of each conversion when Z,. makes a O-to-1 transition, and

initiates a comparison when Zr makes a 1-to-0 transition. It also has a mutual-ezclwion

(m.e.) circuit [32] whose output is active (=1) only when the comparator output is valid.

This circuit is required because the comparison time is a function of the difference between

the input voltage and the reference voltage; the smaller the difference, the longer the time

it takes for the comparator to decide. This is the familiar phenomenon due to metastability

[13].

The latch and the combinational logic form a finite state machine performing the suc­

cessive approximation algorithm. Note that this machine operates in pulle mode, a mode

of operation different from that of the self-timed controller we a.re synthesizing. Due to

the fa.ct that this machine performs many data-dependent operations, it is more economi­

cal and straight-forward to implement it in pulse mode instead of as a standard Huffman

7.1. SPECIFICATION OF THE CONTROLLER 125

asynchronous state ma.chine. Data. a.re latched on the rising transition of signal Lr and

held in the latch after Lr goes low. Signal La. goes high as soon as data are latched, and

goes low shortly after Lr goes low. The reset input of the latch is controlled by signal &q,
so that when Req is low, outputs of the latch are reset to the appropriate initial values.

Signal LB is the La1t-Bit signal which goes high when the converter has determined the

last bit of the digital word. The D /A converter at the right of the diagram accepts the

digital word produced by the state machine and generates the analog voltage Vre/· The

combined delay of the combinational logic and the D /A converter is matched by some

delay circuit from Dr to Da.. While it is possible to accomplish this timing constraint in

a speed-independent manner using dual rail coding [32], a. simple delay circuit is more

justifiable from an engineering standpoint.

lnitia.lly, the state of the system is

Req = Ack = Zr = Za = Lr = La = 0, Dr = Da = 1.

Since Req = 0, the latch is initialized with LB = 0. Thus, the and-gate whose input is Req

is enabled and the and-gate whose output is Ack is disabled. When Req is raised, Zr will

go high and initiate a cycle of the successive-approximation algorithm. After each cycle,

Da will restart another cycle by causing Zr to go high again. This is repeated until LB

becomes high during the la.st cycle. This will ca.use Ack to be raised instead of Zr when

Da goes high. After that, Req drops in response to Ack, resetting LB and in turns Ack to

low. At this point the circuit returns to its initial configuration for the next conversion.

7 .1.2 STG specifications

A Signal Transition Graph describing the operation of the self-timed controller is shown

in Fig. 7 .2. Since the circuit operation is tota.lly deterministic, i.e. there is no data.­

dependent operation, no places are drawn explicitly. The a.res represent the causal relation

R discussed earlier. In this chapter, we will use aRb and a -+ b interchangeably in order

to improve readability. Intuitively, aRb (a cawe1 b) can be understood as as a timing or

"equencing con"traint between occurrences of two signal transitions.

The two bold arcs in Fig. 7 .2 are not part of the sequencing requirement of the circuit

and they can be ignored for the moment; they are per"i"tency con1trainu added to the

126 CHAPTER 7. A DESIGN EXAMPLE

Zr Za. Lr La Dr Da

1el/-iimed
cordrollcr

Figure 7.2: A STG specification of the self-timed controller.

STG to ensure persistency, as discussed in Chapters 2 and 5. There are two subtle timing

constraints required for the correct coordination of data and control signals: The constraint

Lr- -t Zr+ guarantees that the gating signal of the latch is turned off before the comparator

changes its output value, so that there is no possibility of latching the comparator output

while it is changing. The constraint Da.+ -t Zr+ ensures that a comparison is initiated

only after a new value of VreJ is available (as signified by D 11 going high).1

Finally, transitions Dr_, D 0 _, Lr- and L0 _ in Fig. 7.2 are simply reset transitions of

the re8et 8ignaling handshake protocol [32]. For the control circuit which we specify, event

occurrences are signaled over control links, using the reset signaling protocol. Usually, an

occurrence of an event is signaled by a positive transition on the ready wire of the control

link; its acknowledgment is signaled by a positive transition on the acknowledge wire of

the control link. The signals on these links are then reset through negative transitions

before the occurrence of the next event can be signaled. In this communication discipline,

a transition on the acknowledge wire can only occur in response to a transition on the

ready wire and vice versa. As discussed in Chapter 4, for an input link {Ir, Ia.} where Ir is

an input ready and Ia. an output acknowledge, this communication interface to the external

1 A specification with more concurrency can be obtained by requiring only Da+ - Zr-, thus allowing the
comparator to be balanced while a new tlr•J is evaluated. However, we will use this specification with less
concurrency to illustrate the design procedure.

7.2. SYNTHESIS FROM STG SPECIFICATION 127

world is specified in a STG by the pair of constraints {Ia- -+ Ir+, Ia+ -+ Ir-}. Similarly

for an output link {Or, O.} where Or is an output ready and Oa an input acknowledge, its

corresponding set of constraints is {Or+-+ 0 11+, Or--+ 0 0 _}. These interface constraints

a.re an example of our design rules described in Section 4.3 which states that in a STG,

every tran.sition of an input aignal haa ezactly one tranaition which directly precedea it,

and thia tran.sition mu.st be that of an output .signal. Transitions of input signals to the

circuit a.re underlined to distinguish them from those of non-input signals. This reflects

the fa.ct that transitions of input signals a.re generated externally, whereas non-input ones

a.re generated internally by the circuit.

7.2 Synthesis from STG Specification

The STG specification of the controller in Fig. 7.2 is a concise description of its opera.tion

based on the causal relation between signal transitions in the circuit. In order to obtain

a logic implementation of the circuit from this specification, it must be ensured that the

STG specification satisfies liveness and persistency. Liveness of the STG implies that its

state graph is strongly connected and has a consistent state assignment, hence the circuit

realization is free from deadlock. Persistency implies that the circuit realization is bazard­

free. To summarize, the synthesis procedure from a STG specification consists of the

following steps:

(a) Meeting liveness and persistency. Checking for the state assignment problem and

introducing internal signals if required.

(b) Decomposing the STG into contracted nets and obtaining their state graphs.

(c) Determining the logic equation for every non-input signal from its state graph.

7.2.1 Meeting liveness and persistency

It is easy to verify that the STG specification of the control circuit (Fig. 7.2) satisfies the

liveness conditions: it is strongly connected and for every transition t, there exists a simple

cycle containing both t and f. The second condition also indicates that the state graph

has a consistent state assignment.

128 CHAPTER 7. A DESIGN EXAMPLE

One can view the construction of a STG from a control circuit's behavior as a specifi­

cation of the presence or absence of sequencing constraints between control events. Such a

preliminary specification will usually contain non-persistent transitions due to interactions

between concurrent signal transitions, as discussed in Chapter 5. The addition of per­

sistency constraints essentially serve to limit the allowed transition sequences to a subset

of the original set such that none can produce non-persistent behavior. Sometimes the

original specification may need to be altered slightly for persistency to be satisfied.

Without the bold a.res, in the above STG, transitions Dr+ and Zr+ are non-persistent

since the following conditions a.re true (Theorem 5.5):

(a) La+-+ Dr+ and {La-, Dr+} Eco,
(b) Da+ -+Zr+ and {Da_, Z,.+} Eco.

TQ eliminate non-persistency in case (a), we have to a.dd the persistency constraint Dr+ --+11

La-· This condition can be satisfied by introducing the bold a.re Dr+ -+Lr-· In this case,

we cannot use the a.re Dr+ -+La- because L. is an input signal to the control circuit, and

as mentioned earlier, its transition is allowed to have exactly one predecessor.

In case (b), a.re Zr+ -+ D,._ could be used to satisfy the persistency constraint Z,.+ --+11

Da- which will ensure the persistency of Zr+· However, this a.re would necessitate the

addition of another a.re Dr- -+ Zr- to guarantee the persistency of Dr-· Instead of

using this pair of a.res, we chose the bold a.re Z,._ -+ Dr- which also satisfies the above

persistency constraint. This example shows that there is more than one choice for satisfying

the persistency constraints; hence, may help the designer make the best choice.

With the addition of these new a.res, some of the sequencing constraints become re­

dundant. For instance, the constraint La+ -+ Lr- is already satisfied by the existing pair

La+ -+ Dr+ and Dr+ -+ Lr-· One can thus modify the specification by removing these

redundant constraints. Two redundant constraints La+ -+ Lr- and Da+ -+ Dr- can be

removed from Fig. 7.2 to produce the STG of Fig. 7.3a.

At this point, we have modified the original specification to produce a STG which

satisfies liveness and persistency as pa.rt of the sequencing requirement. We also need to

check for the possibility of non-persistency due to state assignments. In Fig. 7.3a, one

can immediately detect an R-pa.th (Z,.+, Za+, Zr-, Za-) which results in a state-assignment

which exhibits non-persistency. Intuitively, in the absence of any other intervening tran­

sition, consecutive rising and falling transitions of Za and Zr take the circuit back to the

7.2. SYNTHESIS FROM STG SPECIFICATION

same state. More specifically, there are two p-cuts

Cp = { {Da+, Zr+}, {Lr_, Zr+}, {Lr_, La-}},

G; = { {Za_, Lr+}, (Z,._, D,._), {L,._, La-}}

129

as indicated by the dashed arcs in Fig. 7.3a such that [Gp, G;] forms a complementary set.

Since Z,.+ satisfies the conditions of Lemma 5.8:

Zr+ is non-persistent. This is illustrated in Fig. 7 .3b, the binary representations of both

M and M' are 000111, where M and M' are markings corresponding to p-cuts Gp and G;,
respectively. Starting from M, the firing sequence Z,.+Za+Z,._Za- leads to marking M'
at which, in addition to La- being enabled, Z,.+ is also enabled. This gives rise to non­

persistency of Z,.+. On the other hand, note that even though La- satisfies the conditions

of Lemma 5.7, it can be assumed to be persistent because it is a transition of an input

signal.

As mentioned earlier, in order to eliminate non-persistency due to state assignment, one

can introduce an additional internal signal to permit the distinction between the binary

representations of markings M and M'. Thus, one could introduce a signal x, and insert

a transition of x, e.g. x+, into the middle of the R-path (Z,.+, Za+, Z,._, Za-) to obtain

(Z,.+, Za+, x+, Z,._, Za_). This in effect removes all complementary sets formed by distinct

p-cuts from the STG. In order to ensure liveness of the modified STG, one has to determine

a place to insert x_ as well. However, to carry this task out effectively, we need to consider

the next synthesis step of decomposition.

As outlined above, we can decompose the STG into a number of contracted nets and

then determine their state graphs. Clearly, one could take the alternative approach of

deriving the state graph directly from the STG (with the addition of signal x) and de­

termining logic equations from it. However, this would involve a total of seven signals,

and every state will be a binary representation of the set {Z,., Za, L,., La, D,., Da, x}. With­

out decomposition, at worst, the logic equation of any non-input signal Z,., L,., D,. or x

may depend on all seven variables. Obviously, this is grossly inefficient. The alternative

approach of decomposition can be carried out in a straightforward manner by using the

causal relation R to produce an efficient implementation, as discussed below.

130 CllAPT.llt 7. A DESIGN EXAMPLE

Lti+
1
Dr+

~
+ Lr-

c,-._,.._"""'
Zr+ '
+ ,
Zr,'~ f

w c; Lr+ (a)

Figure 7.3: (a) The origiaal STG apeci&catiea wna pr 1 "rtepqr oomuainta added. (b) Its
aiate gn.pb iadicatea tlM dime.- Jl<..,JI ... w..me.l atate eeeipmesah,
which caw z,.. to be.., .. ._.

7.2. SYNTHESIS FROM STG SPECIFICATION 131

Dr+

z~ t La-v Dr- (a)

La+ 001

Figure 7.4: (a) The contracted net of Dr derived from the STG in Fig. 6.3a. (b) State
graph of the contracted net in (a).

7.2.2 Implementation using decomposition

We apply the synthesis procedure as outlined earlier to produce a circuit, starting from

the STG in Fig. 7.3a. It will be demonstrated that when this STG is decomposed into

reduced graphs, the state graph of one of them is non-persistent due to the lack of state

information. As suggested earlier, this requires the addition of an internal signal x to the

STG specification. In the following presentation, the synthesis procedure will consist of

two passes, with the latter producing the final circuit implementation.

First Pass. Fig. 7.3a shows that La, Da, Za are input signals to the circuit, while the rest

are non-input signals whose logic equations are to be determined. The STG in this figure

has three non-input signals Dr, Lr, Zr, and their input sets are I(Dr) ={La, Zr}, I(Lr) =

{Dr, Da, Za} and I(Zr) ={Lr, Da, Za}·

The contracted net of Dr (denoted by E'(Dr)) and its state graph are shown in Fig. 7.4;

each vertex in the state graph is a binary vector representing signals in the set {L., Zr, Dr)·
From state s3 = 001, the consecutive occurrences of Zr+ and Zr- take the circuit to state

011 and then back to 001. (A similar case occurs starting from state 101.) Correspondingly,

in the contracted net of Dr, there is an R-path of consecutive transitions of signal Zr which

132 CHAPTER 7. A DESIGN EXAMPLE

directly precedes the output transition Dr: (Zr+' Zr_, Dr_). According to this state graph,

logic element Dr is implemented such that whenever it is in state s5 , it will cause transition

Dr- to occur. However, the state assignment results in 8 3 = s5 • Hence, whenever the circuit

is in either state, both transitions Zr+ and Dr- are enabled. In which case, the transition

sequence Dr+La.-Dr- may take place instead of the correct sequence Dr+L11_Zr+Zr-Dr_,
and the circuit malfunctions. Moreover, transition Dr- is non-persistent because while it

is enabled in state 83, the occurrence of Zr+ brings the circuit to state 84 in which Dr- is

no longer enabled.

