
Massachusetts Institute of Technology, Cambridge, Massachusetts

Laboratory for Computer Science

Argus Reference Manual

Barbara Liskov
Mark Day

Maurice Herlihy
Paul Johnson

Gary Leavens (editor)
Robert Scheifler

William Weihl

6 April 1995

This work has been generously supported in part by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval Research under contract N00014-83-K-0125,
and in part by the National Science Foundation under grant DCR-8503662.

Guide to the Manual 1

Guide to the Manual
This document serves both as a reference manual and as an introduction to Argus. Sections 1 through

3 present an overview of the language. These sections highlight the essential features of Argus.

Sections 4 through 15 and the appendices form the reference manual proper. These sections describe

each aspect of Argus in detail, and discuss the proper use of various features. Appendices I and II

provide summaries of Argus’s syntax and data types. Appendix III summarizes some of the pragmatic

rules for using Argus.

Since Argus is based on the programming language CLU, the reader is expected to have some

familiarity with CLU. Those readers needing an introduction to CLU might read Liskov, B. and Guttag, J.,

Abstraction and Specification in Program Development (MIT Press, Cambridge, 1986). A shorter

overview of CLU appears in the article Liskov, B., et al., "Abstraction Mechanisms in CLU" (Comm. ACM,

volume 20, number 8 (Aug. 1977), pages 564-576). Appendix IV summarizes the changes made to

Argus that are not upward compatible with CLU.

An overview and rationale for Argus is presented in Liskov, B. and Scheifler, R., "Guardians and

Actions: Linguistic Support for Robust, Distributed Programs" (ACM Transactions on Programming

Languages and Systems, volume 5, number 3 (July 1983), pages 381-404).

The Preliminary Argus Reference Manual appeared as Programming Methodology Group Memo 39 in

October 1983. Since that time several new features have been added to the language; the most

significant of these are closures (see Section 9.8), a fork statement (see Section 10.4), equate modules

(see Section 12.4), and a more flexible instantiation mechanism (see Section 12.6). An earlier version of

this document appeared as Programming Methodology Group Memo 54 in March 1987; this version is

essentially identical, except that the locking policy for the built-in type generator atomic array has been

simplified.

We would greatly appreciate receiving comments on both the language and this manual. Comments

should be sent to: Professor Barbara Liskov, Laboratory for Computer Science, Massachusetts Institute

of Technology, 545 Technology Square, Cambridge, MA 02139.

The authors thank all the members of the Programming Methodology group at MIT for their help and

suggestions regarding the language and this manual, with special thanks going to Elliot Kolodner,

Deborah Hwang, Sharon Perl, and the authors of the CLU Reference Manual.

2 Guide to the Manual

Though her unhappy rival was hers to keep
Queen Juno also had a troubled mind:
What would Jove turn to next? Better, she thought,
To give the creature to Arestor’s son,
The frightful Argus whose unnatural head
Shone with a hundred eyes, a perfect jailer
For man or beast: the hundred eyes took turns
At staring wide awake in pairs, and two
At falling off to sleep; no matter how or
Where he stood he gazed at Io; even when
His back was turned, he held his prisoner
In sight and in his care.

⎯ Ovid, The Metamorphoses, Book 1
Translated by H. Gregory

The Viking Press, Inc., New York, 1958

1 Overview 3

1. Overview
Argus is an experimental language/system designed to support the construction and execution of

distributed programs. Argus is intended to support only a subset of the applications that could benefit

from being implemented by a distributed program. Two properties distinguish these applications: they

make use of on-line data that must remain consistent in spite of concurrency and hardware failures, and

they provide services under real-time constraints that are not severe. Examples of such applications are

office automation systems and banking systems.

Argus is based on CLU. It is largely an extension of CLU, but there are number of differences (see

Appendix IV). Like CLU, Argus provides procedures for procedural abstraction, iterators for control

abstraction, and clusters for data abstraction. In addition, Argus provides guardians that encapsulate and

control access to one or more resources. These are discussed in more detail in Section 2. Argus also

provides equate modules as a convenient way to refer to constants (see Section 12.4). As in CLU,

modules may be parameterized, so that a single module can define a class of related abstractions.

1.1. Objects and Variables
The semantics of Argus deal with objects and variables. Objects are the data entities that are created

and manipulated by applications. Variables are the names used in a program to refer to objects.

Every object has a type that characterizes its behavior. A type defines a set of primitive operations to

create and manipulate objects of that type.

An object may refer to other objects or even to itself. It is also possible for an object to be referred to or

shared by several objects. Objects exist independently of procedure and iterator invocations.

There are several categories of objects in Argus. An object that exhibits time-varying behavior is called

a mutable object. A mutable object has state that may be modified by operations without changing the

object’s identity. A mutable object can thus exhibit behavior that varies with time. An immutable object’s

state is inseparable from its identity. An immutable object cannot exhibit time-variant behavior. Objects

are atomic if they provide synchronization and recovery for actions that manipulate them (see Section

2.2.2). Objects are transmissible if they can be sent as arguments or results of remote procedure calls

(see Section 2.4). Since guardian, handler, creator, and node objects can be shared among guardians,

these objects are said to be global objects. All other objects, such as characters, integers, or

procedures, can only be shared within a single guardian and are called local objects.

Variables are names used in programs to denote particular objects at execution time. It is possible for

two variables to denote the same object. Variables are not objects; they cannot be denoted by other

variables or referred to by objects.

Variables in guardian modules can be declared to be stable. The objects denoted by stable variables

survive crashes (see Section 2) and are called stable objects.

4 Overview

1.2. Assignment and Calls
The basic events in Argus are assignments and calls. The assignment statement x := E, where x is a

variable and E is an expression, causes x to denote the object resulting from the evaluation of E. The

object is not copied.

A call involves passing argument objects from the caller to the called routine and returning result

objects from the routine to the caller. For local calls, argument passing is defined in terms of assignment,

or call by sharing; for remote calls, call by value is used. In a local call, the formal arguments of a routine

are considered to be local variables of the routine and are initialized, by assignment, to the objects

resulting from the evaluation of the argument expressions. In a remote call (see Section 2.3), a copy of

the objects resulting from the evaluation of the argument expressions is made and transmitted to the

called handler or creator (see Section 2.4). These copies are then used to initialize the formal arguments

as before. Local objects are shared between the caller and a called procedure or iterator, but local

objects are never shared between the caller and a called handler or creator.

1.3. Type Correctness
The declaration of a variable specifies the type of the objects which the variable may denote. In a legal

assignment statement, x := E, the type of the expression E must be included in the type of the variable x.

Type inclusion is essentially equality of types (see Section 12.6), except for routine types. (A routine type

with fewer exceptions is included in an otherwise identical routine type with more exceptions. See

Section 6.1 for details.)

Argus is a type-safe language, in that it is not possible to treat an object of type T as if it were an object

of some other type S (the one exception is when T is a routine type and S includes T). The type safety of

Argus, plus the restriction that only the code in a cluster may convert between the abstract type and the

concrete representation (see Section 12.3), ensure that the behavior of an object can be characterized

completely by the operations of its type.

1.4. Rules and Guidelines
Throughout this manual, and especially in the discussions of atomicity, there are pragmatic rules and

guidelines for the use of the language. Certain properties that the language would like to guarantee, for

example that atomic actions are really atomic, are difficult or impossible for the language to guarantee

completely. As in any useful programming language, programmers have enough rope to hang

themselves. The rules and guidelines noted throughout the manual (and collected in Appendix III) try to

make the responsibilities of the language and the programmer clear.

1.5 Program Structure 5

1.5. Program Structure
An Argus distributed application consists of one or more guardians, defined by guardian modules.

Guardian modules may in turn use all the other kinds of modules that Argus provides. Argus

programmers may also write single-machine programs with no stable state, using Argus as essentially a

"concurrent CLU." Such programs may be used to start up multi-guardian applications. Each module is a

separate textual unit, and is compiled independently of other modules. Compilation is discussed in

Section 3.

6 Overview

2 Concepts for Distributed Programs 7

2. Concepts for Distributed Programs
In this chapter we present an overview of the new concepts in Argus that support distributed programs.

In Section 2.1, we discuss guardians, the module used in Argus to distribute data. Next, in Section 2.2,

we present atomic actions, which are used to cope with concurrency and failure. In Section 2.3 we

describe remote calls, the inter-guardian communication mechanism. In Section 2.4 we discuss

transmissible types: types whose objects can be sent as arguments or results of remote calls. Finally, in

Section 2.4 we discuss orphans.

2.1. Guardians
Distributed applications are implemented in Argus by one or more modules called guardians. A

guardian abstraction is a kind of data abstraction, but it differs from the data abstractions supported by

clusters (as found in CLU). In general, data abstractions consist of a set of operations and a set of

objects. In a cluster the operations are considered to belong to the abstraction as a whole. However,

guardian instances are objects and their handlers are their operations. Guardian abstraction is similar to

the data abstractions in Simula and Smalltalk-80; guardians are like class instances.

A node is a single physical location, which may have multiple processors. A guardian instance resides

at a single node, although a node may support several guardians. A guardian encapsulates and controls

access to one or more resources, such as data or devices. Access to the protected resource is provided

by a set of operations called handlers. Internally, a guardian consists of a collection of data objects and

processes that can be used to manipulate those objects. In general, there will be many processes

executing concurrently in a guardian: a new process is created to execute each handler call, processes

may be explicitly created, and there may be other processes that carry out background activity of the

guardian.

The data objects encapsulated by a guardian are local: they cannot be accessed directly by a process

in another guardian. In contrast, guardians are global objects: a single guardian may be shared among

processes at several different guardians. A process with a reference to a guardian can call the guardian’s

handlers, and these handlers can access the data objects inside the guardian. Handler calls allow access

to a guardian’s local data, but the guardian controls how that data can be manipulated.

When a node fails, it crashes. A crash is a "clean" failure, as opposed to a "Byzantine" failure. A

guardian survives crashes of its node (with as high a probability as needed). A guardian’s state consists

of stable and volatile objects. When a guardian’s node crashes, all processes running inside the guardian

at the time of the crash are lost, along with the guardian’s volatile objects, but the guardian’s stable

objects survive the crash. Upon recovery of the guardian’s node, the guardian runs a special recovery

process to reconstruct its volatile objects from its stable objects. Since the volatile objects are lost in a

crash, they typically consist only of redundant data that is used to improve performance (for example, an

index into a database). The persistent state of an application should be kept in stable objects.

Guardians are implemented by guardian definitions. These define:

8 Concepts for Distributed Programs

1. The creators. These are operations that can be called to create new guardian instances
that perform in accordance with the guardian definition.

2. The guardian’s stable and volatile state.

3. The guardian’s handlers.

4. The background code. This is code that the guardian executes independent of any handler
calls, for example, to perform some periodic activity.

5. The recover code. This is code that is executed after a crash to restore the volatile objects.

Guardians and guardian definitions are discussed in Section 13.

2.2. Actions
The distributed data in an Argus application can be shared by concurrent processes. A process may

attempt to examine and transform some objects from their current states to new states, with any number

of intermediate state changes. Interactions among concurrent processes can leave data in an

inconsistent state. Failures (for example, node crashes) can occur during the execution of a process,

raising the additional possibility that data will be left in an inconsistent intermediate state. To support

applications that need consistent data, Argus permits the programmer to make processes atomic.

We call an atomic process an action. Actions are atomic in that they are both serializable and

recoverable. By serializable, we mean that the overall effect of executing multiple concurrent actions is

as if they had been executed in some sequential order, even though they actually execute concurrently.

By recoverable, we mean that the overall effect of an action is "all-or-nothing:" either all changes made to

the data by the action happen, or none of these changes happen. An action that completes all its

changes successfully commits; otherwise it aborts, and objects that it modified are restored to their

previous states.

Before an action can commit, new states of all modified, stable objects must be written to stable
1storage : storage that survives media crashes with high probability. Argus uses a two-phase commit
2protocol to ensure that either all of the changes made by an action occur or none of them do. If a crash

occurs after an action modifies a stable object, but before the new state has been written to stable

storage, the action will be aborted.

2.2.1. Nested Actions
Actions in Argus can be nested: an action may be composed of several subactions. Subactions can be

used to limit the scope of failures and to introduce concurrency within an action.

An action may contain any number of subactions, some of which may be performed sequentially, some

1Lampson, B. W., "Atomic Transactions", in Distributed Systems--Architecture and Implementation, Lecture Notes in Computer
Science, volume 105, pages 246-265. Springer-Verlag, New York, 1981.

2Gray, J. N., "Notes on data base operating systems", in Operating Systems, An Advanced Course, Bayer, R., Graham, R. M.,
and Seegmüller, G. (editors), Lecture Notes in Computer Science, volume 60, pages 393-481. Springer-Verlag, New York, 1978.

2.2.1 Nested Actions 9

concurrently. This structure cannot be observed from outside the action; the overall action is still atomic.

Subactions appear as atomic actions with respect to other subactions of the same parent. Thus,

subactions can be executed concurrently.

Subactions can commit and abort independently, and a subaction can abort without forcing its parent

action to abort. However, the commit of a subaction is conditional: even if a subaction commits, aborting

its parent action will abort it.

The root of a tree of nested actions is called a topaction. Topactions have no parent; they cannot be

aborted once they have committed. Since the effects of a subaction can always be undone by aborting

its parent, the two-phase commit protocol is used only when topactions attempt to commit.

In Argus, an action (e.g., a handler call) may return objects through either a normal return or an

exception and then abort. The following rule should be followed to avoid violating serializability: a

subaction that aborts should not return any information obtained from data shared with other concurrent

actions.

2.2.2. Atomic Objects and Atomic Types
Atomicity of actions is achieved via the data objects shared among those actions. Shared objects must

be implemented so that actions using them appear to be atomic. Objects that support atomicity are

referred to as atomic objects. Atomic objects provide the synchronization and recovery needed to ensure

that actions are atomic. An atomic type is a type whose objects are all atomic. Some objects do not need

to be atomic: for example, objects that are local to a single process. Since the synchronization and

recovery needed to ensure atomicity may be expensive, we do not require that all types be atomic. (For

example, Argus provides all the built-in mutable types of CLU; these types are not atomic.) However, it is

important to remember that atomic actions must share only atomic objects.

Argus provides a number of built-in atomic types and type generators. The built-in scalar types (null,

node, bool, char, int, real, and string) are atomic. Parameterized types can also be atomic. Typically,

an instance of a type generator will be atomic only if any actual type parameters are also atomic. The

built-in immutable type generators (sequence, struct, and oneof) are atomic if their parameter types are

atomic. In addition, Argus provides three mutable atomic type generators: atomic array,

atomic record, and atomic variant. The operations on these types are nearly identical to the normal

array, record, and variant types of CLU. Users may also define their own atomic types (see Section 15).

The implementation of the built-in mutable atomic type generators is based on a simple locking model.

There are two kinds of locks: read locks and write locks. When an action calls an operation on an atomic

object, the implementation acquires a lock on that object in the appropriate mode: it acquires a write lock

if it mutates the object, or a read lock if it only examines the object. The built-in types allow multiple

concurrent readers, but only a single writer. If necessary, an action is forced to wait until it can obtain the

appropriate lock. When a write lock on an object is first obtained by an action, the system makes a copy

10 Concepts for Distributed Programs

3of the object’s state in a new version, and the operations called by the action work on this version . If,

ultimately, the action commits, this version will be retained, and the old version discarded. A subaction’s

locks are given to its parent action when it commits. When a topaction commits, its locks are discarded

and its effects become visible to other actions. If the action aborts, the action’s locks and the new version

will be discarded, and the old version retained (see Figure 2-1).

Figure 2-1: Locking and Version Management Rules for a Subaction S, on Object X

Acquiring a read lock:
All holders of write locks on X must be ancestors of S.

Acquiring a write lock:
All holders of read and write locks on X must be ancestors of S.
If this is the first time S has acquired a write lock on X,

push a copy of X on the top of its version stack.

Commit:
S’s parent acquires S’s lock on X.
If S holds a write lock on X, then S’s version becomes S’s parent’s version.

Abort:
S’s lock and version (if any) are discarded.

More precisely, an action can obtain a read lock on an object if every action holding a write lock on that

object is an ancestor of the requesting action. An action can obtain a write lock on an object if every

action holding a (read or write) lock on that object is an ancestor. When a subaction commits, its locks

are inherited by its parent and its new versions replace those of its parent; when a subaction aborts, its

locks and versions are discarded (see Figure 2-1). Because Argus guarantees that parent actions never

run concurrently with their children, these rules ensure that concurrent actions never hold write locks on

the same object simultaneously.

