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Abstract 

This thesis presents an approach for direct and efficient synthesis of self-timed (asyn­
chronous) control circuits from formal specifications called Signal Tranaition Graph.a (STGs ). 
Control circuits synthesized from this graph model are .apeetl-independent and capable of 
perfoming concurrent operation. 'The property of speed-independence means that the cir­
cuit operates correctly regardless of variations in delays of logic gates, thus implying that 
the circuit is hazard-free under any combination of gate delays. The capability of STGs 
for explicitly specifying concurrent operations internal to a. control circuit is unique to this 
model, unlike other approaches based on Finite State Ma.chines. 

STGs are a form of interpreted Petri nets, in which transitions in a. net are interpreted 
as transitions of signals in a control circuit. While other synthesis approaches based on 
Petri nets have not been very successful, we have developed a number of analytical results 
which establish the equivalence between the static structure of nets (their syntax) and 
their underlying firing sequence semantics-an analytical approach called structure theory 
of Petri nets. This equivalence permits the characterization of the low-level properties of 
control circuits in terms of STG syntax: the properties of deadlock-free and hazard-free 
of circuits are characterized as syntactic propeties of livene.u and persistency of STGs. A 
preliminary STG specification of a control circuit can be modified into one which is live 
and persistent, from which a deadlock-free and hazard-free logic implementation can be 
derived mechanically. 

STGs allow efficient synthesis of control circuits by using a method of decomposition 
based on a graph-theoretic technique called contniction. Instead of implementing a logic 
circuit from a STG directly, it can first be decomposed into a number of contracted nets, 
one for each signal generated by the control circuit. A logic element can then be determined 
from each contracted net, and the composition of logic elements produces the final circuit 
implementation. 

Thesis supervisor: Jack B. Dennis 
Title: Professor of Computer Science and Engineering 

Keywords: Asynchronous, self-timed speed-independent circuits; VLSI; Petri nets; struc­
ture theory; concurrency; finite automata. 
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... All things entail rising and falling timing. You must 
be able to discern this. In strategy there are various tim­
ing considera.tions. From the outset you must know the 
applicable timing and the inapplicable timing, and from 
among the large and small things a.nd the fast and slow 
timings find the relevant timing, first seeing the distance 
timing and the background timing. This is the main 
thing in strategy. It ia eapecially important to know the 
background timing, otherwi"e your "trategy will become 
uncertain. 

A Book of Five Ring" 
Miyamoto Mwa.,hi 
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Vlll 

... All Signal Tramition Graplu entail ri&ing and falling 
&ignal tramitiom. You mwt be able to di&cern thia. In 
our de&ign method, there are variow timing comider­
atiom. From the initial &pecification, you. m'U-'t know 
the allowed timing and the diaallowed timing, and from 
among the large and &mall circuit& and the fa&t and &low 
logic gate& find the relevant timing, fir&t &eeing the dia­
tance timing and the timing protocol at the interface. 
Thia ia the main thing in our deaign method. It ii eape­
cially important to know the timing protocol, otherwiae 
your circuit& will not work. 



Chapter 1 

Introduction 

1.1 0 b jectives 

The ma.in objective of this research is the development of a design approach for asyn­

chronous self-timed VLSI digital systems. The core of our approach is a graph model 

called Signal Tran8ition Graph~ (STGs). STGs allow the specification and efficient synthe­

sis of self-timed control circuits. Our approach produces ~peed-independent logic circuits 

which can perform concurrent operations. 

In the realm of VLSI, exploiting concurrency is a prerequisite to high-performance: as 

systems become larger and more complex, one can no longer afford to ignore the parallelism 

in control operations. The central control discipline which is well-accepted in present 

approaches creates difficulties in high-performance systems by imposing an unnecessary 

sequential order on the execution of control operations. In choosing a control discipline 

which allows for parallel execution of unrelated operations, one naturally moves toward 

a di.<Jtribu.ted control organization. Thus, instead of a large central controller, one has 

numerous distributed control modules which can operate concurrently. STGs allow the 

specification and synthesis of these types of control modules-not only that they can 

operate concurrently, but also ea.ch module itself can perform several control operations in 

parallel. 

By speed-independent circuits, we mean those circuits whose correct operation is inde­

pendent of the delays of logic gates composing the circuits. One immediate consequence 

1 



2 CHAPTER 1. INTRODUCTION 

of this property is that speed-independent circuits are always hazard-free. These types of 

circuits are desirable in VLSI systems because it is usually difficult to fine-tune the delays 

of logic gates to make an asynchronous digital circuit work properly. Perhaps most impor­

tantly, the use of speed-independent circuits enables the separation of the correctness of 

systems from timing considerations (which inextricably depend on many physical factors 

and phenomena in VLSI circuits). It is no coincidence that a number of research efforts 

in silicon compilation have utilized speed-independent circuits as a basis for hardware 

implementation [1,42]. 

STGs allow the direct and efficient synthesis of control circuits from formal specifica­

tions. Unlike previous efforts, the approach based on STGs produces a specification which 

closely reflects the designer's intuition. Moreover, this approach produces efficient circuit 

realizations by using a number of decomposition techniques. While speed-independent 

circuits have been criticized for their inefficiency in implementation (and therefore speed 

and performance), our experiences with applying this graph model. to designing VLSI chips 

have been much more encouraging. 

1.2 Background 

We can categorize research works in self-timed systems according to two attributes: the 

theoretical models on which the research is based, and the particular aspects chosen for 

study. In terms of models, there are finite automata and Petri nets [39,41], and variations 

of the two. With regard to aspects of study, the two chief areu of concern are composition 

of systems from modular descriptions, and synthesis of modules from specifications. The 

study of composition of systems from self-timed modules usually 8S8umes the presence of a 

set of modules with a certain uniform communication discipline, and the investigation takes 

a system point of view in exploring properties of systems composed from the modules. The 

other area of concern concentrates on techniques for synthesis of control modules rather 

than on the composition and communication aspect of systems. 

Two prevalent concepts describing the properties of self-timed systems are delay-in.sen­

sitivity and speed-independence [35,36,37]. While these are commonly used interchangeably, 

we often find that delay-insensitivity has connoted a stress on the communication aspect 

and hence, the composition of systems. Thus, this terminology denotes an external prop-
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erty of control modules. On the other hand, speed-independence is usually understood 

as a property of control circuits which operate correctly regardless of variation in delays 

of logic gates. Speed-independence emphasizes the synthesis aspect, hence is a. property 

internal to control modules. 

Regardless of the emphasis of these research works-whether on composition or on 

synthesis-they require a. formal specification which must rest on the theoretical model 

chosen. We have found that Petri nets provide a better starting point for formally spec­

ifying self-timed circuits, since Petri nets per se have capabilities for explicitly modeling 

concurrency. Also, automata. theory originally concentrated on sequential systems. Not 

until recently was the basic theory extended to cover aspects of concurrency, and not until 

even later was it applied to the area of logic design. 

Below, we briefly review some of the relevant works according to the outline above. 

In short, each proposal identifies a basic model which also serves as its formal tool for 

specification, and a focus of study (i.e. composition or synthesis). Interestingly, most 

of the works deal with only one of the two areas; and none of them provides a coherent 

framework for treating both synthesis and composition at the same time. This survey is 

by no means exhaustive; it only serves to highlight the more relevant results which fit more 

into our classification. 

Most techniques for synthesis of asynchronous logic are based on either some form 

of finite automata such 88 the Finite State Machine (FSM) model, or Petri nets. The 

most outstanding work based on finite automata models can be traced back to Muller 

[35,36,37], who originated the idea of speed-independent circuits. Recent work in trace 

theory [42,53,51} can be considered 88 a systematic reformulation of Muller's idea: this 

refinement is made possible because of the recent attempts to extend automata theory to 

cover concurrent behavior of systems. 

Concerning synthesis approaches based on Petri nets, one of the most important early 

contributions was made by Patil and Dennis at MIT [15,17,16,38]. Patil invented asyn­

chronous logic arrays as a systematic method of directly implementing Petri nets [38]. In 

an asynchronous logic array, columnB of wires are connected to storage elements to simu­

late the places of a net, while rows of wires decode the state of the columns to simulate 

the occurrence of transitions. Thus, this method of implementation transfers the structure 

of a net directly to hardware. Dennis has shown that Petri nets can be used to model 
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asynchronous hardware systeIDB at many levels of description in a very clear and easily 

understood manner [15]. Dennis' description of the control logic of the Control Data 6600 

computer, which embodied instruction look-a.head and interleaved execution, demonstrated 

this technique. Dennis and Patil also elucidated an organization principle for asynchronous 

hardware systeIDB in which a system is partitioned into data paths and distributed control 

structures, the latter organized as asynchronous modules which communicate with each 

other using certain signaling protocols [17,16]. Based on this organization principle, we 

have successfully designed and fabricated a self-timed two-by-two packet router, a basic 

component of a packet communication network [10]. 

Works at Washington University have also made important contributions to the study 

of self-timed systeIDB, most importantly the use of macromotlulea proposed by Clark [11], 

and experimental proof of metastability problem in synchronizers, together with design 

techniques for alleviating this problem [7,13,47]. Most recently, Molnar et al. [34] proposed 

the use of a form of Petri nets called I-net& for specifying behavior of control circuits, from 

which Interface State Grapha (ISG) are derived by simulating the I-nets. ISGs can then 

be encoded with binary states and serve as the basis for implementation of control circuits 

as standard Huffman asynchronous state machines. This idea. was inspired by Seitz's 

Machine-nets [46] but contained a number of improvements. 

Work at CalTech by Seitz resurrected interest in self-timed systems in the VLSI era., 

as reported in a chapter of Mead and Conway's book Introduction to VLSI ayatema [32]. 

Currently, Martin [30) at CalTech proposed a design approach using constructs for non­

deterministic programming to specify hardware modules whose behaviors exhibit only se­

quencing and arbitration requirements. This approach uses a subset of Dijkstra's guarded 

command language [18] to specify ea.ch process; concurrently cooperating processes are 

described using notations similar to Hoa.re's CSP [25]. Heuristic procedures are used to 

"compile" a hardware implementation from a module specification into an interconnection 

of standard hardware templates such as And, Or, C-elements, etc. During the compilation, 

the technique of reordering signal transitions in a sequence is used to improve implemen­

tation efficiency. 

Recently, there have been works which use trace theory as a formalism for specifying 

delay-insensitive circuits. Trace theory was pioneered by Ma.zurkievicz, who has recently 

made further contributions to this theory [31]. Trace theory has been used in the COSY 
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formalism invented by Campbell and Habermann [6] and in CSP. Rem, Snepscheut and 

Udding at Eindhoven have demonstrated the use of trace theory for classifying and rea­

soning about composition of delay-insensitive circuits (42,53,51]. Trace theory has laid a 

firm theoretical foundation for further investigation of properties of concurrent circuits, as 

evidenced through recent works [5,45]. Perhaps one novel aspect of these works in com­

parison with the others is a method for classification of delay-insensitive circuits according 

to properties of their trace structures [51]. 

There are a number of earlier works concerning the composition of systems from asyn­

chronous hardware modules; many were reported at the Project MAC Conference on Con­

current Systems and Parallel Computation (ACM, 1970). One notable study was made by 

Keller at University of Utah, in which he proposed the use of a set of "universal" control 

modules from which any control network can be constructed [28]. 

One of the important related works to self-timed systems is the use of temporal logic for 

verification of asynchronous hardware structures [19]. Such techniques can be used fruit­

fully for correctness validation of self-timed circuits and systems composed from circuits. 

It may also be a. candidate for a. formalism for specification and synthesis of self-timed 

circuits. 

1.3 Problems with some previous models 

Below, we describe a number of well-known difficulties with some traditional approaches for 

designing asynchronous circuits. In particular, we discuss problems with the FSM model 

and with earlier attempts to apply Petri nets. By identifying these problems, we hope to 

illustrate the difficult practice of designing asynchronous circuits; this will motivate the 

search for remedies, some of which are provided by the approach we present in the following 

chapters. 

Traditionally, asynchronous circuits are designed using the FSM model. A method for 

realization devised by Huffman uses a flow-table and a circuit model for implementing the 

state machine, as described in textbooks such as [20]. This design approach is very difficult 

to use, especially for synthesizing circuits with many input variables. So far, it has limited 

applications because of problems ca.used by variations in gate delays, particular in the 

' 



6 CHAPTER 1. INTRODUCTION 

feedback paths of the circuit. Some of the frequently cited disadvantages and limitations 

of this implementation model are: 

• The Huffman state machine cannot handle unre.stricted input changes. It was dis­

covered by Unger [52] that in the Huffma.n state machine, if two input transitions 

occur within a time interval (i) less than min(DL + D1 ), then they can be consid­

ered as simultaneous, if (ii) greater than max(DL + D1) then they can be consid­

ered separate, and if (iii) less that max(DL + D1) and greater than min(DL + D1 ), 
then the secondary state variable will not have settled and the circuit malfunctions; 

maxDL, minDL denote the maximum and minimum delays of the combinational 

logic, and maxDfl minD1 denote those of the feedback delays. (In general, minD1 

has to be greater than zero.) 

• The FSM model cannot describe concurrent behaviors directly. The FSM model and 

the Huffman state machine are based on the use of central states. At any moment, 

the machine resides in one state and it reacts to input excitations in different ways 

depending on which state it is in. A serious drawback of this state-based approach is 

that it is incapable of describing concurrency directly. The reason is that the notion 

of concurrency is more conveniently expressed in terms of occurrences of events; at 

the level of description of the FSM model, this phenomenon is difficult to see. 

• The state assignment problem. Since it is difficult to match gate delays to achieve 

simultaneous transition of state signals, one has to make sure that simultaneous 

changes in state signals do not occur, or if they do, the circuit must be designed 

such that it behaves the same no matter which sequences of state changes take place. 

Hence most state assignment techniques only allow at most one signal change between 

states. This is a well-known hard problem for which many heuristic techniques have 

been proposed. State assignments serve another purpose in the implementation of 

state machines, that of decomposition. This further complicates the issue, as an 

optimal state assignment for decomposition may be in conflict with the requirement 

for single signal changes betweeen states. 

• The exponential dependence of the number of entries in the flow table on the num­

ber of input signals. Due to the absence of a controlling signal called a "clock", a 

Huffman asynchronous state machine continuously senses the changes in the input 

and produces changes at the output and the state variables. Therefore, in contrast 

to a synchronous implementation of a state machine, an asynchronous implementa-
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tion requires the listing of all input combinations in the flow table, resulting in the 

exponential increase in the number of entries in the table. 

There are a few early proposals for implementation of a.synchronous circuits from Petri 

net specifications, most notably Patil's a.synchronous logic array and Seitz's Machine-nets. 

Patil's proposal is more correetly viewed a.s a hardware implementation of Petri nets, 

rather than implementation of a.synchronous circuits from net specifications, because his 

technique basically replaces an element in a net with a hardware circuit which simulates 

the behavior of that element. Hence the structure of the net is transferred directly to 

hardware and there is no direct way to ensure that the resulting a.synchronous machine 

meets all timing requirements. The operation of this type of asynchronous logic arrays 

depend greatly on local timing, and meeting these timing constraints can sometimes be 

difficult. 

Seitz's Ma.chine-nets, on the other hand, serve only a.s specifications from which FSM 

descriptions can be derived. The synthesis of a Huffman state ~hine from such a de­

scription still requires the standard techniques and therefore faces the same difficulties. 

1.4 Main contributions of this work 

We have developed a synthesis approach for self-timed control circuits from graph-theoretic 

specifications called Signal Transition Grapha, a form of interpreted Petri nets. As will be 
described in the rest of the thesis, our original contributions a.re the following. 

• A set of new analytical results for Petri nets which allows the study of net proper­

ties purely from the syntax (or structure) of nets; we call this the structure theory 

approach. 

• The development of Signal Transition Graphs, a formal model for specification and 

direct synthesis of self-timed control circuits with concurrent deterministic operation 

and input choices. 

• A decomposition technique of nets based on a graph-theoretic notion called con­

traction. This technique can be applied directly to Signal Transition Graphs, thus 

allowing highly efficient implementations. 
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• An extension of the Signal Transition Graph model to allow the specification and 

synthesis of data-dependent control circuits. 

1.5 Experimental results 

In early 1984, we set out to test our Signal Transition Graph model by designing and 

fabricating two self-timed chips through MOSIS. The first chip is a two-by-two packet 

router [10), a basic component of a communication network for a data:B.ow computer en­

visioned at MIT [14). The router was implemented in 3 micron CMOS technology with 

2456 transistors and a layout area of 3.1 x 2.3mm2• A total of 46 routers were tested and 

30 of them were fully operational with a maximum throughput rate of approximately 22 

Mbytes/sec.1 The other chip fabricated was a self-timed ring buffer, a FIFO buffer with 

an interesting distributed organization which reduces the latency of the buffer to one stage 

delay [9). This ring buffer consists of 8 stages and 9-bit wide data paths. It was fabricated 

in 4 micron NMOS technology and consumed an area of 3.15 x 2.25mm2 , including pads. 

Six chips were received from MOSIS and tested; five were fully functional at a throughput 

rate of approximately 4 MBytes/sec. These encouraging results indicate that our proposed 

approach produces systems which are efficient both in terms of the amount of hardware 

and speed, perhaps comparable to synchronous implementations. 

Description of the Router 

The block diagram of the router is shown in Fig. 1.1. It contains two FIFO queues to 

hold packets sent in byte-serial format. Packets are of variable length, and an extra bit 

called Last-byte is appended to each byte to delimit the packet boundary. This bit is "1" 

for the last byte of a packet and "O" for all others. The first byte of a packet contains 

the address information. The router decodes the address and forwards the packet to the 

desired output port; an address bit of "O" will form a link from the current input port 

to the upper output port, a "1" will form a link to the lower output port. There are 

two system controllers, each consisting of a FSM and a dj,,tributed control structure. The 

1 In [10], the maximum throughput rate for the routers was reported to be 11 Mbytes/sec. This figure 
is for one input port. The above figure of 22 MBytes/sec reflects the fact that two input ports can process 
packets cone urrently. 
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system controllers read the address and the La8t-byte signals, and generate control signals 

for the output multiplexors. These control signals are determined from the first byte of a 

packet and recycled for the remaining bytes. The two controllers also communicate with 

each other, since packets from one input port may need to go to the opposite output port. 

If packets from both input ports require the same output port at the same time, an arbiter 

is used to resolve conflicts. 

Two main data path modules are the multiplexors, and the self-timed registers which 

constitute the FIFO's. These modules consist of a data circuit and a stage controller 

which handles the timing and signaling protocol. These stage controllers are specified 

using STGs from which speed-independent realizations can be obtained using our synthesis 

techniques. The controllers contains control circuits which are also synthesized using the 

same techniques. The Re8ou.rce Locking Module (RLM), a control module with data­

dependent operation is treated in an example in Chapter 9. This module is used together 

with an arbiter [32) to control the access of the FIFO queues to the output multiplexors. 

Description of the Ring buffer 

The ring buffer is a FIFO queue organized in a two-dimensional or ring organization, as 

shown in Fig. 1.2. This queue consists of M linear queues, each of L stages, and two token 

ring8 for controlling input/output operation. The capacity of the queue is M x Land the 

latency is proportional to L. 

Writing into the FIFO queue is controlled by an Input token ring, formed by connecting 

I-modules together into a ring. The ring is initialized such that only one I-module contains 

the token, marking the next available empty register stage. Since the Write-reque8t signal, 

carried on wire Wr, is connected to all I-modules, an important timing restriction is that 

the token should not be passed on to the next module in the ring if the Write-requ.e8t 

signal is still active. The Write-acknowledge on wire Wa is the output of an OR gate 

(shown as a heavy bar with a + sign) whose inputs are acknowledge wires from all !­

modules. Similarly, reading from the FIFO is controlled by an Output token ring, formed 

by connecting 0-modules together. Data written into the linear queues ripple to their 

output side, ready to be gated onto the output bus. The Output ring is initialized such 

that only one 0-module contains the token. This module then controls the timing and 
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signaling for gating of data to the output bus. The Read-reque.d signal on wire R,. is the 

output of an OR gate whose inputs a.re requeat wires from all 0-modules. Another timing 

restriction exists for the Output token ring: since the Rea.d-ticknowledge signal, carried 

on wire Ra is broadcast to a.ll 0-modules, the token should not he passed on to the next 

module while Read-acknowledge is still active. 

Our FIFO queue design makes use of distributed control structures and local com­

munication. There a.re only a few types of modules in this design, with modules of each 

type replicated as necessary to construct complete FIFO queues. The distributed control 

structure allows the exploitation of concurrency. Concurrent read/write supports a higher 

throughput rate. The FIFO queue is also completely data driven, hence no potential 

read/write conflict exists and there is no need for any arbiter. The distributed control 

organization of the FIFO lends itself naturally to a design U8ing asynchronous, self-timed 

hardware modules. These control modules are specified using STGs and synthesized from 

such specifications. The Ring buffer which we fabricated is one with minimal latency 

(L = 1), with each of the linear queues containing exactly one stage. Registers in each 

stage have inputs connected to the input data bus, and outputs connected to the output 

data bus. 

1.6 Organization of thesis 

After the two introductory Chapters 1 and 2, this thesis is organized into three parts. 

Part I consists of Chapters 3-5, in which the basic theory of STGs is developed. This 

part gives an introduction to Petri net theory, discusses a number of relevant new results 

and shows how this theory is applied to STGs, a form of interpreted Petri nets. This is 

followed by an investigation of properties of speed-independent circuits, which translate 

to the properties of liveneaa and perai&ten.cy in STGs. The material developed in this part 

allows the specification and synthesis of a basic type of speed-independent control circuit 

from STG specifications; these circuits can perform concurrent deterministic operation and 

(nondeterministic) input choices. 

Part II, consisting of Chapters 6 and 7, discusses a novel technique for decomposition 

of systems based on a notion called contraction. Here, the theoretical results for Petri nets 
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are developed and then applied to STGs, as demonstrated through a design example. 

Part III, consisting of Chapters 8 and 9, discusses an extension to the basic STG model 

to allow the specification and synthesis of control circuits with data-dependent operation. 

The main ideas are presented informally in Chapter 8, together with an example. Chapter 

9 develops the formal theory for our extension. 

Chapter 2 contains a summary of the STG model and the main theoretical results of 

Parts I and II. This chapter gives a broad outline of the detailed description which follows 

in Chapters 3 to 6. It is intended to provide enough knowledge of our methodology for 

immediate applications. Chapter 7 contains a substantial design example which can be 

studied without having to go through the technical details presented in Chapters 3-6. 

Chapter 8 gives an informal presentation of the main idea of our extension of STGs to 

allow the specification of data-dependent circuits. Thus, after Chapters 2 and 7, Chapter 

8 can be read to provide an understanding of the extension. 

The following is a more detailed description of each chapter. 

Chapter 3. A number of new results are developed for a useful class of Petri nets called 

live-safe free-choice nets; they constitute the theoretical basis for further investigation of 

our STG model. First, relevant works in Petri nets theory are reviewed, with particular 

emphasis on the study of Jtru.ctu.re theory, which is mainly concerned with the relation­

ship between the syntax (structure) and the underlying semantics of nets. This chapter 

develops two new results: (a) It is demonstrated that the behavior of a free-choice net, as 

characterized by its set of transition sequences, can be obtained by concurrently composing 

the behavior of its component subnets. As a consequence, an algorithm is devised, allowing 

the construction of finite automata directly from the structure of nets by composing finite 

automata of subnets. (b) A relation called the temporal relation on the set of transitions 

of a net is defined. This relation is characterized based on the structure of nets and it 

allows for the syntactic determination of whether two transitions are ordered, concurrent 

or in conflict. 

Chapter 4. The materials developed in Chapter 3 are part of a formal theory based 

on Petri nets, and they may be useful for other applications as well. For our purposes, 
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we interpret elements of nets as physical entities of digital circuits: transitions of nets 

are identified with rising and falling transitions of signal.9 in circuits-hence the name 

Signal Transition Grapha. In this chapter, we introduce the STG model, its syntax and 

semantics, and our design approach for direct synthesis based on STGs. We introduce 

state graphs and their properties related to physical switching circuits. The third concept 

in this chapter is network functions, defined as the sets of logic functions describing the 

operation of the circuits. Network functions can be determined directly from state graphs. 

We also discuss state assignment, being the process of assigning binary values to states 

in a finite automaton to produce a state graph. Although this is a well-known difficult 

problem in the classical approach based on the Finite-State Machine (FSM) model, for 

STGs it is done automatically for STGs by satisfying certain syntactic conditions. 

Chapter 5. We discuss two important properties of state graphs and STGs called live­

ness and persistency. Liveness is related to the continuous operation without deadlock of 

circuits; persistency is related to hazard-free operation of circuits. Persistency is strongly 

tied to the notion of speed-independence: a circuit is speed-independent iff its STG speci­

fication is persistent. The equivalent syntactic characterization of liveness and persistency 

a.re developed for STGs. 

Chapter 6. A method of decomposition for nets called contraction is introduced. This al­

lows the decomposition of state graphs through decomposition of their STGs. The purpose 

of decomposition of state graphs is to produce efficient implementations by minimizing the 

interaction between variables in the state graphs. While there exist only complex heuristic 

procedures for FSM approach, for STGs this can be carried easily using net contraction 

based on some structural information from the STGs. 

Chapter 7. This chapter concludes the second part of the thesis by providing a detailed 

design example of a self-timed controller for a successive-approximation A-to-D converter. 

We will go through the synthesis steps and illustrate the principles developed earlier. We 

also discuss a number of design choices available during certain steps of the synthesis 

process. 
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Chapter 8. Parts I and II of the thesis provide the ground work which allows one to 

specify circuit behavior in terms of STGs, obtain their state graphs and finally, produce 

a correct and efficient implementation by satisfying liveness and persistency. However, 

since STGs are based on free-choice nets, their expressive power is limited to that of 

free-choice nets. Since free-choice nets can specify concurrent operations and free-choices 

(nondeterministic choices), correspondingly, STGs can only specify concurrent operations 

and input choices (The reason for considering free choice& in nets as input choice" in STGs 

is that internally to a control circuit module, input choices appear nondeterministic.) In 

order to specify circuit operation with internal choices (data-dependent operation), one 

will need to rely on a more expressive class of Petri nets. 

In Chapter 8, we con8ider an extension to the STG model which allows the specification 

and synthesis of circuits with data-dependent operations. This extension marks a slight 

departure from net theory, as it is a notational extension in STG to represent an aspect of 

flow-control in state graphs, i.e., the ability to make a decision based on a priori knowledge 

when arriving at a state with conflicts. We discuss this extension and its semantics in 

terms of state graphs. Lastly, a design example of a two-cycle controller for first-in first­

out (FIFO) circuits is presen~ed. This controller is a data-dependent circuit which can 

perform concurrent control operations. 

Chapter 9. Chapter 9 describes an algorithm called expansion algorithm which allows 

the transformation of a STG specifying data-dependent operation into one which has only 

input choices. Another design example is given: the Re&ource Locking Module which is a 

part of the controller of the Router discussed earlier. 

Chapter 10. We discuss areas for further investigation with the aim toward a com­

prehensive approach for automatically compiling self-timed VLSI systems from high-level 

descriptions. Another area of interest is that of optimization of asynchronous circuits based 

on particular implementation technologies and design methodologies. 



Chapter 2 

Signal Transition Graphs: An 
' 

Informal Introduction 

This thesis presents an approach for the synthesis of self-timed control circuits from formal 

graph-theoretic specifications. The conventional approach consists of constructing a Finite 

State Ma.chine (FSM) from some informal (e.g. textual) description and determining the 

logic equations for state and output variables from the FSM, as illustrated in the left 

branch of Fig. 2. la. Unlike this approach, the basic idea. of our approach can be described 

as follows. From an informal description, we construct a. formal specification in terms of 

graphs called Signal Transition Graphs (STGs), a. form of interpreted Petri net.t. STGs can 

be considered as a higher level form of representation compared to FSMs in the following 

sense: from a STG, one can obtain a. set of sequences of signal transitions which represent 

the behavior of a circuit; ea.ch transition in every sequence corresponds to a control event 

of a system. Under certain conditions, such a. set of sequences forms a regular set, that is, 

it has an equivalent representation by a finite automaton. This finite automaton can be 

used as a ha.sis for implementation, as illustrated in the right branch of Fig. 2. la. Thus, 

STGs serve as a more abstract and succinct way of representing finite automata with 

certain desirable properties. STGs are more abstract because these representations use 

transitions and a binary relation called the cauaal relation between transitions to describe 

behavior; the concept of state does not appear explicitly. Because of this, concurrency and 

other control situations can be described in very compact form. STGs are more succinct 

because they do not require a large number of states to describe concurrent occurrences of 

control events, in contrast to the case of finite automata. 

16 
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Figure 2.1: (a) Two approaches for synthesis of control circuits. (b) A technique for 
guaranteeing correctness of implementation from high level specifications. 

The finite automata derived from STGs are a form of interpreted finite automata called 

state graph,,, in which states are interpreted as binary vectors of signal values and transi­

tions between states as signal transitions. State graphs can capture fundamental properties 

of logic circuits-most importantly the deadlock-free and hazard-free properties. These 

correspond to the properties of liveness and perai.stency, ~pectively. Since at the higher 

level of representation of STGs, we do not deal with these low level issues directly, we 

need to develop some method to ensure correct implementation. Our strategy is as fol­

lows: First, we study how fundamental properties of digital circuits can be characterized in 

terms of state graphs. Then, by establishing a unique correspondence between STGs and 

their state graph representations, these properties can be formalized as syntactic properties 

of STGs, which can in turns be verified and satisfied at this level of specification. Hence, 

by developing corresponding syntactic conditions for liveness and persistency for STGs, 

we have a means for ensuring the correctness of an implementation from an abstract level 

of specification. This idea is illustrated in Fig. 2.lb. 

Another basic notion of our approach is that of behavioral equivalence. Some of the 

previous approaches have used Petri nets not only as a specification but also as a direct 

basis for implementation, in the sense that the .structure of a net is directly transferred to 

hardware. In constrast, we use nets only as a behavioral specification from which a set 

of transition sequences with certain properties can be derived. Thus nets are considered 

as language generating devices. Even though this idea has often been studied from the 

viewpoint of formal language theory, our concern is much more focused and limited to 

direct and practical applications. 
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This chapter gives an informal introduction to Petri net theory and sununarizes a num­

ber of new results, including a simple method for determining the set of transition sequences 

and its equivalent finite automaton directly from the structure of a net, and a syntactic 

characterization of the temporal relation between transitions in a net. These results can be 

applied to STGs as they are merely a form of interpreted Petri nets. The chapter describes 

properties of state graphs, liveness and persistency, and their equivalent characterization 

in STGs. Lastly, it presents a method of decomposition based on the notion of contraction; 

such a decomposition technique is the key to efficient implementation. 

2.1 Petri Nets and Signal Transition Graphs 

2.1.1 Petri nets 

A Petri net is a bipartite directed graph, consisting of a finite set of transitions T, a finite 

set of places P and a flow relation F ~ P x TUT x P specifying a. binary relation between 

transitions and places. A net is shown in Fig. 2.2a, in which transitions are drawn as bars, 

places as circles, and the flow relation as directed arcs. One conunon restriction is that a 

net be strongly connected in the graph-theoretic sense. 

Transitions can usually be interpreted as certain events in a control system, while places 

as the local conditions which become true or cease to be true due to the occurrence of some 

actions, as specified by the flow relation. A transition has input and output places, e.g. 

])3, p4 are input places of t 3 ; ]J5, P6 its output places. Similarly, a place has input and output 

transitions, e.g. t 1 is the only input transition of J>.3, t3 its only output transition. The net 

in Fig. 2.2a is a particular instance of an important subclass of nets called marked graph.a, 

capable of describing systems with deterministic concurrent operation. 

A net as presented above describes the static structure of a control system. Its dynamic 

behavior is captured by its markings and the firing rule which transforms one marking to 

another. A marking M is a collection of places corresponding to the local conditions 

which hold at a particular moment; it is represented graphically as solid circles called 

tokens residing in these places. The initial marking is denoted as M0 ; in Fig. 2.2a, M0 

corresponds to {.Pi, .P2}. The fl.ring rule is the rule for "executing" a net: A transition is 

enabled if each of its input places contains at least one token. An enabled transition may 
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Figure 2.2: (a) A Petri net and (b) its reachability graph. ( c) A STG which is an interpreted 
net of the net in (a), and ( d) its state graph. ( e) A STG of a circuit with input choices 
and ( f) its state graph. 
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occur or fire; its firing consumes one token from each input place and puts one token in 

each output place. In Fig. 2.2a, both transitions ti, t2 are enabled in the initial marking 

M 0 , the firing of ti moves the token from Pl to 1>3, the firing of t2 moves the token from P2 

to p4. 

The result of the execution of the net can be described by a form of interpreted finite 

automata called reachability graphs, as shown in Fig. 2.2b. Each node represents a state 

corresponding to a marking of the net; a labeled arc between nodes indicates the transition 

from one marking to another due to the firing of a.n enabled transition. Also, the initial 

state (corresponding to the initial marking of the net) is circled. 

This example illustrates two important points. First, unlike the FSM model, nets can 

specify concurrent control actions: if two transitions are enabled in the same marking 

and the firing of one does not interfere with the enabling condition of the other, given 

enough time, both transitions will eventually fire. In Fig. 2.2a, the fact that ti and t2 

are concurrent means that both transition sequences (or firing sequences) ... t1 t 2 ••• and 

... t2ti ... are possible; they show up in the reachability graph of the net. Secondly, the 

net's operation is totally asynchronous, as the firing of transitions depends solely on the 

availabity of tokens at their input places. 

We will stress the transition sequence semantics of nets: a net defines a set of transition 

sequences. For example, the set of sequences specified by the net in Fig. 2.2a can be given 

by a regular expression 

where for transitions a and b, allb (concurrent composition) denotes the set {ab, ba}, ab 

(concatenation) denotes {ab} and a• (Kleene closure) denotes { f, a, aa, ... } ; f is the empty 

sequence. 

Properties of nets 

Two important behavioral properties of a net with an initial marking are safeness and 

liveness, defined as follows. For a net with an initial marking M 0 , it is safe iff in any marking 

reachable from M 0 , every place contains no more than one token. For our purpose, only 

finite safe nets are of practical interest. A finite safe net is live iff its reachability graph is 

strongly connected and each transition in T is enabled in some marking of the reachability 
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graph. Note that this restrictive notion of liveness applies only to finite safe nets, and 

further it requires that all markings be reproducible.i The purpose of this requirement is 

to permit one to disregard the transient behavior during initialization of nets. 

We consider safeness as a fundamental restriction on nets; without it one cannot relate 

the structure of a net to the actual behavior which the net intends to describe. Fig. 2.3a is 

a simple example of an unsafe net, whose structure is intended to specify a choice between 

control actions ti and t2 • This would have been the case had place Pl contained only one 

token. However, due to the fa.ct that place Pl contains two tokens, ti and t2 each can fire 

twice consecutively, or both of them can fire concurrently. This behavior is recorded in 

the reachability graph shown in Fig.2.3b, with each marking described by a multiset of 

marked places (instead of a set) due to the multiplicity of tokens in the places. 

Unsafe nets create another fundamental problem in that the set of transition sequences 

derived from an unsafe net may not have an equivalent finite automata (FA) representation 

in case the number of tokens in any place grows without bound. 

Subclasses of nets and Structure theory 

We will be concerned with three important subclasses of nets called marked graphs (MG), 

state machines (SM) and free-choice (FC) nets. A marked graph is a net in which each 

place has at most one input transition and at most one output transition. Marked graphs 

represent the structure of deterministic concurrent systems. The dual notion of marked 

graphs is that of state machines. A state machine is a net in which each transition has 

at most one input place and at most one output place. State machines represent the 

1In Fig. 2.4a, the initial marking {PJ.,p4 } is a live-safe one; however, this marking is not reproducible. 
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Figure 2.4: (a) A LSFC net, (b) its MG-components resulting from MG-reductions and 
(c) its SM-components resulting from SM-reductions. 

structure of nondeterministic sequential systems. A free-choice net is a net such that if 

any two transitions t1 and t2 share the same input place p, then p is the unique input place 

of both t1 and t 2 • Examples are shown in Fig. 2.4, where (a) is a FC net, (b) consists of 

marked graphs and ( c) of state machines. We will restrict ourselves to a subclass of FC 

Petri nets as specifications of control systems which exhibit concurrent operations. FC 

nets represent an appropriate blend of concurrency and choice in specifying behaviors of 

circuits, and at the same time can be analyzed without much difficulty. 

Structure theory is a branch of net theory which emphasizes the relationship between 

the structure (syntax) of nets and their behavior (semantics). In our view, structure theory 

is vital to the practical use of nets, for it allows the characterization of dynamic properties 

of nets in terms of static (syntactic) ones. Hack [24] has devised a reduction algorithm 

which allows the decomposition of a free-choice net into sets of structural components: 

a FC net can be decomposed into a set of state-machine (SM) components or a set of 
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marked graph (MG) components, as shown in Fig. 2.4. An important theorem developed 

by Hack which is the cornerstone of the structure theory of Petri nets can be informally 

stated as follows. If a FC net is live and safe, then the set of MG-components resulting 

from MG-reductions cover" the net. Alternatively, the set of SM-components resulting 

from SM-reductions also covers the net. On the other hand, if a FC net is either nonlive 

or unsafe, then some reduction does not cover the net or is empty, or some component is 

not strongly connected. For example, the FC net in Fig.2.4 is live-safe and its SM-and 

MG-components both cover the net. 

Hence, by using this theorem, we can determine if a net is live-safe by decomposing 

it into structural components. Later chapters describe more fully other important appli­

cations of this theorem. Specifically, by using Hack's theorem, we developed techniques 

for constructing a finite automaton directly from the structure of a net, and a syntactic 

characterization of the temporal relation, as will be described below. 