The problem in this situation arises from the fact that it is impossible for the circuit

to distinguish that 8 3 and 8 5 are supposedly different. In order to modify them into

distinguishable binary states, we add another signal called x into the circuit. Since this

problem shows up in the contracted net of Dr as a pair of coDSecutive transitions of the

same signal Zr, a transition of x, say x+, is inserted between them. This requires that

x_ also be added to preserve liveness. The contracted net Dr indicates that x_ must not

be inserted (i) between the pair (Dr+, Zr+) or (Zr_, Dr-) because this only produces the

same problem but with two pairs of consecutive transitioDB of the same signals, (ii) into

the R-path (Dr+, La-, Dr-) because this makes x+ and x_ concurrent and thus violates

both liveness and persistency. Hence x_ must be inserted into the R-path (Dr_, La+' Dr+)·
Considering the STG of Fig. 7.3a, this ID.ftl.DB that x_ must be inserted into the path

(Dr_, Da-, Lr+, La+, Dr+)· Furthermore, since traDSitions of input signals Da, La and Za
can have only one incident arcs coming from tr&DBitiODB of their corresponding reque!t

signals Dr, Lr and Zr, x_ cannot be inserted in front of these transitions. Thus x_ can

be inserted between (D11_,Lr+) as shown in Fig. 7.5, or between (La+, Dr+)· In this latest

specification, x+ does not directly precede transitions of signal Dr; however it must be

used as an input to logic element Dr to eliminate hazards at signal Dr.

Finally, note that transition x_ can also be iDSerted between (L11+, Dr+) in the STG in

Fig. 7 .3a. This would result in another STG specification which yields a slightly different

implementation of the circuit. This fact indicates that the implementation is sensitive to

the particular form of the STG, which is understandable because the state graphs extracted

from STGs are unique state-based representations of the behavior of a circuit.

7.2. SYNTHESIS FROM STG SPECIFICATION

(b)

La+

1
Dr+

/'.._.

n- _""_=_i;_·:ai_"_r:"'

Za+ La-

T .-z r - ..,,.Dr-

f ' (a) la.- Da-

~
Lr+

remove

Za,La,Dr v nmo.e
Zr,La,Da

Lr+

/"...
Da+ Lr-
'v"

Zr+
t
s+
t

Zr­
t

Da­
t

Dr+
t

Lr-

i+
t
s+

/"...
Za- Dr-v

Lr+

La+

1
Dr+
~

Da+ Lr-

n
Za+ La-T -
s+ +
L/l
t + la.- s-

'V
Lr+

La+
t

Dr+

z.r\
s+ La-

v
Dr­
t

remove
Zr,Lr,La,Dr

Za+
t

s+

133

Z(")a-
t

Contracted net for Zr Co.Unuted net for Lr Contre.cWl net for Dr Contracted net for s

La t Dr Do

(c)

Figure 7.5: (a) The final STG with the addition of signal x. (b) Contracted nets for
non-input signals Zr, Lr, Dr and x. (c) Structure of the corresponding circuit.

134 CHAPTER 7. A DESIGN EXAMPLE

Second Pass. The STG in Fig. 7.5a shows that there are four non-input signals Dr, Lr, Zr

and x, with input sets

The input set !(Dr) contains signal x due to the reason just described. The contracted

nets of Dr, Zr, Lr and x a.re shown in Fig. 7.5b. At this point, we obtain the structure of

the circuit using the input/output information of the constituent logic elements, as shown

in Fig. 7 .5c.

The final step in the synthesis process is to derive logic equations from contracted nets.

This step is illustrated for signals Zr and x. From the contracted net of Zr (reproduced

in Fig. 7.6a.), one can derive its state graph (Fig. 7.6b) with states representing signals in

(Lr, Da, x, Zr}·

The state graph can be transferred to a. type of K-ma.p called tran8ition map; the

transition map of signal Zr is shown in Fig. 7.6c. Ea.ch entry in this map corresponds to a

state, which is a. binary representation of the signals {Lr, Da, x, Zr}i arcs between entries

are simply transitions between states as given by the state graph. A K-ma.p for Zr can be

obtained by replacing each entry (corresponding to a. state) in the transition map with its

implied value for Zr, a.s discussion in Chapter 4 (Fig. 7.6d). For example, in state 0111,

the implied value of Zr is 0, thus this entry in the transition map is replaced by a 0. The

logic equation of Zr can be found from this K-ma.p to be

Lastly, note that in the contracted net of Zr, there is an R-path (Lr+, Lr-)· However, in

contrast to the previous case, it does not cause non-persistency. Its state graph (Fig. 7.6b

shows that from state 0000, the firing sequence Lr+Lr- leads back to state 0000. Thus

both Lr+ and Da+ are enabled in state 0000; however, since they are considered as inpu~

to logic element Zr, they can be assumed to be persistent. The persistency of Lr+ and

Da+ has to be guaranteed by logic elements Lr and Da, respectively.

In a state graph for an output signal i, it is often the case that a certain state s has

more than one next-state. Hence we need to ch<X>Se one for its implied value. Suppose

7.2. SYNTHESIS FROM STG SPECIFICATION

Lr+

~
Da+ Lr-
~

Zr+ • z+
• Zr-
+

Da­
+

(a) Contracted net of Zr
(b) State graph of Zr

Zr zZr 00 01 11 10
LrDa

00
01.

11

1.0

135

(c) Transition map of Zr

Zr zZr 00 01 11 10
LrD G

00
01

11

10

0
1

0

0

0
1. 0 0

(d} K-map of Zr

Figure 7.6: Steps in the transformation from a contracted net to the logic equation for
signal Zr.

that transitions ti and t2 are enabled in s, leading to next-states si and s2, respectively.

As described in Chapter 2, there are two cases:

• If neither ti, t2 is a transition of signal i (ti, t2 '/: i.), then si(i) = s2(i). In this case,

the implied value of s is unique. K-map entry corresponding to s is entered with this

unique value si(i).

• If either ti or t2 is a transition of i, for instance, ti = i. and t2 '/: i., then si(i) '/:

s2(i) = s(i)2
• In this case, the next-state value of s is not unique. However, we

require that the K-map entry corresponding to s be entered with si(i), the implied

value which results from the transition of signal i itself. If furthermore, ti is also

enabled in state s2, then ti is persistent and no hazard results. Otherwise, t1 is

non-persistent and the circuit has hazards. Note, however, that this will not happen

if the STG is persistent.

In the state graph of x, state 101 has two next-states due to the concurrent transitions

2Note that the case with ti = l2 = i. is not possible as either t1 or t2 will not be consistent for state a.

136

Da.+

• Za.+
I

s+

Z~a.-
t

(a) Contracted net of z

CHAPTER 7. A DESIGN EXAMPLE

Da+ (c) Transition map of z

Das

z .. , OT(1(°i 0 0 0 1 0

1 0 0 1 1

(b) State graph of z {d} K-map of z

Figure 7. 7: Steps in the transformation from a contracted net to the logic equation for
signal x.

of x_ and Za- (Fig. 7.7a). In state 101, the implied value for x is chosen to be 0, as it

results from the transition x_. Fig. 7.7a shows that regardless of whether logic element x

is in state 101 or 001, transition x_ will always occur next and the circuit behaves exactly

the same. The transition map is shown in Fig. 7. 7b. The K-map derived from this state

graph is shown in Fig. 7.7c where the logic equation is found to be

This equation has the general form x = S + x"H with S = ZaDa and R = 15a. Its

implementation is a set-reset flipflop whose output is x, the set and reset inputs are ZaDa

and 15a, respectively. In order for this implementation to work properly, it is required that

S.R = 0 at all times.

Similarly, the same procedure can be applied to other contracted nets to obtain the

logic equations for Lr and Dr. They are

Lr - 15r~"Za

Dr - Zr + La + Dr~•

The equation for Dr can be rewritten as Dr= S + Dr"H with S =Zr+ La and R = x,

and it is implemented as a set-reset flipflop. The contracted net of Dr in Fig. 7.5b shows

that there is a time period during which both Zr and x are high, causing both the set and

7.3. SUMMARY

LB Zr Za Lr La

Ack

l _ - - -

Dr

S* Q
R

1
I

ad clomiunt I
SQ I
R - - _j

137

Da

Figure 7.8: The final circuit realization of the self-timed controller. The controller's initial
state is Zr = Z0 = Lr = La = x = LB = 0, Dr = D0 = 1.

reaet inputs of the Dr flipflop to be active. This violates the condition that S.R = 0 at all

times. However, it also indicates that output Dr is not to be reset until after both Zr and

L 0 go low, and therefore, until after the set input goes low. Therefore, this circuit can be

implemented as a aet-dominant flipflop (indicated by S* in Fig. 7.8). One can also choose

to implement Dr directly from the equation given above instead of a set-reset flipflop and

not to worry about this particular detail.

Finally, by putting all these elements together, one obtains the control circuit for the

A/D converter as shown in the dashed box in Fig. 7.8. The self-timed control circuit

shown is speed-independent, i.e., it operates correctly with any combination of delays

of logic gates, assuming that the internal feedback delays of the flipflops are negligible

compared to other loop delays in the control circuit.

7.3 Summary

In this chapter, STGs have been used as a specification tool for asynchronous control

circuits. A STG specification can be viewed as an interpreted Petri net in which each

transition is identified with a signal transition in a hardware circuit. In the synthesis

approach proposed, state graphs are generated from a STG and then used to derive logic

138 CHAPTER 7. A DESIGN EXAMPLE

equations and hardware structures for the signals. In the a.hove specification and design

example, it has been shown how introducing additional constraints in a STG allows us to

use level-sensitive hardware circuits instead of transition-sensitive hardware circuits in its

implementation. These are precisely the persistency constraints which guarantee speed­

independent (and therefore hazard-free) implementation.

A STG specification can thus also be viewed as a concise yet more abstract notation for

specifying a class of state graphs. As specifically illustrated through examples above, most

of the complex interactions of digital control circuits at the signal level can be lifted to our

abstract representation using STG notations. At this higher level, one can guarantee live

and ha.za.rd-free operation of control circuits by simply satisfying syntactic conditions on

STGs. This, perhaps, is the most important point of our graph-based approach.

The module descriptions used in this chapter require only constructs for specifying

sequencing and concurrency. There are other behaviors which exhibit conflict and data.­

dependent signal flow that would require additional STG constructs for their specification.

The formulation and application of these latter constructs are presented in the next chap­

ter.

Chapter 8

Signal Transition Graphs with
Non-input Choices

8.1 Introduction

The Signal Transition Graphs considered so far belong to a class of interpreted free·choice

nets; By restricting transitions which are in direct-conflict to those of input signals, free·

choices can be used to specify (nondeterministic) input choicea to a control module. Thus,

in addition to sequential and concurrent operations, these STGs can also specify input

choices. In practice, however, this ability is only of limited use. More often, one also needs

to specify control operations involving choices of internal events-the particular choice of

which control event to execute depends on the state of certain control variables. In this

chapter, instead of purely free choices, we consider cases in which choices are controlled

by the state of certain conditions (which hold due to the firing of some signal transition in

the circuit). This gives rise to the class of nets with controlled·choicea.

There are two alternatives for extending nets to permit the specification of controlled·

choices, as illustrated in Fig. 8.1. We may choose a atructural extension by using nets

which are structurally more complex than free-choice ones, or we may choose a behavioral

extension by developing new notations which permit the use of additional conditions to

further restrict the sets of firing sequences of nets.

Fig. 8. la is a free-choice: whenever p is marked with one token, both t1 and t2 are

enabled and one is nondeterministically chosen to fire. Fig. 8. lc is the corresponding

139

140 CHAPTER 8. STGS WITH NON-INPUT CHOICES

u1 " "' ,1A J(A,,
~ti

"

A
t1 ti

" A
t(Y'\B

(a} /ru choice (b) controlled choice (c) input choice { d} non-input choice

Figure 8.1: Structural and behavioral extension to the FC net model.

situation for STGs called an input choice, in which t1 and t 2 are interpreted as transitions

of input signals; the decision of which transition to fire is made externally to the system

and hence appears to be nondeterministic.

A structural extension to free-choice nets to allow the specification of controlled-choices

is depicted in Fig. 8.lb. This net specifies a controlled-choice if whenever transition u
is about to fire (thus marking place p), a token must have already been present at ei­

ther place p1 or P2· Then exactly one of ti, t2 is enabled and the enabled transition will

fire-nondeterminism never arises in this situation. Fig. 8. ld illustrates the corresponding

situation in STGs, called non-input choices, i.e., choices involving transitions of intern.al or

output signals. In contrast to the input choice in Fig 8. lc where t1 and t 2 are transitions

of input signals, here they must be transitions of non-input signals. The arc labels a and

b are logical variables which indicate, respectively, whether places PI and P2 are marked at

the moment p receives a token. For example, we can pick a= {i, 1), b = {i, 0) and u1 = i+,

u2 = i_. Then a being true means that signal i becomes 1 after transition i+ has fired; a

being false means that signal i ceases to be 1 (due to the firing of i_), etc.

As will be discussed in more detail, the behaviorally extended net in Fig. 8.ld can serve

as a correct specification of non-input choices only if the following two conditions are met:

(i) Only one of the logical variables a and b can become true whenever p is marked.

(If both can hold simultaneously when p is marked, this controlled-choice becomes a

free-choice. Thus, free-choice nets ca.n be considered as a special case of controlled­

choice nets.)

(ii) Transitions whose firings cause a and b to hold are not concurrent with u (in the

above example, these transitions are u1 and u2, respectively). This condition means

that whenever p is marked, it is guaranteed that at least one of its output transitions,

8.1. INTRODUCTION 141

t1 or t 2 , is enabled. Otherwise, if ui, u2 are allowed to fire concurrently with u, it is

generally impossible to determine the state of variables a and b when pis marked.

This condition is a fundamental requirement of the proposed behavioral extension;

further discussion will be given when we present the unfolding algorithm in Chapter

9.

Under these provisions, controlled choices ca.n be viewed as additional restriction& on the

set of firing sequences specified by a FC net. As such, they a.re a behavioral extension to FC

nets. The reason for a.voiding a structural extension is that to date, an acceptable structure

theory is available only for the class of free-choice nets. Techniques for structural analysis

of more complex nets which are useful for our purposes have not been fully developed.