The ancestors of a subaction are itself, its parent, its parent’s parent, and so on; a subaction is a

descendant of its ancestors. A subaction commits to the top if it and all its ancestors, including the

topaction, commit. A subaction is a committed descendant of an ancestor action if the subaction and all

intervening ancestors have committed. When a topaction attempts to commit, the two-phase commit

protocol is used to ensure that the new versions of all objects modified by the action and all its committed

descendants are copied to stable storage. After the new versions have been recorded stably, the old

versions are thrown away.

4User-defined atomic types can provide greater concurrency than built-in atomic types . An

3This operational description (and others in this manual) is not meant to constrain implementors. However, this particular
description does reflect our current implementation.

4An example can be found in Weihl, W. and Liskov, B., "Implementation of Resilient, Atomic Data Types," ACM Transactions on
Programming Languages and Systems, volume 7, number 2 (April 1985), pages 244-269.

2.2.2 Atomic Objects and Atomic Types 11

implementation of a user-defined atomic type must address several issues. First, it must provide proper

synchronization so that concurrent calls of its operations do not interfere with each other, and so that the

actions that call its operations are serialized. Second, it must provide recovery for actions using its

objects so that aborted actions have no effect. Finally, it must ensure that changes made to its objects by

actions that commit to the top are recorded properly on stable storage. The built-in atomic types and the

mutex type generator are useful in coping with these issues. User-defined atomic types are discussed

further in Section 15.

2.2.3. Nested Topactions
In addition to nesting subactions inside other actions, it is sometimes useful to start a new topaction

inside another action. Such a nested topaction, unlike a subaction, has no special privileges relative to its

"parent"; for example, it is not able to read an atomic object modified by its "parent". Furthermore, the

commit of a nested topaction is not relative to its "parent"; its versions are written to stable storage, and

its locks are released, just as for normal topactions.

Nested topactions are useful for benevolent side effects that change the representation of an object

without affecting its abstract state. For example, in a naming system a name look-up may cause

information to be copied from one location to another, to speed up subsequent look-ups of that name.

Copying the data within a nested topaction that commits ensures that the changes remain in effect even if

the "parent" action aborts.

A nested topaction is used correctly if it is serializable before its "parent". This is true if either the

nested topaction performs a benevolent side effect, or if all communication between the nested topaction

and its parent is through atomic objects.

2.3. Remote Calls
An action running in one guardian can cause work to be performed at another guardian by calling a

handler provided by the latter guardian. An action can cause a new guardian to be created by calling a

creator. Handler and creator calls are remote calls. Remote calls are similar to local procedure calls; for

example, the calling process waits for the call to return. Remote calls differ from local procedure calls in

several ways, however.

First, the arguments and results of a remote call are passed by value (see below and also Section 14)

rather than by sharing. This ensures that the local objects of one guardian remain local to that guardian,

even if their values are used as arguments or results of remote calls to other guardians. The only objects

that are passed by sharing in remote calls are the global objects: guardians, handlers, creators, and

nodes.

Second, any remote call can raise the exceptions failure and unavailable. (Unlike CLU, not all local

calls can raise failure, see Appendix IV.) The occurrence of failure means that the call is unlikely to ever

succeed, so there is no point in retrying the call in the future. Unavailable, on the other hand, means that

12 Concepts for Distributed Programs

the call should succeed if retried in the future, but is unlikely to succeed if retried immediately. For

example, failure can arise because it is impossible to transmit the arguments or results of the call (see

Section 14); unavailable can arise if the guardian being called has crashed, or if the network is

partitioned.

Third, a handler or creator can be called only from inside an action, and the call runs as a subaction of

the calling action. This ensures that a remote call succeeds at most once: either a remote call completes

successfully and commits, or it aborts and all of its modifications are undone (provided, of course, that the

actions involved are truly atomic). Although the effect of a remote call occurs at most once, the system

may need to attempt it several times; this is why remote calls are made within actions.

2.4. Transmissible Types
Arguments and results of remote calls are passed by value. This means that the argument and result

objects must be copied to produce distinct objects. Not all objects can be copied like this; those that can

are called transmissible objects, and their types are called transmissible types. Only transmissible

objects may be used as arguments and results of a remote call. In addition, image objects (see Section

6.6) can contain only transmissible objects. Parameterized types may be transmissible in some instances

and not in others; for example, instantiations of the built-in type generators are transmissible only if their

parameter types are transmissible. While guardians, creators, and handlers are always transmissible,

procedures and iterators are never transmissible.

Users can define new transmissible types. For each transmissible type T the external representation

type of T must be defined; this describes the format in which objects of type T are transmitted. Each

cluster that implements a transmissible type T must contain two procedures, encode and decode, to

translate objects of type T to and from their external representation. More information about defining

transmissible types can be found in Section 14.

2.5. Orphans
An orphan is an action that has had some ancestor "perish" or has had the pertinent results of some

relative action lost in a crash. Orphans can arise in Argus due to crashes and explicit aborts. For

example, when a parent action is aborted, the active descendents it leaves behind become orphans.

Crashes also cause orphans: when a guardian crashes, all active actions with an ancestor at the crashed

guardian and all active actions with committed descendants that ran at the crashed guardian become
5orphans . However, having a descendent that is an orphan does not necessarily imply that the parent is

an orphan; as previously described, actions may commit or abort independently of their subactions.

Argus programmers can largely ignore orphans. Argus guarantees that orphans are aborted before

5Walker, E. F., "Orphan Detection in the Argus System", Massachusetts Institute of Technology, Laboratory for Computer
Science, Technical Report MIT/LCS/TR-326, June 1984.

2.5 Orphans 13

they can view inconsistent data (provided actions are written so that they only communicate through

atomic data). Remote calls that fail for any reason may be retried by the system, including some cases

where the call action becomes an orphan due to crashes (see Section 8.3).

Orphans always abort. They may abort voluntarily or they may be forced to abort by the run-time

system; however, an orphan that is in a critical section (executing a seize statement, see Section 10.16)

may not be forcibly aborted by the run-time system, except by crashing the guardian. On the other hand,

the system may encourage orphans (especially topactions that are orphans) to abort themselves by

having their remote calls signal unavailable.

2.6. Deadlocks
Actions in Argus programs may become deadlocked. For example, if action A is waiting for a lock that

B holds and B is waiting for a lock that A holds, then A and B are deadlocked. Although implementations

may provide some form of deadlock detection or avoidance, they are not required to do so. This is

because detecting deadlocks is difficult in a language with user-defined atomic types, since it is not

always clear when actions are "waiting" for each other.

If an implementation of Argus chooses to do deadlock detection (presumably for the built-in atomic

types), it may only break deadlocks by aborting actions or by crashing guardians.

14 Concepts for Distributed Programs

3 Environment 15

3. Environment
The Argus environment ensures complete static type checking of programs. It also supports separate

compilation and the independence of guardians.

3.1. The Library
Argus modules are compiled in the context of a library that gives meaning to external identifiers and

allows inter-module type checking. The Argus library contains type information about abstractions; for

each abstraction, the library contains a description unit, or DU, describing that abstraction and its

implementations. Each DU has a unique name and these names form the basis of type checking.

3.2. Independence of Guardian Images
The code run by a guardian comes from some guardian image. A guardian image contains all the code

needed to carry out any local activity of the guardian; any procedure, iterator or cluster used by that

guardian will be in its guardian image. Any handler calls made by the guardian, however, are carried out

at the called guardian, which contains the code that performs the call. Thus a guardian is independent of

the implementations of the guardians it calls and the implementation of a guardian can be changed

without affecting the implementations of its clients.

3.3. Guardian Creation
When a guardian is created, it is necessary to select the guardian image that will supply the code run

by the new guardian. To this end, each guardian has an associated creation environment that specifies

the guardian images for other guardians it may create. The creation environment is a mapping from

guardian types to information that can be used to select a guardian image appropriate for each kind of

node. For greater flexibility, this information can be associated with particular creator objects.

3.4. The Catalog
Somehow, guardians must be able to find other guardians to call for services. A guardian usually has a

reference to any guardian it creates. Also, if a guardian can call some other server guardian, it can learn

about the guardians that the server "knows", because guardians can be passed in remote calls. In

addition, Argus provides a built-in subsystem known by all guardians. This subsystem is called the

catalog. The catalog provides an atomic mapping from names to transmissible objects. For example,

when a new guardian is created, it can be catalogued under some well-known name, so that other

guardians can find it in the future. Since we are currently experimenting with various interfaces to the

catalog, we do not include an interface specification here.

16 Environment

4 Notation 17

4. Notation
We use an extended BNF grammar to define the syntax of Argus. The general form of a production is:

nonterminal ::= alternative

| alternative

| ...

| alternative

The following extensions are used:

a , ... a list of one or more a’s separated by commas: "a" or "a, a" or "a, a, a" etc.

{a} a sequence of zero or more a’s: " " or "a" or "a a" etc.

[a] an optional a: " " or "a".

Nonterminal symbols appear in normal face. Reserved words appear in bold face. All other terminal

symbols are non-alphabetic, and appear in normal face.

Full productions are not always shown in the body of this manual; often alternatives are presented and

explained individually. Appendix I contains the complete syntax.

18 Notation

5 Lexical Considerations 19

5. Lexical Considerations
A module is written as a sequence of tokens and separators. A token is a sequence of "printing" ASCII

characters (values 40 octal through 176 octal) representing a reserved word, an identifier, a literal, an

operator, or a punctuation symbol. A separator is a "blank" character (space, vertical tab, horizontal tab,

carriage return, newline, form feed) or a comment. Any number of separators may appear between

tokens.

5.1. Reserved Words
The following character sequences are reserved word tokens:

Table 5-1: Reserved Words

abort else leave signals
action elseif mutex stable
any end nil string
array enter node struct
atomic array equates null tag
atomic record except oneof tagcase
atomic variant exit others tagtest
background false own tagwait
begin for pause terminate
bind foreach proc then
bool fork process topaction
break guardian proctype transmit
cand handler real true
char handlertype record type
cluster handles recover up
coenter has rep variant
continue if resignal when
cor image return where
creator in returns while
creatortype int seize with
cvt is self wtag
do iter sequence yield
down itertype signal yields

Upper and lower case letters are not distinguished in reserved words. For example, ’end’, ’END’, and

’eNd’ are all the same reserved word. Reserved words appear in bold face in this document.

5.2. Identifiers
An identifier is a sequence of letters, digits, and underscores () that begins with a letter or underscore,

and that is not a reserved word. Upper and lower case letters are not distinguished in identifiers.

In the syntax there are two different nonterminals for identifiers. The nonterminal idn is used when the

identifier has scope (see Section 7.1); idns are used for variables, parameters, module names, and as

abbreviations for constants. The nonterminal name is used when the identifier is not subject to scope

rules; names are used for record and structure selectors, oneof and variant tags, operation names, and

exceptional condition names.

20 Lexical Considerations

5.3. Literals
There are literals for naming objects of the built-in types null, bool, int, real, char, and string. Their

forms are described in Appendix I.

5.4. Operators and Punctuation Tokens
The following character sequences are used as operators and punctuation tokens.

Table 5-2: Operator and Punctuation Tokens

([. ~ * < ~< =
)] $ ** || <= ~<= ~=
{ : := // + >= ~>= &
} , @ / − > ~> |

5.5. Comments and Other Separators
A comment is a sequence of characters that begins with a percent sign (%), ends with a newline

character, and contains only printing ASCII characters (including blanks) and horizontal tabs in between.

For example:

z := a[i] + % a comment in an expression
b[i]

A separator is a blank character (space, vertical tab, horizontal tab, carriage return, newline, form feed)

or a comment. Zero or more separators may appear between any two tokens, except that at least one

separator is required between any two adjacent non-self-terminating tokens: reserved words, identifiers,

integer literals, and real literals. This rule is necessary to avoid lexical ambiguities.

6 Types, Type Generators, and Type Specifications 21

6. Types, Type Generators, and Type Specifications
A type consists of a set of objects together with a set of operations used to manipulate the objects.

Types can be classified according to whether their objects are mutable or immutable, and atomic or

non-atomic. An immutable object (e.g., an integer) has a value that never varies, while the value (state)

of a mutable object can vary over time. Objects of atomic types provide serializability and recovery for

accessing actions. Non-atomic types may provide synchronization by specifying that particular operations

are executed indivisibly on objects of the type. An operation is indivisible if no other process may affect or

observe intermediate states of the operation’s execution. Indivisibility properties will be described for all

the built-in non-atomic types of Argus.

A type generator is a parameterized type definition, representing a (usually infinite) set of related types.

A particular type is obtained from a type generator by writing the generator name along with specific

values for the parameters; for every distinct set of legal values, a distinct type is obtained (see Section

12.6). For example, the array type generator has a single parameter that determines the element type;

array[int], array[real], and array[array[int]] are three distinct types defined by the array type generator.

Types obtained from type generators are called parameterized types or instantiations of the type

generator; others are called simple types.

In Argus code, a type is specified by a syntactic construct called a type spec. The type specification

for a simple type is just the identifier (or reserved word) naming the type. For parameterized types, the

type specification consists of the identifier (or reserved word) naming the type generator, together with the

actual parameter values.

To be used as arguments or results of handler and creator calls, or as image objects (see Section 6.6),

objects must be transmissible. Most of the built-in Argus types are transmissible, that is, they have

transmissible objects. However, procedures and iterators are never transmissible. For type generators,

transmissibility of a particular instantiation of the generator may depend upon transmissibility of any type

parameters. A transmissible type provides the pseudo-operation transmit and two internal operations

encode and decode. Generally, encode and decode are hidden from clients of the type. They are called

implicitly during message transmission (see Section 14) and in creating and decomposing image objects

(see Section 6.6). Transmissibility is discussed further in Section 14.

Argus provides all the built-in types of CLU as well as some new types and type generators. This

section gives an informal introduction to the built-in types and type generators provided by Argus. Many

details are not discussed here, but a complete definition of each type and type generator is given in

Appendix II.

22 Types, Type Generators, and Type Specifications

6.1. Type Inclusion
The notion of type inclusion in Argus is different from that in CLU. The type any is a type like every

other type, and there is no implicit coercion to type any, so there is no need to make a special case for it

in the type inclusion rule. Type inclusion in Argus is the same as type equality (see Section 12.6), except

for procedure, iterator, handler, and creator types. A routine type O is included in another routine type V,

when the number and types of arguments, and the number and types of normal results, are equal, and for

each exception in O there is a corresponding exception in V of the same name with the same number and

types of results. Note that V may have more exceptions than does O, and that this rule is not recursive,

that is, when comparing types of arguments and results, type equality is used. For example, if we have

the following declarations in effect:

p : proctype(real, real) returns(real) signals(overflow, underflow)
q : proctype(real, real) returns(real)

then the type of q is included in the type of p but not vice versa. Thus the assignment p := q is legal.

6.2. The Sequential Built-in Types and Type-generators
In this section, we introduce the sequential built-in types of Argus. These types are generally the same

as types in CLU. This section concentrates on their new characteristics.

Recovery from aborted actions is trivial for immutable objects, since the aborted actions cannot have

modified these objects. In particular the built-in scalar types null, bool, int, real, char, and string are

immutable, atomic, and transmissible. The built-in mutable type generators inherited from CLU are not

atomic.

6.2.1. Null
The type null has exactly one immutable object, represented by the literal nil, which is atomic and

transmissible. See Section II.1 for details.

6.2.2. Bool
The two immutable objects of type bool, with literals true and false, represent logical truth values. The

binary operations equal (=), and (&), and or (|), are provided, as well as unary not (~). Objects of type

bool are atomic and transmissible. See Section II.3 for details.

6.2.3. Int
The type int models (a range of) the mathematical integers. The exact range is not part of the

6language definition . Integers are immutable, atomic, transmissible, and their literals are written as a

sequence of one or more decimal digits. (There are also octal and hexadecimal literals, see Appendix I.)

6However, implementations are encouraged to provide this and other information about the limits of the built-in types in an equate
module.

6.2.3 Int 23

The binary operations add (+), sub (−), mul (*), div (/), mod (//), power (**), max, and min are provided, as

well as unary minus (−) and abs. There are binary comparison operations lt (<), le (<=), equal (=),

ge (>=), and gt (>). There are two operations, from to and from to by, for iterating over a range of

integers. See Section II.4 for details.