2.1.2 Signal Transition Graphs 

For the purpose of specifying behaviors of digital control circuits, we use a form of inter­

preted Petri nets called Signal Tran.sition Graph& (STGs), which are nets with transitions 

interpreted as rising and falling transitions of signals of a control circuit. Fig. 2.4c shows 

an example of a STG of a circuit with the set of signals denoted by J = {a, b, c }. This STG 

is one interpretation of the net in Fig. 2.2a, where the set of transitions T is interpreted 

as the set of .signal transition" J x { +, -}. Since a control circuit has input, internal and 

output signals, we partition the set of signal transitions in the same way, and in the graph­

ical representation, transitions of input signals are underlined. The fundamental difference 

between transitions of input and non-input ( = internal + output) signals is that the former 

are caused by the external environment while the latter by the system. 

For simplicity, in a STG, we represent each transition by its name instead of using a 

bar with a label. Another important graphical abbreviation for STGs is that every place 

with one input and one output transition is not drawn explicitly; instead an arc is drawn 

directly between these transitions. Such an arc directly represents an instance of the cawal 

relation, denoted by R, between transitions; informally, t1Rt2 (read t 1 cawe" t 2) can be 

understood as: the firing of t1 brings the system into a state (marking) in which t2 is 
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enabled (and hence may fire). 

The reason for using the causal relation a.nd ignoring places with one input a.nd one 

output transitions is that, from the viewpoint of firing sequence semantics, the behavior of 

a net (or STG) is adequately defined by its set of transition sequences. For a sufficiently 

expressive class of nets called live.safe free· choice (LSFC) nets, we will be able to show that 

their sets of firing sequences are regular in the sense that the latter have equivalent finite 

automata representations. For example, the STG in Fig. 2.2c defines a set of sequences 

which has the equivalent finite automaton (FA) shown in Fig. 2.2d, which is isomorphic 

to the reachability graph of Fig. 2.2b. This FA can be interpreted into a date graph by 

(i) identifying transitions between states with signal transitions and (ii) assigning binary 

vectors representing the values of signals in the circuit to nodes. For state graphs, this 

state assignment is very simple a.nd ca.n be carried out mechanically, as will be described 

later. 

The STG in Fig. 2.2c specifies the behavior of a control circuit with deterministic 

concurrent operation. Fig. 2.2e shows another STG specification of a trivial circuit with 

input choices; its state graph is shown in Fig. 2.2f. The input choice is specified by a 

place with two output transitions a+ and b+, which are transitions of input signals a and 

b. Whenever p is marked, then both output transitions are enabled and one is chosen 

nondeterministically to fire; its firing will disable the other transition. In Petri nets, such a 

situation is called a free choice. In STGs, we limit output transitions of a free.choice place 

to those of input signals because internal to a system, a choice ma.de externally would 

appear as if it is nondeterministic. 

We have the following important remarks concerning the formalization of STGs as 

interpreted Petri nets. 

First, STGs are nets with interpreted transitions but places have no interpretation; in 

particular, we do not interpret places as states of signals resulting from the firing of signal 

transitions. The reason is illustrated in the following example. In Fig. 2.2a, transition ti 

is interpreted as a+. Suppose further that its output place P3 is interpreted as signal a 

becoming a logical "1". Then whenever ti fires, indicating a positive transition of a, place 

P3 is marked with a token indicating that signal a has become 1. Note, however, than 

when t 3 fires subsequently, this token is taken away, implying that signal a is no longer a.t 

value 1. In reality this is not true because the value of a will not change until a_ occurs. 
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This is an important observation to which we shall return later. 

Second, despite the fact that STGs are interpreted nets, we have chosen to call our graph 

model Signal Transition Graphs, rather than Nets, in order to emphasize the important role 

of the static structure of nets in our application. A Petri net can be viewed as consisting of 

an underlying structure which is a graph, and a marking which indicates the distribution 

of tokens in the graph at some moment. Structure theory, as mentioned earlier, allows 

the direct association of static net structures to their underlying semantics. This thesis 

develops a number of techniques for manipulating the structure of nets (with little concerns 

about markings) which allow direct synthesis of the underlying finite automata. 

2.1.3 Relation between Petri nets and Signal Transition Graphs 

It is important to note that STGs can be considered simply as a class of LSFC nets with 

certain structural restrictions due to the interpretation of transitions. One such restriction 

is that STGs always contain an even number of transitions due to the fact that associated 

with every signal is a pair of signal transitions. Another restriction arises from the need 

to simulate the interface behavior of a control circuit: in a STG, if t is a transition of an 

input signal, then we require that t have exactly one transition, say t', which ca.uses it: 

t' Rt; furthermore, t' must be a transition of an output signal. In Fig. 2.2c, each transition 

of input signals a, b is caused by exactly one transition of output signal c. There are other 

restrictions which we will present later. 

Just as a STG is an interpreted net, its state graph is an interpreted FA which can 

be obtained in a similar fashion as reachability graphs. The relationship between nets, 

STGs and state graphs is depicted in Fig. 2.5. The top pa.rt of this figure is a syntactic or 

structural classification of nets. For instance, the class of FC nets is a subset of the class 

of Petri nets, and so on. LSFC nets a.re a subclass of FC nets, with the properties of live­

safeness characterized structurally by Rack's reduction theorem mentioned at the end of 

Section 2.1.1. STGs constitute a subclass of LSFC nets. The subset of live-persistent STGs 

corresponds to those STGs whose state graphs a.re live and persistent. Live and persistent 

state graphs can be transformed into deadlock-free and hazard-free (speed-independent) 

logic circuits, as indicated by arrow (5). 

The middle part of Fig. 2.5 contains classes of finite automata, which can be considered 
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as the low-level semantics of nets. The two-headed arrows indicate the equivalence between 

them and classes of nets. Earlier, we stated that safe nets have equivalent FA representa­

tions; such an equivalence is indicated by arrow (1) for finite safe FC nets. The class of 

LSFC nets have equivalent FA which are live, as indicated by arrow (2), this equivalence 

is the subject of investigation of Section 2. Of main interest in Fig. 2.5 is the equivalence 

indicated by arrow ( 4) between live-persistent STGs and state graphs; this equivalence is 

studied in Section 3. 

It is crucial to realize that while safeness can be considered purely as a net-syntactic 

property, liveness and persistency a.re defined as properties of finite automata.. Thus, live­

sa.fe FC nets are safe FC nets whose FA are live; similarly, live-persistent STGs are STGs 

whose state graphs a.re live and persistent. The important point is that even though liveness 

and persistency are defined as properties of state graphs, one can derive the equivalent 

syntactic conditions for STGs, just as in the case of LSFC nets. For LSFC nets, the 

syntactic conditions for live and safeness are stated in Ha.ck's decomposition theorem. 

2.2 Semantics of nets/Behavioral equivalence 

There are two approaches to defining the semantics of Petri nets: one based on sequences 

of transitions (firing sequences), the other on partial orders of transitions and places. For 

safe nets, their semantics can be given both in terms of firing sequences and partial orders: 

By using the firing rule and an initial marking, one can simulate the operation of a Petri 

net to obtain the firing sequences; on the other hand, Petri nets can be unfolded into 

partial orders called processes [23]. 

We will be mainly interested in the firing sequence semantics of Petri nets. One fre­

quently cited problem with using firing sequence semantics is illustrated in the following: 

Given a set of firing sequences describing the behavior of a very simple system {ab, ba} 

(Fig. 2.6a), it is unclear whether this set corresponds to a net in which a and b a.re con­

current (Fig. 2.6b) or in conflict (Fig. 2.6c ), where all transitions a.re labeled. 

It is clear that this problem arises due to the labeling of two transitions with the same 

labels in Fig. 2.6c. If such a labeling is disallowed, problems of this kind will never arise 

and the system {ab, ba} always corresponds to the case of concurrency. Hence we allow 



28 CHAPTER 2. AN INFORMAL INTRODUCTION 

t1 

ti 

(a) (b) 

Figure 2.6: (a) The equivalent FA of the set {ab, ba} and two interpretations: (b) con­
currency, where 1( t1 ) = a, 1( t2 ) = b; 1 is a labeling function, ( c) conflict, where 
1( t1) = 1( t4) = a, 1( t2) = 1( t3) = b. 

only unlabeled tranJition JequenceJ. In the formulation of STGs, instead of using a labeling 

function to label transitions of a net with signal transitions, i.e. 1 : T -+ J x { +, -}, we 

have chosen to make a direct interpretation: T = J x { +, - } to avoid the problem just 

mentioned. 

2.2.1 Behavioral Equivalence 

For our purpose of synthesis from net specifications, the main advantage of using sequence 

semantics is that it allows freedom in the implementation from a specification. Given a net 

specification of a control systems, any other net which exhibits the same set of transition 

sequences as the original one is considered equivalent to it; this is the notion of behavioral 

equivalence. The like notion of "structural equivalence" is not a particular useful one, as it 

requires two nets which are equivalent in this sense to have identical structures. The simple 

example in Fig. 2. 7 shows two nets which are behavioral equivalent but not so structurally. 

If one is concerned only about the behavior (in terms of transition sequences), then the net 

in Fig. 2.7a contains a redundant place which can be removed without altering the net's 

behavior. 

From a technical point of view, sequence semantics are easier to handle than semantics 

based on processes. As will be made clear in this thesis, most results for LSFC nets 

are proven by considering their sets of transition sequences. These include important 

properties such as liveness, and properties concerning the composition and decomposition 

of nets. 
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Figure 2.7: Two nets which are behaviorally equivalent. 

2.2.2 Important Analytical Results for Nets 

In this section, we summarize a number of fundamental results which are proven in Chapter 

3. These results serve as the basis for later developments. One important result is the 

following 

The set of firing sequences of a LSFC net is regular, i.e. it has an equivalent 

finite automata representation. 

Algorithm for constructing finite automata for LSFC nets 

The above result is proven by demonstrating a procedure for constructing an equivalent 

automaton from a LSFC net; the basis for such a construction algorithm is given by the 

following result (Theorem 3.8): 

The equivalent finite automaton of a LSFC net is obtained by weaving (concurrent­

composing) the finite automata of a set of SM-component& which cover the net. 

Note that a FA equivalent to a state machine is identical to the state machine itself 

and hence, can be readily derived from the SM-components of a LSFC net. Let F Si and 

F S2 denote sets of transition sequences of two finite automata F Ai and F A2 , respectively. 

The weave of F Si and F S2 is defined as (Def. 3. 7) 
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t6 t6 

(a) (b) (c) 

Fig\\re 2.8: (a) The set of covering SM-components for the net in Fig. 2.2a. (b) The 
equivalent FA of the SM-components and ( c) their weave, which results in the equivalent 
FA of the net in Fig. 2.2a. 

where Ti and T2 are sets of transitions of the FA; u rTi denotes the projection of a sequence 

u onto the set '.li. The weave of two FA, F Ai llF A2 , is defined as a FA whose set of 

transition sequences is given by FSillFS2 • 

The marked graph in Fig. 2.2a is a special case of LSFC nets, which can be decomposed 

into a set of covering SM-components (Fig. 2.8a), each being a simple cycle containing one 

token. The FA corresponding to these SM-components are shown in Fig. 2.8b; their weave 

results in the FA for the marked graph, as indicated in Fig. 2.8c. 

Temporal relation in LSFC nets 

Another result of fundamental importance developed in this thesis could be categorized 

as a result in the structure theory of Petri nets. Given a LSFC net, it is generally not 

possible to tell whether two transitions are ordered or concurrent merely by inspecting the 

structure of the net. For instance, the marked graph shown in Fig. 2.9 (called a necklace of 

length 4) has three different initial markings as indicated, each resulting in a distinct set of 

firing sequences; that is, this net has three equivalent classes of live-safe markings-every 

two markings in each class are mutually reachable. In case (a), the set of firing sequences 

is given by the expression (tit2t3t4)*; in case (b), it is (tit4t 3t2)*; lastly in case (c), it is 
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(a) (b) (c) 

Figure 2.9: (a) AFC net with three different equivalent classes of live-safe markings. Some 
of its SM-components contain two or three tokens. 

t2((t1 1!t3 )(t2 1!t4))*. In cases (a) and (b) all transitions are ordered, even though they are 

ordered in different ways. In case ( c ), t1 and t 3 are concurrent, and so are t2 and t 4 • For 

each of these cases, there exists a set of covering SM-components which are simple cycles 

with one token. Note, however, that there are also cycles with two or three tokens. Since 

by definition a state machine net must contains exactly one token, such a cycle with two 

tokens is not a legitimate SM-component. 

In order to allow for syntactic characterization of the temporal relation between tran­

sitions in a net, we shall make the following fundamental restriction. The original result 

by Hack, as described in his Well-formedness theorem, states that a FC net is live-safe iff 

when SM-reductions are applied to it (i) every SM-reduction is a. collection of one or more 

marked SM-components and (ii) the reductions cover the net. Note that this condition 

does not require that every SM-component of the net contains one token each; it is possible 

for aome SM-components to contain more than one token, as illustrated by the example 

above. 

Our temporal characterization based on syntax only works for nets which satisfy the 

one-token SM reatriction: 

Every SM-component of a LSFC net containa exactly one token. 

Hence, if net satisfies this restriction, any of ita SM-componenu containing more than 

one token is unaafe and will cause the net to be unsafe. In this thesis, we will be mainly 

interested in LSFC nets which meet this restriction. This is not as restrictive as it seems: 
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First, any LSFC nets not satisfying this restriction can usually be decomposed into subnets, 

each of which satifies it. Secondly, many other models of concurrent systems including CSP 

[25], path expressions [6], etc. require that every basic module be a sequential process­

concurrency is achieved by having many sequential modules communicating with each 

other. In contrast, our one-token SM restriction does not require each basic module to be 

a sequential process. The advantages for introducing this restriction are: 

• It allows a. simple and useful characterization of the temporal relation between tran­

sitions based solely on the structure of the net. One example of this characterization 

is that two transitions a.re ordered iff they belong to the same simple cycle in a LSFC 

net. Such a characterization is correct only when every simple cycle contains exactly 

one token. 

• Each net in this class of nets has exactly one equivalence class of live-safe markings 

and furthermore, the equivalence class can be determined directly from the structure 

of the net. This has profound implications since in general, a LSFC net may have 

more than one equivalence class of live-safe markings if some of its SM-components 

contain more than one token (an example has been given in Fig. 2.9). The problem 

of determining all different classes of live-safe markings is a. major difficulty in net 

theory [Hol74]. Moreover, if a net has only one equivalence class of markings, it is 

possible to determine all markings in this class directly from the structure of the 

net. Therefore, the concept of an initial marking serves merely as an indicator of 

the starting state of a net and plays no significant role in the synthesis from net 

specifications. 

Under the one token SM restriction to LSFC nets, we can define a relation called the 

temporal relation tr = T x T. The temporal relation is a binary relation on the set of 

transitions (and can be extended to include places) of a. LSFC net, and is defined based 

on the structure of nets. It allows one to determine syntactically whether two transitions 

are ordered, concurrent or in conflict. 

In the following, we give the net-syntactic definition of symmetric binary relations 

Ii, co, cf and de on the set of transitions; they stand for ordered, concurrent, conflict 

and direct-conflict, respectively. In a LSFC net, two transitions t and t' are (a) ordered, 

denoted as { t, t'} E Ii iff there exists a simple cycle containing both of them; (b) concurrent, 
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Figure 2.10: Portion of a reachability graph showing t and t' are (a) in direct-conflict (b) 
concurrent ( c) ordered or in indirect-conflict. 

denoted as { t, t'} E co, iff there exists a MG-component containing both of them, but not 

in the same simple cycle; ( c) otherwise, they a.re in conflict, denoted as { t, t'} E cf. One 

special case of conflicts is a direct conflict, denoted by { t, t'} E de, iff there exists a place of 

which t and t' are output transitions. For example, in Fig. 2.4, {ti, t4} E Ii, { t5, t6} E co, 

{t2, t3} E cf and {ti, t2} Ede. 

The above classifications of the temporal relation are based on the syntax of LSFC 

nets. It can be proven that these correspond to the normal understanding of ordering, 

concurrency. and conflict in terms of firing sequences. For a LSFC net, there exists a cor­

respondence between an element of the temporal .relation and a situation in a reachability 

graph of the net, as illustrated in Fig. 2.10. In this figure, dotted arcs are used to indi­

cate explicitly those transitions which cannot occur; dashed arcs indicate directed paths 

between markings. 

Another result concerning this syntactic characterization is the following. In a LSFC 

net satisfying the one-token SM restriction, if we define the temporal relation on the set of 

transitions as tr= T x T, then it can be shown that (Theorem 3.16): 

Ii, co and cf partition the temporal relation tr into diJjoint subset8, and tr = 
Ii U co U cf. 

The above syntactic characterization plays an effective and complementary role to the 

construction algorithm developed earlier: In a net, while the temporal relation allows the 

syntactic characterization of a behavior specification (i.e. whether certain control events 

are concurrent or in conflict, etc.), the finite automaton obtained from the net provides 

the basis for further analysis and synthesis. Hence, we have introduced enough analytical 

results to permit the use of nets as formal specifications of control systems, which can be 
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viewed as high level representations of finite automata for the purpose of implementation. 

2.3 Properties of State graphs 

In this section, we briefly discuss interpreted finite automata called state graphs and their 

logic implementations, as described by network functions. A network function is simply 

a set of logic equations for non-input signals in a circuit, and it can be obtained directly 

from a state graph. 

We will further explore two important properties of state graphs called liveness and 

persistency and derive corresponding conditions on STGs. As mentioned earlier, these 

will appear as syntactic conditions on STGs, and by satisfying them, correct hardware 

implementation is guaranteed: simply, a control circuit is deadlock-free and hazard-free if 

its STG specification is live and persistent. 

2.3.1 State Graphs and Network Functions 

In the construction of an equivalent FA from a set of sequences, a state is an abstract 

concept, defined as an equivalence class of sequences with the same postfixes; there is no 

apparent relationship between a state and the transitions enabled in it. However, for state 

graphs obtained from a STG, not only do we require that it be a FA equivalent to the set 

of sequences defined by a STG, but we also require that states be interpreted as binary 

vectors representing the values of signals in a circuit. There is a direct connection between 

states and transitions: states are vectors of values of a set of signals, whereas transitions 

are transitions of the same set of signals. For example, in Fig. 2.2d, the control circuit 

is comprised of the set of signals J = {a, b, c}. Hence in its state graph, every state is 

interpreted as a binary vector representing the values of signals in the ordered set (a, b, c} 
and every transition is a signal transition in J x { +,, -}. Such a connection requires that 

every states be assigned values in a manner consistent with transitions from s. For a signal 

j E J, let s(j) denote the binary value of signal j in states, and j. denote a transition of 

j (either i+ or j_). Also let s[t)s' assert that the occurrence of transition t in a states 

takes the system to another states'; tis said to be enabled in states. In a state graph, if 

s[t)s' where t = j., thens, s' and t must together satisfy the following condition: if t = i+ 
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then s(j) = O, s'(j) = 1; if t = j_ then s(j) , 1, s'(j) = 0. In which case, the triple (s, t, s'} 

is called consistent, and s, s' are adjacent. For example, in Fig. 2.2d, s = 000, t = b+ and 

s' = 010. 

A state graph is said to have a consistent state assignment iff the above condition holds 

for all states in the state graph. A state graph has a corresponding logic implementa­

tion described by a network function which can be determined from the state graph. A 

network function consists of a set of logic equations, one for ea.ch non-input signals to be 

implemented. 

In a state graph, the logic equation for every non-input signal j can be determined as 

follows. For states s, s' and transition t such that s[t}s', s' is called a nezt-state of s. For a 

signal j, its implied value in state s, denoted by f ( s, j), is determined by: if t is a transition 

of signal j, i.e. t = j., then f(s,j) = s(j); otherwise f(s,j) = s(j), where s(j) denotes the 

complement of s(j). Notice that in a state graph, it is often the case that a state s has 

more than one next-states s'; however, ea.ch state can have exactly one implied value. The 

logic equation for j is determined from the set of implied values of j in all states. This 

can be done conveniently by transferring the state graph to a Karnaugh map (K-map) 

such that in a square of the K-map corresponding to some states, the implied value of s 

is written. For example, to determine the logic equation for signal c, the state graph in 

Fig. 2.2d can be transferred to a K-map; and it can b_e verified easily that c = a.b+c(a+b). 

This is illustrated in Fig. 2.2g, and the logic function is precisely that of a C-element. 

2.3.2 Liveness and Consistent State Assignment 

In the process of obtaining a state graph from an STG, we first determine the equivalent 

FA of the STG and then perform state assignment for the FA. Performing state assign­

ment is essentially interpreting the FA. In the last section, the concept of consistent state 

assignments has been described. It follows that in every simple cycle of a state graph with 

consistent state assignment, the numbers oft and t transitions must be equal, and t, t must 

alternate; where t, t denote a pair of complementary signal transitions. We have derived 

the following corresponding condition on a STG for its state graph to have a consistent 

state assignment (Theorem 4.8). 
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A state graph of a STG has a consistent state assignment ijf every pair of 

transitions t, l is ordered. 

The continual operation without deadlocking of control systems is the property of 

liveness. A state graph of a control system is called live iff its uninterpreted FA is strongly 

connected and has a consistent state assignment. If the state graph is strongly connected 

then all of its transitions occur infinitely often in some transition sequences. 

A STG is said to be live iff its state graph is live. The syntactic conditions on a STG 

so that its state graph is live are the following. (Theorem 5.1) 

A STG is live iff (i) its uninterpreted net is a LSFC net, and {ii) every pair of 

transitions t, l is ordered. 

Condition (i) guarantees that the FA is strongly connected; condition (ii) guarantees that 

the interpreted FA (i.e. the state graph) has a consistent state assignment. Recall that a 

strongly connected FA is said to be live. An example of a live STG and its state graph are 

given in Fig. 2.2 above. 

2.3.3 Persistency 

Persistency is one of the most important properties of state graphs. Persistency is an 

important concept because it is the essential property of speed-independent circuits. It 

is also the most complicated to deal with because there may be a number of mechanisms 

involved. 

In a state graph, a transition is persistent iff when it is enabled, the occurrence of some 

other transition does not disable it. This situation is illustrated in Fig. 2.1 la: transitions 

t and u are enabled in state 8 and 8[t}81, 8[u)82. t is persistent, as the occurrence of u 

does not disable it. On the other hand, u is non-persistent because it is disabled by an 

occurrence of t and hence not enabled in 8 1 • The disabling of u must have been caused by 

the occurrence of transition t, as tis the only transition which occurs in going from state 

s to 8 1 • In which case, t must be a transition of an input to a logic element of which u is 

a transition of its output signal. 
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Figure 2.11: (a) A non-persistent state graph and (b) its corresponding STG. ( c) By adding 
a persistency constraint, non-persistency can be eliminated from the state graph (d). (e) 
To maintain the concurrency between u and t, an internal transition x can be introduced. 

We have developed the corresponding syntactic characterization on STG for non­

persistency, as illustrated for a live STG in Fig. 2.llb: (Theorem 5.4) 

In the state graph (Fig. !.11a}, tranaition u ia non-persiatent iff in the corre­

.sponding STG, t, u are concurrent and lRu. 

This can be appreciated by considering the corresponding hardware implementation: 

the course of action lRu is implemented by a hardware element with t as one of its input 

transitions and u is a transition of its output signal. Concurrency between t and u implies 

that while the hardware element is reacting to t to cause u, t may be occurring simultane­

ously at the input of that hardware element. This is commonly known as a race condition 

in hardware circuits and can lead to malfunction. 

A per.si.stency constraint is an ordering constraint between two transitions, namely from 

u tot as illustrated in Fig. 2.llc, used for eliminating this non-persistent behavior. The 

resulting state graph in Fig. 2.1 ld is persistent. 

A general condition of our design methodology is that transitions of input signals to 

the system are always assumed to be persistent. The reason for this assumption is that 

even if two transition& of input signals appear to be enabled in the same state, in the larger 

system comprising the original system and its environment, they may indeed be enabled 

in different states. 
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A STG is said to be persistent iff its state graph is persistent. Hence, 

A STG i& persistent iff for every non-input signal j, every transition of j caused 

by a transition x is ordered with x. 

A remark about Persistency. 

Earlier, when introducing STGs as a form of interpreted Petri nets, we mentioned a reason 

why places a.re not interpreted a.s states of signals. This is indeed a fundamental limitation 

of our attempt to use LSFC nets to model behavior of logic circuits. As a matter of fa.ct, 

STGs cannot model circuits which have hazards because these circuits correspond to non­

persistent STGs. Consider the STG in Fig. 2.llb. Without a persistency constraint from 

u to t (a.s indicated in Fig. 2.llc), the following problem would arise. After transition t 
fires, each of its output places (not shown) gets a. token. Since u and ta.re concurrent, the 

token on the left branch may move to the input place of t while u ha.s not fired. Since t 
and tare transitions of the same signal (say j), what should really happen when t fires 

subsequently is that the token at the input place of u also disappears. This is because the 

presence of this token should be used to indicate the state of signal j after t fires. Since t 

has fired, changing the state of j again, this token must disappear. 

It is clear that such a disappearing token is not allowed by the firing rule of Petri nets. 

Hence in order not to have to deal with this problem, we require that all transitions in 

a net (except those of input signals) satisfy the persistent constraint. The ramification 

of this restriction is that STGs cannot model arbiters and similar circuits with hazards. 

Note, however, that this does not include circuits with input choices which can still be 

specified by STGs (a.s illustrated by Fig. 2.2e). Hence, an arbitration can always be turned 

into an input choice by using an external arbiter. 

2.3.4 A synthesis procedure 

The following synthesis procedure summarizes the ideas discussed so far. From a textual 

description of a control circuit, we perform the following steps. 

(1) Construct a STG specification according to the description. 
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(2) Check the syntax of the STG for liveness. 

(3) Check the syntax of the STG for persistency. (If non-persistency exists, eliminate it 

by adding persistency constraints and/ or additional internal signals.) 

( 4) Check the syntax of the STG for state assignment problems. 

(5) Derive the equivalent FA of the STG and perform state assignment to produce a state 

graph. (If the STG is live then its state graph has a consistent state assignment.) 

(6) Determine the network function from the state graph. 

The logic circuit is simply the realization of the network function. The phase of trans­

forming a live-persistent STG into a logic circuit can be done mechanically. However, 

transforming an initial STG specification into a live-persistent one may require interac­

tions with the designer. Even though checking for liveness and persistency of STGs can be 

performed by simply checking the syntax of STGs, there is usually more than one way to 

eliminate deadlocks and non-persistency. For example, non-persistency in Fig 2.11 b can be 

eliminated either (i) by adding a persistency constraint directly to the STG (Fig. 2.lld) 

or (ii) by first introducing an internal transition x and then adding the persistency con­

straint. In case (i), concurrency in the specification is reduced, thus reducing the number 

of transition sequences allowed. In the second case, concurrency is maintained at the cost 

of introducing more signal transitions (and hence more hardware). Whichever choice is 

better-limited concurrency vs. external behavioral equivalence-is to be decided by the 

designer. 

We caution the reader that step ( 4) is another possible mechanism which may cause 

non-persistency in the state graph; it is a by-product of the state assignment process and 

has no relation to the sequencing specification of a STG. Nonetheless, we still can establish 

a syntactic characterization of this problem for STGs, as presented in Chapter 5. In Section 

2.5, we present an example of this problem and discuss its implications. 

2.4 Decomposition by Net Contraction 

The above synthesis procedure simply consists of going from a live-persistent STG to a 

state graph then to a logic implementation. There is a simple method for decomposing 

the state graph into smaller subgraphs, from which an efficient implementation can be 
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obtained. This decomposition technique is based on a graph-theoretic operation called 

contraction. The general strategy is illustrated in Fig. 2.12 which shows the steps for the 

synthesis of a trigger module, a control module for implementing pipelined operation of a 

processign system. 

The STG specification of this module (Fig. 2.12a) satisfies the syntactic properties of 

liveness and persistency. Its state graph is shown in Fig. 2.12b, from which an implementa­

tion can be obtained (Fig. 2.12e). This path a-b-e adheres to the synthesis steps described 

previously, where no decomposition is used. The alternate path a-c-d-e demonstrates our 

decomposition technique, as described below. 

First, for each signal to be implemented in {Ia, Or}, a contracted net is determined for 

it, as shown in Fig. 2.12c. In the STG, transitions of signal Ia are cau8ed by transitions 

of signals Ir and Or, but not Oa. Thus in the contracted net of I 11 , transitions of 0 11 

can be eliminated. Besides transitions of signal Ia, the contracted net of Ia only contains 

transitions of signals which cawe transitions of 111 in the original STG. These signals 

{Ir, Or} form the input 8et of Ia, denoted as I(I11 ). In the implementation (Fig. 2.12e), 

signals in this set are input signals to the logic element Ia. A contracted net is obtained 

by removing unwanted transitions from the original STG, in such a way that the temporal 

relation between remaining transitions is preserved. The left STG in Fig. 2.12c is the 

contracted net of Ia, obtained by removing transitions of signal Oai similarly, the right 

STG is the contracted net of Or, obtained by removing transitions of signal Ir. The 

dashed arcs in the contracted nets of ( c) indicate redundant causal constraints which can 

be removed. 

It is important to note that in the contracted net of a signal j, only transitions of j are 

considered as output, other transitions in the input set of j, I(j), are considered as input,, 

to the logic element j. The implication is that 8ince tran&itiona in I(j) are input.,, they 

are per8i8tent. Their persistency must be guaranteed by other part of the circuit which 

has its own corresponding contracted net. 

Using exactly the same technique as before, each contracted net produces a state graph 

from which the logic equation for a signal can be determined. In this example, the final 

hardware circuits are the same whether decomposition is used or not. However, in general, 

the circuit obtained from decomposition is usually more efficient. 



2.4. DECOMPOSITION BY NET CONTRACTION 41 

The dashed arrows from (a) to ( c) and from (b) to ( d) indicate net contractions and 

state graph contractions, respectively. The arrows from (b) to (d) indicate the fundamental 

reason this technique of decomposition yields a logic circuit with the same behavior as 

one obtained without decomposition: state graphs obtained from the contracted nets are 

themselves contracted versions of the state graph in (b ). A contracted ata.te graph is 

obtained by simply "ignoring" the uninteresting transitions. 

The major net-theoretic results which serve as the basis of this decomposition technique 

are the following (Fig. 2.13a). Let E denote a LSFC net satisfying the one-token SM 

restriction, and ~ its equivalent FA. Let {E~, ... , E~} be a set of contracted nets of E such 

that each Ei contains a subset T, ~ T, where Tis the set of transitions of E. A contraction 

preserves the temporal relation if two transitions which are ordered (concurrent, in conflict) 

in the original STG remain so in the contracted net. For each Ei, let ~i be its equivalent 

FA. Then (Theorem 6.11) 

If the contraction& preserve the temporal relation, then every ~i is a contracted 

state graph of~. 

The state graphs in { ~~, ... , ~~} form a collection of concurrently operating state ma­

chines. The aggregate behavior of this collection is defined as the concurrent composition 

of all components, obtained by weaving them: ~~II .. · II~~. 

The following result establishes the behavioral equivalence between the LSFC net and 

its set of contracted nets. (Theorem 6.12) 

If the causal relation of every pair of tranaitions in E (i.e. Vt, t' E T : tRt') ia 

present in some contracted net, then ~ and ~rn ... 11~~ are identical. 

Since STGs are a syntactic subclass of LSFC nets, the above result can be applied 

directly to STGs, as indicated by Fig. 2.13b. The logic circuits obtained by two methods 

are equivalent in the sense that they have the same behavior, as expressed in terms of sets 

of transition sequences. 
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Figure 2.12: (a) STG specification of a trigger module. The final implementation can 
be obtained through the normal path a-b--e, or through decomposition by contraction 
a-c-d-e. 



2.4. DECOMPOSITION BY NET CONTRACTION 43 

Live-perauten.t 

A~~ 
State ,,..,1 {SG} { STG .1• sro,, .... STG,.j 

(a) 

f sa1 , sa1 , ... , sa,.J 

'i·/ 
Logic cin:vit 4 .. Logic circuit 

(area. e~ien.t} 

(b) 

Figure 2.13: (a) The equivalent FA of contracted nets are identical to the contraction of 
the original FA. (b) Application of the result in (a) to STGs. 

A remark about contraction vs. reduction 

Earlier in this chapter, we mentioned Hack's reduction algorithm which, when applied to 

a LSFC net, produces a set of MG-components or SM-components. In addition, we have 

shown that the equivalent FA of a LSFC net can be obtained by weaving the equivalent 

FA of a set of covering SM-components. 

The result stated above for net contraction indicates that the equivalent FA of a LSFC 

net can also be obtained by weaving the equivalent FA of a set of contracted nets which 

"cover" the original STG (in the sense defined above). 

The main difference between these two methods of decomposition is that in reduction, 

a net is decomposed into subnets which are either state machines or marked graphs, while 

in contraction, subnets a.re not necessarily required to be state machines or marked graphs, 

even though it is possible. Subnets resulting from net contractions can be anything, de­

pending on which transitions are eliminated. In fact, reduction can be considered as a 

special case of contraction: in a SM- (MG-) reduction, the set of transitions which remain 

all belong to the same SM- (MG-) component; by using contraction to eliminate other 

transitions, the desired SM- (MG-) component can be obtained. Note, however, that the 

contraction technique proposed only works for LSFC nets which satisfy the one-token SM 

restriction. 
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2.5 A problem with state assignment 

Previously, we discussed conditions under which a STG has a con,,istent state assignment. 

Below, we will use an example to illustrate a side-effect of state assignment which can some­

times give rise to non-persistency in state graphs. In contra.st, the kind of non-persistency 

which we described earlier is a result of the interaction between concurrent signal transi­

tions, and therefore, it is directly related to the sequencing requirement specified by an 

STG. Thus, even though both phenomena may give rise to non-persistency in state graphs, 

their mechanisms are completely different. We will call this the state assignment problem 

and the other non-persistency in STGs to distinguish them. 

Fig. 2.14a is a STG, being a simple cycle tiRt2 ••• RtnRti, with an initial marking M0 in 

which place (tn, ti) is marked. Its equivalent FA (Fig. 2.14b) is a simple cycle, represented 

by the sequence so[ti)si[t2) ... sn-i[tn)s0 • Suppose that there exists some transition ti, 1 < 
i < n, such that the set B = {ti, t2 , ••• , ti} has the property that Vx ET: x E B ¢>- x EB, 

i.e. B forms a subset which contains both the rising and falling transitions of a number of 

signals. Such a set is called a complementary set. 

Then when state assignment is carried out, states s0 and Si will have the same binary 

representation (Fig. 2.14c ). This is because if any transition t; in B occurs, then f; must 

also have occurred. Thus in the state graph, both ti and ti+t are enabled in the same state 

and hence, are in direct conflict. There are two cases: 

(a) If both ti and ti+t are transitions of input signals, then they are persistent. (This is 

due to the previous assumption that external transitions be persistent.) 

(b) If either ti or ti+l or both are transitions of non-input signals then non-persistency 

results. 

Case (b) above represents an undesirable situation and it cannot be fixed by a persistency 

constraint as discussed earlier. In order to eliminate this case of non-persistency, one has 

to introduce additional bit to the binary vectors to allow the distinction between states 

s0 and Si· This means that it may be necessary to add another internal signal to the 

set of signals J. For example, one can insert a new signal transition x anywhere in the 

chain tiRt2 ... Rtn, thus ensuring that it no longer forms a complementary set. A specific 

example is given in Section 7.2.2 to illustrate this step. 
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Figure 2.14: (a) A STG, (b) its equivalent FA and (c) the state graph resulting from state 
assignment. 

The above problem also applies to contracted nets of a STG. Even if a STG contains no 

complementary sets, in a contracted net, new complementary sets may be created when 

transitions are removed from the STG. In which case, one can use the same technique 

of introducing additional internal signal to eliminate non-persistency in a contracted net. 

Chapter 7 provides an example for this. 

2.6 Summary 

In this chapter, we have outlined an approach for synthesis of self-timed control circuits 

from STG specifications. While transforming a live-persistent STG into a logic circuit can 

be done mechanically, ensuring liveness and persistency of STGs is a more complex task 

which may require interactions with the designer. Nonetheless, these interactions only 

mean that there are usually more than one way to guarantee liveness and persistency and 

choosing the optimal solution is the task left to the designer. 

One added complication arises from our technique for decomposition which produces 

contracted nets from a STG. Of the three properties which one has to satisfy: liveness, 

persistency (of STG) and the state-assignment problem, we have proven in the thesis that 

(i) if liveness and persistency are met by a STG, then they are automatically met by its 

contracted nets, and (ii) even if a STG does not have any state-assignment problem, its 

contracted nets may due to the removal of transitions. 



Chapter 3 

Semantics and Temporal Relations of 
Nets 

Petri net theory constitutes one active area of research in the description, modeling and 

analysis of concurrent systems. Petri nets allow the modeling of sequential and non­

sequential behaviors of systems by providing two distinct types of elements for representing 

states and transitions. Even though Petri nets are a powerful model of concurrent systems, 

their analysis is often difficult due to the generality allowed in these specifications. We 

will restrict ourselves to a subclass of Petri nets called Free-Choice (FC) nets and will 

use them as specifications of systems which exhibit concurrent operations. Free-Choice 

nets represent an appropriate blend of concurrency and choice in specifying behaviors of 

systems, and at the same time can be analyzed without much difficulty. 

In the previous chapter, we have argued for the use of firing sequence semantics of nets. 

This chapter provides the formal statements and proofs of the results presented earlier. 

Two new results described earlier for the class of LSFC nets are developed: (1) An al­

gorithm for constructing a finite automaton directly from the atru.cture of a net. Such a 

finite automaton corresponds precisely to the reachability graph of that net. (2) A charac­

terization, based on the structure of a net, of a temporal relation on its set of transitions. 

The temporal relation can be partitioned into disjoint subsets of ordering, concurrency 

and conflict, each of which has a unique corresponding situation in the reachability graph. 

The rest of this chapter is organized as follows. Section 2 gives a brief introduction to 

Petri net theory and summarizes important and-recent results. The structure and firing 
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rules of Petri nets are defined; important subclasses of nets called marked graphs, state 

machines and free choice nets are identified. Then a number of results for LSFC nets are 

summarized, from works of Hack, Best, Thiagarajan and Voss. These are refered to as the 

structure theory of LSFC nets, one based on the static structure of the nets rather than 

on their dynamic behaviors as described by the firing rule. 