This chapter describes this extended class of interpreted nets called STGs with non­

input choices (STG/NCs), their notations and semantics. To distinguish them from STGs

described in earlier chapters, we call the latter STGs with input choices (STG/ICs). The

behavior of STG/NCs will also be defined in terms of :firing sequence semantics. From

the behavioral standpoint, a STG defines a set of firing sequences which has an equivalent

state graph representation. An STG can thus be viewed as an abstract representation of

a state graph.

In Section 2 we will consider the underlying idea of specifying non-input choices in

terms of state graph representations. In particular, we discuss the deficiency of state

graphs for modeling non-input choices and a simple solution to this problem. This leads

to a notational extension to the STG model, as described in Section 3. This section also

describes the syntactic definition of STG/NCs and their :firing rule. In Section 4, a design

example is carried through to informally illustrate the ma.in ideas. This example describes

the synthesis of a FIFO controller which operates using a two-cycle signaling protocol. One

unusual feature of this design is that its STG specification contains both concurrency and

internal choices, in contrast to other synthesis approaches which restrict the specification

to sequential processes, and thus cannot specify both internal choice and concurrency at

the same time.

142 CHAPTER 8. STGS WITH NON-INPUT CHOICES

8.2 The Basic Idea

In this section, through a number of illustrative examples, we demonstrate a fundamental

difficulty in modeling internal choices in the class of finite automata corresponding to state

graphs. After identifying the cause of this problem, we suggest a solution which necessitates

the use of a higher level representation for state graphs-this being STGs with non-input

choices, as described subsequently.

8.2.1 A fundamental problem with specifying non-input choices
in state graphs.

Recall that a state graph ~ defined on a set of signals J is given by ~ = (S, T, h, so) where

S = {s: J-+ {O, 1}} and T = J x {+, -}. J and T can be partitioned into input, internal

and output sets, denoted by subscripts I, N and 0, respectively. For convenience, we

also define non-input sets as the union of internal and output ones, and denote them with

subscripts NI.

In~' suppose that there exists a configuration shown in Fig. 8.2a, with si[u)s2, s2[ti)s3[t3),

s2[t2)s4[t4), where u is the only transition enabled in state si. According to the previous

definition of enabling and disabling, this situation corresponds to uEti and uEt2 in si.

Since ti and t2 are enabled in the same state and t2 ¢ TE(s3), ti ¢ TE(s4), they correspond

to transitions in direct conflict. (Recall that TE(s) denotes the set of transitions which are

enabled in state s.)

As argued below, whether ti and t2 are indeed in direct conflict, that depends on

whether they are transitions of input or non-input signals. For the sake of argument, let

us consider the direct conflict in Fig. 8.2a purely as a &pecification intended for specifying

a nondeterministic choice in some control module. Due to the fact that in a state graph,

transitions behave differently depending on their type (input or non-input), whether this

specification is in fact a choice that will depend on the type of the transitions. For state

graphs, transitions of input signals are caused by the environment, whereas non-input ones

are caused by the system itself. The occurrence of the latter is determined solely by the

internal delays of the system and hence, cannot be known exactly. Below, these cases are

examined.

8.2. THE BASIC IDEA 143

Figure 8.2: (a) A state graph specification with t 1 and t2 enabled in the same state. (b) If
t1 , t2 =f. ii then t1 and t2 are concurrent. (c) If t1 = ii then t2 is non-persistent.

If t1, t2 E T1 then as discussed in Chapter 5, it is an input choice. Furthermore, t1 and t2
can be assumed to be persistent; their persistency can be guaranteed by the environment.

On the other hand, if ti, t 2 ¢Tr then the specification of Fig. 8.2a doesnot guarantee that

t 1 and t 2 will be persistent or that they may occur concurrently, as explained below.1

• ti, t2 =f. ii: Since uEt1 in s1 and t2 =f. ii, the occurrence of t2 in s2 brings the system

to s4 in which t1 must still be enabled: s 4 [t1). Similarly, since uEt2 and t1 =f. u, we

can also conclude that s3[t2). Hence ti, t2 ¢ T1 U {u} => s2[t1)sa[t2) A s2[t2)s4[t1), and

this means that ti and t2 are in fact concurrent (Fig. 8.2b).

• ti = u or t2 = ii : Suppose that t1 = u and t2 =f. u (the other case with t1 =f. u and

t2 = u can be treated in a similar fashion). As before, since uEt1 in s1 and t2 =f. u, t1
must still be enabled in s4. However, since uEt2 in s1 but ti = ii, the occurrence of ti

in s2 brings the system to state s3 in which t2 is no longer enabled (Fig. 8.2c). Hence,

ti disables t2 in s2 thus causing t2 to be non-persistent. The obvious implication of

this is that in the corresponding hardware implementation, an occurrence of t 2 can

cause a hazard which may lead to malfunction.

The above analysis shows that state graphs can only be used to specify input choices.

If a specification involves non-input transitions enabled in the same state, due to the fact

that their occurrences are controlled internally, these transitions will occur concurrently

or produce hazards-neither case is desirable.

1 We do not consider cases with t1 E T1 A t2 ¢ T1 or t 2 E T1 A t 1 ¢ T1 because these involve choices
between input and non-input signal transitions.

144 CHAPTER 8. STGS WITH NON-INPUT CHOICES

8.2.2 Specifying non-input choices in state graphs.

Consider the state in Fig. 8.3a. Since x and y are enabled in the same state s and they

are transitions of input signals (input transitions are underlined), they indeed specify an

input choice. In contra.st, t1 and t2 are enabled in the same state s2 , but since they are

transitions of non-input signals, they may be non-persistent or concurrent, as discussed

earlier. Hence, this state graph cannot be used to specify a non-input choice as intended.

Now, suppose that once transition u has occurred and the system has settled in state

s2 , we want the system to perform the following decision:

• enable transition t1 only if x had occurred previously, and

• enable transition t2 only if y had occurred previously.

It can be seen that for the state graph in Fig. 8.3a, this type of decision is impossible

because as soon as the system reaches state s1 , it looses the knowledge of which of x or y

had occurred. In order to allow for non-input choices, we must "split" states s1 and s 2 into

pairs {s~,sn and {s~,sn, respectively (Fig. 8.3b). In this state graph, once transition u

has occurred, the enabling of t1 is conditional on the occurrence of x and likewise, that of t2

on y. Furthermore, by splitting state s2 , t 1 and t 2 are no longer enabled in the same state;

the problem discussed above no longer exists. Thus this simple technique provides not

only a way for specifying non-input choices but also a nice solution to the above problem.

As discussed next, the proposed solution gives rise to another problem, thus indicating

a fundamental deficiency of state graphs in specifying non-input choices. Suppose that

one is given the state graph in Fig. 8.3b. By noticing that uEt1 ins~ and uEt2 ins~, one

may be able to deduce that t 1 and t 2 are possible internal choices after the occurrence of

u. However, in general, the exact condition which causes a particular choice cannot be

determined precisely: by inspecting only the state graph, the condition which causes the

choices of t1 may be due to the occurrence of either one of x or t5 ; similarly that t2 may

be due to either one of y or t 6 •

In order to specify the exact conditions for non-input choices, new notations need to be

introduced, as illustrated in Fig. 8.3d. The output arcs of place pare labeled with control

variables a and b where, for instance, a= (i, 0), b = (i, 1), x = i_ and y = i+. In this case,

·-

8.2. THE BASIC IDEA

"

(a)

__r(:_-.t5h._u .-r('t:J:..t9

~ ... t6Y ~ta..t-1
(c)

t1

t!

(b)

__r/z--t5h__ .. _,.!('t1+t9

~11--t6l-"~ts-..t-1
- (d)

145

Figure 8.3: (a) A state graph intended for specifying an internal choice between ti and t2 •

(b) The correct way for specifying internal choice between ti and t 2 • (c) The STG for the
state graph in (a). (d) The STG for the state graph in (b).

for example, when x fires, a becomes true and ti will be enabled. This STG can be viewed

as a high-level representation of the state graph in Fig. 8.3b, and can be distinguished

from the STG without these labeled arcs shown in Fig. 8.3c.

Before giving a precise syntactic characterization of STGs with non-input choices, the

following remarks are in order.

• The use of arc labels in STGs allows one to specify non-input choices and the exact

conditions which control the choices; such a capability is not supported by free-choice

nets. An immediate implication of this extension is directly related to the hardware

implementation: in the decomposition stage for logic implementation, signals corre­

sponding to these conditions must also be included as input to a logic element. For

example, in Fig. 8.3d signal i must be considered as an input to logic elements j and

k, where ti = j. and t 2 = k •.

• The controlled-choice notation has significant ramifications in our formulation of

STGs in that it allows us to restrict the number of appearance of every transition

in T to no more than once in a STG specification, and this is consistent with our

previous formulation. (Recall from Chapter 2 that this restriction is necessary to

prevent the confusion between concurrency and nondeterminism in the corresponding

state graph representation.)

• In comparison with free-choices, controlled choices can be viewed as a further restric-

146 CHAPTER 8. STGS WITH NON-INPUT CHOICES

tion on the sets of firing sequences. For example, the set of firing sequences for the

free-choice case in Fig. 8.3c is { xt5ut1 t 3 , xt5ut2t4, yt6ut1 t 3 , yt6ut2t4}, whereas that for

the controlled choices in Fig. 8.3d is restricted to the subset { xt5ut1 t3 , yt6ut2t4}.

8.3 STGs with non-input choices

8.3.1 Syntax

A STG with non-input choices (STG/NCs) of a control module with a set of signals J is

defined as follows.

Definition 8.1 A STG with non-input choices defined on J u described by °EJ = (P, T, F, M0 ; >.),
where

• (P, T, F, Mo) is a LSFC net satufying the one-token SM restriction, with the addition

of a finite set of dummy transitions denoted by£: F ~ (P x (TU£))U((TU£) x P).

• The arc labeling function ,\ : F -+ J x {O, 1} is a partial function with

dom(.\) = { (x, y) E FI x EPA Ix· I> 1 A (y E TN1 U £)},

i.e., dom(,\) ~ F n (P x (TNI u £)).

The set£= { e1 , e2 , ••• , em} is a finite set of dummy transitions, each member of£ is really

a silence transition whose purpose will be discussed shortly.

In the graphical representation of arc labels in J x {O, l}, we use j. and J to denote

(j, 1) and (j, O}, respectively. An arc label (j, 0) represents a control variable which holds

whenever signal j is equal to 0.

We further require that for a place p E P such that IP· I> 1,

• either p· ~ T1 (in which case pis called a free-choice place)

• or p· ~ TN1 U £ (in which case pis called a controlled-choice place).

8.3. STGS WITH NON-INPUT CHOICES 147

IA ..
t~

(a)

t9 t9

Figure 8.4: (a) A STG with non-input choices and (b) abbreviating the dummy transition.

Thus a STG /NC may contain both free choice and controlled-choice places, while a STG /IC

may contain only free-choice places.

The introduction of the dummy transition f is a mere technicality: in situations involv­

ing non-input choices (as illustrated in Fig. 8.4a), when Pl is marked, if control variable

a holds then t1 , t 2 , ta occur in sequence; otherwise, if a holds then only ta will occur (the

exact meaning of "hold" will be given shortly). The dummy transition f serves as a place

holder to avoid too many changes to the syntax of STGs and their firing rule: without it,

we must extend F to P x P and change the firing rule accordingly. For convenience we

will draw an arc directly between two places whenever an e·transition is encountered, as

done in Fig. 8.4b. Thus, the use of dummy transitions is restricted to the following cases:

V(x) E F if Ee then { 3a E J x {O,l}: .\((x,y)) =a and
,y y 3Pt,P'J E p: IPI ·I> 1 A ·y ={Pt} A I· P'JI > 1 A y· = {P"J}

8.3.2 Firing rule

The firing rule for STG/NC is exactly the same as for Petri nets, i.e., whenever a transition

(including the dummy transition E) is enabled, its firing will remove one token from each of

its input places and one token is added to each of its output places. However, the enabling

condition for STG /NC is slightly different:

• For every transition t with no labeled input arcs, t is enabled the usual way: M[t)

iff Vp E ·t, M(p) ~ 1.

148 CHAPTER 8. STGS WITH NON-INPUT CHOICES

• For every transition t with the input arc labeled with a, e.g. ·t = {p} and .X(p, t) = a,2

then M[t) iff (i) Vp E ·t, M(p) ~ 1 and (ii) the condition a holds at M.

We say that condition a holds at marking M

• for the case a= (j,O} iff at M, transition j_ has fired and i+ has not;

• for the case a = (j, 1} iff at M, transition i+ has fired and j_ has not.

In other words, if s is the binary state corresponding to marking M, then the holding of a

at s means that s(j) = 0 for the case a= (j, 0), and s(j) = 1 for a= (j, 1).

The above rules should provide an adequate recipe for determining the sets of firing

sequences and their equivalent state graphs from STG/NCs. This is accomplished by

determining at every marking the enabled transitions and by firing them to reach a new

marking, and so on. However, in order to use them effectively, we need to enhance the

analysis power for this type of STGs. Fortunately, a STG/NC can be converted into

one containing only free-choice places by first unfolding it into an occurrence net and

then folding it back into a free-choice net. Such procedures constitute the main steps of

an expansion algorithm described in the next chapter. For free-choice nets, the results

developed earlier in the thesis can be used directly. The presentation of this expansion

algorithm necessitates the introduction of occurrence nets and processes generated from

Petri nets, as will be discussed later. Below, we illustrate the use of STG/NCs with

a design example of a FIFO controller, which uses a two-cycle handshake protocol for

external communication.

8.4 An example: a two-cycle FIFO controller

We discuss an example of a STG specification of a two-cycle FIFO controller. The main

objective of this example is to show the expressive power of this extended STG model

and the type of asynchronous circuits that can be synthesized from it. To provide some

intuition, an informal description of the expansion algorithm mentioned above will follow.

The synthesis steps to produce the circuit realization will also be outlined.

2From now on, we write A(z,y) for A((z,y}).