6.2.4. Real
The type real models (a subset of) the mathematical real numbers. The exact subset is not part of the

language definition. Reals are immutable, atomic, and transmissible, although transmission of real

objects between heterogeneous machine architectures may not be exact. Real literals are written as a

mantissa with an optional exponent. A mantissa is either a sequence of one or more decimal digits, or

two sequences (one of which may be empty) joined by a period. The mantissa must contain at least one

digit. An exponent is ’E’ or ’e’, optionally followed by ’+’ or ’−’, followed by one or more decimal digits. An
xexponent is required if the mantissa does not contain a period. As is usual, mEx = m*10 . Examples of

real literals are:

3.14 3.14E0 314e−2 .0314E+2 3. .14

As with integers, the operations add (+), sub (−), mul (*), div (/), mod (//), power (**), max, min,

minus (−), abs, lt (<), le (<=), equal (=), ge (>=), and gt (>), are provided. It is important to note that there

is no form of implicit conversion between types. The i2r operation converts an integer to a real, r2i rounds

a real to an integer, and trunc truncates a real to an integer. See Section II.5 for details.

6.2.5. Char
The type char provides the alphabet for text manipulation. Characters are immutable, atomic,

transmissible, and form an ordered set. Every implementation must provide at least 128, but no more

than 512, characters; the first 128 characters are the ASCII characters in their standard order.

Literals for the printing ASCII characters (octal 40 through octal 176), other than single quote (’) or

backslash (\), can be written as that character enclosed in single quotes. Any character can be written by

enclosing one of the escape sequences listed in Table 6-1 in single quotes. The escape sequences may

be written using upper case letters, but note that escape sequences of the form \&* are case sensitive. A

table of literals is given at the end of Appendix I. Examples of character literals are:

\7’ ’a’ ’"’ ’\"’ ’\’’ ’\B’ ’\177’

There are two operations, i2c and c2i, for converting between integers and characters: the smallest

character corresponds to zero, and the characters are numbered sequentially. Binary comparison

operations exist for characters based on this numerical ordering: lt (<), le (<=), equal (=), ge (>=), and

gt (>). For details, see Section II.6.

24 Types, Type Generators, and Type Specifications

Table 6-1: Character Escape Sequence Forms

escape sequence character

\’ ’ (single quote)
\" " (double quote)
\\ \ (backslash)
\n NL (newline)
\t HT (horizontal tab)
\p FF (form feed, newpage)
\b BS (backspace)
\r CR (carriage return)
\v VT (vertical tab)
*** specified by octal value (exactly three octal digits)
\#** specified by hexadecimal value (exactly two hex digits)
\^* characters numbered 0-31 (with * a printing character)
\!* characters numbered 128-159 (with * a printing character)
\&* characters numbered 160-255 (with * a printing character)

6.2.6. String
The type string is used for representing text. A string is an immutable, atomic, and transmissible

sequence of zero or more characters. Strings are lexicographically ordered, based on the ordering for

characters. A string literal is written as a sequence of zero or more characters or character escape

sequences (see Table 6-1), enclosed in double quotes (").

The characters of a string are indexed sequentially starting from one. The fetch operation is used to

obtain a character by index. The substr operation is used to obtain a substring. The tail of a string can

be gotten by using rest. Searching in strings is provided by the indexc and indexs operations.

Two strings can be concatenated together with concat (||), and a single character can be appended to

the end of a string with append. C2s converts a character to a single-character string. The size of a

string can be determined with size. Chars iterates over the characters of a string, from the first to the last

character. There are also the usual lexicographic comparison operations: lt (<), le (<=), equal (=),

ge (>=), and gt (>). For details, see Section II.7.

6.2.7. Any
Objects of type any may contain objects of any type, and thus provide an escape from compile-time

type checking. Unlike CLU, which treats any differently from all other types, any is a normal type in

Argus. To this end there is an explicit create operation generator, and the force procedure is also an

operation generator of type any.

An object of type any can be thought of as containing an object and its type. Since there are no

operations provided by type any that change this state, any objects can be considered to be immutable.

However, the state of the contained object may change if that object is shared, so from this point of view,

6.2.7 Any 25

the mutability and atomicity of an any object depend on the mutability and atomicity of the contained

object. Objects of type any are not transmissible.

The create operation is parameterized by a type; create takes a single argument of that type and

returns an any object containing the argument. The force operation is also parameterized by a type; it

takes an any and extracts an object of that type, signalling wrong type if the contained object’s type is

not included in the parameter type. The is type operation is parameterized by a type and checks whether

its argument contains an object whose type is included in the parameter type. The detailed specification

is found in Section II.19.

6.2.8. Sequence Types
Sequences are immutable and they are atomic or transmissible when instantiated with atomic or

transmissible type parameters. Although an individual sequence can have any length, the length and

members of a sequence are fixed when the sequence is created. The elements of a sequence are

indexed sequentially, starting from one. A sequence type specification has the form:

sequence [type actual]

where a type actual is a type spec, possibly augmented with operation bindings (see Section 12.6).

The new operation returns an empty sequence. A sequence constructor has the form:

type spec $ [[expression , ...]]

and can be used to create a sequence with the given elements.

Although a sequence, once created, cannot be changed, new sequences can be constructed from

existing ones by means of the addh, addl, remh, and reml operations. Other operations include fetch,

replace, top, bottom, size, the elements and indexes iterators, and subseq. Invocations of the fetch

operation can be written using a special form:

q[i] % fetch the element at index i of q .

Two sequences with equal elements are equal. The equal (=) operation tests if two sequences have

equal elements, using the equal operation of the element type. Similar tests if two sequences have

similar elements, using the similar operation of the element type.

All operations are indivisible except for fill copy, equal, similar, copy, encode, and decode, which are

divisible at calls to the operations of the type parameter.

For the detailed specification, see Section II.8.

6.2.9. Array Types
Arrays are one-dimensional, and mutable but not atomic. They are transmissible only if their type

parameter is transmissible. The number of elements in an array can vary dynamically. There is no notion

of an "uninitialized" element.

26 Types, Type Generators, and Type Specifications

The state of an array consists of an integer called the low bound, and a sequence of objects called the

elements. The elements of an array are indexed sequentially, starting from the low bound. All of the

elements must be of the same type; this type is specified in the array type specification, which has the

form:

array [type actual]

There are a number of ways to create a new array, of which only two are mentioned here. The create

operation takes an argument specifying the low bound, and creates a new array with that low bound and

no elements. Alternately, an array constructor can be used to create an array with an arbitrary number of

initial elements. For example,

array[int] $ [5: 1, 2, 3, 4]

creates an integer array with low bound 5, and four elements, while

array[bool] $ [true, false]

creates a boolean array with low bound 1 (the default), and two elements.

An array type specification states nothing about the bounds of an array. This is because arrays can

grow and shrink dynamically, using the addh, addl, remh, and reml operations. Other operations include

fetch, store, top, bottom, high, low, the elements and indexes iterators, and size. Invocations of fetch and

store can be written using special forms:

a[i] % fetch the element at index i of a
a[i] := 3 % store 3 at index i of a (by calling store)

Every newly created array has an identity that is distinct from all other arrays; two arrays can have the

same elements without being the same array object. The identity of arrays can be distinguished with the

equal (=) operation. The similar1 operation tests if two arrays have the same state, using the equal

operation of the element type. Similar tests if two arrays have similar states, using the similar operation of

the element type.

All operations are indivisible, except fill copy, similar, similar1, copy, encode, and decode, which are

divisible at calls to operations of the type parameter.

For the detailed specification, see Section II.9.

6.2.10. Structure Types
A structure is an immutable collection of one or more named objects. An instantiation is atomic or

transmissible only if the type parameters are all atomic or all transmissible. The names are called

selectors, and the objects are called components. Different components may have different types. A

structure type specification has the form:

struct [field spec , ...]

where

field spec ::= name , ... : type actual

Selectors must be unique within a specification, but the ordering and grouping of selectors is unimportant.

6.2.10 Structure Types 27

A structure is created using a structure constructor. For example, assuming that "info" has been

equated to a structure type:

info = struct[last, first, middle: string, age: int]

the following is a legal structure constructor:

info $ {last: "Scheifler", first: "Robert", age: 32, middle: "W."}

An expression must be given for each selector, but the order and grouping of selectors need not

resemble the corresponding type specification.

For each selector "sel", there is an operation get sel to extract the named component, and an

operation replace sel to create a new structure with the named component replaced with some other

object. Invocations of the get operations can be written using a special form:

st.age % get the ’age’ component of st

As with sequences, two structures with equal components are in fact the same object. The equal (=)

operation tests if two structures have equal components, using the equal operations of the component

types. Similar tests if two structures have similar components, using the similar operations of the

component types.

All operations are indivisible except for equal, similar, copy, encode, and decode, which are divisible at

calls to the operations of the type parameter.

For the detailed specification, see Section II.11.

6.2.11. Record Types
A record is a mutable collection of one or more named objects. Records are never atomic, and are

transmissible only if the parameter types are all transmissible. A record type specification has the form:

record [field spec , ...]

where (as for structures)

field spec ::= name , ... : type actual

Selectors must be unique within a specification, but the ordering and grouping of selectors is unimportant.

A record is created using a record constructor. For example:

professor $ {last: "Herlihy", first: "Maurice", age: 32, middle: "P."}

For each selector "sel", there is an operation get sel to extract the named component, and an

operation set sel to replace the named component with some other object. Invocations of these

operations can be written using a special form:

r.middle % get the ’middle’ component of r
r.age := 33 % set the ’age’ component of r to 33 (by calling set age)

As with arrays, every newly created record has an identity that is distinct from all other records; two

records can have the same components without being the same record object. The identity of records

28 Types, Type Generators, and Type Specifications

can be distinguished with the equal (=) operation. The similar1 operation tests if two records have equal

components, using the equal operations of the component types. Similar tests if two records have similar

components, using the similar operations of the component types.

All operations are indivisible, except similar, similar1, copy, encode, and decode, which are divisible at

calls to operations of the type parameters.

For the detailed specification, see Section II.12.

6.2.12. Oneof Types
A oneof type is a tagged, discriminated union. A oneof is an immutable labeled object, to be thought of

as "one of" a set of alternatives. The label is called the tag, and the object is called the value. A oneof

type specification has the form:

oneof [field spec , ...]

where (as for structures)

field spec ::= name , ... : type actual

Tags must be unique within a specification, but the ordering and grouping of tags is unimportant. An

instantiation is atomic or transmissible if and only if all the type parameters are atomic or transmissible.

For each tag "t" of a oneof type, there is a make t operation which takes an object of the type

associated with the tag, and returns the object (as a oneof) labeled with tag "t".

To determine the tag and value of a oneof object, one normally uses the tagcase statement (see

Section 10.14).

The equal (=) operation tests if two oneofs have the same tag, and if so, tests if the two value

components are equal, using the equal operation of the value type. Similar tests if two oneofs have the

same tag, and if so, tests if the two value components are similar, using the similar operation of the value

type.

All operations are indivisible, except equal, similar, similar1, copy, encode, and decode, which are

divisible at calls to operations of the type parameters.

For the detailed specification, see Section II.14.

6.2.13. Variant Types
A variant is a mutable oneof. Variants are never atomic and are transmissible if and only if their type

parameters are all transmissible. A variant type specification has the form:

variant [field spec , ...]

where (as for oneofs)

field spec ::= name , ... : type actual

6.2.13 Variant Types 29

The state of a variant is a pair consisting of a label called the tag and an object called the value. For each

tag "t" of a variant type, there is a make t operation which takes an object of the type associated with the

tag, and returns the object (as a variant) labeled with tag "t". In addition, there is a change t operation,

which takes an existing variant and an object of the type associated with "t", and changes the state of the

variant to be the pair consisting of the tag "t" and the given object. To determine the tag and value of a

variant object, one normally uses the tagcase statement (see Section 10.14).

Every newly created variant has an identity that is distinct from all other variants; two variants can have

the same state without being the same variant object. The identity of variants can be distinguished using

the equal (=) operation. The similar1 operation tests if two variants have the same tag, and if so, tests if

the two value components are equal, using the equal operation of the value type. Similar tests if two

variants have the same tag, and if so, tests if the two value components are similar, using the similar

operation of the value type.

All operations are indivisible, except similar, similar1, copy, encode, and decode, which are divisible at

calls to operations of the type parameters.

For the detailed specification, see Section II.15.

6.2.14. Procedure and Iterator Types
Procedures and iterators are created by the Argus system or by the bind expression (see Section 9.8).

They are not transmissible. As the identity of a procedure or iterator is immutable, they can be

considered to be atomic. However, their atomicity can be violated if a procedure or iterator has own data

and thus a mutable state. The immutability and atomicity of a procedure or iterator with own data

depends on that operation’s specified semantics.

The type specification for a procedure or iterator contains most of the information stated in a procedure

or iterator heading; a procedure type specification has the form:

proctype ([type spec , ...]) [returns] [signals]
and an iterator type specification has the form:

itertype ([type spec , ...]) [yields] [signals]
where

returns ::= returns (type spec , ...)

yields ::= yields (type spec , ...)

signals ::= signals (exception , ...)

exception ::= name [(type spec , ...)]
The first list of type specifications describes the number, types, and order of arguments. The returns or

yields clause gives the number, types, and order of the objects to be returned or yielded. The signals

clause lists the exceptions raised by the procedure or iterator; for each exception name, the number,

types, and order of the objects to be returned is also given. All names used in a signals clause must be

unique. The ordering of exceptions is not important.

30 Types, Type Generators, and Type Specifications

Procedure and iterator types have an equal (=) operation. Invocation is not an operation, but a

primitive in Argus. For the detailed specification of proctype and itertype, see Section II.17.

6.3. Atomic Array, Atomic Record, and Atomic Variant
Having described the types that Argus inherited from CLU, we now describe the new types in Argus.

The mutable atomic type generators of Argus are atomic array, atomic record, and atomic variant.

Types obtained from these generators provide the same operations as the analogous types obtained from

array, record, and variant, but they differ in their synchronization and recovery properties. Conversion

operations are provided between each atomic type generator and its non-atomic partner (for example,

atomic array[t]$aa2a converts from an atomic array to a (non-atomic) array).

An operation of an atomic type generator can be classified as a reader or writer depending on whether

it examines or modifies its principal argument, that is, the argument or result object of the operation’s

type. (For binary operations, such as ar gets ar, the operation is classified with respect to each

argument.) Intuitively, a reader only examines (reads) the state of its principal argument, while a writer

modifies (writes) its principal argument. Operations that create objects of an atomic type are classified as

readers. Reader/writer exclusion is achieved by locking: readers acquire a read lock while writers

acquire a write lock. The locking rules are discussed in Section 2.2.2.

If one or more of the type parameters is non-atomic, then the resulting type is not atomic because

modifications to component objects are not controlled. However, read/write locking still occurs, as

described above. Thus, an atomic type generator instantiated with a non-atomic parameter incurs the

expense of atomic types without gaining any benefit; such an instantiation is unlikely to be a correct

solution to a problem. Atomic type generators yield transmissible types only if the type parameters are all

transmissible.

Special operations are provided for each atomic type generator to test and manipulate the locks

associated with reader/writer exclusion. These operations are useful for implementing user-defined

atomic types (see Section 15). The tagtest and tagwait statements (see Section 10.15) provide

additional structured support for atomic variants. The operations can read, can write, Test and read,

and test and write provide relatively unstructured access to lock information. For complete definitions of

these operations, see Sections II.10, II.13, and II.16.

Assuming normal termination, the following operations acquire read locks on their principal arguments

or the objects that they create.

atomic array: create, new, predict, fill, fill copy, size, low, high, empty, top, bottom, fetch, similar,
similar1, copy, copy1, elements, indexes, test and read, a2aa, aa2a, encode,
decode

atomic record: create, get , similar, similar1, copy, copy1, test and read, ar gets ar (second
argument), r2ar, ar2r, encode, decode

atomic variant: make , is , value , av gets av (second argument), similar, similar1, copy, copy1,
test and read, v2av, av2v, encode, decode

6.3 Atomic Array, Atomic Record, and Atomic Variant 31

The operations similar and similar1 acquire read locks on both arguments. The operations copy and

copy1 acquire a read lock on the value returned as well as their principal argument. Test and read is a

reader only if it returns true; otherwise it is neither a reader nor a writer.

Assuming normal termination, the following operations acquire write locks on their principal arguments.

atomic array: set low, trim, store, addh, addl, remh, reml, test and write

atomic record: set , ar gets ar (first argument), test and write

atomic variant: change , av gets av (first argument), test and write

Test and write is a writer only if it returns true; otherwise it is neither a reader nor a writer.

The equal, can read, and can write operations are neither readers nor writers.

When an operation of atomic array terminates with an exception, its principal argument is never

modified; however, the atomic array operations listed above as writers always obtain a write lock before

the principal argument is examined, hence there are cases in which they will obtain a write lock and only

read, but not modify their principal argument. For example, atomic array[t]$trim is a writer when it

signals bounds. On the other hand, when an atomic array operation raises a signal because of an

invalid argument, no locks are obtained. For example, when atomic array[t]$trim signals negative size,

it is neither a reader nor a writer since the array’s state is neither examined nor modified (only the integer

argument is examined).

