
COMMUNICATION PATTERNS IN
A SYMBOLIC MULTIPROCESSOR

by

PETER ROBERT NUTH

© Massachusetts Institute of Technology 1987

May, 1987

This research was supported in part by the Defense Advanced Research
Projects Agency and was monitored by the Office of Na val Research under
contract numbers N00014-83-K-0125 and N00014-84-K-0099.

A SVMIOllC· ~ . .. ,.. .•.• , ...

.........

........... ,111:, ...
Al•• .1it1• •• .l.JU•;tltlJ11110•··.111!1·.···•·••11t•: ·•. •••

JC4' 11'1 r• .,. ftJ .·It .. ',.

Daiaa .14 " ••••

Acknowledgements

I would like to thank Bert Halstead for all that he has taught me over the last

few years. His enthusiasm and support made this project a. reality.

I would like to thank all the members of the Parallel Processing Group for

creating a friendly and interesting place to work. I would especially like to thank

Randy Osborne for using the simulator, offering constructive criticism and being a

merciless proof-reader. Thanks as well to Juan Loaiza. for being a ready source of

information on so many topics.

I thank my officemates, Dan Nussbaum and Liz Bradley, for stimulating con­

versation, friendship, and occa.siona.l unrestrained pandemonium.

I would like to thank Nancy Daly, for making my life so much better these last

few yea.rs.

Finally, I would like to thank my pa.rents and family, who started me along this

path, and never lost faith in me along the way.

\(.. JI.WI ii J k .U l LAL JUt!lflt iiillf!Ul .. Jt. .. ~. ii l U4Y&Ji:SJdLIUMtSU JiMM#. #it# J ik@ll £JMJJJ !21.kl!tk$£RW1 441; ... ;g:s xt ... s Jt.J;;

Contents

1 Intro4adiea

1.1 ProWem Statemmi .

1.1.1 ~
1.1.2 Juaiileatkm •..

.

.

9

9

11

12

1.2 Ex.pcimeatal l&etW . 13

1.3 a.,. ·9'dae '

2.1 DiacurO.. al Scope .

2.2 BlliWiagaJ'udlil.LitpMechiae
2 "1 • ;-. T . .1-. ... • .£.1-

.11. A ·••1!14 ~t;IMN7 •

2.2.2 p --

14

17

17

18

18

19

2.3 n..up O.,-••
2.4 PropallUlliag Meriel

. • • • • • • •

. 21

2.4.1 p~ •· 21

22
3 Maclll• o.

3.1 BaulaueBis•ra, .
3.1.1

3.1.2

S,..• °'9 ai11 • • . . .

Preeu1i1t1 Mode_
1

II

.

. 27

•

2

3.1.3 Memory Hierarchy

3.1.4 Processor Model

3.2 Justification ...

4 Simulation Method

4.1 The N usim Simulator

4.1.1 Purpose

4.1.2 Concert

4.1.3 Running on Concert

4.1.4 MCODE

4.1.5 Tasks and Processes

4.1.6 Task and Process Queues

4.1. 7 Task Handling

4.1.8 Process and Exception Handling

4.1.9 Stacks and Environments

4.1.10 Memory Structure

4.1.11 Topology

4.1.12 Statistics Gathering

4.1.13 Implementation.

4.2 Variables

4.2.1 Topology Variables .

4.2.2 Task Scheduling

5 Experiments and Results

5.1 Experiments

5.1.1 A Discussion of Benchmarking

5.1.2 The Test Cases

5.2 The Variables

5.2.1 Topology Types

CONTENTS

34

35

37

39

39

39

40

40

42

43

44

44

45

46

47

48

50

51

51

51

53

55

55

55

57

63

63

i,YM!Jl&l,J! #J 1 LUI•tl . u .. LS ttt 1a10L l .···.· ... kUE .. L. llll .t.UAHQLJ] kJ .JJEJ.J u .a: JJJU;;t&14¥1£#424JlllJl@li
I .

CONTENTS 3

6.2.2 8-cb.-~ • 67

5.2.3 '?Mk S:elndnl•1 . 68

5.3 Data a--... 19

5.3.1 A~~ • . . • 89·

6.3.2 N•• nlrriq tlae Data • . • · . . . • . . • • • • • • 73

5.3.3 I.ocalitr "' -- • . • . • 1 •

5.4 8-:ulta . 76

5.4.1 TYJ* el A~ • . . • 76

5.4.2 BMic i...&'1 « R1•11me • 84

~u n
5.,.4 Tult ,. ··- ll'l

5.5 ~•.•....••.•.••.•......... 124

&.1.1 ._ Dei&..,. LerltJ • 114

5.5.2 lS

5.5.3 BSeet « 8111uW . • • • . . . • • . . • • . • 127

8 COlldulitm 128

6.1 ~CJ.I.~. • • . . • • • t•
6.2 a.ulU ' llll

6.3 Aclclit-.& QG.•·- 1J1

6.a1 a....u. • ,...... · 1a1

6.U WaJlt•--•t • r... 131

6.4 E--i- II • • • • • • • • • •· • • • .. • • • • • • • 1•

t.•.1 Bw;1211ti lllil Cll Rn 1 tacla • . • . . • • . • . . . • 138

A Tlae MCODB Mn Uo.. 141

B 8*UWI• c.Beetloa la N_,. 141

B.1 u:aa. N:9aa . • • • • • • • • • • • . • 147

B.1.1· ~ ~•.••.•.......... 14T

4

B.1.2 Scheduling Variables .

B.2 How Nusim Counts Accesses

B.2.1 Cost of some operations in Nusim

B.2.2 Nusim counters used for results .

C Test Programs

C.1 Compile-Expr .

C.1.1 Source Code

C.1.2 Test Data . .

C.1.3 Instruction Mix .

C .2 Consim

C.2.1 Source Code

C.2.2 Circuit Simulated . .

C.2.3 Instruction Mix . . .

C.3 Fboyer

C.3.1 Source Code

C.3.2 Test Data . .

C.3.3 Instruction Mix .

C.4 Multilog

C.4.1 Source Code

C.4.2 Test Case

C.4.3 Instruction Mix .

C .5 Quicksort

C.5.1 Source Code

C.5.2 Test Data

C.5.3 Instruction Mix .

CONTENTS

...... 148

151

155

156

159

159

159

161

161

163

163

163

166

167

167

171

171

173

173

177

178

180

180

181

181

List of Figures

3.1 The hierarchy of subsystems in a multiprocessor.

3.2 Structure of a processing node

4.1 The Concert multiprocessor. . .

4.2 Some possible multiprocessor topologies.

4.3 Paths of execution in a program.

5.1 Finite State Machine Model ..

5.2 An example of a line topology.

5.3 An example of a segmented topology ..

5.4 An example of a grid topology. . . .

5.5 A grid topology that is too narrow ..

5.6 The grid topology used for this thesis.

5. 7 Basic data fetches.

5.8 Basic data stores ..

5.9 Basic count of futures.

5.10 Basic proportion of data fetches. .

5.11 Basic proportion of data stores ...

5.12 Basic percentage of local accesses.

5.13 Basic mean distance of access. . . .

5.14 Basic mean distance, by type of access ..

5.15 Mean task distance with random task search algorithm.

5

26

32

41

49

54

60

64

65

66

66

66

77

78

81

82

83

85

86

91

94

6 LIST OF FIGURES

5.16 Mean task distance with incrementing task search algorithm. 95

5.17 Percentage of tasks fetched from local queue using incrementing search

algorithm. 97

5.18 Percentage of local data accesses with incrementing task search. . 99

5.19 Mean distance of access with incrementing task search.. 100

5.20 Improvement in mean distance of access due to incrementing task

search 101

5.21 Improvement in mean distance of access due to incrementing task

search, by access type

5.22 Tasks fetched versus Runsched.

103

105

5.23 Percentage of tasks fetched from local queue versus Runsched. . 107

5.24 Mean task distance versus Runsched. . 108

5.25 Data fetches versus Runsched. 110

5.26 Proportion of data fetches versus Runsched. 111

5.27 Count of futures versus Runsched. 112

5.28 Possible order of tasks forked by a program. 115

5.29 Variation in processor work versus Runsched. 117

5.30 Percentage of local data accesses versus Runsched.. 118

5.31 Mean distance of access versus Runsched using incrementing task

search

5.32 Mean distance of access by type of access versus Runsched.

5.33 Mean distance of access by data type on line topology

119

121

123

List of Tables

5.1

5.2

5.3

5.4

5.5

Futures statistics for different benchmarks.

Fair access distance of three topologies.

Fair access distance for non-local memory.

Mean distance of access for non-local accesses.

Undetermined future touches per 1000 instructions at different values

84

88

89

89

of Runsched. 113

7

8

Chapter 1

Introduction

1.1 Problem Statement

The power of present day computer systems is approaching the limits attainable

by conventional computer organizations. One solution to this problem lies with

architectures for parallel processing, notably multiprocessor systems. However in

order to exploit the power of these new organizations, users must have access to

languages and programming models that allow algorithms to be executed in parallel.

Multilisp [31] is one such programming model. It is a language designed for symbolic

computation on a parallel computer system.

Multilisp is based upon a dialect of the language Lisp [41,19] with additional

constructs for parallelism. A version of Multilisp has been written that runs both on

conventional computers [8,6] and on an experimental multiprocessor system [9,33].

The present implementations of Multilisp are efficient enough to run programs of

moderate size. However, the real potential of Multilisp is in running on a machine

specially designed for the language.

A Multilisp machine would be a large scale, shared memory, MIMD1 multi-

1 Multiple instruction, multiple data machine. All of the processors in this machine can operate

independently, running different instructions on different data.

9

10 CHAPTER 1. INTRODUCTION

processor. The preliminary design of such a machine is a topic of research in the

Parallel Processing Group at M.I.T. This ma.chine could contain an estimated 500

to 1000 processors that would be connected together through a fast communications

network.

There are a number of different design decisions in the organization of such

a Multilisp machine. One of the most important ones is to decide what type of

communication network to use to connect the processors. Another is to set the

size, speed, and the amount of local storage associated with ea.ch processor. These

two decisions involve an economic and engineering tradeoff. A designer could invest

effort in optimizing the communications network, or could increase the speed of the

individual processors at the expense of the network.

The tradeoff between communications network and individual processing node

depends on where the system bottlenecks will be. Different programming languages

or different application programs might impose a much different load on the system.

Some models of computation achieve parallelism by partitioning the program data

among the individual processors. For certain classes of applications, this allows each

processor in the system to work on a. similar sub-task, with little communication

between the processors. Another model of computation might have ea.ch processor

perform a different logical function, and use message passing to communicate the

results of one function to another. These two models impose different requirements

on the speed of the communications network versus that of the individual processors.

In order to evaluate different design decisions about the organization of a Multi­

lisp multiprocessor, we need to know the communication requirements of Multilisp

programs. This includes determining the types of data that Multilisp programs

access, and how that data might be distributed across a real multiprocessor.

1.1. PROBLEM STATEMENT 11

1.1.1 Goals

The primary goal of this thesis is to determine the type of accesses made by M ultilisp

programs, and the spatial distribution of those accesses in a proposed ma.chine

organization. This goal has two parts: one is to determine the real communication

requirements of Multilisp programs, and the second is to see how much the cost of

that communication can be reduced by appropriate scheduling decisions.

Multilisp programs touch many different types of data. Some of this data. is

shared between parallel tasks running on different processors, some could potentially

be accessed by several processors, and some is completely private to a processor.

In some M ultilisp machine organizations, private data could be kept in the local

storage of a. processor. Accesses to data that is shared between different processors is

the 'real' communication needed by an application program. Each of these accesses

requires a transaction across the communications network. A goal of this thesis

is to determine this maximum real communication cost for a variety of M ultilisp

programs. This will form a basis for decisions about system organization.

A Multilisp implementation has some flexibility in how to dynamically schedule

tasks and allocate data in a multiprocessor system. While the same program will

always touch the same data objects, it may be possible to reduce the distance of

those accesses. An allocation strategy could cluster data objects near the processors

that refer to them most often. Task scheduling algorithms could reduce the distance

that tasks move a.cross the system. A second goal of this thesis is to see how

these different scheduling decisions affect the cost of communication for Multilisp

programs.

There are several ways of quantifying the cost of communication on a Multilisp

machine. One is the number of data accesses that a program makes. The second is

the locality of those accesses. The locality of data references indicates how closely

data is clustered to the processor that accessed it. This thesis tries to quantify

this locality of reference as a way of measuring the effect of scheduling decisions on

12 CHAPTER 1. INTRODUCTION

communication cost.

1.1.2 Justification

Future multiprocessors will attempt to harness the power of hundreds to thousands

of individual processors. As ma.chines get bigger, communication costs increase. To

some degree, it is possible to increase the speed of communication networks by using

more complex connection strategies. The speed of the network is fundamentally

limited by the speed of light. However, most practical networks are limited first by

econormcs.

In a large network, distant accesses may take a long time. Accesses may contend

for communication paths, and 'hot spots' could develop in the network. These points

of contention are unpredictable, and can slow down the network considerably. On

the other hand, communication between a. processor and its local memory is much

more predictable. Computer architects have much more experience in building fast

processor - memory pairs than in designing large networks. If the processors in a

multiprocessor system all run at full speed, it likely that communication networks

will become a bottleneck.

There have been a number of different approaches to a.voiding this bottleneck.

The literature contains many discussions of network topologies intended to be fast,

non-blocking and cheap to build at the same time (24,49,5]. Other networks reduce

contention for resources by combining accesses to the same data object (26,47,14].

Some memory systems are able to perform complex operations, to synchronize ac­

cesses to shared data, or to enforce mutual exclusion [25,10]. Many systems shuffle

memory addresses in an effort to distribute data as evenly as possible through the

system [15,14]. This is a case where designers work very hard to avoid data local­

ity, by forcing a random distribution of data throughout the system. Finally, some

systems treat the communications network as the single most important shared re­

source, and reduce the speed of all other system components to match the network

1.2. EXPERIMENTAL METHOD 13

[25].

All of these ideas are ways of coping with a high rate of global accesses across

a network. However, if global communication is expensive, it makes sense to try to

reduce the load on the network as much as possible. If a multiprocessor has local

memory associated with a processor as well as global shared memory, there is a

benefit to allocating data in local memory. Not only can that memory run faster

than distant accesses, but using local memory will reduce the contention for global

resources.

In some kinds of networks, the time necessary for a particular access is propor­

tional to the distance that that reference must travel. In this case, the commu­

nication load can be reduced even further by increasing the locality of reference

to data objects. Though using more sophisticated data allocation and scheduling

algorithms may take more time th8.n simple random scheduling, it may be worth

the complexity to reduce the total communication requirements of a program.

In order to evaluate the effect of these scheduling strategies, we need to quan­

tify the real communication load of different benchmarks. Then the difference in

communication load due to sophisticated scheduling gives us a measure of the per­

formance gain.

1.2 Experimental Method

I started this thesis by proposing a model of a multiprocessor system. There are two

components to this model: the first is the language that will run on the machine,

and the second is the physical organization of the multiprocessor.

I decided to use M ultilisp as the programming language, and to concentrate on

applications in symbolic computing. The implementation of Multilisp that I used

is not much different from existing versions of the language.

I described a possible organization for a multiprocessor in enough detail to pre-

14 CHAPTER 1. INTRODUCTION

diet how its memory system would respond to different types of accesses. Using

this model as a base, I built Nusim, an architectural simulator for this machine.

The Nusim simulator directly executes Multilisp programs. It simulates one

processor of a multiprocessor at the level of functional blocks. By running one copy

of the simulator on each processor of an existing multiprocessor system, I simulated

the proposed multiprocessor organization.

N usim allows a user to vary a number of parameters in the implementation of

Multilisp. It can use several different strategies for scheduling tasks. Nusim can

also simulate different topologies of processing nodes. Finally, a user can vary some

of the internal characteristics of a Multilisp processor in Nusim.

I used N usim to simulate several different processor interconnection topologies. I

ran a set of Multilisp application programs on these simulated topologies. I counted

the types of data references that the programs made, the locality of that data, the

amount of pa.rallelism and the task handling behavior of the programs. I then varied

a number of machine parameters within Nusim and saw what effect these variables

ha.don the locality of reference of the benchmarks. These experiments were used

to predict the influence of these parameters on a future Multilisp machine.

1.3 Chapter Outline

Chapter 2 discusses some of the problems involved in building a parallel Lisp ma­

chine. It then presents a brief description of the programming model used for this

thesis, namely Multilisp.

Chapter 3 discusses some of different design decisions in the organization of a

symbolic multiprocessor. It then presents the model of a multiprocessor that was

used in this thesis. It concludes by justifying that this style of multiprocessor can

be built using conventional technology.

Chapter 4 describes the N usim simulator and some of the details of its operation.

1.3. CHAPTER OUTLINE 15

It discusses different parameters that affect the operation of N usim.

Chapter 5 describes the test programs that were run under N usim. It describes

the variables to N usim that were modified in different runs of the test programs.

It discusses what kinds of data were collected from these different runs, and how

that data was presented. Chapter 5 then presents the results of the experiments

with Nusim. For all the data presented, I have tried to point out any trends, and

to discuss the reasons for that behavior. Chapter 5 concludes with a summary of

what we have learned about Multilisp programs and Multilisp machines from these

experiments.

Chapter 6 concludes, discussing the relevance of this data. It also discusses what

questions remain unanswered, and what experiments would be useful to build upon

these studies.

Appendices follow, giving details of the implementation of Nusim, how the data

presented in Chapter 5 was collected, and full descriptions of the benchmark pro­

grams.

CHAPTER 1. INTRODUCTION

Chapter 2

Multilisp Architecture

2.1 Discussion of Scope

In order to simulate the operation of a Multilisp multiprocessor, we must first

start with an idea of how that machine might be built. The design of a machine

architecture for Multilisp is tailored both to the requirements of the language and

to the inefficiencies in a. large multiprocessor. We begin by presenting the Multilisp

language and the special features it requires. Chapter 3 discusses the organization

of a M ultilisp machine in more detail.

We justify a design by simulating its performance in running its intended work­

load. Engineers often have a good understanding of the code that runs on conven­

tional computers. Many machines are designed to be compatible with an existing

body of code [8]. In such cases, an architect can study an existing design, find the

bottlenecks, and propose incremental changes to speed up the system.

However, in the case of Multilisp, there is no existing processor design to use as a

standard. There are a small number of applications written in Multilisp, but no one

has studied the code to find the most common functions that need to be speeded up.

The lack of performance measurements is particularly bothersome since Multilisp is

17

18 CHAPTER 2. MULTILISP ARCHITECTURE

unlike conventional numeric programming languages, 1 and is not intended to run on

conventional architectures. Multilisp also has features that distinguish it from other

dialects of Lisp. It is unclear how many of the lessons of conventional computer

architecture apply to Multilisp.

A processor could be designed at several levels, from a general description of

its organization to the level of circuit diagrams. I have specified the processor

itself only in enough detail to model its behavior in running Multilisp programs.

I have outlined the structure of the processor, and the functional units of which

it is built. I have simulated the processor as a black box that executes assembly

language programs. By making assumptions a.bout how the processor handles each

such instruction, it is possible to predict the performance of the system in running

large applications.

2.2 Building a Parallel Lisp Machine

There are two classes of problems in building a parallel Lisp machine. The first

deals simply with the problem of executing Lisp efficiently. Traditionally, Lisp has

been a difficult language to implement on standard computer architectures. [48]

The second is one common to many multiprocessor organizations: how to manage

parallel tasks and communicate with other processors.

2.2.1 Running Lisp Efficiently

Most dialects of Lisp assume the existence of run-time type checking and garbage

collected heap memory. On machines without special purpose hardware, these

tasks require a large amount of processing time. Computers specifically designed to

execute Lisp often use a typed data architecture, in which each word of memory is

tagged with the type of data that it contains [43]. While the processor is operating

1 See [32) for an explanation of what distinguishes symbolic computing from numeric processing.

2.2. BUILDING A PARALLEL LISP MACHINE 19

on the da.ta. part of words, it ca.n simultaneously check the tags to ensure tha.t the

objects a.re of the correct types. This added complexity in the processor hardware

thus removes most of the overhead of run-time type checking.

Symbolic computing emphasizes sorting a.nd selecting of data objects, rather

than numeric functions of that data. Therefore, operations such as pointer following,

procedure calls, a.nd creation of lists are much more common in Lisp-like languages

tha.n the tight loops a.nd arithmetic functions of other languages. Furthermore,

the flexibility of Lisp, its emphasis on late-binding of procedures, and its use of

untyped, generic opera.tors reduces many of the optimizations possible at compile

time in typical programming langua.ges. Most data operations in a Lisp program

must be able to deal with exceptional conditiom and multiple data types.

There a.re three ways that Lisp implementations handle this need for flexibility

at run time and frequent use of complex operations. Some implementations of Lisp

are interpreted, rather than compiled, hiding the complexity of the basic operations

within the interpreter itself [38,52]. Others compile down to relatively complex as­

sembly language instructions [40,43,22]. though there has been a.t least one attempt

to compile Lisp to run on a very simple Load/Store architecture (54].

2.2.2 Parallelism Issues

A processor for a parallel :ma.chine must be able to deal with a number of problems

created by the organization of the system. The model of computer that we have

been using in our research is that of a homogeneous, shared memory multiprocessor.

The goal is a system containing several hundred processors. In a large system of

this type, it is not feasible to have a.11 processors fully connected by high-bandwidth

paths. Thus, the average interprocessor latency must increase with the number of

processors in the system. One would hope that there will be enough locality in data

references that the communications network will not be swamped with traffic. But

even so, a.n individual processor must be able to operate efficiently even if there is

20 CHAPTER 2. MULTILISP ARCHITECTURE

a high latency in accessing some areas of memory.

Finally, any programming model for a multiprocessor system must support mul­

tiple, concurrent tasks. In Multilisp, tasks are created and destroyed at run-time.

They are also dynamically moved from one processor to another during the course of

computation. Typically, each processor in the system may have access to a pool of

tasks that it can run. Thus, a processor must be able to manipulate tasks efficiently,

to select one from amongst a set of tasks, and to transfer tasks to other processors.

This may require hardware support for manipulating a processor's tasks. It also

requires scheduling mechanisms for distributing tasks around the system. In this

thesis, I investigated a number different approaches to scheduling tasks.

2.3 Design Components

There are two components to the design of any computer architecture: the hardware

itself, and the programming model that it is intended to support. Neither can

be proposed independently of the other, since there must be a continual tra.deo:ff

between complexity in hardware and software.

In a computer system that must support many diverse programming languages,

it is difficult for any one application to determine the hardware design. Features

that might speed execution of one programming model might impede another. This

is also a common argument for complex instruction set architectures.2 However, in

computers that are only intended to run one application language, the hardware

should be tailored as much as possible to the specifics of the language. This is ex­

pressed most forcefully in such innovative architectures as the Connection Machine,

where constructs and operators in the *Lisp language are closely coupled to the

internal structure of the machine [36).

While most Lisp machines use this software-specific approach to hardware design

2See [18] for a statement of this argument.

2.4. PROGRAMMING MODEL 21

(43,40], a nwnber of Lisp implementations have recently been developed that run on

more conventional architectures [22,16]. These designs invest much more effort in

software technology, such as optimizing compilers and explicit type declarations for

data objects. The benefit is that they can run on a much simpler, and presumably

faster, basic processor.

The limit of this ha.rd ware-driven approach is probably best personified by RISC

processors [54]. These designs expect that type mismatches and error conditions

will be relatively rare. This architecture promotes a style in which the user declares

the type of most Lisp objects in the program. By assuming that the type of these

objects will not vary, the compiler can generate code without many expensive run­

time type checks. Here is an example of where the programming model that will

run on a. computer is constrained by the limits of the underlying hardware.

2.4 Programming Model

2.4.1 Priorities

The overriding goal of research in the Parallel Processing Group at M.I. T. is effi­

cient general purpose multiprocessors. The group is pursuing research towards this

goal in three areas: languages, architectures, and applications. It is not enough to

build a fast computer architecture if it is difficult to program the machine to use

that power. We must have languages to exploit parallelism, and enough experience

with application programs to be able to find the parallelism in a particular algo­

rithm. Most of the group's effort is now concentrated in symbolic processing, and

specifically the Multilisp language.

Multilisp is based on the Lisp dialect Scheme [19]. It shares with the latter an

exclusive reliance on lexical scoping, rather than the dynamic scoping of most older

Lisp dialects [41]. It also allows procedures to be passed freely as argwnents or

results of procedure calls, treating them as it would any other value.

22 CHAPTER 2. MULTILISP ARCHITECTURE

Multilisp most unique feature is the manner in which it allows a user to explicitly

indicate areas of potential parallelism in a particular algorithm [31]. This is in

keeping with the philosophy that the programmer is still the best judge of where it

is possible to exploit concurrency. One of the topics of research in the group is the

possibility of building intelligent compilers that can make reasonable decisions about

where to insert parallelism constructs. One such system has been built that was

successful with functional Lisp code [27], but is not yet able to deal with arbitrary

programs.

Many other concurrent Lisp languages are exclusively functional, that is, they do

not allow side-effects. Multilisp takes the view that there are many applications that

are easier to write and more efficient with side-effects. A programmer is encouraged

to write mostly functional programs, with short sections that contain side-effects

well insulated from the rest of the code. However, we are unwilling to restrict the

user's ability by outlawing those mechanisms.

The final fundamental principle of Multilisp is that the language should shield

the user from details of the underlying hardware. Multilisp is intended to be

portable to a number of different architectures, both sequential and parallel. Any

language that requires a user to explicitly partition code or data structures across

the available processors will not be portable as the number of those processors

changes. Since Multilisp presently runs on a number of different types of machines

[8,9,6,43] initial indications are that that it has been successful in this goal.

2.4.2 Brief Description of M ultilisp3

The most unique feature of Multilisp is the .future construct. The form (future

<expr>) immediately returns a future object, a distinguished token for the value

of <expr>. It also spawns a process to compute that value. The future object is a

promise that the result of <expr> will be available at some later time. A procedure

3 For a more complete description of Multilisp, see [31) or [34).

2.4. PROGRAMMING MODEL 23

can 'touch' a future object by attempting to read its value. This occurs when we

operate on the future with an instruction that is strict in its arguments. At that

point, if the value of the expression <expr> is still not determined, the task that

touched it will be sUBpended until the future is resolved.