Section 3 discusses a semantics of nets based on sets of firing sequences. We show that 

the set of firing sequences of a live safe free choice net can be determined directly from 

those of component state-machines by weaving them. This allows us to devise a simple 

algorithm for direct construction of the reachability graph from the structural components 

of a net. 

Section 4 defines a binary relation called temporal relation in terms of net syntax and 

discusses a number of important properties. We then establish one-to-one correspondence 

between subsets of this relation (ordering, concurrency and conflict) with unique situations 

in the reachability graph. 

3.1 Petri Nets 

3.1.1 A Brief Introduction 

This section provides a brief introduction to net theory. Most of the materials in this 

section are adapted from [24,41,44]. 

A Petri net is a triple N = {P, T, F) where 

• PUT =I- 0 and P n T = 0, and 

• F ~ (P x T) U (T x P) such that dom(F) U range(F) =PUT. 

P is the set of places, T is the set of transitions and P U T is the set of element,, of N. 

The relation Fis called the flow relation. In graphical representation, places are drawn as 

circles, transitions as bars and the ftow relation as directed arcs. Let x be an element of 

N, then 

• ·x = {y E PUT I {y,x) E F} is the preset of x, 
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• x· = {y E PUT I {x,y} E F} is the po1t1et of x. 

For a place x, ·x and x· are often referred to as sets of input and output transitions of 

x, respectively. Similarly, for a transition x, ·x and x· are often referred to as sets of input 

and output places of x, respectively. This dot notation is extended to sets of elements in 

the obvious way. If p E P and IP· I > 1 then pis called a. 1hared place, where IXI denotes 

the cardinality of set X. To facilitate the task of analysis and presentation, two common 

restrictions on a Petri net N = {P, T, F} are that it be pure and 1imple:1 

• N is pure iff'v'x,y E PUT: {x,y) E F ::? {y,x) fl F. 

• N is simple iff 'v'x, y E PUT : ( ·x = ·y A x· = y·) ::? x = y. Another related property 

is place-simple: 'v'x,y E P: (·x = ·y A x· = y·)::? x = y. 

In light of the fact that we are mostly interested in behavior of nets in terms of firing 

sequences, place-simplicity is a more reasonable restriction, whereas simplicity is a rather 

stringent requirement in that it disallows the specification of certain types of choices. In 

summary, all nets considered are tacitly assumed to satisfy the following restrictions, unless 

explicitly stated otherwise: 

Restriction 3.1 All net1 considered are finite, strongly-connected, pure and place-simple. 

We will be mainly concerned with three important subclasses of nets called marked 

graphs (MG), state machine1 (SM) and free-choice (FC) nets. A marked graph is a net 

in which each place has at most one input transition and at most one output transition: 

'v'p E P : I ·pl, IP· I ~ 1. Marked graphs represent the structure of deterministic concurrent 

systems. The dual notion of marked graphs is that of state machines. A state machine 

is a. net in which each transition has at most one input place and at most one output 

place: 'v't E T : I· ti, It· I ~ 1. State machines represent the structure of nondeterministic 

sequential systems. A free-choice net is a net such that if any two transitions t1 and t 2 

share the same input place p, i.e. IP· I > 1, then pis the unique input place of both t1 and 

t2: 'v'p E p: IP· I> 1::? ·(p·) = {p}. 

1 Note that this definition of "simple" is differently from Commoner's simple nets, which are called 
asymmetric-choice nets [44). 
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The states of a system whose structure is modeled by a. net are represented by markings. 

A marking of a. net N is a. function M : P -+ {O, 1, 2 ... }. In diagrams, the marking M 

is indicated by placing M(p) tokens (drawn as dots) on each place p. If a place contains 

tokens, it is marked, otherwise, it is blank. Function M is extended to sets of places such 

that M(P) = EpeP M(p). A transition tis enabled a.t the marking Miff each input place 

oft is marked at M, i.e. Vp E ·t: M(p) > 0. When the enabled transition t fires at M, a 

new marking M' is reached which is given by 

{ 

M(p) - 1 if p E ·t - t· 
Vp E P: M'(p) = M(p) + 1 if p Et· - · t 

M(p) otherwise 

The transformation of M into M' through the firing oft is denoted as M[t)M'. Let 

T• be the set of all finite-length sequences of symbols in T. Let M 0 be a marking of the 

net N and o- = tot1 t2 ••• t,. E T* a sequence of transitions. Then o- is a firing sequence at 

M 0 if£ there exist markings Mi, M2 , ••• , M,.+l of N such that Mi{ti)Mi+l for 0 < i $ n. 

As usual, Mo[o-)Mn+1 denotes the transformation of M 0 into M,.+l by firing o- at M 0 • By 

convention, for every marking M of N, M[E)M, where E denotes the empty sequence. 

The forward marking class of a marking M of a net N is denoted as (M) and is the 

smallest class of markings of N given by: 

• ME (M} and 

• if M' E (M) and for some t ET: M'[t)M", then M" E (M}. 

A net N = (P, T, F) with an initial marking M 0 is usually represented as a quadruple 

E = (P, T, F, M 0). N is called the underlying net of E and usually denoted as N'f'.. 

Two important behavioral properties of a net with an initial marking are liveness and 

safety. 

Definition 3.2 Let E = (P, T, F, Mo) be a net with an initial marking M 0 . Then 

• E is live iif VM' E [Mo), Vt ET: 3M" E (M') such that t is enabled at M". 

• :E is safe ijf VM' E [M0}, Vp E P: M'(p) $ 1. 
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3.1.2 Previous Results for Free-Choice nets 

Given a Petri net with an initial marking, the firing rule can be applied to transform the 

net from one marking into a new marking by firing enabled transitions. in the net. The 

reachability graph is a graph in which nodes are markings and arcs between nodes represent 

firings of transitions; this graph is a state transition graph which readily captures the 

behavior of the net. Although for general Petri nets, reachability graphs can be obtained 

by exhaustively firing enabled transitions at a marking to produce new markings, for the 

class of FC nets, much can be deduced directly from their structure without reference to 

any particular initial marking, provided that the net is live and safe. In this section, we 

summarize a number of relevant results for FC nets. 

Reduction algorithms for Free-Choice nets. 

Hack [24] devised two simple algorithms for structurally reducing a free choice net into its 

component marked graphs or state machines. 

A marked graph allocation (MG allocation) over a free choice net N = {P, T, F) is a 

function A : P -+ T such that Vp E P : A(p) E p·. Thus for every place in a net, only 

one of its output transitions is allocated, the rest are called unallocated transitions. Let 

Et and Ep denote the sets of eliminated transitions and places, respectively. The marked 

graph reduction (MG reduction) algorithm involves the following steps. 'tip E P, Vt E T : 

1. Delete all unallocated transitions: p · -{A(p)} ~Et. 

2. Delete places with all input transitions already deleted: ·p ~ Et ¢:> p E Ep. 

3. Delete transitions with at least one input place deleted: ·t n E,, =/:- 0 ¢:> t E E.,. 

Repeat steps 2 and 3 until they a.re no longer applicable. A marked graph resulting from 

the reduction is called a MG-component. 

A state-machine allocation (SM allocation) over a free choice net N = (P, T, F) is a 

function B : T -+ P such that Vt E T : B( t) E ·t. The state machine reduction (SM 

reduction) algorithm involves the following steps. 'tip E P, Vt ET: 

1. Delete all unallocated places: ·t - {B(t)} ~ Ep. 
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(b) MG-compotunu (c) SM-comP,Oft.eflU 

Figure 3.1: (a) A LSFC net (b) Its MG components resulting from MG-reductions and (c) 
Its SM components resulting from SM-reductions. 

2. Delete transitions with all output places already deleted: t· s; E,, # t E Et. 

3. Delete places with at least one output transition deleted: p · nEt '# 0 # p E E,,. 

Repeat steps 2 and 3 until they are no longer applicable. A state machine resulting 

from the reduction is called a SM-component. An example (taken from [4]) of MG and SM 

reduction of a LSFC net is shown in Fig. 3.1. 

Useful results for Free·Choice nets. 

For FC nets, a number of useful results have been proven. They are stated below as 

preliminaries to further investigation. The following theorem is due to Hack, phrased in 

different form by [49]. 

Theorem 3.3 Let :E = (P, T, F, Mo} be a LSFC net and x an element of Nr,. Then 
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• there exists a MG-component Ni = (Pi, Ti, Fi) of NE such that x E Pi U Ti, 

• there exists a SM-component N2 = (P2 , T2, F2 ) of NE such that x E P2 U T2 • 

This theorem states that if a FC net is live and safe, then the set of MG-components 

resulting from MG-reductions covers the net. Alternatively, the set of SM-components 

resulting from SM-reductions also covers the net. On the other hand, if a FC net is 

either nonlive or unsafe, then some reduction does not cover the net or is empty, or some 

component is not strongly connected. 

Another useful theorem from the theory of marked graphs (12] states that (a) for every 

marking M reachable from the initial marking M0 , there always exists a firing sequence u 

which brings the net from M back to itself, and (b) any such firing sequence u must fire all 

transitions in the net at least once and exactly the same number of times. This theorem 

is formalized below. 

For a sequence u ET* and Ti ~ T, ufTi denotes the projection (or restriction) of u 

onto set Ti. If t E T is a transition then #(uf t) is the number of occurrences oft in u. 

For a set of transitions Ti, #(ufTi) = LteTi #(uf t). For a net with an initial marking 

E = (P, T, F, M0 ), FS(E) denotes the set of all firing sequences of E. The following 

theorem states that in a live-safe marked graph, (a) for every marking M reachable from 

M 0 , there exists a firing sequence which brings the net from M back to itself, and (b) every 

such firing sequence contains at lea.st one instance of each transition. 

Theorem 3.4 Let E = (P, T, F, M0 ) be a live-safe marked graph. Then, 

(a) \IM E (Mo) 3u ET*: M(u)M and 
(b) (\lu I M[u)M)(\/t E T) : #( uf t) = k, for some k ;:::: 1. 

There are a number of recent results concerning the structural properties of LSFC nets. 

We mention below two theorems from (49]; these are important for later developments in 

the thesis. Let M be a marking of a net N, and Pi ~ P. Then Mf Pi denotes the 

submarking obtained by restricting M to Pi. 

Informally, the theorem below states that the behavior of a SM-component-as charac­

terized by firing sequences-is not constrained in any way by the composite FC net. The 

set of firing sequences of a SM-component Ei is the same as that of the composite net 
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restricted to the transitions in T1 . Thus a LSFC net can be considered as a set of state 

machines which operate concurrently and synchronize with each other occasionally. 

Theorem 3.5 Let E = (P, T, F, Mo) be a LSFC net, and av.ppoae E1 = (Pi, Ti, Fi, MJ) is 

a SM-component of E, where MJ = M0 rP1 • Then 

where by definition FS(EHT1 = {o-rT1 Io- E FS(E)}. 

The following theorem states that each MG-component in a LSFC net can be activated 

at some marking and it is a LS marked graph under that marking. 

Theorem 3.6 Let E = (P, T, F, M0} be a LSFC net a.nd N1 = (Pi, Ti, F1 } be a MG­

component of E. Then there ezista a ma.ricing ME [Mo) such. that E1 = (Pi, T1' F1 , M 1} is 

a live safe ma.riced graph, where M 1 = Mr P1 . 

3.2 Firing Sequence Semantics of Free-Choice nets 

One main result of this section is a theorem stating the relation between the behavior 

of a LSFC net and those of the component subnets constituting the original net. The 

behavior of nets will be characterized in terms of sets of firing sequ~nces. We will show 

that these sets are regular by demonstrating a procedure for constructing their equivalent 

finite automata (FA). For nets, these FA correspond precisely to the reachability graphs 

whose vertices represent the markings of nets, and arcs between vertices the transitions 

from one marking to another due to the firing of some transition in the net. This theorem 

provides an algorithm for obtaining the equivalent FA directly from the structure of a 

LSFC net, instead of having to determine every marking from the firing rule. 

3.2.1 Semantics 

Theorem 3.5 states that the set of firing sequences of a SM-component E1 is the same 

as that of the composite net restricted to the transitions in T1 . Thus a LSFC net can be 
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considered as a. set of state machines which operate concurrently and synchronize with each 

other occasionally. Given this fundamental viewpoint, we can characterize the behavior of 

a LSFC net as a. composition of firing sequences of the component state machines. 

Before discussing the theorem, we present a convenient operator ca.lied weave for com­

bining firing sequences of concurrently opera.ting nets. For a net E, FS(E) denotes its set 

of firing sequences. 

Definition 3.7 Let E1 = (Pi,Ti,F1,MJ) and E2 = (P2,T2,F2,MJ) be two neu. The 

weave of two seu of firing sequences FS(E1) and FS(E2) u given by 

FS(E1) II FS(E2) = {u E (T1 u T2)* I urT1 E FS(E1) " urT2 E FS(E2)}. 

Weaving is idempotent, commutative and associative. If T1 n T2 = 0, weaving is exactly 

the shuffle of two sets of sequences. The weave opera.tor has been used in [25,53] as 

a convenient means of describing "synchronized concurrency" between two sequences of 

events, such that distinct events in two sequences can occur concurently in any order, but 

their common events must occur in synchrony. In these formulations, the set of firing 

sequences is always accompanied by the set of events to form a pair (T, F S) called a trace 

structure, where F S ~ T*. The inclusion of the set of transitions T is necessary in order 

for weave to be associative. In our formulation, the corresponding trace structure of a 

LSFC net E = {P,T,F,M0 } is given by (T,FS(E)). 

Theorem 3.3 shows that for a LSFC net, there exists a set of one-token SM-components 

which cover it. The existence of these components is essential to the correctness of the 

following theorem. 

Theorem 3.8 Let E = (P, T, F, Mo) be a LSFC net, {E1, E2, ... , En} be a set of one­

token SM-component,, which covers the net, where Ei = (P,, T,, Fi, M~) and M~ = M0 rP,, 

1 $ i $ n. Then 

FS(E) = FS(E1) II FS(E2) II·.· II FS(En)· 

Proof Let FS' = FS(E1)llFS(E2)ll ... llFS(En)· We need to show that FS(E) = FS'. 

(a) FS(E) ~ FS' : Theorem 3.5 states that if E is a LSFC net then for every SM­

component E,, 1 < i $ n: FS(E,) = FS(E)r'.11. Hence, u E FS(E)::::? urTi E FS(EH7i = 
FS(E,), which further implies that u E FS'. Therefore FS(E) ~ FS'. 
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(b) FS' £;; FS(E) : We need to show that every sequence u E T* such that uf7i E 

FS(Ei), 1 ~ i < n, is a firing sequence of E, i.e. u E FS(E). This is done by induction 

on lul. 

Basis: lul = 0. Trivial. 

Induction step: Assume that u = ut E T*, where ufTi E FS(Ei), 1 ~ i ~ n and 

u E FS(E). Let M' be a marking of E such that M0[«7)M'. We proceed to show that at 

M', if t is enabled in every SM-component which contains it, then t is also enabled in E. 

In which case, ut is a firing sequence of E. 

Let p E ·t, then there must exist some SM-component E; containing p, as the SM~ 

components cover the net. Because E; is a SM-component, it must also contain t. Since 

utfT; is a firing sequence of E;, it follows that p must be marked at M'. By applying the 

same reasoning, we deduce that every input place oft must be marked. Hence at M', tis 

enabled in E. I 

Even though no proof exists, we believe that the above theorem should apply also to a 

superclass of FS nets called State-Machine Decomposable (SMD) nets. 

3.2.2 An algorithm for constructing reachability graphs 

So far, we have demonstrated that the set of firing sequences of a LSFC net can be obtained 

by weaving those of its SM-components. It will be shown in this section that the set of 

firing sequences of any LSFC net is regular by demonstrating the existence of a finite 

automaton (FA) which accepts or generates such a set of firing sequences. The result of 

Theorem 3.8 above provides an algorithm for constructing a FA directly from the structure 

of the net. 

We start first with a description of the algorithm itself. For a LSFC net E, ~(E) 

denotes its equivalent FA (which is the same as its reachability graph). 

Algorithm 3.9 Let E = (P, T, F, M0 ) be a LSFC net and {E1 , E2 , ••• , En} be a set of 

one-token SM-components which covers the net. Then 
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Figure 3.2: (a.) the state machines of SM-components from Fig. 3.1, a.nd (b) the weave of 
two state ma.chines, yielding the reachability graph of the LSFC net in Fig. 3.1. 

where ~PJi)ll~(E;) denotes the weave of two state machines, as described subsequently. 

Fig. 3.2 shows construction of the equivalent FA of the LSFC net in Fig. 3.1 by weaving 

the state machines corresponding to the SM -components. The regular expressions for the 

component state machines are 

The regular expression for the LSFC net is EillE2 a.nd can be determined directly from 

the state graph in (b) 88 E11lE2 = ((t1(t3llt4)lt2(tsllt6))to)*. 

Note that if Ei is a. SM-component, then ~(Ei) is the same 88 Ei itself, except for a few 

representational changes. In this case, FS(Ei) ca.n be represented by a regular expression 

involving the opera.tors concatenation, union, and Kleene cloaure (denoted respectively by 

juxtaposition, bar j, and star *·) The construction algorithm in the a.hove definition is 

more convenient and direct tha.n the alternate approach of manipulating the set of firing 

sequencess a.nd expressions, as suggested by Theorem 3.8. It is more convenient because 

all state machine components already exist; they need not be constructed from their sets 

of firing sequences. 

First, we describe a. more conventional representation of state ma.chines. Recall that 

if a. LSFC net E = (P, T, F, M0 ) is a state machine then VM E [Mo) : M(P) = 1 and 

Vt E T : I . ti = It . I = 1. 

Definition 3.10 Let E = (P, T, F, M0 ) be a state machine. Then the finite automaton 

corresponding to E is given by ~(E) = (S, T, 8, s0 , q) where , 
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• For P = {Po,PJ., ... ,pn}, S = { {Po}, {Pi}, ... , {pn} } is the set of states, 

• so = {p I Mo(P) = 1} is the initial state, 

• q = {so} is set of final states, 

• 8 : S x T -+ S a partial function called tran.,ition function defined -''Uch that Vt E 

T, VPJ.,P'J E P: 
(PI, t} E F /\ (t,P'J} E F # 8(si, t) = s2, 

where s1 = {PJ.}, s2 = {P'J}. 

In graphical representation, states in S are drawn as small solid circles. The initial 

state is circled to distinguish it from the rest. The transition function is indicated by arcs 

between states, labeled with the appropriate transitions. Also by convention, Vs E S : 

8( s, e) = s. For clarity these arcs are omitted for every state s. 

Let A be a regular set of firing sequences, then FA(A) will be used to denote the 

corresponding finite automaton. For a LS net E, F S(E) denotes its set of firing sequences 

and FA(FS(E)) denotes its finite a~tomaton. Thus FA(FS(E)) = ~(E). The weave of 

two finite automata is defined subsequently. In order to keep the definition general, the 

transition relation A ~ S x T x S will be used instead of the usual transition relation 

8: S x T-+ S.2 

Definition 3.11 Let E1 and E2 be nets with "eta of firing sequences E1 = FS(E1) and 

E2 = FS(E2) and finite automata 

~(E1 ) - F A(E1 ) - (Si, Ti, Ai, s~, q1 } 

~(E2) - F A(E2) - (82, T2, A2, s~, q2} 

(a) The weave of~(Ei) and ~(E2 ) is given by 

~(E1) II ~(E2)de/ FA(E}llE2). 

(b) The finite automaton corresponding to the weave of E1 and E2 is given by 

2 A finite automaton with a transition relation is generally nondeterministic, while one with a transition 
function is deterministic. Converting from a nondeterministic finite automaton to a deterministic one is 
straightforward, using such well-known techniques as the subset constraction method. 
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The inclusion of the empty transition e. for all states s : (s, e., s) E Do is essential for 

the concise characterization of a weave's state machine. By using the e.-transitions, one 

avoids the distinction between different cases corresponding to t E Ti - T2 , t E T2 -Ti a.nd 

t E Tin T2 • The above definition is essentially due to [53]. 

3.3 Temporal Relations: Ordering, Concurrency and 
Conflict 

Under the one-token SM restriction on a LSFC net, one can determine directly from 

its structure whether two transitions are ordered, concurrent, or in conflict. Since we 

are only interested in nets which are strongly connected directed graphs, these temporal 

characterizations will be different from those based on partial orders which correspond to 

acyclic graphs. We will first define these sub-relations based on the structure of LSFC nets 

and then discuss their meaning and correspondence to situations in reachability graphs. 

As mentioned in Chapter 2, this syntactic characterization only works for LSFC nets 

with the additional restriction which we call one-token SM re.striction, given again below. 

In fact, all results proven in this section assume this restriction. 

Restriction 3.12 (One-token SM) The cla"" of LSFC neu corMidered i" "uch that for 

a net in th~ clu.,, every one of ii,, SM-componenu contain& ezactly one token. 

3.3.1 Syntactic Characterization 

Below we define symmetric binary relations Ii, co, cf and de on the set of transitions 

T; they stand for ordering, concurrent, conflict and direct-conflict, respectively. A "imple 

path in a net N is a path xix2 ••• Xn f;; N such that Xi -:f:. x;, 1 :$; i -:f:. j :$; n. A "imple cycle 

in N is a simple pa.th xix2 ••• Xn ~ N with Xi= Xn· An element x belonging to a cycle or 

path II is written as x E II. 
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to id 
ti Ii id 
t2 Ii de id 
t3 Ii Ii cf id 
t. Ii Ii cf co id 
ts Ii cf Ii cf cf id 
t6 Ii cf Ii cl cf co id 

Table 3.1: The temporal relation of the LSFC net in Fig. 3.1. 

Definition 3.13 Let l:: = (P, T, F, Mo) be a LSFC net aatisfying the one-token SM re­
striction. For diatinct transition.a t, t' E T : 

(a) t and t' are ordered, denoted aa { t, t'} E Ii, iff there exiau a simple cycle in E to 

which both t and t' belong. 

(b) t and t' are concurrent, denoted as {t, t'} E co, iff {t, t'} ¢ Ii and there exists a 

MG-component of E to which both t and t' belong. 

(c) t and t' are in conflict, denoted aa {t,t'} E cf, iff 

1. either { t, t'} ¢ Ii and there exiats a SM-component to which both t and t' belong, 

2. or there exist& no SM-component or MG-component containing both t and t'. 

In the characterization of concurrency, the existence of a MG-component is required 

in order for two transitions to be concurrent (statement b). However, in case of conflicts, 

the existence of a SM-component is sufficient but not necessary for two transitions to be 

in conflict. Statement d2 indicates that two transitions are also in conflict if no reduction 

produces a subnet-be it a SM-component or a MG-component-which contains both 

of them. Intuitively, this makes sense, as two concurrent transitions must always occur 

together; this implies the existence of a such an MG-component. On the other hand, if 

two transitions are in conflict, the occurrence of one exclude that of the other. Hence it is 

possible that they do not both belong to any structural component of the net at all. 
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Applying the above definition to the FC net of Fig. 3.1, we can construct Table 3.1. 

Since the relations are symmetric, half of the table is implied by the other half. Note 

also that { t 4 , t5 } and { t 3 , t6 } belong to cf, but they do not both belong to any SM- or 

MG-component. 

One special case of ( c) is the direct- conflict relation: t and t' ( t =/:- t') are in direct­

conflict, denoted as { t, t'} E de, iff ·t n ·t' =/:- 0. In the above definition, de ~ cf: according 

to the FC hypothesis, there exists place p which is a unique shared place of t and t', 
therefore they cannot belong to the same simple cycle and furthermore, they must belong 

to the same SM-component. Also, define id as {{x,x}} ~ T x T and id ~Ii. Another 

useful derived relation is idc = cf - de: If two transitions t and t' are in conflict but not 

in direct conflict, then { t, t'} E idc and then they are said to be in indirect conflict. 

In a LS marked graph E = (P, T, F, M 0), a cut C is a maximal set of elements in PUT 

which are pairwise not contained in the same simple cycle. That is, if we extend the binary 

relation r E {Ii, co, cf} to ( P U T) x ( P U T) then a cut C ~ P U T is defined such that 

{ 
\lx,y EC: {x,y} Eco and 
\lz E (PUT)- C,3x EC: {x,z} ¢co. 

A t-cu.t Ct ~ T consists of all transitions which can fire concurrently at some marking of 

the net. A p-cu.t GP~ P consists of all places that can be marked at the same time. The 

following lemma states that in a LS marked graph, any LS marking M marks all places of 

a p-cut and leaves other places blank. 

Lemma 3.14 Let E = (P, T, F, M0 ) be a LS marked graph aat~fying the one-token SM 

reatriction. Then every life-aafe marking M E [Mo) marked all placea of a p-cut Gp and 

none else. That ~' there eziau Gp such that 

{ 
1 \Ip E Cp 

M(p) = 0 otherwise 

Proof Let {017 ••• , On} be the set of simple cycles in Nr; where ni = (Pi, Ti, .Fi). Since E 

is a marked graph, each place is uniquely identified by its unique input and unique output 

transitions. Hence a marked graph can be considered as a directed graph with vertices 

corresponding to transitions and arcs corresponding to places. Therefore by definition, a 

cut GP is a maximal set of arcs such that no two belong to the same simple cycle. Hence, 



3.3. TEMPORAL RELATIONS: ORDERING, CONCURRENCY AND CONFLICT 61 

every simple cycle in {!l1 , ..• , !ln} must contain exactly one arc in CP, i.e. Vi E {l, ... , n} : 

IPi n CPI = 1. Consider a marking M which marks all places in CP and none else. Then 

under the one-token SM restriction, M is a live-safe marking because each simple cycle ni 
contains exactly one token. I 

It has been shown in [27] that for LS marked graphs with the property that every 

simple cycle contains exactly one token, there exists a unique equivalence class of life-safe 

markings: any two markings in this equivalence class are mutually reachable from one 

another. This equivalence class is precisely the set of all p-cuts { Cp} of a LS marked 

graph, including those which are singleton sets ( ICPI = 1 ). 

The above result for marked graphs can be generalized to LSFC nets in a straightfor­

ward manner. According to Theorem 3.6, every SM-component can be activated at some 

marking and it operates as a LS marked graph. Hence 

Theorem 3.15 Let :E = (P, T, F, M0 ) be a LSFC net satisfying the one-token SM restric­

tion. Then every life-safe marking M E [Mo) mark,, all places of a p-cut Gp of some 

MG-component. 

Some Examples. The above definition of the temporal relation indicates that one can 

determine the· relation between two transitions only by looking at the global structure of 

a LSFC net. In Fig. 4a, it appears that C = {Pt,PJ,P3,P4 } forms a p-cut in some net; 

however as shown in Fig. 4b, C is not a p-cut if there are two simple cycles --one containing 

ti, t 2 , the other t3 , t4- which do not share some common transition. This is because PJ 

and P3 are contained in a simple cycle and are therefore ordered. C is a p-cut only when 

there exists at least one transition u shared by the cycles, as shown in Fig. 4c. 

In another example (Fig. 4d), place p appears to be a redundant place [2] and could 

be removed without changing the behavior of the net. However, Fig. 4e shows that if pis 

removed then the simple cycle t 1pt4P4t 2])Jt3p5 t1 would no longer exist; in which case t1 and 

t4 would become concurrent. Thus in this particular case, the removal of p does indeed 

change the behavior of the net drastically and therefore it is not redundant. 
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(a) 

p 

p5 

P4 (e) 

Figure 3.3: (a) C = {Pt,P.2,J13,p4 } appears to be a p-cut in some net. However (b) C is not 
a p-cut unless ( c) there exists a shared transition u. ( d) Place p appears to be a redundant 
place. However, in ( e) it is not. 

3.3.2 Partition of the Temporal Relation and Correspondence to 
Reachability Graphs 

As shown next, the above syntactic characterizations partition the temporal relation, de­

fined as tr = T x T, into disjoint subsets of ordering, concurrency and conflict, as is 

illustrated by Fig. 3.4. The subset co represents the non-sequential behavior, Ii U cf repre­

sents the sequential behavior of the net. For LS marked graphs, cf= 0 and tr = Ii U co. 

For LS state machines, co = 0 and tr = Ii U cf. 

Theorem 3.16 Let :E = (P, T, F, M0 } be a LSFC net satisfying the one-token SM restric­

tion, and tr = T x T be called the temporal relation. Then Ii, co and cf partition tr into 

disjoint subsets: 
(a) Ii U co U cf = tr, and 
( b) Ii n co = Ii n cf = co n cf = 0. 

Proof Statement (a) trivially follows from the definitions, and so do Ii n co = 0 and 

Ii n cf = 0. It remains to show that con cf = 0. To establish this fact, it suffices to 
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Figure 3.4: Partitions of the temporal relation tr. 

show that in a LSFC net satisfying the one-token SM restriction, if two transitions do 

not belong to a simple cycle then they cannot belong to some MG-component and some 

SM-component at the same time. (In case two transitions are in conflict by not belonging 

to any structural component at all, it is trivial to see that they cannot be concurrent.) 

Let Nr, denote the underlying structure of E. First, note that if two transitions t and 

t' do belong to a simple cycle in Nr, then t and t' must belong to a simple cycle in some 

MG-component Ni = (Pi, Ti, F1 ) and in some SM-component N2 = (P2, T2, F2), because 

both MG and SM reduction cover the net. Thus, if t and t' do not belong to any simple 

cycle in N, they do not belong to a simple cycle in any MG-component or SM-component. 

In this case, we show that if t and t' belong to both N1 and N 2 then the net is either unsafe 

or nonlive. 

If t, t' E T1 but no simple cycle containing both of them, then there must exist some 

u E Ti such that t, u E ni and t', u E n~, where ni, n~ are distinct simple cycles in Ni 

(Fig. 3.5). If t, t' E T2 but no simple cycle containing both of them, then there must exist 

some p E P2 such that t,p E f22 and t',p En~, where n2,n~ are distinct simple cycles in 

N2 (Fig. 3.5). 

Since Ni is a MG-component of a LSFC net, according to Theorem 3.6, there exists a 

marking which activates Ni and Ni will operate as a live-safe marked graph. Since t and 

t' do not belong to the same simple cycle, according to Theorem 3.15, in Ni there exists 

a p-cut which corresponds to a marking ME [Mo) under which both t and t' are enabled. 

Hence at M, all input places of t and t' are marked. Since the cycles n2 and n~ in N2 
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SM-component N1 

Figure 3.5: Proof of Theorem 3.16. 

contain transitions t and t' respectively, they must each contains one input place of t or 

t'. Since all input places of t and t' are marked, the SM-component N2 contains at least 

two tokens. Under the one-token SM restriction, this would lead to unsafeness. On the 

other hand, if N2 contains only one token then only one of t, t' can possibly be enabled; 

this implies that u cannot be enabled subsequently, leading to a deadlock. I 

The above classifications of the temporal relation are based on the syntax of LSFC nets. 

We now attempt to connect these classifications to the normal understanding of ordering, 

concurrency and conflict in terms of firing sequences. It will be shown that for LSFC nets, 

there exists a unique correspondence between an element of the temporal relation and a 

situation in a reachability graph of a net. 

The following theorem gives the characterization of ordering, concurrency and conflict 

in terms of reachability graphs, or equivalently, firing sequences. Fig. 3.6 contains graphs 

illustrating these cases, in which vertices representing markings, solid arcs transitions be­

tween markings. The dotted arcs indicate explicitly those transitions which cannot occur; 

dashed arcs indicate a path between two markings. 

A cycle in a reachability graph is characterized by M1 [t1)M2[t2 ) ••• [tn_ 1 )Mn where 

M1 = Mn; u = tit2 ... tn-1 is a firing sequence such that Mi[u)M1 • If furthermore Mi =f= 

M;, 1 :::; i =f= j :::; n then it is a $imple cycle; in this case, u is called the firing sequence 

corresponding to a simple cycle. In the following theorem and its proof, we use u to denote 

such a firing sequence. 
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/···::~; 
~-··t 

(a) 

~ 
~ 

(b) 

t t' •. "-- ... " 
tj•.. t"• .• 
~ ~ 

(c) 

Figure 3.6: t, t' are (a) in direct-conflict (de) (b) concurrent (co) (c) ordered or in indi­
rect-conflict (Ii U idc ). 

Theorem 3.17 Let E = {P, T, F, M0 } be a LSFC net satisfying the one-token SM restric-

tion. Then Vt, t' ET: 

(a) {t, t'} Ede 
(b) {t, t'} Eco 
( c) { t, t'} E Ii U idc 
(d) {t, t'} E idc 

¢:} 

¢:} 

¢:} 

<= 

3M E [Mo} : M[t} /\ M[t'} /\ -.M[tt'} /\ -.M[t't} 
3M E [Mo} : M[tt') /\ M[t't} 
/!JM E [Mo) : M[t) /\ M[t') 
(/!JM E [Mo): M[t) A M[t')) A (/!Ju ET*: t, t' Eu), 

where u is a firing sequence corresponding to a simple cycle in the reachability graph of E. 

Parts (a) and (b) state that if two transitions are either concurrent or in direct conflict, 

then there is a marking in which both are enabled. Part ( c) states that if two transitions 

are either ordered or in indirect conflict then they are never enabled in the same marking. 

Thus by inspecting the local structure of the reachability graph, it is possible to determine 

when two transitions are either concurrent or in direct conflict. However, ordering cannot 

be distinguished from indirect conflict. Part ( d) further states that in order to discern 

these two cases, the global structure of the reachability graph needs be inspected: for 

every two transitions t and t', if there exists no marking M in which both transitions are 

enabled and furthermore, there exists no firing sequence u corresponding to a simple cycle 

in the reachability graph such that t, t' E u, then t and t' are in indirect conflict. 

Proof of Theorem 9.17. Part (a). (:::})If {t,t'} Ede then in Ny:,, there exists no simple 

cycle containing both t and t', and there exists some SM-component N2 such that t, t' E T2· 

Every such SM-component must contain exactly one token. Furthermore according to the 

FC hypothesis, 3p E P2 : p· = {t, t'} and 3M E [Mo} : M(p) = 1. Hence M[t) and M[t'). 

Moreover, since the firing of either t or t' will remove the token in p, M[tt') and M[tt') 

cannot be true. 

( <=) If M[t) /\ M[t'}, and tt' and tt' are not firing sequences then it must be the case 

that ·t n ·t' -:f:. 0. For suppose that ·t n ·t' = 0. Then since M[t} /\ M[t'}, all places in ·t U ·t' 
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must contain tokens. However this implies that M[tt') AM[t't), a contradiction. Therefore, 

it must be the case that 3p E P: ·t n ·t' = {p} and hence {t, t'} Ede. 

Part (b). Note that M[tt') A M[t't) => M[t) A M[t') according to the definition of firing 

sequences. 

( =>) If { t, t'} E co then in NE there exists no simple cycle containing both t and t', and 

there exists some MG-component Ni such that t, t' E Ti. Since t and t' belong to different 

simple cycles of a marked graph Ni, ·t n ·t' = t · nt'· = 0 and furthermore, ·t n ·t' s; Cp, 

where Cp is a p-cut in Ni. Therefore, according to Lemma 3.14, 3M E [Mo) : M(p) = 
1 Vp E ·t U ·t'. Clearly, at M both t and t' are enabled independently, thus proving the 

necessary condition. 

( <=) First, we show that ·t n ·t' = t · nt'· = 0. Suppose that ·t n ·t' =f 0, then due to the 

FC hypothesis, 3p E P : ·t n ·t' = {p}. Then according to Part (a.), tt' and t't cannot be 

firing sequence--a contradiction. Hence ·t n ·t' = 0. From ·t n ·t' = 0, using the fact that 

the net is safe, we show that t · nt'· = 0. For if t · nt'· =f 0 then 3p E P: p Et· nt' .. Since 

both t and t' are enabled, they can fire concurrently, placing two tokens in p and the net 

is unsafe. 

Now we proceed to show that t and t' must belong to distinct simple cycles of some 

MG-component Ni. t and t' cannot both belong to any simple cycle n, for if they do then 

n must contain at least two tokens, each from an input place of t and t'; under the one­

token SM restriction, this leads to unsafe behavior. Hence according to Theorem 3.16, they 

must belong to distinct simpe cycles of either a MG-component Ni or a SM-component 

N2 • However, if N2 existed, it would contain at least two tokens, one from each input place 

of t and t'. This causes unsafe behavior. Therefore they must belong to distinct cycles of 

Ni and hence by definition, { t, t'} E co. 

Part (c). From parts (a) and (b), it follows immediately that 

{t, t'} Eco Ude ¢? 3M E [Mo): M[t) A M(t'), 

which means that if two transitions are either concurrent or in direct conflict, then there is a 

marking in which both are enabled. To prove ( c ), note that (/!AM E [Mo) : M[t) A M(t')) ¢? 

{ t, t'} ¢ co U de ¢? { t, t'} E tr - co U de = Ii U (cf - de) = Ii U idc. 
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Part (d). From (c), we have {JM: M[t) A M[t') ::::} {t,t'} E Ii U idc. We claim that 

( J3u E T* : t, t' E a) ::::} { t, t'} E cf. The result follows immediately. 

To verify the claim, note that if { t, t'} E Ii U co then there exists a MG-component N1 

containing both t and t'. According to Theorem 3.4, Vu E T; I (3M E [Mo) : M[u)M) : a 

must contain all transitions in T1 • Since t, t' E Ti, it follows that t, t' E u. Also, since 

T1 ~ T, we have {t, t'} E Ii U co ::::} 3u ET*: t, t' Eu. Or equivalently, 

(J3u ET*: t, t' Ea) ::::} {t, t'} ¢Ii U co # {t, t'} E cf. 

I 



Chapter 4 

Signal Transition Graphs 

In this chapter, we iniroduce the Signal Transition Graph model. STGs correspond to 

the class of LSFC nets with interpreted transitions: transitions in nets are interpreted as 

tran,,itiom of signal,, in logic circuits. Most results for LSFC nets developed in the last 

chapter apply directly to STGs. Note that we only deal with LSFC nets which satisfy the 

one-token SM restriction. 

We start out in Section 1 by giving the syntax and semantics of STGs. Briefly, a 

STG is a formal behavioral specification of a. control circuit from which a set of transition 

sequences can be gene1ated. Such a set has an equivalent finite automata. representation 

called a. state graph. From state graphs, one can determine the network function, which 

is a collection of logic functions describi~ the behavior of signals in the circuit. Section 2 

discusses state asaignment, the procedure for obtaining state graphs from STGs. Section 

3 touches upon the area of composition of control modules. 