For the detailed specification of atomic arrays, see Section II.10; for atomic records, see Section II.13;

and for atomic variants, see Section II.16.

6.4. Guardian Types
Guardian types are user-defined types that are implemented by guardian definitions (see Section 13).

A guardian definition has a header of the form:

idn = guardian [parms] is idn , ... [handles idn , ...] [where]
The creators are the operations named in the identifier list following is; a creator is a special kind of

operation that can be called to create new guardians that behave in accordance with the guardian

definition. Each guardian optionally provides handlers that can be called to interact with it; the names of

these handlers are listed in the identifier list following handles. (See Section 13 for more details.)

A guardian definition named g defines a guardian interface type g. An object of the guardian interface

type provides an interface to a guardian that behaves in accordance with the guardian definition. An

interface object is created whenever a new guardian is created, and then the interface object can be used

to access the guardian’s handlers. Interface objects are transmissible, and after transmission they still

give access to the same guardian. In this manual a "guardian interface object" is often called simply a

"guardian object".

The guardian type g for the guardian definition named g has the following operations.

32 Types, Type Generators, and Type Specifications

1. The creators listed in the is list of the guardian definition.

2. For each handler name h listed in the handles list, an operation get h with type:
proctype (g) returns (ht), where ht is the type of h.

3. Equal and similar, both of type: proctype (g, g) returns (bool), which return true only if
both arguments are the same guardian object.

4. Copy, of type: proctype (g) returns (g), which simply returns its argument.

5. transmit.

A creator may not be named equal, similar, copy, print, or get h where h is the name of a handler.

Thus if x is a variable denoting a guardian interface object of type g, and h is a handler of g, then

g$get h(x) will return this handler. As usual with get operations, this call can be abbreviated to x.h.

Note that the handlers themselves are not operations of the guardian interface type; thus g$h would be

illegal.

A guardian interface type is somewhat like a structure type. Its objects are constructed by the creators,

and decomposed by the get operations. Guardian interface objects are immutable and atomic.

6.5. Handler and Creator Types
Creators are operations of guardian types. Handler objects are created as a side-effect of guardian

creation. Unlike procedures and iterators, handlers and creators are transmissible.

The types of handlers and creators resemble the types of procedures:

handlertype ([type spec, ...]) [returns] [signals]
creatortype ([type spec, ...]) [returns] [signals]

The argument, normal result, and exception result types must all be transmissible. The signals list for a

handlertype or creatortype cannot include either failure or unavailable, as these signals are implicit in

the interface of all creators and handlers.

Handler and creator types provide equal and similar operations which return true if and only if both

arguments are the same object, and copy operations which simply return their argument. For the detailed

specification of handlertype and creatortype, see Section II.18.

6.6. Image
The image type provides an escape from compile-time type checking. The main difference between

image and any is that image objects are transmissible. An image object can be thought of as a portion

of an undecoded message or as the information needed to recreate an object of some type. Image

objects are immutable and atomic.

The create operation is parameterized by a transmissible type; it takes a single argument of that type

and encodes it (using the encode operation of that type) into an image object. The force operation is also

6.6 Image 33

parameterized by a transmissible type; it takes an image object and decodes it (using the decode

operation of that type) to an object of that type, signalling wrong type if the encoded object’s type is not

included in the parameter type. The is type operation is parameterized by a type and checks whether its

argument is an encoded object of a type included in the parameter type. See Section II.20 for the

detailed specification.

6.7. Mutex
Mutex objects are mutable containers for information. They are not atomic, but they provide

synchronization and control of writing to stable storage for their contained object. Mutex itself does not

provide operations for synchronizing the use of mutex objects. Instead, mutual exclusion is achieved

using the seize statement (see Section 10.16), which allows a sequence of statements to be executed

while a process is in exclusive possession of the mutex object. Mutex objects are transmissible if the

contained object is transmissible.

The type generator mutex has a single parameter that is the type of the contained object. A mutex

type specification has the form:

mutex [type actual]

Mutex types provide operations to create and decompose mutex objects, and to notify the system of

modifications to the mutex object or its contained object.

The create operation takes a single argument of the parameter type and creates a new mutex object

containing the argument object. The get value operation obtains the contained object from its mutex

argument, while set value modifies a mutex object by replacing its contained object. As with records,

these operations can be called using special forms, for example:

m: mutex[int] := mutex[int]$create (0)
x: int := m.value % extract the contained object
m.value := 33 % change the contained object

Set value and get value are indivisible.

Mutexes can be distinguished with the equal (=) operation. There are no operations that could cause

or detect sharing of the contained object by two mutexes. Such sharing is dangerous, since two

processes would not be synchronized with each other in their use of the contained object if each

possessed a different mutex. In general, if an object is contained in a mutex object, it should not be

contained in any other object, nor should it be referred to by a variable except when in a seize statement

that has possession of the containing mutex.

There are some mutex operations that seize the mutex object automatically. Copy seizes its single

argument object. Similar seizes its two argument objects; the first argument object is seized first and then

the second. In both cases possession is retained until the operations return. Also, when a mutex object

is encoded (for a message or when making an image), the object is seized automatically. See Section

II.21 for the detailed specification of mutex.

34 Types, Type Generators, and Type Specifications

Mutexes are used primarily to provide process synchronization and mutual exclusion on shared data,

especially to implement user-defined atomic types. In such implementations, it is important to control

writing to stable storage. The mutex operation changed provides the necessary control. Changed

informs the system that the calling action requires that the argument object be copied to stable storage

before the commit of the action’s top-level parent (topaction). Any mutex is asynchronous: its contained

object is written to stable storage independently of objects that contain that mutex. See Section 15 for

further discussion of user-defined atomic objects.

6.8. Node
Objects of type node stand for physical nodes. The operation here takes no arguments and returns

the node object that denotes its caller’s node. Equal, similar, and copy operations are also provided.

The main use of node objects is in guardian creation (see Section 13), where they are used to cause a

newly created guardian to reside at a particular node. Objects of type node are immutable, atomic, and

transmissible. For the detailed specification, see Section II.2.

6.9. Other Type Specifications
A type specification for a user-defined type has the form of a reference:

reference ::= idn

| idn [actual parm , ...]

| reference $ name

where each actual parm must be a compile-time computable constant (see Section 7.2) or a type actual

(see Section 12.6). A reference must denote a data abstraction to be used as a type specification; this

syntax is provided for referring to a data abstraction that is named in an equate module (see Section

12.4). For type generators, actual parameters of the appropriate types and number must be supplied.

The order of parameters is always significant for user-defined types (see Section 12.5).

There are two special type specifications that are used when implementing new abstractions: rep, and

cvt. These forms may only be used within a cluster; they are discussed further in Section 12.3.

Within an implementation of an abstraction, formal parameters declared with type can be used as type

specifications. Finally, identifiers that have been equated to type specifications can also be used as type

specifications.

7 Scopes, Declarations, and Equates 35

7. Scopes, Declarations, and Equates
This section describes how to introduce and use constants and variables, and the scope of constant

and variable names. Scoping units are described first, followed by a discussion of variables, and finally

constants.

7.1. Scoping Units
Scoping units follow the nesting structure of statements. Generally, a scoping unit is a body and an

associated "heading". The scoping units are as follows (see Appendix I for details of the syntax).
1. From the start of a module to its end.

2. From a cluster, proc, iter, equates, guardian, handler, or creator to the matching end.

3. From a for, do, begin, background, recover, enter, coenter, or seize to the matching
end.

4. From a then or else in an if statement to the end of the corresponding body.

5. From a tag, wtag, or others in a tagcase, tagwait, or tagtest statement to the end of the
corresponding body.

6. From a when or others in an except statement to the end of the corresponding body.

7. From the start of a type set to its end.

8. From an action or topaction to the end of the corresponding body.

The structure of scoping units is such that if one scoping unit overlaps another scoping unit (textually),

then one is fully contained in the other. The contained scope is called a nested scope, and the containing

scope is called a surrounding scope.

New constant and variable names may be introduced in a scoping unit. Names for constants are

introduced by equates, which are syntactically restricted to appear grouped together at or near the

beginning of scoping units (except in type sets). For example, equates may appear at the beginning of a

body, but not after any statements in the body.

In contrast, declarations, which introduce new variables, are allowed wherever statements are allowed,

and hence may appear throughout a scoping unit. Equates and declarations are discussed in more detail

in the following two sections.

In the syntax there are two distinct nonterminals for identifiers: idn and name. Any identifier introduced

by an equate or declaration is an idn, as is the name of the module being defined, and any operations it

has. An idn names a specific type or object. The other kind of identifier is a name. A name is generally

used to refer to a piece of something, and is always used in context; for example, names are used as

record selectors. The scope rules apply only to idns.

The scope rules are simple:
1. An idn may not be redefined in its scope.

2. Any idn that is used as an external reference in a module may not be used for any other
purpose in that module.

36 Scopes, Declarations, and Equates

Unlike other "block-structured" languages, Argus prohibits the redefinition of an identifier in a nested

scope. An identifier used as an external reference names a module or constant; the reference is resolved

using the compilation environment.

7.1.1. Variables
Objects are the fundamental "things" in the Argus universe; variables are a mechanism for denoting

(i.e., naming) objects. A variable has three properties: its type, whether it is stable or not, and the object

that it currently denotes (if any). A variable is said to be uninitialized if it does not denote any object.

Attempts to use uninitialized variables are programming errors and (if not detected at compile-time) cause

the guardian to crash.

There are only three things that can be done with variables:
1. New variables can be introduced. Declarations perform this function, and are described

below.

2. An object may be assigned to a variable. After an assignment the variable denotes the
object assigned.

3. A variable may be used as an expression. The value of a variable is the object that the
variable denotes at the time the expression is evaluated.

7.1.2. Declarations
Declarations introduce new variables. The scope of a variable is from its declaration to the end of the

smallest scoping unit containing its declaration; hence, variables must be declared before they are used.

There are two sorts of declarations: those with initialization, and those without. Simple declarations

(those without initialization) take the form

decl ::= idn , ... : type spec

A simple declaration introduces a list of variables, all having the type given by the type spec. This type

determines the types of objects that can be assigned to the variable. The variables introduced in a simple

declaration initially denote no objects, i.e., they are uninitialized.

A declaration with initialization combines declarations and assignments into a single statement. A

declaration with initialization is entirely equivalent to one or more simple declarations followed by an

assignment statement. The two forms of declaration with initialization are:

idn : type spec := expression

and

decl , ..., decl := call [@ primary]1 n

These are equivalent to (respectively):

idn : type spec
idn := expression

and

7.1.2 Declarations 37

decl ... decl % declaring idn ... idn1 n 1 m

idn , ..., idn := call [@ primary]1 m

In the second form, the order of the idns in the assignment statement is the same as in the original

declaration with initialization. (The call must return m objects.)

7.2. Equates and Constants
An equate allows an identifier to be used as an abbreviation for a constant, type set, or equate module

name that may have a lengthy textual representation. An equate also permits a mnemonic identifier to be

used in place of a frequently used constant, such as a numerical value. We use the term constant in a

very narrow sense here: constants, in addition to being immutable, must be computable at compile-time.

Constants are either types (built-in or user-defined), or objects that are the results of evaluating constant

expressions. (Constant expressions are defined below.)

The syntax of equates is:

equate ::= idn = constant

| idn = type set

| idn = reference

constant ::= type spec

| expression

type set ::= { idn | idn has oper decl , ... { equate } }

reference ::= idn

| idn [actual parm , ...]

| reference $ name

References can be used to name equate modules.

An equated identifier may not be used on the left-hand side of an assignment statement.

The scope of an equated identifier is the smallest scoping unit surrounding the equate defining it; here

we mean the entire scoping unit, not just the portion after the equate. All the equates in a scoping unit

must appear grouped near the beginning of the scoping unit. The exact placement of equates depends

on the containing syntactic construct; usually equates appear at the beginnings of bodies.

Equates may be in any order within the a scoping unit. Forward references among equates in the

same scoping unit are allowed, but cyclic dependencies are illegal. For example,

x = y
y = z
z = 3

is a legal sequence of equates, but

38 Scopes, Declarations, and Equates

x = y
y = z
z = x

is not. Since equates introduce idns, the scoping restrictions on idns apply (i.e., the idns may not be

defined more than once).

7.2.1. Abbreviations for Types
Identifiers may be equated to type specifications, giving abbreviations for type names.

7.2.2. Constant Expressions
We define the subset of objects that equated identifiers may denote by stating which expressions are

constant expressions. (Expressions are discussed in detail in Section 9.) A constant expression is an

expression that can be evaluated at compile-time to produce an immutable object of a built-in type. This

includes:
1. Literals.

2. Identifiers equated to constants.

3. Formal parameters.

4. Procedure, iterator, and creator names.

5. Bind expressions (see Section 9.8), where the routine bound and the explicit arguments are
all constants.

6. Invocations of procedure operations of the built-in immutable types, provided that all
operands are constant expressions that are not formal parameters.

The built-in immutable types are: null, int, real, bool, char, string, sequence types, oneof types,

structure types, procedure types, iterator types, and creator types.

We explicitly forbid the use of formal parameters as operands to calls in constant expressions, since

the values of formal parameters are not known at compile-time. If the evaluation of a constant expression

would signal an exception, the constant defined by that expression is illegal.

8 Assignment and Calls 39

8. Assignment and Calls
The two fundamental activities of Argus programs are calls and assignment of computed objects to

variables.

Argus programs should use mutual exclusion or atomic data to synchronize access to all shared

variables, because Argus supports concurrency and thus processes can interfere with each other during

assignments. For example,

i := 1
j := 2

is not equivalent to

i, j := 1, 2

in the presence of concurrent assignments to the same variables, because any interleaving of indivisible

events is possible in the presence of concurrency.

Argus is designed to allow complete compile-time type-checking. The type of each variable is known

by the compiler. Furthermore, the type of objects that could result from the evaluation of any expression

is known at compile time. Hence, every assignment can be checked at compile time to ensure that the

variable is only assigned objects of its declared type. An assignment v := E is legal only if the type of E is

included the type of v. The definition of type inclusion is given in Section 6.1.

8.1. Assignment
Assignment causes a variable to denote an object. Some assignments are implicitly performed as part

of the execution of various mechanisms of the language (in exception handling, and the tagcase, tagtest,

and tagwait statements). All assignments, whether implicit or explicit, are subject to the type inclusion

rule.

8.1.1. Simple Assignment
The simplest form of assignment statement is:

idn := expression

In this case the expression is evaluated, and then the resulting object is assigned to the variable named

by the idn in an indivisible event. Thus no other process may observe a "half-assigned" state of the

variable, but another process may observe various states during the expression evaluation and between

the evaluation of the expression and the assignment. The expression must return a single object (whose

type must be included in that of the variable).

8.1.2. Multiple Assignment
There are two forms of assignment statement that assign to more than one variable at once:

idn , ... := expression , ...
and

40 Assignment and Calls

idn , ... := call [@ primary]

The first form of multiple assignment is a generalization of simple assignment. The first variable is

assigned the first expression, the second variable the second expression, and so on. The expressions

are all evaluated (from left to right) before any assignments are performed. The assignment of multiple

objects to multiple variables is an indivisible event, but evaluation of the expressions is divisible from the

actual assignment. The number of variables in the list must equal the number of expressions, no variable

may occur more than once, and the type of each variable must include the type of the corresponding

expression.

The second form of multiple assignment allows one to retain the objects resulting from a call returning

two or more objects. The first variable is assigned the first object, the second variable the second object,

and so on, but all the assignments are carried out indivisibly. The order of the objects is the same as in

the return statement executed in the called routine. The number of variables must equal the number of

objects returned, no variable may occur more than once, and the type of each variable must include the

corresponding return type of the called procedure.

8.2. Local Calls
In this section we discuss procedure calls; iterator calls are discussed in Section 10.12. However,

argument passing is the same for both procedures and iterators.

Local calls take the form:

primary ([expression , ...])

The sequence of activities in performing a local call are as follows:
1. The primary is evaluated.

2. The expressions are evaluated, from left to right.

3. New variables are introduced corresponding to the formal arguments of the routine being
called (i.e., a new environment is created for the called routine to execute in).

4. The objects resulting from evaluating the expressions (the actual arguments) are assigned
to the corresponding new variables (the formal arguments). The first formal is assigned the
first actual, the second formal the second actual, and so on. The type of each expression
must be included in the type of the corresponding formal argument.