8.4. AN EXAMPLE: A TWO-CYCLE FIFO CONTROLLER 149

The block diagram of the FIFO module is shown in Fig. 8.5a, a timing diagram describ­

ing its operation in Fig. 8.5b. The FIFO module has three control links, each being a pair

of request/acknowledge signals. At the input link, ~ makes a transition each time new

input data is available; Ai makes a transition each time the data has been used and the

module is ready to accept new data. At the output link, R 0 makes a transition whenever

the module has stored data, and A0 makes a transition whenever the succeeding stage has

accepted the data. Link {L, D} is connected to a flipflop which simulates the data storing

operation. Signal L makes a transition to load data into the registers, signal D makes a

transition when the loading operation is done. For every cycle of operation, the signal L

serves as a load pulse to control the input gates of register cells. This FIFO cell operates

in a pipelined fashion by coordinating transitions at the input and output links. In this

STG specification of the FIFO module, transitions of signals at the input link {Ir, I 0 } can

occur concurrently with those at the output link {Ori 0 0 }.

The STG specification for this circuit is shown in Fig. 8.5c, in which the output arcs

of places Pt and Pa are labeled with variables D and Ri, respectively, and there are no

free-choice places. Formally, the labeling function>. is defined by

>.(Pt,Ai-) = (D,0) and -X(Pt,Ai+) = (D,1)

>.(Pa, D+) = (Ri, 1) and >.(Pa, D_) = (R;, 0).

The set { D, Ri} can be used to form the control states which dictate the choice between

alternate control sequences.

In the initially marking Mo = {Ps, (Ai-,~+)}, transition Ri+ is enabled. The initial

state of the system is s0 = 000000, where states a.re vectors of binary values of signals in

(Ri,Ai,L,D,R0 ,A0). After the firing of~+ and subsequently, L+, place Pa is marked. At

this marking, the condition (~, 1) holds (because~+ has just fired), thus enabling D+.

After D+ has fired, L_ may fire concurrently with the sequence R0+, A0 +, marking places

Pt and p5 • At this marking, Ai+ is enabled due to the holding of the condition (D, 1). Thus

one can "execute" the net and expand it into one shown in Fig. 8.5d. In this figure, there

are two instances of L+ denoted by Li and Li and two instances of L_, likewise denoted.

The finite automaton derived from this new STG is given in Fig. 8.5e, from which it can be

seen that there is no state at which both Ai+ and Ai- (similarly, D+ and D_) are enabled.

Hence, by using arc labels to perform decisions, we have in effect "split" states which could

have otherwise involved conflicts between transitions of non-input signals D and Ai.

150

(a)

L- L+

~i
D+

18
D-

'" Ro-

i
Ao+ pS Ao-

(~
(f)

00
Ri+
10

D- D+
11

lb.-
01

CHAPTER 8. STGS WITH NON-INPUT CHOICES

Ri_j
I

L

D=Ro

I

~ ~ - Ro-

~- l v-
1-

"' £- Ro+

~i+ l
y+

(d)

Ri

(g)

.Ai

(b)

L

D Ro

G

L

Ao

Figure 8.5: (a) The block diagram of the two-cycle FIFO controller, (b) its timing di­
agram, (c) its STG/NC specification which can be expanded into a STG/IC (d). (e)
The state graph of the STG/IC in (d). (f) The control-state graph. (g) The final logic
implementation, with L = DA0 "Hi + 1J.A0~.

8.4. AN EXAMPLE: A TWO-CYCLE FIFO CONTROLLER 151

It is useful to construct from Fig. 8.5d a state graph which consists only of control

variables Ri, D. Such a state graph (Fig. 8.5f) is called a control-state graph (CSG) and

is obtained by performing T' -contraction on the state graph in Fig. 8.5e, where T' =
{Ri, D} x { +, - }. A CSG contains only control states and it allows one to tell which

choice is made at free- and controlled-choice places in the STG.

From the STG in Fig. 8.5d, the synthesis procedure described earlier can be applied

directly to produce the logic equations and structure of the circuit. The only minor dif­

ference is that we need also to include the control variable D in the input set of Ai, and

Ri in the input set of D. The input sets are given below, from which the structure of the

logic circuit can be determined.

!(Ai) - {L, D}
I(L) - {Ri, A0 , D}
I(D) - {L, Ri}
I(Ro) {D}.

The circuit diagram for the FIFO cell is shown in Fig .. 8.5g. There are two latches which

pass the input D to output Q if the gating signal G is. active, and hold the output if G is

inactive. Their logic functions a.re Q = DG + Q(lJ + D). The logic function for signal L

is L = DAo1/.i + 1JAoRi. In a practical design, it is intended that the delay of the latch

whose output is D be used to "time" the latching operation of the data registers for each

stage of the FIFO. This circuit is completely speed-independent and has no problem with

hazards, including the type called delay-hazards, under the following assumptions:

• Logic gates have unbounded delays, wires have no delays.

• The internal feedback delays of the latches a.re negligible compared to other loop

delays.

Remarks. In the STG/NC (Fig. 8.5c) non-input choices are specified using controlled­

choice places Pt and Pa· These illustrate an important underlying mechanism when one

considers STGs as a high-level representation of state graphs, which is the following:

• For a free-choice place, e.g. place Po with Po· = { x, y} ~ Tr in Fig. 8.3c, in the

state graph, there exists a state in which both x and y are enabled (Fig. 8.3a). This

represents an input choice.

152 CHAPTER 8. STGS WITH NON-INPUT CHOICES

• For a controlled-choice place, e.g. place Pt with Pt· = {Ai-, Ai+} in Fig. 8.5c, in

the state graph (Fig. 8.5e), there exists no states in which both Ai- and Ai+ are

enabled. Thus a controlled-choice place indicates that its corresponding state in the

state graph must be split so that each non-input choice is enabled in a different

state. This is carried out by expanding the net to one shown in Fig. 8.5d, in which

all non-input choices have been determined and removed by unfolding the original

net. In the state graph, the states in which Ai- and Ai+ are enabled (say s and s',

respectively) are guaranteed to be different because the value of signal D is chosen

such that it is different in these states: s(D) = 0 and s'(D) = 1. Hence the use of

arc labels ensures that split states have different binary representations.

Chapter 9

The Expansion Algorithm

In this chapter, we describe a.~ algorithm for converting STGs with non-input choices

(STG/NCs) into STGs with input choices only (STG/ICs). This algorithm involves un­

folding a. STG/NC into a. proceu and then folding the latter back into a. STG/IC-a. proce­

dure called ezpanaion. The underlying idea of the expansion algorithm can be understood

by viewing STGs a.s high-level representations of state graphs. At the end of Cha.per 8, we

have emphasized that for a free-choice place, there exists a state with input choice, and

for a controlled choice place, there exists a. state with non-input choice. By manipulating

the STGs, one can manage to split states with non-input choices in their corresponding

state graphs. Specifically, this is carried out in two stages. In the first stage, all states

with input and non-input choices are split; this is done by unfolding the STG /NC into a

process. In the second sta.ge1 only states which previously involve input choices a.re merged

back together; this corresponds to folding the process ha.ck into a STG /IC by merging only

free-choice places.

This chapter is organized as follows. In Section 1, we describe yet another type of

primitive nets called occurrence neu, which a.re commonly used for describing the semantics

of higher level nets. In particular, the "execution" of live-safe Petri nets basically unfolds

them into occurrence nets called proceaaea. We will develop a number of useful properties

for processes of nets and use them to derive some important results for processes of STGs.

These results a.re required in the expansion algorithm described in Section 2. In this

section, algorithms for net unfolding and folding of LSFC nets are given in order to motivate

the development of the expansion algorithm which converts a STG/NC into a. STG/IC.

153

154 CHAPTER 9. THE EXPANSION ALGORITHM

Once a STG /IC is obtained, the synthesis procedure described in earlier chapters can be

applied directly, as illustrated in an example at the end of Section 2. In Section 3, we

study properties of STG/NCs, including liveness and the characterization of the temporal

relation in these nets. Finally, Section 4 summarizes the main ideas and provides some

remarks concerning our techniques.

It is important to note that this extension to the theory of Petri nets is a. pa.rt of

structure theory and hence, a.11 results a.re guaranteed to apply only to nets which satisfy

the one-token SM restriction stated earlier.

9.1 Occurrence nets and Processes of nets

In this section, we introduce a. type of acyclic net structures called occurrence neta, being

partial orders whose elements a.re condition.9 and even.ta, together with a binary relation

specifying the precedence relationship between these elements. Occurrence nets can be

used as semantics for Petri nets: by executing a Petri net, one can unfold it into an

occurrence net, and each execution produces an occurrence net ca.lled a. proceu.

As argued earlier, for our purpose of using nets for synthesis of control systems, se-:

mantics based on firing sequences a.re more useful than those based on partial orders. Our

chief motivation for presenting occurrence nets and processes is to provide a. technique for

net unfolding, which is pa.rt of the expansion algorithm described later.

9 .1.1 Occurrence nets

Consider a. type of elementary net structures represented by N = (B,E,H), where

• B is a. set of condition& (similar to places and depicted likewise),

• Eis a set of evenu (similar to transitions and depicted likewise),

• H ~ E x B U B x E -:/:- 0 is the flow relation,

subject to the following restrictions:

• E ~ dom(H) U range(H) (no isolated events) and

9.1. OCCURRENCE NETS AND PROCESSES OF NETS 155

• Vbi,~ EB: (·b1 =·~)/\(bi·=~·)=> bi=~ (the net is pure).

Then N is an occurrence net iff

• Vb E B : lb . I ~ 1 /\ I . bl ~ 1.

• Vx,y E BUE: xH+y => •(yH+x) where H+ denotes the transitive closure of H

(H+ is irrefiexive).

For N, we also define the sets of boundary elements as follows:

0 N - {x EB U EI ·x = 0},

N° - {x EB U E IX· = 0}.

From an occurrence net, one can define a partial order1 (X,H+) where X = BUE.

Ordering and concurrency (unordering) between elements in X can then be defined as

follows. For every x, y E X, x and y are

• ordered, denoted as {x,y} E Ii or x liy, iff (xH+y) V (yH+x);

• concurrent, denoted as {x, y} Eco or x coy, iff •(xH+y) /\ •(yH+x).

The notions of chai~, linea, antichai~ and cut& can be defined as follows.

• l ~ X is a chain iff Vx, y El: x Ii y; a line is a maximal chain.

• c ~ X is an antichain iff Vx, y E c : x coy; a cut is a maximal antichain.

Also, b-cuta and e-cu.u denote cuts consisting only of elements in B and E, respectively.

Note that for LSFC nets, we use Ii and co to denote ordering and concurrency relations;

these are characterized directly on LSFC nets, in contrast to the above relations which are

defined on occurrence nets.

1 A partial order iB defined here as a set together with an irrefterive and transitive binary relation.

156 CHAPTER 9. THE EXPANSION ALGORITHM

9.1.2 Processes of nets

Informally, a process of a Petri net is an occurrence net obtained by unfolding a Petri

net into an acyclic structure involving only ordering and concurrency hut no conflicts.

For example, given a Petri net which is a simple cycle Ptt1]>Jt2 ... PntnPt with Pt initially

marked, by unfolding this net one obtains an occurrence net corresponding to a line:

oto oto oto 1t1 1t1 J tI J
Pt 1P2 2 · · ·Pn ~ 1P2 2 · · ·Pn nPt · • ·

where superscripts are used to denote instances of places or transitions. Even though nets

can generate infinite processes, for all practical purposes, finite processes are adequate.

Hence unless explicitly stated otherwise, we consider only finite processes. Formally, a

process of a net is defined as follows [42].

Definition 9.1 Let E = (P, T, F, Mo) be a Petri net and N = (B, E, H) an occurrence

net with 0 N, N° ~ B. Then PN = (B,E,H;</>) ia a proceaa o/E iff ef>: BUE-+ PUT ia

a surjective function aatiafying the following condition& (ef> ia extended to ef> : 'P(B U E) -+

'P(P UT) in the obviow way):

(a) </>(B) ~PA </>(E) ~ T.

(b) Ve EE, \ft ET: <f>(e) = t ::} <f>(·e) = ·t A <f>(e·) = t·.

(c) </>(0 N) ~ {p E PI Mo(P) = 1}.

(d) \/xi,x2 EB U E: <f>(x1) = </>(x2) # x 1 lix2.

Condition (a) states that the mapping is type preserving: conditions map to places,

events map to transitions. Condition (b) further states that if an event e maps to a

transition t, then e's input (output) conditions map to t's input (output) places. Condition

(c) requires that 0 N map to a subset of initially marked places. Finally, condition (d) states

that two instances in the occurrence net map to the same element in the Petri net iff they

are ordered; this is an important point to which we will return shortly.

Usually, we let E ~ T x { 0, 1, 2, ... } , so that events in E correspond to instances of

transitions in T. For t E T, its instances in E are denoted by t0
, t1, t2 , ••• and hence

9.1. OCCURRENCE NETS AND PROCESSES OF NETS 157

tO

p°.t

t~

pB
Ba
t~

te
/6 p5

t-1

p7

i1 pe
(b) ti ti (c)

Js ps

Figure 9.1: {a) A LS marked graph and (b) one of its processes. (c) The finite automata
representation derived from the trace set of (b).

158 CHAPTER 9. THE EXPANSION ALGORITHM

<P({t0 ,t1,t2, ... }) = {t}. Similarly, we let B ~ P x {0,1,2, ... },so that conditions corre­

sponding to instances of a place pa.re denoted by p0 , p1 , p2 ... and hence <P({p0 , p1 , p2, ... }) =
{p}. Processes always start a.nd end with b-cuts: 0 N, N° ~ B, as shown in Fig. 9.1 b.

The notion of process is closely connected to the execution of live-safe mark graphs.

In fa.ct, a LS marked graph can be directly unfolded into a process without the omission

of any transition during unfolding. Fig. 9.la is a. LS marked graph which can be unfolded

into the process in Fig. 9.lb. This process possesses a. certain periodicity: it repeats the

same behavior whenever it reaches a. b-cut which maps to the initially marked places in

Mo.