4.1 Syntax and S~mantics 

Signal Transition Gra.Jiis a.re a formal behavioral specification of control circuits whose 

operation may involve ordering, concurrency and conflicts. A digital circuit (or network) 

is an interconnection of logic elements, each having one output terminal and a number of 

input terminals. Every input terminal is connected to either an input terminal of the entire 

network, or to an output terminal of another logic element in the network. The set of all 

68 
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terminals of a network is called the set of signals. Let J denote such a set of signals, then 

J can be partitioned into the set of input signals J1, the set of output signals J 0 and the 

set of internal signals JN. It is sometimes convenient to use the set of non-input signals, 

J NI = JN U Jo =j:. 0 to reflect the intention that changes in input signals are exogenous 

while changes in non-input signals are caused by the network. 

The set of signal transitions is defined as T = J x { +, - } . For every signal j E J, there 

is a pair of signal transitions {j+,i-} associated with it. We also adopt the notation that 

if tis used to denote i+ then t denotes j_ and vice versa. When the direction of transition 

is not important, j. is used to denote a transition of signal j (either i+ or j_ ). The set of 

signal transitions Tis likewise partitioned into T1 = h x { +, -}, TN = JN x { +, - } and 

To= Jo x { +, -}. In order to distinguish between input and non-input signal transitions 

in a graphical representation, transitions in T1 are underlined. 

4.1.1 Signal Transition Graphs 

A Signal Transition Graph (STG) is a Petri net in which transitions are identified with 

signal transitions in a network whose set of signals is J. 

Definition 4.1 {Signal Transition Graphs) Let J be a set of signals of a network. A 

Signal Transition Graph defined on J is a Petri net :EJ = (P, T, F, M0) with T = Jx{ +, -}. 

Furthermore, a Signal Transition Graph is said to be well-formed if (i) it is a LSFC 

net satisfying the one-token SM restriction and (ii) if a place p has more than one output 

transition, then all output transitions of p must be transitions of input signals, i.e. Vp E 

p : IP. I > 1 => p: ~ T1. 

In the sequel, well-formed STGs will be referred to simply as STGs unless stated otherwise. 

Obviously, in a STG, ITI = 2k where k is a positive interger. The restriction Vp E P : 
IP · I > 1 => p- ~ T1 indicates that all signal transitions which are in direct conflict 

must be input ones, i.e. free choices are input choices. This allows STGs to specify the 

behavior of circuits whose operation involves sequentiality, deterministic concurrency and 

nondeterministic input choices.1 

1 In Chapter 8, we will extend the syntax of STG to allow the specification of internal choices. In these 
cases, one element from a set of output transitions of a place is chosen to be fired depending on the holding 



70 CHAPTER 4. SIGNAL TRANSITION GRAPHS 

As mentioned in Chapter 2, the graphical representation of STGs will differ from Petri 

nets in two accounts: (i) A transition in STGs is not depicted as a bar but by its name 

instead. (ii) Any place p in STGs with one input and one output transition, e.g. ·p = {ti} 

and p· = { t2}, will not be drawn. An arc going directly from ti to t2 will be drawn 

instead: ti ---+ t2 • Such an arc is an instance of the caw al relation R ~ T x T, such that 

tiRt2 # 3p E P: (ti,p) E F /\ (p, t2) E F. 

4.1.2 State Graphs 

The semantics of STGs are given in terms of sets of transition sequences. STGs define 

sets of transition sequences which have equivalent FA representations called state graphs. 

These can be obtained by applying the results for LSFC nets described in Chapter 3. 

For a FA~ generated from a LSFC net :E, there is a corresponding state graph, denoted 

by ~ J generated from the STG :Ei, where :Ei is an interpretation of the LSFC net :E. State 

graphs are defined as follows. 

Definition 4.2 (State Graphs) Let J = {ji,j2 , ••• ,jn} be a set of signals of a circuit. 

A state graph defined on J is given by ~ J = (S, T, h, s 0), 2 where 

• S is the set of states, defined as S = {s Is: J---+ {O, 1} }; every s ES is a function 

s : J ---+ {O, 1} and (s(ji), s(h), ... , s(jn)} is a binary vector of signal values in state 

s. 

• s0 E S is the initial state of the circuit. 

• T = J x { +, - } is the set of signal tran8itions. 

• h : S x T ---+ S is a partial function called the transition function, having the property 

that Vs, s' E S, Vt E T such that h( s, t) = s' : 

if t = i+ then s(j) = 0 and s'(j) = 1 
if t = j_ then s(j) = 1 and s'(j) = 0. 

States s and s' are called adjacent; s' is a next-state of s. 

of a certain condition in the circuit; the choices are no longer nondeterministic. 
2Here, instead of describing a state graph as a 5-tuple (S, T,6,so, q), we adopt the convention to drop q 

(the set of final states) if q ={so}. 
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As noted in Chapter 2, in the construction of an equivalent FA from a set of sequences, 

a state is an abstract concept, defined as an equivalence class of sequences with the same 

postfixes; there is no apparent relationship between a state and the transitions enabled in 

it. However, for state graphs obtained from a STG, not only do we require that it be a 

FA equivalent to the set of sequences defined by a STG, but we also require that states 

be interpreted as binary vectora repreaenting the 11alues of signals in a circuit. There is a 

direct connection between states and transitions: states are vectors of values of a set of 

signals, whereas transitions are transitions of the same set of signals. 

In the above definition, the transition function is extended to 8 : S x T* --+ S such 

that fort ET and u ET*, 8(s, tu)= 8(s', u) wheres'= 8(s, t). Also, Vs E S, 8(s, e) = s. 

By considering states as equivalent to markings, we can adopt the notations in Chapter 2: 

s' = 8(s, t) # s[t)s'; s' = 8(s,u) # s[u)s'; [s) denotes the set of states reachable from 

s, etc. Graphically, s[t)s' is represented as ·__.!_,.~; s[u)s' as :--!.+~. A transition t is said 

to be enabled in state s if s[t); an enabled transition may occur or fire. 

We denote the state graph of a STG EJ as ()J. The notions of ordering, concurrency and 

conflict in STGs and their correspondence in state graphs are exactly the same as those for 

LSFC nets. The following result is the restatement of Theorem 2.2 with markings replaced 

by atatea. 

Theorem 4.3 Let EJ = {P, T, F, M0 ) be a STG and () J = {S, T, 8, S0 } iu atate graph. 

Vt,t' ET: 

(a) {t, t'} Ede 
(b) {t, t'} Eco 
(c) {t, t'} E Ii U idc 
(d) {t, t'} E idc 

# 3s E [so) : s[t) /\ s[t') /\ -.s[tt'} /\ -.s[t't} 
# 3s E [so) : s[tt'} /\ s[t't} 
# ;Es E [s0 ) : s[t) /\ s[t') 
<= (;Es E [so): s[t) /\ s[t')) /\(;Eu ET*: t, t' Eu) 

where u is a firing aequence correaponding to a aimple cycle in <)(EJ ). 

We will return to more discussion of properties of state graphs in the next chapter. In order 

to give a complete picture of our direction, we describe next the network function, being 

a set of Boolean equations derived from the state graph. The network function describes 

the states of every signal in a digital network. 
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4.1.3 Network functions: Implementations of state graphs. 

Similar to Muller [36], we define a digital network as an interconnection of a finite number 

of logic elements of unbounded delays and containing no clocks, i.e. operation is asyn­

chronous. However, we extend his autonomous networks (those with no inputs) to cover 

cases with inputs as well as internal signals. 

A logic element implements one signal of the control circuit. It is a logic circuit with 

one output and one or more inputs and is allowed to have memory, i.e. it may have internal 

feedback wires. The delay model used is one in which a logic gate can be modeled as an 

infinitely fast combinational circuit followed by a delay (of unbounded value) at the output, 

and wires with no delays. In practice, these assumptions hold; long wires which are highly 

capacitive can be modeled explicitly as delay circuits if necessary. 

Definition 4.4 (Network Functions) Let ~J = (S,T,8,s0 ) be a state graph defined on 

J, a set of signals of a network. Then f : S x J-+ {O, 1} is a partial function called the 

network function, defined as follows: 

(a) For j E J, s E S, J(s,j) is called the implied value of signal j in states, defined 

such that: 
f ( ') _ { s'(j) if 3s' E S : s[j.)s' 

S,J - s(j) otherwise. 

(b) The set of all implied values for signal j, f(j) = {f(s,j) I s E [s0}} is the logic 

function of signal j. 

(c) Hence the network function can be considered as a collection of logic functions of all 

signals in J: f = {/(j) I j E J}. 

Remarks on Definition 4.4. 

1. The implied value of a signal j in state s is given by (a). If there are states s~, s~ 

such that s[t1 }s~ and s[t2}s~ for some ti, t2 ET, then there a.re two cases: 

• If either ti or t2 is a transition of j, for instance ti = j. and t2 '# j., then s~(j) '# 
s~(j) = s(j). In which case we always choose s~(j) as the value for f(s,j), which is 

the value resulting from the transition of signal j itself. 
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• If neither of tll t 2 is a transition of signal j then sHi) = s~(j) = s(j) and the implied 

value of j in states is the same: f(s,j) = s(j). 

2. Even though network functions are defined for all signals, only those for non-input 

signals are necessary for the logic implementation of the networks. This is because only 

non-input transitions in TNI are generated by logic elements in the networks. If 6( s, t) 

is defined for some state s E S and signal transition t E TN1 then the occurrence oft is 

caused by the logic elements whenever the network gets into states. Furthermore, since 

the firing of t depends on the delays of the logic elements, it cannot be controlled externally. 

However, if t E T1 then whenever the network is in states, it waits for the occurrence of 

input transition t which is caused by the environment. The means for the environment 

to detect that the network is in state s is through a communication protocol between 

the environment and the network. The logic functions for input signals only indicate how 

external transitions from the environment should interact with the logic network according 

to the specification. 

3. The logic function f(j) of signal j is a Boolean function in IJI variables describing 

the logic element (whose output is) j. Logic element j may have fewer inputs than jJj. 
This fact does not invalidate our model, for we simply choose f(j) as a function that does 

not explicitly depend upon all of its variables. This can be accomplished by decomposing 

the state graph to minimize the interdependence between variables which appear as out­

put and input of a logic element. A state graphs obtained from a well-formed STG can 

be decomposed in a straightforward manner using the causal relation R defined on the 

STG. This technique yields very efficient implementation of networks and will be dicussed 

subsequently in Chapter 6. 

4.1.4 An Example 

We have presented the syntax of STG, its semantics in terms of state graphs and the 

network function which describes the logic implementation of the circuit. In this example, 

we show a STG specification of a C-element, its state graph and network function. Fig. 4.la 

shows a circuit with inputs a, b and output c. Thus, its set of signals is J = {a, b, c}, 

and Ji = {a, b} and J 0 = { c}. The behavior of this circuit is described by the STG in 

Fig. 4.1 b. Since its corresponding uninterpreted net is a marked graph, no places are drawn 
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Figure 4.1: (a) AC-element, (b) A STG specification and (c) its state graph. (c) The 
transition map and K-map. 

explicitly; they are uniquely determined by their input and output transitions. The arcs 

constitute the causal relation R. In the initial marking M 0 , places (c_, a+) and (c_, b+) 
are marked. The set of transition sequences specified by this STG is given by the regular 

expression (a+c+a_c_ llb+c+b_c_)*, which can be simplified to ((a+llb+)c+(a-llb-)c_)*. The 

corresponding state graph is given in Fig. 4.lc. The initial state s0 is such that s0 [a+) and 

so[b+)· 

In a state graph, the logic equation for every non-input signal j is determined from the 

set of implied values of j in all states: { /( s, j) I s E [so) } . This can be done conveniently 

by transferring the state graph to a type of Kama.ugh maps (K-map) called tran..ition 

map (T-map ), such that every state of the state graph has a corresponding square in the 

K-map, and state transitions are indicated by arcs between squares. Then for each signal j 

to be determined, the T-map is converted to a K-ma.p for j as follows: every square in the 

T-map (corresponding to a state s) is entered with the implied value of signal j in state s, 
f( s, j). The logic equation for j can be readily determined from the resulting K-map. For 

example, the logic equation for signal c is determined from the state graph in Fig. 4.lc by 

transfering it to a T-map and K-map (Fig 4.ld) from which, c = a.b + c(a + b). This is 

precisely the logic function of a C-element. 

Note the intimate relationship between a state graph and its logic implementation: 

states in a state graphs are simply collections of values of signals in a circuit, and transitions 
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simply transitions of signals in the same circuit. In fact, one can construct a state graph 

for any circuit. However, we are only interested in circuits whose state graphs satisfy the 

properties of liveness and persistency. In the next chapter we will study these properties 

of state graphs and determine their characterizations in STGs. 

4.2 Obtaining state graphs from STGs 

Let EJ = {P, T, F, M0 ) be a STG. Then E denotes its uninterpreted net, also represented 

by {P, T, F, Mo) but T is given no particular interpretation. Since E is a LSFC net its 

equivalent FA, denoted by~' can be determined using the construction algorithm discussed 

in Chapter 3. The state graph of EJ, denoted by ~ J, can then be obtained by assigning 

binary values to states of ~. 

Let ~ = (S', T, 8', s~) denote the above equivalent FA. Then the state graph ~J -

{S, T, 8, s0 ) can be obtained by interpreting states in S' as binary vectors representing 

values of signals in J. This interpretation is the state assignment process, which can be 

described by a partial function a: S'-+ S, called the atate.auignment function (Fig. 4.2). 

This function is defined such that 

• Every atate s' in~ maps to a binary atate s in ~J: Vs' E [s~) ~ S' 3s ES: a(s') = s. 

• Every transition 8'(s~, t) = s~ in~ mapa to 8(s1 , t) = 8 2 in ~J, where 8 1 = a(sD, 

82 = a(8~). 

A state assignment such that 8 satisfies the condition stated in Definition 4.2 is called 

consiatent. The essential idea is that in a state graph ~J, if 8[t)81 then according to the 

physical behavior of digital circuits: if t = i+ then 8(j) = 0 and 81(j) = 1; if t = j_ then 

s(j) = 1 and s'(j) = 0. The triple {s, t, s') is said to be consiatent. Formally, a consistent 

state assignment for a state graph can be defined as follows. 

Definition 4.5 (Consistent state assignment) Let ~ = (S', T, 8', 8~) be an uninter· 

preted FA and ~J = (S, T,8,s0 ) be a state graph obtained from~. Then ~J has a conaistent 

state assignment iff there exiats a atate assignment function a : S' -+ S satiafying 

VteT,Vs~,s;es': whenever sat)s; then (a(sD,t,a(s;)) iscon8iatent. 
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.Equivalcn.t FA State fr&pl& 

Figure 4.2: The state assignment function a maps a state in the FA to a binary state in 
the state graph. 

Since the transition function his defined such that if h(s1 , t) = s 2 then s1 and s2 are adjacent 

states, it immediately follows that in a state graph with a consistent assignment, every 

cycle (a path starting from some state and ending at itself) must contain equal numbers 

of positive and negative instances of any signal transition and they must alternate. Hence, 

we have the following 

Lemma 4.6 Let ~J = (S, T, h, s0 ) be a state graph. Then ~J has a consistent state as­

signment iff for every state s E S and for every firing sequence u E T* such that s[u)s: 

Vt T { #(uf t) = #(ufl) = k and 
E either u f { t, l} = ( tl)k or u f { t, l} = (tt)k, 

for some integer k > 0. 

In case a transition t does not appear in a sequence u then k = 0 and the above condition 

holds vacuously. It turns out that there is a direct way to ensure consistent state assignment 

from STGs. Below, we state the conditions on a STG in order for its state graph to have 

a consistent state assignment. First we consider the subclass of STGs corresponding to 

live-safe marked graphs. 

Lemma 4. 7 Let EJ = (P, T, F, M0 ) be a STG whose uninterpreted net i8 a live-safe 

marked graph. Then it8 8tate graph ~ J ha8 a consistent state assignment iff every pair 

of tran8itions t, t E T i8 ordered: { t, l} E Ii. 
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Fig. 4.3a shows a STG with consistent state assignment; Fig. 4.3b is a STG with no 

consistent state assignment because there are transitions b+, b_ which are concurrent; its 

state graph contains a states with s[b+) and s[b_) and hence no value of s(b) can be chosen 

such that both b+ and b_ are consistent for s. 

Proof. (::::}) 3t E T : { t, t} F/. Ii ::::} cp J does not have a consistent assignment: Since EJ is 

a marked graph, { t, t} F/. Ii ::::} { t, t} E co. This implies that 3s E [so) : s[t)s' /\ s[t}s", for 

some s', s" E S. Obviously, if {s, t, s') is consistent then {s, l, s") cannot be, and vice versa. 

Hence cp J cannot have a consistent state assignment. 

( <=) Vt E T : { t, t} E Ii ::::} cp J has a consistent assignment: According to Theorem 3.8, 

the set of firing sequences of EJ can be obtained by veawing those of its SM-components. 

Since EJ is a marked graph, these SM-components are simple cycles. Since t, tare ordered, 

they must belong to some simple cycle n in Nr:,. Hence the firing sequence defined by n 
must have the following form (given in terms of regular expressions): either ( ... t . .. t . .. )* 
or ( ... t ... t ... )*, depending on which place in n contains a token in the initial marking. 

Choose any firing sequence u ET* of EJ such that s1 [u)s1 for some s1 E [s0 ). Since EJ 
is a marked graph, Theorem 3.4 shows that u must contain an instance of every transition 

in T. Furthermore, as discussed in the above paragraph, for every pair of transitions t, t, 
either uf{t,t} = tt or uf{t,t} = tt. Hence according to Lemma 4.7, cpJ has a consistent 

state assignment. I 

The above result can be generalized to the class of STGs corresponding to LSFC nets. 

Theorem 4.8 Let EJ be a STG and cp J i~ state graph. Then cp J has a consistent state 

assignment iff every pair of transitions t, tis ordered in EJ. 

Fig. 4.3c shows another STG with consistent state assignment which specifies input 

choices; its uninterpreted net is a LSFC net. Note the requirement that every pair of 

transitions { t, t} be ordered in every MG-component containing them. Due to this rather 

stringent requirement for consistent state assignment, the expressive power of STGs for 

specifying input choices is limited. 

Proof. Let EJ = (P, T, F, M0). According to Theorem 3.6, there exists for each MG­

component Ni = (Pi, Ti, Fi) a marking Mi E [Mo) at which Ni operates as a live-safe 
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Figure 4.3: (a) A STG with consistent state assignment. (b) A STG without consistent 
state assignment because b+ a.nd b_ are concurrent. ( c) Another STG specifying input 
choices which has a consistent state assignment. 
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marked graph. Hence, the net EJ can operate deterministically in one MG-component N; 

and switches over to another, N; say, at some appropriate marking M. Marking M must 

mark some place p which is a free-choice place (i.e. IP· I > 1) such that some transitions 

t; ET;, t; ET; must be output transitions of p. 

Since every MG-component N; can be operated continuously from some marking M;, 

the set of firing sequences generated by (N;, (M; r P;)) must have an equivalent state graph, 

which in turn must also be a part of the state graph of EJ. Therefore, for the state graph 

of EJ to have a consistent assignment, it is required that the state graph ~; of every 

MG-component (N;, (M;rP;)) have a consistent assignment. Using the result from Lemma 

4. 7 above, we conclude that every pair of signal transitions t, t must be ordered in every 

MG-component N; to which they belong. It then follows from the definition of ordering 

that t, tare ordered. I 

4.3 Composition 

As stated earlier, the objective of this thesis is to develop techniques for direct synthesis 

of control circuits from STG specifications. Within this scope, the study of composition 

of control modules will be touched upon lightly. A great deal of work in different aspects 

of composition of control modules has been carried out; most relevant to our application 

is one based on the formalism of trace theory [25,53]. Since we have established the 

correspondence between net syntax and its underlying trace (firing sequence) semantics, 

adapting these results to our framework is straightforward. Even though composition is 

of fundamental importance for validating the correctness of systems constructed from an 

interconnection of control modules it is outside the scope of our immediate concern. 

We advocate the use of STGs for direct synthesis of control modules in a system 

organization with di&tribu.ted control &tru.ctu.re&. In these systems, the control section is 

partitioned into a number of control modules which communicate with one another using 

a communication discipline such as the reque&t/acknowledge protocol. Once the control 

modules have been identified clearly, their behavior is expressed in STG notations. Every 

module has its own STG specification which defines its internal behavior with respect to 

the interface with other modules. The interface between a module and its external world 

constitutes a boundary between a module and its environment. 
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Interface behavior. Fig. 4.4a shows a simple case of module/environment interface. 

The module A shown consists of one input link {Iri Ia} and one output link {Or, Oa}, 

where a link is a. pair of request/acknowledge signals. We use the convention that for a 

link L, { Lri La} denotes its request/acknowledge signal pair. The behavior of module A 

at the interface is specified by {Ia+---. L-,Ia----. L+} and {Or+---. (k_,Or----. !k+} at 

the input link I and output link 0, respectively; the arrows ---. are members of the cause.I 

relation R defined earlier. In general, we have the following rule for specifying the interface 

for STGs: every transition t of an input signal can be caused only by a transition of an 

output signal, u say, and furthermore, there can be exactly one u causing t. More formally, 

in a STG it is required that for every t E TI, there exiata exactly one u such that u ---. t 

and u E To. The reason for allowing only one transition to cause an input transition is 

that we only attempt to simulate the interface behavior by such a temporal constraint; 

input transitions are actually caused by the environment. 

Composition. Given two control modules which are connected together at some link, 

one can determine the behavior of the composite system by composing the individual 

behavior of each module. The only type of composition required here is the concurrent 

composition [25]. Informally, the concurrent composition of two STGs involves merging 

them together by "fusing" transitions in two nets; these fused transitions become internal 

transitions of the composite net. 

An example to illustrate this composition is given in Figures 4.4b and c. Fig.4.4b shows 

two modules A and B and parts of their STGs which specify the interface behavior. The 

composition of these STGs produces a new STG (Fig. 4.4c) which no longer corresponds 

to a free-choice net: transitions r 1+ and r2+ are no longer enabled in the same marking. 

This illustrates the following important concept: When two input transitions in the STG 

specification of a module are in direct conflict (and therefore represent a nondeterminutic 

choice}, they may actually represent external choices which are totally determinutic in the 

composite net consisting of the module and ita environment. This is exactly the reason 

why we restrict free-choices in a net to transitions of input signals. 

In the following definition of concurrent composition of two STGs, T1i, Toi and TNi 

denote the subsets of input, output and internal transitions, respectively, of the set of 

transitions Ti. 
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Figure 4.4: (a) A control module with an input link and an output link. (b) Two control 
modules with connected communation links and (c) their composition. 

Definition 4.9 Let EJ1 = (P1 , Ti, Fi, MJ) and EJ2 = (P2 , T2 , F2 , MJ) be STG specifica­

tions of two control modules, with the restriction that 

The concurrent composition of EJ1 and EJ2 is denoted by EJ = EJ1 llEJ2. Let EJ -

(P, T, F, M0), then it is defined as follows: 

• T=Jx{+,-}. 

Using Theorem 3.8, the set of transition sequences of the composite net is simply the 

weave of the individual sets, provided the latter are of STGs corresponding live-safe marked 

graphs. Equivalently, the finite automaton of the composite net is the weave of those of 

the individual nets. 

Theorem 4.10 Let EJ1 , EJ2 be STGs whose uninterpreted nets are live-safe marked 



82 CHAPTER 4. SIGNAL TRANSITION GRAPHS 

graphs, and ~J1 , ~J2 be their state graphs. Let EJ = EJ1 llEJ2 and ~J denote its state 

graph. Then ~J = ~Jill~J2, the weave of two state machines given by Def. 9.11. 

Note that this result does not generalize to composition of STGs whose uninterpreted nets 

are LSFC nets because, as we have illustrated through Fig. 4.4, the composition of two 

LSFC nets results in a net which may no longer be free-choice. Also, the above theorem 

does not guarantee that the composite net EJ is live-safe even if EJ1 and EJ2 are live-safe. 

It may be the case that when two nets are composed, a new simple cycle which contains no 

token is created in the composite net, leading to a deadlock. However, the theorem does 

provide a method for verifying whether the composite net is live: EJ is live if the weave of 

none of the firing sequences results in an empty set. 



Chapter 5 

Properties of State Graphs 

In this chapter, we further explore two important properties of state graphs called live­

ness and persistency. They are important because they correspond to the properties of 

deadlock-free and hazard-free in the circuit implementations of state graphs. Since we have 

established the equivalence between STGs and a class of state graphs, we can characterize 

these properties in terms of STGs; these will appear as ayntactic conditions on STGs. 
I 

Liveness will be considered in Section 1 as it is the simpler to derive of the two properties. 

Section 2 discusses persistency and its corresponding characterization in STGs. Section 3 

describes a problem related to state asssignment and a remedy for this problem. 

5.1 Liveness 

As discussed in Chapter 2, we will be using a rather restrictive notion of liveness for state 

graphs. Simply a state graph is live iff it is strongly connected, and each transition is 

enabled in some state of the state graph. This implies that every state reachable from the 

initial state of the system is reproducible, i.e. the set of states form an equivalent class in 

which every two states are mutually reachable. This notion of liveness implies that every 

transition in the circuit can be enabled infinitely often because it is enabled in at least one 

state which can be reached from any other state of the circuit. 

Definition 5.1 (Liveness of state graphs) A state graph defined on a set of aignal J, 

~ J = (S, T, 8, so), is live iif it is strongly connected and for each t E T, there exists s E [so) 

83 
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such that s[t). 

In state graphs, states and transitions are intimately related, as they represent binary 

valu.es and transitions of the same set of signals of a control circuit, respectively. In Section 

4.2, we discussed a property of state graphs which requires that every triple (s, t, s'), where 

s[t)s', be consistent. A live state graph must be strongly connected and must have a 

consistent state assignment. 

Based on this definition, the condition on a STG such that its state graph is live can 

be derived easily. A STG satisfying this liveness condition will simply be called live. Let 

EJ denote a STG and E its uninterpreted net. Then the state graph ~ J of EJ is obtained 

by performing state assignment on the finite automaton~ derived from the net E. For 

the state graph ~ J to be live, it must be strongly connected and have a consistent state 

assignment. ~J is strongly connected iff E is a live-safe net; furthermore, because the 

largest class of nets considered is FC nets, E has to be a LSFC net. 

The preceding argument simply states that a STG is live iff it is well-formed and its 

state graph has a consistent state assignment. This establishes the following theorem 

Theorem 5.2 (Liveness condition for STGs) Let EJ be a STG and E its uninter­

preted net. Then EJ is live iff 

• E is a live-safe free-choice net, and 

• In EJ, every pair of transitions t, tis ordered. {Th.is is precisely the condition for the 

state graph of 'EJ to have a consistent state assignment, aa stated in Theorem 4.8.) 

5 .2 Persistency 

Persistency one of the most important properties of state graphs, as it is the essential 

property of speed-independent circuits. In Section 2.3, we have briefly discussed this 

property and its equivalent characterization in STGs. In this section, we will go into detail 

of how this equivalence is established. 
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First, we define the concepts of enabling and di8abling between transitions in unin­

terpreted finite automata. These general concepts apply to all interpreted FA, including 

reachability graphs and state graphs. Let (S, T, 6, s0 ) be a FA, where S denotes a set 

of states and T a set of transitions, both with no particular interpretation. Also let 

TE(s) = { t I s[t)} denote the set of transitions enabled in a states E S. 

• In states, t enable.5 t' (denoted as tEt') iff3s' ES: s[t)s'[t') /\. t' ¢ TE(s) /\. t ¢ TE(s') 

(Fig. 5.la). 

• In state s, t di8able.5 t' (denoted as tDt') iff 3s' E S : s[t}s' /\. s[t'} /\. t' ¢ TE(s') 

(Fig. 5.lb). 

Simply, tEt' in s means that the occurrence of t in state s brings the system to another 

state s' in which t' is enabled; tDt' in s means that the occurrence of t in state s-in which 

t' is also enabled-brings the system to another state s' in which t' is no longer enabled. 

We also use tEt' and tDt' to denote •(tEt') and •(tDt'), respectively. Using this notation, 

the situation in Fig. 5.lb can be denoted as tDt' /\. t'Dt. 

Generally, in a FA, some transition may have several appearances (instances). Further­

more there are a variety of ways two transitions may interact with each other. For example, 

there may be instances of transitions t and t' such that tEt' in some state s, and other 

instances such that tDt' in some other states'. However, for FA generated from LSFC 

nets and STGs, we have established their equivalence in Theorem 3.17, which indicates 

that any situation in a FA has a corresponding characterization in a net. For example, if 

tRt' (where R is the causal relation defined in Chapters 2 and 4) in a LSFC net then in 

its FA, an equivalent instance of tEt' must exist, and further there can be no instance of 

tDt'. The above result is formally stated as follows. Let E = (P, T, F, Mo} be a LSFC net 

and ~ = (S, T, 6, s0 ) its FA. Then for every t, t' E T : tRt' in E <=> (3s E S : tEt' in ~ ). 

5.2.1 Definition of Persistency 

The property of persistency is defined differently for uninterpreted and interpreted FA-the 

latter being state graphs. The reason is that in state graphs, transitions are divided into 

those of input and non-input signals, whereas no such distinction exists for uninterpreted 

FA. 
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Figure 5.1: (a) An instance oft enables t' ins. (b) An instance oft disables t' ins. Dotted 
arcs are used to indicate transitions which cannot occur in certain states. 

For uninterpreted FA, a transition is said to be persistent if none of its instances in a 

finite automaton is ever disabled by any other transition; otherwise, it is non-persistent. 

For example, transition t in Fig. 5.1 b is persistent, while t' is non-persistent. 

For state graphs, the above definition applies only to transitions of non-input signals; 

transitions of input signals are always assumed to be persistent. This assumption is based 

on a. property of state graphs ca.I.led the external persistency property, the justification for 

which will be given shortly. 

Definition 5.3 (Persistency in State Graphs) In a state graph ~J = (S,T,8,s0 ): 

• Every t E T1 is persistent. 

• t E TN1 is persistent iff Vs, s' E S, Vt' E T : s[t) /\ s[t'}s' => s'[t}; otherwise, t is 

non-persistent. 

• ~ J is persistent iff every transition in T is persistent. 

An immediate implication of the external persistency property is that it permits the speci­

fication of input choices in a state graph. Fig. 5.2b shows an example with an input choice 

between transitions a+ and b+, the corresponding circuit is shown in Fig. 5.2a. 

J ustiftcation for the External Persistency Property. This intuitive property indeed 

has a logical justification which is based on the relationship between states and transitions 

in a state graph. In Fig. 5.2b, states are vectors containing the binary values of signals in 

(a, b, c, d, e, /}. From state s1 = 000000, the firing of transition c+ brings the circuit to state 
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Figure 5.2: (a) A control circuit with an input choice involving signal a, band (b) part of its 
state graph. ( c) Part of the state graph of the circuit, taken together with its environment. 
Contraction of the state graph in (b) involves: ( d) removing unwanted transitions a+, b+, f + 
and ( e) contract the state graph. 
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s2 = 001000, in which both a+ and b+ are enabled. Since a and b are external signal, it can 

be assumed that the environment has additional knowledge to deterministically choose 

only one of their transitions to fire. This assumption is justifiable as the environment 

must have enough information to recognize that a+ and b+ are not in really enabled in 

the same state, even though this is how it appears to the circuit. That is, if the circuit 

and the environment are taken together as a system, then additional signals must exist 

in the environment such that states S1 and S2 can be "split" into { si, sr} and { S~, sn, as 

shown in Fig. 5.2c. Thus, in the more complete system consisting of the original one and 

its environment, a+ and b+ are in fact not enabled in the same state as it appeared in the 

original one. 

This fundamental relationship between states and transitions in a state graph is also 

the basis for a method of decomposition called contraction. It rests on the same principle 

which relates states and transitions, but instead of considering a system together with its 

environment, a subcomponent of the system is isolated and its behavior extracted from that 

of the original state graph. For example, if one is interested in the component consisting 

only of signals { c, d, e} of the circuit in Fig. 5.2a, then a state graph describing its behavior 

can be derived from in the state graph in Fig. 5.2b as follows. Since other signals {a, b, f} 
do not belong to this subcomponent, their transitions can be removed from the state graph; 

this is done by replacing them with E (the silent transition) as indicated in Fig. 5.2d. Now 

each state in the resulting state graph is reduced to a vector of (c, d, e). The result is that 

states connected by E-tra.nsitions will have identical binary representations, because these 

E a.re transitions of signals which do not belong to this subcomponent. Therefore, they can 

be collapsed together into one state, as indicated in Fig. 5.2e. In this state graph of the 

subcomponent, d+ and e+ will appear as if they represent an external choice, because they 

are enabled in the same state. The external persistency property dictates that they are 

persistent, as it is indeed the case. The subject of decomposition using contraction is an 

important aspect of our synthesis approach. It is discussed in further detail in Chapter 6. 

In summary, the external persistency property has two important consequences: (i) 

transitions of input signals to a control circuit module can always be assumed to be per­

sistent, and (ii) input signals to a logic element within a. module can be assumed likewise. 

In the design of self-timed control circuit, the notion of persistency is fundamental as it 

is the essential property of speed-independent circuits. Chapter 4 shows that from a state 
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graph, one can define a network function which give.s a logic implementation of a digital 

circuit. This leads to the definition of &peed-independence. 

Definition 5.4 {Speed-independence) Let ~ J = (S, T, 6, s0 } be a Jtate graph defined 

over a aet of Jignala J, and f : S x J --+ {O, 1} the network function derived from ~J. 

Then the logic circuit which implement& f iJ speed-independent iff every tranJition t E T 

iJ peraiatent. 

Thus one important consideration in specifying behaviors of speed-independent circuits is 

to guarantee that all transitions in a STG specification are persistent. 

5.2.2 Characterization of Persistency in STGs 

We have defined the property of persistency in state graphs. Below we give its char­

acterization in STGs. First we pre.sent this syntactic characterization and then give its 

justification. 

Non-persistency in STGs 

Fig. 5.3a illustrate.s a case with u being non-persistent in a state s; it is disabled by a 

transition t. Using previous notations, this is written as: tDu A uDt. The equivalent 

characterization in STG is given in Fig. 5.3b, in which t, u are concurrent and t cause.s u.1 

As explained in Chapter 2, this non-persistency is the re.sult of the interaction of concurrent 

signal transitions. Intuitively, the course of action tRu can be implemented by a logic 

element with input i and output j, where t = i. and u = j •. Concurrency between u and t 

implie.s that while the logic element is reacting to transition t of signal i to cause transition 

u of output j, another transition t of i may be occurring simultaneously at the input of logic 

element j (Fig. 5.3c). This is commonly known as a race condition in hardware circuits 

and can lead to malfunction. Thus, we have the following syntactic characterization of 

1 Note the difference between this characterization of non-persistency for STGs and that for LSFC nets. In 
the latter, a transition tis non-persistent only if it is an output transition of a free-choice place. Furthermore, 
in a LSFC net, if tDu then uDt and vice versa, because in this case, both t and u must share the same input 
place. 
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non-persistency in STGs. Recall that TN1 denotes the subset of transitions of non-input 

signals. 

Theorem 5.5 (Non-persistency in STGs) Let E1 = (P, T, F, Mo) be a live STG and 

cl> J = (S, T, h, so) it& .5tate graph. Then for t E T and u E TN1: 

(3s ES: tDu /\ uDt) # (fRu /\ {t,u} Eco). 

The proof of this theorem is based on a property of state graph called input-cawing-output, 

which states that i is an input signal to logic element j iff some transition of i enables or 

disables some transition of j. Let J(j) denote the set of input signals to a logic element 

whose output is j; I(j) is called the input .5et of j. Formally, the input-cawing-output 

property states that: 

i E J(j) # (i.Ej.) V (i.Dj.). 

First, we discuss the proof of the above theorem, then we will give an explanation of this 

property. 

Proof. Let t = i. and u = j •. ( <=) If there is no interaction due to the causal relationship 

between transitions of signals i and j then the condition { t, u} E co implies 3s E S : 

s[u)s"[t) /\ s[t)s'[u). WearguethatduetothecausalrelationfRu, thecondition{t,u} Eco 

implies 3s E S : s[u)s"[t) /\ s[t)s' but not s'[u}; i.e. u cannot be enabled in s' or 

equivalently, tDu. 

According to a result developed earlier in this section, the condition fRu implies that 

fEu. Furthermore according to the input-cawing-output property, it also implies that i is 

an input to logic element j. Since the STG is live, f and t are ordered and hence t must 

fire some time after f. Also, since t and u are concurrent, there must be a state s in which 

both t and u are enabled. Ats, the firing oft must disable u because u are enabled by f 

and the firing of t changes the state which results from the firing of f. 

( =>) Since there exists a. state s in which both t and u are enabled, it follows that either 

they are concurrent or in direct-conflict. If they are in direct-conflict then tDu /\ uDt. 

However, since we have tDu /\ uDt, this is not the case, hence { t, u} E co. Furthermore, 

according to the input-cawing-output property, tDu => i E I(j) => either tRu or fRu. But 

since both t and u are enabled in states, it cannot be the case that tRu. Hence it must 

be that fRu. Thus, we have { t, u} E co /\ fRu. I 
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Figure 5.3: Characterization of non-persistency in (a) a state graph, (b) its STG and (c) 
as hazards in the hardware circuit. The persistency constra.int (shown as a bold arrow) 
in (e) eliminates non-persistency from the state graph (d); harzard is eliminated from the 
hardware circuit (f). Note that t = i. and u = j •. 
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The Input-causing-Output Property. This property reflects the way hardware cir­

cuits behave; it is based on the fact that two transitions can enable or disable each other if 

and only if one is the input to the other .. ,For every signal j E J, let I(j) denote the set of 

input signals to logic element j. In the following, we give an explanation of this property 

and show that the input set I(j), as defined above, is indeed equivalent to {i E JI i.Rj.}, 
the set of signals whose transitions cause those of j in a STG. This equivalence is the key 

to our decomposition technique introduced in Chapter 6. 