Variants of the future construct a.re the only way of expressing parallelism in

Multilisp. At some point in the execution of a Multilisp program, there may be

many concurrent tasks in existence. Each task was produced to calculate the value

of a future's expression. We say that the goal of the task is to determine the value

of a future. Once it has computed that value, the task re-starts all tasks that were

suspended on that future, and ceases to exist. From that point on, the determined

future is equivalent to any other Lisp object.

Many different implementation strategies are possible for futures, depending on

how we wish to schedule the underlying tasks. Seeing the effects of those different

scheduling strategies is one of the goals of this thesis. Section 4.1.5 contains a more

detailed description of the N usim implementation of futures.

24

Chapter 3

Machine Organization

This chapter presents a set of assumptions about the structure of a Multilisp ma­

chine that I used in simulating its behavior. In a multiprocessor such as this one,

we must make a basic set of decisions about the global organization of the system,

as well as of processing nodes within that organization.

3.1 Hardware Hierarchy

Figure 3.1 shows the hierarchy of subsystems in the multiprocessor that we are

proposing. The highest level is the hardware organization of the system. In our

case, this is a network of identical processing nodes connected together by a com­

munications network. These processing nodes are composed of three components:

the processor itself, some local memory associated with that processor, and a com­

munications port to connect to the other nodes in the system.

25

.. ~ ~~,~~~,"-~-"'.~-~'""·-"'.~ ~- .. _, ... '!J~_,.,,!"'7·~'.l'I- ~-.-~,,,_.,,....,.."'~·7""7-.... ,--'\" ,

- -
~.. ; , ... ~ - ~ _, " ·~ -~-- ' "" - - - -~-· ~~~ - ~ ~ • ~ ~ ;\- ' ~ - • ,~ T

i ~

....... '-'
Jllrn 1'11

...... ..

3.1. HARDWARE HIERARCHY 27

3.1.1 System Organization

Issues

The system organization level determines what parallelism will be available in the

system. The most fundamental decisions about how to design a multiprocessor are

made here. Among them are:

• The number of processors in the system.

• The granularity of the processing nodes.

These first two points are usually related, since we want to build a machine

of a certain size. One approximation to the size of the machine is the area of

silicon used to build it. This is the product of the size of a processing node

(the granularity) and the number of nodes in the system.

The size and granularity can range from two conventional mainframes on a

common bus [2] to a million one-bit wide processors (36].

• The arrangement of memory and processing.

We might choose to segregate processors and memories in a 'dance-hall' model,

a.nd connect them through a cross-bar switch (55], or to spread processing and

memory evenly throughout the the system [36]. Most large systems associate

some local memory with each processor, to try to reduce the a.mount of com­

munication in the system.

• The degree of connectivity of the nodes.

This determines the diameter of the network, that is how many hops are

required to communicate from any one processor to any other point in the

system. There is a tradeoff between the connectivity of the system and the

cost and complexity of building the network. In some systems, each processor

is directly connected to every other, either through a dedicated link [49], or

28 CHAPTER 3. MACHINE ORGANIZATION

through a shared broadcast bus [42]. Other structures only allow a node to

communicate with its nearest neighbors [28,29].

• Shared memory versus message passing.

Some programming models assume that all processors can read all memory

in the system [31]. Others explicitly assume that processors communicate

through message passing [37]. Some multiprocessing organizations are de­

signed specifically to speed the form of communication used by a particular

programming model [56,7,49]. In a multiprocessor designed specifically to

support message passing, without any areas of shared memory, it is costly to

emulate a shared memory mode of operation. In a practical machine, we would

want dedicated hardware to handle requests for data, and avoid burdening a

distant processor for each memory fetch.

Similarly, inter-processor communication can be expensive in a shared mem­

ory machine. Here, processors synchronize by way of locks and semaphores

in main memory. But a processor can waste many cycles 'spinning' on a

particular lock, waiting for it to clear. If the lock is in distant memory, this

puts a substantial load on the communications network. Again, hardware can

alleviate some of the cost of this form of communication.

In conventional computers, a processor 'owns' the connecting bus for the du­

ration of a transaction to memory. However, in a multiprocessor, where many

processors share the same communications path, it is too expensive to deny

everyone acce.ss to the network for the duration of an acce.ss. This is especially

true in a large system, where there is a long latency to distant memory. This

is the reason for split-transaction buse.s, where a request for data is not im­

mediately followed by the answer from memory. This type of read and write

request can be considered a special case of message passing.

• Connections to I/O devices.

3.1. HARDWARE HIERARCHY 29

The problem of supporting a high input/output bandwidth is particularly

important for machines that are intended to support users in a stand-alone

manner. When the computer will be used in an interactive fashion, users are

not willing to spend a long time loading a sizable amount of code and data

onto the multiprocessor in order for it to run some complex program.

Discussion

Many of the assumptions that I have made in these topics are motivated by Prof. Hal­

stead 's proposal of a Myria.processor [28,29]. This is a view that large scale multi­

processors should be easily expandable and reconfigurable. He envisions a network

of tens of thousands of identical processing nodes, all connected to their nearest

neighbors. It should be easy to va.ry the number of processors in the system trans­

parently to the user and the application program. In effect, we should be able to

buy "Computing by the Yard" 1 to suit a particular application.

The processor that I propose here might not be suitable for such a myriapro­

cessor, but for a machine that we could build as the next step in that direction. I

assume that this intermediate machine will have a modest number of processors -

on the order of 500 nodes. The size of the system, and the need for it to contain a

variable number of processors, constrains the network used to interconnect them.

With such a large system, it would be impractical to separate processors and

memory by some large cross-bar switch [55]. The size and complexity of the switch

would be too great. Every non-local access by a process would be forced to pay the

maximum cost, by being routed through one common device. Such a design has

just replaced the "Von Neumann Bottleneck" by one just as severe. Likewise, it

would be impractical to build a fully-connected network of processing nodes. The

cost and complexity of the wiring would dominate the design.

Instead, I propose a network of processing nodes, where the processor, memory

1 This analogy is attributed to Steve Ward.

30 CHAPTER 3. MACHINE ORGANIZATION

and switching mechanism are distributed. in space. All nodes connect to nearest

neighbors- the number of neighbors to be determined by the topology. A mesh

in two dimensions would have each node connect to four other nodes, a three di­

mensional network connects six nearest neighbors. There is a tra.deoff between the

complexity of the network and the average latency as we move to higher dimensions.

This thesis is not concerned with the details of the communications system

linking the processing nodes. It assume that any processor may read the memory

of another node. What is important is how long that access takes. It is too early

yet to be concerned with issues of loading of communications links or hot spots in

the network.

This thesis assumes that the latency to distant parts of the system is relatively

high. The speed of propagation of messages is fundamentally limited by the speed

of light in such a large system. However, the system could have high throughput

if it allows many requests to run through the network simultaneously. For these

reasons, requests for data and the corresponding replies should take the form of short

messages. The messages would traverse the network one hop at a time, moving from

node to node.

A processor design may have to deal with the problem of processors sitting

idle while waiting for replies to data requests. This could potentially waste a large

percentage of the power of the system. It would be useful if processors could perform

other useful work while waiting for a reply to some request. We will return to this

point in Section 3.1.4.

With this design, we are attempting to exploit locality of reference in data. re­

quests, assuming that a computation running on a processor is likely to need data

clustered close to that processor, rather than in distant memory. That way, the rel­

atively low bandwidth connections between nodes will not saturate with messages.

This is a risky matter in Lisp programs, which usually exhibit less locality than con­

ventional languages. [43,48]. In this thesis, I tried to quantify the degree of locality

3.1. HARDWARE HIERARCHY 31

available in our test programs, to see whether our assumptions are worthwhile.

In this model of the communication network, I have deliberately ignored the

mechanisms by which messages are propagated through the system, the physical

connections and the routing strategy. I also have not looked at the effect that

contention for paths might have on bandwidth. I have ignored the effects of errors,

lost packets, and fault tolerance in the nodes and communication channels. These

topics each merit a discussion which is outside of the bounds of this thesis.

In this thesis, we do not consider the effects of memory management or vir­

tual memory. While we do not presume any memory management facility in the

processing nodes, there is no reason to assume that the address space of any pro­

cessor need be the same as the system as a whole. It would be relatively easy to

have the communications port in ea.ch processing node translate data references to

system-wide addresses. Similarly, we will avoid the complexity of virtual memory

by assuming that all data and code needed by an application is kept in real memory.

Given the potential size of this multiprocessor, and the amount of memory that it

can contain, this is not an unreasonable assumption.

Finally, any large machine will probably need to communicate with input/output

devices. For the purposes of this thesis, I assume that we can use a front-end

processor to load code and data into the system, and to support software debugging.

The host might connect to all the processing nodes through some common broadcast

net. That communication path would not be used during normal processing on the

computer.

Other 1/0 devices can be associated with particular processing nodes, in effect,

allowing memory mapped I/0. One processing node can control access to each I/O

device, mediating requests from the rest of the system. We do not expect to use

high bandwidth devices that might be a load on the system. Access to disk drives

or secondary storage is only critical for paging purposes, which we do not expect to

see in normal operation.

32 CHAPTER 3. MACHINE ORGANIZATION

Proc:euor Memory

Communicatio
Port

Figure 3.2: Structure of a processing node.

3.1.2 Processing Node

As mentioned in Section 3.1.1, the system proposed here is divided into identical

processing nodes. A possible structure for a node is shown in Figure 3.2. The three

components are the processor, local memory and a communications port.

Accesses to distant memory in a M ultilisp machine may have considerable la­

tency. Storing data locally rather than in distant memory will prevent paying this

cost for some types of objects. The percentage of accesses that processors make to

local memory rather than distant depends on the locality of reference of Multilisp

programs. In this thesis, I have shown that there is considerable locality to be

exploited in a range of Multilisp applications.

3.1. HARDWAREHIERARCHY 33

Communications Port

In such an MIMD machine, we expect that a processing node will run as an isolated

unit much of the time .. One role of the communications port in this machine is to

decouple the operation·of the processing node from the rest of the system. The

port is the only link. between processing nodes. A port in ea.ch node will connect

through the network to the ports of some number of other processing nodes.

The communication· port must be able to route messages from the local processor

out to its destination. The port also translates incoming network messages into

accesses to node local memory. In this machine, all routing decisions must be made

within the communication ports. This decouples the design of the external network

from the internals of the processing node. The communication port must be a

fairly intelligent box in order to handle this functionality. Putting some intelligence

in the port relieves the node processor of the burden of handling communications

overhead.

Node Organization

The processing node is organized so that there a.re two paths to node memory.

This is to support accesses both from the local processor and from distant requests.

When there is a conflict for the memory, the local processor would have priority.

Since the latency for local accesses is expected to be much less than that of distant

accesses, it is more important that local accesses a.re unhindered.

Figure 3.2 also shows a direct pa.th from the node processor to the communi­

cation port. This would carry interprocessor messages with low latency. While

the Multilisp language does not explicitly use message-passing, there are some de­

tails of its implementation that would benefit from methods of synchronizing the

processors.

34 CHAPTER 3. MACHINE ORGANIZATION

3.1.3 Memory Hierarchy

The memory of a Multilisp machine would be divided into three classes. The highest

speed memory would be internal to a processor. This includes processor registers

and caches for code and data. This memory is typically quite small, since in any

technology it is difficult to build large very fast memories. Node local memory is

the next fastest, and should be large enough to contain all the code and data being

referenced by a processor over the lifetime of a computation. Finally, the node

memories of all other nodes in the system are accessible to the local processor as

global, distant memory.

Processor Internal Memory

An instruction cache or instruction buffer is a standard way of speeding up code

execution on a processor. Since code does not change in most high level languages,

instructions in a cache will remain consistent with the global memory. Even a simple

buffer can speed code fetches, by matching the speed of the processor to that of

the memory system. The benefit of an instruction cache depends on the size of

the cache, and on the types of instruction references that Multilisp programs make.

The cache hit ratio is greatest when instruction references have a high degree of

locality.

Another type of memory that is internal to a processor is a stack buffer. Current

implementations of Multilisp a.re designed to run on stack machines. For such an

implementation, a stack buffer would hold the top of the stack in high speed memory.

Since most instructions currently fetch their operands from the stack, some type of

buffer is necessary for acceptable performance.

Local and Distant Memory

M ultilisp assumes that all processes in the system share a common address space.

Some portion of that space would be mapped to local node memory, while the rest

3.1. HARDWARE HIERARCHY 35

would require distant memory accesses. A goal of this division of memory would

be to encourage programs to use local memory for as much data as possible. A

program should only have to access global memory for variables that it shares with

other processes, or for other necessary interprocessor communication.

In this thesis I have proposed a number of ways of encouraging this locality of

access. For instance, all code and constants in a Lisp program could be loaded into

the local memory of each processing node. Programs should default to allocating

space out of local memory, and any private or short-lived Lisp objects should be

stored locally as well.

Accesses to global memory are more difficult than fetches out of local memory,

because no simple bus links processors to distant nodes. We have assumed that

the communications network supports split transaction, packet or message based

communications protocols [21]. Experience with other large scale multiprocessors

suggests that accesses through the communications network might be an order of

magnitude slower than those to local memory (5,25,15].

3.1.4 Processor Model

In order to accurately predict the performance of a Multilisp machine, we must make

some assumptions about its processor architecture. Section 2.2 discussed some of.the

difficulties in running Lisp on a multiprocessor, and suggested hardware solutions

to speed Lisp processing.

Tagged Architecture

One of the ways to speed execution of an untyped language like Multilisp is to run

on a tagged architecture. Every data word in the system is tagged with a label that

identifies the type of data in the word. Instructions must then check the tags of

their operands to ensure that the object types match the operation to be performed.

The processor must be able to trap to routines in microcode or assembly language

36 CHAPTER 3. MACHINE ORGANIZATION

to handle exceptional cases.

While this tag checking can be performed in software, it is much more efficient

to have processor hardware check data tags. Studies have shown that even a small

amount of processor support for tag checking can yield a. significant improvement in

performance [54]. In this thesis, we will assume that processors check the types of

data objects in parallel with instruction execution. This means that in the normal

case, instructions are executed at full speed. However, when data types do not

match the operation to be performed, the processor aborts the instruction and

traps to an exception handler.

Support for Multiple Tasks

The significant feature of Multilisp a.s a programming language is that it allows

programmers to explicitly spawn parallel tasks. We will assume that processors

contain a number of features to speed task handling.

First, processors must devote some effort to finding and loading executable tasks.

This thesis discusses a number of algorithms that the processors may use to schedule

tasks. We will assume that some of these functions are built into the hardware or the

microcode of a processor. While tasks are loaded much less frequently in Multilisp

than the instruction execution rate, the extra overhead in trapping to assembly code

may be prohibitive. The most basic scheduling functions must exist at a low level

in the processor. Support for futures in the processor must include a combination

of data tag checking and task scheduling.

In our model of a communications network for a Multilisp machine, all accesses

to distant memory have a long latency. One way of dealing with this latency is

by keeping several processes loaded in a processor at any one time. So instead of

sitting idle during this access period, a processor could switch to running another

process. Some machines have tried to support multiple concurrent tasks, and to

allow very fa.st context switching between the tasks [50,46]. This can be an expensive

3.2. JUSTIFICATION 37

proposition, since it often requires allocating a different set of processor registers

to each task. In this thesis, we have assumed that processors have this ability

to multitask at a low level. We investigated the effect of this multitasking on

parallelism and data accesses.

3.2 J ustifi.cation

The preceding sections outlined some basic assumptions a.bout the design of a Multi­

lisp machine used in this thesis. But while all these features may be desirable for a

Multilisp ma.chine, if the resulting system is too large and complicated to be built,

we have not accomplished anything. In this section I will argue that it is possible

to build a ma.chine with these chara.Cteristics using conventional technology.

There have been a few large sea.le multiprocessors built to date. The B.B.N. But­

terfly [5], is built using 256 conventional microprocessors, tied to memory through

a 'butterfly' switching network. All system memory is shared among all the proces­

sors. There a.re no fundamental engineering reasons why a 500 to 1000 processor

ma.chine could not be built using the same structure.

The processor architecture that we have proposed is different from most com­

mercial microprocessors. It is similar to the processor of a CADR Lisp machine

[40]. But some single chip processors based on this same architecture have been

built. Texas Instruments has designed a Lisp ma.chine on a chip that contains most

of the functionality of the processor proposed here [57].

In any machine design, a large part of the complexity of the machine is not

related to the number of chips that it contains, but instead the number of distinct

chip types, and the patterns in which they a.re connected. Some large ma.chines have

been built using a few complex chips, connected in a regular structure [56,36J. The

Connection Ma.chine is built using a thousand VLSI chips, each of which contains 16

simple processors. A few high-density memory chips provide all the local memory

38 CHAPTER 3. MACHINE ORGANIZATION

required by group of processors. By matching the processor to the structure of the

system, this design uses very few MSI support chips. It is reasonable to assume that

a thousand complex single chip processors, could be connected in a similar regular

structure.

Chapter 4

Simulation Method

4.1 The Nusim Simulator

4.1.1 Purpose

The core of this thesis is a study of the behavior of Multilisp programs, and of the

effect of different architectural features on Multilisp execution. In order to collect

this data, I wrote the Nusim simulator. Nusim was intended to be a flexible test

bed for studying the architecture of symbolic multiprocessors. Though I will spend

only one chapter describing this tool, realizing it occupied most of the time spent

on this thesis.

Nusim is derived from and structurally similar to XML, the Multilisp emulator

written by Robert Halstead and Juan Loaiza of the P.P.G. group a.t M.I.T. It wa.s

extensively rewritten and restructured to ta.ke the present form of N usim. In addi­

tion, I added customizable routines that a.llow Nusim to simulate the operation of a

processor, not just to emulate the Multilisp language. In fact, only a small amount

of this flexibility wa.s used in order to collect the data summarized in Section 5.5.

However I hope that some of the additional features of Nusim will prove useful to

others in the group, and to my own research in the future.

39

40 CHAPTER 4. SIMULATION METHOD

The sections that follow begin by defining a number of terms that will be used

in later discussions of the Multilisp language and of Nusim. They also discuss how

those components are handled in N usim.

4.1.2 Concert

The Concert multiprocessor [9,33) was designed as a development system for parallel

processing. Figure 4.1 shows a block diagram of the machine. It is composed of up to

34 Motorola MC68000 processors [1], and approximately 25 mega.bytes of memory.

Concert is a tightly-coupled multiprocessor in which system global memory is shared

between all processors.

Concert is divided into eight slices, each of which is a. separate Multibus back­

plane [39). A slice can hold between four and six processors. Each processor is given

at least one 500K byte memory boa.rd as loca.l memory. Local memory is visible to

all processors in the slice, but not to processors on other slices. The processors and

memory boards were a commercial design [3,4].

The slices of Concert are linked together by the Ringbus, a segmented shared

bus. Several transactions can take place simultaneously on disjoint segments of the

Ringbus. A central. Ringbus Arbiter controls access to the Ringbus by each of the

eight slices. It tries to provide fair access to the bus, and to support as many bus

transactions as possible at any time. The Arbiter is a. custom design by members

of the P.P.G. group, as are the Ringbus Interface Boards that connect slices to the

Ring bus.

4.1.3 Running on Concert

XML and N usim run both on uniprocessors [8,6) and on Concert. The program

itself only runs on a. single processor. On Concert, one copy of the program runs

on each processor in the system. Each processor that runs N usim simulates one

4.1. THE NUSIM SIMULATOR

M..Itibu

Backplane

Multibu

Backplane

Multibus

Backplane

M..Itibu

Backplane

-~-- ------~-::-.----;-,.~c;,-.,;-:;--

Figure 4.1: The Concert multiprocessor.

M~ibu

Backplane

Multi bu

Backplane

Maltibu

Backplane

41

42 CHAPTER 4. SIMULATION METHOD

processing node of a hypothetical multiprocessor. While this limits the number of

processing nodes that we can simulate with Nusim, it is much simpler than allowing

each real processor to simulate several 'virtual' processors.

In N usim processors communicate by side-effecting objects in shared global mem­

ory. For instance, there is a single global list of free memory blocks. A processor

that requires more memory will lock that list, pop a block from the top of the list,

and unlock it. This operation is duplicated for most resources in the system. Nusim

makes no attempt to coordinate the operation of processors at a lower level than

this.

4.1.4 MCODE

Both the XML implementation of Multilisp [30] and the Nusim simulator compile

Lisp source code down to an 'assembly language' known as MCODE. MCODE is a

ma.chine language for a hypothetical stack machine. Most MCODE instructions are

zero-address, that is, they pop their operands off the stack, and push the result on

top of the stack. The stack is used for local data, arguments and the environment of

a procedure, and for the control state of procedure calls. MCODE contains the usual

mathematical operations, branching and calling instructions, instructions to access

data structures in memory, and instructions to spawn parallel tasks. Appendix A

describes MCODE instructions in more detail.

The Nusim program spends most of its time in a. loop, reading MCODE instruc­

tions, and dispatching to the appropriate procedure to emulate each instruction.

There are approximately 120 MCODE instructions in the current implementation

of Nusim. MCODE instructions are currently encoded with one or two byte op­

code, optionally followed by some bytes of immediate arguments to the instruction.

(Appendix A describes these instructions, and how they are encoded).

N usim allows a designer to easily add instructions, or to change the encoding of

this machine language. The simulator uses a single dispatch table to describe the

4.1. THE NUSIM SIMULATOR 43

encoding of each instruction and what arguments it requires. At present, Nusim can

run one of two different instruction formats. One is the format used by the XML

emulator, the second is a more compact format, more suited to implementation on

a real processor. In the interests of sharing the Multilisp compiler, assembler, and

other system code, all the test cases described here used the standard XML format.

4.1.5 Tasks and Processes

In Multilisp, programmers explicitly label expressions that should be executed in

parallel with the rest of the program by enclosing them in futures. Each concurrent

thread of execution in Multilisp is referred to as a taslc. A task that is loaded and

ready to run on a processor is referred to as a process. A typical task might be

the size of a Lisp procedure. Multilisp programs do not fork off parallel tasks to

execute single instructions, because the overhead involved in spawning each task

would be greater than the potential benefit in speed. Of course, in typical Multilisp

programs, very few of the expressions might be enclosed in futures, for the same

reason.

When a Multilisp processor spawns a task, it could choose to continue running

the parent task or devote computation to the child instead. The definition of the

Multilisp language allows a user to choose several different constructs to express

parallelism. These variants of the future instruction make different choices about

which sub-task to run, and how much effort to devote to it. See [34] for more

information. The test programs that we ran for this thesis only used the 'basic'

future instruction. In Nusim, a form such as:

(funca (future (funcb op2)) op1)

will spawn a task to calculate the value of (funcb op2), and begin running that

task right away. The subtask is given a higher priority than the original parent

task.

44 CHAPTER 4. SIMULATION METHOD

4.1.6 Task and Process Queues

While a Multilisp processor is running a child process to calculate the value of a

future, it must save away the pa.rent state. There are two places where the pa.rent

task could be saved: a processor's task queue or process queue.

The basic storage structure for tasks in N usim is the task queue. Each processor

in the Concert system maintains such a queue. In the absence of any additional

mechanism, tasks that are spawned and not run a.re pushed onto the task queue of

the processor that generated them. These task queues are accessible to all other

processors in the system. Tasks move a.round the system when a processor steals a

task from a distant processing node. Nusim treats the task queue as a LIFO queue,

since processors always pop the most recent task off the top of the queue.

One of the design decisions that I wished to study with the Nusim simulator was

whether it is worthwhile to have several processes loaded on a physical processor,

ea.ch ready to run. That way, if one process stalls while waiting on a distant access,

we can immediately switch to running another process. To this end, each processor

in N usim also maintains a process queue. A process on the queue is either running,

or waiting to be run by the processor. While a processor's task queue is visible

to every other processor in the system, the process queue is kept in private, local

memory. The larger the size of the process queue, the easier it is for a processor

to context switch between a number of active processes. However, this restricts the

amount of parallelism in the system, since while one processor has many processe.s

in its local queue, other processors may starve for work.

4.1.7 Task Handling

In Multilisp, tasks a.re spawned dynamically by a running program. Nusim devotes

some effort to scheduling these tasks among the available processors. A common

problem with systems that allow tasks to be produced dynamically is that of too

much parallelism. Since each task requires memory, if we do not set a limit on the

4.1. THE NUSIM SIMULATOR 45

number of tasks produced, we would quickly run out of resources in the system.

Nusim uses an unfair scheduling policy to limit the number of para.Ile! tasks that a

program will produce [30].

The basic strategy for scheduling tasks is as follows: When a processor spawns

a task due to a future, the processor switches to running the new process. The

pa.rent process will be left on the local process queue, ready to run. If the process

queue is full, we must spill some process out of this queue, turning it into a task

that is put on the local task queue. In this way, the process queue acts as a 'cache'

of recent tasks.1 In Nusim, process queues contain only the most recently executed

processes. N usim swaps out the least recently run process from process queue to

task queue.

If a processor has no processes to run, it must search task queues in the system.

Since there is a task queue associated with each processing node in the system, we

could choose a number of different search strategies when checking those queues. A

typical strategy might be to check our own queue first. Then, if this queue is empty,

we might search the task queues of nodes that a.re successively farther away from

us. Once we find a task in one of the queues, we load it into our process queue, and

then start running the process.

4.1.8 Process and Exception Handling

During the execution of a process, there are a number of things that could happen

to disrupt the normal flow of execution. These exceptions include touching a future,

creating a future object, Lisp errors, and various low-level interpretation errors. In

N usim, a.11 of these errors a.re handled in the same manner.

1 Of course, we may choose to make the process queue be of length one. In this case, the process

that we are running will be the only one in the process queue. All other processes are off-loaded to

a task queue. Since tasks queues are visible to the whole system, no processors should starve for

lack of work.

46 CHAPTER 4. SIMULATION METHOD

N usim maintains a structure with each process that is in the process queue.

This micro-state structure contains the entire state of the process. If we get an

exceptional condition while running a particular process, we load information about

the error in the micro-state, and bubble back up to a single routine that handles

all errors. This method of encapsulating the state of ea.ch process makes it easier

to handle the error condition, and to restart the process afterwards. We expect

that in a real processor, the micro-state for each process would be a set of registers.