9.1.3 A few results for processes of LSFC nets

Most of the results developed earlier for LS marked graphs can be applied to processes

with some slight modification. As remarked at the beginning of this section, a. live-safe

Petri net which is a. simple cycle unfolds into a. line, as defined earlier. For LSFC nets, we

define two elements of a net to be ordered iff they belong to a simple cycle. This means

that in a process generated from a LSFC net, a.11 ordered elements belong to the same line.

Thus for LSFC nets, the a.hove fact generalizes as follows.

Lemma 9.2 Let :E = (P, T, F, M0 } be a LSFC net satisfying the one-token Sm restriction

and PN = (B,E,H; <P} a process of E. Then for every x,y E PUT:

(a) If { x, y} E Ii U cf then there exists a line in P N to which all instances of x and y,

xi, yi EB U E, belong.

(b) If {x,y} E co then there exists no line in PN to which a.11 instances of x and y,

xi, yi EB U E, belong.

Sketch of proof. For part (a), if { x, y} E Ii then this is a. formal statement of the fa.ct that

a simple cycle unfolds into a line. If { x, y} E cf then x, y must belong to a SM-component

which is live-safe of E. This SM-component must also unfold into a line in the process PN

as at any marking, exactly one of its places can be marked and no more than one of its

transitions is enabled.

9.1. OCCURRENCE NETS AND PROCESSES OF NETS 159

For part (b), if {x,y} Eco then there exists no simple cycle in E to which both x,y

belong, and there exists a MG-component containing both. It is simple to verify that

in this case, when the MG-component is unfolded, there cannot be a line containing all

instances of x and y. I

From this lemma, we can further deduce that since every x E PUT belongs to the

same simple cycle with itself, there exists a line in P N to which all instances of x belong.

Another consequence of the above lemma is that a p-cut in a net corresponds to ab-cut in

its process. Since a p-cut represents a set of places which can be marked concurrently and

hence corresponds to a marking of a net, ab-cut is a record of the holding of a marking

of the net. Similarly, there is a correspondence between t-cuts and e-cuts; the former

representing a set of concurrent transitions, the latter a set of concurrent events.

Chapter 3 has provided a semantics ofLSFC nets based on firing sequences. For the case

of LS marked graphs, their sets of firing sequences can be obtained by weaving the sequences

derived from a set of simple cycles which cover the nets. This result can be adapted

directly to occurrence nets to allow the determination of their corresponding trace sets and

equivalent automata. For example, the trace set of the process in Fig. 9.lb can be obtained

by first choosing a set of linea which cover the structure, deriving their corresponding

traces and weaving them. The equivalent automata representation for Fig. 9.lb is given

in Fig. 9.lc. This idea. can be formalized as follows. In an occurrence net N = (B, E, H),

a set of lines L = {li, 12 , ••• , In} covera net N iff V(x, y) E H, (x, y) belongs to some line

Ii in N. For a line Ii= bie1b2e2 ••• embm,2 its FA (denoted as FAi) can easily obtained by

considering condition& as atatea and event& as tranaitiona between states. Then similar to

the construction algorithm in Chapter 3, the equivalent FA of a. process N (denoted as

FAN) is given by

9.1.4 Processes of STGs

Instead of considering processes generated from LSFC nets, we consider those generated

from STGs. The main difference is that a process PN = (B,E,H;</>) generated from

an STG EJ = (P, T, F, Mo) contains events which map to complementary pairs of signal

2Note that in a process, every line starts and ends with a condition in B.

160 CHAPTER 9. THE EXPANSION ALGORITHM

transitions: Vt E T 3ei, e; E E such that ¢(ei) = t and ¢(e;) = t. As mentioned earlier,

ab-cut in a process corresponds to a marking of a net. For processes of STGs, such ab­

cut has a corresponding binary representation s. Similar to the state-assignment function

defined in Section 4.2, let a: 'P(B)-+ S be a mapping from b-cuts to binary states. This

mapping provides a mechanism for establishing the correspondence between b-cuts in a

process and binary states in the state graph. This mechanism is required for the following

two purposes:

(a) In unfolding a STG/NC into a process, we may reach a b-cut which contains a

controlled-choice place. At that point, we need to evaluate which control variable

holds in order to proceed with unfolding the net. This mechanism allows one to

determine the states of control variables from the process generated thus far.

(b) In folding a process into a net, we "merge" b-cuts in the process which correspond

to the same· binary state. Again, this mechanism permits. one to determine whether

two b-cuts have the same binary representation.

Below we consider these two cases. Due to the similarity between processes of nets and

marked graphs, most of the results developed earlier for marked graphs and STGs can be

applied to processes of STGs with only a slight modification. In the following, we state

most of the results without proof and only appeal to their close relation with results for

STGs.

The conditions on a process so that its equivalent FA has a consistent state assignment

(c.s.a. for short) a.re similar to those for marked graphs. For brevity, in the following, we

refer to a process or a net satisfying the conditions so that its equivalent FA has a c.s.a..

simply as a process (or net) with a c.s.a.

Fort ET, let E(t) def {e EE I ¢>(e) = t}, the set of events which map to transition t.

Then the process P N has a c.s.a. iff Vt E T, there exists a line l in P N such that

(a) every element in E(t) U E(t) belongs to l, and

(b) elements in E(t) and E(t) alternate in l, i.e.,

either FS(l) r E(t) u E(t) = t0t°t1Pt2P ... ,
or FS(l) r E(t) U E(t) = t°t0Pt1Pt2 ••••

9.1. OCCURRENCE NETS AND PROCESSES OF NETS 161

It has been shown in Theorem 4.8 that a STG has a c.s.a. iff each of its MG-components

has a c.s.a. In such a STG, t and ta.re ordered for any pair of transitions t, i. Thus when

it is unfolded, all events corresponding to t and t must belong to the same line and they

must alternate. It follows that if a STG has a c.s.a. then every process generated from it

has a c.s.a.. Furthermore, according to Theorem 5.2, a. STG is live only if it has a c.s.a.

Hence, if a STG is live then ea.ch of its processes has a. c.s.a..

For distinct b-cuts Bi,B; in PN, we also define the interval from Bi to B; (i < j) as

[Bi, B;] def {x EB U EI x belongs to a chain from Bi to B;}.

Let Si and s; be binary states corresponding to Bi and B;, respectively, i.e., Si = a(Bi)

ands;= a(B;). Then in the equivalent FA of the process PN, every path u from Si to s;

contains all events in [Bi, B;] and therefore lul = IE n [Bi, B;]I.

An interval [Bi, B;] forms a complementary set iff

Vt ET: l[Bi, B;] n E(t)I = l[Bi, B;] n E(l)I.

The following lemma states that b-cuts Bi and B; have the same binary representations

iff the interval [Bi, B;] forms a complementary set.

Lemma 9.3 Let EJ be a live STG and P N a process generated from it, as defined above.

Then for every distinct b-cuts Bi, B; in P N :

a(Bi) = a(B;) # [Bi, B;] forms a complementary set.

Proof If EJ is live, P N must have a c.s.a. .. Let Si = a(Bi) and s; = a(B;). lf-[Bi, B;]

forms a complementary set then every path u : si[u)s; in the state graph of P N must

contain (i) the same number of events e and e, where </>(e) = t and </>(e) = t for some t ET
and (ii) they must alternate. In this case, it is simple to verify that Si= s;. I

Let EJ be a live STG and P N a process generated from EJ. Let B 0 denote 0 N, then

the initial state s0 and B 0 are related by s0 = a(B0). The following lemma shows how to

determine the binary state corresponding to any b-cut B; in PN.

162 CHAPTER 9. THE EXPANSION ALGORITHM

Bi= BO

Bi Bj

Figure 9.2: (a) At B;, s;(m) = 1. (b) At B;, s;(m) = 0. (c) At B;, s;(m) = s0(m).

Lemma 9.4 Let EJ = (P, T, F, M0} be a live STG defined on the signal set J and P N =
(B, E, H; </>} a process of EJ. Then for every signal m E J a.nd for every b-cut B; in P N,

the value of signal m at state s; = o:(B;) ia given by

(a) s;(m) = 1 if there exists B, -f:. B; (i < j) such that m+ E [B1, B;] /\ m_ ¢ [B1, B;].

(b) s ;(m) = 0 if there exists B, -f:. B; (i < j) such that m_ E [B,, B;] /\ m+ ¢ [Bi, B;]. ·

(c) s;(m) = s0(m) otherwise, where s0 = o:(B0), Bo= 0 N.

The proof is quite easy; it hinges on the fact that in the process PN of a live STG, for

every transition t ET the subsets of events E(t) and E(l) belong to a line, and furthermore

P N has a consistent state assignment. Fig. 9.2 illustrates these cases. Note that in case

(c), B, =Bo and [B0,B;] contains neither m+ norm_. This means that signal m has not

changed since the initial state s0 •

9.2. THE EXPANSION ALGORITHM FOR STG/NCS 163

9.2 The expansion algorithm for STG/NCs

The expansion of STG/NCs consist of two algorithms: an unfolding and a folding one.

First, we develop such a pair of algorithms for FC net&; these algorithms are then modified

into the expan&ion algorithm for STG/NCs described subsequently.

9.2.1 Unfolding and folding of free-choice nets

Processes of live-safe Petri nets can be generated by simply unfolding the nets, resolving

conflicts along the way. For free-choice nets, unfolding is a simple procedure which is

intimately related to the MG-reduction algorithm due to Ha.ck, described in Chapters 2

and 3. As before, for a Petri net (P, T, F), define an allocation function A: P-+ T which

allocates an output transition for every place, i.e. 'tip E P: A(p) E p·. In a free-choice net,

if a place p has more than one output transition then any one of them can be allocated

arbitrarily.

The following net unfolding algorithm unfolds the net iteratively and in each iteration,

A is determined only for a p-cut corresponding to the last set of conditions of the process

generated thus far. (In contrast, in the MG-reduction algorithm, A is determined for all

places in P at once.) In the following, Bi is used to denote a set of condition& generated

during a step of unfolding, and it is not necessarily ab-cut.

Algorithm 9.5 (Net Unfolding) Let 'E = {P, T, F, Mo) be a free-choice net and P N =
(B, E, H; ¢) a proceJ& of 'E. Then P N i& con&trocted by iteratively unfolding 'E a& follow&.

(a) Initialization: Let Po ~ {p E P I Mo(P) = 1} Juch that Po i& a p-cut.

Let i = 0.

(b) One Jtep of unfolding conJiJtJ of the following.

bl. Define Bi Juch that </>(Bi)= Pi and IBil = IPil·
b2. Pick the allocation function A(Pi) and define

n = {t e A(Pi) 1 ('tip E ·t)(3b E u B;): <t>(b) = pA b· = 0}.
O<"<i -'-

164 CHAPTER 9. THE EXPANSION ALGORITHM

bS. Define Ei JJtt.ch that </>(Ei) = n and IEil = ITil·

b4. Define U Hi~ (Uo:::;;:::;i B;) x Ei JJtt.ck that

(Vb E LJ B; I b· = 0)(\:/e E Ei): {</>(b), c/>(e)) E F ¢> (b, e) E U Hi.
O<"<i -'-

b5. Let Pi+l =(Ti)·. Define Bi+l JJtt.ck that </>(Bi+i) = Pi+l and IBi+il = IPi+1I·

b6. Define DHi ~ Ei x Bi+i JJtt.ch that {x, y) E DHi <=> {cf>(x), </>(y)) E F.

b7. Let Hi = U Hi U DHi.

(c) Let i = i + 1. Proce3s P N can be further generated by going back to step (b), otherwise,

it is given by

B = LJ B;, E = LJ E;, H = LJ H;.
O<"<i -'- o:::;j<i

It is important to note that step b2 is most crucial in the algorithm, and means that

for each place p E Pi :

• If IP· I > 1 (e.g. p· = {ti, t2}) then A(p) is chosen nondetennistically (e.g. A(p) = t 2).

Since pis a free-choice place, t2 has no other input places and it can be included in

Ti.

• If IP· I = 1 (e.g. p· = { t}) then A(p) = t. In this case, however, t may have other

input places (i.e., ·t ~ 1); tis included inn only if all conditionJJ corresponding to ·t
have already occurred in the process generated thus far.

An example of net-unfolding applied to a LSFC net (Fig. 9.3a) is shown in Fig. 9.3b.

Notice that only some of B/s are b-cuts, some of E/s are e-cuts.

Folding of a process of a LSFC net is rather simple and uninteresting; nevertheless, we

describe it here to motivate the folding operation-similar in spirit-required for STGs

with non-input choices.

Let E be a LSFC net and P N a process of E, obtained by applying the above unfolding

algorithm. In order for P N to reproduce the original net E when folded, elements of P N

must map to the set of all elements of E. In other words, the smallest process P N which

can be folded back into !.: must satisfy

9.2. THE EXPANSION ALGORITHM FOR STG/NCS

(a)

P4
t6

(b)

165

p6 B6

B7

Figure 9.3: A demonstration of the net unfolding algorithm, as applied to a LSFC net (a)
to produce a process (b).

166 CHAPTER 9. THE EXPANSION ALGORITHM

(i) </>(0 N) = </>(N°) ~ {p I Mo(P) = 1} and

(ii) BUE is the minim4l set such that </>(BUE)= PUT.

Such a process will be called complete. The following net folding algorithm is applied to

complete processes of LSFC nets.

Algorithm 9.6 (Net folding) Let E = (P, T, F, Mo) be a LSFC net and P N = (B, E, H; </>}

a complete process of E. Let N = (B, E, H) be the associated occurrence net. Then

p - </>(B),

T - </>(E),

F - { (<f>(x),</>(y)} I (x,y} EH},

Mo - </>(o N).

It is a simple matter to check that by using the above definition, the process in Fig. 9.3b

can indeed be folded back to the net in Fig. 9.3a. The reason why the folding of such a

finite process reproduces the original LSFC net should be intuitively clear: when folded

back, every place will have the same input and output transitions again. Likewise, every

transition will have the same input and output places again; however, this is trivially true

because by definition, a. process preserves the input and output conditions of all events.