5. Control is transferred to the routine at the start of its body.

A call is considered legal in exactly those situations where all the (implicit) assignments are legal.

A routine may assign an object to a formal argument variable; the effect is just as if that object were

assigned to any other variable. From the point of view of the called routine, the only difference between

its formal argument variables and its other local variables is that the formals are initialized by its caller.

Procedures can terminate in two ways: they can terminate normally, returning zero or more objects, or

they can terminate exceptionally, signalling an exceptional condition. When a procedure terminates

8.2 Local Calls 41

normally, any result objects become available to the caller, and can be assigned to variables or passed as

arguments to other routines. When a procedure terminates exceptionally, the flow of control will not go to

the point of return of the call, but rather will go to an exception handler (see Section 11).

8.3. Handler Calls
As explained in Section 2 and in Section 13, a handler is an operation that belongs to some guardian.

A handler call causes an activation of the called handler to run at the handler’s guardian; the activation is

performed at the called handler’s guardian by a new subaction created solely for this purpose. Usually

the handler’s guardian is not the same as the one in which the call occurs, and the called handler’s

guardian is likely to reside at a different node in the network than the calling guardian. However, it is legal

to call a handler that belongs to a guardian residing at the caller’s node, or even to call a handler

belonging to the caller’s guardian.

Although the form of a handler call looks like a procedure call:

primary ([expression, ...])

its meaning is very different. Among other things, a handler is called remotely, with the arguments and

results being transmitted by value in messages, and the call is run as a subaction of its calling action.

Below we present an overview of what happens when executing a handler call and then a detailed

description.

A handler call runs as a subaction of the calling action. We will refer to this subaction as the call action.

The first thing done by the call action is the transmission of the arguments of the call. Transmission is

accomplished by encoding each argument object, using the encode operation of its type. The arguments

are decoded at the called guardian by a subaction of the call action called the activation action. Each

argument is decoded by using the decode operation of its type. The effect of transmission is that the

arguments are passed by value from the caller to the handler activation: new objects come into existence

at the handler’s guardian that are copies of the argument objects. Object values are transmitted in such a
7way as to preserve the internal sharing structure of each argument object is preserved , as well as any

sharing structure between the argument objects in a single call. See Section 14 for further discussion of

transmission.

After the arguments have been transmitted, the activation action performs the handler body. When the

handler body terminates, by executing a return, abort return, signal, or abort signal statement, the

result objects are transmitted to the caller by encoding them at the handler’s guardian, and committing or

aborting the activation action (as it specified). The call action then decodes the results at the caller’s

guardian. Once the results have been transmitted to the caller, the call action commits and execution

continues in the caller as indicated by the caller’s code. (Note that the call action will commit even if the

activation action aborts.)

7This is only strictly true for the built-in types. A user-defined type might not preserve internal sharing structure.

42 Assignment and Calls

The above discussion has ignored the possibility of several problems that may arise in executing a

handler call. These problems either cause the call action or the activation action to abort or result in the

crash of the calling guardian. A handler call attempted from outside a topaction or subaction is a

programming error, and so if this happens the calling guardian is crashed. Other problems cause the call

action or the activation action to be aborted, and this is reflected back to the caller as an exception raised

by the Argus system. Two such exceptions can be raised: failure(string) and unavailable(string). The

string exception results summarize the problem that has occurred.

The meaning of a failure exception generated by the Argus system is that this particular call did not

succeed, and furthermore it is unlikely to succeed if repeated. There are two reasons why failure is

raised: an error occurred in transmitting an argument or result, or the handler’s guardian no longer exists.

The Argus system raises the unavailable exception when it is unable to communicate with the handler’s

guardian. Reasons why communication may fail include network partitions and a crashes of the called

guardian or its node. The Argus system raises the unavailable exception only if communication seems

impossible at that time; it may try many times to establish communication. Therefore, when a call

terminates with the unavailable exception, there is little point in retrying the call immediately. However,

unlike a call terminated by the failure exception, a call terminated by the unavailable exception may

complete successfully if retried later. Note that the arguments and results may be encoded several times

as the system tries to establish communication.

For example, suppose we have a handler call:

m.send mail(user, my message)

where m is a mailer guardian, and the send mail handler has the header

send mail = handler (u: user id, msg: message) signals (no such user)

Then user and my message are encoded using the encode operations of types user id and message,

respectively, and the encoded values are decoded at the called guardian using the decode operations of

these types. If user is actually registered to receive mail, then send mail will return normally; otherwise it

signals no such user. In either case no encoding or decoding of the reply is needed since there is no

result.

Possible exceptions from this call are no such user, failure, and unavailable. So the call might be

performed in an except statement:

m.send mail(user, my message)
except when no such user: ...

when unavailable (s: string): ...
when failure (s: string): ...
end

8.3.1 Semantics of Handler Calls 43

8.3.1. Semantics of Handler Calls
In this section we describe the semantics of a handler call in detail. A handler call causes activity at

both the calling guardian and at the called guardian. At the calling guardian, the sequence of activities in

performing a handler call is as follows:
1. The primary is evaluated.

2. The argument expressions are evaluated from left to right.

3. A subaction, which we will refer to as the call action, is created for the remote call. All
subsequent activity on behalf of the call will be performed by the call action or one of its
descendants. For it to be possible to create the call action, the caller must already be
running as an action. Remote calls by non-actions are programming errors and cause the
calling guardian to crash.

4. A call message is constructed. As part of constructing this message, encode operations
are performed on the argument objects. If any of the encode operations terminates with a
failure exception, then the remote call will terminate with the same exception, and the call
action will be aborted.

5. The call message is sent to the guardian of the called handler, and the call action waits for
the completion of the call.

6. If the call message arrives at the node of the target guardian, and the target guardian does
not exist, then the call action is aborted with the failure exception having the string
"guardian does not exist" as its exception result.

7. If the system determines that it cannot communicate with the called guardian, it aborts the
call action. The call action may be retried several times (beginning at step 3) in attempts to
communicate. If repeated communication failures are encountered, the system aborts the
call action and causes the call to terminate with the unavailable exception. The system will
cause this kind of termination only when it is extremely unlikely that retrying the call
immediately will succeed.

8. Ordinarily, a call completes when a reply message containing the results is received. When
the reply message arrives at the caller, it is decoded using the decode operation for each
result object. If any decode terminates with a failure exception, the call action is aborted,
and the call terminates with the same exception. Otherwise, the call action commits.

9. The call will terminate normally if the result message indicates that the handler activation
returned (instead of signalled); otherwise it terminates with whatever exception was
signalled.

At the called guardian, the following activities take place.
1. A subaction of the call action is created at the target guardian to run the call. We will refer

to this subaction as the activation action. All activity at the target guardian occurs on behalf
of the activation action or one of its descendants.

2. The call message is decomposed into its constituent objects. As part of this process
decode operations are performed on each argument. If any decode terminates with a
failure exception, then the activation action is aborted, and the call terminates with the same
exception.

3. The called handler is called within the activation action. This call is like a regular procedure
call. The objects obtained from decoding the message are the actual arguments, and they
are bound to the formals via implicit assignments.

4. If the handler terminates by executing an abort return or an abort signal statement (see
Section 11.1), then all committed descendents of the activation action are aborted. Then
the reply message is constructed by encoding the result objects, the activation action is

44 Assignment and Calls

aborted, and the reply message is sent to the caller. Otherwise, when the handler
terminates, the reply message is constructed by encoding the result objects, the activation
action commits, and the reply message is sent to the caller. If one of the calls of encode
terminates with a failure exception, then the activation action is aborted, and the call
terminates with the same exception.

When the Argus system terminates a call with the unavailable exception, it is possible that the

activation action and/or some of its descendants are actually running. This could happen, for example, if

the network partitions. These running processes are called "orphans". The Argus system makes sure

that orphans will be aborted before they can view inconsistent data (see Section 2.5).

8.4. Creator Calls
Creators are called to cause new guardians to come into existence. As part of the call, the node at

which the newly created guardian will be located may be specified. If the node is not specified, then the

new guardian is created at the same node as the caller of the creator. The form of a creator call is:

primary ([expression, ...]) [@ primary]

The primary following the at-sign (@) must be of type node.

A creator call causes two activities to take place. First, a new guardian is created at the indicated

node. Second, the creator is called as a handler at the newly created guardian. This handler call has

basically the same semantics as the regular handler call described above.

The Argus system may also cause a creator call to abort with the failure or unavailable exceptions.

The reasons for such terminations are the same as those for handler calls, and the meanings are the

same: the failure exception means that the call should not be retried, while the unavailable exception

means that the call should not be retried immediately.

8.4.1. Semantics of Creator Calls
The activities carried out in executing a creator call are as follows.

1. The (first) primary is evaluated.

2. The argument expressions are evaluated from left to right.

3. The optional primary following the at-sign is evaluated to obtain a node object. If this
primary is missing, the node at which the call is taking place is used.

4. A subaction, which we will refer to as the call action, is created. All subsequent activity
takes place within this subaction. As was the case for handler calls, creators can be called
only from within actions. A creator call by a non-action is a programming error and causes
the calling guardian to crash.

5. A new guardian is created at the indicated node. The creator obtained in step 1 will indicate
the type of this guardian. The selection of a particular load image for this type will occur as
discussed in Section 3.3.

6. As was the case for handler calls, if the system cannot communicate with the indicated
node, the creator call will terminate with the unavailable exception. If the system is unable

8.4.1 Semantics of Creator Calls 45

to determine what implementation to load, or if there is no implementation of the type that
can run on the indicated node, or if the manager of the node refuses to allow the new
guardian to be created, the creator call will terminate with the failure exception. In either
case the call action will be aborted.

7. A remote call is now performed to the creator. This call has the same semantics as
described for handler calls above in steps 4 through 9 of the activities at the calling node
and also steps 1 through 4 of activities at the called node. However, if either the call action
or the activation action aborts, the newly created guardian will be destroyed.

For example, suppose we execute the creator call

x: G := G$create(3) @ n

where G is a guardian type, n denotes an object of type node, and create has header

create = creator (n: int) returns (G) signals (not possible(string))

The system will select an implementation of G that is suitable for use at node n, and will then create a

guardian at node n running that implementation. Next create (3) is performed as a handler call at that

new guardian. If create returns, then the assignment to x will occur, causing x to refer to the new

guardian that create returned; now we can call the handlers provided by G. The exceptions that can be

signalled by this call are not possible, failure, and unavailable. An example of a call that handles all

these exceptions is:

x: G := G$create (3) @ n
except when not possible (s: string): ...

when failure (s: string): ...
when unavailable (s: string): ...
end

Creators are described in more detail in Section 13.

46 Assignment and Calls

9 Expressions 47

9. Expressions
An expression evaluates to an object in the Argus universe. This object is said to be the result or value

of the expression. Expressions are used to name the object to which they evaluate. The simplest forms

of expressions are literals, variables, parameters, equated identifiers, equate module references,

procedure, iterator, and creator names, and self. These forms directly name their result object. More

complex expressions are built up out of nested procedure calls. The result of such an expression is the

value returned by the outermost call.

9.1. Literals
Integer, real, character, string, boolean and null literals are expressions. The type of a literal

expression is the type of the object named by the literal. For example, true is of type bool, "abc" is of

type string, etc. (see the end of Appendix I for details).

9.2. Variables
Variables are identifiers that denote objects of a given type. The type of a variable is the type given in

the declaration of that variable. An attempt to use an uninitialized variable as an expression is a

programming error and causes the guardian to crash.

9.3. Parameters
Parameters are identifiers that denote constants supplied when a parameterized module is instantiated

(see Section 12.5). The type of a parameter is the type given in the declaration of that parameter. Type

parameters cannot be used as expressions.

9.4. Equated Identifiers
Equated identifiers denote constants. The type of an equated identifier is the type of the constant

which it denotes. Identifiers equated to types, type sets, and equate modules cannot be used as

expressions.

9.5. Equate Module References
Equate modules provide a named set of equates (see Section 12.4). To use a name defined in an

equate module as an expression, one writes:

reference $ name

where

reference ::= idn

| idn [actual parm , ...]

| reference $ name

The type of a reference is the type of the constant which it denotes. Identifiers equated to types,

type sets, and equate modules cannot be used as expressions.

48 Expressions

9.6. Self
The expression self evaluates to the object (of guardian type) corresponding to the guardian instance

within which the expression is evaluated. A self expression may only appear textually within the body of

a guardian. See Section 13 for further discussion.

9.7. Procedure, Iterator, and Creator Names
Procedures and iterators may be defined either as separate modules, or within a cluster. Creators may

only be defined within a guardian module. Those defined as separate modules are named by

expressions of the form:

idn [[actual parm , ...]]
The actual parameters of a parameterized procedure or iterator can be either constants or type actuals

(see Section 12.6).

When a procedure, iterator, or creator is defined as an operation of a type, that type is part of the name

of the routine. The form for naming an operation of a type is:

type spec $ name [[actual parm , ...]]

The type of this expression is just the type of the named routine.

9.8. Bind
Closures may be created by the bind expression:

bind entity ([bind arg , ...])

where

bind arg ::= *

| expression

entity ::= reference

| entity . name

| entity [expression]

| bind entity ([bind arg , ...])

| type spec $ name [[actual parm , ...]]
| type spec $ { field , ... }

| type spec $ [[expression :] [expression , ...]]

| up (expression)

| down (expression)

An entity is a simple kind of expression that is used to prevent syntactic ambiguity.

The number of bind args must match the entity’s number of formals. A bind arg that is an asterisk (*)

indicates an argument position in which no binding is made. If a bind arg is an expression, the type of

the expression must be included in the type of the corresponding formal. The type of the bind expression

as a whole is a routine type obtained from the type of the entity by deleting argument positions that are

bound.

9.8 Bind 49

The evaluation of a bind expression proceeds by first evaluating the entity and then evaluating, from

left to right, any bind args that are expressions. The entity may evaluate to a procedure, iterator,

handler, or creator object. Suppose that the entity is a procedure or iterator object. (Creator and handler

bindings are discussed below.) Then the result is formed by binding the argument objects to the

corresponding formals of the entity to form a closure; note that the procedure or iterator is not called when

the bind expression is evaluated. When the closure is called, the object denoted by the entity is passed

all the bound objects and any actual arguments supplied in the call, all in the corresponding argument

positions.

For example, suppose we have:

p = proc(x: T, y: int, w: S) returns(R) signals(too big)

Then

q := bind p(*, 3 + 4, *)

produces a procedure whose type is proctype(T, S) returns(R) signals(too big) and assigns it to q. A

call of q(a, b) is then equivalent to the call p(a, 7, b).

Bound routines will be stored in stable storage if they are accessible from a stable variable (see

Section 13.1). In this case the entity and the bind args should denote atomic objects.

There is only one instance of a routine’s own data for each parameterization; thus all the bindings of a

routine share its own data, if any (see Section 12.7). Each binding is generally a new object; thus the

relevant equal operation may treat syntactically identical bindings as distinct.

The semantics of binding a creator or handler are similar to binding a procedure or iterator; the

differences arise from argument transmission. Encoding of bound argument objects happens when the

bind expression is evaluated and sharing is only preserved among objects bound at the same time (see

Section 14). In more detail, the evaluation of a bind expression proceeds by first evaluating the entity

and then evaluating, from left to right, any bind args that are expressions. Then the argument objects

are encoded, from left to right, preserving sharing among these objects. The result is formed by binding

the encoded argument objects to the corresponding formals of the entity to form a closure. Note that the

entity is not called when the bind expression is evaluated.

When the closure is called, first any other arguments are evaluated and encoded (not sharing with the

bound objects) and then the call to the entity is initiated. Decoding of the arguments at the called

guardian is done in reverse of the order of encoding; that is, other arguments are decoded before bound

arguments and the most recently bound arguments are decoded first. Sharing is preserved on decoding

only among groups of bound arguments and among the other arguments, not between groups.

Thereafter the call proceeds as normally.

For example, if we execute

h1 := bind h(x, y, *)
h1(z)

50 Expressions

then sharing of objects between x and y will be preserved by transmission, but sharing will not be

preserved between x and z or y and z.

Closures can be used in equates, provided all the expressions are constants (see Section 7.2.2).

However, a handler cannot appear in an equate, since it is not a constant.

9.9. Procedure Calls
Procedure calls have the form:

primary ([expression , ...])

The primary is evaluated to obtain a procedure object, and then the expressions are evaluated left to right

to obtain the argument objects. The procedure is called with these arguments, and the object returned is

the result of the entire expression. For more discussion see Section 8.