Switching processes is as simple as changing a single pointer to that register set.

4.1.9 Stacks and Environments

Chapter 3 described a possible memory hierarchy for a M ultilisp ma.chine. Since

MCODE is designed to run on a stack ma.chine, one of the components of that hi­

erarchy is a staclc buffer. This is intended to be a small high-speed memory local to

the processor, a.long with some index registers. The Multilisp stack contains proce­

dure call linkage information, stack frames for each procedure, procedure arguments

and local variables. Since the stack buffer would likely be a small memory, it could

only hold the top-most stack frames in the current procedure invocation tree.

Since programs may call arbitrarily many procedures, periodically the stack

buffer will fill with stack frames. A Multilisp machine would need to :8.ush old stack

frames out to main memory. Similarly, as procedures return, the stack buffer will

empty out, and stack frames must be paged back into the buffer.

N usim simulates this stack buffer in software. On Concert, N usim simulates a

stack buffer 50 words long. A stack buffer is part of the micro-state for each process

in the process queue. Since each process has its own stack buffer, it is not necessary

to :8.ush out any buffers on context switches. However, as the stack buffer over:8.ows,

N usim saves older portions out to heap storage. There it maintains a linked list of

stack hunks. In the current implementation of N usim, the hunks a.re 3 / 5 the size

of the buffer. Note that Nusim allocates space for stack hunks, as with any Lisp

4.1. THE NUSIM SIMULATOR 47

object, out of the local processing node's memory. This should encourage some

locality of reference for the hunks.

Multilisp is a lexically scoped language. Every let statement or procedure dec­

laration builds a block in which a number of local variables are defined. Most

operations find their operands in those local variables to a procedure. Each of these

lexical blocks in Multilisp is known as an environment frame. The environment

frame contains all bindings for variables defined in this block. It also contains a

pointer to the lexically enclosing block's environment frame. Every variable refer­

ence in N usim refers to a slot in a particular lexical environment frame. Top level

variables, or globals, a.re kept in a global symbol table, accessible to all routines.

In Multilisp, procedure values are first-class objects. However, since Multilisp is

lexically scoped, an expression that builds a procedure object cannot simply return

a pointer to the procedure code. It must point to the bindings of free variables that

the procedure uses. This is known as a 'closure' in Multilisp.

Closures objects might be passed around a program as any other object would.

A closure can exist long after the procedure that created it has returned. In fact,

the entire call stack that existed at the time when the closure was created might

disappear, but the lexically bound variable references in the closure still must be

valid. So a closure must encapsulate both the code for a function and the lexical

environment that existed when the function was created. For this reason, environ­

ments are allocated in the heap, where they will remain long after the call stack

has been destroyed.

4.1.10 Memory Structure

N usim attempts to simulate the ideas of shared global memory described in Chap­

ter 3. It divides all global memory in the Concert system into equal sized parcels.

In a real Multilisp ma.chine, global memory would be divided among the processing

nodes in the system. Thus, while global memory would be accessible to all the

48 CHAPTER 4. SIMULATION METHOD

processors in the system, it would be fastest to access from the local processor.

In our implementations of Multilisp, a processor will access data from all parts

of the system, but only allocate new data objects in its local memory. In simulating

a potential machine, we could have simply divided all global memory on Concert

among the available processors. This would represent the memory local to a pro­

cessing node. However, because Concert is a small machine, and all processors do

not use memory at the same rate, we would run out of local memory on a Concert

node long before a real machine would.

In order to deal with this difficulty, and to simulate a processing node with vari­

able amounts of memory, we do not statically allocate memory in N usim. Instead,

each processor that needs a block of memory obtains it from a global memory pool.

We then consider that block of memory to be 'owned' by that processor.

4.1.11 Topology

As stated in Chapter 3, we have proposed a multiprocessor system for Multilisp

which is composed of identical processing nodes connected together through some

communications network. It is very expensive to build such a system using a single,

fully connected communications network. More likely, processing nodes in the sys­

tem will be organized into loose hierarchies, or directly connected to some subset

of the remaining processors. Figure 4.2 shows some examples of possible topologies

for a Multilisp computer system.

Due to the size of the system, it is likely that communication between nodes

widely separated in this network will take a long time. Rather than slowing all

accesses between nodes to take the same amount of time, we expect the latency

of communication between processing nodes to increase as we step to more distant

destinations. This is an important concept for a Multilisp computer, since it means

that we should encourage communication between nodes that are 'close' together,

and try to limit accesses to distant nodes. One of the main goals of this thesis was

4.1. THE NUSIM SIMULATOR 49

Array Topology

Commoa Bu Topology

Bu Group Topology

Figure 4.2: Some possible multiprocessor topologies.

50 CHAPTER 4. SIMULATION METHOD

to evaluate the effect of different topologies on the locality of reference of Multilisp

programs.

Nusim takes a somewhat simplistic view of the possible organizations of pro­

cessing nodes in a. Multilisp machine. It does not care how individual nodes are

connected together. Instead, the only thing that matters is the relative 'distance'

of nodes from each other. This distance might be the uumber of hops a.cross a

communication network between two nodes. In some versions of a multiprocessor,

processors would only be connected to nearest neighbors in some two (or three)

dimensional grid. In another organization, processors would be clustered on local

buses, which are then tied together through a global bus. 2 Processing nodes on

the same local bus would be 'closer' than nodes on different buses. Finally, all the

nodes in the system might be tied together through a large switch. In this case, all

nodes would be equidistant.

In N usim, each processor maintains a table of distances to all the other processors

in the system. It also maintains a total ordering of those processors. This is done

so that algorithms that search through the processing nodes for some resource can

efficiently step from node to node. I have written Multilisp utilities to translate

some different topologies to the form needed for N usim.

4.1.12 Statistics Gathering

N usim collects counts of most important events that occur in the system. 3 Each

processor collects its own statistics locally for efficiency. One MCODE instruction

turns statistics gathering on, another turns it off, and a third dumps the statistics

from each processor in the system out to a file.

Statistics are enabled or disabled for each task in the system individually. The

micro-state of each process contains a pointer to the area of memory where we collect

2This is the organization of the Concert system.

3 As well as some unimportant ones!

4.2. VARIABLES 51

statistics for that process. Since we could have several banks of memory allocated

for statistics, we can change banks just by updating one pointer. This gives Nusim

the flexibility to collect statistics for different tasks, or for different phases of the

program, individually. See Appendix app:nusim-doc for a more detailed explanation

of N usim's statistics mechanism.

4.1.13 Implementation

Nusim is written in C. It consists of 12,000 lines of source code (400K bytes of

source). The executable program is 160K bytes long. It also uses a library of

Multilisp code to define the Multilisp compiler and run-time system. This library,

written by Juan Loaiza and Robert Halstead, is an additional 7000 lines of code.

4.2 Variables

As stated in Chapter 1, the ma.in focus of this thesis has been to measure the

effect of different architectural variables on the locality of reference of different

Multilisp programs. Thi& section describes those variables, and the effect that they

are expected to have on the behavior of applications.

4.2.1 Topology Variables

The most important variable affecting the locality of reference in N usim is the

topology of the organization that we are simulating. We can define the diameter of

any topology as the maximum distance between any t"WO nodes. Different topologies

will have different diameters.

We would expect that, all other things being equal, the locality of reference of

a M ultilisp program will depend on the diameter of the underlying topology. This

is certainly the case if the processor is ignorant of that topology. However, some

52 CHAPTER 4. SIMULATION METHOD

functions of the processor architecture could be made more efficient if they exploited

the organization of the external system.

One of the areas that shows the most promise of improvement is in obtaining

resources from the other nodes in the system. A processor may run out of memory

in the midst of creating a data object, in which case it might have to 'borrow' a

block of memory from another node in the system. Temporarily, it might use this

memory as if it were local. It would be better if the two nodes were close together

in the system topology, to minimize expensive accesses a.cross the system.

Another resource that processors must obtain more frequently is an executable

task. Any time that a processor is idle, it searches task queues in the system for

a task that it can run. In the current implementations of Multilisp, a processor

will then load that task into its local process queue. However, tasks are spawned

on a particular processing node, and could retain references to objects that were

allocated in that node. In order to reduce the number of global accesses in the

system, we might again prefer to grab tasks from nodes in the system that are close

to our own.

Of course, the resource allocation functions of a Multilisp ma.chine might use

knowledge a.bout the system topology in other ways. One problem in many mul­

tiprocessors is how to balance work a.cross the ma.chine. While we can increase

the locality of accesses by encouraging work to stay local to an area, this may

also decrease the amount of parallelism available in the system. Another danger in

not distributing work across the system is that we may produce 'hot spots' in the

communications network. Certain pathways may swamp with accesses, while other

parts of the computer remain idle. So scheduling functions must strike a ha.lance

between increasing the locality of programs and increasing their distribution.

For the purposes of this thesis, I have tried to measure the tradeoff between

locality and parallelism, by trying different task searching strategies and seeing

their effect on the execution of application programs. The task searching strategies

4.2. VARIABLES 53

that I used either ignore the underlying topology of the machine that N usim was

simulating, or take advantage of that topology by searching local processing nodes

first. Section 5.2.2 explains the searching algorithms in more detail.

4.2.2 Task Scheduling

A second class of decisions that affects the locality of accesses in a Multilisp program

is how to distribute work between process queues and task queues. For example,

we could give each processor a very large process queue. Then every process that

was spawned by a future instruction would remain in that same process queue.

Eventually, all the parallel tasks in the system could sit in the process queue in a

single node. Since process queues are private to a processing node, this would not

lead to much parallelism in running a particular program. However, it might allow

us to have excellent locality of accesses!

Another example of task scheduling strategies is how many tasks we load from a

task queue at one time. A processor that has spawned many tasks might have several

of them in its task queue. If these tasks were created from the same instruction

stream, they will likely share references to some data objects. Another processor

that is idle and looking for tasks to run could grab several adjacent tasks from the

first node's task queue. The number of tasks that it steals could affect the locality

of the program.

Finally, there are many other possible algorithms for grabbing tasks out of a

node's task queue. Figure 4.3 shows the parallel paths of execution through a

typical program. A task which has been spawned oft' early in the running of a

program, such as branch B, will later produce many other parallel tasks. In contrast,

branch D, which is produced much later, will not spawn a.ny new tasks. If another

processor were looking for tasks to run, it could either choose an early task that

could potentially produce much parallelism, or later tasks, which are more likely to

produce results used by other running processes. In Nusim, we default to grabbing

54 CHAPTER 4. SIMULATION METHOD

the most recently produced tasks.

Figure 4.3: Paths of execution in a program. Path B is spawned early, path D is a

'leaf' task.

Chapter 5

Experiments and Results

5.1 Experiments

While most of the effort in this the.sis was spent building the Nusim simulator, my

primary research goal was to run the experiments deecribed in this chapter. I ran

several test programs under Nusim, varying several parameters of the architecture

being simulated, as well as the external organiM.tion of the system. Under these dif·

ferent conditions, I tried to measure the locality of reh:ence of Multilisp programs,

and the extent to which that locality can be improved. All the programs discussed

here were written or adapted by members of the Parallel Processing Group at M.1. T.

5.1.1 A Discussion of Benchmarking

When measuring characteristics of a language to be used in the architectural design

of a. machine, the most important consideration is to choose a mix of test cases

that represents the applications that will be run in that language. This is especially

difficult if the language is as young as Multilisp, in which few large applications

have been written.

Of course, selecting a cross-section of programs does not mean that one should

place equal importance on ea.ch of these benchmarks when evaluating different ar-

55

56 CHAPTER 5. EXPERIMENTS AND RESULTS

chitectures. The most popular set of Lisp benchmarks currently in use has been

run on a. wide variety of Lisp languages, implementations, and machines [23]. The

Gabriel Benchmarks are a set of small progr&m8, each targeted towards a. differ­

ent aspect of a Lisp implementation. A benchmark that exercises function calling

exclusively, such as TAK [23] may be less representative of Lisp programs than a.

function like Browse, which mimics some of the behavior of AI searching programs

[23].

Most benchmarks suffer from another problem: a. function that will be repeat­

edly run with different parameters, possibly on diiterent machines, should be small

and well understood. This is to shorten the nmning time of the program and to

make data collection easier. However, a property of most Lisp application programs

is their large program and data sizes. While small benchmarks may fit entirely

within the caches of a particular machine, real Lisp programs often overwhelm the

memory system.

For my test cases, I have tried to choose a selection of programs both from the

'classic' benchmarks as well as real applications that were written in Multilisp. The

speed of our implementation limited the size of the data sets used as inputs to the

test programs. However, some of the programs have a large code size. This should

lead to a realistic mix of instructions and access types.

These tests are not intended to compare the present implementation of Multi­

lisp against other Lisp implementations. Rather, they can be used to see the effect

of changing parameters of an architecture that runs Multilisp. An algorithm can

be coded many different ways, with widely different results. Even to compare two

different Lisp implementations by using the same source code for the benchmarks

is difficult, since each level of the hierarchy, from compiler down to ma.chine ar­

chitecture, has its own effect on system performance. Even the source code of the

benchmarks might be different on different systems. Benchmarks that are coded in

Common Lisp usually have to be re-coded to run in Multilisp.

5.1. EXPERIMENTS 57

The placement of futures in a Multilisp program has a great effect on the amount

of parallelism obtained in running the program. In spite of tools developed by

members of P.P.G. [27), deciding where to insert futures in code is still a time­

consuming and somewhat arbitrary process. The small benchmarks used by the

group have been carefully studied, to try to get the optimum parallelism out of

each function. Larger programs are necessarily less understood. In spite of the

difference in the 'quality' of the test cases used here, they should accurately reflect

the potential parallelism of real Multilisp applications.

5.1.2 The Test Cases

The data presented in this chapter is from five different test programs. Two are

small benchmarks from the popular literature, and the other three are applications

written in Multilisp that were developed at P.P.G. The complete source code for

each of the programs is given in Appendix C.

Quicksort

This is a version of Quicksort that was rewritten for Multilisp and made into a

parallel application by adding futures in a few crucial locations. This benchmark

is perhaps the best known and best understood program used by the P.P.G. group.

Because of the care that has been put into its implementation, Quicksort has more

parallelism than any non-trivial application.

In these benchmarks, Quicksort is used as an extreme test case: It runs many

loops of a few short functions. Therefore the distribution of instructions for a run

of Quicksort is skewed towards the instructions that occur within those inner loops.

Also, because of the number of futures in the code, this application puts a greater

strain on the fork, join, and task handling aspects of a Multilisp implementation.

For this series of tests, Quicksort was used to sort a list of random numbers.

The only parameter to the program is the length of that initial list. Typical run

58 CHAPTER 5. EXPERIMENTS AND RESULTS

times for a 700 element list, with N usim running on 27 processors of Concert, range

from 120 to 310 seconds.

Fboyer

The Boyer benchmark that has been widely used to compare Lisp implementations

[23]. It is a simple theorem proving program. The program has two main parts: a

rewriter and a tautology checker. The rewriter expands the original expression into

a series of IF clauses. The tautology checker steps through this expanded expression

to determine if the entire statement is true. It makes this analysis by maintaining

lists of true and false statements. The components of any IF statement are checked

against these two lists.

Fboyer is based on the original algorithm, but written in the Scheme language at

B.B.N. Inc.1 The writers made it into a parallel application by adding futures to the

code. Members of the P.P.G. group improved on their implementation by slightly

changing the placement of futures, and by speeding up particular primitives.2 It is

useful to note that these changes sped up the entire program by a factor of five.

This application is a more substantial one than Quicksort, and yet is smaller than

the average Lisp program. Since Fboyer looks up clauses in a database of axioms

that it has built up, most of the primitives in the program are list operations such

as car, cdr, and atom, a.swell as property list operations such a.s get.

While Fboyer has several small ha.sic inner loops, both for the rewriter and the

tautology checker, it operates by recursively expanding an expression. This ex­

pression could be arbitrarily complex, consisting of levels of sub-expressions. This

means that Fboyer should have more interesting patterns of execution than Quick­

sort, whose input is always a simple list. In particular, the number and sizes of

1 Written by Seth Steinberg, 1986
2Specifically, assq and equal were r~oded for speed, and an assq was changed to get-prop. The

B.B.N. implementation spent most of its time in assq. The version that I used was somewhat more

realistic in its instruction mix. See Appendix C for details.

5.1. EXPERIMENTS 59

parallel tasks that are spawned during the run of the program should depend on

the form of that input expression. In this way, the types of operations performed

and the patterns of parallel tasks produced by Fboyer should be closer to that of

real applications, even though it is a well understood benchmark.

The only parameter to the Fboyer benchmark is the input expression, which

can contain any combination of logical, numeric, list structure, and conditional

operators. For the purposes of my evaluation, I chose a simple test case:

'(implies (and (implies (f x) (g x)) (implies (g x) (h x)))

(implies (f x) (h x)))

This expression returns true, of course. Usual runtime for Nusim on a 27 processor

Concert multiprocessor ranges from 85 to 135 seconds.·

Consim

Consim is a logic simulator program written by Elizabeth Bradley [12]. It simulates

an arbitrary circuit as a finite state machine, that is, a block of combinational logic

fed back through a set of registers. (See Figure 5.1). The combinational logic is

expressed in terms of primitive boolean functions such as NAND, NOR, and NOT

gates. There can be no feedback paths within the combinational logic, the only

loop in the circuit being through a set of synchronous registers.

To simulate one cycle of the circuit, Consim initializes the inputs to the block

of combinational logic and allows those signals to propagate through the rest of

the gates. When all outputs have settled, the FSM registers are latched to start

the next cycle. Consim represents each primitive gate in the circuit by a Multilisp

function. More complex circuits are represented by the interconnection of several

primitive functions.

Consim introduces parallelism into its simulation in two ways. First, selected

logic gate primitives are enclosed in future instructions. This allows the simulator

60

INPUTS -----

CURRENT
STATZ

LOGIC

CLK

CHAPTER 5. EXPERIMENTS AND RESULTS

1------ OUTPUTS

NEXT
STATE

Figure 5.1: Finite State Machine Model

to mimic the operation of several gates at once. In this way, the parallelism of the

simulator is exactly like that of the circuit itself. Second, Consim can run several

cycles of the circuit concurrently. While it may seem that the data dependencies of

the circuit would not allow a.ny parallelism using this approach, some computation

can usually proceed without all of the inputs to the cireuit being valid.

This was the first 'real' application program that I tested. It is a moderately

large application: the run-time code for the simulator amounts to approximately

1000 lines of Lisp code. In addition a user must write a high-level language descrip­

tion of his circuit, which is compiled down to Multilisp code. This can add several

hundred lines of code to the simulation.

The simulator runs as a simple loop, calling diiferent functional routines for the

components of the circuit being simulated. The circuit is not simply a data structure

that ca.n be manipulated, but an interconnected group of Multilisp subroutines.

This means that the form of the circuit has a great effect on the runtime properties

of Consim. This was demonstrated in [13].

The test circuit that I used as an input to Consim was a four bit ALU, configured

to act as a counter. It exploited parallelism both by running circuit components

5.1. EXPERIMENTS 61

in parallel and by allowing cycles of the entire circuit to run concurrently. Because

of this approach to parallelism and the large size of the circuit, it produced more

parallelism than any other Consim simulation.

A second parameter was how long to run the simulator. Within Nusim running

on a 27 processor Concert system, Consim typically took between 140 and 345

seconds to simulate the counter for 70 cycles.

Multilog

Multilog [51] is a. simple query language interpreter, in the flavor of Prolog [20]. It

maintains a database of assertions, and allows the user to query the data.base. Just

as in Prolog, a user can ask the database whether a statement is true or false, or

may ask what statements in the database match a particular pattern.

The main operations that Multilog performs are pattern matching, unitlcation,

and database manipulation. It also contains an evaluator and an interactive driver

loop. In this way it is representative of a large class of Lisp software. Since the

database storage and lookup manipulates streams (53] extensively, Multilog spends

most of its time building and disassembling lists.

Multilog's author introduced parallelism into the program in two ways: one was

to explicitly write the evaluator and pattern matcher using futures to fork of£ parallel

searches. The other was to introduce futures into the streams used throughout the

program. Since Multilog uses streams in all queries to the database, as well as

inter-procedure communication within the program, this yields a large amount of

concurrency.

Multilog is a large program - the source itself is almost 1000 lines of Lisp

code, and the default database is another 250 lines. The dynamic operation of this

program is complex, reflecting the influence of many small routines. However, since

Multilog always runs the same operations of pattern matching and unification, the

gross operation of the program should be independent of what queries it is trying

62 CHAPTER 5. EXPERIMENTS AND RESULTS

to prove.

In the tests presented here, I ran Multilog on a query that attempted to trace a

path through a graph. The graph consisted of eight nodes, connected together by

links. The test case merely asked whether two nodes in the graph were connected

by some set of links. Typical runtimes for this test case on a 27 processor Concert

system ranged from 400 to 700 seconds.

Compiler

The final test case that I ran for this research was the Multilisp compiler itself. This

is a large and complex piece of software, and is also the first large application that

was written in Multilisp.

The compiler is composed of several phases. The Reader reads an expression

from a file or from the user. A set of routines known as Compile-expr then compiles

this expression into a symbolic assembly language by recursively compiling each

sub-expression. Finally, the Assembler generates assembly binary MCODE from

the symbolic assembly code. The specific part of the compiler that I instrumented

was the central phase. This was partially because of the difficulties in instrumenting

I/O accesses in Nusim, and also because Compile-expr seemed to be representative

of a larger class of programs than either the reader or the assembler.

Compile-expr obtains concurrency by spawning a new task to compile each sub­

expression. Thus the amount of parallelism that can be achieved depends on the

complexity of the input expression. Statements that are 'wide', that contain many

sub-expressions at the same level, produce many para.llel tasks. However, these

tasks will be short-lived unless the sub-expressions are also deep, giving the compiler

something to work on.

Since the Multilisp compiler is a large piece of software, it has not been subject

to the same amount of scrutiny as some of the smaller benchmarks that were written

in the Parallel Processing Group. It is more difficult to find the optimum placement

5.2. THE VARIABLES 63

of futures in a large, heterogeneous program than in a smaller or more regular one.

For this reason, the Multilisp compiler could probably be optimized somewhat to

produce more parallelism, or to shorten its run time. However, iri this respect, the

Multilisp compiler may also be characteristic of other application programs. One

hopes that the size of the program will compensate for the fact that futures may not

always be well placed, since there should still be enough parallel tasks to saturate

a target machine. The compiler took between 155 and 230 seconds to compile the

test expression in N usim.

5.2 The Variables

This section describes the variables that were varied in running application pro­

grams under Nusim. Nusim allows a. user to vary selected low-level variables at run

time. Using this facility, it was easy to write script programs to run through many

invocations of a function, each time varying one parameter. Appendix B lists the

architectural variables in N usim, as well as how they can be modified.

5.2.1 Topology Types

For the tests described above, the most significant para.meter of the Nusim emu­

lator was the external organization of processor nodes that were being simulated.

As described in Section 4.2.1, Nusim allows a user to connect nodes in arbitrary

patterns, and to see the effect of those topologies. What follows is a description of

the three basic topologies used in this thesis.

Line Topology

The simplest topology that I tested is known as the line topology. It simulates the

organization of a set of processing nodes, each of which can orily communicate with

two adjacent nodes. The line is closed at either end to form a ring. See Figure 5.2.

64 CHAPTER 5. EXPERJMENTS AND RESULTS

NodeO

Node Node 2

Node 4:

Figure 5.2: An example of a line topology.

In a line topology consisting of n nodes, any node can communicate with any

other by stepping across at most r n/21 nodes. There is a COBt associated with each

of the accesses that a processor can make. A processor's local node memory is an

access of distance 1, the two nodes on either side of it are at distance 2, and so on

to the n/2 node. The 'diameter' of this topology, as defined in Section 4.2.1 is one

half of the number of processors in the system. 3

Segment Topology

The segment topology assumes that all processors in the system are separated into

distinct groups. Figure 5.3 shows this distinction. The segments are tied together

by a single global bus, while the processors within a segment share a local bus. This

cuts down on the global bus traffic, and speeds up local bus accesses.

This organization is much like the one used by the Concert multiprocessor sys­

tem. However, note that while I was simulating a segmented topology on a 'real'

segmented topology, the two were not necessarily related. For instance, for most of

the tests I ran, the Concert multiprocessor contained 27 processors, split among 7

3 In other words, the diameter of the line topology is actually one half the circumference of the

ring!

5.2. THE VARIABLES 65

•••• • • • • • • • • • •••
Figure 5.3: An example of a. segmented topology.

slices. The system that I simula.ted, on the other hand, consisted of 27 processing

nodes, divided into 4 segments. The reason for this distinction wa.s to encourage

sharing among processors in a. segment. The simula.ted topology seemed to better

reflect potentia.1 computer systems than the organization of Concert.

In the model of the segmented topology, accesses by a processor to its node's

local memory are at distance 1. Other nodes in the same segment a.s the originator

are at distance 2. Fina.Uy, accesses across the global bus to any of the processors

in other segments are at distance 3. I could have classified these globa.1 accesses by

the distance of the access. However, in the Concert system, there is no difference

between the length of time required for a.n access between two adjacent segments,

and the time between two widely separated segments. All accesses which require

some part of the Ringbus are equally expensive. It seemed sensible to mimic this

behavior of a real system when simula.ting such a topology.

Grid Topology

The grid topology ha.s the greatest connectivity of the three topologies tested. It

represents a two dimensiona.l grid, in which each processing node is connected to

four adjacent nodes. See Figure 5.4.

For the purposes of simula.tion, I tried to make the grid as square a.s possible.

For example, I could ha.ve easily divided the n processors into a 2 x y grid, but

this would increase the diameter of the system. See Figure 5.5. In the 2 x y case,

a node has two paths to its nearest neighbor in one direction, but another node

is f n/21 away. This topology looks too much like a line to be interesting. The

66 CHAPTER 5. EXPERlMENTS AND RESULTS

... • 'Ill

...
'Ill

• •
""'

Figure 5.4: An example of a grid topology.

Figure 5.5: A grid topology that is too narrow.

Figure 5.6: The grid topology used for this thesis.