This folding procedure reproduces the original net provided that the process contains at

least one instance of every element of the original net.

We are now ready to discuss the expansion algorithm for producing a STG/IC from a.

STG/NC.

9.2.2 The Expansion Algorithm

Similar to the unfolding and folding algorithms developed for LSFC nets above, the ex­

pansion of STG/NCs also consists of two stages corresponding to unfolding and folding.

First, we present an unfolding algorithm for STGs with input choices. This algorithm is

identical to the one for free-choice nets given above (Algorithm 9.5), with the exception

of step b2. In the previous unfolding algorithm, at every unfolding step, the allocation

9.2. THE EXPANSION ALGORITHM FOR STG/NCS 167

function A(Pi) is determined by randomly picking an output transition for every place

p E Pi with more than one output transitions. For STG/NCs, a process can be generated

in a similar manner; however, when a place p E Pi with labeled output arcs is encountered,

an output transition is chosen depending on which arc label holds-the choice of which

output transitions to pick is no longer free but dependent on a condition which can be

determined from the process generated thus far. Below we will only describe the first part

of step b2 for the new unfolding algorithm; this part involves the determination of the

allocation function.

Algorithm 9.7 (Unfolding of STG/NC) Fir&t part of &tep b2: Choo&e the allocation

function A(Pi) a& follow&.

b2.1 If 3p E Pi &uch that p ha& no labeled ou.tpu.t arc& then a tran&ition t E p· i& picked

randomly.

b2.2 Otherwi&e, if 3p E l'i &u.ch that p· = {ti, t2, ... , tn} and .A(p, tm) = am, 1 S m S n,

then A(p) = tm only if am hold& at B,.

Important remarks. Case b2.1 is the same as one in the previous algorithm. For the

new case b2.2, we have the following remarks.

• In order for the choice to be deterministic at B,, it is required that exactly one am

holds at B,. Thus in the STG specification, the set { a 1 , a2 , ••• , an} must be chosen

such that every time place p is marked, only one condition in this set can become

true. On the other hand, if it is possible for more than one of them, say ai and a;,

to hold at Bi then both ti and t; are enabled. This situation will lead to problems

as discussed in Chapter 8, concerning the specification of non-input choices.

The above requirement ensures that every transition in p· is enabled in a marking

with a distinct binary representation, as illustrated by the example at the end of

Chapter 8.

• As mentioned at the beginning of Chapter 8, for STG /NC, we impose the restriction

that

Vp E P, Vt ET: if .A(p, t) =am then {p, m.} ¢co, where am E {(m, 0), {m, 1)}.

That i8, p cannot be concurrent with any tramition of &ignal m.

168 CHAPTER 9. THE EXPANSION ALGORITHM

If this restriction is satisfied, then in the process P N of the STG, all instances of

p, m+ and m_ must belong to the same line. Thus by definition, in P N, any cut

containing an instance of p cannot contain instances of m+ or m_. Therefore, if

am holds at a b-cut B, such that p E </>(Bi), then am holds at any other b-cut Bi
such that p E </>(Bi n B,). This is the reason why in step b2 above, it is sufficient to

consider the holding of am at only one b-cut (instead of all 'b-cuts) containing p.

Conversely, without this restriction, then to determine whether am holds at p, one

needs to check every b-cut Bi such that p E </>(Bin Bi)· But in general, this is

impossible because the process generated thus far may not contain all such b-cut

Bi. Therefore, this restriction is of fundamental importance; without it a STG/NC

cannot be unfolded into a process.

By using the above algorithm, the STG EJ = {P, T, F, M 0 ; .X) can be iteratively unfolded

into a process P N = {B, E, H; </>). When the algorithm is stopped, i = n for some positive

integer n and

B = LJ B;, E = LJ E;, H = LJ H;.
0$j<n

Similar to the algorithms for free-choice nets, in order for the process generated to

exhibit all possible behavior of the original STG when folded, we require that it be complete

and has a consistent state assignment. That is, process P N must satisfy the following

conditions which together constitute the completenea& of procea&ea of STGs.

Definition 9.8 (Complete Process of a STG) Let EJ = {P, T, F, M 0 ; .X) be a STG/NC

and P N = {B, E, H; </>) a proceu of EJ. Let N = {B, E,H) be it& aa&ociated occurrence

net; Bo = 0 N and Bn = N°. Then P N ia a complete proceaa of EJ if tke following

condition& are satisfied:

(a) </>(Bo)= </>(Bn) ~ {p E PI Mo(p) = l}.

(b) BUE i& a minimal aet suck that </>(BUE)= PUT.

(c) P N ha.. a corui&tent atate aaaignment and [B0 , Bn] form& a complementary set.

Note that (a) and (b) are the requirements for processes of free-choice nets to be

complete, as discussed earlier. The last condition (c) implies that B0 and Bn have the

same binary representation, i.e., o:(Bo) = o:(Bn)·

9.2. THE EXPANSION ALGORITHM FOR STG/NCS 169

The folding procedure consists of two steps. First, a complete process is folded by

merging b-cuts B0 and Bn to produce a strongly connected net. Then, free-choice places

are merged, using the recur.aive merge function defined later. Controlled-choice places are

not merged. The result is a free-choice net which behaves exactly like the original STG/NC;

however, this new net can be synthesized using the techniques developed earlier.

Algorithm 9.9 (Folding of STG/NC) Let EJ = (P, T, F, M0 ; >-.) be a STG/NC and

P N = (B, E, H; </>ran a complete proce.a.a generated from it wing the unfolding algorithm

de.acribed above. Then P N can be folded back into a net EJ wing the following procedure.

(a) Merge Bo and Bn : Vb E B0 , Vb' E Bn .auch that </>(b) = </>(b') : replace b' with b in

B, E, H and</>.

(b) Merge free-choice place.a: For all b, b' EB .auch that <f>(b) = </>(b') = p E P and pi.a a

free-choice place,

if there exiat b-cut.a Bi, B;, i < j, such that b E Bi, b' E Bi and [Bi, Bi] forms a

complementary set

then merge(b, b').

(c) The expanded net EJ = (P', T', F', M~) i.a given by

P'=B
T'=E
F'=H
M~ =Bo.

(</>(P') = P)
(</>(T') = T)

Given the process PN = (B,E,H;</>), the merge function recursively merges elements

of the process together and update all components B, E, H and</> of PN. Input to the

merge function is a pair of elements (x1 , x2) of the same type (conditions or events), they

are merged into a single element named x1 .

Function merge(xi, x 2)

Replace all x 2 with x 1 in B, E, H and</>;

For every Yb y2 such that </>(Y1) = <l>(Y2) A (Y1 · = Y2 · V · Y1 = ·Y2) :

merge(y17 y2)

170 CHAPTER 9. THE EXPANSION ALGORITHM

Remarks. The above folding algorithm is the same as one for LSFC nets, except that

only conditions corresponding to free-choice places are merged together, whereas those

corresponding to controlled-choice places are not. This algorithm accomplishes the last

stage of the expansion algorithm. The essential idea of the expansion algorithm is to split

states with non-input choices. This is carried out in two stages: splitting all states with

input and non-input choices and then merging states with input choices. The first stage

corresponds to unfolding the STG/NC into a process; the second folding the process back

into a STG/IC by merging only free-choice places.

In this algorithm, conditions in a process a.re merged only if (i) they map to the same

free-choice place in the net and (ii) the b-cuts containing them must map to the same binary

state. Requirement (ii) is unique to processes of STGs and it allows one to determine when

conditions can be merged together. Specifically, this requirement appears in the following

steps of the algorithm.

• In step (a), if PN has a c.s.a. then the binary states corresponding to the b-cuts

Bo and Bn must be identical: a(Bo) = a(Bn)· This implies that the state graph is

strongly connected (and is therefore live).

• In step (b), if the b-cuts B, and B; are such that [B;, B;] forms a complementary set

and PN has a c.s.a., then they have the same binary representation: a(Bi) = a(B;).

Hence in the state graph representation of P N, every event enabled in Bi will also

be enabled in B; and vice versa-this is exactly a free-choice situation. Thus, even

though Bi and B; appear to be separate b-cuts in PN, due to the fact that they

have the same binary representation, they actually map to a p-cu.t containing the

same free-choice place. It is important to realize that only by considering the binary

representation of b-cuts, one can guarantee that they can be merged into free-choice

places. If two b-cuts map to the same free-choice place but they do not have the

same binary representation then they cannot be merged. An example illustrating

these rules will be described next.

9.2.3 An example

In this section, we present another example of a control circuit with data-dependent oper­

ation which is used together with an arbiter to control access to shared resources. This is

9.2. THE EXPANSION ALGORITHM FOR STG/NCS 171

called a Resource Locking Module (RLM) which communicates externally using the reset­

signaling protocol. The reason for presenting this example is that its STG specification

contains both free-choices and controlled choices, thus allowing a demonstration of the

expansion algorithm just described. In the previous example of the two-cycle FIFO con­

troller, its STG specification contains only controlled-choices. Hence, when the expansion

algorithm was applied, no merging was needed; the net W88 unfolded into a process and

then simply folded back at b-cuts corresponding to initially marked places.

Fig. 9.4a shows the block diagram of a circuit in which there are two RLMs connected

to a two-input arbiter. Each RLM has a set link {Sr, Sa}, a clear link {Cr, Ca} connected

to the external environment, and a lock link {Lr, La} connected to one port of the arbiter.

When a set-request arrives at Sr, the RLM forwards it to Lri awaits for acknowledgement

on La and passes it back to Sa. This signifies that the arbiter has been locked. When the

set-request Sr is dropped, the module immediately drops Sa in response, leaving Lr high

to lock up the arbiter. From here on, any set-request will be acknowledged immediately

through Sa. In order to unlock the arbiter, instead of a set-request, a clear-request Cr is

sent to the RLM. This will reset Lr to low, which in turns will cause La to drop. The

module responds by raising Ca, and when Cr is dropped, it will drop Ca in return, thus

completing a clear cycle. A subtle timing requirement for the arbiter is that the input

request at its other port is disallowed until signal La has gone low at this port. Such an

aribter design is described in [10] and contains some subtle difference to that suggested by

Seitz and also Plummer [40].

The STG specifying the operation of the RLM is shown in Fig. 9.4c; the logic imple­

mentation derived from the STG is shown in Fig. 9.4b. It can be easily verified that this

circuit works according to the specification. In this STG, Po is a free-choice place; PI is

controlled-choice place with a.re labels (La, 0) and (La, l}. The variables controlling data­

dependent operations are Sr, Cr and La. The control state graph is shown in Fig. 9.4g,

where states are values of the vector (Sri Cr, La)· In the initial state s0 of the system, the

values of all signals in (Sr, Sa, Cr, Ca, Lr, La) are 0: so = 000000.

This STG can be unfolded into a complete process which is a line because the system is

totally sequential. As indicated in Fig. 9.4d, this line has four instances of place Po, denoted

by pg, p~, ¥o and p~. For clarity, only these instances of place p0 are drawn explicitly, other

places are omitted from the figure. The line segment between pg and p~ corresponds to

172 CHAPTER 9. THE EXPANSION ALGORITHM

Clear

Set Lr

(a) Arbiter La

:02
r+

'J
Lr+

ii+

la+

Cr+
Jr-

1 n/oltl.
l..

Joli. ' Lr- ,:. 2 Sa+

~ .. ~ Jr-
La- r+ 1-T l+ fe ~a+ },_
Cr- I-1 Sr+ Cr+

·~ 1 pO
Lr- (e)

(c)
(d) r+ ' lr- La-

.Ji_ T
Ca+

l+ ' J_ Cr-
T

I-
(f) 1.1.0011 'P~ 6

01.001.1. (g) 1.00 01.0

1.01.

001.

Figure 9.4: (a) The block diagram of the RLM and its (b) logic implementation. Its STG
specification (c) is unfolded into a complete process (d), then folded back into the STG in
(e). (f) The state graph of the STG in (e). (g) The control state graph.

9.3. PROPERTIES OF STG/NCS 173

traversing the left branch of the net, with {La, O} being true. The segment between p~ and

p~ corresponds to the left branch of the net, but with (La, 1) being true. The last segment

between p~ and p~ corresponds to the right branch of the net.

This process contains instances of every element in the net and hence satisfies the

completeness conditions described earlier. It is folded to produce the STG/IC shown in

Fig. 9.4e as follows.

• Conditions pg and p~ are merged together to form a strongly connected net.

• Conditions p~ and Yo are merged together because [p~, Yo] forms a complementary set.

Then, to complete the folding, events input to p~ and Yo corresponding to transitions

Sa-, Sr- and Sa+ are also merged together.

Fig. 9.4f is the state graph of the STG/IC in Fig. 9.4e. This state graph can be

decomposed to produce smaller state graphs for non-input signals {Sa, Ca, Lr}· From the

STG/NC in Fig. 9.4c, we find

I(Sa)={La, Sr}
I(Ca)={La,Cr}
I(Lr)={La, Sr, Cr}.

The logic implementation can be carried out by first deriving the contracted state graph for

every non-input signal directly from the state graph given in Fig. 9.4f and then determining

its logic equation. The final implementation is given in Fig. 9.4f; its derivation can be easily

verified.

9.3 Properties of STG/NCs

In this section, we examine a number of relevant properties of STGs with non-input

choices. One of the important issues to be addressed is the behavioral equivalence be­

tween a STG/NC and its expanded STG/IC; this will be managed by showing that the

two STGs are equivalent iff they unfold into the same complete process. Another issue is

the liveness property of STG/NCs; by examining this property we will be able to provide

some insights into the construction of STG/NCs from initial informal specifications. One

174 CHAPTER 9. THE EXPANSION ALGORITHM

last issue is how to characterize the temporal relation in such nets, i.e. how to determine

whether two transitions are ordered, concurrent or in conflict using previous techniques.

It will be seen that the key concept used is that of complete processes. As described

earlier, even though a complete process is a.cyclic and contains only a typical record of a

net's execution, it still can reproduce the total behavior of a net in the form of a state graph.