Any procedure call p(E , ... E) must satisfy two constraints to be used as an expression: the type of p1 n

must be of the form:

proctype (T , ..., T) returns (R) signals (...)1 n

and the type of each expression E must be included in the corresponding type T . The type of the entirei i

call expression is given by R.

9.10. Handler Calls
Handler calls have the form:

primary ([expression, ...])

The primary is evaluated to obtain a handler object, and then the expressions are evaluated left to right to

obtain the argument objects. The handler is then called with these arguments as discussed in Section

8.3. The following expressions are examples of handler calls:

h(x)
info guard.who is user("john", "doe")
dow jones.info("XYZ Corporation")

Any handler call h(E , ... E) must satisfy the following constraints when used as an expression. The1 n

type of h must be of the form:

handlertype (T , ... T) returns (R) signals (...)1 n

and the type of each expression E must be included in the corresponding type T . The type of the entirei i

call expression is given by R.

As explained in Section 8.3, the execution of a handler call starts by creating a subaction. Therefore

an attempt to call a handler from a process that is not running an action is a programming error and will

cause the calling guardian to crash. This crash occurs after all of the component expressions have been

evaluated.

9.11 Creator Calls 51

9.11. Creator Calls
Creator calls have the form:

primary ([expression, ...]) [@ primary]
The first primary is evaluated to obtain a creator object, the argument expressions are evaluated left to

right to obtain the argument objects, and then the primary following the at-sign (@), if present, is

evaluated to obtain a node object. If the primary following the at-sign is omitted, then node$here() is

used. The guardian is then created at that node, and the creator called, as discussed in Section 8.4. The

following are examples of creator calls:

mailer$create() @ n
spooler[devtype]$create()

A creator call c(E ,...,E)@n must satisfy the following constraints when used as an expression. The1 n

type of c must be of the form:

creatortype (T ,...,T) returns (R) signals (...)1 n

where each T includes the type of the corresponding expression E . N must be of type node. The typei i

of the entire call expression is given by R.

As with handler calls, an attempt to call a creator from a process that is not running an action will cause

the calling guardian to crash after all component expressions have been evaluated.

9.12. Selection Operations
Selection operations provide access to the individual elements or components of a collection. Simple

notations are provided for calling the fetch operations of array-like types, and the get operations of record-

like types. In addition, these "syntactic sugarings" for selection operations may be used for user-defined

types with the appropriate properties.

9.12.1. Element Selection
An element selection expression has the form:

primary [expression]

This form is just syntactic sugar for a call of a fetch operation, and is computationally equivalent to:

T$fetch(primary, expression)

where T is the type of the primary. T must provide a procedure operation named fetch, which takes two

arguments whose types include the types of primary and expression, and which returns a single result.

9.12.2. Component Selection
The component selection expression has the form:

primary . name

This form is just syntactic sugar for a call of a get name operation, and is computationally equivalent to:

T$get name(primary)

where T is the type of primary. T must provide a procedure operation named get name, that takes one

52 Expressions

argument and returns a single result. Of course, the type of the procedure’s argument must include the

type of the primary.

9.13. Constructors
Constructors are expressions that enable users to create and initialize sequences, arrays, atomic

arrays, structures, records, and atomic records. There are no constructors for user-defined types.

9.13.1. Sequence Constructors
A sequence constructor has the form:

type spec $ [[expression , ...]]

The type spec must name a sequence type: sequence[T]. This is the type of the constructed sequence.

The expressions are evaluated to obtain the elements of the sequence. They correspond (left to right) to

the indexes 1, 2, 3, etc. For a sequence of type sequence[T], the type of each element expression in the

constructor must be included in T.

A sequence constructor is computationally equivalent to a sequence new operation, followed by a

number of sequence addh operations.

9.13.2. Array and Atomic Array Constructors
An array or atomic array constructor has the form:

type spec $ [[expression :] [expression , ...]]

The type spec must name an array or atomic array type: array[T] or atomic array[T]. This is the type of

the constructed array. The optional expression preceding the colon (:) must evaluate to an integer, and

becomes the low bound of the constructed array or atomic array. If this expression is omitted, the low

bound is 1. The optional list of expressions is evaluated to obtain the elements of the array. These

expressions correspond (left to right) to the indexes low bound, low bound+1, low bound+2, etc. For an

array or atomic array of type array[T] or atomic array[T], the type of each element expression in the

constructor must be included in T. A constructor of the form array[T]$[] has a low bound of 1 and no

elements.

An array constructor is computationally equivalent to a create operation, followed by a number of addh

operations.

9.13.3. Structure, Record, and Atomic Record Constructors
A structure, record, or atomic record constructor has the form:

type spec $ { field , ... }

where

field ::= name , ... : expression

Whenever a field has more than one name, it is equivalent to a sequence of fields, one for each name.

Thus, if R = record[a: int, b: int, c: int], then the following two constructors are equivalent:

9.13.3 Structure, Record, and Atomic Record Constructors 53

R${a, b: p(), c: 9}
R${a: p(), b: p(), c: 9}

In the following we discuss only record constructors; structure and atomic record constructors are

similar. In a record constructor, the type specification must name a record type: record[S :T , ..., S :T].1 1 n n

This is the type of the constructed record. The component names in the field list must be exactly the

names S , ..., S , although these names may appear in any order. The expressions are evaluated left to1 n

right, and there is one evaluation per component name even if several component names are grouped

with the same expression. The type of the expression for component S must be included in T . Thei i

results of these evaluations form the components of a newly constructed record. This record is the value

of the entire constructor expression.

9.14. Prefix and Infix Operators
Argus allows prefix and infix notation to be used as a shorthand for the operations listed in Table 9-1.

The table shows the shorthand form and the computationally equivalent expanded form for each

operation. For each operation, the type T is the type of the first operand.

Table 9-1: Prefix and Infix Operators: shorthands and expansions

Shorthand form Expansion

expr ** expr T$power(expr , expr)1 2 1 2
expr // expr T$mod(expr , expr)1 2 1 2
expr / expr T$div(expr , expr)1 2 1 2
expr * expr T$mul(expr , expr)1 2 1 2
expr || expr T$concat(expr , expr)1 2 1 2
expr + expr T$add(expr , expr)1 2 1 2
expr − expr T$sub(expr , expr)1 2 1 2
expr < expr T$lt(expr , expr)1 2 1 2
expr <= expr T$le(expr , expr)1 2 1 2
expr = expr T$equal(expr , expr)1 2 1 2
expr >= expr T$ge(expr , expr)1 2 1 2
expr > expr T$gt(expr , expr)1 2 1 2
expr ~< expr ~ (expr < expr)1 2 1 2
expr ~<= expr ~ (expr <= expr)1 2 1 2
expr ~= expr ~ (expr = expr)1 2 1 2
expr ~>= expr ~ (expr >= expr)1 2 1 2
expr ~> expr ~ (expr > expr)1 2 1 2
expr & expr T$and(expr , expr)1 2 1 2
expr | expr T$or(expr , expr)1 2 1 2

− expr T$minus(expr)
~ expr T$not(expr)

Operator notation is used most heavily for the built-in types, but may be used for user-defined types as

well. When these operations are provided for user-defined types, they should be free of side-effects, and

54 Expressions

they should mean roughly the same thing as they do for the built-in types. For example, the comparison

operations should only be used for types that have a natural partial or total order. Usually, the

comparison operations (lt, le, equal, ge, gt) will be of type

proctype (T, T) returns (bool)

the other binary operations (e.g., add, sub) will be of type

proctype (T, T) returns (T) signals (...)

and the unary operations will be of type

proctype (T) returns (T) signals (...)

9.15. Cand and Cor
Two additional binary operators are provided. These are the conditional and operator, cand, and the

conditional or operator, cor. The result of evaluating:

expression cand expression1 2

is the boolean and of expression and expression . However, if expression is false, expression is1 2 1 2

never evaluated. The result of evaluating:

expression cor expression1 2

is the boolean or of expression and expression , but expression is not evaluated unless expression is1 2 2 1

false. For both cand and cor, expression and expression must have type bool.1 2

Because of the conditional expression evaluation involved, uses of cand and cor are not equivalent to

any procedure call.

9.16. Precedence
When an expression is not fully parenthesized, the proper nesting of subexpressions might be

ambiguous. The following precedence rules are used to resolve such ambiguity. The precedence of

each infix operator is given in the table below. Higher precedence operations are performed first. Prefix

operators always have precedence over infix operators.

Table 9-2: Precedence for Infix Operators

Precedence Operators

5 **

4 * / //

3 + − ||

2 < <= = >= > ~< ~<= ~= ~>= ~>

1 & cand

0 | cor

9.16 Precedence 55

The order of evaluation for operators of the same precedence is left to right, except for **, which is right

to left.

9.17. Up and Down
There are no implicit type conversions in Argus. Two forms of expression exist for explicit conversions.

These are:

up (expression)

down (expression)

Up and down may be used only within the body of a cluster operation (see Section 12.3). Up changes

the type of the expression from the representation type of the cluster to the abstract type. Down converts

the type of the expression from the abstract type to the representation type.

56 Expressions

10 Statements 57

10. Statements
In this section, we discuss most of the statements of Argus, emphasizing the interaction of actions and

the various kinds of control flow statements. We postpone discussion of the signal, exit, and except

statements, which are used for signalling and handling exceptions, until Section 11. See Appendix I for

the complete syntax of statements.

Atomic actions allow sequences of statements to appear to be indivisible to other actions. Sequences

of statements that are not within an action are executed divisibly; that is, other processes may observe

intermediate states between statements. Statements are executed for their side-effects and do not return

any values. Most statements are control statements; these permit the programmer to create processes

and to dictate how control flows in a process. The rest are simple statements: assignment and calls (see

Section 8).

A control statement can control a group of equates, declarations, and statements rather than just a

single statement. Such a group is called a body, and has the form:

body ::= { equate }
{ statement }

Note that statements include declarations (see Sections 7.1.2 and Appendix I). No special terminator is

needed to signify the end of a body; reserved words used in the various compound statements serve to

delimit the bodies. The statements in a body are executed sequentially in textual order.

10.1. Calls
A call statement may be used to call a procedure, handler, or creator. For procedures and handlers its

form is the same as a call expression:

primary ([expression , ...])

The primary must be a procedure, or handler object. The type of each actual expression must be

included in the type of the corresponding formal argument. The procedure or handler may or may not

return results; if it does return results, they are discarded.

For creator calls the syntax is similar, but one can optionally specify the node at which the guardian is

to be created:

primary ([expression , ...]) [@ primary]
The primary following the at-sign (@) must be of type node.

The details of procedure, handler, and creator calls are described in Sections 8.2, 8.3, and 8.4.

58 Statements

10.2. Update Statements
Two special statements are provided for updating components of record and array-like objects. In

addition they may be used with user-defined types with the appropriate properties. These statements

resemble assignments syntactically, but are actually call statements.

10.2.1. Element Update
The element update statement has the form:

primary [expression] := expression1 2

This form is merely syntactic sugar for a call of a store operation; it is equivalent to the call statement:

T$store(primary, expression , expression)1 2

where T is the type of the primary. T must provide a procedure named store that takes three arguments

whose types include those of primary, expression , and expression , respectively.1 2

10.2.2. Component Update
The component update statement has the form:

primary . name := expression

This form is syntactic sugar for a call of a set operation whose name is formed by attaching set to the

name given. For example, if the name is f, then the statement above is equivalent to the call statement:

T$set f(primary, expression)

where T is the type of the primary. T must provide a procedure operation named set f, where f is the

name given in the component update statement. This procedure must take two arguments whose types

include the types of primary and expression, respectively.

10.3. Block Statement
The block statement permits a sequence of statements to be grouped together into a single statement.

Its form is:

begin body end

Since the syntax already permits bodies inside control statements, the main use of the block statement is

to group statements together for use with the except statement (see Section 11).

10.4. Fork Statement
A fork statement creates an autonomous process. The fork statement has the form:

fork primary ([expression, ...])

where the primary is a procedure object whose type has no results or signals (see Section 12.1). The

type of each actual expression must be included in the type of the corresponding formal.

Execution of the fork statement starts by evaluating the primary and actual argument expressions from

left to right. Any exceptions raised by the evaluation of the primary or the expressions are raised by the

fork statement. If no exceptions are raised, then a new process is created and execution resumes after

10.4 Fork Statement 59

the fork statement in the old process. The new process starts by calling the given procedure with the

argument objects. This new process terminates if and when the procedure call does. However, if the

guardian crashes the process goes away (like any other process).

Note that the new process does not run in an action, although the procedure called can start a

topaction if desired. There is no mechanism for waiting for the termination of the new process. The

procedure called in a fork statement cannot return any results or signal any exceptions.

10.5. Enter Statement
Sequential actions are created by means of the enter statement, which has two forms:

enter topaction body end

and

enter action body end

The topaction qualifier causes the body to execute as a new top-level action. The action qualifier

causes the body to execute as a subaction of the current action; an attempt to execute an enter action

statement in a process that is not executing an action is a programming error and causes the guardian to

crash. When the body terminates, it does so either by committing or aborting. Normal completion of the

body results in the action committing. Statements that transfer control out of the enter statment (exit,

leave, break, continue, return, signal, and resignal) normally commit the action unless are prefixed

with abort (e.g., abort exit). Two-phase commit of a topaction may fail, in which case the enter

topaction statement raises an unavailable exception.

10.6. Coenter Statement
Concurrent actions and processes are created by means of the coenter statement:

coenter coarm { coarm } end

where

coarm ::= armtag [foreach decl , ... in call]
body

armtag ::= action

| topaction

| process

Execution of the coenter starts by creating all of the coarm processes, sequentially, in textual order. A

foreach clause indicates that multiple instances of the coarm will be created. The call in a foreach

clause must be an iterator call. At each yield of the iterator, a new coarm process is created and the

objects yielded are assigned to newly declared variables in that process. (This implicit assignment must

be legal, see Section 6.1.) Each coarm process has separate, local instances of the variables declared in

the foreach clause.

60 Statements

The process executing the coenter is suspended until after the coenter is finished. Once all coarm

processes are created, they are started simultaneously as concurrent siblings. Each coarm instance runs

in a separate process, and each coarm with an armtag of topaction or action executes within a new

top-level action or subaction, respectively. An attempt to execute a coenter with a process coarm when

in an action, or to execute a coenter with an action coarm when not in an action is an error and will

cause the guardian to crash (see Table 10-1).

Table 10-1: Legality of coenter statements.

process executing the coenter is:
armtag not in an action running an action

action not legal legal
topaction legal legal
process legal not legal

A simple example making use of foreach is:

coenter action foreach i: int in int$from to (1, 5)
p (i)
end

which creates five processes, each with a local variable i, having the value 1 in the first process, 2 in the

second process, and so on. Each process runs in a newly created subaction. This statement is legal

only if the process executing it is running an action.

A coarm may terminate without terminating the entire coenter (and sibling coarms) either by normal

completion of its body, or by executing a leave statement (see Section 10.7). The commit of a coarm

declared as a topaction may terminate in an unavailable exception if two-phase commit fails. Such an

exception can only be handled outside the coenter statement, and thus will force termination of the entire

coenter (as explained below).

A coarm may also terminate by transferring control outside the coenter statement. When such a

transfer of control occurs, the following steps take place.
1. Any containing statements are terminated divisibly, to the outermost level of the coarm, at

which point the coarm becomes the controlling coarm.

2. Once there is a controlling coarm, every other active coarm will be terminated (and abort if
declared as an action) as soon as it leaves all seize statements; the controlling coarm is
suspended until all other coarms terminate.

3. The controlling coarm then commits or aborts if declared as an action; if declared as a
topaction and the two-phase commit fails, an unavailable exception is raised by the coenter
statement.

4. Finally, the entire coenter terminates, and control flow continues outside the coenter
statement.

Divisible termination implies, for instance, that a nested topaction may commit while its parent action

aborts.

10.6 Coenter Statement 61

A simple example of early termination is reading from a replicated database, where any copy can

supply the necessary information:

coenter action foreach db: database in all replicas (...)
return(database$read (db))
end

When one of these coarms completes first, it tries to commit itself and abort the others. The aborts take

place immediately (since there are no seize statements); it is not necessary for the handler calls to finish.

It is possible that some descendants of an aborted coarm may be running at remote sites when the coarm

aborts; the Argus system ensures that such orphans will be aborted before they can make their presence

known or detect that they are in fact orphans (see Section 2.5).

10.7. Leave Statement
The leave statement has the form:

[abort] leave

Executing a leave statement terminates the innermost enter statement or coenter coarm in which it

appears. If the process terminated is an action, then it commits unless the abort qualifier is present, in

which case the action aborts. The abort qualifier can only be used textually within an enter statement or

within an action or topaction coarm of a coenter statement.