5.2. THE VARIABLES 67

number of processors in the system might not factor evenly into n = x x y. The

missing locations on the grid a.re treated as simple 'short cireuits.' An access across

those holes in the grid just skips over the intervening distance. For example, the 27

processor Concert used for most of these experiments wu divided into a 5 x 6 grid.

Finally, a simple rectangular grid is an open topology, since the side nodes are

only connected to three other nodes. For the grid topology used here, I connected

together nodes on opposite sides of the rectangle. This makes for a closed network,

and eliminates any strange edge effects. In fact, this topology represents what

would happen if someone wrapped a fishing net around a torus. Figure 5.6 shows

this arrangement.

5.2.2 Search Routines

Section 4.2.1 de.scribed some of the ways to exploit knowledge of the system topol­

ogy in a potential Multilisp machine. Nusim can use this knowledge to manage

resources. For instance, an idle processor must search for executable tasks among

the other nodes in the system. The simulator can use several different search rou­

tines for this function. Switching between search routines shows the effect of local

knowledge of the system topology.

I defined three basic seatth algorithms for the tests described here. Two of them

ignore the topology being simulated. Since they do not eneourage locality among

groups of nodes, they should determine the lower bounds of locality of Multilisp

applications. A third algorithm simply searches sequentially through the nodes in

the system, trying successively more distant nodes.

Random Search

There a.re two random search algorithms: Random and Close-Random. Random

mode will search each node in the system for a particular resource, but will check

them in random order. If the algorithm fails to find a resource on a. node, it will

68 CHAPTER 5. EXPERIMENTS AND RESULTS

not check that node again. Close-Random mode is similar, but first checks the local

node for the resource, before trying all other nodes at random.

Incrementing Search

This is a more deterministic method of searching the system. A processor starts by

checking its local node. H the resource is not available locally, it will search ever

more distant nodes. The other nodes are sorted into groups based on their distance

from the local processor. If the processor cannot find the resource in one group, it

will try a group at the next further distance. If a processor is trying to load several

tasks from the system, it will steal all tasks from a particular group before moving

to the next further group. Since the topology is always defined with respect to our

local node, each processor usually has a different perspective on the system. Every

node in the system is identified by a unique number. The search at a particular

distance always starts with the lowest numbered node in that distance group.

5.2.3 Task Scheduling

I ran experiments with two of the parameters discussed in Section 4.2.2. The first

is Runsched, a variable that sets the size of the proceuors' process queue. It is the

maximum number of tasks that can be 'cached' loca.lly within the processor, ready

to run. For the tests described here, Runsched ranged from 1 to 4 processes.

The second variable in these tests is known as TaaJcscbed. Once a. processor fin­

ishes running all the processes in its process queue, it becomes idle. The Tasksched

parameter sets the number of tasks that an idle processor tries to load into its pro­

cess queue before starting to run any of them. If there are not enough free tasks in

the system, the processor simply loads as many processes as it can into its queue.

Note that the value of Tasksched must be less than or equal to the current value of

Runsched.

I did not run test all combinations of Runsched and Tasksched. Preliminary

5.3. DATA GATHERED 69

experiments showed that Runsched has a much more significant effect on the locality

of accesses in Multilisp and on the amount of parallelism attained by the program.

The results of the experiments with Taskaclied are not included in this chapter.

I hope to study the effect of Tasksched and other scheduling parameters in more

detail a.t a. later date.

5.3 Data Gathered

The primary goal of this thesis is to quantify the locality of accesses in Multilisp

programs. Thus all the statistics discuaed here are intended either to quantify that

locality of reference or to explain it.

To determine why a test program has a certain loca.lity of reference, it is useful to

see the distribution of accesses made by the program. Section 5.3.1 discusses how

to classify the types of accesses in Multilisp. Before discussing locality, we need

a way of quantifying the locality of different programs. Section 5.3.3 defines two

such metrics of locality. Finally, since dift'erent benchmarks do dift'erent amounts of

work, they must be normalized to some standard in order to compare their statistics.

Section 5.3.2 discUS8e8 how to compare data from different benchmarks.

5.3.1 Access Types

Discussion

Multilisp progr&ID8 deal with many types of data objects. For the purpoees of this

thesis, they are divided into several classes, depending on how the data will be

used. The important distinction is between data. that could be ca.ched locally to a

processor, and data that requires a global access.

Some data objects a.re truly global, that is, they are shared by several procedures

and by different concurrent processes. However, if the value of one of these global

objects is constant, it could be cached locally by a. processor. For frequently used

70 CHAPTER 5. EXPERIMENTS AND RESULTS

constants this greatly reduces the a.mount of global traffic. An example is Multilisp

code, which is stored 88 a. sequence of MCODE opcodes. Although in Multilisp it

is easy to bind a. variable name to a compiled object, programs do not rewrite the

instructions within a code object.

A Multilisp machine must use a. different approach with global objects whose

value is updated during the run of the program. Since these mutable objects are

she.red, a. processor cannot cache them locally unless it uses some technique to main­

tain cache consistency (42,54]. Some algorithms have been proposed that guarantee

cache coherence at low cost, but they 88tmme that a.ll caches in the system a.re con­

nected to a single common bus (17]. Here, the cost of. maintaining ca.che coherence

must be weighed against the benefit of speeding access to loca.lly cached objects and

reducing globa.l communication. All globa.l symbols in Multilisp a.re considered to

be mutable objects. User data. objects, such 88 lists and arrays, are also mutable. 4

For this reason, one might wish to classify global mutable objects further by

how often they a.re updated and how often they are read. Some she.red and mutable

objects in Multilisp programs are read much more often than they are written.

Determining how often this occUIS would help determine the potential benefits of

local caching. The present version of Nusim cannot answer this type of question for

she.red objects. Several members of P.P.G. have expressed an interest in pursuing

this work in the future.

Another way of cla.ssifying the data objects in Multilisp deals with how widely

distributed a.re the accesses to an object. Some data objects, while not local to a

particular procedure, may only be used by a few procedures or a few concurrent

processes. Such objects must be accessible to the rest of the system, but will often

only be touched by the processor that first allocated them.

For example, free variables in Multilisp programs are lexica.lly bound. To find the

binding of a. free variable, a procedure must step through the environment frames

4 Although rplaca is coosidered poor programming style!

5.3. DATA GATHERED 71

of lexically enclosing procedures. A program may have spawned several concurrent

tasks that refer to this free variable. The tasks might get halted and re-started,

moved to a different processor, and still have to look up the variable binding in that

environment frame.

For this reason, all environments in Nusim are now allocated in the heap. Ob­

jects in the environment of a process are then accessible to the entire system. How­

ever, most environment accesses are made to the local environment. Therefore,

most accesses to an environment will be fast and local. An alternative might be to

allocate environments on the stack of a process instead of in the heap. Environ-
"

ments would only get moved into the heap to allow free variable references. This

would speed up most environment accesses at the cost of considerable complica­

tion at compile and at run time. Knowing how often a process refers to lexically

enclosing environments would help determine whether this was a good trade-off.

We would like to see how often global accesses refer to these different classes of

data in typical Multilisp programs. That should give 80Jlle idea of the benefits of

different approaches to speeding acceaes to particular data types. My experiments

have shown that the different classes of data objects respond differently to chMgjng

task scheduling parameters.

Classes of Acceu in N uaim

Every data access in Nusim is classified either by the type of object that it touches

or by the reason for the access. These accesses are then divided into several broad

classes using the criteria discussed above.

The classes of access are as follows:

• Constant data.

This class includes accesses which load blocks of code onto each processor in

the system. It also includes accesses to closure objects that may have been

;;4aquae;tat1u .. amegz;4u.XJ1LtM, £ .. JiiU.kX4UMti@UJL)l1Jk,il$01tJUJJbJSJSt t$2$USIUU4llttUJ]J4A.t
1,'•·'·, , ..

72 OJMP.19.&.

crated at,__...__ tilit fll. 8 '. ft.11\r.tl:•lifllrd ICHll• teLmp

~· , , :•••Ill
• Data local "' & ,. ••••••

Thill._ it,_ .. ta.tit •l••tJ•;it<t•t'·l•'illl•,..., of a,..._,,,;,..
aocie ... ii 11t 111 , •• flllf:'~'''J••** ---
It iad••• ... rWw• • ... ll1,11il~··t,•\•ILlCJl'fJ,JI·..- .. • .._.
,,_.._ti.. IWIHlll If ... ;ililft;.....-.JU;f.~,~ , ·a.1 ;It I • 1Jra•11 to

-- If Jrl "ill 1r'fllt1~·~,,~)~,~ ... • 1111 ttla

paaa fnrfl'r• to•'111 l•'nlflr••1lflidlltll•:: ·
. - '' ': -~:·'.:· .<.-':' '':•-',·,, -

•GloW...._

The .._., ._ ta 111.tt•?Mlltl.:lrie . Mn1lt to .m.
• ' . - ' .•. ., •.. :;·. ,.c - ~ -·

.. ., --~---·11!•~1~1.,,f,Jtl:tilit:•:ti.
Aa LI 1.••t~T ·'·'· ... · .. . i .: .. lld111•11~111•

...............
···-···•·4-­••• ,,,, •-• l•1.•111a • 1.tlc(;oo·tt11·imrt:~tllf!1iil~li 111 •l ••••• .. · r-- . .: ·t:.:·« ·. ,,-.. _.,,.,_, ·, ~ --'\'. __ ;.,,. ·/- ·.. ,· • -_.. · ··.,

All ~ .. ~:p,~•:-.~····)~ .. .,.. ... ,
ua-.. l11t1H1 >

- ' . '•. -, ,_,·::,, .

......... ,..,._. • .,n(nll ·WllJlll . , ; •••not• W• 1111r,_

...... ,.:-.;, 1·1 •. 11itl:'J1Qlf'";

....... dl'1ftllf
•.•.. .-........... ..

Ii...,.._. 6ltwe ..,.. iaa li1•1.:.Hr::••rldtn1 u11 • .., ue wcl ia a
,· - ·, , .. , .

5.3. DATA GATHERED 73

unique manner in Multilisp programs. Futures are both the means to spawn

tasks (fork), and to synchronize concurrent tasks (join). They are shared

by different parallel tasks in the system. Since these tasks are likely to be

running simultaneously, they will likely also run on separate processors. This

means that futures may require more global communication per object than ·

any other data type. Finally, ·the number of futures in the system gives an

approximation to the maximum a.mount of parallelism available in a. particular

algorithm. This alone makes it an interesting data. type to count separately.

5.3.2 Normalizing the Data

The types of accesses made by some algorithms depend on how long the program

runs. Running the same test program on a larger test case will touch more data

and usually generate more parallelism. Since ea.ch node in a multiprocessor has

a limited amount of memory, this data will be spread over a greater area of the

ma.chine.

The problem of comparing different test programs is worse since ea.ch program

makes a. different number of accesses among a different distribution of object types. I

use two methods to normalize the types of accesses made by dift'erent test programs.

The first is to divide the types of references by the total number of references. This

shows the percentage of accesses that fall into ea.ch of the different classes. The

second is to divide the references by the number of instructions executed by the

program.

Instead of counting all the instructions in a benchmark, I use the number of

completed instructions run by a. program as a. baseline. Not all instructions in N usim

run to completion. When Nusim fetches the operands to a MCODE instruction, it

will sometimes get an exceptional condition. For instance, N usim will ha.ck out of

an instruction that touches an undetermined future. Completed instructions a.re all

the instructions executed by a process that do not get exceptions.

74 CHAPTER 5. EXPERIMENTS AND RESULTS

5.3.3 Locality of Access

The statistics of locality reported here are all based on counts of heap accesses.

The accesses fetch Lisp objects, fetch links to those objects, or update the value of

the objects. N usim counts the accesses to data objects in each type class. It also

tracks where those accesses occurred in the system topology. By the definitiom of

· topology in Section 4.2.1, accesses to local memory are at distance 1, while nodes

elsewhere in the topology are at successively greater distances.

For all the processors in the system, one could count the accesses that each made

at different dista.nces. One way of reporting the locality of accesses is simply by

showing the percentage of accesses that occurred at each distance. Unfortunately,

while this graphical method demonstrates the distribution of accesses for a particu­

lar test-case, it is not useful in comparing the results of aeveral different test-cases.

I have instead proposed two different measurements of the locality of access for a

run of a particular program.

Local versus Distant

The first metric is simply the percentage of accesses made by all processors to local

memory. Note that BB mentioned in Section 4.1.10, in Nusim a procedure always

creates objects in its own local memory. Thus a count of local accesses will indicate

how often a process refers to objects that it has allocated, as opposed to those

created by a.nother task. A program that has 'perfect' locality of reference will

make all its accesses to local memory. 5 Most Multilisp programs cannot reach this

ideal, because when tasks are spawned in parallel, one task will often migrate to
' another processor. Thereafter, any object that one task uses to communicate with

another will require a distant access.6

11 Thia ...umes that couatant references are counted as local acceues.
6The alternative of keeping apawaed tub on the procellOr where they were created will indeed

increase locality, but will not exploit the underlying multiproce8IOI' orpnisation.

5.3. DATA GATHERED 75

The present implementation of N usim does not try to cache the value of different

global variables. It also does not count how often objects are shared by different

tasks. The simple ratio of local accesses thus indicates the maximum amount of

global communication that Multilisp programs require. Future Multilisp processors

may require fewer global references if they cache the value of frequently used mutable

variables.

Finally, quantifying the number of local accesses made by different algorithms

will help determine the benefit of speeding references to local memory. If the major­

ity of Multilisp algorithms make fewer local accesses than distant, the effort might

be better spent speeding communication between processing nodes.

Mean Diatance

The mean distance of accesses in Multilisp is the sum of the distances of each access

in the system, divided by the total number of accesses. If memory accesses were

randomly distributed throughout the system, the mean distance of access would

be proportional to the diameter of the topology. For a given topology, this metric

should also show the effect of task parameters that attempt to increase the locality

of references.

Instead of merely measuring how many times processes refer to their own data

objects, this metric shows the effect of clustering objects among a few nearby pro­

cessors. In the example of a task that moves to a new processor after creating

some objects, the distance of each access to those old objects is proportional to the

distance that the task has moved. The task scheduling algorithms discussed in this

thesis should discourage tasks from moving far from their node of origin.

If a program only referred to local data, it would show a mean distance of access

equal to 1. This is not likely to happen in N usim, because most programs refer to

code chunks and glo}>al variables that are distributed around the system.

76 CHAPTER 5. EXPERIMENTS AND RESULTS

5.4 Results

5.4.1 Types of Accesses

Figure 5. 7 shows the classes of fetches that are made by different application

programs. Ea.ch column of the graph shows the accesses made by a different

benchmark. 7 The lower stipple pattern represents cooatant accesses, as defined

in Section 5.3.1. The second class represents global accenes to data that is shared

by all nodes in the system. The next two classes a.re fetches of environment objects

&nd stack' hunks. We expect both of these classes of data to remain local to the

processing node that allocated them. Finally, the uppermost pattern is a. count of

how often the program touches futlll'e objects.

This graph of fetches is normalized by the number of real instructions executed

by each benchmark. The vertical axis represents counts m accesses per 1000 instruc­

tions. Thus, the Compile benchmark makes 200 acceues to 'coostant' data per 1000

instructions. A benchmark may make more than one heap access per instruction.

This is because some instructions, such as a subroutine call, require many heap

accesses to load code blocks, stack hunks, and procedure arguments. Figure 5.8 is

a. similar graph of accesses, but represents data stores rather than fetches.

For both of these graphs, the benchmarks were run with a 'Random Choice' task

searching algorithm. The size of the Process Queue, as specified by Runsched, was

set to 1 process. Ea.ch benchma.rk was run on three dill'erent topologies. 'Line(14)' is

a line topology of 27 processors, with a diameter of 14. 'Grid[5x6)' is a rectangular

grid topology, which simulates an array of 30 processors, 5 high by 6 wide. Finally,

'Segm(4x7)' simulates a topology composed of 4 segments of 7 processors each.

7Note that 'PQSORT' ia an abbreviation for the Quicbort benchmark.

5.4. RESULTS 77

runr.ndl-ftch

-··

Figure 5. 7: Basic data fetches. Graph shows data fetches per 1000 instructions for

each benchmark. Accesses are sub-divided by class of data. From bottom to top:

constants, global variables, environment fetches, stack hunks, and future touches.

Benchmarks were run with random task search algorithm and Runsched= 1, on

three different topologies.

78 CHAPTER 5. EXPERIMENTS AND RESULTS

runrandl-•tore

-··

'"·'

141.•

1:18.I

•••

"·'

41.I

•••

•••

Figure 5.8: Data stores per 1000 instructions for ea.ch benchmark. Accesses are

sub-divided by class of data. From bottom to top: global variables, environment

stores, and futures created. Benchmarks were run with random task search algo­

rithm and Runsched= 1, on three different topologies.

5.4. RESULTS 79

Discussion of Access Types

The data objects that a benchmark touches are largely independent of the topology

upon which it runs. A deterministic program will always run the ~e set of

MCODE instructions and will have to access the same data objects. However, the

connectivity of a topology may affect the timing of different tasks in the program.

Searching for executable tasks takes time, and a benchmark ~mning on a topology

with a large diameter may spend more time in this search operation. Slight changes

in the timing of tasks will affect whether one task finishes before another, so that

more tasks may wait on undetermined futures. As shown by the graphs, this effect

is a minor one for the benchmarks tested here.

The five benchmarks accessed the heap at far different rates. The Quicksort

benchmark was the most intensive, making 1.9 fetches per instruction. It exceeded

the other benchmarks in all cluses of access except environment fetches. At the

other end of the spectrum, the Multilisp compiler made only 0.8 fetches per instruc­

tion.

This difference refiects the level of parallelism of the two benchmarks. PQSORT

consists of a few small routines that run for many iterations. Most o{ those routines

are spawned in parallel. The Compiler is a larger program that contains more

substantial subroutines.

All the benchmarks accessed environment objects at approximately the same

rate. Each of the programs made between 250 and 270 environment fetches per

1000 instructions. This constant rate of accesses reflects both the style in which our

benchmarks are written and the type of code produced by the Multilisp compiler.

All arguments and local variables of a routine are stored in the local environment.

The compiler does not eliminate common sub-expreuions. Instead, every time

a procedure refers to one of its local variables, the compiler produces the same

sequence of MCODE instructions to fetch the value from the environment. In typical

Multilisp programs, the most frequent MCODE instruction fetches the value of an

80 CHAPTER 5. EXPERJMENTS AND RESULTS

argument to a subroutine. 8

Figure 5.9 compares the futures produced by each benchmark per 1000 instruc­

tions. The lower stipple pattern is the number of futures produced by the bench­

mark. Next is the number of times the future was touched after its value had already

been determined. The top pattern is the number of times that a process touched

an undetermined future and was forced to wait on it. The number of futures pro­

duced indicates the potential parallelism of the program, since each future ca.uses

a process fork. Two processes synchronize or join every time a process touches a

future.

Quicksort generates more futures per instruction than any of the other bench­

marks. Consim is next, followed by Fboyer, Multilog, and the Multilisp Compiler.

Table 5.1 summarizes some of this data fot each benchmark. Note that Multi­

log touches the futures that it has created much more frequently than any of the

other benchmarks - close to 17 touches per future created. However, while Consim

touches its futures much less, a higher proportion of those touches result in a pro­

cess waiting on the value of the future. Consim is the only benchmark that has an

average of more than one task waiting on the same future.

Note that Nusim does not indicate how those touches are divided among the

future objects. It is possible that many futures may only get touched once, while

one particular future might be touched many times. Additional instrumentation in

N usim would be useful in showing the range in number of touches per future.

There is one final way of comparing access types. Instead of normalizing the

graphs of access types by the number of instructions executed by each program,

we can normalize by the total accesses made by the program. This shows, in

Figures 5.10 and 5.11, the percentage of accesses made by each benchmark in each

of the different categories.

This analysis shows a few interesting patterns. The benchmarks all make ap-

8 See Appendix C for MCODE instruction frequency.

5.4. RESULTS 81

unrand-futcnt

-··
-··
-··
-··
•••

-··
,,.,.

Sii.i

••• i .
coiJ1L1 c:atlitft naiu IU.Tll.llD ...l.t CGIPILI c:atlilft FIMit Ill.TU "'9llllf ILi cailirft ,.VU IU.T~UX: -I.tr

Llno[l4J Llnt[l4J Llrw[l4) u ... [14) Lt ... (14) 4lrld(S"6)4lrltlllJ"6)4lrldi-J11r111«-1cr1tl(_) (.. '1 l .. '1'*1rl4•'1 (.. T)'*lr(4"1l

Figure 5.9: Futures created and touched per 1000 instructions for each benchmark.

Lower pattern is futures created, middle is touches of determined futures, top is

touches of undetermined futures. Benchmarks were run with random task search

algorithm and Runsched= 1, on three different topologies.

82 CHAPTER 5. EXPERIMENTS AND RESULTS

unrand1 -fprop

Figure 5.10: Proportion of fetches from different classes of data. From bottom

to top: constants, global variables, environment fetches, stack hunks, and future

touches. Benchmarks were run with random task search algorithm and Run­

sched= 1, on three different topologies.

5.4. RESULTS 83

runrendl-11prop

Figure 5.11: Proportion of stores to different classes of data.. From bottom to

top: global variables, environment stores, future stores. Benchmarks were run with

random task search algorithm and Runsched= 1, on three different topologies.

-.,..,·

84 CHAPTER o. EXPERlMENTS AND RESULTS

Benchmark Futures per Touches per % Touches

1000 instrs Future Undetermined

Quicksort 82 3.54 4.0%

Consim 22 3.18 37%

Fboyer 9 5.23 1%

Multilog 6.4 16.9 4.2%

Compile 5.9 3.54 3.8%

Table 5.1: Futures statistics for dift'erent benchmarks.

proximately the same proportion of their fetches from constant data. While the

rate at which the programs fetched constants ranged between 200 and 600 words

per 1000 instructions, constant fetches count for between 28% and 38% of the total

fetches.

One other feature of the Compiler is apparent in Figure 5.8. While other bench­

marks store alm<ll!lt nothing into global variables, the Compiler updates the value

of global variables in 3% of its stores. The compiler also writes local environment

variables much more often than the other benchmarks - More than 85% of its data

writes are to local data.

5.4.2 Basic Locality of Reference

Two measures of the locality of accesses in a particular program are the mean

distance of access and the ratio of local to distant accesses. The least locality of

reference attainable by a program occurs when N usim's task searching algorithm

is purely random and ignorant of the underlying topology. Figures 5.12 and 5.13

show the locality of reference for the five benchmarks with a random task searching

algorithm and a processor queue of length 1. Each of the programs was run on

three different topologies.

5.4. RESULTS

unrendl-ecc•

1.1

1.t

1.1

1.1

•••

1.s

1.4

•••

.. ,
I.I

'·' I
r:atl1L1

LIN[l4J

85

Figure 5.12: Accesses ma.de to local memory, as a fraction of all memory accesses,

made by each benchmark. Benchmarks were run with random task search algorithm

and Runsched= 1, on three different topologies.

.,,J)JJKM&iJJ!lQ£1 -2'#lt ;£Ylll .•. !IULJ&i@@{lt,@LP2.tf412J, ... uxaap.JtX Z##..&$1Ji41MJXAA-,Jk#il!Jttlk;:t1£ij. ;;.s. $SL.A•

;:,:

86 CB'APTDt 1. ~AND B.ESULTS

J

....
,. .
...
t.•

nm with 1'Wkloi \ult••• • ...-1r• w1a,.,rtlraMr;~'!;._:-..-..• topo1o.
gies.

5.4. RESULTS 87

Basic Ratio of Local Accesses

Of the accesses made by a program, the percentage that touch data in local memory

indicates how many of the objects that the program accesses were created locally.

Figure 5.12 shows this ratio of local accesses to all accesses. It counts both data

fetches and stores to all classes of data objects. The graph shows the locality of all

three topologies simulated, though there is little variation in locality for a particular

benchmark across several different topologies.

By this measure, the Multilisp Compiler exhibits the greatest locality. Some

57% of accesses in the Compiler are to local memory. Fboyer and Multilog have

close to the same percentage of local accesses, at 39% and 38%. Consim makes

fewer local references at 33%, while Quicksort has the lowest percentage, with only

21 % local accesses.

A reason for this variation in locality is shown in Figure 5.10. The Compiler

fetches cloee to 50% of its data from environment frames. This is a greater propor­

tion than for any of the other benchmarks. In contrast, Quicksort makes relatively

few environment accesses, instead touching a higher proportion of constants, fu­

tures and stack hunks. Consim fetches constant data 38% of the time. However, it

makes a higher proportion of environment accesses than Quicksort. Consequently,

it exhibits better locality.

Though environments are allocated in local memory, some environment fetches

made by a program might not be from local memory. When a processor grabs a

task from a distant node, the task's environment frame stays on that distant node.

However, every time one procedure calls another in Multilisp, Nusim creates a new

environment frame. Any task that does a few function calls will allocate several

functions .in local memory. References to variables in these environment frames will

be local. So local environment accesses will be common for most programs.

88 CHAPTER 5. EXPERIMENTS AND RESULTS

Topology Diameter Fair access distance

Line(14] 14 7.74

Grid[5x6] 6 3.68

Segm(4x7] 3 2.71

Table 5.2: Fair access distance of three topologies.

Buie Mean Distance

The mean distance of access of the benchmarks tested varies both with the pro­

gram itself and with the topology that N usim simulates. We will first consider the

variation due to the different programs. See Figure 5.13.

In agreement with their percentage of local. accesses, the programs with the low­

est mean distance of access are (in order) the Compiler, Multilog, Fboyer, Consim,

and Quicksort. The only anomaly in this graph is that while Fboyer has a higher

percentage of local accesses than Multilog, it also has a slighly larger mean distance

of access. We will return to this contradiction shortly.

Topology and Random Search

As mentioned above, when N usim uses a purely random task searching algorithm,

the topology simulated by N usim has little effect on the percentage of local. accesses

made by each benchmark. However, it does affect the mean distance of access for

each benchmark. Table 5.2 shows the expected mean distance of access for each of

the topologies, if accesses were randomly distributed throughout all memory. This

is known as the fair acceSB dist&nce for a particular topology.