The input-causing-output property states that Vi E J, Vj E JN1 (J is the set of signals): 

i E J(j) # 3s ES: i.Ej. Vi.Dj. ins. Lett= i. and u = j •. The=> direction is obvious: 

if transitions of i cannot enable or disable those of j then i can be eliminated from the set 

of input signals to logic element j. 

i E J(j) <= tEu. Again, consider Fig. 5.la, in which s[t)s'[u). Note that i is the only 

signal which changes in going from s to s'. Since u is not enabled in s but it is in s', u 

must have been disabled due to the transition of signal i. This is possible only if i is an 

input to logic element j. 

i E J(j) <= tDu. In Fig. 5.lb, there exist states s, s', s" such that s[t)s' and s[u)s", but 

u ¢ TE( s'). In state s transition u is enabled, but in s', it is not. Since the only signal 

which changes going from s to s' is i, u must have been disabled by the transition of signal 

i. This this is only possible if signal i is an input to the logic element j. I 

An implication of the above property is the equality I(j) = {i E JI i.Rj.}, which can 

be derived as follows. Recall that I(j) denotes the input set of logic element j. 

From the above characterization of non-persistency, (3s ES: tDu /\ uDt) # (fRu /\ 

{ t, u} E co), it is evident that the condition for a transition t to disable another transition 

u is that t causes u. Lett= i. and u = j., then tDu # i.Dj. and tRu # i.Ej •. Hence 

we have i.Ej. => i.Dj.. From the input causing output property, we have that since 

i.Ej. => i.Dj.: I(j) = {i E JI i.Ej.} = {i E JI i.Rj.}. 

A syntactic condition for persistency in STGs: the Persistency constraint 

There are two mechanisms which give rise to non-persistency. One of which has been char­

acterized above; it arises due to the interaction of concurrent signal transitions which are 
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parts of the sequencing specification. This violation of persiatency can always be eliminated 

by intrcxlucing additional ordering constraints into the specification. Such constraints are 

called peraiatency conatrainu and are discussed below. The other type of non-persistency 

is a by-prcxluct of the state assignment process, and can only be eliminated by introduc­

ing additional bits to differentiate supposedly distinct states, as will be discussed in more 

detail in the next section. 

As illustrated in Fig. 5.3a, transition u is non-persistent as it is caused by t, but at the 

same time it is concurrent with t. In order to eliminate non-persistency in this case, we can 

intrcxluce an ordering constraint between u and t so that they are no longer concurrent; 

this is shown in Fig. 5.3e as the bold arrow, and it is ca.lled a peraiatency conatraint. In 

its state graph (Fig. 5.3d), u becomes persistent because no instance oft can disable it. 

In the hardware implementation, the intrcxluction of a persistency constraint corresponds 

to adding a feedback signal from the output j to the input of logic element i, as shown in 

Fig. 5.3e. We can formalize this as follows. 

In EJ, let R ~ T x T denote the causal relation. An R-path is defined as a simple path 

tiRt2R ... Rtn., for ti E T, 1 ~ i ~ n and ti i= tn.. Then R+ denotes the tranaitive cloau.re 

of R, i.e., \Ix, y ET : xR+y <=> 3R-path from x toy. Since EJ is strongly connected, R+ 

is not a particularly useful concept, for \Ix, y E T : xR+y /\ yR+x. Hence, we define the 

following directed transitive closure Jl!> : 

\Ix, y E T(x i= y) : xll!>y iff there e:r:iau an R-path from x to y which doea not contain 

y. 

The existence of an R-path from x to y will be depicted graphically as x --+p y. 

Definition 5.6 (Persistency Constraints) Let EJ be a STG aa defined earlier. Then 

\Ix E T, Vy E TN1 such that xRy: the R-path au.ch that yll!>x is called a persistency 

constraint. 

It can be seen that the presence of a persistency constraint creates a simple cycle which 

contains x, x and y so that they are ordered. Using in conjunction with the external 

persistency property, persistency constraints provide the condition on STGs such that 

their state graphs a.re persistent. An STG satisfying this condition will be simply called a 

peraiatent STG. 
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Theorem 5. 7 Let EJ = (P, T, F, M0} be a STG. Then EJ i,, persistent iff 

Vx ET, Vy E TN1 : xRy => yJr>x. 

5.3 A problem with state-assignment 

As mentioned earlier, non-persistency may sometimes arise in a state graph due to state 

assignments. Nevertheless, we do not incorporate this latter phenomenon into Theorem 5. 7 

because it is a by-product of state assignments and is by no means related to the required 

sequencing specification of a STG. In Section 2.5, we have introduced this problem. In 

this section, we discuss it in more detail. 

We generalize the example presented in Section 2.5 to STGs corresponding to marked 

graphs and LSFC nets. Let E = (P, T, F, Mo} be a LS marked graph and C, C' be cuts 

in E. Then the interval between two cuts, denoted by [C, C1, is defined as the subset of 

PUT which belongs to all simple paths from an element in C to one in C': 

[c' C'] def { p T I h x E U x E pat Y1Y2 • • • Yni 
Y1 E C,y2 EC', 
Yi =/. yj, for 1 :5 i =f. j :5 n 
and Yi, Y; E P U T} 

An example of an interval between p-cuts Cp and c; is shown in Fig. 5.4a, where 

Cp = { (x, t1}, (x, ta}} and c; = { (x, ta}, (t2 , t4}, (t2, y) }. It can be seen that [C11, c;J n T = 
{ti, ti, t2, l2}. 

In a STG, a complementary set B ~Tis defined such that Vx ET: x EB<=> x EB. 

That is, B contains both the rising and falling transitions of a signal. In a live STG 

corresponding to a marked graph, for every p-cut Cp, [C,,, Cp] forms a complementary set. 

Then the state assignment problem arises if the following conditions are true in the STG, 

as illustrated below. 

In Fig. 5.4b, markings Mand M' correspond top-cuts CP and c;, respectively. Since 

( C11 , c;J forms a complementary set, from the binary state s corresponding to M, the firing 

sequence t1t2t1 t2 leads to a binary states' which is identical to s. Thus in the state graph, 
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any transition enabled in state s is also enabled ins', and vice versa. In Fig. 5.4b, if t1 is 

a transition of a non-input signal, it may oscillate as long as t 3 has not occurred. 

On the other hand, the interval [Cp1 , c;1J also forms a complementary set, causing the 

markings M1 and M{ (corresponding to Cp1 and c;1 , respectively) to have the same binary 

representation. Hence in the state graph, there is a binary state in which both t1 and t4 are 

enabled. If either t1 or t4 is a transition of a non-input signal, non-persitency will result. 

In the following lemma, for sets A and B, A + B denotes their symmetric difference: 

A+B = (A-B) U(B-A) = AUB-AnB. 

Lemma 5.8 Let EJ = (P, T, F, M0} be a STG whose uninterpreted net is a LS marked 

graph. Then EJ has a state assignment problem if there exist distinct p-cuts GP, c; and 

transition t E TN1 such that 

(a) [Gp, c;] form3 a complementary set, and 
(b) te(Cp·+C;·)/\·t~CpuC; 

Proof. Let M, M' E [Mo} denote the marking under which Gp and c; are marked, re­

spectively. Consider any firing sequence u E T* such that M[u}M', then u must fire all 

transitions in [Gp, c;J. Let s, s' be binary representations of M, M', respectively; s and 

s' are states in '°PJ. Since [Gp, c;] forms a complementary set, if u contains transitions x 

then it must also contain x. Hences= s' and thus every transition t such that ·t ~ Gp or 

·t ~ c; is enabled in s. There are two cases: 

• if transition t belongs to Gp· nc;. then it is enabled in both markings Mand M'. 

Hence the fact that M and M' have the same binary state cannot cause any problem. 

• Therefore, only in case t E (Gp · -c; ·) U ( c; · -Gp·) that t is enabled in one marking 

but not the other. Thus if both markings have the same binary representation, t will 

be enabled in some state which it is not supposed to. If t E TNI then EJ has a state 

assignment problem. I 

This result generalizes directly to STGs which are LSFC nets. As discussed in Chapter 

3, Theorem 3.6 state.a that in a LSFC net, every MG-component can operate indepen­

dently in its subset of live-safe markings. Hence for LSFC nets, the above conditions for 

persistency must be satisfied by every MG-component of the net. 
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Figure 5.4: (a) A part of a marked graph with p-cuts resulting in non-persistency due to 
state assignment and (b) its state graph. Note that markings Mand M' have the same 
binary representation. 

Theorem 5.9 Let ~J = (P, T, F, Mo) be a STG. Then ~J has a Jtate aJJignment problem 

if there exiJt distinct p-cuts Cp, c; in Jome MG-component and a transition t E TN1 such 

that 
(a) [Cp, c;J forms a complementary Jet and 
(b) t E (Cp· + c;·) A ·t ~ Cpuc; 



Chapter 6 

Decomposition by Net Contraction 

This chapter develops one major result for the structure theory of nets. It discusses 

a novel method of decomposition of finite automata, using a. graph-theoretic technique 

called contraction. We are only concerned with finite automata. which are derived from 

LSFC nets, and for convenience, they will be referred to simply as FA in this chapter. 

This method does not decompose the FA directly; instead, it contracts the nets to produce 

smaller ones and then generates FA for these smaller nets. 

The purpose of decomposition of FA is to facilitate analysis and synthesis of systems 

in an effective manner. One specific application of decomposition is in the implementation 

of control circuits. Efficient implementations can be obtained by decomposing the state 

graphs to minimize the interaction between variables corresponding to signals of the circuit. 

For state graphs (which a.re FA derived from STGs) there is a straightforward method of 

decomposition based on the cawal relation in the STGs. STGs and state graphs can 

be decomposed by performing contraction on them to produce a number of contracted 

graphs; ea.ch of which contains the minimum amount of information required for the correct 

implementation of each signal in the circuit. 

As explained earlier, we a.re mainly interested in the behavior of nets as given by se~s of 

transition sequences. From this viewpoint, an abstraction of net behavior basically involves 

the removal of unwanted transitions from the sequences. Hence, our abstraction method 

will involve contracting a net by eliminating unwanted transitions from it. 

In Section 1, we describe two contraction algorithms, one for Petri nets and one for finite 

97 
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automata corresponding to reachability graphs. An example will be given to illustrate the 

operations involved in these algorithms. In Section 2, we study the conditions under which 

certain properties of nets are preserved. These include live and safe-ness, and a property 

called tr-preserving, indicating the preservation of the temporal relation in contracted 

nets. In Section 3, we develop a major result which establish the equivalence between the 

behavior of a set of contracted nets and the behavior of the original net. In Section 4, these 

net-theoretic results are applied to STGs to provide a simple method for decomposition of 

state graphs, from which highly efficient implementations can be obtained. 

It is important to note that these results only apply to nets which satisfy all the re­

strictions of structure theory stated so far in the thesis. To recapitulate, these restrictions 

on nets consist of the following: {i) finiteness and safeneu (ii) the use of unlabeled transi­

tion sequences and (iii) the one-token SM restriction. The most important of these is the 

one-token restriction because, as discussed in Chapters 2 and 3, the temporal relation can 

only be defined for nets satisfying this restriction. In this chapter, all results developed 

are based on this restriction. 

6.1 Contraction Algorithms 

6.1.1 Contraction of Petri nets 

In this section, we describe contraction algorithms for free-choice nets and their FA. The 

essential idea in these algorithms is to consider only the subset of transitions of direct 

interest and ignore the rest. A contracted net contains only transitions of interest, and 

other transitions are eliminated by performing "local surgery" to remove one transition 

at a time. It should be stressed that contraction is different from reduction of nets for 

obtaining component subnets as described earlier in Chapter 2. 

Let 'E = {P, T, F, M0} be a LSFC net, T' ~ T be the subset of transitions of interest. 

Then 'E/T' denotes the T'-contracted net of 'E. In the following contraction algorithm, the 

set X = T-T' will be eliminated from 'E, resulting in E' = E/T'. The algorithm eliminates 

one transition in X at a time and is applied iteratively to the net until all transitions in X 

are removed. In each iteration, the elimination of a transition te E X only affects places 

in ·te Ute· and arcs connected to these places, the rest of the net remains unchanged. 
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Algorithm 6.1 (Net contraction) Let E = (P, T, F, Mo) be a net and T' = T - { te}· 

The T'-contracted net ofE, E' = (P',T',F',M/,) is obtained as follows. 

(a) Collapse input and output places of te to create a new set of places P': 

Let P' = ·te x te·, i.e., Vpi E ·te'VP; E te·: let p' = {pi,P;} E P'. 

(b) Redefine the flow relation between these new places and the rest of the net: 

Vpi E p'(E P') if 3t ET': (t,pi) E F then (t,p') E F', 
Vp; E p'( E P') if 3t ET': (p;, t} E F then (p', t) E F'. 

( c) Replace the remaining part of the net: 

Add P1 = P - (·te Ute·) to P'. Add F n (P1 x T' UT' x P1 ) to F'. 

(d) Determine the new initial marking: Vp' E P': M/,(p') = EJ>EP' Mo(p). 

Some examples of net contraction are given in Fig. 6.5, where (a) is a contraction on 

a part of a marked graph, (b) a state machine and (c) a free-choice net. Note that a 

contracted net of a free-choice net may no longer satisfy the free-choice axiom; however, it 

is still behaviorally equivalent to a free-choice net. Even though we trust that the results 

developed here also apply to these nets which are non-FC (but behaviorally FC, and the 

like), to avoid net-theoretic difficulties, we will require that contraction be only applied to 

transitions which do not create non-FC structures in contracted nets. 

Notes. After every iteration of the algorithm, the contracted net E' must be checked 

for place-simple- and pure-nessi If there exist distinct places Pl and P<J in E' such that 

(·Pi= ·P<J) A (Pi·= P<J·), then it is legitimate to remove either Pl or P'l to make E' simple. 

If there exist a transition t and a place pin E' such that p· = {t} and ·p = {t}, then 

the self-loop containing p, t can be eliminated by removing p, thus keeping the contracted 

net pure. This is also a legitimate operation because p is connected only to t and no 

other transition; p is often called a side condition. On the other hand, place p cannot be 

eliminated if it has other input or output transitions different from t. In which case the 

resulting contracted net is impure. Hence, even if the original net E is pure, E' may not be. 

Below we provide some restrictions on the contraction algorithm so that these undesirable 

situations will not occur. 
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Figure 6.1: Examples of contraction on (a) a marked graph, (b) a state machine and (c) a 
free-choice net. 

Restriction 6.2 (on net contraction) In the above contraction algorithm, a transition 

te can be eliminated only if it sati&fies the following conditions. 

(a) No place p E (-te Ute·) can be an input place of transition t E {te) (Fig. 6.2 a): 

(b) No place p' E (-te Ute·) can be an output place of transition t' E (te·} (Fig. 6.2b): 

It is easy to verify that these situtations create either impurities or deadlocks in con­

tracted nets and hence should not be allowed. In the above algorithm, if there exists a 

place Pi E ·te such that Pi is also an input place oft E {te), then since the net is safe, 

this leads to a deadlock. On the other hand, if there exists a place p; E te· such that p; is 

also an input place oft E -( ·te), then the path tpitep;t exists (where Pi E t · n · te)· After te 

is eliminated, there will be a self-loop tp't where p' = {pi,P;}, resutling in an impure net. 

As a matter of fact, these situations are so unnatural that it is reasonable to put forth 
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Figure 6.2: Elimination of te is disallowed if some input or output place of te is also (a) 
input place oft or (b) output place oft'. The dashed arcs are those causing these violations. 

an additional requirement for nets, which is that all transitions in a net satisfy the above 

restriction. 

6.1.2 Contraction of Finite Automata 

An example has been given in Chapter 5 (in the subsection entitled "Justification for the 

External Persistency Property") to illustrate the main idea behind contractions of state 

graphs. Below, we consider contraction in more general terms as applied to uninterpreted 

FA. One can define a. contraction on FA by restricting the set of transitions to a subset 

of interest and replacing the rest with f, the silent transition. In general, since a FA 

may have more than one instance of any transition, such an operation on FA may result in 

nondeterminism in the contracted FA if there is a state with more than one emanating arcs, 

each labeled with the same transition (including the silent transition f). For the purpose 

of implementation, we are only interested in systems whose behaviors are described by 

deterministic finite automata. Hence these nondeterministic FA need to be converted 

to deterministic ones. Instead of using common method such as the .m.bset construction 

method to produce a deterministic automaton, we use the following two simple rules which 

are actually properties of the transition function of state graphs. They have been discussed 

informally before in Chapter 5, and are stated in formal terms below. Let ~ = (S, T, 6, s0 , q) 
be a FA, then it is required that 

(a) 'v's,s'ES,'v'tETU{f}: (s'=fi(s,t)At=f) {::} s=s'. 
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Figure 6.3: Illustration of rules for contraction of FA. 

(b) Vslls2,s~,s~ ES, Vti,t2 ET: s~ = S(si,t1) As~= S(s2, t2) A (t1 = t2) => (s1 = s2 ~ 

s~ = s~). 

Rule (a) states that if two states are connected by a e-transition, then they can be collapsed 

into one "super-state" (Fig. 6.3a). Rule (b) can be rephrased as two sub-rules: if (i) s1 = s2 

and ti = t2 then s~, s~ must be the same and can be collapsed into one state (Fig. 6.3b ); 

similarly, if (ii) s~ = s~ and t1 = t2 then si, s2 must be the same and can be collapsed 

into one state (Fig. 6.3c ). The reasoning behind these rules has been described in Chapter 

5: silent transitions correspond to transitions of signals not considered in the state of the 

module of interest and hence, they are eliminated from the state vectors. 

In a nondeterministic FA (S,T,Ll,s0 ,q) where Ll ~ S x (TU {e}) x S, we say that an 

€-path exists from state s1 to Sm denoted as s1[E ... E)sn, if there exists a path s1s2 ... Sn 

such that (si, €, si+1 ) E Ll, 1 ~ i < n. Note that Vs E S: s[€)s and hence there is always 

a zero-length €-path from any states to itself. In the following algorithm, let 4> and 4>/T' 

denote a FA and its T'-contracted FA. The idea of the algorithm is to replace transitions 

to be removed with e and then collapsed states connected by €-paths into a super-state; 

nondeterminism can be resolved by applying the above rules; the new initial state will be 

one which contains the original initial state. In contrast to the contraction algorithm for 

nets which removes one transition at a time, the algorithm for FA involves the removal of 

all instances of a transition. The simple reason for this difference is that in a net, each 

transition in T is required to have exactly one appearance, whereas in a FA, it can appear 

many times. 

Algorithm 6.3 (Contraction of Finite Automata) Let 4> = (S, T, S, s0 , q) and T' ~ 

T. The T'-contracted FA o/4>, 4>' = 4>/T' = (S',T',S',s~,q'), i& obtained aa followa. 
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(a) Relabel unwanted transitions with e: let A ~ S x ( T U { e}) x S such that 

Vs, s' E S, Vt ET: 8(s, t) = s' => (s, tfT', s') EA. 

(b) Collapse into a auperstate all states connected with e-patha: Vsi, s2 E S such that 

si[e ... e)s2 or s2[e ... e)si, define s' E S' (~ P(S), the power aet of S) such that 

si, s2 Es'. 

(c) Redefine transition relation: Define A'~ S' x T' x S' such that Vs ES, Vt ET: 

(3si E s' E S' : (s, t, si) E A) => (s, t, s') E A' 

(3si E s' E S' : (s,, t, s) E A) => (s', t, s) E A'. 

( e) The new tranaition function is obtained aa followa. Define 8' : S' x T' -+ S' such that 

Vs, s' E S', Vt ET': (s, t, s') E A' => 8'(s, t) = s'. 

The new initial atate and the new aet of final atates are 

s~ - s' E S' if s0 E s', 

q' - { s' E S' I s' n q "I 0}. 

An example. Fig. 6.4a and Fig. 6.4b are a live-safe marked graph and its state graph, 

where T = {t0 , ti, ... , t 8 , t9}. For the sake of clarity, places are not drawn explicitly. By 

performing T'-contraction, where T' = T - { t2, t6}, the net is contracted to one shown in 

Fig. 6.4c. The removal of transition t6 results in the replacement of four old places by four 

new ones. Similarly, the removal of t2 causes places (ti, t2) and {t2, t4) to be collapsed into 

a new place (ti, t4). 

The state graph of Fig. 6.4a is given in b. By performing T'-contraction on this state 

graph, a new one is obtained as shown in Fig. 6.4d. The operation involves replacing t2 and 

t6 with silent transitions e and then collapsing states connected by e-transitions together. 

Note that the contracted state graph in Fig. 6.4d is also the state graph of the contracted 
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Figure 6.4: (a) Contraction on this FC net yields ( c ). (b) Contraction of this state graph 
yields ( d). In this example, ( d) is also the state graph of ( c). 

net in Fig. 6.4c. Thus in abstracting the behavior of a net, one can choose either the path 

a-b-d or a-c-d. In generally, the latter path is computationally more efficient because a 

net always contains no more transitions than its state graph. In this example, contraction 

on the net requires the removal of two transitions, while contraction on the state graph 

requires four (three instances of t2 , one of t6 ). In the next section, we will examine the 

conditions such that both paths yield the same state graph. By satisfying this condition, 

one can choose the more efficient path a-c-d most of the time. 
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6.2 Properties of Contraction 

Not every subset T' ~ T yields a useful or even meaningful contraction on a net. We need 

to choose subsets with restrictions such that the contracted net preserves certain impor­

tant properties of the original net. We will study the conditions under which contraction 

preserves live and safe-ness and the temporal relation on remaining transitions of a con­

tracted net. Due to the level of complexity involved, we will consider separate cases for 

state machines, marked graphs and lastly, free-choice nets. 

In the following, let :E = (P, T, F, Mo) be a. LSFC net, :E' = (P', T', F', M~) = E/T' be 

the T'-contracted net of :E. First we introduce the notion of preservation of the temporal 

relation called tr-preserving. 

Definition 6.4 Let :E be a LSFC net sat~fying the one-token SM restriction, and E' = 
:E/T' be it.s T'-contracted net. Let tr= liUcoUcf and tr'= li'Uco'Ucf' be the temporal 

relation,, in :E and E', respectively. Then the T'-contraction on :E is tr-preserving iff 

Ii' ~ Ii /\ co' ~ co /\ cf' ~ cf. 

Note that this definition does not require that direct conflicts be preserved. The reason for 

this is related to the way one defines the boundary of a control circuit module, as explained 

in Chapter 5. 

Below, the condition for tr-preservation for state ma.chines is derived. The removal of 

transition te from a state machine will affect only two places: the input and output places 

of te, because in state machines each transition has exactly one input and one output place 

(Fig. '6.5). 

Lemma 6.5 Let :E be a live-safe state machine, :E' be its T' -contracted net, T' = T - { te}. 

Let {Pi}= ·te and {p;} = te·, then the T'-contraction on :E ~tr-preserving iff 

IPi. I = 1 v I· P;I = 1. 

This lemma essentially requires that the input place of the removed transition have exactly 

one output transition, or its output have exactly one input transition. If both places violate 
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this condition (Fig. 6.5a) then the removal of te results in a net in which the temporal 

relation no longer preserves (Fig. 6.5b). 

Proof. First, note that since te has only one input and one output place, the removal of te 

results in merging these two places into a new one. Hence if E be a. live-safe state machine 

then E' is also a live-safe state machine because E' is strongly connected and contains 

exactly one token. 

( =>) Suppose that 3ti, t; E T : Pi' = { te, ti} /\ ·p; = { te, t;} (Fig. 6.5), we show that 

Ii'¢. Ii and cf'¢. cf. 

If {ti, t;} E cf then there exists no simple cycle in E containing both ti, t;. In E', 

Pi and P; are collapsed into p' = {Pi,p;} and we have {t;,p'), {p', ti) E F'. Since E' is 

strongly connected, there must be a simple cycle containing both ti, t;, i.e. {ti, t;} E Ii' or 

{ti, t;} ¢cf'. Hence cf'¢. cf. 

If {ti, t;} E Ii then there exists a simple cycle in E containing both ti, t;. There must 

be a simple pa.th IT' from P; to Pi because E is live. Because ti and t; a.re contained in a 

simple cycle, there must be another simple pa.th IT from ti tot; which does not intersect 

IT': IT and IT' form such a simple cycle (Fig. 6.5a). Let t(:F ti) E IT and t'(:F t;) E IT', then 

it is also true that { t, t'} E Ii. In E', Pi and p; are collapsed into a new place p' (Fig. 6.5b) 

and t, t' no longer belong to the same simple cycle. Hence {t, t'} E cf, or {t, t'} ¢Ii'. So 

Ii'¢. Ii. Note further that a new firing sequence ... t;ti ... is introduced in E'. 

( <=) It can be verified easily that if either Pi' = { te} or ·p; = {te} then the collapsing 

of Pi and P; in a new place does not affect the relation between any two transitions. Thus 

Ii'~ Ii and cf'~ cf. I 

The condition for tr-preservation for marked graphs is more complicated due to the 

fact that every transition in a marked graph may have more than one input and output 

places. 

Lemma 6.6 Let E be a live-safe marked graph satisfying the one-token SM restriction, 

E' be its T'-contracted net, T' = T - {te}· Then T'-contraction on E is tr-preserving iff 

'Vti E {te), 'Vt; E (te}, there ezist simple cycles !11 = t,pite ... t, and !l2 = t; ... tep;t; such 

that l!l1 n !l2I > 1 (Fig. 6.6a). 
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Figure 6.5: Proof of Lemma 6.5. (a) A state machine E withp.- = {te, ti} and ·p; = {te, t;}. 
(b) The state machine E', resulted from collapsing Pi and p; into p'. 

Essentially, the above lemma states that T'-contraction is tr-preserving iff there exists 

a pair of simple cycles--one containing ti, te, the other t;, te-which intersect at another 

transition different from te. Fig. 6.6a shows a marked graph which violates this condition: 

the cycles n1 and n2 intersect at only one transition te. In which case, the removal of te 
creates a new simple cycle (Fig. 6.6b) which totally alters the temporal relation. Since 

places in a marked graphs a.re uniquely identified by their input and output transitions, in 

order to simplify notations in the following proof, we use the cawal relation Ras defined 

earlier. Recall that tiRt; # 3p E P: {ti, p}, {p, t;} E F. 

Proof. For every t, t' -:/:- te, if { t, t'} E Ii then there exists a simple cycle containing both 

of them. Then it is easy to see that { t, t'} E Ii' because contracting te cannot remove any 

simple cycle from the net. Thus we only need to show that under the condition stated, 

co'~ co. 

First, note that Cp = ·te and c; = te· are p-cuts, and every t E ·Gp is ordered with at 

least one t' E c;., i.e., {t,t'} E Ii. Hence, if {ti,t;} Eco then 3t' E c;.: {ti,t'} E Ii and 

3t E ·Cp: { t, t;} E Ii. In other words, there exist simple cycles Oi, 0 2 such that ti, t' E !21 

and t, t; E !22; Oi, 0 2 must intersect at te (Fig. 6.6a). 

(=>)Suppose that n1 n 0 2 = {te}· Then in E', the removal of te introduces tiRt', 
tiRt;, tRt' and tRt; (Fig. 6.6b ). This introduces a new simple cycle tit; . .. tt' ... ti. Hence 

{ t,, t;} ft co'. Note further that this cycle always contains two tokens; under the one-token 

SM restriction, this results in unsafe behaviors. 

( {=) Suppose that 3u E T : 0 1 n 0 2 = { te, u}. Then in E', even though the removal 

of te still introduces tiRt', tiRt;, tRt' and tRt;, this only creates the non-simple cycle 



108 CHAPTER 6. DECOMPOSITION BY NET CONTRACTION 

(a) (b) 

Figure 6.6: Proof of Lemma 6.6 (a) A marked graph E before contraction and (b) its 
contracted graph E'. 

tit; ... u ... tt' ... u ... ti. Hence no new simple cycle is created and {ti, t;} Eco'. I 

The following result comes immediately from the proof of the last lemmata. 

Corollary 6. 7 Let E be a live-safe marked graph (or state machine) satisfying the one­

token SM restriction, E' be its T'-contracted net, T' = T- {te}· If T'-contraction on Eis 

tr-preserving then E' is also a live-safe marked graph (state machine). 

Using lemmata 6.5 and 6.6, we can derive the following conditions for tr-preservation 

for LSFC nets. 

Theorem 6.8 Let E be a LSFC net satisfying the one-token SM restriction, E' be its T' -

contracted net, T' = T - {te}· Then T'-contraction on E is tr-preserving iff the following 

two conditions are true: 

(a) \:/pi E ·te: IPi ·I= 1 or \:Ip; E te·: I· P;I = 1. 

(b) \:/ti E {te) Vt; E (te}: there exist simple cycles !11 = tipite ... ti and !12 = t; ... tep;t; 

such that 1n1 n n21 > i. 

Proof. (a) The proof for this part is similar to that of Lemma 6.5 for state machine, except 

that for LSFC net, lte ·I ~ 1 and I· tel~ 1. According to Lemma 6.5, T'-contraction is not 

tr-preserving iff 

3pi E ·te, 3p; E te· : IPi · I > 1 A I· P;I > 1. 
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Hence in order for cf'~ cf, the negation of the above statement must be true; in the case 

of LSFC nets, this yields (a). 

(b) The proof for this pa.rt is similar to that of Lemma 6.6 for marked graph. However, 

for LSFC net if {ti, t;} ¢ Ii, besides the possibility that {t,, t;} E co, one also has to 

consider the case of {ti, t;} E cf. However, in this latter case if condition (a) is satisfied 

then {ti, t;} E cf'. Furthermore, if {ti, t;} E cf then there exist two simple cycles ni and 

n2 which intersect at Pi, te and p;; hence 1n1 nn2I > 1 and this is consistent with condition 

(b). I 

The contraction being tr-preserving implies that local change due to the removal of te 
does not affect the global structure of the net: no new simple cyle can result in E' due 

to contraction, and hence if a simple cycle in Nr, contains a token, then it still contains a 

token in Nr,•. This implies that the contracted net is also live-safe. 

The main result of this section is that if E is a LSFC net and E' is its contracted net 

such that the contraction is tr-preserving then E' is also live-safe. To prove this we first 

show the following lemma. In the sequel, we will denote the set of firing sequences of a net 

Ei by FSi, that of a contracted net Ej by FSj. 

Lemma 6.9 Let E be a LSFC net aat~fying the one-token SM reatriction, and E' = E/T', 

where T' = T - { te} and T' -contraction ia tr-preaerving. Then for every SM-component 

E1 of E, there eziata a SM-component E~ of E' auch that E~ = E1/T' and FSf = FS1 rT', 
and vice veraa. 

Proof Note that a SM-component comprises of a set of simple cycles which intersect each 

other at places. 

We need to show that (1) for every SM-component E1 of E, there exists a SM-component 

E~ of E1 such that E~ = E1/T' and furthermore, FS~ = FS1 rT', and that (2) the contracted 

net E' can have no more SM-components than E. If these two facts are true then the lemma 

1s proven. 

Consider any SM-component E1 which contains te, then in E1 there exists a simple 

cycle n containing te. In n, let Pi, P; be the input and output place of te, respectively. 

Since E 1 is an SM-component, all transitions connected to Pi and P; also belong to Ei. 
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Now, eliminate te from E. 

1. When te is eliminated from the SM-component Ei, every simple cycle containing 

te gets contracted to a new one with te removed and places Pi,Pi collapsed into a new 

place p' = {pi,P;}. All transitions previously connected to Pi and p;, except te, are now 

connected to p' instead. Hence in the contracted net, every cycle in E1 containing te 

becomes a contracted cycle with te removed, and other cycles in E1 which intersect at Pi 

and p; will now intersect at p' instead. Thus in the contracted net there is a SM-component 

E~ which contains all transitions of E1 except te. By the definition of net contraction, we 

have E~ = Eif T'. 

Since the contraction is tr-preserving, condition (b) of Lemma 6.8 guarantees that 

contraction does not create any "new" simple cycle in the contracted net E' (new in the 

sense that it combines previous simple cycles containing concurrent transitions into a new 

cycle in which these transitions become ordered) and further, any cycle in E containing 

a token will contracts into a cycle containing a token also. Since the contracted SM­

component E~ is composed of some of these contracted simple cycles, it is live-safe. Also 

since condition (a) of Lemma 6.8 is satisfied, F S~ = F 81 fT'. 

2. Again, condition (b) of Lemma 6.8 guarantees that no "new" cycle is created in the 

contracted net E'. If such a. new cycle were created then a new SM-component must exist 

in E', because every cycle is contained in some SM-component. Since no such new cycle is 

created by contraction, no new SM-component can result. This implies that the number 

of SM-components in the contracted net E' can be no more than that in the original net 

E. I 

The above result leads to the following theorem. 

Theorem 6.10 Let E be a LSFC net satisfying the one-token SM restriction, and E' = 
E/T' its contracted net,where T'-contraction is tr-preserving. Then E' is also live-safe. 

Proof. Since the contraction is tr-preserving, according to Lemma. 6.9, every SM-component 

of E' contains one token each and together they cover E'. Hence according to Hack's the-

orem, E' is live-safe. I 
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6.3 Decomposition by net contraction 

The significance of tr-preserving contractions is that it provides two alternatives for de­

composing (by contraction) FA corresponding to reachability graphs of LSFC nets. On 

one hand, we could perform a desired contraction directly on a FA; on the other hand, we 

could contract a net and then generate a FA from the contracted net. It turns out the 

latter approach is almost always more efficient computationally. In case of nets being state 

machines, contraction on such nets and their FA amounts to the same operation. The 

reason it is more efficient than contracting a FA directly is that in a net, each transition 

is allowed to appear exactly once, whereas in a FA, each transition may appear several 

times. Hence removal of transitions from a net is much easier than removal of transitions 

from a FA. 

Theorem 6.11 Let :E be a LSFC net satisfying the one-token SM reatriction, :E' be ita 

T'-contracted net, T' = T - { te}· If T'-contraction on :E is tr-preaerving then 

FS(:E') = FS(:E)fT' or equivalently ~(:E') = ~(:E)/T'. 

Proof N"£ and N"£' are identical except for transition te, places in ·teUte· and arcs connected 

to these elements (see Fig. 6.7). Let ti denote a transition in ·(·te) and t; one in (te·)·. 

Then if u = <r1titet;<r2 is a firing sequence in FS(:E), both sequences <71ti and t;u2 must 

belong to FS(:E) and FS(:E') because these sequences do not involve te. 

Hence, in order to show that FS(:E') = FS(E)fT', we only need to establish the 

correspondence between every minimal length sequence titet; in :E with another tit; in :E'. 

Only minimal length sequences need be considered because any transition concurrent with 

ti can be fired before it, any transition concurrent with t; can be fired after it. Also, we 

need not be concerned with transitions t ( -:f:. te) which are output transitions of places in 

·te or input transitions of places in te· (Fig. 6. 7c); it can be easily verified that the removal 

of te does not affect firing sequences containing tit or tt;. 

Hence our task is to demonstrate the correspondence between titet; in :E and tit; in :E'. 

In :E, some input places oft; comes from te, some from other transitions; let this latter set 

of input places be P1(= ·t; - te-). Due to the FC hypothesis, there are no arcs between 

any places in P1 and te (Fig. 6.7a.). In :E', since places in P1 are not connected tote by any 

arcs, they remain the same; hence input places oft; come from P1 and ·te x te· (Fig. 6. 7b ). 
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(a) FS(E)fT' s;;; FS(E') : We show that for every firing sequence Mi[ti)Me[te)M;[t;) 

in E, there exists MI[ti)Mj[t;) in E'. 

In E, Mi[ti)Me[te)M;[t;) is given: At marking Mi all input places of ti are marked. 

Since the firing of ti leads to Me[te), at Me every place in ·te - ti· must have been marked 

by the concurrent firing of transitions in ·(·te -ti·). The firing of te leads to M;[t;); at M; 
all places in ·t; are marked. Since the firing of te marks only te·, at Me all places in P1 

must have already been marked by the time ti fires; some of it may have been marked by 

the firing of some transition concurrent with ti, or even by ti itself. 

In E', let us construct MI(ti)Mj[t;): Let Mi', MJ be markings such that MI[ti)MJ. We 

know that MI exists because it is the same as Mi except for places in ·te x te·· Recall 

that Restriction 6.2 on net contraction states that none of the places in ·te x te· can be 

an input place to ti. Therefore, if ti is enabled in Mi, it is also enabled in MI. The firing 

of ti at MI marks ·te x te· and possibly some of the previously unmarked places of P1 (as 

explained above), so that all places of P1 are marked. Therefore all input places oft; are 

marked, leading to MJ; at this marking, t; is enabled: MJ[t;). We have thus constructed 

M[[ti)MJ[t;). 

(b) FS(E') s;;; FS(E)fT' : We show that for every firing sequence M[[ti)Mj[t;) in E' 

(where ti E ·p', t; E p'· for some p' E ·te x te·), one can construct Mi[ti)Me[te)M;[t;} in E. 

In E', since Mj[t;}, at MJ all places in ·t; are marked. We can break ·t; into P1 and 

P2 = ·t; - P1, the latter being a subset of ·te x te-. Then for every p' E P2, Mj(p') = 1. 

Since only P2 is marked by the firing of ti, P1 must have already been marked when ti fires. 

Now in E, let us construct Mi[ti)Me[te)M;[t;): Since p' = {pi,p;} for some Pi E ·te, P; E 

te·, in E there exists a marking M; under which p; is marked. Since P; is an output place 

of te, M; must result from the firing of te. This implies the existence of another marking 

Me which enable te. Thus at Me all places of ·te are marked, including Pi· Therefore we 

must have a marking Mi[ti) at which all places in ·te except Pi are marked; since ·te is a 

p-cut, ·te - {Pi} can be marked before Pi by those transitions concurrent with ti. Thus we 

have constructed Mi[ti)Me[te)M;[t;). I 

The preceding results suggest the following method of abstraction for LSFC nets. Sup• 

pose we are interested in the behavior of a subset of transitions U s;;; T of LSFC net E. 
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(b} 

Figure 6.7: Proof of Theorem 6.11 (a) The part of a free-choice net where contraction will 
occur and (b) its contracted net. ( c) Cases which need not be considered. 