Note that unlike the other control flow statements, leave does not affect concurrent siblings in a

coenter (see Section 10.6).

10.8. Return Statement
The form of the return statement is:

[abort] return [(expression , ...)]
The return statement terminates execution of the containing routine. If the return statement occurs in an

iterator no results can be returned. If the return statement is in a procedure, handler, or creator the type

of each expression must be included in the corresponding return type of the routine. The expressions (if

any) are evaluated from left to right, and the objects obtained become the results of the routine.

If no abort qualifier is present, then all containing actions (if any) terminated by this statement are

committed. If the abort qualifier is present, then all terminated actions are aborted. Note that unlike the

leave statement, return will abort concurrent siblings if executed within a coarm of a coenter statement

(see Section 10.6). The abort qualifier can only be used textually within an enter statement, an action or

topaction coarm of a coenter statement, or the body of a handler or creator.

Within a handler or creator, the result objects are encoded just before the activation action terminates,

but after all control flow and nested action termination. If encoding of any result object terminates in a

failure exception, then the activation action aborts and the handler or creator terminates with the same

exception.

62 Statements

10.9. Yield Statement
The form of a yield statement is:

yield [(expression , ...)]
The yield statement may occur only in the body of an iterator. The effect of a yield statement is to

suspend execution of the iterator invocation, and return control to the calling for statement or foreach

clause. The values obtained by evaluating the expressions (left to right) are passed back to the caller.

The type of each expression must be included in the corresponding yield type of the iterator. Upon

resumption, execution of the iterator continues at the statement following the yield statement.

A yield statement cannot appear textually inside an enter, coenter, or seize statement.

10.10. Conditional Statement
The form of the conditional statement is:

if expression then body

{ elseif expression then body }
[else body]
end

The expressions must be of type bool. They are evaluated successively until one is found to be true.

The body corresponding to the first true expression is executed, and the execution of the if statement

then terminates. If there is an else clause and if none of the expressions is true, then the body in the

else clause is executed.

10.11. While Statement
The while statement has the form:

while expression do body end

Its effect is to repeatedly execute the body as long as the expression remains true. The expression must

be of type bool. If the value of the expression is true, the body is executed, and then the entire while

statement is executed again. When the expression evaluates to false, execution of the while statement

terminates.

10.12. For Statement
An iterator (see Section 12.2) can be called by a for statement. The iterator produces a sequence of

items (where an item is a group of zero or more objects) one item at a time; the body of the for statement

is executed for each item in the sequence.

The for statement has the form:

for [decl , ...] in call do body end

or

for [idn , ...] in call do body end

10.12 For Statement 63

The call must be an iterator call. The second form (with an idn list) uses distinct, previously declared

variables to serve as the loop variables, while the first form (with a decl list) form introduces new

variables, local to the for statement, for this purpose. In either case, the type of each variable must

include the corresponding yield type of the called iterator (see Section 12.2) and the number of variables

must also match the yield type.

Execution of the for statement begins by calling the iterator, which either yields an item or terminates.

If it yields an item (by executing a yield statement), its execution is temporarily suspended, the objects in

the item are assigned to the loop variables, and the body of the for statement is executed. The next

cycle of the loop is begun by resuming execution of the iterator after the yield statement which

suspended it. Whenever the iterator terminates, the entire for statement terminates.

10.13. Break and Continue Statements
The break statement has the form:

[abort] break

Its effect is to terminate execution of the smallest for or while loop statement in which it appears.

Execution continues with the statement following that loop.

The continue statement has the form:

[abort] continue

Its effect is to start the next cycle (if any) of the smallest for or while loop statement in which it appears.

Terminating a cycle of a loop may also terminate one or more containing actions. If no abort qualifier

is present, then all these terminated actions (if any) are committed. If the abort qualifier is present, then

all of the terminated actions are aborted. Unlike leave, break and continue will abort concurrent sibling

actions when control flow leaves a containing coenter (see Section 10.6).

The abort qualifier can only be used textually within an enter statement or an action or topaction

coarm of a coenter statement.

10.14. Tagcase Statement
The tagcase statement can be used to decompose oneof and variant objects; atomic variant objects

can be decomposed with the tagtest or tagwait statements. The decomposition is indivisible for variant

objects; thus, use of the tagcase statement for variants is not equivalent to using a conditional statement

in combination with is and value operations (see Section II.15).

The form of the tagcase statement is:

tagcase expression

tag arm { tag arm }
[others : body]
end

where

64 Statements

tag arm ::= tag name , ... [(idn: type spec)] : body

The expression must evaluate to a oneof or variant object. The tag of this object is then matched

against the names on the tag arms. When a match is found, if a declaration (idn: type spec) exists, the

value component of the object is assigned to the new local variable idn. The matching body is then

executed; idn is defined only in that body. If no match is found, the body in the others arm is executed.

In a syntactically correct tagcase statement, the following three constraints are satisfied.
1. The type of the expression must be some oneof or variant type, T.

2. The tags named in the tag arms must be a subset of the tags of T, and no tag may occur
more than once.

3. If all tags of T are present, there is no others arm; otherwise an others arm must be
present.

On any tag arm containing a declaration (idn: type spec), type spec must include the type(s) of T

corresponding to the tag or tags named in that tag arm.

10.15. Tagtest and Tagwait Statements
The tagtest and tagwait statements are provided for decomposing atomic variant objects, permitting

the selection of a body based on the tag of the object to be made indivisibly with the testing or acquisition

of specified locks.

10.15.1. Tagtest Statement
The form of the tagtest statement is:

tagtest expression

atag arm { atag arm }
[others : body]
end

where

atag arm ::= tag kind name , ... [(idn: type spec)] : body

tag kind ::= tag

| wtag

The expression must evaluate to an atomic variant object. If a read lock could be obtained on the

atomic variant object by the current action, then the tag of the object is matched against the names on

the atag arms; otherwise the others arm, if present, is executed. If a matching name is found, then the

tag kind is considered.

• If the tag kind is tag, a read lock is obtained on the object and the match is complete.

• If the tag kind is wtag and the current action can obtain a write lock on the object, then a
write lock is obtained and the match is complete.

When a complete match is found, if a declaration (idn: type spec) exists, the value component of the

object is assigned to the new local variable idn. The matching body is then executed; idn is defined only

in that body. The entire matching process, including testing and acquisition of locks, is indivisible.

10.15.1 Tagtest Statement 65

If a complete match is not found, or the object was not readable by the action, then the others arm (if

any) is executed; if there is no others arm, the tagtest statement terminates. If no complete match is

found, then no locks are acquired.

The tagtest statement will only obtain a lock if it is possible to do so without "waiting". For example,

suppose that the internal state of the atomic variant indicates that some previous action acquired a

conflicting lock. This action may have since aborted, or may have committed up to an ancestor of the

action executing the tagtest, but determining such facts may require system-level communication to other

guardians. In this case the tagtest statement may give misleading information, because it may not

indicate a match. Apparent anomalies in testing locks may occur even if the action executing the tagtest

"knows" that the lock can be acquired, so that the use of tagtest to avoid deadlocks or long delays may

result in excessive aborts.

10.15.2. Tagwait Statement
The form of the tagwait statement is:

tagwait expression

atag arm { atag arm }
end

Execution of the tagwait statement proceeds as for the tagtest statement, but if no complete match is

found, or if the object is not readable by the current action, then the entire matching process is repeated

(after a system-controlled delay), until a complete match is found. Although there is no others arm in a

tagwait statement, all tag names do not have to be listed.

10.15.3. Common Constraints
Tagtest and tagwait statements may be executed only within an action. An attempt to execute a

tagtest or tagwait statement in a process that is not executing an action is an error and will cause the

guardian to crash after evaluating the expression.

In a syntactically correct tagtest or tagwait statement, the following three constraints are satisfied.
1. The type of the expression must be some atomic variant type, T.

2. The tags named in the atag arms must be a subset of the tags of T, and no tag may occur
more than once.

3. Finally, on any atag arm containing a declaration (idn: type spec), type spec must include
the type(s) specified as corresponding in T to the tag or tags named in the atag arm.

A simple example of a tagtest statement is garbage collecting the elements of an array that are in the

dequeued state:

66 Statements

item = atomic variant[enqueued: int, dequeued: null]
for i: item in array[item]$elements(l) do

tagtest i
tag dequeued: array[item]$reml(l)
others: break
end

end

10.16. Seize Statement
The seize statement has the form:

seize expression do body end

The expression must evaluate to a mutex object. The executing process then attempts to gain

possession of that mutex object, and waits to do so if necessary. Only one process, whether user or

system defined, may possess a given mutex object at one time. Once the process gains possession, the

body of the seize statement is executed. When the body terminates, possession of the mutex is

released. This includes termination of the body by statements that transfer control out of the body.

The body of a seize statement is considered to be a critical section; a process executing in the body of

a seize statement can only be forcibly terminated by crashing the guardian at which the process is

running. See Section 15 for the reasons for this and for more discussion of the use of mutex.

Multiple, nested seizes of the same mutex object are allowed, and nest properly. A process seizing a

mutex that it has already seized will not deadlock with itself, and possession is not really released until

the outermost seize terminates.

10.17. Pause Statement
The pause statement has the form:

pause

The pause statement must occur within an enclosing seize statement. Its effect is to release the mutex

object associated with the smallest enclosing seize statement, suspend execution of the process for a

system-controlled period of time, and then regain possession and continue execution.

If multiple, nested seizes on the mutex object have been performed, pause will not actually release

possession. For example, possession is not released in the following:

seize m do
seize m do

pause % does not really release possession
end

end

In general, nested seizes should be avoided when pause must be used, and pause should be avoided

when nested seizes must be used.

10.18 Terminate Statement 67

10.18. Terminate Statement
The terminate statement may occur only within a guardian definition (see Sect 13). The form of a

terminate statement is:

terminate

When executed within an action, its effect is to cause the eventual destruction of the guardian after the

enclosing action commits to the top. If a process attempts to execute terminate while not running an

action, a topaction is created to execute the terminate and immediately commit.

Let A be the action that is executing the terminate. The effect of this statement is the following:
1. Action A must wait until the action that created the guardian is committed relative to A. In

the case of a permanent guardian whose creation has committed to the top there will be no
wait, but for a recently created guardian there may be a delay.

2. If multiple processes are attempting to execute terminate statements, at most one at at
time may proceed to the next step.

3. If A commits to the top, the guardian will be destroyed at some time after topaction commit.
If some ancestor of A aborts, however, the guardian will be unaffected. The guardian is
also unaffected during the time between A executing terminate and A committing to the
top.

In order to avoid serialization problems, creation or destruction of a guardian must be synchronized

with use of that guardian via atomic objects such as the catalog (see Section 3.4).

68 Statements

11 Exception Handling and Exits 69

11. Exception Handling and Exits
A routine is designed to perform a certain task. However, in some cases that task may be impossible

to perform. In such a case, instead of returning normally (which would imply successful performance of

the intended task), the routine should notify its caller by signalling an exception, consisting of a descriptive

name and zero or more result objects.

The exception handling mechanism consists of two parts: signalling exceptions and handling

exceptions. Signalling is the way a routine notifies its caller of an exceptional condition; handling is the

way the caller responds to such notification. A signalled exception always goes to the immediate caller,

and the exception must be handled in that caller. When a routine signals an exception, the current

activation of that routine terminates and the corresponding call (in the caller) is said to raise the exception.

When a call raises an exception, control immediately transfers to the closest applicable exception

handler. Exception handlers are attached to statements; when execution of the exception handler

completes, control passes to the statement following the one to which the exception handler is attached.

For brevity, exception handlers will be called "handlers" in this chapter; these should not be confused with

the remote call handlers of guardians (see Section 13).

11.1. Signal Statement
An exception is signalled with a signal statement, which has the form:

[abort] signal name [(expression , ...)]
A signal statement may appear anywhere in the body of a routine. The execution of a signal statement

begins with evaluation of the expressions (if any), from left to right, to produce a list of exception results.

The activation of the routine is then terminated. Execution continues in the caller as described in Section

11.2 below.

The exception name must be one of the exception names listed in the routine heading. If the

corresponding exception specification in the heading has the form:

name(T , ..., T)1 n

then there must be exactly n expressions in the signal statement, and the type of the ith expression must

be included in T .i

If no abort qualifier is present, then all containing actions (if any) terminated by this statement are

committed. If the abort qualifier is present, then all terminated actions are aborted. Unlike the leave

statement, signal will terminate (abort) concurrent siblings if executed within a coenter statement (see

Section 10.6). The abort qualifier can only be used textually within an enter statement, an action or

topaction coarm of a coenter statement, or the body of a handler or creator.

Within a handler or creator, the result objects are encoded just before the activation action terminates,

but after termination of all control flow and nested actions. If encoding of any result object terminates in a

failure exception, then the activation action aborts and the handler or creator terminates with the failure

exception.

70 Exception Handling and Exits

11.2. Except Statement
When a routine activation terminates by signalling an exception, the called routine is said to raise that

exception. By attaching exception handlers to statements, the caller can specify the action to be taken

when an exception is raised by a call within a statement or by the statement itself.

A statement with handlers attached is called an except statement, and has the form:

statement except { when handler }
[others handler]
end

where

when handler ::= when name , ... [(decl , ...)] : body

| when name , ... (*) : body

others handler ::= others [(idn : string)] : body

Let S be the statement to which the handlers are attached, and let X be the entire except statement.

Each when handler specifies one or more exception names and a body. The body is executed if an

exception with one of those names is raised by a call in S. Each of the names listed in the

when handlers must be distinct. The optional others handler is used to handle all exceptions not

explicitly named in the when handlers. The statement S can be any form of statement, and can even be

another except statement. As an example, consider the following except statement:

m.send mail(user, my message)
except when no such user: ... % body 1

when unavailable, failure (s: string): ... % body 2
others (ename: string): ... % body 3
end

This statement handles exceptions arising from a remote call. If the call raises a no such user

exception, then "body 1" will be executed. If the call raises a failure or unavailable exception, then "body

2" will be executed. Any other exception will be handled by "body 3."

If, during the execution of S, some call in S raises an exception E, control transfers to the textually

closest handler for E that is attached to a statement containing the call. When execution of the handler

completes, control passes to the statement following the one to which the handler is attached. Thus if the

closest handler is attached to S, the statement following X is executed next. If execution of S completes

without raising an exception, the attached handlers are not executed.

An exception raised inside a handler is treated the same as any other exception: control passes to the

closest handler for that exception. Note that an exception raised in some handler attached to S cannot be

handled by any handler attached to S; the exception can be handled within the handler, or it can be

handled by some handler attached to a statement containing X. For example, in the following except

statement:

11.2 Except Statement 71

times3 plus1(a)
except when limits:

a := a + a
when overflow: ... % body 2
end

any overflow signal raised by the expression a + a will not be handled in "body 2," because this overflow

handler is not in an except statement attached to the assignment statement a := a + a.

We now consider the forms of exception handlers in more detail. The form:

when name , ... [(decl , ...)] : body

is used to handle exceptions with the given names when the exception results are of interest. The

optional declared variables, which are local to the handler, are assigned the exception results before the

body is executed. Every exception potentially handled by this form must have the same number of results

as there are declared variables, and the types of the variables must include the types of the results. The

form:

when name , ... (*) : body

handles all exceptions with the given names, regardless of whether or not there are exception results; any

actual results are discarded. Using this form, exceptions with differing numbers and types of results can

be handled together.

The form:

others [(idn : string)] : body

is optional, and must appear last in a handler list. This form handles any exception not handled by other

handlers in the list. If a variable is declared, it must be of type string. The variable, which is local to the

handler, is assigned a lower case string representing the actual exception name; any results are

discarded.

Note that number and type of exception results are ignored when matching exceptions to handlers;

only the names of exceptions are used. Thus the following is illegal, in that int$div signals zero divide

without any results (see Section II.4), but the closest handler has a declared variable:

begin
y: int := 0
x: int := 3 / y

except when zero divide (z: int): return end
end

except when zero divide: return end

A call need not be surrounded by except statements that handle all potential exceptions. In many

cases the programmer can prove that a particular exception will not arise; for example, the call

int$div(x, 7) will never signal zero divide. However, if some call raises an exception for which there is no
8handler, then the guardian crashes due to this error .

8The implementation of the Argus should log unhandled exceptions in some fashion, to aid later debugging. During debugging,
an unhandled exception would be trapped by the debugger before the crash.