Such a state graph is constructed by merging markings with the same state assignment.

Due to this fact, complete processes of STGs contain more information than conventional

processes of FC nets.

In the rest of this section, we will consider a STG/NC EJ = (P, T, F, M 0 ; >.} which

can be unfolded into a complete process P N = (B, E, H; <f>}. This complete process can

then be folded to produce a expanded net EJ = (P', T', F', Mt,}. Let Nr:. = (P, T, F) and

Nr,1 = (P', T', F') denote the underlying net structures of EJ and EJ, respectively. Then

by definition, both Nr, and Nr,1 are free-choice nets.

Behavioral equivalence between STG /NC and STG /IC

Below, we sketch the reasoning for establishing the behavioral equivalence between a

STG/NC and its expanded STG/IC: when EJ is successfully expanded into EJ, their

behaviors are equivalent. Two nets are behaviorally equivalent iff' they have the same trace

set or equivalently, the same finite automaton.

The key point is to show that if two nets. a.re behaviorally equivalent, they must unfold

into the same complete process. Suppose that

• EJ can be unfolded into a complete process P N and the latter folded back into the

expanded net Ej.

• Ej can be unfolded into another complete process P N'.

Then it is easy to see that it is possible to choose a transition sequence of control signals

such that the unfolding of Nr,1 and Nr, yield the same process, i.e. P N and P N' are

identical; such a control sequence is recorded in the control state graph (CSG) described

earlier. Hence, we can conclude that if EJ can be expanded into a live-safe net Ej then

they are behaviorally equivalent.

9.3. PROPERTIES OF STG/NCS 175

Liveness of STG /NCs

Recall that earlier, we defined liveness of STGs in terms of their state graphs: a STG is

live iff its state graph is strongly connected. For STG/NCs, the same definition can be

employed. Since the state graph of a STG/NC is obtained through its expanded net, a

STG /NC is live iff its expanded net is live. The expansion algorithm successfully produces

a live expanded net if the original STG /NC can be rmfolded into a complete process. Thus,

we have the following result.

Lemma 9.10 A STG/NC is live iff it can be unfolded into a complete process.

Hence in order to verify that a STG/NC EJ is live, one may need to apply the net­

unfolding algorithm and check if the rmfolded process is complete. If so, by folding the

process, a live expanded net is then obtained. However, often times it is more convenient

to use a certain necessary liveness condition directly on a STG/NC before unfolding. If

this necessary condition is not satisfied by the STG/NC then it cannot be unfolded into a

complete process. We study such a condition through an example below.

Consider a FC net as shown in Fig. 9.5a. This net is safe but not live because only

two MG-components resulting from MG-reduction are live-safe, as indicated in Fig. 9.5c.

Let's consider a firing sequence which leads to deadlock in Fig. 9.5a: in marking {pi,PJ},

transitions ti, t2 , t3 and t4 are all enabled, if ti and t 4 are chosen (nondeterministically)

to fire, then P3 and P6 are marked. At this point the net's operation halts as there is

no token to enable ts and t 6 • Suppose now that instead of allowing the choices to be

nondeterministic, we require that whenever places {.Pi,PJ} are marked, the pair {ti, t3} be

chosen to fire together, and similarly { t 2 , t 4} together. In this case, the net's operation

is live and safe. This is one basic motivation behind the use of controlled choices. The

STG/NC corresponding to this case is shown in Fig. 9.5b: output arcs of places {.Pi,PJ} are

labeled with (a, O} and (a, 1}; in addition, transitions t5 and t 6 are interpreted as ts =a_
and t 6 =a+.

The following lemma states a necessary condition on the underlying net of a STG /NC

in order for it to be live-safe.

176 CHAPTER 9. THE EXPANSION ALGORITHM

(e)

Figure 9.5: (a) A non-live FC net and (b) a STG/NC with the same underlying net.
(c) Two live-safe MG-components. (d) Two live-safe SM-components, one of which is
expanded into a simple cycle (e).

Lemma 9.11 Let EJ be a STG/NC and NE be it& underlying free-choice net. Then

STG/NC i.s live-.safe only if there ezi.st& a .set of MG-component& which cover Nr,.

In a similar fashion, we see that only two SM-components resulting from SM-reduction

on Fig. 9.5b are live-safe; they are depicted in Fig. 9.5d. Notice that each of these SM­

components is itself a controlled-choice net. These SM-components can be expanded into

simple cycles; Fig. 9.5e illustrates the case for the SM-component on the left of the figure.

Let us consider a necessary condition for this controlled-choice net to be live. Obviously,

it is live if its expansion yields a simple cycle as just mentioned. This condition in turns

requires that a+ not be ordered with t1 , and a_ not ordered with t 2• For suppose that

ts = a+ in Fig. 9.5d, then a+ is ordered with t1 and the simple cycle PotoPi t 11'3t5Po (where

ts = a+) will contain an arc labeled with (a, 1}. In which case, the control variable (a, 1)

9.3. PROPERTIES OF STG/NCS 177

will always be true, thus restricting the net's operation in this simple cycle and the other

branch of the net can never be activated, resulting in non-liveness. Hence, for every

controlled-choice place p and transition t such that ..X(p, t) = (a, 1) (or (a, 0)), the above

condition requires that there exist no simple cycle containing t and a+ (or a_).

In a STG/NC, we require that for every place p and transition t E p· such that p

is a controlled-choice place and ..X(p, t) E {{a, O}, (a, 1} }, p not be concurrent with any

transition in {a+, a_}. Also, since t is not allowed to belong to the same simple cycle with

{a+, a_}, it follows that t and a+ must be in conflict in the underlying free-choice net (of

the STG/NC).

Construction of STG /NCs

So far in this chapter, we have discussed the expansion algorithm for converting a STG/NC

into an expanded net which corresponds to a LSFC net. That discussion assumes that a

"correct" STG/NC is given. However, the construction of a STG/NC specification is

generally not an easy task, because such a specification may involve complex interactions

between choices and concurrency.

The above illustrative examples provide us with some insights for the construction

of STG/NCs. As evidenced throughout this chapter, one of the key concepts is that of

a complete process. Besides specifying all possible concurrent behavior of a system, it

also contains extra information allowing one to reconstruct the free-choices. Hence in the

following procedure for STG/NC construction, we start with a process.

(a) Build a complete process: Construct an initial process according the concurrent be­

havior of a system. This process must contain segments representing possible choices

of actions. The process can then be made complete, possibly by adding extra internal

transitions.

(b) Select control variables: The complete process can be folded into a free-choice net,

and arc labels corresponding to control choices can be added to obtain a STG/NC.

(c) Check for live-safeness: The necessary conditions for live-safeness for such a STG /NC

can be verified as follows. The STG/NC is live-safe only if (i) its underlying net is

free-choice, (ii) there exists a set of live-safe MG-components which cover it, and

178 CHAPTER 9. THE EXPANSION ALGORITHM

(iii) control variables are chosen such that every MG-component in this set can be

activated at some marking reachable from the initial marking.

Temporal Relation in STG/NC

Previously, we have provided a syntactic characterization of the temporal relation for LSFC

nets. However, due to the presence of controlled choices, this characterization does not

apply directly to STG/NCs. As discussed earlier, the introduction of controlled choices

into a STG imposes further restrictions on the set of firing sequences of the net. We will

show that such restrictions only affect the sequential but not the non-sequential behavior

of the net, and concurrency is preserved.

Let :EJ be a STG/NC and :EJ. be its expanded net; their underlying net structures are

denoted by Nr. and Nr,1. Since all arc labels are not considered in Nr,, both Nr, and Nr,1

are FC nets. Let tr = Ii U co U cf and tr' = Ii' U co' U cf' be the temporal relations defined

in Nr. and Nr,1, respectively. Note that tr is the temporal relation in the underlying FC

net of :EJ; it is not the temporal relation in the STG/NC, which is really given by tr'. In

the following we study the relationship between tr and tr'.

We can determine the temporal relation tr' of the STG/NC :EJ from its expanded net

:EJ. which is a STG/IC. The underlying net Nr,1 of the expanded net is a FC net and thus

previous characterizations of the temporal relation apply.

First, note that a prerequisite for two transitions in the expanded net Nr,1 to be con­

current is that they are concurrent in Nr,. This is because the expanded net is obtained

by unfolding Nr, into a process and then folding the latter into Nr,1. In a process, all

conflicts must have been resolved, and concurrency between instances of transitions must

be preserved. Hence concurrency is preserved: co' ~ co.

The situation with ordering and conflict is slightly more complicated. The example

given in Fig. 9.5 demonstrates that due to controlled-choices, the number of transitions in

conflict in a STG/NC (Fig. 9.5b) cannot be more than that in its underlying FC net. In

the expanded net, a controlled-choice place in a STG/NC is eliminated during unfolding.

Hence: de' ~ de.

On the other hand, Fig. 9.5e shows that a SM-component of a STG/NC can be

9.4. SUMMARY 179

expanded into a simple cycle. This implies that:

(i) Two transitions are in conflict in the expanded net Nr:,1 only if they are also in conflict

in Nr,: cf'~ cf.

(ii) On the other hand, if two transitions are ordered in the expanded net Nr,1 then in

Nr,, they may be either ordered or in conflict: Ii' ~ Ii U cf.

(iii) If two transitions are ordered in Nr, then in the expanded net Nr,1 they must also be

ordered: Ii ~ Ii'.

(iv) If two transitions are in conflict in Nr, then in the expanded net Nr,1 they may be

either ordered or in conflict: cf ~ cf' U Ii'.

From these facts, we can deduce an equality (vii) as follows:

(iv) => cf~ Ii' U cf'
=> Ii U cf ~ Ii U Ii' U cf'

(iii) => Ii U cf~ Ii' U cf' (v)
(i) & (ii) => Ii' U cf'~ Ii U cf U cf= Ii U cf (vi)
(v) & (vi) => Ii' U cf'= Ii U cf (vii)

The above results are summarized in the following lemma, which simply states that when

a FC net is converted into a STG/NC by adding arc labels, both sequentiality and non­

sequentiality are preserved.

Lemma 9.12 Let EJ and EJ be a STG/NC and its expanded net; Nr, and Nr,1 their

re8pective underlying net8, a8 defined above. Then

co'~ co
Ii' U cf' = Ii U cf.

The above result ensures that (i) if two transitions are not concurrent in the underlying

net Nr, of a STG/NC, then they will not be concurrent at all, and (ii) if they are ordered

or in conflict in Nr, then they will also be either ordered or in conflict in the expanded net

Nr,1.

9.4 Summary

In this chapter, we have presented an algorithm for converting STG specifications with

non-input choices to ones which contain only input choices. The most crucial underlying

180 CHAPTER 9. THE EXPANSION ALGORITHM

concept of STG/NCs and this expansion algorithm is concerned with the behavioral (i.e.

firing sequence) semantics of nets: STGs are considered as high-level representations of

state graphs. In particular, the use of controlled-choices can be thought of as a. further

restriction of the trace set derived from a STG. Similarly, the expansion algorithm basically

manipulates the state graph from a higher level and it performs the splitting of states with

non-input choices. By requiring that arc labels of a controlled-choice place never hold

simultaneously at the moment that place is marked, we can guarantee that split states

have distinct binary representations.

One important concept in this chapter is that of a complete process. Even though it is

acyclic, such a process contains enough information concerning the complete behavior of

the system, so that from it choices between alternate control events can also be deduced.

One fundamental requirement in order for a STG/NC to unfold into a process is that

transitions of a control variable not be concurrent with transitions which are output tran­

sitions of the controlled-choice places. This is a fundamental requirement, because the

only way to determine the state of a control variable, say j, at a marking (at which a

controlled-place, say p, is marked) is for the transitions of the variable j to be ordered

with p; otherwise, it is impossible to tell exactly.

Chapter 10

Suggestions for further research

In this short chapter, we suggest areas for further research. Some of the extensions to the

STG model to be discussed are:

• Development of high-level hardware description languages for the specification of

self-timed systems.

• Techniques for composition and decomposition of self-timed control circuits based on

STGs.

• Performance evaluation and optimization of control circuits synthesized from STGs;

• Pragmatic issues concerning the use of STGs in silicon compilation.

High Level Hardware Description Language

Even though the design approach based on STGs allows the direct a.nd efficient synthesis

of control circuits, one of its shortcomings is that STGs are rather low level: A behavior

specification of a control circuits in terms of STG requires the tedious enumeration of its

exact behavior at the level of signal transitions-this is especially true for control circuits

whose operation involves both concurrency and choices, such as the FIFO module described

in Chapter 8. To alleviate this problem, we need (i) more abstract specifications which can

be refined iteratively to produce more detailed descriptions and (ii) a design methologoly

for self-timed systems. A reasonable strategy involves the use of a high level description

language to serve both purposes.

181

182 CHAPTER 10. SUGGESTIONS FOR FURTHER RESEARCH

• A high level la.ngua.ge provides a.n abstraction of detailed implementation which can

be refined subsequently. For instance, at the more abstract level of specification,

it should be possible to represent parts of a STG as single events; signal transi­

tions specifying the communication protocol between control modules should also be

represented as single synchronization events.

• A high level language can be used to enforce a design style on the use of STGs. In

particular, the syntax of the language can be used to disallow "bad" constructions.

For instance, in the CSP-like language proposed by Martin [30], each module is rep­

resented by a sequential process; parallelism is achieved by having many sequential

processes commnunicating with ea.ch other through synchronization. Obviously, the

design style imposed by such language is that each module can perform only sequen­

tial operations; concurrency results from the interconnection of sequential modules

operating in parallel.

STGs allow the specification of control modules with inherent parallel operation (such

as the FIFO module in Chapter 8) as well as those with sequential operation and choices

(the RLM in Chapter 9). Thus the description language for STGs should not prohibit

the specification of concurrent operation internal to modules. Our strategy is to iden­

tify a design approach for STGs and then develop language constructs which allow the

description of hardware control circuits according to the design approach. Some of the

possible candidates for our hardware description language include path expreuiona [1] and

PADL (29], to name a few. The semantics of pa.th expressioDS in terms of Petri nets has

been studied in [6]. On the other hand, PADL is designed expressly for the description of

packet architectures which are related to data flow graplu. A net semantics can be easily

developed for a. subset of PADL.