The line topology has the poorest locality of the three tested here. None of

the benchmarks tested came close to this worst-case limit, even though N usim was

using a random task scheduling algorithm. The mean distance of reference for most

of the benchmarks ranged from 60% to 90% of the fair access distance. Figure 5.12

showed that programs make a significant fraction of their accesses to local. memory.

5.4. RESULTS 89

Topology Diameter Non-local fair access distance

Line[14] 14 8.00

Grid[5x6] 6 3.78

Segm[4x7] 3 2.78

Table 5.3: Fair access distance for non-local memory.

Benchmark Line[14] Grid(5x6] Segm(4x7]

Compile 7.95 3.78 2.77

Consim 7.92 3.79 2.78

Fboyer 8.00 3.77 2.78

Multilog 7.24 3.65 2.67

Quieksort 8.01 3.79 2.77

Table 5.4: Mean distance of access for non-local accesses.

An interesting question is then whether the locality shown in the mean distance of

access for these benchmarks is simply due to the ratio of local to distant accesses.

Table 5.3 shows the fair access distance for the three topologies, ignoring local

memory. This would be the mean distance of access if processors accessed only

distant memory, and if the accesses were randomly distributed through this distant

memory. For comparison, Table 5.4 shows the mean distance of non-local accesses

ma.de by the five benchmarks. These two tables show that non-local accesses made

by each of the benchmarks are randomly distributed through distant memory.

This data shows that there is considerable locality to be exploited in Multilisp

programs even when they do not take advantage of the underlying topology. How­

ever, all of this locality is due to processors accessing local memory proportionally

more often than distant memory.

90 CHAPTER 5. EXPERIMENTS AND RESULTS

Explanation of Mean Distance

Figure 5.14 shows the mean distance of access of different types of data for each

of the benchmarks. Due to the way that N usim collects locality information, the

breakdown of data types is not the same as division by class of data presented in

Section 5.3.1. From bottom to top, the locality data types used here are: code

fetches, structure stores, structure fetches, environment accesses, stack fetches, and

future touches. The major difference is that structure stores and fetches include

several types of data accesses. Moet structure stores are simply updating the value

of determined futures. Only the Compiler updates a significant number of global

variables. Structure fetches include fetches of constants, mutable variables, and

several other classes. Note that though each different type of access has a different

mean distance of access, they may not all count equally in the mean distance of

access of the program as a whole. This graph does not show the relative number of

accesses in each category.

A few things are apparent from this graph. The data type with the poorest

locality of reference is the future object. For all the benchmarks, touching a future

object has approximately the same mean distance of. access as the fair access distance

of the topology. This means that futures a.re distributed fairly randomly throughout

memory.

For most benchmarks, the locality of reference is poorest for futures, followed by

code, structure fetches, stack accesses, structure stores, and environment fetches.

Multilisp code should have a high mean distance of access, since all processors in the

system share the same code. Similarly, since environment objects are allocated in

local memory, moet environment fetches should also be local. However, this depends

on the lifetime of a process, and how often tasks move to dilferent processors.

The two programs with the poorest locality of reference are Quicksort and Con­

sim. Table 5.1 showed that these two benchmarks created more future objects than

any other program. They also have a higher rate of touching undetermined futures.

5.4. RESULTS 91

runr.ndl-el ,,..n

:..•

45.•

.....

•••

•••

21.1

21.1

11.1

11.1

1.1

1.1

Figure 5.14: Mean distance of access for each benchmark, by type of access. From

bottom to top, the patterns represent: code accesses, structure stores, structure

fetches, environment accesses, stack fetches, and future touches. Benchmarks were

run with random task search algorithm and Runsched= 1, on three different topolo­

gies.

- - --.:- - -~);:;:.,;~-;· -:,-

92 CHAPTER 5. EXPERIMENTS AND RESULTS

As seen in Figure 5.14, these programs are also notable for the high mean distance

of structure stores. For both benchmarks, almost all of these stores write the value

of a determined future. It seems that for these two benchmarks, both touching and

writing the value of a future are distant accesses.

Quicksort is also unusual in that the locality of environment fetches is much

poorer than for any other benchmark. As mentioned above, this could occur if

many tasks moved around from processor to processor. An environment created

by a proce.ss on one processor would remain in that node's local memory after the

process had moved to another processor. As shown Section 5.4.3, Quicksort fetches

more tasks from distant processors than any of the other benchmarks.

Finally, there is the discrepancy between the mean access distance of Multilog

and Fboyer. Fboyer has a larger mean distance of access, even though it fetches

a higher percentage of data from local memory. The most significant difference

between M ultilog and Fboyer is that the former touches more futures, while the

latter accesses more global shared data. H touching a future were a more local

access than fetching global variables, this would explain the difference between

the two benchmarks. However, futures are more randomly distributed than global

variables. The actual reason for the poorer locality of Fhoyer is that code accesses

for this program are less local than for Multilog. In fact, the mean distance of

code accesses for Fboyer is worse than for any of the other benchmarks. This

may somehow reftect either the size of the Fboyer code, or the pattern in which

procedures get called. It is probably not worth spending much time trying to

improve the locality of reference for code, since future Multilisp implementations

will probably cache code locally to a processor.

5.4. RESULTS 93

5.4.3 Local Knowledge of Topology

Effect on Data Fetching

The types of data objects fetched by the benchmarks does not vary much with the

type of task searching algorithm used by Nusim. This is not surprising, since when

the same tasks are running in the system, they refer to the same types of data.

Where a particular task runs in the system does not seem to have much effect.

Quicksort made slightly fewer data fetches with an intelligent task searching

algorithm than with a random algorithm. It accessed the different classes of data

in the same proportions though. It is possible that this is only due to a difference

in the timing of tasks. As discussed in Section 5.4.1, changing the timing of task

searching may change the number of futures that were determined when touched.

Effect on Tuk Fetching

By using different task searching algorithms in Nusim, the processors can be more

knowledgeable about the external topology of the system. This can improve the

locality of reference of Multilisp programs. The immediate effect of using an 'in­

crementing' task search algorithm instead of a 'random' algorithm is to grab tasks

from nearby processing nodes.

Just as the mean distance of data access quantifies the locality of reference of

a program, the mean distance of tasks meas\ll'eS the average distance from which

processors fetch tasks. Figures 5.15 and 5.16 compare the mean distances at which

processors fetch tasks using 'random' and 'incrementing' task searching algorithms.

Note that the mean distance of access in the random ease is almost exactly the fair

access distance of each topology calculated in Section 5.4.2. For the line topology, if

N usim uses a random search algorithm, the mean distance of task fetching is 7. 7 4.

Using an incrementing search algorithm can have a dramatic effect on the mean

distance of task fetching. Figure 5.16 shows that the new mean task distance for all

94 CHAPTER 5. EXPERIMENTS AND RESULTS

unrandl-neentesk

11.1

t.I

1.1

l.I

6.I

S.I

•••

a.1

:LI

1.1

••• l :

CGrl'll.I '" ,..va ru.T'n.oc ~ mtl11.1 " - IU.T~UIG _, a..11.1 c:utlian ,.Jra ,..,,:,LOC rasl.t,
LIM[l4] LIM[l4) LIM[l4) LIMU41 LIM(l4] Crl•C-1 Crl41[W) Crl•C-l Crl•twl er1.iw1 c ... m [4tcl] [4x7] [4><1] , ,)

Figure 5.15: Mean distance from which tasks were grabbed. Benchmarks were run

with random task search algoritlun and Rwisched= 1, on three different topologies.

5.4. RESULTS 95

unincl-ne1nt.ask

11.1

t.1

1.1

7.1

6.1

s.1

4.1

3.1

2.1

1.1

1.1

Figure 5.16: Mean distance from which tasks were grabbed. (Top pattern in each

column shows variation in mean distance between runs of the benchmark). Bench­

marks were run with incrementing task search algorithm and Runsched= 1, on three

different topologies.

96 CHAPTER 5. EXPERIMENTS AND RESULTS

topologies ranges between 1 and 1.5. If all tasks were fetched from processor's local

task queues, the mean task distance would be 1. Whereas before only 5% of the

tasks that a. processor fetched came from its local task queue, with the new search

algorithm the proportion ranges between 60% and 90%. See Figure 5.17.

Finally, note that in Figure 5.16, the mean distance from which a. processor

obtains tasks is greatest for the grid topology. This is surprising - one might

expect that the mean task distance would still be proportional to the fair access

distance of the topology. However, there seems to be another factor affecting the

mean task distance which depends on the shape of the underlying topology.

It would be interesting to experiment with other topologies that all had the same

fair access distance, but had different degrees of connectivity. Every node in a line

topology has two nearest neighbors, while in a. grid ea.ch node has four neighbors.

In the segmented topology ea.ch node is surrounded by a group of processors, all of

which a.re its 'neighbors'. It is possible that the data. in Figure 5.16 shows the effect

of processors competing for tasks. Additional experimenta would show whether this

is related to the connectivity of the topology, or some other para.meter.

Eff'ect on Local Accesses

An incrementing task search algorithm greatly increases the likelihood that a. pro­

cessor will find a task on its own task queue. Unfortunately, this increased locality

of tasks does not produce as significant an increase in data locality.

Figure 5.12 and 5.18 show the ratio of local data accesses to all accesses using the

random and incrementing task search algorithms. M06t of the benchmarks ma.de

10% more accesses to local memory using the incrementing algorithm, although

Quicksort improved by 22%, and the Compiler showed only a. 5% improvement.

In random mode, the number of local accesses does not depend on the topology.

When the search algorithm exploits the topology of the system, the number of data

accesses to local memory varies with the connectivity of the system. Note that in

:;;;;;;;a.MM .. 4JL#%1¥4MW4fl4##MA142l¢14i .{ .24£4!JhKLMZUA&ll # % ... Jill $J!!JJSWXJ.A44UUtX i##4lJ#Wt;.twa;;
' - - • - ' • ' • • ' • • : • ~ • ' - ' ' ' - ? -

S.4. RESULTS 97

•••

Figure 5.17: Tub Wdled from local , •.• ,.,p .. d.U tuk fetcbee.

(Top pattern ii.i -.ch cohrma..._ _..1 • .,, ... D1J: ,_.\).
~.. ' . ·<-. · •.. :- ~ ·, " -- .

Benchmarb w_.. nm widl 8'1ankell- 1, • tlfl.,t:f~il1J1r\.~·

98 CHAPTER 5. EXPERIMENTS AND RESULTS

most cases, a program will make the highest percentage of local accesses on the line

topology, and the least on the grid topology. This agrees with previous observations

of mean task distance. Further experiments with other topologies might show what

causes this trend.

Effect on Mean Distance of Access

The effect of task scheduling on the mean distance of tasks is more significant than

its effect on mean distance of data accesses. If tasks referred only to data stored in

their node of origin, the behavior of data fetches would mimic that of task object

fetches. In fact, there is not that much coupling between tasks and data accesses.

While the mean distance of data access decreases with a more intelligent task

search algorithm, the improvement is not spectacular. Figure 5.19 shows the mean

distance of references for different topologies using an incrementing search algo­

rithm. Figure 5.20 compares the mean distances of random search and incrementing

search. The latter ranges from 40% to 95% of the mean distance of the random

case.

Changing to an intelligent search algorithm has the most effect on the Quicksort

program. With the new algorithm, the Quicksort benchmark has the best overall

locality of reference, whereas before it ha.cl the worst! The mean distance of access is

a volatile measure of locality. The change in mean distance due to changing search

algorithms depends on the underlying topology, and varies for different runs of a

benchmark. Both Multilog and Consim also often improve with the intelligent task

search algorithm.

Figure 5.21 shows the improvement in mean distance for each different type

of access. Each stipple pattern shows the mean distance for incrementing search

divided by mean distance for random search. So a bar that is less than 1 high means

that the locality has improved for that access type. The access types are the same

as in Figure 5.14. Note that this graph compares two runs of each program, not the

·,c:..

S.4. RESULTS 99

no--•

•••

...

...

.. ,

Figure o.18: What ratio of MC•ll .w«e .. to--~ by each benclupark •
. · .. _;-:.,;,·,;,;!';i~.-o.

(Top pattern .in eadi cohere .aa.,. ..,.._._ •••••} ft)i• Gt tlt.e bencbmer\).

Benchmarb ,,_,,nm wRh --·••••·•-•••·lflalfl'*'1P wf.Rimtchecl= 1,
on three different topoliogM9.

I

100 CHAPTER 5. EXPERIMENTS AND RESULTS

11.1

,.I

1.1

7.1

6.1

s.1

4.1

1.1

•••

•••

Figure 5.19: Mean distance of data access for each benchmark. Benchmarks were

run with incrementing task search algorithm and Runsched= 1, on three different

topologies.

6.4. RESULTS 101

·~·

Figure 5.20: Ratio cA w al aee• 'Will '9.~1.; UN*'a tuk search to
. ,. . . ~'

rae&n diatwe with,..... 81Hit•Jl.l'1•~.- Bttmched• 1, on

three ~t topolopa. (... ,... -,:·~··""" ia w
distance for difereat NDt).

102 CHAPTER 5. EXPERIMENTS AND RESULTS

average values of several runs. The locality can vary significantly from run to run.

For all benchmarks, the locality of stack accesses, future touches, and structure

stores improved with an intelligent task fetching algorithm.. Structure fetches also

improved for most benchmarks.

However, for the Quicksort benchmark, all types of accesses had better locality

using an incrementing search algorithm.. The locality of code fetches improved sig­

nificantly. For one run of Quicksort, environment fetches alBo improved. Since code,

environment, and future objects count for most of the accesses made by Quicksort,

the program had much better locality with intelligent task fetching. The reason that

Quicksort showed such a significant improvement may be due to the fact that the

program fetches more tasks out of task queues than any other. (See Section 5.4.4).

Several code, stack and environment fetches are required to load a task onto a pro­

cessor. If the accesses that load a task are more local when the task is more local,

the cost should be greater for a program that fetches many tasks.

We have seen that future accesses had the worst locality when Nusim used a

random task search algorithm. Code accesses, struct~ fetches and stack accesses

also had poor locality. We expect that new implementations of Multilisp will cache

code locally, and eliminate many global accesses. The results of Figure 5.21 have

shown that an intelligent task searching algorithm. can do much to improve the

locality of reference of stack and future accesses. For programs like those studied

here, in which future fetches account for a significant fraction of the data accesses,

this improved locality can make a significant difFerence.

5.4.4 Task Scheduling Parameters

The most significant task scheduling parameter in N usim is the size of a processor's

Process Queue, as set by the variable RWlBched. A larger process queue will allow

a processor to 'cache' more tasks locally ready to run. This might increase the

locality of reference for data objects that are shared by those processes, but at the

5.4. RESULTS 103

and-inc-nean

11.1

t.I

1.1

1.1

1.1

5,1

4.1

a.1

a.e

'·'

...

Figure 5.21: Ratio of mean distance of data access with incrementing task search

versus random task search. Accesses a.re divided by data class. From bottom

to top, the patterns represent: code accesses, structure stores, structure fetches,

environment accesses, stack fetches, and future touches. Benchmarks were run with

Runsched= 1 on three different topologies.

.,.. .. -,.'

104 CHAPTER 5. EXPERIMENTS AND RESULTS

cost of decreased parallelism.

This section discusses the effect of Runsched on parallelism and its effect on

locality of reference.

Effect on Task Fetching

Figure 5.22 compares the number of tasks fetched from task queues during the exe­

cution of different benchmarks on the line topology. It is normalized to show counts

of tasks fetched per 1000 instructions executed by each benchmark. (For instance,

the Quicksort benchmark fetches approximately 100 tasks per 1000 instructions at

Runsched= 1). The lower shading on each column counts the tasks fetched out of a

processor's local task queue, while the upper pattern shows how many were fetched

out of distant queues.

Note that at greater values of Runsched, each benchmark fetches successively

fewer tasks out of task queues. This is expected, since the process queues will act as

LIFO queues for tasks spawned on each processor. In Nusim, a task that is forked by

a future will be put on the process queue whenever poaible. Similarly, a processor

will first try to run processes out of its local process queue before searching any

task queues.

Increasing the value of Runsched has a similar effect on the number of tasks

fetched by each benchmark. At each successive value of Runsched, most benchmarks

fetch approximately half as many tasks as before, although the number of tasks

fetched by Quicbort does not vary much with Rumched after Runsched=2. At

high enough values of RUJlllCbed, some benchmarb fetch few tasks from the task

queues - they run almost entirely within the process queues.

Task Locality

The locality of tasks indicates how far processors reach to grab executable tasks

from task queues in the system. The measures used to quantify the locality of tasks

5.4. RESULTS 105

11 ninc-taskcnt

-.I

IM.I

1611.1

141.1

1211.1

Figure 5.22: Number of tasks fetched from task queues per 1000 instructions. Lower

trace is tasks fetched from the local task queue, upper trace is from distant task

queues. Benchmarks were run using incrementing task search, on line[14] topology,

with different values of Runsched. Each column is la.belled with the name of the

benchmark and the value of Runsched.

106 CHAPTER 5. EXPERIMENTS AND RESULTS

are the same as used for locality of data references: the percentage of references

that are local, and the mean distance of references.

Figure 5.23 shows the ratio of tasks fetched out of local task queues to all task

fetches. For most of the benchmarks tested, as Runsched increased, the processors

fetched a higher percentage of tasks out of distant task queues. The only exception

was Consim, which fetched no tasks at all at high values of Runsched. This indicates

that a process queue six entries long can contain all the parallel forking of the

Consim program.

We can speculate about why processors must grab tasks out of distant task

queues at larger values of Runsched. We have seen that the number of available tasks

decreases as Runsched increases. When there is little parallelism in a particular

program, many processors in the system will sit idle, looking for work. They may

have to search more distant task queues to find executable tasks. Meanwhile, if

there is a lack of executable tasks in the system, no task will stay in a task queue

very long. It will quickly be grabbed by neighboring proceuors. So once a processor

has finished running a process, and starts looking for new tasks to run, it will rarely

find any in its own task queue. While this is a simplified model of how the system

might behave when there is a shortage of executable tasks, it fits the behavior of

N usim at high values of Runsched.

Figure 5.24 shows the mean distance from which processors fetched tasks on

the line topology. This mean task distance increases as Runsched increases. 9 This

increasing distance may simply be because of the decreasing ratio of local task

fetches.

Data Fetching

The data objects created by programs are independent of the value of Runsched.

However, the number of data fetches per instruction of the program varies with

9 Note that Consim at Runsched= 6 is not fetching anything out of task queues.

5.4. RESULTS 107

1.1

Figure 5.23: Ratio of tasks fetched out of local task queues to all task fetches.

Benchmarks were run using incrementing task search, on line(14) topology, with

different values of Runsched. Each column is labelled with the name of the bench­

mark and the value of Runsched. (Upper patterns in ea.ch column show variation

between runs of a benchmark).

108 CHAPTER 5. EXPERIMENTS AND RESULTS

lnlno-Menteak

11.1

1.1

1.1

1.1

'·'

s.1

4.1

a.I

Figure 5.24: Mean distance of task fetches. Benchmarks were run using increment­

ing task search, on line(14] topology, with different values of Runsched. (Upper

patterns in each column show variation between runs of a benchmark).

5.4. RESULTS 109

the size of a processor's process queue. Figure 5.25 shows this relationship. At

successively higher values of Runsched, each of the benchmarks makes fewer data

fetches. The Consim benchmark makes 203 fewer data fetches at Runsched = 6

than at Runsched = 1.

The proportion of accesses in each of the different data classes is shown in

Figure 5.26. The programs make proportionally fewer stack a.nd constant references

at higher values of Runsched. This is most evident for Consim and Quicksort, the

programs that showed the greatest decrease in number of data accesses. For these

two benchmarks, the proportion of global fetches actually increased with Runsched.

This indicates that programs are making fewer stack a.nd constant accesses, hut

fetching approximately the same number of global variables and structured objects.

Future Accesses

Figure 5.27 tracks the number of futures touched by the different benchmarks,

normalized per 1000 MCODE instructions. The lower stipple pattern is the number

of futures produced, the middle pattern shows how many times futures were touched

after they were determined, and the top pattern is how many times undetermined

futures were touched. The number of futures produced by each program and the

number of times those futures are touched does not vary much as Runsched changes.

What varies is the number of times that a process touches an undetermined future.

Table 5.5 shows the number of times that each benchmark touched undetermined

futures at different values of Runsched. These counts ca.n vary significantly for

different runs of a program.10 The Compiler a.nd Quicksort programs both touch the

most undetermined futures at Runsched= 2, while Fhoyer waits on the most futures

at Runsched= 3. However, for most of the benchmarks, as Runsched increases, the

number of undetermined futures decreases. In an extreme case, such as Consim

10Because of the limited number of runs of these benchmarb, I w&& not able to determine the

standard deviations of these measurements.

~.llMMUJLttJl!A
~· ' ... · .

110: CBAPT.l.R& . . ~AND RESULTS
I • ' ' • ••• -,. ·,.,'",•.;,

....

.....

-~·

F~ 6.26: :0,ata per 1000 ~--j;lf,._.fli!~•·· ~ pat&«n

.~a di .. \ .. of ~-..~., lif,(~-:·)#ljj,n'9i, enviromnelS..._,._...,....,11 ... q~Jt.. ··"' __ · __ '"·'':· .,....-.with .
. _· '-- .. ··· ' - :· ... :._·:\.:<>-···.';_>· .<·'."'.. ,,.· .. :.~'~_:!':~~·:-.~.;.:~-~-:-.:·_.. .··.. - - -

~ :taak ·•••h,,.· •·ijnl•i1llitta:•·••11•• o1
· -··:«r • : ·" .. ~ ·." ~ ·. :· l.

Runecbed.

5.4. RESULTS 111

1 tntnc-fprop

Figure 5.26: Proportion of fetches of different classes of data. From bottom to top:

constants, global variables, environment fetches, stack hunks, and future touches.

Benchmarks were run with incrementing task search algorithm on line[14] topology

for different values of Runsched.

112 CHAPTER 5. EXPERIMENTS AND RESULTS

lininc- uturecnt

-··
4:111.1

-··
-.I

-··
2:111.1

-··
1:111.1

•••

•••

Figure 5.27: Futures created and touched per 1000 instructions. Lower pattern is

futures created, middle is touches of determined futures, top is touches of undeter­

mined futures. Benchmarks were run with incrementing task search algorithm on

line[14) topology for different values of Runsched.

5.4. RESULTS 113

Benchmark Runsched

1 2 4 6

Compile 0.28 0.30 0.22 0.20

Consim 24.7 24.2 8.52 0.0

Fboyer 0.18 0.15 0.27 0.08

Multilog 0.76 0.54 0.22 0.09

Quicksort 20.5 24.9 21.4 20.1

Table 5.5: Undetermined future touches per 1000 instructions at different values of

Runsched.

at Runsched= 6, futures are always determined before they are touched. We have

already seen that Consim runs completely on one proce880r if the process queue is

large enough.

Effect on Parallelism

Increasing the value of Runsched has several effects on the operation of the program.

Processors fetch fewer tasks from task queues around the system. Programs also

fetch less data with increasing Runsched. Finally, most programs touch fewer un­

determined futures at higher values of Runsched. These three observations indicate

the effect of Runsched on parallelism.

Programs make fewer data fetches when they fetch fewer tasks out of task queues.

Every time a processor pushes a process out of its process queue and saves it in

its task queue, it must allocate space for the task state in the heap. Later, the

processor that loads the task from the task queue to a process queue must make

a number of data fetches to read in the task's state. While a processor is running

processes in its process queue, it does not have this additional data fetch overhead.

Programs also make more data fetches when they touch undetermined futures.

Every time a process touches an undetermined future, it must queue up and wait

114 CHAPTER 5. EXPERIMENTS AND RESULTS

on that future. Later, when another process evaluates the future, the determining

process will restart all waiting tasks. Each task will eventually be loe.ded into

a process queue, which requires several stack and code fetches and an additional

environment fetch.11 This is the extra cost of undetermined futures.

While touching fewer undetermined futures at high values of Runsched may

decrease the number of fetches that a program makes, it is likely that fetching

fewer tasks has more of an effect. Note that Quicksort touches 5 fewer undetermined

futures per 1000 instructions at Runsched= 1 than at Runsched= 2. However, the

program makes 205 more data fetches per 1000 instructions at Runsched= 1 than

at Runsched= 2. Meanwhile Quicksort fetched 56 more tasks out of task queues at

RW1Sched= 1 as it had at Runsched= 2. Given the number of data fetches required

to loe.d a task, it is clear that task fetching is the dominant force here.

It is difficult to see what effect Runsched has on the parallelism of a program. A

task is forked for every future instruction executed. For deterministic programs, the

number of future instructions and the number of processes created is independent

of scheduling decisions. However, the number of tasks in existence at a.ny one time

could depend on the scheduling strategy.

For instance, suppose a program forked off tasks in the manner shown by Fig­

ure 5.28. At each fork, Nusim spawns a task, a.nd then runs branch 'A' of the fork.

The branch 'B' not chosen could potentially have spawned the same number of tasks

as 'A'. If another processor was able to run task 'B', twice as many tasks could run

in the system simultaneously. In this example, a process queue 5 processes long

would be big enough to hold task 'B' as well as all the tasks spawned by branch

'A'. None of those tasks will get put in a task queue, so they will not be available

to the other processors in the system. In effect, a large process queue ca.n limit the

number of tasks produced per unit time by the program.

N usim does not produce a parallelism profile that shows the tasks in existence

11See Appendix B for the implementation of these operations.

5.4. RESULTS 115

Figure 5.28: Possible order of tasks forked by a program. Path A has been run,

path B has not.

at a particular time. Instead, there are only indirect ways of seeing the effect of

reduced parallelism in Nusim. The first is to look at the execution time of each

benchmark. If processors are idle for lack of available tasks, the run time of the

program should increase. Unfortunately, many other factors also affect the run

time of a program. It was not p<>11sible to extract useful information out of run-time

statistics.