Then we choose the smallest subset T' such that U s;;; T' s;;; T and T' -contraction on E is 

tr-preserving. Then the T'-contracted FA of E, ~(E)/T', is guaranteed to be identical to 

the FA of the contracted net E' = E/T'. 

Below, we develop one major result for this chapter concerning the behavioral equiv­

alence of a LSFC net E and a set of contracted nets of E. We will adopt the following 

notational convention: (i) for a net E, its set of firing sequences is denoted by FS, its 

causal relation by R; similarly, (ii) for a SM-component Ei, they are FS, and R,; finally, 

(iii) for a contracted net Ej, they are FSj and Rj. 

Theorem 6.12 Let E = (P, T, F, Mo} be a LSFC net satisfying the one-token SM restric­

tion, and {E~, E~, ... , E:n} be a set of contracted nets of E, where Ej = E/TJ, TJ s;;; T, for 

1 $; j $; m. 

For 1 $; j < m, if {i) TJ-contraction i" tr-preserving and (ii) the 1.mion of cau.,,al 

relations Rj covers R, i.e. U; Rj 2 R, then 

F s = F s~ II F s~ II ... 11 F s:n. 

The example in Fig. 6.8 illustrates this theorem. The top leftmost net is a LSFC net E 

which is a marked graph. Also for convenience, we use the graphical abbreviation for STGs 

to show this net. The rest of the top row contains three SM-components {Ei, E2 , E3}, while 

the rest of the left column contains two contracted nets of E: {E~, E;}. In the contracted 

nets, solid arcs corresponding to part of the causal relation which are present in the original 

net E; the union of these solid arcs "cover" all arcs in E. The dashed arcs in the contracted 
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nets represent members of the causal relation which have no correspondence in E. Also, 

both contractions are tr-preserving. 

The above theorem states that the set of firing sequences of E is the identical to one 

obtained by weaving sets of firing sequences of the contracted nets {E~, E~}. 

The significance of this theorem is that it allows net to be decomposed into smaller 

nets in any arbitrary way, and each can be used for the purpose of synthesis or analysis. If 

the conditions stated in the theorem are met, then the behavior of the original net can be 

obtained by concurrently composing (weaving) the behavior of the smaller nets. Since we 

have shown that for LSFC nets, every set of firing sequences FS has an equivalent finite 

automaton (), the above theorem implies that 

Proof of Theorem 6.1e. Let {Ei, E2 , ••• , En}' be the set of all SM-components of E. Ac­

cording to Theorem 3.8, the weave of sets of firing sequences of the SM-components gives 

the set of firing sequences of the net, i.e., 

Hence, every contracted net Ej (1 ::; j ::; m) can be decomposed into n not necessarily 

distinct SM-components {Ej,i}, 1 ::; i ::; n such that 

FS'; = FS';,1 II FS';,2 II·.· II FS';,n, 

where F Sj,i denotes the set of firing sequences of Ej,i. {This is illustrated in Fig. 6.8, 

where a contracted net in each row of the first column is decomposed into SM-components 

shown in other columns to its right. Note that even though some of the SM-components 

are the same, we list them separately to show that they are contracted version of the 

SM-components on the first row, according to Lemma 6.9.) 

As indicated above, according to Lemma 6.9, for every SM-component Ej,i of the con­

tracted net Ej, there exists a SM-component Ei of E such that Ej,i = Ei/TJ. It is easy 

to see that if the union of arcs in {Ej} cover E (U; R; ~ R), then arcs in {Ej,i} cover the 

SM-component Ei: U; Rj,i ;;2 ~. In order to proceed with the rest of the proof, we need 

the following 
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Figure 6.8: An example to illustrate the proof of Theorem 6.12. The first row contains a 
LSFC net Eon the leftmost column, and three SM-components E1 , E2 , E3 • Below the first 
column are two contracted nets Ei, E~. 
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Proposition 6.13 For every SM-component Ei as defined in the previous paragraph: 

FSi = FSLi II FS~,i 11 · .. II FS:n,i, where FS';,i denote& the set of firing sequences of the 

contracted SM-component Ej,i = EifTJ, as defined in the previow paragraph. 

By replacing the right-hand side of the a.hove equation for each F Si in the equation 

for F S, and using the fact that weaving is associative and commutative, we obtain the 

following expression for FS: (the terms in this expression have been rearranged such that 

each column i contains sets of firing sequences of the contracted nets of the SM-component 

Ei)· 

FS - FS1 II II FSi II · · · II FSn 
- FSL1 II II FS~. II··· II FS~n II ·' • 

FS~,1 II II FS~-·' II · · · II FS~,n II 
II 

FS~ 1 ,, II II FS~. ,,, II··· II FS';,n II 
II 

Fs:n.1 II II Fs:n,i II··· II Fs:nn· . 
Notice that according to Proposition 6.13, each row j yields the set of firing sequences of 

the contracted net Ej. Hence 

F s = F s~ II ... 11 F sj II ... 11 F s:n. 

I 

Proof of Proposition 6.19. The proof is carried out for the case with two contracted nets: 

let E be a LS state machine and E~ = E/T{, E~ = E/T; be its contracted nets such that 

the contractions are tr-preserving and ~ UR~ 2 R (a.n example is given in Fig. 6.9). 

Let the sets of firing sequence of E, E~ and E~ be FS, FS~ and FS~, respectively. For 

convenience, let FS = { Ui }, FS~ = { 'Yi } and FS~ = { /3i }. Since the contractions 

are tr-preserving, according to Theorem 6.11, we have FS~ = FS/T{ and FS~ = FS/T{, 

implying that for every sequence Ui E FS, there exist one sequence 'Yi E FS~ and another 

/3i E FS~ such that 'Yi= uifT{, /3i = uifT;. (For example, in Fig. 6.9, for u1 = abcf, there 

exist 'Yi = abcf and {31 = acf; for u2 = adef, there exist "'(2 =adj and /32 = adef). 

Since these nets are SMs, if sequence t1 t2 ••• tn E FS then (ti, ti+i) E R for 1 ~ i < n, 

and vice versa. Therefore if the causal relations R~, ~ cover R, then the above sequences 
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Figure 6.9: An example illustrating the weave of two contracted nets of a live-safe state 
machine. 

Take any two firing sequences which do not correspond to part of the same simple 

cycle in E. Since E is a state machine, they represent choices in E. Then these two 

sequences correspond to part of two distinct cycles ni and n; which intersect, as indicated 

in Fig. 6.10. Let O'i and O'; denote their firing sequences, respectively. Let X = (O';IO';), 
this is a set which can be constructed for any two sequences representing choices in E. 

Since the contractions are tr-preserving, in E~ and E~ respectively, one can construct 

X1 = ("Yih;) and X2 = (.B;l.8;), where /i, ,8; are defined in the first paragraph of the proof 

(see Fig 6.10). If we can show that X = X 1 llX2 , then it follows that FS = FsrnFs~. 

X1llX2 - { O' ET* I crfT; E {/;,/;} A O'fT; E {,8;,,8;}} 

- { O' E T* I ( O' fT; = "Yi v O' fT; = "Y;) A ( O' fT; = .Bi v O' fT; = .8;) } 

- { O' ET* I (O'fTI = /i A O'fT; = ,8;) V (O'fT; =/;A crfT; = .8;) 

V(O'fT; = /i A O"fT; = .8;) V (crfT; =/;A crfT; = ,8;) } 

- { O' ET* I (O'fTI = /i A O'fT; =.Bi) v (O'fT; = /j A O'fT; = .8;)} u 
{ O' E T* I ( O' fT; = /i AO' fT; = .8;) v ( O'fT; = /j AO' fT; = ,8;) } 

- { O'i, O'j } u {} = { O'i, O'j } = x. 

1 It is more correct to write {'yi}ll{.Bi} = {<Ti} instead; however the above simplified notations are used for 
the sake of clarity. 
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A LS state machine Its contracted nets 

Figure 6.10: Proof of Proposition 6.13. 

In the la.st line above, we need to show that 

Let Y = { u ET* I (ufT{ = ')'i/\ufT~ = /3;)} and Z = { u ET* I (ufT{ = -y;/\ufT~ = /3i) }. 

Below we show that Y = {}; exactly the samE: technique can be used to show that Z = {}. 

First, note that since 0 1 and 0 2 are two distinct intersecting cycles, there must exist 

some t which belongs to both cycles, some t1 which belongs solely to Oi and and some t2 

which belongs solely to 0 2 , as indicated in Fig. 6.10. Furthermore, the conditions that (i) 

contractions are tr-preserving and (ii) ~um covers R together imply that there exist 

such t, ti, t2 which belong to both Ei and E~ (see Fig. 6.10): Condition (i) indicates that 

the structure of the net is preserved. Recall from Lemma 6.5 that it is illegal to remove 

all transitions on either branch of the contracted nets, therefore there must be some ti, t2 

which remain in the left and right branches of the contracted nets. Condition (ii) implies 

that there must exist such ti, t2 which belong to both contracted nets: if no such ti, t2 exist, 
\ 

Ri Um does not cover R. Therefore, we have (i) { t, ti, t2 } ~ T{ n T~ and (ii) sequences 

'Yi = ... t ... t1 ... , /3; = ... t . .. t2 ... 

From the definition of Y : u E Y => ufT{ = 'Yi/\ ufT~ = /3;. From (i) and (ii), it 

follows that 

Clearly both equalities cannot hold simultaneously and hence, no such sequence u can 

exist, thus implying that Y = {}. I 
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6.4 Application to Signal Transition Graphs 

Given a STG, one can derive from it a state graph by following the procedure outlined 

in a previous chapter. In order for the implementation obtained from the state graph to 

be deadlock-free and hazard-free, the STG specification is required to satisfy livenes1 and 

per1istency. As discussed earlier, from the state graph, one can proceed to implementation 

by determining the network function which consists of a set of logic functions, one for each 

signal. The logic function of a signal can be obtained by determining, for every state in 

the state graph, the implied value of that signal; the logic function is precisely the set of 

all implied values of a signal. 

There is a better alternative to the approach outlined above, being that of decompo­

sition. In contrast to other decomposition methods such as those applied to the FSM 

model, a very simple alternative exists for state graphs derived from STGs. This alternate 

decomposition technique uses the causal relation in the STG to decompose its state graph, 

as described below. 

Let EJ be a STG and ~ J its state graph, both defined on a set of signals J which 

can be partitioned into J = J1 U JN U J0 -the sets of input, internal and output signals, 

respectively. For every signal i E J, the input 1et of i, denoted by I( i), is defined as 

I(i) - {j E J I j.Ri.} 

- {j E J I i+Ri+ v i+RL v j_Ri+ v j_Ri_} 

where R is the causal relation in EJ (In Chapter 5, we have provided the justification for 

relating this subset j.Ri. of the causal relation to the set of input of i). Thus I(i) is the 

set of signals whose transitions cause transitions of signal i. 

Since in EJ, I(i) constitutes the set of signals whose transitions cause those of i, the 

logic element i can be implemented as a logic function with one output variable i and 

input variables in I( i). Since input signals are given, we need be concerned only with the 

implementation of non-input signals, i.e. those in JN1 =JN U Jo. Thus a straightforward 

decomposition algorithm for state graphs consist of the following steps. 

Algorithm 6.14 (Decomposition of state graphs) Let EJ be a STG and ~J be its 

state grapL. For every non-input signal i E JN1, let J'(i) = {i} U J(i) and T'(i) = 
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J'(i) x { +, -}. The "et of decompo,,ed "tate graph" of ~J i,, given by 

{ ~'(i) Ii E JN1 }, 

where ~'(i) = ~J/T'(i), the T'(i)-contracted "tate graph of ~J. 

It is easy to see that if that if the STG has a consistent state assignment, then so do the 

contracted state graphs obtained from the a.hove algorithm. This is due to the fact that in 

a. state graph, if a. transition tis removed, then so is t as they are transitions of the same 

signal. Thus in every cycle in a state graph, every remaining pair of transitions x, x still 

alternate. Thus, 

Lemma 6.15 Let ~ J be a state graph and { ~'( i) } it" "et of contracted "tate graphs, as 

defined above. Then if~ J ha,, a consistent date auignment, every ~'( i) has a consistent 

state as,,ignment. 

Based on the results developed in the previous section, there is a better way to de~ 

termine the contracted state graphs. This is carried out by not performing contraction 

directly on the state graph ~J, but by first obtaining contracted neu from the STG EJ. 

These will produce the same contracted state graphs if contractions on nets preserve the 

temporal relation. Hence, the following decomposition algorithm based on net contraction 

is more efficient. 

Algorithm 6.16 (Decomposition by net contraction) Let EJ = (P, T, F, Mo) and 

~J = (S, T,6,s0 ) be a STG and its state graph. For every non-in~ut "ignal i E JN1, 

let 

J'(i) = {i} Ul(i) and T'(i) = J'(i) x {+,-}. 

Then the set of contracted JJtate graph" { ~'( i) I i E J NI } can be obtai1ied a" follow,,. For 

i E JN1, 

(a) Determine E'(i) = EJ/T'(i) and iu state graph ~(E'(i)). 

(b) If T'( i)-contraction is tr-preserving then ~'( i) is identically ~(E'(i)). Otherwi,,e, add 

appropriate signals from j E J - J'( i) to J'( i) "uch that the rq,,ulting contraction 

becomes tr-preserving. Then perform "tep (a) again. 
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An important note. In a contracted net E'( i) (defined over the subset of signals J'( i) = 
{i} U J(i)) we consider i as the only output signal, all signals in J(i) a.re input. Hence in 

E'( i), I( i) x { +, - } constitutes the set of transitions of input signals, while { i+, i_} the set 

of transitions of output signals. This fact has important implication concerning persistency 

of contracted nets: in a contracted net for signal i, we only need to verify the persistency 

of transitions of i but not those of I( i) as the latter are assumed to be persistent. Their 

persistency must be guaranteed by other contracted nets which represent other part of the 

control circuit. An example illustrating this point can be found in Chapter 7. 



Chapter 7 

A Design Example 

As mentioned in Chapter 1, we advocate the use of STGs as a tool for specification and di­

rect realization of distributed control modules which form the control structure of a system 

organized around the distributed control principle. We have been able to provide some real 

proofs of our approach by using STGs in the design of complete concurrent VLSI systems. 

These include a self-timed packet router with a maximum measured throughput rate of 22 

Mbytes/sec [10] and a self-timed FIFO queue with a novel distributed organization and a 

measured throughput rate of 4 Mbytes/sec [9]. 

In this chapter, we stress another application area of asynchronous self-timed logic 

which is more conventional than the distributed organization proposed above. As an 

example, we examine the design of a self-timed controller for an A-to-D converter. First, 

this example serves to demonstrate that STGs can be useful for designing asynchronous 

logic in general, and secondly it is sufficiently complex to highlight most of the important 

and interesting features of our synthesis approach. This design was first published in [8}. 

Asynchronous control logic has found applications mostly in areas where the system 

inputs are inherently asynchronous. Some examples are vision VLSI systems [48] and 

interface circuits to asynchronous peripheral devices such as a disk drive. In these systems, 

asynchronous control circuits provide a modular interface which greatly facilitates system 

integration. In other cases, asynchronous circuits are almost indispensable and provides 

the highest operation rate possible; these include timing chains in dynamic and static 

memory devices [54] and even thoee used in synchronous microprocessors to generate extra 

cycles [22]. Given its usefulness, asynchronous logic has not been popular because of the 
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difficulties in its design and maintenance. In Chapter 1, several well-known problems with 

the Finite State Machine model and its implementation of asynchronous circuits have been 

summarized. 

This chapter is organized as follows. In Section 1, we briefly compare different design 

alternatives for A/D converters and discuss the advantage of one with self-timed operation. 

The behavior of the self-timed controller for the A/D converter is then presented and the 

construction of a STG specification is described. In Section 2, the synthesis procedure and 

implementation of the controller are discussed in detail Finally, Section 3 provides a few 

remarks on the use of STGs for direct synthesis of control circuits. 

7 .1 Specification of the Controller 

A/D converters are subject to synchronizer failure because they make use of amplifiers 

as comparators; these a.re either high-gain or regenerative bistable amplifiers. When the 

input voltage Vin is close to the reference voltage Vre/ (Fig. 7.1), the response time of 

the comparator becomes unbounded and its output may take an unbounded a.mount of 

time to settle at a valid voltage level (0 or 1). This type of failure has been observed in 

commercial A/D converters [50}. The synchronizer problem has been studied extensively, 

and it is well-known that if the circuit is required to produce a valid output within a 

certain time then there is a finite probability 'P that the output will be invalid at that 

time (13]. 'P decreases exponentially as the time allowed for the synchronizer to resolve 

is increased. For an N-bit converter using regenerative comparators, the analysis in [21} 

gives the following lower bounds on the worst-case conversion time Twc in terms of the 

fault probability 'P. For flash converters, Twc > N ln 2- ln 'P, where Twc is normalized to 

some time constant of the comparator. For clocked successive approximation converters, 

Twc > N(N ln2 - ln 'P), simply because they take N steps to perform one conversion. 

For self-timed successive approximation converters, not all conversion steps a.re marginally 

close to the reference voltage, hence some conversions will be fast and some slow. As shown 

in [21 ], the self-timed successive approximation converter becomes significantly faster than 

clocked successive-approximation converters for very low 'P a.nd large N. 
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Figure 7.1: Block diagram of the successive-approximation A/D converter. 

7.1.1 Behavior Specification 

The block diagram of the successive approximation A/D converter is shown in Figure 7.1. 

The comparator senses the difference between the input voltage Vin and the reference 

voltage Vre/ and produces a 1-bit result. The comparator has a control input Zr which 

balances it at the beginning of each conversion when Z,. makes a O-to-1 transition, and 

initiates a comparison when Zr makes a 1-to-0 transition. It also has a mutual-ezclwion 

(m.e.) circuit [32] whose output is active (=1) only when the comparator output is valid. 

This circuit is required because the comparison time is a function of the difference between 

the input voltage and the reference voltage; the smaller the difference, the longer the time 

it takes for the comparator to decide. This is the familiar phenomenon due to metastability 

[13]. 

The latch and the combinational logic form a finite state machine performing the suc­

cessive approximation algorithm. Note that this machine operates in pulle mode, a mode 

of operation different from that of the self-timed controller we a.re synthesizing. Due to 

the fa.ct that this machine performs many data-dependent operations, it is more economi­

cal and straight-forward to implement it in pulse mode instead of as a standard Huffman 
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asynchronous state ma.chine. Data. a.re latched on the rising transition of signal Lr and 

held in the latch after Lr goes low. Signal La. goes high as soon as data are latched, and 

goes low shortly after Lr goes low. The reset input of the latch is controlled by signal &q, 
so that when Req is low, outputs of the latch are reset to the appropriate initial values. 

Signal LB is the La1t-Bit signal which goes high when the converter has determined the 

last bit of the digital word. The D /A converter at the right of the diagram accepts the 

digital word produced by the state machine and generates the analog voltage Vre/· The 

combined delay of the combinational logic and the D /A converter is matched by some 

delay circuit from Dr to Da.. While it is possible to accomplish this timing constraint in 

a speed-independent manner using dual rail coding [32], a. simple delay circuit is more 

justifiable from an engineering standpoint. 

lnitia.lly, the state of the system is 

Req = Ack = Zr = Za = Lr = La = 0, Dr = Da = 1. 

Since Req = 0, the latch is initialized with LB = 0. Thus, the and-gate whose input is Req 

is enabled and the and-gate whose output is Ack is disabled. When Req is raised, Zr will 

go high and initiate a cycle of the successive-approximation algorithm. After each cycle, 

Da will restart another cycle by causing Zr to go high again. This is repeated until LB 

becomes high during the la.st cycle. This will ca.use Ack to be raised instead of Zr when 

Da goes high. After that, Req drops in response to Ack, resetting LB and in turns Ack to 

low. At this point the circuit returns to its initial configuration for the next conversion. 

7 .1.2 STG specifications 

A Signal Transition Graph describing the operation of the self-timed controller is shown 

in Fig. 7 .2. Since the circuit operation is tota.lly deterministic, i.e. there is no data.­

dependent operation, no places are drawn explicitly. The a.res represent the causal relation 

R discussed earlier. In this chapter, we will use aRb and a -+ b interchangeably in order 

to improve readability. Intuitively, aRb (a cawe1 b) can be understood as as a timing or 

"equencing con"traint between occurrences of two signal transitions. 

The two bold arcs in Fig. 7 .2 are not part of the sequencing requirement of the circuit 

and they can be ignored for the moment; they are per"i"tency con1trainu added to the 
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Figure 7.2: A STG specification of the self-timed controller. 

STG to ensure persistency, as discussed in Chapters 2 and 5. There are two subtle timing 

constraints required for the correct coordination of data and control signals: The constraint 

Lr- -t Zr+ guarantees that the gating signal of the latch is turned off before the comparator 

changes its output value, so that there is no possibility of latching the comparator output 

while it is changing. The constraint Da.+ -t Zr+ ensures that a comparison is initiated 

only after a new value of VreJ is available (as signified by D 11 going high).1 

Finally, transitions Dr_, D 0 _, Lr- and L0 _ in Fig. 7.2 are simply reset transitions of 

the re8et 8ignaling handshake protocol [32]. For the control circuit which we specify, event 

occurrences are signaled over control links, using the reset signaling protocol. Usually, an 

occurrence of an event is signaled by a positive transition on the ready wire of the control 

link; its acknowledgment is signaled by a positive transition on the acknowledge wire of 

the control link. The signals on these links are then reset through negative transitions 

before the occurrence of the next event can be signaled. In this communication discipline, 

a transition on the acknowledge wire can only occur in response to a transition on the 

ready wire and vice versa. As discussed in Chapter 4, for an input link {Ir, Ia.} where Ir is 

an input ready and Ia. an output acknowledge, this communication interface to the external 

1 A specification with more concurrency can be obtained by requiring only Da+ - Zr-, thus allowing the 
comparator to be balanced while a new tlr•J is evaluated. However, we will use this specification with less 
concurrency to illustrate the design procedure. 



7.2. SYNTHESIS FROM STG SPECIFICATION 127 

world is specified in a STG by the pair of constraints {Ia- -+ Ir+, Ia+ -+ Ir-}. Similarly 

for an output link {Or, O.} where Or is an output ready and Oa an input acknowledge, its 

corresponding set of constraints is {Or+-+ 0 11+, Or--+ 0 0 _}. These interface constraints 

a.re an example of our design rules described in Section 4.3 which states that in a STG, 

every tran.sition of an input aignal haa ezactly one tranaition which directly precedea it, 

and thia tran.sition mu.st be that of an output .signal. Transitions of input signals to the 

circuit a.re underlined to distinguish them from those of non-input signals. This reflects 

the fa.ct that transitions of input signals a.re generated externally, whereas non-input ones 

a.re generated internally by the circuit. 

7.2 Synthesis from STG Specification 

The STG specification of the controller in Fig. 7.2 is a concise description of its opera.tion 

based on the causal relation between signal transitions in the circuit. In order to obtain 

a logic implementation of the circuit from this specification, it must be ensured that the 

STG specification satisfies liveness and persistency. Liveness of the STG implies that its 

state graph is strongly connected and has a consistent state assignment, hence the circuit 

realization is free from deadlock. Persistency implies that the circuit realization is bazard­

free. To summarize, the synthesis procedure from a STG specification consists of the 

following steps: 

(a) Meeting liveness and persistency. Checking for the state assignment problem and 

introducing internal signals if required. 

(b) Decomposing the STG into contracted nets and obtaining their state graphs. 

( c) Determining the logic equation for every non-input signal from its state graph. 

7.2.1 Meeting liveness and persistency 

It is easy to verify that the STG specification of the control circuit (Fig. 7.2) satisfies the 

liveness conditions: it is strongly connected and for every transition t, there exists a simple 

cycle containing both t and f. The second condition also indicates that the state graph 

has a consistent state assignment. 
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One can view the construction of a STG from a control circuit's behavior as a specifi­

cation of the presence or absence of sequencing constraints between control events. Such a 

preliminary specification will usually contain non-persistent transitions due to interactions 

between concurrent signal transitions, as discussed in Chapter 5. The addition of per­

sistency constraints essentially serve to limit the allowed transition sequences to a subset 

of the original set such that none can produce non-persistent behavior. Sometimes the 

original specification may need to be altered slightly for persistency to be satisfied. 

Without the bold a.res, in the above STG, transitions Dr+ and Zr+ are non-persistent 

since the following conditions a.re true (Theorem 5.5): 

(a) La+-+ Dr+ and {La-, Dr+} Eco, 
(b) Da+ -+Zr+ and {Da_, Z,.+} Eco. 

TQ eliminate non-persistency in case (a), we have to a.dd the persistency constraint Dr+ --+11 

La-· This condition can be satisfied by introducing the bold a.re Dr+ -+Lr-· In this case, 

we cannot use the a.re Dr+ -+La- because L. is an input signal to the control circuit, and 

as mentioned earlier, its transition is allowed to have exactly one predecessor. 

In case (b), a.re Zr+ -+ D,._ could be used to satisfy the persistency constraint Z,.+ --+11 

Da- which will ensure the persistency of Zr+· However, this a.re would necessitate the 

addition of another a.re Dr- -+ Zr- to guarantee the persistency of Dr-· Instead of 

using this pair of a.res, we chose the bold a.re Z,._ -+ Dr- which also satisfies the above 

persistency constraint. This example shows that there is more than one choice for satisfying 

the persistency constraints; hence, may help the designer make the best choice. 

With the addition of these new a.res, some of the sequencing constraints become re­

dundant. For instance, the constraint La+ -+ Lr- is already satisfied by the existing pair 

La+ -+ Dr+ and Dr+ -+ Lr-· One can thus modify the specification by removing these 

redundant constraints. Two redundant constraints La+ -+ Lr- and Da+ -+ Dr- can be 

removed from Fig. 7.2 to produce the STG of Fig. 7.3a. 

At this point, we have modified the original specification to produce a STG which 

satisfies liveness and persistency as pa.rt of the sequencing requirement. We also need to 

check for the possibility of non-persistency due to state assignments. In Fig. 7.3a, one 

can immediately detect an R-pa.th (Z,.+, Za+, Zr-, Za-) which results in a state-assignment 

which exhibits non-persistency. Intuitively, in the absence of any other intervening tran­

sition, consecutive rising and falling transitions of Za and Zr take the circuit back to the 
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same state. More specifically, there are two p-cuts 

Cp = { {Da+, Zr+}, {Lr_, Zr+}, {Lr_, La-}}, 

G; = { {Za_, Lr+}, (Z,._, D,._), {L,._, La-}} 
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as indicated by the dashed arcs in Fig. 7.3a such that [Gp, G;] forms a complementary set. 

Since Z,.+ satisfies the conditions of Lemma 5.8: 

Zr+ is non-persistent. This is illustrated in Fig. 7 .3b, the binary representations of both 

M and M' are 000111, where M and M' are markings corresponding to p-cuts Gp and G;, 
respectively. Starting from M, the firing sequence Z,.+Za+Z,._Za- leads to marking M' 
at which, in addition to La- being enabled, Z,.+ is also enabled. This gives rise to non­

persistency of Z,.+. On the other hand, note that even though La- satisfies the conditions 

of Lemma 5.7, it can be assumed to be persistent because it is a transition of an input 

signal. 

As mentioned earlier, in order to eliminate non-persistency due to state assignment, one 

can introduce an additional internal signal to permit the distinction between the binary 

representations of markings M and M'. Thus, one could introduce a signal x, and insert 

a transition of x, e.g. x+, into the middle of the R-path (Z,.+, Za+, Z,._, Za-) to obtain 

(Z,.+, Za+, x+, Z,._, Za_). This in effect removes all complementary sets formed by distinct 

p-cuts from the STG. In order to ensure liveness of the modified STG, one has to determine 

a place to insert x_ as well. However, to carry this task out effectively, we need to consider 

the next synthesis step of decomposition. 

As outlined above, we can decompose the STG into a number of contracted nets and 

then determine their state graphs. Clearly, one could take the alternative approach of 

deriving the state graph directly from the STG (with the addition of signal x) and de­

termining logic equations from it. However, this would involve a total of seven signals, 

and every state will be a binary representation of the set {Z,., Za, L,., La, D,., Da, x}. With­

out decomposition, at worst, the logic equation of any non-input signal Z,., L,., D,. or x 

may depend on all seven variables. Obviously, this is grossly inefficient. The alternative 

approach of decomposition can be carried out in a straightforward manner by using the 

causal relation R to produce an efficient implementation, as discussed below. 
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Dr+ 

z~ t La-v Dr- (a) 

La+ 001 

Figure 7.4: (a) The contracted net of Dr derived from the STG in Fig. 6.3a. (b) State 
graph of the contracted net in (a). 

7.2.2 Implementation using decomposition 

We apply the synthesis procedure as outlined earlier to produce a circuit, starting from 

the STG in Fig. 7.3a. It will be demonstrated that when this STG is decomposed into 

reduced graphs, the state graph of one of them is non-persistent due to the lack of state 

information. As suggested earlier, this requires the addition of an internal signal x to the 

STG specification. In the following presentation, the synthesis procedure will consist of 

two passes, with the latter producing the final circuit implementation. 

First Pass. Fig. 7.3a shows that La, Da, Za are input signals to the circuit, while the rest 

are non-input signals whose logic equations are to be determined. The STG in this figure 

has three non-input signals Dr, Lr, Zr, and their input sets are I(Dr) ={La, Zr}, I(Lr) = 

{Dr, Da, Za} and I(Zr) ={Lr, Da, Za}· 

The contracted net of Dr (denoted by E'(Dr)) and its state graph are shown in Fig. 7.4; 

each vertex in the state graph is a binary vector representing signals in the set {L., Zr, Dr)· 
From state s3 = 001, the consecutive occurrences of Zr+ and Zr- take the circuit to state 

011 and then back to 001. (A similar case occurs starting from state 101.) Correspondingly, 

in the contracted net of Dr, there is an R-path of consecutive transitions of signal Zr which 
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directly precedes the output transition Dr: (Zr+' Zr_, Dr_). According to this state graph, 

logic element Dr is implemented such that whenever it is in state s5 , it will cause transition 

Dr- to occur. However, the state assignment results in 8 3 = s5 • Hence, whenever the circuit 

is in either state, both transitions Zr+ and Dr- are enabled. In which case, the transition 

sequence Dr+La.-Dr- may take place instead of the correct sequence Dr+L11_Zr+Zr-Dr_, 
and the circuit malfunctions. Moreover, transition Dr- is non-persistent because while it 

is enabled in state 83, the occurrence of Zr+ brings the circuit to state 84 in which Dr- is 

no longer enabled. 

The problem in this situation arises from the fact that it is impossible for the circuit 

to distinguish that 8 3 and 8 5 are supposedly different. In order to modify them into 

distinguishable binary states, we add another signal called x into the circuit. Since this 

problem shows up in the contracted net of Dr as a pair of coDSecutive transitions of the 

same signal Zr, a transition of x, say x+, is inserted between them. This requires that 

x_ also be added to preserve liveness. The contracted net Dr indicates that x_ must not 

be inserted (i) between the pair (Dr+, Zr+) or (Zr_, Dr-) because this only produces the 

same problem but with two pairs of consecutive transitioDB of the same signals, (ii) into 

the R-path (Dr+, La-, Dr-) because this makes x+ and x_ concurrent and thus violates 

both liveness and persistency. Hence x_ must be inserted into the R-path (Dr_, La+' Dr+)· 
Considering the STG of Fig. 7.3a, this ID.ftl.DB that x_ must be inserted into the path 

(Dr_, Da-, Lr+, La+, Dr+)· Furthermore, since traDSitions of input signals Da, La and Za 
can have only one incident arcs coming from tr&DBitiODB of their corresponding reque!t 

signals Dr, Lr and Zr, x_ cannot be inserted in front of these transitions. Thus x_ can 

be inserted between (D11_,Lr+) as shown in Fig. 7.5, or between (La+, Dr+)· In this latest 

specification, x+ does not directly precede transitions of signal Dr; however it must be 

used as an input to logic element Dr to eliminate hazards at signal Dr. 

Finally, note that transition x_ can also be iDSerted between (L11+, Dr+) in the STG in 

Fig. 7 .3a. This would result in another STG specification which yields a slightly different 

implementation of the circuit. This fact indicates that the implementation is sensitive to 

the particular form of the STG, which is understandable because the state graphs extracted 

from STGs are unique state-based representations of the behavior of a circuit. 
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Figure 7.5: (a) The final STG with the addition of signal x. (b) Contracted nets for 
non-input signals Zr, Lr, Dr and x. ( c) Structure of the corresponding circuit. 
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Second Pass. The STG in Fig. 7.5a shows that there are four non-input signals Dr, Lr, Zr 

and x, with input sets 

The input set !(Dr) contains signal x due to the reason just described. The contracted 

nets of Dr, Zr, Lr and x a.re shown in Fig. 7.5b. At this point, we obtain the structure of 

the circuit using the input/output information of the constituent logic elements, as shown 

in Fig. 7 .5c. 

The final step in the synthesis process is to derive logic equations from contracted nets. 

This step is illustrated for signals Zr and x. From the contracted net of Zr (reproduced 

in Fig. 7.6a.), one can derive its state graph (Fig. 7.6b) with states representing signals in 

(Lr, Da, x, Zr}· 

The state graph can be transferred to a. type of K-ma.p called tran8ition map; the 

transition map of signal Zr is shown in Fig. 7.6c. Ea.ch entry in this map corresponds to a 

state, which is a. binary representation of the signals {Lr, Da, x, Zr}i arcs between entries 

are simply transitions between states as given by the state graph. A K-ma.p for Zr can be 

obtained by replacing each entry (corresponding to a. state) in the transition map with its 

implied value for Zr, a.s discussion in Chapter 4 (Fig. 7.6d). For example, in state 0111, 

the implied value of Zr is 0, thus this entry in the transition map is replaced by a 0. The 

logic equation of Zr can be found from this K-ma.p to be 

Lastly, note that in the contracted net of Zr, there is an R-path (Lr+, Lr-)· However, in 

contrast to the previous case, it does not cause non-persistency. Its state graph (Fig. 7.6b 

shows that from state 0000, the firing sequence Lr+Lr- leads back to state 0000. Thus 

both Lr+ and Da+ are enabled in state 0000; however, since they are considered as inpu~ 

to logic element Zr, they can be assumed to be persistent. The persistency of Lr+ and 

Da+ has to be guaranteed by logic elements Lr and Da, respectively. 

In a state graph for an output signal i, it is often the case that a certain state s has 

more than one next-state. Hence we need to ch<X>Se one for its implied value. Suppose 
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(c) Transition map of Zr 
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Figure 7.6: Steps in the transformation from a contracted net to the logic equation for 
signal Zr. 

that transitions ti and t2 are enabled in s, leading to next-states si and s2, respectively. 

As described in Chapter 2, there are two cases: 

• If neither ti, t2 is a transition of signal i (ti, t2 '/: i.), then si(i) = s2(i). In this case, 

the implied value of s is unique. K-map entry corresponding to s is entered with this 

unique value si(i). 

• If either ti or t2 is a transition of i, for instance, ti = i. and t2 '/: i., then si(i) '/: 

s2(i) = s(i)2
• In this case, the next-state value of s is not unique. However, we 

require that the K-map entry corresponding to s be entered with si(i), the implied 

value which results from the transition of signal i itself. If furthermore, ti is also 

enabled in state s2, then ti is persistent and no hazard results. Otherwise, t1 is 

non-persistent and the circuit has hazards. Note, however, that this will not happen 

if the STG is persistent. 

In the state graph of x, state 101 has two next-states due to the concurrent transitions 

2Note that the case with ti = l2 = i. is not possible as either t1 or t2 will not be consistent for state a. 
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Figure 7. 7: Steps in the transformation from a contracted net to the logic equation for 
signal x. 

of x_ and Za- (Fig. 7.7a). In state 101, the implied value for x is chosen to be 0, as it 

results from the transition x_. Fig. 7.7a shows that regardless of whether logic element x 

is in state 101 or 001, transition x_ will always occur next and the circuit behaves exactly 

the same. The transition map is shown in Fig. 7. 7b. The K-map derived from this state 

graph is shown in Fig. 7.7c where the logic equation is found to be 

This equation has the general form x = S + x"H with S = ZaDa and R = 15a. Its 

implementation is a set-reset flipflop whose output is x, the set and reset inputs are ZaDa 

and 15a, respectively. In order for this implementation to work properly, it is required that 

S.R = 0 at all times. 

Similarly, the same procedure can be applied to other contracted nets to obtain the 

logic equations for Lr and Dr. They are 

Lr - 15r~"Za 

Dr - Zr + La + Dr~• 

The equation for Dr can be rewritten as Dr= S + Dr"H with S =Zr+ La and R = x, 

and it is implemented as a set-reset flipflop. The contracted net of Dr in Fig. 7.5b shows 

that there is a time period during which both Zr and x are high, causing both the set and 
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Figure 7.8: The final circuit realization of the self-timed controller. The controller's initial 
state is Zr = Z0 = Lr = La = x = LB = 0, Dr = D0 = 1. 

reaet inputs of the Dr flipflop to be active. This violates the condition that S.R = 0 at all 

times. However, it also indicates that output Dr is not to be reset until after both Zr and 

L 0 go low, and therefore, until after the set input goes low. Therefore, this circuit can be 

implemented as a aet-dominant flipflop (indicated by S* in Fig. 7.8). One can also choose 

to implement Dr directly from the equation given above instead of a set-reset flipflop and 

not to worry about this particular detail. 

Finally, by putting all these elements together, one obtains the control circuit for the 

A/D converter as shown in the dashed box in Fig. 7.8. The self-timed control circuit 

shown is speed-independent, i.e., it operates correctly with any combination of delays 

of logic gates, assuming that the internal feedback delays of the flipflops are negligible 

compared to other loop delays in the control circuit. 

7.3 Summary 

In this chapter, STGs have been used as a specification tool for asynchronous control 

circuits. A STG specification can be viewed as an interpreted Petri net in which each 

transition is identified with a signal transition in a hardware circuit. In the synthesis 

approach proposed, state graphs are generated from a STG and then used to derive logic 
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equations and hardware structures for the signals. In the a.hove specification and design 

example, it has been shown how introducing additional constraints in a STG allows us to 

use level-sensitive hardware circuits instead of transition-sensitive hardware circuits in its 

implementation. These are precisely the persistency constraints which guarantee speed­

independent (and therefore hazard-free) implementation. 