Composition and Decomposition

The design of a. system is unmanageable unless there is a hierarchical approach which

allows the system to be decomposed into components, each desgined separately and then

composed together to form the whole system. The important issue here is the correctness of

such systems when the decomposition and composition steps are taken: how to guarantee

that the behavior of the original system before decomposition is the same as that of one

183

composed from interconnecting modules, each corresponding to a. decomposed pa.rt of the

system.

The firing sequence (trace) semantics can help: properties of composed and decom­

posed systems can be reasoned using traces and operations on traces. Ma.ny idea.a a.nd

ma.thema.tica.l results developed for CSP can be applied with some modification; these

include high-level specifications, proof rules, etc.

This thesis ha.a developed a. useful result concerning the equivalence between the be­

havior of a. FC net and the a.ggrega.te behavior of a set of contracted nets. This is a.n

instance of decomposition and composition of nets. However, it differs from composi­

tion/ decomposition in genera.I in that the former starts out with a. net whose live-safeness

properties a.re known a.head of time, while in the latter, these properties have to be proven

for the system composed from modules.

Performance Evaluation and Optimization

STGs allow the specification and direct implementation of speed-independent control cir­

cuits; circuits obtained from STGs a.re ha.zard free regardless of changes in the delays of

logic components. Nevertheless, it is always important to be able to determine the tim­

ing performance of control circuits so tha.t their critical parts ca.n be optimization when

needed.

One can take the simple view of a STG as specifying the timing constraints between

signal transitions; a constraint such as i. ~ j. is implemented as a logic element with

input i and output j. Thus a time delay d can be associated to the arc i. ~ j. to represent

the delay between transitions of signals i and j. This delay ca.n be determined from the

logic implementation.

By calculating the delay values and associate them to all causal arcs in a STG, a timed

model is obtained. Techniques in Timed Petri nets [33] can then be applied directly for

the purpose of performance a.na.lysis and optimization.

One specific type of optimization is the transformation of a. speed-independent imple­

mentation into one which is only hazard-free. Recall that speed-independence means that

a circuit is hazard-free for any combination of delays of logic gates. By determining the

184 CHAPTER 10. SUGGESTIONS FOR FURTHER RESEARCH

f'e9

r-z ack

~ ,.,. +
G1

z :B i t::I
I

t::I
l

I::
GI

(b)

Figure 10.1: Transforming a speed-independent circuit into a hazard-free circuit. (a) By
removing synchonization constraints. (b) By resetting modules in parallel.

bounds on their delays, one can remove some of the causal constraints for synchronation

from the STGs without affecting the correct operation of the circuit. For example, in the

STG of Fig. 10.la, the delays of the subgraph Gi and G2 can be determined from their

logic implementation to be di and d2, respectively. If min di > max d2 then the transition

y which synchronizes the actions of Gi and G2 can be removed. Such an optimization

results in a saving of logic gates and an improvement in speed.

Another type of optimization is a well-known technique for reducing the total delay

of an operation cycle using the reset signaling protocol, as illustrated in Fig. 10.1 b. If a

number of non-pipelined modules a.re connected in tandem, the input requ.est to the leftmost

module must propagate through the all of them before an acknowledge is transmitted back.

In the reset phase of the signaling protocol, the input requ.est is reset and it is allowed to

propagate through the modules. The operation is completed when the acknowledge is

reset by the leftmost module. The operation during the reset phase of the cycle does

not involve any useful work but only resetting the modules to their previous quiescent

state. The total delay can be reduced by connected the leftmost input request signal to

all modules in the cha.in, so that they can be reset to their initial state in parallel. The

time required for reseting can thus be reduced to a constant. This technique works well in

practice even though the circuit can no longer be guaranteed to be speed-independent. In

CMOS technology, there is a natural way to implement this technique using domino logic,

as demonstrated in [10].

185

Pragmatics

One cl. our goel8 ia to me STGa u a formal lpN'i8caticm of coatrol cireuits in a bard­
wue architecture for aelf...u.t .,...._ It ii »•fllC* f1111et1 to build ~ tools
for the a.utomatic dMip C'Jl.._._..,.,n•• tA. coacem ue the

apeci&aiior.l and dMip of d.ea p&iJla, wt ta.•• at•• •••a.re ...Uum fOr VLSI im­
plementation.

The ~ COJlll~• ot ..a .. hutlwue .-. .. ._ wi al8o be epedled m
terms of Peen aeta; u.e, cu IM i_,a..r11*ed 111111 _. ma&cbed ._, ...,_

niquea. A-.... iM1)•~•·..,..•··~--1S.1 •PMI'•..,...._
logic arr&J'I (•) - to be

Bibliography

[1] T. Ana.nthara.ma.n, E. M. Clarke, M. J. Foster, a.nd B. Mishra. Compiling Path

Expressions into VLSI circuits. In Proced.inga of the 1 !th Sympoaiu.m on Principle&

of Programming Languagea, ACM, January 1985.

[2] G. Berthelot and G. Roucairol. Reduction of Petri Nets. In Lecture Notea in Computer

Science ,/5, Springer-Verlag, 1976.

[3] E. Best. Concurrent Behaviour: Sequences, Processes and Axioms. In Lecture Notea

in Computer Science 197, Springer-Verlag, 1984.

[4] E. Best a.nd K. Voss. Free Choice Systems have Home States. Acta Informatica, (21),

1984.

[5] D. L. Black. On the existence of delay-insensitive fair arbiters: trace theory and its

limitations. Journal of Diatributed Computing, 1:205-225, 1986.

[6] H. R. Campbell a.nd A. N. Habermann. The specification of process synchronization by

path expressions. In Lecture Notea in Computer Science !6, pages 89-102, Springer­

Verlag, 1974.

[7] T. J. Chaney a.nd C. E. Molnar. Anomalous behavior of synchronizer and arbiter

circuits. IEEE Tranaactiona On Computer&, C-22, April 1973.

[8] T. Chu a.nd L. A. Glasser. Synthesis of self-timed control circuits from graphs: a.n

example. In Proceeding& of the International Conference on Computer Deaign, IEEE,

New York, Oct 1986.

[9] T. Chu a.nd C. K. Leung. Design of VLSI a.synchronous FIFO queues for packet

communication networks. In Proceedinga of the International Conference on Parallel

Proceaaing, IEEE, August 1986.

[10] T. Chu, C. K. Leung, a.nd T. S. Wanuga. A design methodology for concurrent VLSI

systems. In Proceeding& of the International Conference on Computer Deaign, IEEE,

New York, Oct 1985.

186

------~-----.,,., .. -

BIBLIOGRAPHY 187

[11) W. A. Clark. Macromodular computer systems. In Proceedings of the Spring Joint

Computer Conferences, AFIP, 1967.

[12] F. Commoner et al. Marked directed graphs. Journal of Computer and System

Sciences, 5, 1971.

[13] G. Coura.nz and D. Wann. Theoretical and experimental behavior of synchronizers in

the metastable region. IEEE Tran,,action,, On Computers, C-24:604-{)16, 1975.

[14] J.B. Dennis. Data How supercomputers. IEEE Computers, November 1980.

[15) J. B. Dennis. Modular, asynchronous control structures for a high performance pro­

cessor. In Record of the Project MAC Conference on Concurrent System& and Parallel

Computation, pages 55-80, ACM, 1970.

[16] J. B. Dennis and S. S. Patil. The description and realization of digital systems. In Di­

gest of Papers of the Sizth Annual IEEE Computer Society Intern1itional Conference,

pages 223-226, 1972.

[17] J. B. Dennis and S. S. Patil. Speed-independent a.synchronous circuits. In Proceedings

of the Fourth Hawaii International Conference on Syatem Sciences, pages 55-58, 1971.

(18] E. W. Dijkstra. A Ditcipline of Programming. Prentice Hall, Englewood Cliffs, NJ,

1976.

[19] L. D. Dill and E. Clarke. Automatic verification of a.synchronous circuits using tem­

poral logic. In Proceedings of the 1985 Chapel Hill Conference on VLSI, Computer

Science Press, May 1985.

(20] A. D. Friedman and P. Menon. Theory and Design of Switching Circuits, chapter 4.

Computer Science Press, 1981.

[21] L. A. Glasser. Synchronizer failure in A/D converters. MIT VLSI Memo. 85-276,

October 1985.

(22) L. A. Glasser and D. W. Dopperpuhl. The Design and Analysis of VLSI Circuits,

chapter 6. Addison Wesley, 1985.

[23] U. Goltz and W. Reisig. Processes in Place/Transition nets. In Proceedings of

ICALP'89, Springer-Verlag, 1983.

(24) M. Hack. Analysia of Production Schemata by Petri Nets. TR 94, Project MAC,

Massachusetts Institute Technology, Cambridge, Mass, 1972.

(25) C. A. R. Hoa.re. Communicating Sequential Processes. Prentice-Hall, 1985.

[26) L. A. Hollarr. Direct implementation of a.synchronous control circuits. IEEE Tran,,­

actions On Computers, C-3(12), December 1982.

188 BIBLIOGRAPHY

[27] A. W. Holt et al. Final report for the project-development of theoretical foundations

for description and analysis of discrete information syatems. Technical Report, Mass.

Comp. Assoc., Wakefield, Mass, 1974.

(28] R. M. Keller. Toward a Theory of Universal Speed-Independent Modules. IEEE

Transactions On Computers, C-23(1):21-32, January 1974.

(29] C. Leung and W. Lim. A Packet Architecture Description Language.

MIT/LCS/TR 306, Laboratory for Computer Science, MIT, Cambridge, Mass, 1982.

[30] A. J. Martin. Compiling Communicating Processes into Delay-Insensitive VLSI Cir­

cuits. Journal of Diatributed Computing, 1:226-234, 1986.

(31] A. Mazurkiewics. Semantics of Concurrent Systems: A Modular Fixed-Point Trace

Approach. In Lecture Notes in Computer Science 188, Springer-Verlag, 1984.

(32] C. Mead and L. Conway. Introduction to VLSI Systems, chapter 7, System Timing.

Addison Wesley, 1981.

(33] M. K. Molloy. Perfoma.nce analysis using Stochastic Petri Nets. IEEE Transaction

on Software Engineering, SE-11(4):913-917, September 1982.

(34] C. E. Molnar, T. Fan, and F. U. Rosenberger. Synthesis of Delay-Insensitive Modules.

In Proceeding• of the 1985 Chapel Hill Conference on VLSI, Computer Science Press,
May 1985.

(35] D. E. Muller. Asynchronous Logics and Application to Information Processing. In

Switching Theory in Space Technology, Stanford Univ. Press, California., 1959.

[36] D. E. Muller. The general synthesis problem for asynchronus digital networks. In

Conference record of the Eight Annual Symposium on Switching and Automcda The­

ory, 1967.

[37] D. E. Muller and W. S. Ba.rtky. A theory of a.&ynchronow circuit&. Volume 29 of the

Annala of the Computation Laboratory of Harvartl. Un.itJeraity, Ha.rva.rd Univ. Press,

Cambridge, Mass, 1959.

(38] S. S. Patil. An asynchronous logic array. Tech. Memo. 62, Project MAC, Mas­

sachusetts Institute Technology, May 1975.

(39] J. L. Peterson. Petri net theory and the motl.eling of syatems. Prentice Hall, 1981.

[40] W. W. Plummer. Aaynchronow Arbiters. CSG Memo 56, Project MAC, Mas­

sachusetts Institute Technology, February 1978.

(41] W. Reisig. Petri Net&: An Introduction. EATCS Monograph.a on Theoretical Com­

puter Science, Springer-Verlag, Heidelberg, 1985.

BIBLIOGRAPHY 189

(42] M. Rem. Concurrent Computations and VLSI Circuits. In D. Bj0rner, editor, Formal

De&cription of Programming Concept& - II, IFIP, North-Holland Pub. Co., 1983.

(43] G. Rozenberg. Behaviour of elementary net systems. In Advanced Cour&e on Petri

Neu, September 1986. To appear in Lecture Note& in Computer Science 1987.

(44] G. Rozenberg and P. S. Thiagara.jan. Petri nets: basic notions, structure, behaviour.

In Lecture Note& in Computer Science !!.I, Springer-Verlag, 1986.

(45] H. Schols. A formali&ation of the foam rubber wrapper principle. Master's thesis,

Eindhoven University of Technology, 1985.

(46] C. L. Seitz. Asynchronous machines exhibiting concurrency. In Record of the Project

MAC conference on concurrent &y&tem& and parallel computation&, ACM, 1970.

(47] M. J. Stucki and J. R. Cox. Synchronization Strate911. TR WUCS-79-1, Dept. of

Computer Science, Washington Univ., Sa.int Louis, Mo, 1979.

(48] E. T. Tanner and C. Mead. A correlating optical motion detector. In P. Penfield,

editor, Proceeding& of the 198-1 Conference on Advanced Re&earch in VLSI, M.I. T.,

pages 57-£4, Artech House, MA, 1984.

(49] P. S. Thiagarajan and K. Voss. A fresh look at free-choice nets. Information and

Control, 61(2), 1984.

(50] K. Tognoni. Metastable problems in A/D converters. S.B. thesis, Department of

EECS, MIT, 1985.

(51] J. T. Udding. Cla&&ification and Compo&ition of Delay-In&en&itive Circuit&. PhD

thesis, Dept. of Ma.thematics and Computing Science, Eindhoven Univ. of Telchnology,

1984.

(52] S. H. Unger. Asynchronous sequential switching circuits with unrestricted input

changes. IEEE Tr~maction& On Computer&, C-20(12), December 1971.

(53] J. van de Snepscheut. 7'-ace Theory and VLSI De&ign. Lecture Note& in Computer

Science £00, Springer-Verlag, 1985.

[54] R. E. Zippe!. Contemporary MOS Circuit&. Lecture notes for Course 6. 721, Depart­

ment of EECS, MIT, 1984.