A second measure of parallelism tests the imbalance of work among the proces­

sors in the system. N usim collects data from each processor individually. If work is

evenly distributed among the processors, each runs approximately the same number

of MCODE instructions. If there is a large variance in the number of instructions

run by different processors, it could be because some processors are starving for

tasks to run. Figure 5.29 shows the deviation between processors as a percentage

of instructions executed by a program. Consim at Runsched= 6 has the most devi­

ation, since only one processor is executing all the code. Multilog and Fboyer also

show large deviations at high Runsched. By this measure, the amount of parallelism

116 CHAPTER 5. EXPERIMENTS AND RESULTS

in Consim and in Fboyer decreases with increasing Rllll8Ched.12

Local Data

As Runsched increases, processes fetch tasks out of more distant task queues. How­

ever, data fetches show the opposite trend: prognuns fetch more data objects out of

local memory at high Runsched. Figure 5.30 shows the percentage of data accesses

that are local for the different benchmarks as a function of Runsched. In ea.ch case,

the trend is to make more local accesses at higher values of Runsched. The locality

increases by between 5% and 40% as Runsched varies between 1 and 6.13 For most

of the benchmarks, the proportion of local accesses increases by less than 10%.

Mean Distance of Data Access

We should expect that the mean distance of data access would agree with the results

for local percentage of accesses presented above. But while the general trends

in mean distance of access show that locality increases with increasing values of

Runsched, this measure of locality is more volatile.

Using an intelligent task search algorithm on the grid topology, Figure 5.31 shows

a trend to greater locality at higher values of Runsched. The locality increases by

approximately 10% for most of the benchmarks as Runsched increases from 1 to 6.

The exceptions are Consim and Fboyer. At high values of Runsched, both of these

programs show a tendency to run completely sequentially on a single processor. In

this limiting case, the mean distance of data access falls to 1, since all fetches will

be made to local memory.

12Note that since this measure does not directly measure the number of parallel tasks in existance

in the system at any time, it is only an approximate indication of parallelism.
13Though, as already noted, Consim at Runached= 6 is a special case.

5.4. RESULTS 117

1n1nc-1netr

lie.I

"'·'

•••

ZS.I

•••

211.1

21.1

Figure 5.29: Inter-processor variation in instructions executed per processor. The

deviation is shown as a percentage of total instructions. Benchmarks were run with

incrementing task search algorithm and different values of Runsched on line[14]

topology.

118 CHAPTER 5. EXPERIMENTS AND RESULTS

lininc-eccs

1.1

'·'

•••

Figure 5.30: Ratio of local memory accesses to all accesses. (Top pattern in each

column shows variation between runs of the benchmark). Benchmarks were run

with incrementing task search algorithm on line(14] topology for different values of

Runsched.

119

...
...

120 CHAPTER o. EXPERIMENTS AND RESULTS

Discussion of Locality Improvement

Increasing the size of process queues improves the locality of most types of data

accesses. Figure 5.32 shows the mean distance of access for the grid topology,

broken down by type of access. For most benchmarks, as the value of Runsched

increases, the locality of future fetches and future stores increases as well. For these

benchmarks, the locality of future fetches was 10% to 45% better at Runsched= 6

than at Runsched= 1.

Other types of access may become more local at high values of Runsched, though

the effect varies from program to program. Ssructure fetches sometimes improved

as Runsched increased. Stack and environment fetches did not improve much for

most of the benchmarks tested. The locality of code fetches did not improve at

except for test cases where the benchmark ran almost entirely on one processor.

In the cases of Consim and Fboyer at Runsched= 6, the processors that run the

program seem to be very close to the code.

This da.ta seems to show that certain scheduling decisions can improve the lo­

cality of accesses in Multilisp. In particular, future accesses show a great potential

for improvement. As discussed earlier, futures were randomly distributed in a sys­

tem that used a random task search algorithm. Changing to an intelligent task

search improved the locality of these accesses. Increasing the size of process queues

improved the locality even more.

The results are similar for the segmented topology. On the line topology, the

mean distance of data access is much more variable. Using a random task search al­

gorithm, mean distance decreases with increasing Runsched, as expected. However

using an incrementing search algorithm, for some benchmarks the mean distance

decreases with increasing Runsched, while for others the opposite is true. See Fig­

ure 5.33. This graph shows that the mean distance for code accesses is much more

variable with the line topology than with other topologies. In most cases, the lo­

cali ty of these code accesses seems to be perturbing the mean distance of access

5.4. RESULTS 121

1dinc12-a1 "•an

st.•

.., ..
•••

•••

•••

:zs.e

a.a

••••

•••

...

Figure 5.32: Mean distance of access for each benchmark, by type of access. From

bottom to top, the patterns represent: code accesses, structure stores, structure

fetches, environment accesses, stack fetches, and future touches. Benchmarks were

run on grid[5x6] topology using incrementing task search algorithm for different

values of Runsched.

122 CHAPTER 5. EXPERIMENTS AND RESULTS

under the line topology. It is not clear what is causing this wide variation in the

locality of code. We should run more experiments with different topologies to see

how much code locality varies with Runsched. However, it is also not clear how

significant this effect will be in a real machine.

l!QUQJl1Nt,JJMH.UJU2$.UUZUe .. l lkQ£hJJJ!MMt4 t llQU U:SJtJSM4JUQ.$2 QlQi4414;ti$21UJt$.4$ilLXJ#JJQ.4il¥ll!tA . - - ~ . ' .. :'

5.4. RESULTS 123

...

.....

...

...

Figure ti.33: Mean di.Wice of. data acceas, by type .of ace-. From bottom to top,

the pattems repreaent: code acce11ee, ~ etructmie fetches, environ­

ment acceaaes, •tack fekhel, and fu'1ae ~ B•e,a..tb were run on a liDe{t4]

topology using incremeatiag tuk eeuch a~., d]fat1•-1ues of RUDIChed.

..~--

124 CHAPTER 5. EXPERIMENTS AND RESULTS

5.5 Summary

5.5.1 Basic Data and Locality

The results in this section were obtained using a random task search algorithm, and

with Runsched= 1. Programs should have the poorest locality of reference under

these conditions.

Data Accesses

• The types and proportions of data touched by a benchmark are largely inde­

pendant of topology.

• The number of accesses per instruction varies by more than a factor of two
'

for the different benchmarks.

Quicksort was the most intensive benchmark, with 1.9 fetches per instruction.

The Multilisp Compiler made the fewest fetches, with 0.8 per instruction.

• All of the benchmarks accessed environment objects at approximately the

same rate.

The programs fetched data. from the environment at an average rate of once

every 4 instructions.

Hypothesis: This may be because of the characteristics of compiled code, and

the style in which the benchmarks were written.

• Constant fetches were the same proportion of accesses for all the benchmarks.

Futures

• The number of futures produced by the benchmarks varies by more than a

factor of 13.

5.5. SUMMARY 125

Quicksort creates the most futures, a.t a. rate of 82 per 1000 instructions. The

Multilisp Compiler and Multilog produce only 6 futures per 1000 instructions.

• There were 4 times as many future touches as futures created in most of these

benchmarks.

The exception was Multilog, which touched futures 17 times for every future

created.

• For most benchmarks, less than 5% of future touches hit a.n undetermined

future.

The only exception is Consim, in which one third of future touches hit unde­

termined futures.

Task Locality

• All benchmarks fetch tasks at random.

The mean distance of task fetches is just the fair access distance. Processors

fetch only 5% of their tasks from local memory.

Data Locality

• Most benchmarks fetch 30% to 40% of data. out of local memory.

The only exception is the Compiler, which makes 57% of its accesses to local

memory.

• The mean distance of data accesses for these benchmarks is 60% to 90% of

the fair access distance.

The Compiler ha.s the lowest mean distance, followed by Multilog, Fboyer,

Consim, and Quicksort.

This low mean distance of data. access is due to the percentage of local accesses

126 CHAPTER 5. EXPERIMENTS AND RESULTS

ma.de by the benchmarks. Non-local data accesses are randomly distributed

through distant memory.

• Futures are randomly distributed in memory.

Future touches have the poorest locality, followed by code accesses, structured

fetches, stack hunks, structured stores, and environment fetches.

5.5.2 Effect of Smart Task Search

For the results in this section, N usim used an incrementing task search algorithm,

and Runsched= 1.

Data Accesses

• The task searching algorithm has little effect on the types of data fetched by

the algorithms.

Task Locality

• Processors fetch 60% to 90% of tasks out of local task queues.

This compares to 5% of tasks fetched from local task queues using the random

task search algorithm.

• Mean distance of task access is 1.2 to 1.5.

The mean distance of task access was the fair access distance of a topology

using random task search.

• Mean distance of task access is no longer proportional to the diameter of the

underlying topology.

Mean task distance is greatest for the grid topology.

Hypothesis: The mean task distance may be related the connectivity of a

topology. More tests with different topologies might confirm this.

5.5. SUMMARY 127

Data Locality

• Most programs make 10% more accesses to local memory with a smart task

search algorithm than with random search.

• The mean distance of data access is 40% to 95% of the mean distance with a

random search algorithm.

• Stack accesses, future fetches and touches showed the greatest improvement

in locality.

5.5.3 Effect of Runsched

This section shows the effect of varying Runsched on program behavior. Data was

collected using an incrementing task search algorithm.

Data Accesses

• Programs made fewer data fetches at greater values of Runsched.

Most benchmarks made 20% fewer fetches at Runsched= 6 than at Run­

sched= 1.

• The benchmarks fetched fewer stack hunks and less constant data at high

values of Runsched.

There was little change in the number of global variables and structures

fetched.

Hypothesis: Most of this effect may be due to programs fetching fewer tasks

at high values of Runsched.

Futures

• Programs created the same number of futures hut touched fewer undetermined

futures at large values of Runsched.

128 CHAPTER 5. EXPERIMENTS AND RESULTS

Task Locality

• Programs fetch fewer tasks out of task queues at high values of Runsched.

Some programs fetch no tasks out of task queues when the process queues are

large enough. A process queue six entries long can hold all the parallel forking

of the Consim program.

• Programs fetch a lower percentage of tasks out of local task queues at large

Runsched.

• The mean distance of task fetching increases as runsched increases.

Hypothesis: Processors may be contending more for tasks when there is less

parallelism in the system. Running simulations on other sorts of simulators

may show the effect of contention for resources in different topologies.

Data Locality

• Benchmarks fetched a higher proportion of data from local memory at higher

values of Runsched.

The percentage of data fetched from local memory increased by 10% between

Runsched= 1 and Runsched= 6.

• The locality of data accesses improved as Runsched increased.

The mean distance of data access was 10% lower for Runsched= 6 than for

Runsched= 1.

• Future objects showed the greatest improvement in locality as Runsched in­

creased.

The mean distance of future accesses was 10% to 45% better for Runsched= 6

than Runsched= 1. The locality of structured data fetches also improved

somewhat as Runsched increased.

Chapter 6

Conclusion

6.1 Review of Goals

·The initial goals of this thesis, as stated in Section 1.1.1, were to quantify the

communication requirements of one model of symbolic computing.

The first objective was to find out what types of data are accessed by Multilisp

programs. Some classes of data objects can be cached locally to a processing node,

while other data must be accessible to all processors. The number of data accesses

in each of the different classes then helps quantify the communication load of a

Multilisp program.

A second objective of this thesis was to see how data is distributed in a mul­

tiprocessor system. This locality of reference indicates whether data is clustered

near processors that use the data.. The greater the locality of reference in a system,

the lower the load on the global communications network will be. Determining the

locality of different types of data objects shows where the greatest potentials are

for reducing global communication.

The final goal of this research was to see how scheduling decisions can affect

the locality of reference. One objective was to determine whether the locality of

data access of a program can be improved by knowing the topology of the system.

129

130 CHAPTER6. CONCLUSION

Another was to see what effect changing parameters of the processor architecture

would have on locality. This research could he used to predict the effect of differ­

ent architectural decisions on the global communication requirements of symbolic

programs.

6.2 Results

The detailed observations of running benchmark programs on N usim were presented

in Section 5.4. Those results were also summarized at the end of Chapter 5. What

follows is a brief discussion of how those results relate to the original goals of the

thesis.

The programs studied in this research exhibited some locality of reference, even

when N usim was ignorant of the underlying system topology. Processors accessed

local memory proportionally more often than distant memory. This is because

new data produced by programs is always allocated in local memory. That newly

allocated data is likely to be referred to again by the task that created it.

The locality of reference of Multilisp programs improves when task scheduling

algorithms exploit knowledge of the underlying topology. The task scheduling rou­

tines used in this study tried to increase the locality of task fetching by searching

nearby processing nodes for executable tasks. This was successful technique in that

it reduced the mean distance of task fetching in the system by 50% to 80%. This

intelligent task search algorithm did not have as great an effect on the locality of

data accesses. However, the locality of data references for the benchmarks tested

improved by 5% to 60%.

Finally, increasing the value of Runsched increases the locality of data fetches,

but decreases that of task fetches. The immediate effect of increasing Runsched is

to decrease the parallelism of Multilisp programs. Processors fetched fewer tasks,

and had worse locality of task fetching for increasing values of Runsched.

6.3. ADDITIONAL QUESTIONS 131

However, the locality of most types of data objects increases as Runsched in­

creases. This improvement in locality is greatest for future objects. So it seems that

it is possible to increase the locality of data references while reducing the parallelism

available in a particular program.

6.3 Additional Questions

6.3.1 Contention for Tasks

The data presented in Section 5.4 showed some of the eft'ects of parallelism on task

fetching for different topologies. But this data did not explain what mechanisms

caused this behavior. One specific question is what effect contention for tasks

hM on the the mean distance of task grabbing for different topologies. There are

indications that the task fetching behavior when proceuors contend for tasks is

somehow related to the connectivity of the topology being simulated.

N usim is not the ideal vehicle for studying these effects, since in running dif­

ferent types of benchmarks it only allows indirect control over the number of tasks

produced by a program. It also does not keep track of contention for tasks by pro­

cessors in the system. However, a new simulator being developed in the Parallel

Processing Group at M.l.T. may be able to show this behavior more clearly [35].

This event based simulator will allow users to simulate processors as task generators

and consumers, and to see how contention for tasks is related to the topology of the

system.

6.3.2 Implementation Issues

Nusim is one p08Sible implementation of a symbolic language on a multiprocessor.

In this thesis, I tried to investigate the part of the behavior of Multilisp programs

that is independent of the implementation of the language. I hope that the trends

132 CHAPTER 6. CONCLUSION

shown here for the effect of scheduling decisions on locality of reference are true for

-a larger class of programs and implementations than five benchmarks running under

N usim. However, some of the basic decisions that were made in the implementation

of N usim may affect the data presented here.

Use of Local Memory

One important part of the implementation of Nusim is that it assumes that local

memory is faster to access than distant memory.1 For this reason, Nusim always

allocates new data objects that were created by a processor out of the processor's

local memory. This is a preliminary effort to improve the locality of reference of

Multilisp programs. Because new data is allocated out of local memory, programs

running under N usim always show some locality of data accesses.

The decision to allocate new data out of local memory is a sensible one in a

system like the one proposed in Chapter 3, in which local memory is faster to

access than distant memory. It also has the effect of decreasing the load on the

global communication network. This is a desirable goal if the network is likely to

be a bottleneck in the system. However, it is possible to imagine multiprocessor

organizations in which this is not the case f 25].

Process Scheduling

Another important feature in the implementation of Multilisp is its 'unfair' schedul­

ing strategy (30]. When a future forks a process, this algorithm always runs the child

process first, before returning to the parent. An alternative would be to continue

running the parent process, and allow the child to migrate to another processor.

This different sort of scheduling strategy might affect the parallelism available in

M ultilisp programs. It could also affect the locality of task fetching by processors,

1 Perhaps a more fundamental 888Umption is that the system has both local and distant memory,

and a single shared address space.

6.3. ADDITIONAL QUESTIONS 133

and possibly the locality of data references as well. N usim can use several different

scheduling strategies for future tasks. A topic for further experiments is how these

strategies for running parent and child tasks affect the results shown in this thesis.

Weights of Data Accesses

Appendix B details how Nusim was instrumented to track different types of data

accesses, and where this data was located. There is no need to describe that function

here, except to say that there are many ways that N usim could have counted

different data. accesses.

For imtance, fetching the value of a. mutable global variable is assumed to have

the same cOBt fetching a stack hunk. In fact, for a processor that uses a stack

buffer and must load and unload stack hunks from that buffer, this might not be

true. A processor might fetch each word in the stack hunk that is loaded into the

stack buffer. Or in a different implementation, a processor might be able to load

an entire stack hunk across the network in one access. These two approaches might

impose a greater load on the communications network than a simple variable fetch.

Rather than assign a different 'weight' to stack hunk fetches corresponding to the

expected implementation on a future machine, I simply counted the stack fetches.

It is then possible to scale these results to different implementations by multiplying

the number of stack loads by the expense of that stack access.

Another important point about the results of this thesis is that I have not

presented any information about the rate of data allocation by different Multilisp

programs. All data is allocated in a processor's local memory, so it should not affect

the global communication cost for Multilisp programs. However, it does provide an

interesting data. point in rating the relative importance of local memory versus

global communication. Presumably, since all allocation requires memory accesses,

programs that allocate a lot of data demand fast accesses to local memory.

134 CHAPTER 6. CONCLUSION

Instruction Set and Compiler

One of the observations in Section 5.4.1 was that all the programs tested accessed

environment objects at approximately the same rate. This may be a result of the

type of code produced by the Multilisp compiler. As mentioned earlier, if the

compiler did common sub-expression elimination, many of the instructions that

read values out of the local environment would be eliminated. This would certainly

affect the division of accesses among different data types. It might also affect the

measures of locality of reference seen in this thesis. It is unclear whether any of

the global data. references counted by Nusim could be optimized out by a better

compiler.

A different compiler might be able to affect the execution of M ultilisp code

in another way. It may be possible to do some analysis of program structure at

compile time. A compiler might then be able to offer hints about scheduling tasks

to the run-time system. For instance, a. compiler could tell whether data allocated

by a process was shared with other processes. Data private to a process might be

allocated in a processor's local memory, but then the one process that refers to it

should not be allowed to move to another processor. Similarly, the compiler could

indicate whether a child task shares much data with its parent. In such a case, it

may be better for locality of reference not to allow the child to migrate to another

processor.

A different set of questions concerns the efficiency of an implementation of Multi­

lisp. One hopes that the data collected for this thesis does not fundamentally de­

pend on the run time characteristics of programs. For instance, a more efficient

implementation of Multilisp might be able to run instructions at a higher rate. The

instructions would still refer to the same data objects, so processors would load the

communicati~ network more heavily over the life of the program. However, in a

different implementation of Multilisp, the ratio of processor speed to global access

time might change. It may not be possible to speed up data fetches much. This

6.3. ADDITIONAL QUESTIONS 135

difference in the relative rates of operations in Multilisp could change the run time

scheduling of tasks in the system. It remains to be seen whether this would have any

effect on the parallelism of programs, or on the locality of reference. Since N usim

provides a. fairly simple mechanism for changing the simulated speed of different

operations, I intend to check this conjecture at a later da.te.

Garbage Collection

One final important aspect of the Nusim implementation of Multilisp is its garbage

collector. In Nusim, the garbage collector operates concurrently with program

operation (30). It has two interesting effects on the operation of Multilisp. The

first is that the garbage collector replaces determined futures by the value of the

future. Tha.t means that a future that is in existence for a long time is likely to

be turned into a simple Lisp data object. It is unclear how much this affects the

counts of future touches reported in Section 5.4.1.

The second property of garbage collector is that it moves data objects a.round

in the system. Since the garbage collection is distributed, a particular processor

might follow pointers from an object in its local memory to another data. object in

old space. 2 The object being pointed to is then moved from old space to the new

space of the local processor. If the object was previously in old space in another

processing node, it will be moved a.cross the system to a new node. A processor is

likely to move data objects that are referred to by the processes that it is running.

In general, this means that data will tend to be moved by the garbage collector to

be closer to tasks that use that data. This should improve the locality of reference

of those tasks.

It is not clear how these properties of the Nusim garbage collector affect the

data. presented here for the locality of reference of Multilisp programs. Preliminary

experiments by other members of the Parallel Processing Group have not shown

2See (11] for a more detailed explanation of these terms.

136 CHAPTER6. CONCLUSION

any direct evidence that the Nusim garbage collector improves locality of reference

(45]. I intend to do another set of experiments to quantify the effect of the garbage

collector. That would show whether new implementations of Multilisp, possibly

with different garbage collectors, should expect to have the same behavior as was

shown in this thesis.

6.4 Evaluation

One of the major motivations of this research was to help guide architectural de­

cisions in the design of future symbolic multiprocessors. To that end, this thesis

tried to answer some specific questions about data access and communication in

Multilisp programs.

Section 6.2 shows that in this respect, the thesis has accomplished its goals. I

have been able to quantify the communication requirements of a number of different

Multilisp programs. I have also been able to see how that communication load varied

with different scheduling decisions and processor designs.

This data was collected by building the Nusim. simulator and running a number

of different Multilisp applications under it. This seems to have been a success­

ful technique for studying architectural issues. This research was possible in part

because N usim was a tool specifically designed to measure this type of data.

Evaluation of Nusim

The Parallel Processing Group at M.I.T. has some tools for studying the behavior

of Multilisp programs. These tools were used primarily to show the parallelism

available in different algorithms. They were also the primary means of evaluating

the efficiency of Multilisp implementations. Programmers have used these tools

to tune particular algorithms to try to extract the maximum parallelism from a

program. Seeing the effect of future placement in programs has taught the members

6.4. EVALUATION 137

of the group much a.bout the nature of parallelism in symbolic programs.

However, these tools were not used to help guide architectural decisions. They

a.11 studied the behavior of Multilisp code a.t the language level, not the interaction

between the language, its implementation, and the underlying machine organization.

Nusim was a. first attempt a.t looking a.t these issues.

There a.re three significant features of N usim that made it easier to study the

architecture of Multilisp machines. The first was Nusim's ability to run Multilisp

programs without modification. Second was the ability to modify parameters of

the architecture being simulated at run time. The third feature was that Nusim

actually simulates a. multiprocessor by running on an existing multiprocessor.

In order to see the effect of architectural decisions in Multilisp machine, it is not

enough to model the behavior of Multilisp processors. This thesis has shown that

there is a wide variation in the behavior of different Multilisp programs. Rather

than hypothesizing how Multilisp processors might behave, a. better approach is to

actually measure the characteristics of programs in operation. Since Nusim evolved

from an existing Multilisp emulator, it can run any Multilisp application. It imposes

a realistic communication load on the system because it must access the same data

that the program would.

Nusim differs most from previous implementations of Multilisp in that it sim­

ulates the architecture of a. machine a.t some level. Being able to easily modify

the characteristics of that architecture was vital for my research. I could not have

have run a.s many types of experiments if each test required reloading some part of

the software. One approach to simulating different topologies might have been to

write a version of Nusim for each topology. A less time-consuming approach would

have been to configure the characteristics of the architecture when Nusim started

running. The final version of Nusim that I used allowed me to vary many different

parameters of the architecture during a run of the program. This made it easy to

set up automatic test runs.

138 CHAPTER 6. CONCLUSION

The final important feature of Nusim is that it ran on a real Multiprocessor

system. It is possible to simulate a multiprocessor by running on a uniprocessor.

Any processor can time-share between a number of tasks. However, it is difficult

to know how different processors will interact in a real system. Programming on a

uniprocessor may introduce some assumptions about those interactions. In a real

multiprocessor, accesses by different processors may collide in the network. Proces­

sors also collide when competing for resources. While running one multiprocessor

may not duplicate the type of interactions that could occur in another parallel ma­

chine, it is likely to be more realistic than running on a uniprocessor. The fact that

some of the interprocessor behavior seen in this thesis is still unexplained indicates

that this approach to simulation was successful.

6.4.1 Evaluation of Research

The data that was collected for this thesis will be useful for architectural discus­

sions in the Parallel Processing Group at M.I.T. We now have some data on the

communication load imposed by different Multilisp programs. We know the types

of data that these programs use, and how often the programs refer to that data.

We have additional information on the production of futures in parallel programs,

and on how those futures are touched. We have seen how many tasks are produced

by a parallel application, and how processors in a multiprocessor compete for those

tasks. Finally, we have seen how this behavior depends on different characteristics

of the underlying computer architecture.

Where possible, Nusim. measures the aspects of Multilisp programs that are

independent of the Nusim. implementation. The number of tasks produced by an

application, and the number of data objects touched, should be invariant. This data

should prove useful in evaluating other possible implementations of M ultilisp.

A major topic of research at P.P.G. in the next few years will likely involve de­

signing a new type of symbolic multiprocessor. We will try to model and simulate

6.4. EVALUATION 139

different subsystems of that computer in order to evaluate different designs. Some

work in genera.I purpose simulators has already begun [35]. The data on communi­

cation in Multilisp that was collected in this thesis should play an important role

in that design process. It sets a bound on the global communication needed by

Multilisp programs, and suggests some means of reducing that load.

If unexpected results are a measure of the worth of research, this thesis has

been worthwhile. In the field of computer architecture, I hope that this thesis has

provided some answers, but more importantly I hope that it has suggested some

interesting questions.

140

Appendix A

The MCODE Machine Language

What follows is a brief listing of the MCODE instructions used by Nusim. These

operations are described in more detail in (34). The purpose of this listing is just

to provide a flavor for the type of instructions available in this machine language.

MCODE instructions generally consume one or more values from the stack and

may produce one or more values that are pushed on the stack. Additionally, many

MCODE instructions take 'in-line' parameters, arguments which are encoded in the

instruction stream with the opcodes. These are commonly simple integers, such as

the number of items to pop off the stack. Instructions may also read 'constant

values', which are known at compile time. These are kept as a sequence of values

in the code object for a Multilisp function. Value arguments may be arbitrary Lisp

objects.

In the listing that follows, an instruction stream argument is represented by

[arg], while value stream arguments are represented by {val}. All other instructions

a.re assumed to pop arguments off the stack. Each opcode is labelled with its index.

The instruction indices are not necessarily contiguous.