A STG specification can thus also be viewed as a concise yet more abstract notation for 

specifying a class of state graphs. As specifically illustrated through examples above, most 

of the complex interactions of digital control circuits at the signal level can be lifted to our 

abstract representation using STG notations. At this higher level, one can guarantee live 

and ha.za.rd-free operation of control circuits by simply satisfying syntactic conditions on 

STGs. This, perhaps, is the most important point of our graph-based approach. 

The module descriptions used in this chapter require only constructs for specifying 

sequencing and concurrency. There are other behaviors which exhibit conflict and data.­

dependent signal flow that would require additional STG constructs for their specification. 

The formulation and application of these latter constructs are presented in the next chap­

ter. 



Chapter 8 

Signal Transition Graphs with 
Non-input Choices 

8.1 Introduction 

The Signal Transition Graphs considered so far belong to a class of interpreted free·choice 

nets; By restricting transitions which are in direct-conflict to those of input signals, free· 

choices can be used to specify (nondeterministic) input choicea to a control module. Thus, 

in addition to sequential and concurrent operations, these STGs can also specify input 

choices. In practice, however, this ability is only of limited use. More often, one also needs 

to specify control operations involving choices of internal events-the particular choice of 

which control event to execute depends on the state of certain control variables. In this 

chapter, instead of purely free choices, we consider cases in which choices are controlled 

by the state of certain conditions (which hold due to the firing of some signal transition in 

the circuit). This gives rise to the class of nets with controlled·choicea. 

There are two alternatives for extending nets to permit the specification of controlled· 

choices, as illustrated in Fig. 8.1. We may choose a atructural extension by using nets 

which are structurally more complex than free-choice ones, or we may choose a behavioral 

extension by developing new notations which permit the use of additional conditions to 

further restrict the sets of firing sequences of nets. 

Fig. 8. la is a free-choice: whenever p is marked with one token, both t1 and t2 are 

enabled and one is nondeterministically chosen to fire. Fig. 8. lc is the corresponding 

139 
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Figure 8.1: Structural and behavioral extension to the FC net model. 

situation for STGs called an input choice, in which t1 and t 2 are interpreted as transitions 

of input signals; the decision of which transition to fire is made externally to the system 

and hence appears to be nondeterministic. 

A structural extension to free-choice nets to allow the specification of controlled-choices 

is depicted in Fig. 8.lb. This net specifies a controlled-choice if whenever transition u 
is about to fire (thus marking place p), a token must have already been present at ei­

ther place p1 or P2· Then exactly one of ti, t2 is enabled and the enabled transition will 

fire-nondeterminism never arises in this situation. Fig. 8. ld illustrates the corresponding 

situation in STGs, called non-input choices, i.e., choices involving transitions of intern.al or 

output signals. In contrast to the input choice in Fig 8. lc where t1 and t 2 are transitions 

of input signals, here they must be transitions of non-input signals. The arc labels a and 

b are logical variables which indicate, respectively, whether places PI and P2 are marked at 

the moment p receives a token. For example, we can pick a= {i, 1), b = {i, 0) and u1 = i+, 

u2 = i_. Then a being true means that signal i becomes 1 after transition i+ has fired; a 

being false means that signal i ceases to be 1 (due to the firing of i_), etc. 

As will be discussed in more detail, the behaviorally extended net in Fig. 8.ld can serve 

as a correct specification of non-input choices only if the following two conditions are met: 

(i) Only one of the logical variables a and b can become true whenever p is marked. 

(If both can hold simultaneously when p is marked, this controlled-choice becomes a 

free-choice. Thus, free-choice nets ca.n be considered as a special case of controlled­

choice nets.) 

(ii) Transitions whose firings cause a and b to hold are not concurrent with u (in the 

above example, these transitions are u1 and u2, respectively). This condition means 

that whenever p is marked, it is guaranteed that at least one of its output transitions, 
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t1 or t 2 , is enabled. Otherwise, if ui, u2 are allowed to fire concurrently with u, it is 

generally impossible to determine the state of variables a and b when pis marked. 

This condition is a fundamental requirement of the proposed behavioral extension; 

further discussion will be given when we present the unfolding algorithm in Chapter 

9. 

Under these provisions, controlled choices ca.n be viewed as additional restriction& on the 

set of firing sequences specified by a FC net. As such, they a.re a behavioral extension to FC 

nets. The reason for a.voiding a structural extension is that to date, an acceptable structure 

theory is available only for the class of free-choice nets. Techniques for structural analysis 

of more complex nets which are useful for our purposes have not been fully developed. 

This chapter describes this extended class of interpreted nets called STGs with non­

input choices (STG/NCs), their notations and semantics. To distinguish them from STGs 

described in earlier chapters, we call the latter STGs with input choices (STG/ICs). The 

behavior of STG/NCs will also be defined in terms of :firing sequence semantics. From 

the behavioral standpoint, a STG defines a set of firing sequences which has an equivalent 

state graph representation. An STG can thus be viewed as an abstract representation of 

a state graph. 

In Section 2 we will consider the underlying idea of specifying non-input choices in 

terms of state graph representations. In particular, we discuss the deficiency of state 

graphs for modeling non-input choices and a simple solution to this problem. This leads 

to a notational extension to the STG model, as described in Section 3. This section also 

describes the syntactic definition of STG/NCs and their :firing rule. In Section 4, a design 

example is carried through to informally illustrate the ma.in ideas. This example describes 

the synthesis of a FIFO controller which operates using a two-cycle signaling protocol. One 

unusual feature of this design is that its STG specification contains both concurrency and 

internal choices, in contrast to other synthesis approaches which restrict the specification 

to sequential processes, and thus cannot specify both internal choice and concurrency at 

the same time. 
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8.2 The Basic Idea 

In this section, through a number of illustrative examples, we demonstrate a fundamental 

difficulty in modeling internal choices in the class of finite automata corresponding to state 

graphs. After identifying the cause of this problem, we suggest a solution which necessitates 

the use of a higher level representation for state graphs-this being STGs with non-input 

choices, as described subsequently. 

8.2.1 A fundamental problem with specifying non-input choices 
in state graphs. 

Recall that a state graph ~ defined on a set of signals J is given by ~ = (S, T, h, so) where 

S = {s: J-+ {O, 1}} and T = J x {+, -}. J and T can be partitioned into input, internal 

and output sets, denoted by subscripts I, N and 0, respectively. For convenience, we 

also define non-input sets as the union of internal and output ones, and denote them with 

subscripts NI. 

In~' suppose that there exists a configuration shown in Fig. 8.2a, with si[u)s2, s2[ti)s3[t3), 

s2[t2)s4[t4), where u is the only transition enabled in state si. According to the previous 

definition of enabling and disabling, this situation corresponds to uEti and uEt2 in si. 

Since ti and t2 are enabled in the same state and t2 ¢ TE( s3), ti ¢ TE( s4 ), they correspond 

to transitions in direct conflict. (Recall that TE( s) denotes the set of transitions which are 

enabled in state s.) 

As argued below, whether ti and t2 are indeed in direct conflict, that depends on 

whether they are transitions of input or non-input signals. For the sake of argument, let 

us consider the direct conflict in Fig. 8.2a purely as a &pecification intended for specifying 

a nondeterministic choice in some control module. Due to the fact that in a state graph, 

transitions behave differently depending on their type (input or non-input), whether this 

specification is in fact a choice that will depend on the type of the transitions. For state 

graphs, transitions of input signals are caused by the environment, whereas non-input ones 

are caused by the system itself. The occurrence of the latter is determined solely by the 

internal delays of the system and hence, cannot be known exactly. Below, these cases are 

examined. 
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Figure 8.2: (a) A state graph specification with t 1 and t2 enabled in the same state. (b) If 
t1 , t2 =f. ii then t1 and t2 are concurrent. ( c) If t1 = ii then t2 is non-persistent. 

If t1, t2 E T1 then as discussed in Chapter 5, it is an input choice. Furthermore, t1 and t2 
can be assumed to be persistent; their persistency can be guaranteed by the environment. 

On the other hand, if ti, t 2 ¢Tr then the specification of Fig. 8.2a doesnot guarantee that 

t 1 and t 2 will be persistent or that they may occur concurrently, as explained below.1 

• ti, t2 =f. ii: Since uEt1 in s1 and t2 =f. ii, the occurrence of t2 in s2 brings the system 

to s4 in which t1 must still be enabled: s 4 [t1). Similarly, since uEt2 and t1 =f. u, we 

can also conclude that s3[t2). Hence ti, t2 ¢ T1 U {u} => s2[t1)sa[t2) A s2[t2)s4[t1), and 

this means that ti and t2 are in fact concurrent (Fig. 8.2b). 

• ti = u or t2 = ii : Suppose that t1 = u and t2 =f. u (the other case with t1 =f. u and 

t2 = u can be treated in a similar fashion). As before, since uEt1 in s1 and t2 =f. u, t1 
must still be enabled in s4. However, since uEt2 in s1 but ti = ii, the occurrence of ti 

in s2 brings the system to state s3 in which t2 is no longer enabled (Fig. 8.2c). Hence, 

ti disables t2 in s2 thus causing t2 to be non-persistent. The obvious implication of 

this is that in the corresponding hardware implementation, an occurrence of t 2 can 

cause a hazard which may lead to malfunction. 

The above analysis shows that state graphs can only be used to specify input choices. 

If a specification involves non-input transitions enabled in the same state, due to the fact 

that their occurrences are controlled internally, these transitions will occur concurrently 

or produce hazards-neither case is desirable. 

1 We do not consider cases with t1 E T1 A t2 ¢ T1 or t 2 E T1 A t 1 ¢ T1 because these involve choices 
between input and non-input signal transitions. 
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8.2.2 Specifying non-input choices in state graphs. 

Consider the state in Fig. 8.3a. Since x and y are enabled in the same state s and they 

are transitions of input signals (input transitions are underlined), they indeed specify an 

input choice. In contra.st, t1 and t2 are enabled in the same state s2 , but since they are 

transitions of non-input signals, they may be non-persistent or concurrent, as discussed 

earlier. Hence, this state graph cannot be used to specify a non-input choice as intended. 

Now, suppose that once transition u has occurred and the system has settled in state 

s2 , we want the system to perform the following decision: 

• enable transition t1 only if x had occurred previously, and 

• enable transition t2 only if y had occurred previously. 

It can be seen that for the state graph in Fig. 8.3a, this type of decision is impossible 

because as soon as the system reaches state s1 , it looses the knowledge of which of x or y 

had occurred. In order to allow for non-input choices, we must "split" states s1 and s 2 into 

pairs {s~,sn and {s~,sn, respectively (Fig. 8.3b). In this state graph, once transition u 

has occurred, the enabling of t1 is conditional on the occurrence of x and likewise, that of t2 

on y. Furthermore, by splitting state s2 , t 1 and t 2 are no longer enabled in the same state; 

the problem discussed above no longer exists. Thus this simple technique provides not 

only a way for specifying non-input choices but also a nice solution to the above problem. 

As discussed next, the proposed solution gives rise to another problem, thus indicating 

a fundamental deficiency of state graphs in specifying non-input choices. Suppose that 

one is given the state graph in Fig. 8.3b. By noticing that uEt1 ins~ and uEt2 ins~, one 

may be able to deduce that t 1 and t 2 are possible internal choices after the occurrence of 

u. However, in general, the exact condition which causes a particular choice cannot be 

determined precisely: by inspecting only the state graph, the condition which causes the 

choices of t1 may be due to the occurrence of either one of x or t5 ; similarly that t2 may 

be due to either one of y or t 6 • 

In order to specify the exact conditions for non-input choices, new notations need to be 

introduced, as illustrated in Fig. 8.3d. The output arcs of place pare labeled with control 

variables a and b where, for instance, a= (i, 0), b = (i, 1), x = i_ and y = i+. In this case, 
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Figure 8.3: (a) A state graph intended for specifying an internal choice between ti and t2 • 

(b) The correct way for specifying internal choice between ti and t 2 • (c) The STG for the 
state graph in (a). (d) The STG for the state graph in (b). 

for example, when x fires, a becomes true and ti will be enabled. This STG can be viewed 

as a high-level representation of the state graph in Fig. 8.3b, and can be distinguished 

from the STG without these labeled arcs shown in Fig. 8.3c. 

Before giving a precise syntactic characterization of STGs with non-input choices, the 

following remarks are in order. 

• The use of arc labels in STGs allows one to specify non-input choices and the exact 

conditions which control the choices; such a capability is not supported by free-choice 

nets. An immediate implication of this extension is directly related to the hardware 

implementation: in the decomposition stage for logic implementation, signals corre­

sponding to these conditions must also be included as input to a logic element. For 

example, in Fig. 8.3d signal i must be considered as an input to logic elements j and 

k, where ti = j. and t 2 = k •. 

• The controlled-choice notation has significant ramifications in our formulation of 

STGs in that it allows us to restrict the number of appearance of every transition 

in T to no more than once in a STG specification, and this is consistent with our 

previous formulation. (Recall from Chapter 2 that this restriction is necessary to 

prevent the confusion between concurrency and nondeterminism in the corresponding 

state graph representation.) 

• In comparison with free-choices, controlled choices can be viewed as a further restric-
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tion on the sets of firing sequences. For example, the set of firing sequences for the 

free-choice case in Fig. 8.3c is { xt5ut1 t 3 , xt5ut2t4, yt6ut1 t 3 , yt6ut2t4}, whereas that for 

the controlled choices in Fig. 8.3d is restricted to the subset { xt5ut1 t3 , yt6ut2t4}. 

8.3 STGs with non-input choices 

8.3.1 Syntax 

A STG with non-input choices (STG/NCs) of a control module with a set of signals J is 

defined as follows. 

Definition 8.1 A STG with non-input choices defined on J u described by °EJ = (P, T, F, M0 ; >.), 
where 

• (P, T, F, Mo) is a LSFC net satufying the one-token SM restriction, with the addition 

of a finite set of dummy transitions denoted by£: F ~ (P x (TU£))U((TU£) x P). 

• The arc labeling function ,\ : F -+ J x {O, 1} is a partial function with 

dom(.\) = { (x, y) E FI x EPA Ix· I> 1 A (y E TN1 U £)}, 

i.e., dom(,\) ~ F n (P x (TNI u £)). 

The set£= { e1 , e2 , ••• , em} is a finite set of dummy transitions, each member of£ is really 

a silence transition whose purpose will be discussed shortly. 

In the graphical representation of arc labels in J x {O, l}, we use j. and J to denote 

(j, 1) and (j, O}, respectively. An arc label (j, 0) represents a control variable which holds 

whenever signal j is equal to 0. 

We further require that for a place p E P such that IP· I> 1, 

• either p· ~ T1 (in which case pis called a free-choice place) 

• or p· ~ TN1 U £ (in which case pis called a controlled-choice place). 
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Figure 8.4: (a) A STG with non-input choices and (b) abbreviating the dummy transition. 

Thus a STG /NC may contain both free choice and controlled-choice places, while a STG /IC 

may contain only free-choice places. 

The introduction of the dummy transition f is a mere technicality: in situations involv­

ing non-input choices (as illustrated in Fig. 8.4a), when Pl is marked, if control variable 

a holds then t1 , t 2 , ta occur in sequence; otherwise, if a holds then only ta will occur (the 

exact meaning of "hold" will be given shortly). The dummy transition f serves as a place 

holder to avoid too many changes to the syntax of STGs and their firing rule: without it, 

we must extend F to P x P and change the firing rule accordingly. For convenience we 

will draw an arc directly between two places whenever an e·transition is encountered, as 

done in Fig. 8.4b. Thus, the use of dummy transitions is restricted to the following cases: 

V(x ) E F if Ee then { 3a E J x {O,l}: .\((x,y)) =a and 
,y y 3Pt,P'J E p: IPI ·I> 1 A ·y ={Pt} A I· P'JI > 1 A y· = {P"J} 

8.3.2 Firing rule 

The firing rule for STG/NC is exactly the same as for Petri nets, i.e., whenever a transition 

(including the dummy transition E) is enabled, its firing will remove one token from each of 

its input places and one token is added to each of its output places. However, the enabling 

condition for STG /NC is slightly different: 

• For every transition t with no labeled input arcs, t is enabled the usual way: M[t) 

iff Vp E ·t, M(p) ~ 1. 
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• For every transition t with the input arc labeled with a, e.g. ·t = {p} and .X(p, t) = a,2 

then M[t) iff (i) Vp E ·t, M(p) ~ 1 and (ii) the condition a holds at M. 

We say that condition a holds at marking M 

• for the case a= (j,O} iff at M, transition j_ has fired and i+ has not; 

• for the case a = (j, 1} iff at M, transition i+ has fired and j_ has not. 

In other words, if s is the binary state corresponding to marking M, then the holding of a 

at s means that s(j) = 0 for the case a= (j, 0), and s(j) = 1 for a= (j, 1). 

The above rules should provide an adequate recipe for determining the sets of firing 

sequences and their equivalent state graphs from STG/NCs. This is accomplished by 

determining at every marking the enabled transitions and by firing them to reach a new 

marking, and so on. However, in order to use them effectively, we need to enhance the 

analysis power for this type of STGs. Fortunately, a STG/NC can be converted into 

one containing only free-choice places by first unfolding it into an occurrence net and 

then folding it back into a free-choice net. Such procedures constitute the main steps of 

an expansion algorithm described in the next chapter. For free-choice nets, the results 

developed earlier in the thesis can be used directly. The presentation of this expansion 

algorithm necessitates the introduction of occurrence nets and processes generated from 

Petri nets, as will be discussed later. Below, we illustrate the use of STG/NCs with 

a design example of a FIFO controller, which uses a two-cycle handshake protocol for 

external communication. 

8.4 An example: a two-cycle FIFO controller 

We discuss an example of a STG specification of a two-cycle FIFO controller. The main 

objective of this example is to show the expressive power of this extended STG model 

and the type of asynchronous circuits that can be synthesized from it. To provide some 

intuition, an informal description of the expansion algorithm mentioned above will follow. 

The synthesis steps to produce the circuit realization will also be outlined. 

2From now on, we write A(z,y) for A((z,y}). 
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The block diagram of the FIFO module is shown in Fig. 8.5a, a timing diagram describ­

ing its operation in Fig. 8.5b. The FIFO module has three control links, each being a pair 

of request/acknowledge signals. At the input link, ~ makes a transition each time new 

input data is available; Ai makes a transition each time the data has been used and the 

module is ready to accept new data. At the output link, R 0 makes a transition whenever 

the module has stored data, and A0 makes a transition whenever the succeeding stage has 

accepted the data. Link {L, D} is connected to a flipflop which simulates the data storing 

operation. Signal L makes a transition to load data into the registers, signal D makes a 

transition when the loading operation is done. For every cycle of operation, the signal L 

serves as a load pulse to control the input gates of register cells. This FIFO cell operates 

in a pipelined fashion by coordinating transitions at the input and output links. In this 

STG specification of the FIFO module, transitions of signals at the input link {Ir, I 0 } can 

occur concurrently with those at the output link {Ori 0 0 }. 

The STG specification for this circuit is shown in Fig. 8.5c, in which the output arcs 

of places Pt and Pa are labeled with variables D and Ri, respectively, and there are no 

free-choice places. Formally, the labeling function>. is defined by 

>.(Pt,Ai-) = (D,0) and -X(Pt,Ai+) = (D,1) 

>.(Pa, D+) = (Ri, 1) and >.(Pa, D_) = (R;, 0). 

The set { D, Ri} can be used to form the control states which dictate the choice between 

alternate control sequences. 

In the initially marking Mo = {Ps, (Ai-,~+)}, transition Ri+ is enabled. The initial 

state of the system is s0 = 000000, where states a.re vectors of binary values of signals in 

(Ri,Ai,L,D,R0 ,A0 ). After the firing of~+ and subsequently, L+, place Pa is marked. At 

this marking, the condition (~, 1) holds (because~+ has just fired), thus enabling D+. 

After D+ has fired, L_ may fire concurrently with the sequence R0+, A0 +, marking places 

Pt and p5 • At this marking, Ai+ is enabled due to the holding of the condition (D, 1). Thus 

one can "execute" the net and expand it into one shown in Fig. 8.5d. In this figure, there 

are two instances of L+ denoted by Li and Li and two instances of L_, likewise denoted. 

The finite automaton derived from this new STG is given in Fig. 8.5e, from which it can be 

seen that there is no state at which both Ai+ and Ai- (similarly, D+ and D_) are enabled. 

Hence, by using arc labels to perform decisions, we have in effect "split" states which could 

have otherwise involved conflicts between transitions of non-input signals D and Ai. 
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Figure 8.5: (a) The block diagram of the two-cycle FIFO controller, (b) its timing di­
agram, (c) its STG/NC specification which can be expanded into a STG/IC (d). (e) 
The state graph of the STG/IC in ( d). (f) The control-state graph. (g) The final logic 
implementation, with L = DA0 "Hi + 1J.A0~. 
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It is useful to construct from Fig. 8.5d a state graph which consists only of control 

variables Ri, D. Such a state graph (Fig. 8.5f) is called a control-state graph (CSG) and 

is obtained by performing T' -contraction on the state graph in Fig. 8.5e, where T' = 
{Ri, D} x { +, - }. A CSG contains only control states and it allows one to tell which 

choice is made at free- and controlled-choice places in the STG. 

From the STG in Fig. 8.5d, the synthesis procedure described earlier can be applied 

directly to produce the logic equations and structure of the circuit. The only minor dif­

ference is that we need also to include the control variable D in the input set of Ai, and 

Ri in the input set of D. The input sets are given below, from which the structure of the 

logic circuit can be determined. 

!(Ai) - {L, D} 
I(L) - {Ri, A0 , D} 
I(D) - {L, Ri} 
I(Ro) {D}. 

The circuit diagram for the FIFO cell is shown in Fig .. 8.5g. There are two latches which 

pass the input D to output Q if the gating signal G is. active, and hold the output if G is 

inactive. Their logic functions a.re Q = DG + Q(lJ + D). The logic function for signal L 

is L = DAo1/.i + 1JAoRi. In a practical design, it is intended that the delay of the latch 

whose output is D be used to "time" the latching operation of the data registers for each 

stage of the FIFO. This circuit is completely speed-independent and has no problem with 

hazards, including the type called delay-hazards, under the following assumptions: 

• Logic gates have unbounded delays, wires have no delays. 

• The internal feedback delays of the latches a.re negligible compared to other loop 

delays. 

Remarks. In the STG/NC (Fig. 8.5c) non-input choices are specified using controlled­

choice places Pt and Pa· These illustrate an important underlying mechanism when one 

considers STGs as a high-level representation of state graphs, which is the following: 

• For a free-choice place, e.g. place Po with Po· = { x, y} ~ Tr in Fig. 8.3c, in the 

state graph, there exists a state in which both x and y are enabled (Fig. 8.3a). This 

represents an input choice. 
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• For a controlled-choice place, e.g. place Pt with Pt· = {Ai-, Ai+} in Fig. 8.5c, in 

the state graph (Fig. 8.5e ), there exists no states in which both Ai- and Ai+ are 

enabled. Thus a controlled-choice place indicates that its corresponding state in the 

state graph must be split so that each non-input choice is enabled in a different 

state. This is carried out by expanding the net to one shown in Fig. 8.5d, in which 

all non-input choices have been determined and removed by unfolding the original 

net. In the state graph, the states in which Ai- and Ai+ are enabled (say s and s', 

respectively) are guaranteed to be different because the value of signal D is chosen 

such that it is different in these states: s(D) = 0 and s'(D) = 1. Hence the use of 

arc labels ensures that split states have different binary representations. 



Chapter 9 

The Expansion Algorithm 

In this chapter, we describe a.~ algorithm for converting STGs with non-input choices 

(STG/NCs) into STGs with input choices only (STG/ICs). This algorithm involves un­

folding a. STG/NC into a. proceu and then folding the latter back into a. STG/IC-a. proce­

dure called ezpanaion. The underlying idea of the expansion algorithm can be understood 

by viewing STGs a.s high-level representations of state graphs. At the end of Cha.per 8, we 

have emphasized that for a free-choice place, there exists a state with input choice, and 

for a controlled choice place, there exists a. state with non-input choice. By manipulating 

the STGs, one can manage to split states with non-input choices in their corresponding 

state graphs. Specifically, this is carried out in two stages. In the first stage, all states 

with input and non-input choices are split; this is done by unfolding the STG /NC into a 

process. In the second sta.ge1 only states which previously involve input choices a.re merged 

back together; this corresponds to folding the process ha.ck into a STG /IC by merging only 

free-choice places. 

This chapter is organized as follows. In Section 1, we describe yet another type of 

primitive nets called occurrence neu, which a.re commonly used for describing the semantics 

of higher level nets. In particular, the "execution" of live-safe Petri nets basically unfolds 

them into occurrence nets called proceaaea. We will develop a number of useful properties 

for processes of nets and use them to derive some important results for processes of STGs. 

These results a.re required in the expansion algorithm described in Section 2. In this 

section, algorithms for net unfolding and folding of LSFC nets are given in order to motivate 

the development of the expansion algorithm which converts a STG/NC into a. STG/IC. 

153 
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Once a STG /IC is obtained, the synthesis procedure described in earlier chapters can be 

applied directly, as illustrated in an example at the end of Section 2. In Section 3, we 

study properties of STG/NCs, including liveness and the characterization of the temporal 

relation in these nets. Finally, Section 4 summarizes the main ideas and provides some 

remarks concerning our techniques. 

It is important to note that this extension to the theory of Petri nets is a. pa.rt of 

structure theory and hence, a.11 results a.re guaranteed to apply only to nets which satisfy 

the one-token SM restriction stated earlier. 

9.1 Occurrence nets and Processes of nets 

In this section, we introduce a. type of acyclic net structures called occurrence neta, being 

partial orders whose elements a.re condition.9 and even.ta, together with a binary relation 

specifying the precedence relationship between these elements. Occurrence nets can be 

used as semantics for Petri nets: by executing a Petri net, one can unfold it into an 

occurrence net, and each execution produces an occurrence net ca.lled a. proceu. 

As argued earlier, for our purpose of using nets for synthesis of control systems, se-: 

mantics based on firing sequences a.re more useful than those based on partial orders. Our 

chief motivation for presenting occurrence nets and processes is to provide a. technique for 

net unfolding, which is pa.rt of the expansion algorithm described later. 

9 .1.1 Occurrence nets 

Consider a. type of elementary net structures represented by N = (B,E,H), where 

• B is a. set of condition& (similar to places and depicted likewise), 

• Eis a set of evenu (similar to transitions and depicted likewise), 

• H ~ E x B U B x E -:/:- 0 is the flow relation, 

subject to the following restrictions: 

• E ~ dom( H) U range( H) (no isolated events) and 
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• Vbi,~ EB: (·b1 =·~)/\(bi·=~·)=> bi=~ (the net is pure). 

Then N is an occurrence net iff 

• Vb E B : lb . I ~ 1 /\ I . bl ~ 1. 

• Vx,y E BUE: xH+y => •(yH+x) where H+ denotes the transitive closure of H 

(H+ is irrefiexive). 

For N, we also define the sets of boundary elements as follows: 

0 N - {x EB U EI ·x = 0}, 

N° - {x EB U E IX· = 0}. 

From an occurrence net, one can define a partial order1 (X,H+) where X = BUE. 

Ordering and concurrency ( unordering) between elements in X can then be defined as 

follows. For every x, y E X, x and y are 

• ordered, denoted as {x,y} E Ii or x liy, iff (xH+y) V (yH+x); 

• concurrent, denoted as {x, y} Eco or x coy, iff •(xH+y) /\ •(yH+x). 

The notions of chai~, linea, antichai~ and cut& can be defined as follows. 

• l ~ X is a chain iff Vx, y El: x Ii y; a line is a maximal chain. 

• c ~ X is an antichain iff Vx, y E c : x coy; a cut is a maximal antichain. 

Also, b-cuta and e-cu.u denote cuts consisting only of elements in B and E, respectively. 

Note that for LSFC nets, we use Ii and co to denote ordering and concurrency relations; 

these are characterized directly on LSFC nets, in contrast to the above relations which are 

defined on occurrence nets. 

1 A partial order iB defined here as a set together with an irrefterive and transitive binary relation. 



156 CHAPTER 9. THE EXPANSION ALGORITHM 

9.1.2 Processes of nets 

Informally, a process of a Petri net is an occurrence net obtained by unfolding a Petri 

net into an acyclic structure involving only ordering and concurrency hut no conflicts. 

For example, given a Petri net which is a simple cycle Ptt1]>Jt2 ... PntnPt with Pt initially 

marked, by unfolding this net one obtains an occurrence net corresponding to a line: 

oto oto oto 1t1 1t1 J tI J 
Pt 1P2 2 · · ·Pn ~ 1P2 2 · · ·Pn nPt · • · 

where superscripts are used to denote instances of places or transitions. Even though nets 

can generate infinite processes, for all practical purposes, finite processes are adequate. 

Hence unless explicitly stated otherwise, we consider only finite processes. Formally, a 

process of a net is defined as follows [42]. 

Definition 9.1 Let E = (P, T, F, Mo) be a Petri net and N = (B, E, H) an occurrence 

net with 0 N, N° ~ B. Then PN = (B,E,H;</>) ia a proceaa o/E iff ef>: BUE-+ PUT ia 

a surjective function aatiafying the following condition& ( ef> ia extended to ef> : 'P( B U E) -+ 

'P(P UT) in the obviow way): 

(a) </>(B) ~PA </>(E) ~ T. 

(b) Ve EE, \ft ET: <f>(e) = t ::} <f>(·e) = ·t A <f>(e·) = t·. 

(c) </>( 0 N) ~ {p E PI Mo(P) = 1}. 

(d) \/xi,x2 EB U E: <f>(x1) = </>(x2) # x 1 lix2. 

Condition (a) states that the mapping is type preserving: conditions map to places, 

events map to transitions. Condition (b) further states that if an event e maps to a 

transition t, then e's input (output) conditions map to t's input (output) places. Condition 

( c) requires that 0 N map to a subset of initially marked places. Finally, condition ( d) states 

that two instances in the occurrence net map to the same element in the Petri net iff they 

are ordered; this is an important point to which we will return shortly. 

Usually, we let E ~ T x { 0, 1, 2, ... } , so that events in E correspond to instances of 

transitions in T. For t E T, its instances in E are denoted by t0
, t1, t2 , ••• and hence 
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Figure 9.1: {a) A LS marked graph and (b) one of its processes. (c) The finite automata 
representation derived from the trace set of (b). 
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<P({t0 ,t1,t2, ... }) = {t}. Similarly, we let B ~ P x {0,1,2, ... },so that conditions corre­

sponding to instances of a place pa.re denoted by p0 , p1 , p2 ... and hence <P( {p0 , p1 , p2, ... } ) = 
{p}. Processes always start a.nd end with b-cuts: 0 N, N° ~ B, as shown in Fig. 9.1 b. 

The notion of process is closely connected to the execution of live-safe mark graphs. 

In fa.ct, a LS marked graph can be directly unfolded into a process without the omission 

of any transition during unfolding. Fig. 9.la is a. LS marked graph which can be unfolded 

into the process in Fig. 9.lb. This process possesses a. certain periodicity: it repeats the 

same behavior whenever it reaches a. b-cut which maps to the initially marked places in 

Mo. 

9.1.3 A few results for processes of LSFC nets 

Most of the results developed earlier for LS marked graphs can be applied to processes 

with some slight modification. As remarked at the beginning of this section, a. live-safe 

Petri net which is a. simple cycle unfolds into a. line, as defined earlier. For LSFC nets, we 

define two elements of a net to be ordered iff they belong to a simple cycle. This means 

that in a process generated from a LSFC net, a.11 ordered elements belong to the same line. 

Thus for LSFC nets, the a.hove fact generalizes as follows. 

Lemma 9.2 Let :E = (P, T, F, M0 } be a LSFC net satisfying the one-token Sm restriction 

and PN = (B,E,H; <P} a process of E. Then for every x,y E PUT: 

(a) If { x, y} E Ii U cf then there exists a line in P N to which all instances of x and y, 

xi, yi EB U E, belong. 

(b) If {x,y} E co then there exists no line in PN to which a.11 instances of x and y, 

xi, yi EB U E, belong. 

Sketch of proof. For part (a), if { x, y} E Ii then this is a. formal statement of the fa.ct that 

a simple cycle unfolds into a line. If { x, y} E cf then x, y must belong to a SM-component 

which is live-safe of E. This SM-component must also unfold into a line in the process PN 

as at any marking, exactly one of its places can be marked and no more than one of its 

transitions is enabled. 
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For part (b), if {x,y} Eco then there exists no simple cycle in E to which both x,y 

belong, and there exists a MG-component containing both. It is simple to verify that 

in this case, when the MG-component is unfolded, there cannot be a line containing all 

instances of x and y. I 

From this lemma, we can further deduce that since every x E PUT belongs to the 

same simple cycle with itself, there exists a line in P N to which all instances of x belong. 

Another consequence of the above lemma is that a p-cut in a net corresponds to ab-cut in 

its process. Since a p-cut represents a set of places which can be marked concurrently and 

hence corresponds to a marking of a net, ab-cut is a record of the holding of a marking 

of the net. Similarly, there is a correspondence between t-cuts and e-cuts; the former 

representing a set of concurrent transitions, the latter a set of concurrent events. 

Chapter 3 has provided a semantics ofLSFC nets based on firing sequences. For the case 

of LS marked graphs, their sets of firing sequences can be obtained by weaving the sequences 

derived from a set of simple cycles which cover the nets. This result can be adapted 

directly to occurrence nets to allow the determination of their corresponding trace sets and 

equivalent automata. For example, the trace set of the process in Fig. 9.lb can be obtained 

by first choosing a set of linea which cover the structure, deriving their corresponding 

traces and weaving them. The equivalent automata representation for Fig. 9.lb is given 

in Fig. 9.lc. This idea. can be formalized as follows. In an occurrence net N = (B, E, H), 

a set of lines L = {li, 12 , ••• , In} covera net N iff V(x, y) E H, (x, y) belongs to some line 

Ii in N. For a line Ii= bie1b2e2 ••• embm,2 its FA (denoted as FAi) can easily obtained by 

considering condition& as atatea and event& as tranaitiona between states. Then similar to 

the construction algorithm in Chapter 3, the equivalent FA of a. process N (denoted as 

FAN) is given by 

9.1.4 Processes of STGs 

Instead of considering processes generated from LSFC nets, we consider those generated 

from STGs. The main difference is that a process PN = (B,E,H;</>) generated from 

an STG EJ = (P, T, F, Mo) contains events which map to complementary pairs of signal 

2Note that in a process, every line starts and ends with a condition in B. 
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transitions: Vt E T 3ei, e; E E such that ¢(ei) = t and ¢(e;) = t. As mentioned earlier, 

ab-cut in a process corresponds to a marking of a net. For processes of STGs, such ab­

cut has a corresponding binary representation s. Similar to the state-assignment function 

defined in Section 4.2, let a: 'P(B)-+ S be a mapping from b-cuts to binary states. This 

mapping provides a mechanism for establishing the correspondence between b-cuts in a 

process and binary states in the state graph. This mechanism is required for the following 

two purposes: 

(a) In unfolding a STG/NC into a process, we may reach a b-cut which contains a 

controlled-choice place. At that point, we need to evaluate which control variable 

holds in order to proceed with unfolding the net. This mechanism allows one to 

determine the states of control variables from the process generated thus far. 

(b) In folding a process into a net, we "merge" b-cuts in the process which correspond 

to the same· binary state. Again, this mechanism permits. one to determine whether 

two b-cuts have the same binary representation. 

Below we consider these two cases. Due to the similarity between processes of nets and 

marked graphs, most of the results developed earlier for marked graphs and STGs can be 

applied to processes of STGs with only a slight modification. In the following, we state 

most of the results without proof and only appeal to their close relation with results for 

STGs. 

The conditions on a process so that its equivalent FA has a consistent state assignment 

( c.s.a. for short) a.re similar to those for marked graphs. For brevity, in the following, we 

refer to a process or a net satisfying the conditions so that its equivalent FA has a c.s.a.. 

simply as a process (or net) with a c.s.a. 

Fort ET, let E(t) def {e EE I ¢>(e) = t}, the set of events which map to transition t. 

Then the process P N has a c.s.a. iff Vt E T, there exists a line l in P N such that 

(a) every element in E(t) U E(t) belongs to l, and 

(b) elements in E(t) and E(t) alternate in l, i.e., 

either FS(l) r E(t) u E(t) = t0t°t1Pt2P ... , 
or FS(l) r E(t) U E(t) = t°t0Pt1Pt2 •••• 
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It has been shown in Theorem 4.8 that a STG has a c.s.a. iff each of its MG-components 

has a c.s.a. In such a STG, t and ta.re ordered for any pair of transitions t, i. Thus when 

it is unfolded, all events corresponding to t and t must belong to the same line and they 

must alternate. It follows that if a STG has a c.s.a. then every process generated from it 

has a c.s.a.. Furthermore, according to Theorem 5.2, a. STG is live only if it has a c.s.a. 

Hence, if a STG is live then ea.ch of its processes has a. c.s.a.. 

For distinct b-cuts Bi,B; in PN, we also define the interval from Bi to B; (i < j) as 

[Bi, B;] def {x EB U EI x belongs to a chain from Bi to B;}. 

Let Si and s; be binary states corresponding to Bi and B;, respectively, i.e., Si = a(Bi) 

ands;= a(B;). Then in the equivalent FA of the process PN, every path u from Si to s; 

contains all events in [Bi, B;] and therefore lul = IE n [Bi, B;]I. 

An interval [Bi, B;] forms a complementary set iff 

Vt ET: l[Bi, B;] n E(t)I = l[Bi, B;] n E(l)I. 

The following lemma states that b-cuts Bi and B; have the same binary representations 

iff the interval [Bi, B;] forms a complementary set. 

Lemma 9.3 Let EJ be a live STG and P N a process generated from it, as defined above. 