141

142 APPENDIX A. THE MCODE MACHINE LANGUAGE

MCODE Instructions

Index Opcode Args Opcode Description

5 POP [n] pop items off stack

6 GVAL {sym} push global value of symbol

7 SGVAL {sym} set global value of symbol from pop()

8 COPY push extra copy of top of stack

9 RTN return from call, value is on stack

10 CONS make conscell

11 FEVAL [level, offset] get value from environment at

12 SEVAL [level, offset] set pop() into environment slot

13 CALL [nargs, flag] push some args and call closure

14 CALLRTN [nargs, flag] tail-recursive call

16 PUSHENV [#slots] {doc} create new env frame, push onto frames

17 CLOSE { doc,close,espec} make a closure from code, doc, and espec

18 PUSHVAL {what} push a value from code, onto stack

19 LABEL make label value

20 PUSHNVAL {what} same 88 pushval but does not fetch value

21 THROW push value, push label, 'throw' value

22 END FUTURE fill in value of future and restart tasks

23 ARRAYSET set an element of an array

25 GETSTRUCT [type,off] get val at offset in some struct

26 SETSTRUCT [type,off] set val at offset in some struct

27 TYPEEQ [type] check type of object with type in ops

28 EQSETSTRUCT (type,off] setstruct if eq, atomic operation

143

Index Opcode Ar gs Opcode Description

29 OLDSETSTRUCT [type,off] setstruct return old, atomic operation

30 TYPECAST [typel,type2] change type to value in instructions

31 I GOTO [IPC,VPC] goto, instr, value pc are 2-byte items

32 IT GOTO [IPC,VPC] in the instruction stream

33 IFGOTO [IPC,VPC] !GOTO if pop() is nil

34 !FORK [IPC,VPC] fork, new thread is IGOne TO

35 PUSHNIL push nil on the stack

36 PUSHNUM [num] push a 1-byte signed number on the stack

40 UNDETERMINEDP check if future has value

41 GETFSTRUCT [type,off] getstruct without forcing futures

42 PRINT print a lisp object on a file

43 PRINC print without slashification

44 SYMVAL get the global value of a symbol

51 SETSYMVAL set value of symbol

52 EXCEPTIO return non-nil if passed an exception

53 EXC2LIST typcast exception into a list

55 NFUTURE [IPC,VPC) make a future, priority to future

56 ND FUTURE [IPC,VPC] make a future, priority to main thread

57 NDELAY [IPC,VPC) make a delay

61 QUIT terminate current process

62 POPENV pop one frame off the environment

63 STAT return current statistics

144 APPENDIX A. THE MCODE MACHINE LANGUAGE

Index Opcode Ar gs Opcode Description

64 MAKEMARKER return MARK

65 IFASTREAD do a. Fa.stRead() for setup

66 HIST return histogram of task stats

67 CURTASK get a picture of the current task

68 GTIME return the current elapsed time

69 THEENV return the current working environment

70 INFO return info stats

71 INFOON enable info stats

72 INFOOFF disable info stats

73 SHOWFREQ return inst use frequency

74 RESETTLINES reset time lines on all processors

81 TOUCH touch a future (a noop)

82 GETCH get char from file as fixnum

83 NULL null() predicate

84 SIGNAL signal an exception

85 MINUS reverse sign of a number

86 INTERN intern(string)

87 MAKESTRING make-string(n)

88 STRLEN string-length(string)

89 IO FLUSH flush characters from file

90 LAB GO go to label value

91 CARCDR push car, then cdr of TOS

145

Index Opcode Args Opcode Description

92 ANY CHAR ee if any input is ready

93 CLEAROPTION n option :8ag,return it's old val

94 PLIST get the property list of symbol on stack

95 LFCLOSE close a lisp file

96 BOUNDP return true if symbol is bound

97 MARRAY make an array object of a certain size

98 ARRAYLEN return the length of an array

99 FFLUSH fiush a file

100 NS USP END suspend a task, calling a function with it

101 TYPE return the type of an object

102 SETO PT [posn] initialize an optional argument

103 SUSPEND suspend a task, calling a function with it

104 ACTIVATE activate a previously suspended task

105 FIX truncate floating-pt to :6.xnum

106 FLOAT convert fixnum to :flonum

107 STRUCTNAME return the name of a structure

108 STRUCTSIZE return the size of a structure

109 DUMPTLINES dump all time lines to a file

110 RECEVENT record event on current processor

122 PLUS add numbers

123 GT greater-than predicate

124 EQ eq predicate

146 APPENDIX A. THE MCODE MACHINE LANGUAGE

Index Opcode Ar gs Opcode Description

125 DIFF subtract numbers

126· TIMES multiply numbers

127 QUOT divide numbers

128 REM remainder of numbers

129 NTHSTR nth-string(string,n)

130 UNG ETCH put a char {fixnum) back into file

131 EXER exercise primitives for performance meas

132 PUT CH output fixnum from stack to file

133 NUMEQ numerical equal test

134 ARRAYREF get an element of an array

135 MAKESTRUCT make a lisp structure

136 ADDRREF indexed reference based on C pointer

137 NACTIVATE activate a previously suspended task

138 FASTRSTRING read a string from a file

139 SETSPECIAL set an inst as special for info collection

161 SETNTHSTR set-nth-string(string,n, value)

162 LFOPEN open a file in a particular mode

163 STRUCTREF reference a slot of a structure

164 ADDRSET indexed set based on C pointer

169 MAKEESPEC return a new espec

170 SCANTOK scan a token from a file

171 MAKECLOSURE return a new closure

172 STRUCTSET set a slot in a structure

Appendix B

Statistics Collection in N usim

B.1 Using Nusim

B .1.1 Lisp Functions

The following Lisp functions are unique to the Nusim implementation of Multilisp.

They are used to enable statistics processing, to dump out statistics to a file, and

to set the values of some N usim scheduling variables.

Nusim collects information in a statistics structure. The statistics informa­

tion includes counts of different types of accesses and where they occured, types

of instructions executed, time spent in different phases of N usim, and many other

variables. A complete description is in [44]. Nusim maintains an array of statistics

structures. Different phases of the program can dump statistics in a different struc­

ture of this array. For instance, N usim can step to a new statistic structure after

every garbage collector flip. This is useful because the division of memory blocks

among processors changes after each flip.

(info flle n)

Dumps statistics information from statistics structure n into the file. Array 0 is

where info stats go when info collection is turned off. The schedule variable

147

148 APPENDIX B. STATISTICS COLLECTION IN NUSIM

globa.linfo sets where info stats go when info is turned on. Allowable range

for n is 0 to *info-locations* (which is presently 10), or negative. A negative

index prints out 'Garbage Collection' and 'Cost of Info Collection' statistics.

(clearinfo n)

Clears the info structure n. Same rules as above.

(infoon)

Turns on info collection by using the value of variable globalinfo as an index to a

statistics structure. Hereafter, run-time statistics will use this new statistics

structure.

(infooff)

Turns off info collection by setting the current statistics structure back to struc­

ture 0.

(getsched string)

How to look at schedule variables that the system uses. Eg: (getsched "minsched")

(setsched string value)

Sets the value of a scheduling variable to be value.

B.1.2 Scheduling Variables

In N usim, each processor alternates between running processes and loading tasks.

While running, a processor may switch between active processes in the process

queue. A processor runs a quanta of instructions as an uninterrupted unit. Each

process is allowed to run for at most runfor of these quanta. The processor does

some amount of garbage collection after each quanta. After the process has run

runfor quanta, the processor switches to another active process in the process queue.

B.1. USING NUSIM 149

After at most totalrun quanta of running processes, the processor enters a phase of

loading tasks. A processor that has run all its processes and is otherwise idle also

enters the task loading phase.

Processors attempt to load processes so that the minimum number of processes

in the process queue is greater than or equal to minsched. Processors only load

tasks out of task queues during this phase. Programs spawn processes by executing

a future instruction. These newly spawned processes a.re stored in the process queue,

possibly bumping an older task out into a task queue. The parameter runsched sets

a limit on the size of the process queue due to process spawning, and tasksched sets

the size limit due to task grabbing.

parcelchoice

How to pick a node from which to grab a parcel of memory. Choices are:

random-choice Choose a. node a.t random.

closrand-choice Try our node first, then choose randomly.

increment-choice Sta.rt at our node and move a. further distance

taskchoice

away each time we fail to get the resource. Reads

a topological description that we have built up

for the system we want to model.

How to pick a. node from which to grab an executable task. Choices are the sa.me

as for pa.rcelchoice.

minsched

A processor tries to maintain at least this many processes in its process queue at all

times. If number of processes in the process queue is less than this, excessive

searching for tasks may occur so it may be best to keep minsched= 1.

150 APPENDIX B. STATISTICS COLLECTION IN NUSIM

tasksched

When a processor loads tasks into its process queue, it will try to grab enough

tasks to have tasksched processes in the process queue.

taskgrab

The maximum number of tasks that a processor will steal take from each task

queue at any one time.

iosched

One processor in the system is designated I/O processor. It loads 1/0 tasks from

a. single system-wide 1/0 task queue. The iosched variable sets the maximum

number of tasks that the I/O processor will grab from the I/O task queue.

runsched

When a processor executes a .future instruction, it forks a child task and pushes the

pa.rent back into the process queue. This variable sets a limit on how many

processes may be in the process queue due to forks. If there are allready

runsched processes in the queue, the processor bumps the oldest process out

into its task queue.

runquanta

How many instructions to run at a. time before checking the status of garbage

collection.

run for

How many quanta a process runs before we let the next process in the process

queue run. Schedule them round-robin. If this is set very high, (the default),

then every process runs to completion.

•• ,_·. c.

B.2. HOW NUSIM COUNTS ACCESSES 151

totalrun

Run processes for this many quanta before trying to load new tasks into the process

queue.

globalinfo

This is the index of the statistics structure that will be used if info collection is

turned on.

info-increment

If this flag is non-zero, then processors increment globalinfo after each garbage

collection flip.

stopncopy

Force garbage collection to behave as a stop and copy system rather than incre­

mental.

movespeed

The speed at which incremental garbage collection sweeps through memory be­

tween quanta of running instructions.

B.2 How N usim Counts Accesses

Some N usim counters

Every memory access is counted as a fetch or store of some type. N usim tracks

different types of accesses by incrementing slots in a statistics structure. Rather

than reproduce the entire structure here, I will name and describe a few significant

slots.

code-fetch

152 APPENDIX B. STATISTICS COLLECTION IN NUSIM

This slot counts code object fetches. In the Nusim implementation of Multilisp,

a code object contains the code for a Multilisp procedure. The code object

points to a block of MCODE instructions and to a set of constant values used

by the instructions.

instr-fetch

A block of instructions contains the actual MCODE byte-code for a procedure or

expression. Fetching a block of instructions is conceptually like loading those

instructions into a processor's instruction buffer. Once the block has been

loaded, a processor can run all of the instructions in that procedure without

global accesses to fetch each instruction.

env-link-fetch

In N usim, lexically scoped environments are stored as a series of environment

frames. Each frame contains a. pointer to its lexical parent. In order to fetch

a value out of a lexically enclosing environment, a process must step through

these links to the appropriate environment frame, then fetch a. value out of a

slot in that frame. N usim counts the environment link accesses as env-link­

fetch. Fetches from the local environment do. not require any link accesses.

Note that env-link-fetch counts environment link accesses necessary to store

into an environment slot, as well as to read a value out of a. slot.

env-obj-fetch

This is a. count of environment value fetches.

env-obj-store

This is the corresponding count for environment value stores.

hunk-fetch

B.2. HOW NUSIM COUNTS ACCESSES 153

Stack hunks are chunks of the stack tha.t have been pushed out of a. processor's

stack buffer. When a. process loads a new task, it must load a. new stack into

its stack buffer. This is counted as hunk-fetch.

scache-save

This variable counts the number of stack hunks that are pushed out of the stack

buffer into memory.

scache-load

This is a count of stack hunk loads into the stack buffer.

scache-hdr-fetch

The head of ea.ch stack hunk contains two words of information. N usim reads these

header words on each stack hunk load.

stack-deep-fetch

N usim occasionally fetches a. word out of the stack without loading in an entire

stack hunk. This 'deep' fetch fetches a value out of a. hunk in the heap.

future-touch

This variable the number of times that futures are touched. Most instructions

implicitly touch their operands, to make sure tha.t the operands are not fu­

tures. Any time that an instruction stumbles across a future, it is counted as

a future touch.

future-val-fetch

When an instruction touches a. future in N usim, it jumps to an exception handling

routine. If a future has been determined, the exception handler merely fetches

the value of the future, incrementing future-val-fetch. If the future is not

determined, the process tha.t touched it must wait on the future.

154 APPENDIX B. STATISTICS COLLECTION IN NUSIM

future-val-store

A function that determines the value of a future writes the value into a slot in the

future object. Future-val-store counts those stores.

symbol-val-fetch

This is a count of reads of global symbols.

static-value-fetch

In Multilisp, constant values used by the program are compiled in with the code.

These values could be any Lisp object. Typical constant values are numerical

constants and symbol names. These constants are kept in the code object

for a procedure. The variable symbol-value-fetch counts references to those

values.

cons-fetch

This variable counts fetches of the car or cdr of a cons-cell.

array-fetch

This variable counts array references.

struct-fetch

This variable counts references to user-defined structures.

string-fetch

This variable counts string references.

closure-fetch

This variable counts fetches of closures.

B.2. HOW NUSIM COUNTS ACCESSES 155

B.2.1 Cost of some operations in Nusim

Most simple data fetches in Nusim increment one of the counting variables described

above. Some basic operations in N usim fetch several different types of data. This

section describes those operations, and how they are counted using the variables

defined above. (The increment for a counter variable is 1 except where noted).

Operation

Save stack hunk

Load stack hunk

Call subroutine

Return from subroutine

Load process from task queue

Touching a determined future

Counter

scache-save

\ scache-load

Increment

1

1

scache-hdr-fetch 2

code-fetch 1

instr-fetch 1

env-link-fetch 1

instr-fetch 1

code-fetch 1

instr-fetch 1

env-link-fetch 1

hunk-fetch 1

scache-loa.d 1

scache-hdr-fetch 2

future-touch 1

future-val-fetch 1

Touching an undetermined future future-touch 1

scache-save 1

Determining a future's value future-val-store 1

Reading out of the environment env-link-fetch [lexical level]

env-obj-fetch 1

Storing into the environment env-link-fetch [lexical level]

env-obj-store 1

156 APPENDIX B. STATISTICS COLLECTION IN NUSIM

Garbage Collection flip instr-fetch j [#processes in queue]

B.2.2 Nusim counters used for results

In Chapter 5, I presented several types of data graphs. Two graphs distinguished

different types of data. accesses. Data. fetches and stores were divided into classes

of objects. The mean dista.nce of reference W88 divided into a. different set of ac­

cess types. Chapter 5 also showed data on the locality of reference for all access

types. This section explains which Nusim variables contributed to ea.ch of these

data graphs.

Data Fetch Classes

Data Class Nusim Variables

Constant code-fetch

instr-fetch

closure-fetch

string-fetch

Global symbol-val-fetch

cons-fetch

array-fetch

struct-fetch

Environment env-link-fetch

env-obj-fetch

Stack scache-hdr-fetch

hunk-fetch

stack-deep-fetch

Future future-touch

B.2. HOW NUSIM COUNTS ACCESSES

Data Store Classes

Data Class

Global

Environment

Future

Nusim Variables

symbol-val-store

cons-store

array-store

struct-store

closure-store

env-obj-store

future-val-store

Data Types for Locality

Data Class

Code

Structure Stores

Structure Fetches

N usim Variables

code-fetch

instr-fetch

future-val-store

array-store

struct-store

future-val-fetch

symbol-val-fetch

env-link-fetch

hunk-fetch

cons-fetch

array-fetch

struct-fetch

string-fetch

157

158

Environment

Stack

Futures

APPENDIX B. STATISTICS COLLECTION IN NUSIM

env-obj-fetch

env-obj-store

scache-load

future-touch

Locality Measurements

The following N usim data types are used to compute the mean distance of access

and the percentage local access for all data accesses.

code-fetch

instr-fetch

future-val-store

array-store

struct-store

future-val-fetch

symbol-val-fetch

env-link-fetch

hunk-fetch

cons-fetch

array-fetch

struct-fetch

string-fetch

env-obj-fetch

env-obj-store

scache-load

future-touch

Appendix C

Test Programs

C.1 Compile-Expr

C.1.1 Source Code

The Multilisp compiler is a large body of code. The function compile-expr calls

several other routines in order to compile an expression to symbolic assembly code.

A few of those functions are reproduced here.

Copyright (c) 1984. Robert B. Bal•tead, Jr. and. Juan B. Loaiza.

Compile expr in the enviroment env and puh it on the •tack before

the code in cont.

(defun compile-expr (•xpr cont env taux op arg• pria-code)

(future

(cond ((or (nuaberp expr) (null expr) (stringp expr))

(cons-code '(puahval ,expr) cont))

((syabolp expr) (get-var-val expr cont env))

((atoa (setq op (car expr)))

(setq args (cdr expr))

(cond ((aetq prim-code (get op 'prim-fora))

159

160 APPENDIX C. TEST PROGRAMS

(lexpr-funcall prim-code cont env arga))

((in-env op env) (coapile-apply expr cont env))

((aetq pria-code (get op 'priaitive-code))

(or (= (car pria-code) (length arga))

(error "; wrong # of argument•" expr))

(coapile-argliat arg•

(append-code (cdr prim-code) cont)

env))

((aetq prim-code (get op 'vx-llUltiliap-aacro))

(compile-expr (apply prim-code arga) cont env))

((setq prim-code (get op 'aultiliap-aacro))

(compile-expr (apply prim-code args) cont env))

((compile-apply expr cont env))))

((compile-apply expr cont env)))))

Puahea in front of cont an expression that will reference var in env.

(defun get-var-val (var cont env &aux where)

(cond ((aetq where (in-env var env))

(cons-code '(eval ,where) cont))

((cons-code '(gval ,var) cont))))

Push•• in front of cont an expreasion that will set var in env to

whatever i• currently on the top of the stack.

(defun ••t-var-val (var cont env &aux where)

(cond ((aetq where (in-env var env))

(cons-code '(aeval . ,where) cont))

((cons-code '(agval ,var) cont))))

Push the function and it• arguments onto the stack and do a call with

the n1111ber of arguments that were supplied.

(defun coapile-apply (expr cont env)

C.1. COMPILE-EXPR

(compile-arglist expr

(call-it (length (cdr expr)) cont)

env))

(defun coapile-arglist (args cont env)

(future

(cond ((null args) cont)

((coapile-expr (car args)

(coapile-arglist (cdr args) cont env)

env)))))

C.1.2 Test Data

161

The test case for running compile-expr is one large function definition, one-big­

fn. It contains four macro definitions, and sixteen smaller function definitions.

Four more functions are defined within these second level routines. One-big-En

contains approximately 8500 bytes of Multilisp source code. The compiled MCODE

representation for one-big-En is 6400 bytes long.

C.1.3 Instruction Mix

The MCODE instructions executed by compile-expr while compiling this test case

were as follows:

162 APPENDIX C. TEST PROGRAMS

Instruction Count Instruction Count

EVAL 144803 ARRAYREF 1268

ITGOTO 55896 SETO PT 1226

GETSTRUCT 50324 ARRAYSET 952

POP 39981 NUMEQ 446

NULL 33629 TOUCH 317

SEYAL 29476 DIFF 271

RETURN 17620 FIX 240

CALL 17620 GT 153

TYPEEQ 17433 QUOT 147

GVAL 16411 REM 147

I GOTO 14843 MARRAY 120

PUSHNIL 13266 NTHSTR 73

PUSHNUM 11215 TYPECAST 62

COPY 10032 MAKESTRlNG 37

CALLRTN 9695 SETSTRUCT 34

CONS 8517 MAKEESPEC 31

PLUS 8059 TIMES 15

EQ 8053 PUSHENV 10

PUSHVAL 7407 POPENV 10

CLOSURE 3227 STRLEN 6

DETERMINE 3154 SGVAL 3

FUTURE 3154 INTERN 3

PLIST 2907 BOUNDP 3

SETNTHSTR 2373 INFOOFF 1

C.2. CONSIM 163

C.2 Consim

C.2.1 Source Code

A large part of the Consim environment is a compiler that translates a high level

description of a circuit down to parallelized Multilisp code. The function psim

actually runs the simulation. It spawns many cycles of the circuit in parallel, passing

the output of one cycle to the input of the next.

(defun paia (ac-proc .. tate ckt-in cycle• current-cycle)

(let ((elt (future (ac-proc .. tat•

(future (car ckt-in))

current-cycle))))

(if (= cycle• current-cycle) (liat elt)

(paia ac-proc

(future (cadr elt))

(cdr ckt-in)

cycle•

(+ current-cycle 1)))))

C.2.2 Circuit Simulated

The circuit simulated for these experiments was a four bit ALU, configured to act

as a counter.

(defun a11111gf c .. tate ckt-in cyc-nua)

(let• ((g0886 .. tate)

(a3 (future (field 1 g0886)))

(a2 (future (field 2 g0886)))

(a1 (future (field 3 g0886)))

(aO (future (field 4 g0886)))

(b3 (future (field 6 g0886)))

164 APPENDIX C. TEST PROGRAMS

(b2 (future (field 8 g0885)))

(b1 (future (field 7 g0885)))

(bO (future (field 8 g0885)))

c·cin (future (field 9 g0885)))

(g0888 ckt-in)

(•3 (future (field 2 g0888)))

(a2 (future (field 3 g0888)))

(•1 (future (field 4 g0888)))

(aO (future (field 5 g0888)))

c-b3 (future (f-not b3)))

c-b2 (future (f-not b2)))

c-b1 (future (f-not b1)))

c-bO (future (f-not bO)))

c·a (future (f-not (future (field 1 g0886)))))

(t22 (future (f-nor3 (future (f-and2 -b3 a1))

(future (f-and2 aO b3)) a3)))

(t23

(future (f-nor2 (future (f-and3 b2 a3 a2))

(future (f-and3 a2 a2 ·b2)))))

(t28 (future (f-nor3 (future (f-and2 -b1 a1))

(future (f-and2 b1 aO)) a1)))

(t27

(future (f-nor2 (future (f-and3 bO a3 aO))

(future (f-and3 ao •2 -bO)))))

(t28 (future (f-nor3 (future (f-and2 -bO a1))

(future (f-and2 aO bO)) aO)))

(t21

(future (f-nor2 (future (f-and3 b3 a3 a3))

(future (f-and3 a3 a2 -b3)))))

(t24 (future (f-nor3 (future (f-and2 -b2 a1))

(future (f-and2 aO b2)) a2)))

(t25

(future (f-nor2 (future (f-and3 b1 a3 a1))

(future (f-and3 a1 a2 ·b1)))))

C.2. CONSIM

(fO

(future (f-xor2 (future (f-and2 t27 (future (f-not t28))))

(future (f-nand2 -. -cin)))))

(f3

(future (f-xor2 (future (f-and2 t21 (future (f-not t22))))

(future (f-nor4 (future (f-and5 -cin t27 t26 t23 -•))

(future (f-and4 t26 t23 t28 -•))

(future (f-and3 t23 t26 -a))

(future (f-and2 t24 -•)))))))

(f2

(future (f-xor2 (future (f-and2 t23 (future (f-not t24))))

(future (f-nor3 (future (f-and.4 -cin t27 t26 -•))

(future (f-and3 t26 t28 -•))

(future (f-and2 t26 -•)))))))

(cltt-out

(li•t (future (f-nand.2 (future (f-nand5 t21 t23 t26 t27 -cin))

(future (f-nor4 t22

(future (f-and2 t21 t24))

(future (f-and3 t21 t23 t26))

(future (f-and.4 t21 t23 t26 t28))))))))

(f1

(future (f-xor2 (future (f-and2 t26 (future (f-not t26))))

(future (f-nor2 (future (f-and3 t27 -cin -•))

(future (f-and2 t28 -•)))))))

(eq (future (f-and.4 f3 f2 f1 fO)))

c-eq (future (f-not eq)))

(zero (future (f-and2 eq -eq)))

(natate (li•t f3 f2 f1 fO zero zero zero zero zero)))

(list cyc-nua natate cltt-out)))

165

166 APPENDIX C. TEST PROGRAMS

C.2.3 Instruction Mix

The MCODE instructions executed by Consim while simulating a four bit ALU

were as follows:

C.3. FBOYER 167

C.3 Fboyer

C.3.1 Source Code

The Boyer-Moore benchmark has been used to test a number of Lisp implemen­

tations ?? . The main parts of the program are a. tautology checker and a. term

rewriting routine.

Boyer-lloor• Th•or.. proY•r - work• bf moby expanaion

rewritten in Schelm bf Seth St•iaberg 1988

lodified to remc>Y• uelff• future

in tautology? aDd add a future iD. apply-•ubat-liat.

landy O•borne loY. 12/88

Tautology cletec:tioa checb form (if predicate couequat alternate)

If th• predicate ia Iulo- true then we jut check tJM c:oaaequnt

If the pnclicate ia Jalowa falH then n jut c:Mc:k tile alternate

Othe:nriH n •ee if th• couequeat i• tru ualUliag tM preclicate ia true

ud tut th• alteru.t• ia true ualllliag the predicate ia falH

(clefine true It)

(define fal•e If)

(define (taut? fora)

(tautology? (rewrite fora) nil nil))

(define (tautology? fora trlle-li•t fal•e-li•t a&1Ut teap)

(cond ((known-true? fora true-li•t) tru•)

((known-fal•e? fora fal•e-li•t) fal•e)

((eq? (car fora) 'if)

(cond ((knon-true? (cadr fora) true-li•t)

(tautology? (c:addr fora) true-liat fal••-li•t))

((kaotna-falae? (c:adr foJ:ll) fala•-liat)

(tautology? (cadddr fora) true-li•t falae-liat))

168

(else

(setq teap (future (tautology? (cadd.dr fo:r:.)

true-list

(cons (cadr fo:r:.) false-list))))

(and

(tautology? (cad.cir fo?'JI)

(cons (cadr fo:ra) true-list)

false-list)

teap))))

(else false)))

(define (known-true? fo:r:. true-list)

(if (equal fora • (t))

true

(aeaber fora true-list)))

(defiae (known-false? fora false-list)

(if (equal fora '(f))

true

(... ber fora false-list)))

APPENDIX C. TEST PROGRAMS

Rewriting ... tches a fo?'JI against the list of l•lllllUI associated with the car

of the fora and first rewrites the re ... inder of th• fo:r:. before

finding the first 1 which ... tch .. and expmnding it accordingly.