Then for every distinct b-cuts Bi, B; in P N : 

a(Bi) = a(B;) # [Bi, B;] forms a complementary set. 

Proof If EJ is live, P N must have a c.s.a. .. Let Si = a(Bi) and s; = a(B;). lf-[Bi, B;] 

forms a complementary set then every path u : si[u)s; in the state graph of P N must 

contain (i) the same number of events e and e, where </>(e) = t and </>(e) = t for some t ET 
and (ii) they must alternate. In this case, it is simple to verify that Si= s;. I 

Let EJ be a live STG and P N a process generated from EJ. Let B 0 denote 0 N, then 

the initial state s0 and B 0 are related by s0 = a(B0 ). The following lemma shows how to 

determine the binary state corresponding to any b-cut B; in PN. 
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Bi= BO 

Bi Bj 

Figure 9.2: (a) At B;, s;(m) = 1. (b) At B;, s;(m) = 0. (c) At B;, s;(m) = s0(m). 

Lemma 9.4 Let EJ = (P, T, F, M0} be a live STG defined on the signal set J and P N = 
(B, E, H; </>} a process of EJ. Then for every signal m E J a.nd for every b-cut B; in P N, 

the value of signal m at state s; = o:(B;) ia given by 

(a) s;(m) = 1 if there exists B, -f:. B; (i < j) such that m+ E [B1, B;] /\ m_ ¢ [B1, B;]. 

(b) s ;( m) = 0 if there exists B, -f:. B; ( i < j) such that m_ E [B,, B;] /\ m+ ¢ [Bi, B;]. · 

(c) s;(m) = s0(m) otherwise, where s0 = o:(B0 ), Bo= 0 N. 

The proof is quite easy; it hinges on the fact that in the process PN of a live STG, for 

every transition t ET the subsets of events E(t) and E(l) belong to a line, and furthermore 

P N has a consistent state assignment. Fig. 9.2 illustrates these cases. Note that in case 

(c), B, =Bo and [B0,B;] contains neither m+ norm_. This means that signal m has not 

changed since the initial state s0 • 
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9.2 The expansion algorithm for STG/NCs 

The expansion of STG/NCs consist of two algorithms: an unfolding and a folding one. 

First, we develop such a pair of algorithms for FC net&; these algorithms are then modified 

into the expan&ion algorithm for STG/NCs described subsequently. 

9.2.1 Unfolding and folding of free-choice nets 

Processes of live-safe Petri nets can be generated by simply unfolding the nets, resolving 

conflicts along the way. For free-choice nets, unfolding is a simple procedure which is 

intimately related to the MG-reduction algorithm due to Ha.ck, described in Chapters 2 

and 3. As before, for a Petri net (P, T, F), define an allocation function A: P-+ T which 

allocates an output transition for every place, i.e. 'tip E P: A(p) E p·. In a free-choice net, 

if a place p has more than one output transition then any one of them can be allocated 

arbitrarily. 

The following net unfolding algorithm unfolds the net iteratively and in each iteration, 

A is determined only for a p-cut corresponding to the last set of conditions of the process 

generated thus far. (In contrast, in the MG-reduction algorithm, A is determined for all 

places in P at once.) In the following, Bi is used to denote a set of condition& generated 

during a step of unfolding, and it is not necessarily ab-cut. 

Algorithm 9.5 (Net Unfolding) Let 'E = {P, T, F, Mo) be a free-choice net and P N = 
(B, E, H; ¢) a proceJ& of 'E. Then P N i& con&trocted by iteratively unfolding 'E a& follow&. 

(a) Initialization: Let Po ~ {p E P I Mo(P) = 1} Juch that Po i& a p-cut. 

Let i = 0. 

(b) One Jtep of unfolding conJiJtJ of the following. 

bl. Define Bi Juch that </>(Bi)= Pi and IBil = IPil· 
b2. Pick the allocation function A(Pi) and define 

n = {t e A(Pi) 1 ('tip E ·t)(3b E u B;): <t>(b) = pA b· = 0}. 
O<"<i -'-
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bS. Define Ei JJtt.ch that </>(Ei) = n and IEil = ITil· 

b4. Define U Hi~ (Uo:::;;:::;i B;) x Ei JJtt.ck that 

(Vb E LJ B; I b· = 0)(\:/e E Ei): {</>(b), c/>(e)) E F ¢> (b, e) E U Hi. 
O<"<i -'-

b5. Let Pi+l =(Ti)·. Define Bi+l JJtt.ck that </>(Bi+i) = Pi+l and IBi+il = IPi+1I· 

b6. Define DHi ~ Ei x Bi+i JJtt.ch that {x, y) E DHi <=> {cf>(x ), </>(y)) E F. 

b7. Let Hi = U Hi U DHi. 

( c) Let i = i + 1. Proce3s P N can be further generated by going back to step ( b), otherwise, 

it is given by 

B = LJ B;, E = LJ E;, H = LJ H;. 
O<"<i -'- o:::;j<i 

It is important to note that step b2 is most crucial in the algorithm, and means that 

for each place p E Pi : 

• If IP· I > 1 (e.g. p· = {ti, t2}) then A(p) is chosen nondetennistically (e.g. A(p) = t 2). 

Since pis a free-choice place, t2 has no other input places and it can be included in 

Ti. 

• If IP· I = 1 (e.g. p· = { t}) then A(p) = t. In this case, however, t may have other 

input places (i.e., ·t ~ 1); tis included inn only if all conditionJJ corresponding to ·t 
have already occurred in the process generated thus far. 

An example of net-unfolding applied to a LSFC net (Fig. 9.3a) is shown in Fig. 9.3b. 

Notice that only some of B/s are b-cuts, some of E/s are e-cuts. 

Folding of a process of a LSFC net is rather simple and uninteresting; nevertheless, we 

describe it here to motivate the folding operation-similar in spirit-required for STGs 

with non-input choices. 

Let E be a LSFC net and P N a process of E, obtained by applying the above unfolding 

algorithm. In order for P N to reproduce the original net E when folded, elements of P N 

must map to the set of all elements of E. In other words, the smallest process P N which 

can be folded back into !.: must satisfy 
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(a) 

P4 
t6 

(b) 

165 

p6 B6 

B7 

Figure 9.3: A demonstration of the net unfolding algorithm, as applied to a LSFC net (a) 
to produce a process (b ). 
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(i) </>( 0 N) = </>(N°) ~ {p I Mo(P) = 1} and 

(ii) BUE is the minim4l set such that </>(BUE)= PUT. 

Such a process will be called complete. The following net folding algorithm is applied to 

complete processes of LSFC nets. 

Algorithm 9.6 (Net folding) Let E = (P, T, F, Mo) be a LSFC net and P N = (B, E, H; </>} 

a complete process of E. Let N = (B, E, H) be the associated occurrence net. Then 

p - </>(B), 

T - </>(E), 

F - { (<f>(x),</>(y)} I (x,y} EH}, 

Mo - </>(o N). 

It is a simple matter to check that by using the above definition, the process in Fig. 9.3b 

can indeed be folded back to the net in Fig. 9.3a. The reason why the folding of such a 

finite process reproduces the original LSFC net should be intuitively clear: when folded 

back, every place will have the same input and output transitions again. Likewise, every 

transition will have the same input and output places again; however, this is trivially true 

because by definition, a. process preserves the input and output conditions of all events. 

This folding procedure reproduces the original net provided that the process contains at 

least one instance of every element of the original net. 

We are now ready to discuss the expansion algorithm for producing a STG/IC from a. 

STG/NC. 

9.2.2 The Expansion Algorithm 

Similar to the unfolding and folding algorithms developed for LSFC nets above, the ex­

pansion of STG/NCs also consists of two stages corresponding to unfolding and folding. 

First, we present an unfolding algorithm for STGs with input choices. This algorithm is 

identical to the one for free-choice nets given above (Algorithm 9.5), with the exception 

of step b2. In the previous unfolding algorithm, at every unfolding step, the allocation 
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function A(Pi) is determined by randomly picking an output transition for every place 

p E Pi with more than one output transitions. For STG/NCs, a process can be generated 

in a similar manner; however, when a place p E Pi with labeled output arcs is encountered, 

an output transition is chosen depending on which arc label holds-the choice of which 

output transitions to pick is no longer free but dependent on a condition which can be 

determined from the process generated thus far. Below we will only describe the first part 

of step b2 for the new unfolding algorithm; this part involves the determination of the 

allocation function. 

Algorithm 9.7 (Unfolding of STG/NC) Fir&t part of &tep b2: Choo&e the allocation 

function A(Pi) a& follow&. 

b2.1 If 3p E Pi &uch that p ha& no labeled ou.tpu.t arc& then a tran&ition t E p· i& picked 

randomly. 

b2.2 Otherwi&e, if 3p E l'i &u.ch that p· = {ti, t2, ... , tn} and .A(p, tm) = am, 1 S m S n, 

then A(p) = tm only if am hold& at B,. 

Important remarks. Case b2.1 is the same as one in the previous algorithm. For the 

new case b2.2, we have the following remarks. 

• In order for the choice to be deterministic at B,, it is required that exactly one am 

holds at B,. Thus in the STG specification, the set { a 1 , a2 , ••• , an} must be chosen 

such that every time place p is marked, only one condition in this set can become 

true. On the other hand, if it is possible for more than one of them, say ai and a;, 

to hold at Bi then both ti and t; are enabled. This situation will lead to problems 

as discussed in Chapter 8, concerning the specification of non-input choices. 

The above requirement ensures that every transition in p· is enabled in a marking 

with a distinct binary representation, as illustrated by the example at the end of 

Chapter 8. 

• As mentioned at the beginning of Chapter 8, for STG /NC, we impose the restriction 

that 

Vp E P, Vt ET: if .A(p, t) =am then {p, m.} ¢co, where am E {(m, 0), {m, 1)}. 

That i8, p cannot be concurrent with any tramition of &ignal m. 
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If this restriction is satisfied, then in the process P N of the STG, all instances of 

p, m+ and m_ must belong to the same line. Thus by definition, in P N, any cut 

containing an instance of p cannot contain instances of m+ or m_. Therefore, if 

am holds at a b-cut B, such that p E </>(Bi), then am holds at any other b-cut Bi 
such that p E </>(Bi n B,). This is the reason why in step b2 above, it is sufficient to 

consider the holding of am at only one b-cut (instead of all 'b-cuts) containing p. 

Conversely, without this restriction, then to determine whether am holds at p, one 

needs to check every b-cut Bi such that p E </>(Bin Bi)· But in general, this is 

impossible because the process generated thus far may not contain all such b-cut 

Bi. Therefore, this restriction is of fundamental importance; without it a STG/NC 

cannot be unfolded into a process. 

By using the above algorithm, the STG EJ = {P, T, F, M 0 ; .X) can be iteratively unfolded 

into a process P N = {B, E, H; </>). When the algorithm is stopped, i = n for some positive 

integer n and 

B = LJ B;, E = LJ E;, H = LJ H;. 
0$j<n 

Similar to the algorithms for free-choice nets, in order for the process generated to 

exhibit all possible behavior of the original STG when folded, we require that it be complete 

and has a consistent state assignment. That is, process P N must satisfy the following 

conditions which together constitute the completenea& of procea&ea of STGs. 

Definition 9.8 (Complete Process of a STG) Let EJ = {P, T, F, M 0 ; .X) be a STG/NC 

and P N = {B, E, H; </>) a proceu of EJ. Let N = {B, E,H) be it& aa&ociated occurrence 

net; Bo = 0 N and Bn = N°. Then P N ia a complete proceaa of EJ if tke following 

condition& are satisfied: 

(a) </>(Bo)= </>(Bn) ~ {p E PI Mo(p) = l}. 

(b) BUE i& a minimal aet suck that </>(BUE)= PUT. 

( c) P N ha.. a corui&tent atate aaaignment and [B0 , Bn] form& a complementary set. 

Note that (a) and ( b) are the requirements for processes of free-choice nets to be 

complete, as discussed earlier. The last condition (c) implies that B0 and Bn have the 

same binary representation, i.e., o:(Bo) = o:(Bn)· 
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The folding procedure consists of two steps. First, a complete process is folded by 

merging b-cuts B0 and Bn to produce a strongly connected net. Then, free-choice places 

are merged, using the recur.aive merge function defined later. Controlled-choice places are 

not merged. The result is a free-choice net which behaves exactly like the original STG/NC; 

however, this new net can be synthesized using the techniques developed earlier. 

Algorithm 9.9 (Folding of STG/NC) Let EJ = (P, T, F, M0 ; >-.) be a STG/NC and 

P N = (B, E, H; </>ran a complete proce.a.a generated from it wing the unfolding algorithm 

de.acribed above. Then P N can be folded back into a net EJ wing the following procedure. 

(a) Merge Bo and Bn : Vb E B0 , Vb' E Bn .auch that </>( b) = </>( b') : replace b' with b in 

B, E, H and</>. 

(b) Merge free-choice place.a: For all b, b' EB .auch that <f>(b) = </>(b') = p E P and pi.a a 

free-choice place, 

if there exiat b-cut.a Bi, B;, i < j, such that b E Bi, b' E Bi and [Bi, Bi] forms a 

complementary set 

then merge(b, b'). 

( c) The expanded net EJ = (P', T', F', M~) i.a given by 

P'=B 
T'=E 
F'=H 
M~ =Bo. 

( </>( P') = P) 
( </>( T') = T) 

Given the process PN = (B,E,H;</>), the merge function recursively merges elements 

of the process together and update all components B, E, H and</> of PN. Input to the 

merge function is a pair of elements (x1 , x2 ) of the same type (conditions or events), they 

are merged into a single element named x1 . 

Function merge( xi, x 2 ) 

Replace all x 2 with x 1 in B, E, H and</>; 

For every Yb y2 such that </>(Y1) = <l>(Y2) A (Y1 · = Y2 · V · Y1 = ·Y2) : 

merge(y17 y2 ) 



170 CHAPTER 9. THE EXPANSION ALGORITHM 

Remarks. The above folding algorithm is the same as one for LSFC nets, except that 

only conditions corresponding to free-choice places are merged together, whereas those 

corresponding to controlled-choice places are not. This algorithm accomplishes the last 

stage of the expansion algorithm. The essential idea of the expansion algorithm is to split 

states with non-input choices. This is carried out in two stages: splitting all states with 

input and non-input choices and then merging states with input choices. The first stage 

corresponds to unfolding the STG/NC into a process; the second folding the process back 

into a STG/IC by merging only free-choice places. 

In this algorithm, conditions in a process a.re merged only if (i) they map to the same 

free-choice place in the net and (ii) the b-cuts containing them must map to the same binary 

state. Requirement (ii) is unique to processes of STGs and it allows one to determine when 

conditions can be merged together. Specifically, this requirement appears in the following 

steps of the algorithm. 

• In step (a), if PN has a c.s.a. then the binary states corresponding to the b-cuts 

Bo and Bn must be identical: a(Bo) = a(Bn)· This implies that the state graph is 

strongly connected (and is therefore live). 

• In step (b), if the b-cuts B, and B; are such that [B;, B;] forms a complementary set 

and PN has a c.s.a., then they have the same binary representation: a(Bi) = a(B;). 

Hence in the state graph representation of P N, every event enabled in Bi will also 

be enabled in B; and vice versa-this is exactly a free-choice situation. Thus, even 

though Bi and B; appear to be separate b-cuts in PN, due to the fact that they 

have the same binary representation, they actually map to a p-cu.t containing the 

same free-choice place. It is important to realize that only by considering the binary 

representation of b-cuts, one can guarantee that they can be merged into free-choice 

places. If two b-cuts map to the same free-choice place but they do not have the 

same binary representation then they cannot be merged. An example illustrating 

these rules will be described next. 

9.2.3 An example 

In this section, we present another example of a control circuit with data-dependent oper­

ation which is used together with an arbiter to control access to shared resources. This is 
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called a Resource Locking Module (RLM) which communicates externally using the reset­

signaling protocol. The reason for presenting this example is that its STG specification 

contains both free-choices and controlled choices, thus allowing a demonstration of the 

expansion algorithm just described. In the previous example of the two-cycle FIFO con­

troller, its STG specification contains only controlled-choices. Hence, when the expansion 

algorithm was applied, no merging was needed; the net W88 unfolded into a process and 

then simply folded back at b-cuts corresponding to initially marked places. 

Fig. 9.4a shows the block diagram of a circuit in which there are two RLMs connected 

to a two-input arbiter. Each RLM has a set link {Sr, Sa}, a clear link {Cr, Ca} connected 

to the external environment, and a lock link {Lr, La} connected to one port of the arbiter. 

When a set-request arrives at Sr, the RLM forwards it to Lri awaits for acknowledgement 

on La and passes it back to Sa. This signifies that the arbiter has been locked. When the 

set-request Sr is dropped, the module immediately drops Sa in response, leaving Lr high 

to lock up the arbiter. From here on, any set-request will be acknowledged immediately 

through Sa. In order to unlock the arbiter, instead of a set-request, a clear-request Cr is 

sent to the RLM. This will reset Lr to low, which in turns will cause La to drop. The 

module responds by raising Ca, and when Cr is dropped, it will drop Ca in return, thus 

completing a clear cycle. A subtle timing requirement for the arbiter is that the input 

request at its other port is disallowed until signal La has gone low at this port. Such an 

aribter design is described in [10] and contains some subtle difference to that suggested by 

Seitz and also Plummer [40]. 

The STG specifying the operation of the RLM is shown in Fig. 9.4c; the logic imple­

mentation derived from the STG is shown in Fig. 9.4b. It can be easily verified that this 

circuit works according to the specification. In this STG, Po is a free-choice place; PI is 

controlled-choice place with a.re labels (La, 0) and (La, l}. The variables controlling data­

dependent operations are Sr, Cr and La. The control state graph is shown in Fig. 9.4g, 

where states are values of the vector (Sri Cr, La)· In the initial state s0 of the system, the 

values of all signals in (Sr, Sa, Cr, Ca, Lr, La) are 0: so = 000000. 

This STG can be unfolded into a complete process which is a line because the system is 

totally sequential. As indicated in Fig. 9.4d, this line has four instances of place Po, denoted 

by pg, p~, ¥o and p~. For clarity, only these instances of place p0 are drawn explicitly, other 

places are omitted from the figure. The line segment between pg and p~ corresponds to 
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Figure 9.4: (a) The block diagram of the RLM and its (b) logic implementation. Its STG 
specification (c) is unfolded into a complete process (d), then folded back into the STG in 
(e). (f) The state graph of the STG in (e). (g) The control state graph. 



9.3. PROPERTIES OF STG/NCS 173 

traversing the left branch of the net, with {La, O} being true. The segment between p~ and 

p~ corresponds to the left branch of the net, but with (La, 1) being true. The last segment 

between p~ and p~ corresponds to the right branch of the net. 

This process contains instances of every element in the net and hence satisfies the 

completeness conditions described earlier. It is folded to produce the STG/IC shown in 

Fig. 9.4e as follows. 

• Conditions pg and p~ are merged together to form a strongly connected net. 

• Conditions p~ and Yo are merged together because [p~, Yo] forms a complementary set. 

Then, to complete the folding, events input to p~ and Yo corresponding to transitions 

Sa-, Sr- and Sa+ are also merged together. 

Fig. 9.4f is the state graph of the STG/IC in Fig. 9.4e. This state graph can be 

decomposed to produce smaller state graphs for non-input signals {Sa, Ca, Lr}· From the 

STG/NC in Fig. 9.4c, we find 

I(Sa)={La, Sr} 
I(Ca)={La,Cr} 
I(Lr)={La, Sr, Cr}. 

The logic implementation can be carried out by first deriving the contracted state graph for 

every non-input signal directly from the state graph given in Fig. 9.4f and then determining 

its logic equation. The final implementation is given in Fig. 9.4f; its derivation can be easily 

verified. 

9.3 Properties of STG/NCs 

In this section, we examine a number of relevant properties of STGs with non-input 

choices. One of the important issues to be addressed is the behavioral equivalence be­

tween a STG/NC and its expanded STG/IC; this will be managed by showing that the 

two STGs are equivalent iff they unfold into the same complete process. Another issue is 

the liveness property of STG/NCs; by examining this property we will be able to provide 

some insights into the construction of STG/NCs from initial informal specifications. One 
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last issue is how to characterize the temporal relation in such nets, i.e. how to determine 

whether two transitions are ordered, concurrent or in conflict using previous techniques. 

It will be seen that the key concept used is that of complete processes. As described 

earlier, even though a complete process is a.cyclic and contains only a typical record of a 

net's execution, it still can reproduce the total behavior of a net in the form of a state graph. 

Such a state graph is constructed by merging markings with the same state assignment. 

Due to this fact, complete processes of STGs contain more information than conventional 

processes of FC nets. 

In the rest of this section, we will consider a STG/NC EJ = (P, T, F, M 0 ; >.} which 

can be unfolded into a complete process P N = ( B, E, H; <f>}. This complete process can 

then be folded to produce a expanded net EJ = (P', T', F', Mt,}. Let Nr:. = (P, T, F) and 

Nr,1 = (P', T', F') denote the underlying net structures of EJ and EJ, respectively. Then 

by definition, both Nr, and Nr,1 are free-choice nets. 

Behavioral equivalence between STG /NC and STG /IC 

Below, we sketch the reasoning for establishing the behavioral equivalence between a 

STG/NC and its expanded STG/IC: when EJ is successfully expanded into EJ, their 

behaviors are equivalent. Two nets are behaviorally equivalent iff' they have the same trace 

set or equivalently, the same finite automaton. 

The key point is to show that if two nets. a.re behaviorally equivalent, they must unfold 

into the same complete process. Suppose that 

• EJ can be unfolded into a complete process P N and the latter folded back into the 

expanded net Ej. 

• Ej can be unfolded into another complete process P N'. 

Then it is easy to see that it is possible to choose a transition sequence of control signals 

such that the unfolding of Nr,1 and Nr, yield the same process, i.e. P N and P N' are 

identical; such a control sequence is recorded in the control state graph (CSG) described 

earlier. Hence, we can conclude that if EJ can be expanded into a live-safe net Ej then 

they are behaviorally equivalent. 
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Liveness of STG /NCs 

Recall that earlier, we defined liveness of STGs in terms of their state graphs: a STG is 

live iff its state graph is strongly connected. For STG/NCs, the same definition can be 

employed. Since the state graph of a STG/NC is obtained through its expanded net, a 

STG /NC is live iff its expanded net is live. The expansion algorithm successfully produces 

a live expanded net if the original STG /NC can be rmfolded into a complete process. Thus, 

we have the following result. 

Lemma 9.10 A STG/NC is live iff it can be unfolded into a complete process. 

Hence in order to verify that a STG/NC EJ is live, one may need to apply the net­

unfolding algorithm and check if the rmfolded process is complete. If so, by folding the 

process, a live expanded net is then obtained. However, often times it is more convenient 

to use a certain necessary liveness condition directly on a STG/NC before unfolding. If 

this necessary condition is not satisfied by the STG/NC then it cannot be unfolded into a 

complete process. We study such a condition through an example below. 

Consider a FC net as shown in Fig. 9.5a. This net is safe but not live because only 

two MG-components resulting from MG-reduction are live-safe, as indicated in Fig. 9.5c. 

Let's consider a firing sequence which leads to deadlock in Fig. 9.5a: in marking {pi,PJ}, 

transitions ti, t2 , t3 and t4 are all enabled, if ti and t 4 are chosen (nondeterministically) 

to fire, then P3 and P6 are marked. At this point the net's operation halts as there is 

no token to enable ts and t 6 • Suppose now that instead of allowing the choices to be 

nondeterministic, we require that whenever places {.Pi,PJ} are marked, the pair {ti, t3} be 

chosen to fire together, and similarly { t 2 , t 4} together. In this case, the net's operation 

is live and safe. This is one basic motivation behind the use of controlled choices. The 

STG/NC corresponding to this case is shown in Fig. 9.5b: output arcs of places {.Pi,PJ} are 

labeled with (a, O} and (a, 1}; in addition, transitions t5 and t 6 are interpreted as ts =a_ 
and t 6 =a+. 

The following lemma states a necessary condition on the underlying net of a STG /NC 

in order for it to be live-safe. 
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(e) 

Figure 9.5: (a) A non-live FC net and (b) a STG/NC with the same underlying net. 
( c) Two live-safe MG-components. ( d) Two live-safe SM-components, one of which is 
expanded into a simple cycle ( e ). 

Lemma 9.11 Let EJ be a STG/NC and NE be it& underlying free-choice net. Then 

STG/NC i.s live-.safe only if there ezi.st& a .set of MG-component& which cover Nr,. 

In a similar fashion, we see that only two SM-components resulting from SM-reduction 

on Fig. 9.5b are live-safe; they are depicted in Fig. 9.5d. Notice that each of these SM­

components is itself a controlled-choice net. These SM-components can be expanded into 

simple cycles; Fig. 9.5e illustrates the case for the SM-component on the left of the figure. 

Let us consider a necessary condition for this controlled-choice net to be live. Obviously, 

it is live if its expansion yields a simple cycle as just mentioned. This condition in turns 

requires that a+ not be ordered with t1 , and a_ not ordered with t 2• For suppose that 

ts = a+ in Fig. 9.5d, then a+ is ordered with t1 and the simple cycle PotoPi t 11'3t5Po (where 

ts = a+) will contain an arc labeled with (a, 1}. In which case, the control variable (a, 1) 



9.3. PROPERTIES OF STG/NCS 177 

will always be true, thus restricting the net's operation in this simple cycle and the other 

branch of the net can never be activated, resulting in non-liveness. Hence, for every 

controlled-choice place p and transition t such that ..X(p, t) = (a, 1) (or (a, 0) ), the above 

condition requires that there exist no simple cycle containing t and a+ (or a_). 

In a STG/NC, we require that for every place p and transition t E p· such that p 

is a controlled-choice place and ..X(p, t) E {{a, O}, (a, 1} }, p not be concurrent with any 

transition in {a+, a_}. Also, since t is not allowed to belong to the same simple cycle with 

{a+, a_}, it follows that t and a+ must be in conflict in the underlying free-choice net (of 

the STG/NC). 

Construction of STG /NCs 

So far in this chapter, we have discussed the expansion algorithm for converting a STG/NC 

into an expanded net which corresponds to a LSFC net. That discussion assumes that a 

"correct" STG/NC is given. However, the construction of a STG/NC specification is 

generally not an easy task, because such a specification may involve complex interactions 

between choices and concurrency. 

The above illustrative examples provide us with some insights for the construction 

of STG/NCs. As evidenced throughout this chapter, one of the key concepts is that of 

a complete process. Besides specifying all possible concurrent behavior of a system, it 

also contains extra information allowing one to reconstruct the free-choices. Hence in the 

following procedure for STG/NC construction, we start with a process. 

(a) Build a complete process: Construct an initial process according the concurrent be­

havior of a system. This process must contain segments representing possible choices 

of actions. The process can then be made complete, possibly by adding extra internal 

transitions. 

(b) Select control variables: The complete process can be folded into a free-choice net, 

and arc labels corresponding to control choices can be added to obtain a STG/NC. 

( c) Check for live-safeness: The necessary conditions for live-safeness for such a STG /NC 

can be verified as follows. The STG/NC is live-safe only if (i) its underlying net is 

free-choice, (ii) there exists a set of live-safe MG-components which cover it, and 
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(iii) control variables are chosen such that every MG-component in this set can be 

activated at some marking reachable from the initial marking. 

Temporal Relation in STG/NC 

Previously, we have provided a syntactic characterization of the temporal relation for LSFC 

nets. However, due to the presence of controlled choices, this characterization does not 

apply directly to STG/NCs. As discussed earlier, the introduction of controlled choices 

into a STG imposes further restrictions on the set of firing sequences of the net. We will 

show that such restrictions only affect the sequential but not the non-sequential behavior 

of the net, and concurrency is preserved. 

Let :EJ be a STG/NC and :EJ. be its expanded net; their underlying net structures are 

denoted by Nr. and Nr,1. Since all arc labels are not considered in Nr,, both Nr, and Nr,1 

are FC nets. Let tr = Ii U co U cf and tr' = Ii' U co' U cf' be the temporal relations defined 

in Nr. and Nr,1, respectively. Note that tr is the temporal relation in the underlying FC 

net of :EJ; it is not the temporal relation in the STG/NC, which is really given by tr'. In 

the following we study the relationship between tr and tr'. 

We can determine the temporal relation tr' of the STG/NC :EJ from its expanded net 

:EJ. which is a STG/IC. The underlying net Nr,1 of the expanded net is a FC net and thus 

previous characterizations of the temporal relation apply. 

First, note that a prerequisite for two transitions in the expanded net Nr,1 to be con­

current is that they are concurrent in Nr,. This is because the expanded net is obtained 

by unfolding Nr, into a process and then folding the latter into Nr,1. In a process, all 

conflicts must have been resolved, and concurrency between instances of transitions must 

be preserved. Hence concurrency is preserved: co' ~ co. 

The situation with ordering and conflict is slightly more complicated. The example 

given in Fig. 9.5 demonstrates that due to controlled-choices, the number of transitions in 

conflict in a STG/NC (Fig. 9.5b) cannot be more than that in its underlying FC net. In 

the expanded net, a controlled-choice place in a STG/NC is eliminated during unfolding. 

Hence: de' ~ de. 

On the other hand, Fig. 9.5e shows that a SM-component of a STG/NC can be 
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expanded into a simple cycle. This implies that: 

(i) Two transitions are in conflict in the expanded net Nr:,1 only if they are also in conflict 

in Nr,: cf'~ cf. 

(ii) On the other hand, if two transitions are ordered in the expanded net Nr,1 then in 

Nr,, they may be either ordered or in conflict: Ii' ~ Ii U cf. 

(iii) If two transitions are ordered in Nr, then in the expanded net Nr,1 they must also be 

ordered: Ii ~ Ii'. 

(iv) If two transitions are in conflict in Nr, then in the expanded net Nr,1 they may be 

either ordered or in conflict: cf ~ cf' U Ii'. 

From these facts, we can deduce an equality (vii) as follows: 

(iv) => cf~ Ii' U cf' 
=> Ii U cf ~ Ii U Ii' U cf' 

(iii) => Ii U cf~ Ii' U cf' (v) 
(i) & (ii) => Ii' U cf'~ Ii U cf U cf= Ii U cf (vi) 
(v) & (vi) => Ii' U cf'= Ii U cf (vii) 

The above results are summarized in the following lemma, which simply states that when 

a FC net is converted into a STG/NC by adding arc labels, both sequentiality and non­

sequentiality are preserved. 

Lemma 9.12 Let EJ and EJ be a STG/NC and its expanded net; Nr, and Nr,1 their 

re8pective underlying net8, a8 defined above. Then 

co'~ co 
Ii' U cf' = Ii U cf. 

The above result ensures that (i) if two transitions are not concurrent in the underlying 

net Nr, of a STG/NC, then they will not be concurrent at all, and (ii) if they are ordered 

or in conflict in Nr, then they will also be either ordered or in conflict in the expanded net 

Nr,1. 

9.4 Summary 

In this chapter, we have presented an algorithm for converting STG specifications with 

non-input choices to ones which contain only input choices. The most crucial underlying 
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concept of STG/NCs and this expansion algorithm is concerned with the behavioral (i.e. 

firing sequence) semantics of nets: STGs are considered as high-level representations of 

state graphs. In particular, the use of controlled-choices can be thought of as a. further 

restriction of the trace set derived from a STG. Similarly, the expansion algorithm basically 

manipulates the state graph from a higher level and it performs the splitting of states with 

non-input choices. By requiring that arc labels of a controlled-choice place never hold 

simultaneously at the moment that place is marked, we can guarantee that split states 

have distinct binary representations. 

One important concept in this chapter is that of a complete process. Even though it is 

acyclic, such a process contains enough information concerning the complete behavior of 

the system, so that from it choices between alternate control events can also be deduced. 

One fundamental requirement in order for a STG/NC to unfold into a process is that 

transitions of a control variable not be concurrent with transitions which are output tran­

sitions of the controlled-choice places. This is a fundamental requirement, because the 

only way to determine the state of a control variable, say j, at a marking (at which a 

controlled-place, say p, is marked) is for the transitions of the variable j to be ordered 

with p; otherwise, it is impossible to tell exactly. 



Chapter 10 

Suggestions for further research 

In this short chapter, we suggest areas for further research. Some of the extensions to the 

STG model to be discussed are: 

• Development of high-level hardware description languages for the specification of 

self-timed systems. 

• Techniques for composition and decomposition of self-timed control circuits based on 

STGs. 

• Performance evaluation and optimization of control circuits synthesized from STGs; 

• Pragmatic issues concerning the use of STGs in silicon compilation. 

High Level Hardware Description Language 

Even though the design approach based on STGs allows the direct a.nd efficient synthesis 

of control circuits, one of its shortcomings is that STGs are rather low level: A behavior 

specification of a control circuits in terms of STG requires the tedious enumeration of its 

exact behavior at the level of signal transitions-this is especially true for control circuits 

whose operation involves both concurrency and choices, such as the FIFO module described 

in Chapter 8. To alleviate this problem, we need (i) more abstract specifications which can 

be refined iteratively to produce more detailed descriptions and (ii) a design methologoly 

for self-timed systems. A reasonable strategy involves the use of a high level description 

language to serve both purposes. 

181 
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• A high level la.ngua.ge provides a.n abstraction of detailed implementation which can 

be refined subsequently. For instance, at the more abstract level of specification, 

it should be possible to represent parts of a STG as single events; signal transi­

tions specifying the communication protocol between control modules should also be 

represented as single synchronization events. 

• A high level language can be used to enforce a design style on the use of STGs. In 

particular, the syntax of the language can be used to disallow "bad" constructions. 

For instance, in the CSP-like language proposed by Martin [30], each module is rep­

resented by a sequential process; parallelism is achieved by having many sequential 

processes commnunicating with ea.ch other through synchronization. Obviously, the 

design style imposed by such language is that each module can perform only sequen­

tial operations; concurrency results from the interconnection of sequential modules 

operating in parallel. 

STGs allow the specification of control modules with inherent parallel operation (such 

as the FIFO module in Chapter 8) as well as those with sequential operation and choices 

(the RLM in Chapter 9). Thus the description language for STGs should not prohibit 

the specification of concurrent operation internal to modules. Our strategy is to iden­

tify a design approach for STGs and then develop language constructs which allow the 

description of hardware control circuits according to the design approach. Some of the 

possible candidates for our hardware description language include path expreuiona [1] and 

PADL (29], to name a few. The semantics of pa.th expressioDS in terms of Petri nets has 

been studied in [6]. On the other hand, PADL is designed expressly for the description of 

packet architectures which are related to data flow graplu. A net semantics can be easily 

developed for a. subset of PADL. 

Composition and Decomposition 

The design of a. system is unmanageable unless there is a hierarchical approach which 

allows the system to be decomposed into components, each desgined separately and then 

composed together to form the whole system. The important issue here is the correctness of 

such systems when the decomposition and composition steps are taken: how to guarantee 

that the behavior of the original system before decomposition is the same as that of one 
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composed from interconnecting modules, each corresponding to a. decomposed pa.rt of the 

system. 

The firing sequence (trace) semantics can help: properties of composed and decom­

posed systems can be reasoned using traces and operations on traces. Ma.ny idea.a a.nd 

ma.thema.tica.l results developed for CSP can be applied with some modification; these 

include high-level specifications, proof rules, etc. 

This thesis ha.a developed a. useful result concerning the equivalence between the be­

havior of a. FC net and the a.ggrega.te behavior of a set of contracted nets. This is a.n 

instance of decomposition and composition of nets. However, it differs from composi­

tion/ decomposition in genera.I in that the former starts out with a. net whose live-safeness 

properties a.re known a.head of time, while in the latter, these properties have to be proven 

for the system composed from modules. 

Performance Evaluation and Optimization 

STGs allow the specification and direct implementation of speed-independent control cir­

cuits; circuits obtained from STGs a.re ha.zard free regardless of changes in the delays of 

logic components. Nevertheless, it is always important to be able to determine the tim­

ing performance of control circuits so tha.t their critical parts ca.n be optimization when 

needed. 

One can take the simple view of a STG as specifying the timing constraints between 

signal transitions; a constraint such as i. ~ j. is implemented as a logic element with 

input i and output j. Thus a time delay d can be associated to the arc i. ~ j. to represent 

the delay between transitions of signals i and j. This delay ca.n be determined from the 

logic implementation. 

By calculating the delay values and associate them to all causal arcs in a STG, a timed 

model is obtained. Techniques in Timed Petri nets [33] can then be applied directly for 

the purpose of performance a.na.lysis and optimization. 

One specific type of optimization is the transformation of a. speed-independent imple­

mentation into one which is only hazard-free. Recall that speed-independence means that 

a circuit is hazard-free for any combination of delays of logic gates. By determining the 
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Figure 10.1: Transforming a speed-independent circuit into a hazard-free circuit. (a) By 
removing synchonization constraints. (b) By resetting modules in parallel. 

bounds on their delays, one can remove some of the causal constraints for synchronation 

from the STGs without affecting the correct operation of the circuit. For example, in the 

STG of Fig. 10.la, the delays of the subgraph Gi and G2 can be determined from their 

logic implementation to be di and d2, respectively. If min di > max d2 then the transition 

y which synchronizes the actions of Gi and G2 can be removed. Such an optimization 

results in a saving of logic gates and an improvement in speed. 

Another type of optimization is a well-known technique for reducing the total delay 

of an operation cycle using the reset signaling protocol, as illustrated in Fig. 10.1 b. If a 

number of non-pipelined modules a.re connected in tandem, the input requ.est to the leftmost 

module must propagate through the all of them before an acknowledge is transmitted back. 

In the reset phase of the signaling protocol, the input requ.est is reset and it is allowed to 

propagate through the modules. The operation is completed when the acknowledge is 

reset by the leftmost module. The operation during the reset phase of the cycle does 

not involve any useful work but only resetting the modules to their previous quiescent 

state. The total delay can be reduced by connected the leftmost input request signal to 

all modules in the cha.in, so that they can be reset to their initial state in parallel. The 

time required for reseting can thus be reduced to a constant. This technique works well in 

practice even though the circuit can no longer be guaranteed to be speed-independent. In 

CMOS technology, there is a natural way to implement this technique using domino logic, 

as demonstrated in [10]. 
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Pragmatics 
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