(defun rewrite (fo:ra)

(if (atoa fora)

fora

(rewrite-with-le ... • (cons (car fo:r:.) (rewrite-arga (cdr fora)))

(find-1 (car fora)))))

(define (rewrite-args args)

(if (null? args)

nil

(cons (future (rewrite (car arga))) (rewrite-arga (cdr arga)))))

C.3. FBOYER

(define (rewrite-with-1 fora 181111&8)

(if (null? 1)

fora

(let ((subst-list (one-vay-unify-util fora (cadar le1111&8) nil)))

(if (not (eq? subst-list 'failed))

(rewrite (apply-subst subst-list (caddar lellllll8)))

(rewrite-with-le1111&s fora (cdr lellllll8))))))

, , Weak unification works by a recursive pattern •tch .

• •
(define (one-vay-unify-util fora pattern fraae)

(cond ((eq? fraae 'failed) 'failed)

((atoa pattern)

(let ((already-aatched (fast-assq pattern fraae)))

(cond (already-•tched ; if aatched nrify re•tch

(if (equal fora (cdr already-aatched)) frue 'failed))

(else

(cons (cons pattern fora) fraae)))))

((atoa fora) 'failed)

((eq? (car fora) (car pattern))

(one-way-unify-list (cdr fora) (cdr pattern) fraae))

(else 'failed)))

(define (one-way-unify-list fora pattern fraae)

(if (null? fora)

frame

(one-way-unify-list (cdr fora) (cdr pattern)

(one-way-unify-util (car fora) (car pattern) fraae))))

,, Very siaple substituter used by rewrite with the result of the unification.

''
(defun apply-subst (subst-list fora)

(if (atoa fora)

(let ((value (fast-assq fora subst-list)))

169

170 APPENDIX C. TEST PROGRAMS

(if value (cdr value) fora))

(coll8 (car fora) (apply-•ubllt-li•t •ubllt-li•t (cdr fora)))))

(define (apply-•ubst-li•t •ubst-li•t fora)

(if (null? fora)

nil

; added future here (R.O.)

(con• (future (apply-•ubst •ubet-li•t (car fora)))

(apply-•ubst-list •ubst-li•t (cdr fora)))))

(define (add-le le)

(cond ((and

(not (at<>11 le))

(eq? (car le) 'equal)

(not (at<>11 (cadr 1))))

(push le ... (get (caadr 1) 'le)))

(else

(print '(Bad 1 fora ,le)))))

(define (find-le1111a.• key)

(get key 'le11118.8))

' ' ' Speeded-up versions of asaq and equal:

'.
(define (faat-aaaq key lat)

(until (((null lat) nil)

((eq key (caar lat)) (car lat)))

(aetq lat (cdr lat))))

(defun equal (arg1 arg2)

(until (((eq arg1 arg2))

((atoa arg1)

(cond ((nuaberp arg1)

(if (nuaberp arg2) (= arg1 arg2)))

C.3. FBOYER

((stringp arg1)

(if (stringp arg2) (string-equal arg1 arg2)))

((structurep arg1)

(it (structurep arg2) (structure-equal arg1 arg2)))))

((atom arg2) nil)

((not (equal (car arg1) (car arg2))) nil))

(setq arg1 (cdr arg1))

(setq arg2 (cdr arg2))))

C.3.2 Test Data

171

Fboyer uses a data base of 106 lemmas to rewrite the input expressions into a form

containing only jf statements. For space reasons, the data base is not included here.

The test case that was used for the runs of Fboyer in this thesis is:

(implies (and (implies (f x) (g x)) (implies (g x) (h x)))

(implies (f x) (h x)))

C.3.3 Instruction Mix

The MCODE instructions executed by Fboyer in proving this test case were as

follows:

C.4. MULTILOG 173

C.4 Multilog

C.4.1 Source Code

The Multilog program is designed to be an interactive system. It includes a query­

driver loop, which reads commands from the user and dispatches to the appropriate

database manipulation function. It allows users to load and save databases, to add

and delete clauses.

The code that follows is a sample of routines for evaluating assertions. A more

complete description of the code for Multilog ca.n be found in [51].

Thia i• the aain evaluating aechaniaa for the interpreter in the cue

of a noral. query. If the query (or part of it beiag evaluated) is

predicat-4 by aOJM operator av.ch u AID, Ol, IOT, or USP-VALUE,

then qeval will detect thia, retrieve the appropriate function naae

fro• a •Jll'bol table (creat-4 and. used through put'• and. get'•)

and applJ thia appropriate function to the reat of the input

expreasion. Otherwiae, the uaerted? function ia called. in the case

of a aiaple query with no prM.icating operator•.

(define (qeval query environaent-atreaa)

(let ((qproc (get 'qeval (type-of query))))

(if (null qproc)

(aaserted? (llake-arg-liat query)

enviromaent-atreaa)

(qproc (content• query) enviromaent-atreaa))))

The asaerted? procedure handlea aimpl• queriea. It takea an

arguaent liat which contains a single query aJUl a atr... of environaenta

to be extended bJ database aatchea of that single query. Th••• extensions

are found by finding explicit uaertiou in the database and. applying rules.

The reault returned is that extended environment.

(define (aaaerted? a environaent-streaa)

174 APPENDIX C. TEST PROGRAMS

(flatten-atreaa

(append-strew (futun(u.p (laabda (envirownt) ; PARAI JET

(find-aaaertiona (pattern-of a)

environaent))

enviroD11ent-atreaa))

(future(u.p (laabda (envirownt) ; PAIUIJ.EL

(appl7-rul.ea (pattern-of a)

envirownt))

envirownt-atre ..)))))

Pconjoin ia the procedure which hancllea the parallel AID'• presented to the

ayat... It evaluates aucceHive coajuncta in the en:drowat atreaa

returned bJ eYalutioa of tile previou coajuncta. It returns the final

atreaa of extended eaviromaenta after evalution of all of the conjuncts.

(define (pconjoin conjuncts enviromaent-atreaa)

(cond ((empty-conjunction? conjuncts)

environaent-atreaa)

(1 (pconjoin (future(r .. t-conjuncta conjuncts)) ; PAR.AIIEJ

(future(qeval (first-conjunct conjuncts)

envirownt-atre ..))))))

Pdiajoin is the procedure which hancUea the parallel D&•a presented to the

ayatea. Bvalution of a auccuaive disjunct clou not clepead on any of the

variable bbuUnga fro• evaluation of previous cliaj111lc'ta, ao the procedure

need .. rely merge 'the extended environaent atr.... each formed fro•

evaluation in tile context of the original environment atreaa.

(define (pdiajoin disjuncts enviro:maent-atreaa)

(cond ((eapt7-diajunction? disjunct•)

(the-eapty-atreaa))

(1

(append-strew (future(qeval (first-disjunct disjuncts)

environaent-atreaa))

PARALLEL

C.4. MULTILOG

(future(pclisjoin (rest-disjuncts disjuncts)

environment-stream))))))

Unify-match is the -.in unification algoritha, which takes two patterns

as inputs and an environment, and returns either an extended environment

or 'failed.

(define (unify--.tch pl p2 env)

(cond ((not (or (coDBp env) (null env))) 'failed)

((equal pl p2) env)

((ato• pl)

(cond ((ato• p2) 'f&iled)

((var? p2) (extend-if-possible p2 pl env))

(1 'failed)))

((var? pl) (extend-if-possible pl p2 env))

((ato• p2) 'failed)

((var? p2) (extend-if-possible p2 pl env))

(1 (unify--.tch (cdr p1)

(cdr p2)

(future(unify--.tch (car pl)

(car p2)

env))))))

PH.AT I RT

The basic pattern ... tcher takes a pattern, a data object, and an

enviro1111ent and returns either the symbol 'failed or an exte1111ion of the

given enviroD1&ent if such exte1111ion would be poHible. The pattern -.tcher

checks the pattern against the data, symbol by symbol, and returns an

extended environment, the original enviroD11ent or the symbol 'failed

depending on the result of that check. Exte1111ions to the environaent must

be consistent with current bindings.

(define (pattern-1111.tch pat dat enviroDllent)

(cond ((not (or (coup environment) (null enviroD11ent))) 'failed)

175

176 APPENDIX C. TEST PROGRAMS

((and (nuaberp pat) (n.uaberp dat))

(con.d ((= pat dat) enviro1111ent)

(1 'failed)))

((atoa pat)

(cond ((eq pat dat) environaent)

(1 'failed)))

((var? pat)

(future(extend-if-conaistent pat PARALLEL

dat

enviromaent)))

((atoa dat) 'failed)

(1 (pattern-u.tch (cdr pat)

(cdr dat)

(future(pattern-aatch (car pat)

(car dat)

enviro11119nt))))))

PllJ.LLEL

The following procedure checb if it ia poHible to extend the input

environaent with the given var to dat binding. If there ia no binding

currently in the eaviroDll8Jlt for the variable, then tlae binding i• siaply

added. Otherwiae, extend-if-coaaiatent aatchea in the environaent the

data against the variable bin.ding value. Thia will return either 'failed

if the extension would be incouiatent because the pattern u.tch would fail,

or the original environaent if the extension would be acceptable.

(define (extend-if-conaiatent var dat enviro1111ent)

(let ((value-cell (binding-pair var enviroJU1ent)))

(if (null value-cell)

(extend var dat environaent)

(pattern-aatch (value-in value-cell) dat environment))))

Fin.d-aaaertions takes aa input a pattern and an environment. It returns

a atreaa of enviroJU1enta found by extending the original environaent by a

database ... tch of the given pattern.

C.4. MULTILOG

(de1ine (1ind-aaaertiona pattern enYironaent)

(map-no1ail (laabda (datua)

(pattern-aatch pattern da.tua enYiromaent))

(1etch-aaaertiona pattern enYironment)))

C .4.2 Test Case

.~ · ..)

177

For the runs of Multilog described in this thesis, I used a simple test case. The

graph path.out describes points connected by edges. The assertion that Multilog

tested was whether there is a path from point a to point i.

, , The data base for this teat

••
(setq path.out

' (

)

(edge h i)

(edge a h)

(edge a b)

(edge b c)

(edge c d)

(edge a c)

(edge a g)

(edge g d)

(edge a f)

(rule (path (? x) (? y))

(por (edge (? x) (? y))

(pand (edge (? x) (? i)) (path (? i) (? y)))))

)

,, The assertion to prove

178 APPENDIX C. TEST PROGRAMS

(setq query-test '((path a i)))

C.4.3 Instruction Mix

The MCODE instructions executed by Multilog in proving this assertion were as

follows:

180 APPENDIX C. TEST PROGRAMS

C.5 Quicksort

C.5.1 Source Code

Quicksort is a well known algorithm for sorting a list of numbers. The version

shown here uses futures extensively.

Copyright (c) 1984. Robert B. Balatead 1 Jr. and Juan B. Loaiza.

Quicksort progra1111 in Multiliap 1 BBB. April 1984.

(defmacro bundle-parts (left right)

'(cona 1 left 1 right))

(defaacro left-part (bUDdle)

'(car 1 bundle))

(defma.cro right-part (bundle)

'(cdr 1 bundle))

(defun pqaort (1) (pqa 1 nil))

;; RecuraiY• parallel quick aort routine

(detun pqa (1 reat b.ux part•)

(it (null 1)

re at

(setq parts (ppart (car 1) (cdr 1)))

(pqa (left-part parts)

(future (cons (car 1) (pqs (right-part parts) reat))))))

;; Partition the list in parallel

(detun ppart (el t 1 b.ux cdrpa.rte)

(if (null 1)

(bundle-parts nil nil)

(eetq cdrpart• (future (ppart elt (cdr 1))))

(if (> elt (car 1))

--

C.5. QUICKSORT

(bundle-part• (con.a (car l) (future (left-part cdrparts)))

(future (right-part cclrparta)))

(bundle-part• (future (left-part cdrparta))

(cons (car l) (future (right-part cdrparts)))))))

, , Function to generate a liat of 'n' ranciola nuabere

(defun g (n)

(if (<= n 0)

nil

(cons (- (rand 2000) 1000) (g (- n 1)))))

(define ranaeed 12346)

(defun rand (&optioaal 11&X)

(aetq ranaeed (% (+ (• ranseed 64321) 76319) 2000000}}

(if lllLX (% ranaeed ll&X) ranaeed}}

C.5.2 Test Data

181

All of the runs of Quicksort reported in this thesis sorted a 700 element list of

random numbers.

C.5.3 Instruction Mix

The MCODE instructions executed by Quicksort in sorting a 700 element list were

as follows:

182 APPENDIXC. TEST PROGRAMS

Instruction Count Instruction Count

EVAL 52126 SEYAL 7220

GETSTRUCT 35939 RETURN 6709

PUSHNIL 18587 CALL 6709

DETERMINE 17562 GT 5683

FUTURE 17562 TYPEEQ 534

IT GOTO 13416 CALLRTN 513

CONS 12390 PUSHNUM 513

NULL 7748 I GOTO 512

GVAL 7222 PLUS 512

POP 7221 INFOOFF 1

Bibliography

[1] 16-Bit Microproceaaor Uaer'a ManuaL MotoroJa Inc., Englewood Cliffs, N.J.,

1982. 68000 Manual.

[2] Cray-! Computer Syatem Functional Deacription. Cray Research, May 1985.

HR-2000.

[3] DBC68K Hardware Reference Manual. Microba.r Systems Inc., Palo Alto, CA,

1.0 edition, May 11 1982.

[4] DBR 50 Hardware Reference Manual. Microbar Systems Inc., Palo Alto, CA,

1.0 edition, November 2 1982.

[5] Development of a Butterfly .Multiproceaaor Teat Bed. Quarterly Technical Re­

port 5872, Bolt Beranek and Newman Inc, 1985.

[6] Nu Machine Technical Summary. Texas Instruments Corp., Irvine, California,

1984.

[7] Occam Programming Manual. INMOS Ltd., November 1984.

[8] VAX Architecture Handbook. Digital Equipment Corp., 1981.

[9] Thomas Anderson. The Deaign of a Multiproceaaor Development Syatem. Tech­

nical Report TR-279, Laboratory for Computer Science, M.I.T., Cambridge,

Mass., September 1982.

183

184 BIBLIOGRAPHY

[10] Arvind a.nd Robert E. Thomas. I-Structures: An Efficient Data Structure for

Functional Languages. Technical Report MIT /LCS/TM-178, MIT Laboratory

for Computer Science, October 1980.

[11] H. Baker a.nd C. Hewitt. The Incremental Garbage Collection of Processes.

Memo 454, M.I.T. Artificial Intelligence Laboratory, Cambridge, Mass., De­

cember 1977.

[12] Elizabeth Bradley. Logic Simulation on a Multiprocessor. Technical Re­

port TR-380, M.l.T. Laboratory for Computer Science, Cambridge, Mass.,

November 1986.

[13] Elizabeth Bradley and Robert H. Halstead, Jr. Simulating logic circuits: a

multiprocessor application. 1987. To be published in 'Journal of Parallel Pro­

cessing'.

[14] Petar Brajak, Sasa Presern, a.nd A.P. Zeleznikar. Rationale a.nd concepts for

the Parasys parallel processor architecture. Seminar given at MIT Lab for

Computer Science, April 15 1987. Authors are with Iskradelta Inc., Jozef

Stefan Institute, a.nd Edvard Kardelj University, Yugoslavia.

[15] W.C. Brantley, K.P. McAuliffe, a.nd J. Weiss. RP3 processor-memory element.

In Proceedings of 1985 International Parallel Processing Conference, pages 782-

789, August 1985.

[16] R.A. Brooks, R.P. Gabriel, and G.L. Steele. An optimizing compiler for lex­

ically scoped Lisp. In Proceedings of the 198! A CM Compiler Construction

Conference, June 1982.

[17] L.M. Censier and P. Feautrier. A new solution to coherence problems in multi­

cache systems. In IEEE Transaction on Computers, pages 1112-1118, Decem­

ber 1978.

BIBLIOGRAPHY 185

[18] D. W. Clark and W. D. Strecker. Comments on 'The Case for the Reduced

Instruction Set Computer'. Computer Architecture New&, 8, October 1980.

[19) William Clinger. The Rem&ed Rem&ed Report on Scheme, or an Uncommon

Li&p. Memo 848, M.I. T. Artificial Intelligence Laboratory, Cambridge, Mas­

sachusetts, August 1985.

[20] W.F. Clocksim and C.S. Mellish. Programming in Prolog. Springer-Verlag,

New York, 1981.

[21] William J. Dally. Message-driven processor: preliminary architecture. N ovem­

ber 1986. Working Paper: CVA-1.

[22] J .K. Foderaro and K.L. Sklower. The FRANZ Li&p .Manual. Technical Report,

University of California, Berkeley, April 1982.

[23] Richard P. Gabriel. Performance and Evaluation of Li&p Sy&tem&. MIT Pre&&

Serie& in Computer Science, M.l.T. Press, Cambridge, MA, 1985.

[24] L.R. Goke and G.J. Lipovsky. Banyan networks for partitioning multipro­

cessor systems. In Proceeding& of the Fir&t Annual Sympo1ium on Computer

Architecture, pages 21-28, 1973.

[25] John Goodhue. The Monarch multiprocessor. MIT VLSI Seminar, April 14

1987. Author is employed by B.B.N. Inc.

[26] Alloan Gottlieb, Ralph Grishman, Clyde Krusb.l, Kevin McAulift'e, Larry

Rudolph, and Mac Snir. The NYU Ultra.computer - designing an MIMD

shared memory parallel computer. IEEE Tranaactiom on Computer&, C-

32(2):175-189, 1983.

[27] Sharon Gray. U&ing Future& to Exploit Paralleli&m in Lup. Master's thesis,

M.l.T., Cambridge, MA, February 1986.

186 BIBLIOGRAPHY

(28] Robert H. Halstead, Jr. Architecture of a Myriaproceuor. La Jolla Institute,

La Jolla, California., 1981.

(29] Robert H. Halstead, Jr. Architecture of a myria.processor. IEEE COMPCON

Spring 81, 299-302, February 1981.

(30] Robert H. Halstead, Jr. Implementation ofMultilisp: Lisp on a multiprocessor.

A CM Sympoaium on Liap and Functional Programming, August 1984.

(31] Robert H. Halstead, Jr. Multilisp: a language for concurrent symbolic compu­

tation. A CM Tranaactiona on Programming Languagea and Syatema, 7(4):501-

538, October 1985.

(32] Robert H. Halstead, Jr. Parallel symbolic computing. IEEE Computer,

19(8):35-43, August 1986.

(33] Robert H. Halstead, Jr., T. Andersor, R. Osborne, and T. Sterling. Concert:

design of a multiprocessor development system. In 19th Annual Sympoaium on

Computer Architecture, pages 40-48, Tokyo, June 1986.

(34} Robert H. Halstead, Jr., Juan R. Loaiza, and Moses H. Ma. The Multilisp

manual. September 1986. PPG Group Working Paper.

(35] Stephan Herron. A General-Purpoae Architecture Simulator. Bachelor Thesis,

M.I.T., Cambridge, MA, June 1987.

(36] Daniel W. Hillis. The Connection Machine. MIT Preaa Seriea in Artificial

Intelligence, M.I. T. Press, Cambridge, MA, 1985.

(37] C.A.R. Hoare. Communicating sequential processes. C.A. C.M., 21(8):666-667,

1978.

(38] J. Holloway, Jr. G.L. Steele, G.J. Sussman, and A. Bell. The SCHEME-79

Chip. Memo 559, M.I.T. Artificial Intelligence Laboratory, Cambridge, Mass.,

January 1980.

BIBLIOGRAPHY 187

[39] IEEE Task P796/D2. Proposed microcomputer system 796 bus standard.

IEEE Computer, 13(10):89-105, October 1980.

[40] Thomas Knight, David Moon, John Holloway, and Guy Steele. CADR.

Memo 528, M.I. T. Artificial Intelligence Laboratory, Cambridge, Mas­

sachusetts, June 1979.

[41] J. McCarthy, P. Abrahams, D. Edwards, T. Hart, and M. Levin. LISP 1.5

Programmer'& Manual. M.I.T. Press, Cambridge, Mass., 1962.

[42] Louis Monier and Pradeep Sindhu. The architecture of the Dragon. In IEEE

Spring CompCon, pages 118-121, 1985.

[43] David A. Moon. Symbolics architecture. IEEE Computer, 20(1), January

1987.

[44] Peter Nuth and Randy Osborne. Nusim-doc.text. P.P.G. Internal Document.

[45] Randy Osborne. Personal Communication, May 1987.

[46] Gregory M. Papadopoulos. An Engineering Implementation of the Tagged­

Token Datafiow Machine. Computation Structures Group Memo 270, M.I.T.

Laboratory for Computer Science, 1987.

[47] G.F. Pfister, W.C. Brantley, D.A. George, S.L. Harvey, W.J. Kleinfieder, K.P.

McAuliffe, E.A. Melton, V.A. Norton, and J. Weiss. The IBM research paral­

lel processor prototype (RP3): introduction and architecture. In Proceeding&

of 1985 International Parallel Proce&aing Conference, pages 764-771, August

1985.

[48] Andrew R. Pleszkun and Matthew J. Tha.zhutha.veetil. The architecture of

Lisp ma.chines. IEEE Computer, 20(3):25-35, March 1987.

[49] C.L. Seitz. The cosmic cube. C.A.C.M., 28(1):22-33, January 1985.

188 BIBLIOGRAPHY

[50) Burton Smith. The Architecture of the HEP, pages 41-55. MIT Press Series

in Scientific Computation, M.l.T. Press, 1985.

[51] Susan Solomon. A Query Language on a Parallel Machine. Bachelor Thesis,

M.l.T., Cambridge, MA, June 1985.

[52] S. Sugimoto, K. Agusa, K. Tabata, and Y. Ohno. A multi-microprocessor

system for concurrent Lisp. In Proceedings of International Conference on

Parallel Processing, June 1983.

[53] Gerald Sussman and Harold Abelson. Structure and Interpretation of Com­

puter Programs. M.I.T. Press, Cambridge, Mass., 1984.

[54] George S. Taylor, Paul N. Hilfinger, James R. Larus, David A. Patterson, and

Benjamin G. Zom. Evaluation of the SPUR lisp a.rchitecture. In Thirteenth

International Symposium On Computer Architecture, June 1986.

(55] Vito A. Trujillo. System architecture of a reconfigurable multimicroproces­

sor research system. In 1981 International Conference on Parallel Processing,

1982.

[56] Colin Whitby-Strevens. The Transputer. In 11th Annual International Sym­

posium on Computer Architecture, pages 292-300, June 1985.

[57] Alexander WoHe. TI puts its Lisp chip into a system for military Al. Electron­

ics, 60(6):95-96, March 19 1987.

llnc1.aAS.i£_i.ed
SECQR!'!!_~ON Of Tl:f!i PAMF

REPORT DOCUMENTATION PAGE
1•. REPORT SECURITY CLASSIFICATION 1 b. RbTRICTIVE MARKINGS

Unclassified
Z.. SEOJRITY CLASSIFICATION AUTHORITY 3 . DISTRl~UTION I AVAILABILITY OF REPORT

2b. OECLASSIFICA TION I DOWNGRADING SCHEDULE Approved for public release; distribution
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGAAIZATION REPORT NUMBER(S)

MIT/LCS/TR-395 N00014-83-K-Ol25 and N00014-84-K-0099

&.. NAME OF PERFORMING ORGANIZATION 6-b. OFFICE SYMBOL 7a. NAME OF MONITORtNG ORGANIZATION
..

MIT Laboratory for Computer (If applicableJ

Science
Off ice of Naval Research/Department of Navy

6c. ADDRESS (City, State, and ZIPCa"-) 7b. AQORESS (City, State, Md ZIP CodeJ

545 Technology Square Information Systems Program
Cambridge, MA 02139 Arlington, VA 22217

Ba. NAME OF FUNDING I SPONSORING Sb. OFFICE SYMBOL 9. PR<>(UREM£NT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicMlle)

DARPA/DOD
le. ADDRESS (City, State, and ZIP Code) 10. SQ1 ~M:E OF FUNDING NUMBERS

1400 Wilson Blvd. p ,,u PROJECT TASK WORK UNIT
Arlington, VA 22217 ELEME NT NO. NO. NO. ACCESSION NO.

11 . -fiTl.'E (lndlldfl Security Clauification)

COMMUNICATION PATTERNS IN A SYMBOLIC MULTIPROCESSOR

12. PERSONAL AUTHOR($)
Nuth_. Peter R.

13a. TYPE OF REPORT t 3b. TIME COVERED 114. DATEi OF REPORT (Y .. t',Montlt,0.y) 115. PAGE COUNT
Technical FROM TO 19j_7 June 188

16. SUPPLEMENTARY NOTATION

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on teWIW if n«•DMy Md idMtify by block number)
FIELQ GROUP SUB-GROUP. Data reference, Ltsp, locality! .,m~~tiprocessor, symbolic

" I '. ~

processing

19. ABSTRACT (Continue on reve,. if necessaty and identify by block number)

An important design decision for large scale multiprocessors is the balance of proe-
essor:power to communication network bandwidth. 1ln order to evaluate different design
alternatives, it is necessary to be able to predict the load imposed on the network by a
programming model.

This thesis quantifies that communication load for a model of parallel symbolic
computing using the Multilisp language. An organization of a shared memory multiprocessor
for Multilisp is proposed. The Nusim architectural simulator is built to model that
organization. Several Multilisp application prog~ams are run under Nusim, and the com-
munication requirements of each program is measured. The locality of reference of memory
accesses for the benchmarks is determined for three p.roposed multiprocessor topologies.
The effect of scheduling decisions .. in increasitl.gloc<!:J.ity _oL<iGC.~ss and. in-reducing_gfobal
communication is studied. The thesis concludes w:f.thimplications of scheduling policies
on the design of parallel computer systems.

20. DISTRtlUTION I AVAILABILITY OF ABSTRACT 21. ABS'tRACT SECURITY CLASSIFICATION
Gi UNCLASSIFIEDAJNUMITED 0 SAME AS RPT. 0 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TE~PHONE (lnc/udl! Area Code)l 22c. OFFICE SYMBOL
Judv Lit..klei Publications Coordinator (617): 253-5894 .

DD FORM 1473, 84 MAR 83 APR edition mey be used until e•hauSfed. -
SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete
.U.S. a.-- ,., om.: 1"l-807-o47

Unclassifit:!d