72 Exception Handling and Exits

11.3. Resignal Statement
A resignal statement is a syntactically abbreviated form of exception handling:

statement [abort] resignal name , ...
Each name listed must be distinct, and each must be one of the condition names listed in the routine

heading. The resignal statement acts like an except statement containing a handler for each condition

named, where each handler simply signals that exception with exactly the same results. Thus, if the

resignal clause names an exception with a specification in the routine heading of the form:

name(T , ..., T)1 n

then effectively there is a handler of the form:

when name (x : T , ..., x : T): [abort] signal name(x , ..., x)1 1 n n 1 n

which has an abort qualifier if and only if the resignal statement did. As for an explicit handler of this

form, every exception potentially handled by this implicit handler must have the same number of results

as declared in the exception specification, and the types of the results must be included in the types listed

in the exception specification.

If no abort qualifier is present, then all containing actions (if any) terminated by this statement are

committed. If the abort qualifier is present, then all terminated actions are aborted. Unlike the leave

statement, resignal will abort concurrent siblings if executed within a coenter statement (see Section

10.6). The abort qualifier can only be used textually within an enter statement, an action or topaction

coarm of a coenter statement, or the body of a handler or creator.

11.4. Exit Statement
An exit statement has the form:

[abort] exit name [(expression , ...)]
An exit statement is similar to a signal statement except that where the signal statement signals an

exception to the calling routine, the exit statement raises the exception directly in the current routine.

Thus an exit causes a transfer of control within a routine but does not terminate the routine. An

exception raised by an exit statement must be handled explicitly by a containing except statement with a

handler of the form:

when name , ... [(decl , ...)] : body

As usual, the types of the expressions in the exit statement must be included in the types of the variables

declared in the handler. The handler must be an explicit one, i.e., exits to the implicit handlers of resignal

statements are illegal.

If no abort qualifier is present, then all containing actions (if any) terminated by the exit statement are

committed. If the abort qualifier is present, then all terminated actions are aborted. Unlike the leave

statement, exit will abort concurrent siblings when control flow leaves a containing coenter statement

(see Section 10.6). The abort qualifier can only be used textually within an enter statement or an action

or topaction coarm of a coenter statement.

11.4 Exit Statement 73

The exit statement and the signal statement mesh nicely to form a uniform mechanism. The signal

statement can be viewed simply as terminating a routine activation; an exit is then performed at the point

of invocation in the caller. (Because this exit is implicit, it is not subject to the restrictions on exits listed

above.)

11.5. Exceptions and Actions
A new action is created by a handler call, creator call, enter statement, or action or topaction arm of a

coenter statement. In addition, the recover code of a guardian runs as an action. When control flows

out of an action, that action is committed unless action is taken to prevent its committing. To abort an

action, it is necessary to qualify control flow statements such as exit, signal, resignal, and leave with the

keyword abort (see Section 10).

However, there is an additional complication. Not only will explicit termination of actions by exit,

signal, and resignal statements commit actions, but also implicit termination by flow of control out of an

action body when an exception raised within that body is handled outside the action’s body. Thus, if an

exception which is raised by a call within an action is not to commit the action, then it is necessary to

catch the exception within the action. This is particularly important when dealing with topactions. A

common desire is to catch all "unexpected" exceptions, but still have the topaction abort. In this case, the

catch-all exception handler must be placed inside the topaction. However, an unavailable handler must

still be placed outside the topaction, since the two-phase commit may fail.

An action or topaction coarm of a coenter statement will not abort its concurrent siblings when it ends

in either normal completion of its body or by a leave statement. However, if control flows otherwise out of

the coenter statement from within one of the coarms, the entire coenter is terminated as described in

Section 10.6. Thus, a coenter statement should must be used carefully to ensure the proper behavior in

case of exceptions. There may be circumstances where a separate exception handler will have to be

used for each coarm to ensure the proper behavior, even when the exception handling is identical for

each coarm.

11.6. Failure Exceptions
Argus responds to unhandled exceptions differently than CLU. In CLU, an unhandled exception in

some routine causes that routine to terminate with the failure exception. In Argus, however, an

unhandled exception causes the guardian that is running the routine to crash. Our motivation for this

change is that an unhandled exception is typically a symptom of a programming error that cannot be

handled by the calling routine. Furthermore, crashing the guardian limits the damage that the

programming error can cause.

Procedures and iterators in Argus no longer have an implicit failure exception associated with them.

Instead, such a routine may list failure explicitly in its signals clause and failure may have any number

(and type) of exception results. Failure should be used to indicate an unexpected (and possibly

74 Exception Handling and Exits

catastrophic) failure of a lower-level abstraction, for example, when there is a failure in a type parameter’s

routines (for instance in similar or copy operations). Another example is when there is an unwanted side

effect, such as a bounds exception in array[t]$elements caused by a mutation of the array argument.

Various operations of the built-in types signal failure under such circumstances.

For handlers and creators, failure is used to indicate that a remote call has failed; thus the exception

failure(string) is implicit in the type of every handler and creator (see Section 13.5). When a remote call

terminates with the failure exception, this means that not only has this call failed, but that the call is

unlikely to succeed if repeated.

12 Modules 75

12. Modules
Besides guardian modules, Argus has procedure, iterator, cluster, and equate modules.

module ::= { equate } guardian

| { equate } procedure

| { equate } iterator

| { equate } cluster

| { equate } equates

Guardians are discussed in Section 13, the rest are described below.

12.1. Procedures
A procedure performs an action on zero or more arguments, and when it terminates it returns zero or

more results. A procedure implements a procedural abstraction: a mapping from a set of argument

objects to a set of result objects, with possible modification of some of the argument objects. A procedure

may terminate in one of a number of conditions; one of these is the normal condition, while others are

exceptional conditions. Differing numbers and types of results may be returned in the different conditions.

The form of a procedure is:

idn = proc [parms] args [returns] [signals] [where]
routine body

end idn

where

args ::= ([decl , ...])

returns ::= returns (type spec , ...)

signals ::= signals (exception , ...)

exception ::= name [(type spec , ...)]
routine body ::= { equate }

{ own var }
{ statement }

In this section we discuss non-parameterized procedures, in which the parms and where clauses are

missing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section

12.7.

The heading of a procedure describes the way in which the procedure communicates with its caller.

The args clause specifies the number, order, and types of arguments required to call the procedure, while

the returns clause specifies the number, order, and types of results returned when the procedure

terminates normally (by executing a return statement or reaching the end of its body). A missing returns

clause indicates that no results are returned.

The signals clause names the exceptional conditions in which the procedure can terminate, and

specifies the number, order, and types of result objects returned in each condition. All names of

76 Modules

exceptions in the signals clause must be distinct. The idn following the end of the procedure must be the

same as the idn naming the procedure.

A procedure is an object of some procedure type. For a non-parameterized procedure, this type is

derived from the procedure heading by removing the procedure name, rewriting the formal argument

declarations with one idn per decl, deleting the idns of all formal arguments, and finally, replacing proc by

proctype.

The call of a procedure causes the introduction of the formal variables, and the actual arguments are

assigned to these variables. Then the procedure body is executed. Execution terminates when a return

statement or a signal statement is executed, or when the textual end of the body is reached. If a

procedure that should return results reaches the textual end of the body, the guardian crashes due to this

error. At termination the result objects, if any, are passed back to the caller of the procedure.

12.2. Iterators
An iterator computes a sequence of items, one item at a time, where an item is a group of zero or more

objects. In the generation of such a sequence, the computation of each item of the sequence is usually

controlled by information about what previous items have been produced. Such information and the way

it controls the production of items is local to the iterator. The user of the iterator is not concerned with

how the items are produced, but simply uses them (through a for statement) as they are produced. Thus

the iterator abstracts from the details of how the production of the items is controlled; for this reason, we

consider an iterator to implement a control abstraction. Iterators are particularly useful as operations of

data abstractions that are collections of objects (e.g., sets), since they may produce the objects in a

collection without revealing how the collection is represented.

An iterator has the form:

idn = iter [parms] args [yields] [signals] [where]
routine body

end idn

where

yields ::= yields (type spec , ...)

In this section we discuss non-parameterized iterators, in which the parms and where clauses are

missing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section

12.7.

The form of an iterator is similar to the form of a procedure. There are only two differences:
1. An iterator has a yields clause in its heading in place of the returns clause of a procedure.

The yields clause specifies the number, order, and types of objects yielded each time the
iterator produces the next item in the sequence. If zero objects are yielded, then the yields
clause is omitted. The idn following the end of the iterator must be the same as the idn
naming the iterator.

2. Within the iterator body, the yield statement is used to present the caller with the next item

12.2 Iterators 77

in the sequence. An iterator terminates in the same manner as a procedure, but it may not
return any results.

An iterator is an object of some iterator type. For a non-parameterized iterator, this type is derived from

the iterator heading by removing the iterator name, rewriting the formal argument declarations with one

idn per decl, deleting the idns of all formal arguments, and finally, replacing iter by itertype.

An iterator can be called only by a for statement or by a foreach clause in a coenter statement.

12.3. Clusters
A cluster is used to implement a new data type, distinct from any other built-in or user-defined data

type. A data type (or data abstraction) consists of a set of objects and a set of primitive operations. The

primitive operations provide the most basic ways of manipulating the objects; ultimately every

computation that can be performed on the objects must be expressed in terms of the primitive operations.
9Thus the primitive operations define the lowest level of observable object behavior .

The form of a cluster is:

idn = cluster [parms] is opidn , ... [where]
cluster body

end idn

where

opidn ::= idn

| transmit

cluster body ::= { equate } rep = type spec { equate }
{ own var }
routine { routine }

routine ::= procedure

| iterator

In this section we discuss non-parameterized clusters, in which the parms and where clauses are

missing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section

12.7.

The primitive operations are named by the list of opidns following the reserved word is. All of the

opidns in this list must be distinct. The idn following the end of the cluster must be the same as the idn

naming the cluster.

To define a new data type, it is necessary to choose a concrete representation for the objects of the

type. The special equate:

9Readers not familiar with the concept of data abstraction might read Liskov, B. and Guttag, J., Abstraction and Specification in
Program Development, MIT Press, Cambridge, 1986.

78 Modules

rep = type spec

within the cluster body identifies the type spec as the concrete representation. Within the cluster, rep

may be used as an abbreviation for this type spec.

The identifier naming the cluster is available for use in the cluster body. Use of this identifier within the

cluster body permits the definition of recursive types.

In addition to giving the representation of objects, the cluster must implement the primitive operations

of the type. One exception to this, however, is the transmit operation. The transmit operation is not

directly implemented by a cluster; instead, the cluster must implement two operations: encode and

decode (see Section 14 for details). The primitive operations may be either procedural or control

abstractions; they are implemented by procedures and iterators, respectively. Any additional routines

implemented within the cluster are hidden: they are private to the cluster and may not be named directly

by users of the abstract type. All the routines must be named by distinct identifiers; the scope of these

identifiers is the entire cluster.

Outside the cluster, the type’s objects may only be treated abstractly (i.e., manipulated by using the

primitive operations). To implement the operations, however, it is usually necessary to manipulate the

objects in terms of their concrete representation. It is also convenient sometimes to manipulate the

objects abstractly. Therefore, inside the cluster it is possible to view the type’s objects either abstractly or

in terms of their representation. The syntax is defined to specify unambiguously, for each variable that

refers to one of the type’s objects, which view is being taken. Thus, inside a cluster named T, a

declaration:

v: T

indicates that the object referred to by v is to be treated abstractly, while a declaration:

w: rep

indicates that the object referred to by w is to be treated concretely. Two primitives, up and down, are

available for converting between these two points of view. The use of up permits a type rep object to be

viewed abstractly, while down permits an abstract object to be viewed concretely. For example, given

the declarations above, the following two assignments are legal:

v := up(w)
w := down(v)

Only routines inside a cluster may use up and down. Note that up and down are used merely to inform

the compiler that the object is going to be viewed abstractly or concretely, respectively.

A common place where the view of an object changes is at the interface to one of the type’s

operations: the user, of course, views the object abstractly, while inside the operation, the object is

viewed concretely. To facilitate this usage, a special type specification, cvt, is provided. The use of cvt

is restricted to the args, returns, yields and signals clauses of routines inside a cluster, and may be used

at the top level only (e.g., array[cvt] is illegal). When used inside the args clause, it means that the view

of the argument object changes from abstract to concrete when it is assigned to the formal argument

variable. When cvt is used in the returns, yields, or signals clause, it means the view of the result object

12.3 Clusters 79

changes from concrete to abstract as it is returned (or yielded) to the caller. Thus cvt means abstract

outside, concrete inside: when constructing the type of a routine, cvt is equivalent to the abstract type,

but when type-checking the body of a routine, cvt is equivalent to the representation type. The type of

each routine is derived from its heading in the usual manner, except that each occurrence of cvt is

replaced by the abstract type. The cvt form does not introduce any new ability over what is provided by

up and down. It is merely a shorthand for a common case.

Inside the cluster, it is not necessary to use the compound form (type spec$op name) for naming

locally defined routines. Furthermore, the compound form cannot be used for calling hidden routines.

12.4. Equate Modules
An equate module provides a convenient way to define a set of equates for later use by other modules.

The form of an equate module is:

idn = equates [parms [where]]
equate { equate }
end idn

The usual scope rules apply. The idn following the end of the equate module must be the same as the

idn naming the equate module.

In this section we discuss non-parameterized equate modules. Parameterized modules are discussed

in Section 12.5.

An equate module defines a set of equates, that is, it defines a set of named constants. The set of

equates is also a constant, although it is not an object. Thus the name of an equate module can be used

in an equate, but an equate module cannot be assigned to a variable. The equates defined by an equate

module E may be referenced using the same syntax as for naming the operations of a cluster. For

example, an object or type named n in equate module E can be referred to as E$n. If equate modules

contain equates that give names to other equate modules, compound names can be used. For example:

A[int]BC$name

where A, B, and C are equate modules is legal.

As always, equates to type specifications do not define new types but merely abbreviations for types.

For example, in the following:

my types = equates
ai = array[int]
float = real
end my types

the types my types$ai and array[int] are equivalent.

80 Modules

12.5. Parameterized Modules
Procedures, iterators, clusters, guardians (see Section 13), and equate modules may all be

parameterized. Parameterization permits a set of related abstractions to be defined by a single module.

In each module heading there is an optional parms clause and an optional where clause (see Appendix I).

The presence of the parms clause indicates that the module is parameterized; the where clause declares

the types of any operation parameters that are expected to accompany the formal type parameters.

The form of the parms clause is:

[parm , ...]

where

parm ::= idn , ... : type spec

| idn , ... : type

Each parm declares some number of formal parameters. Only the following types of parameters can be

declared in a parms clause: int, real, bool, char, string, null, and type. The declaration of operation

parameters associated with type parameters is done in the where clause, as discussed below. The actual

values for parameters are required to be constants that can be computed at compile-time. This

requirement ensures that all types are known at compile-time, and permits complete compile-time type-

checking.

In a parameterized module, the scope rules permit the parameters to be used throughout the module.

Type parameters can be used freely as type specifications, and all other parameters (including the

operations parameters specified in the where clause) can be used freely as expressions.

A parameterized module implements a set of related abstractions. A program must instantiate a

parameterized module before it can be used; that is, it must provide actual, constant values for the

parameters (see Section 12.6). The result of an instantiation is a procedure, iterator, type, guardian, or

equate module that may be used just like a non-parameterized module of the same kind. Each distinct

list of actual parameters produces a distinct procedure, iterator, type, guardian, or equate module (see

Section 12.6 for details).

The meaning of a parameterized module is given by binding the actual parameters to the formal

parameter names and deleting the parms clause and the where clause. That is, in an an instantiation of a

parameterized module, each formal parameter name denotes the corresponding actual parameter. The

resulting module is a regular (non-parameterized) module. In the case of a cluster some of the operations

may have additional parameters; further bindings take place when these operations are instantiated.

In the case of a type parameter, one can also declare what operation parameters must accompany the

type by using a where clause. The where clause also specifies the type of each required operation

parameter. The where clause constrains the parameterized module as well: the only operations of the

type parameter that can be used are those listed in the where clause.

12.5 Parameterized Modules 81

The form of the where clause is:

where ::= where restriction , ...
restriction ::= idn has oper decl , ...

| idn in type set

oper decl ::= name , ... : type spec

| transmit

type set ::= { idn | idn has oper decl , ... { equate } }

| idn

| reference $ name

There are two forms of restrictions. In both forms, the initial idn must be a type parameter. The has

form lists the set of required operation parameters directly, by means of oper decls. The type spec in

each oper decl must be a proctype, itertype, or creatortype (see Appendix I). The in form requires that

the actual type be a member of a type set, a set of types with the required operations. The two identifiers

in the type set must match, and the notation is read like set notation; for example,

{t | t has f: ... }

means "the set of all types t such that t has f ...". The scope of the identifier is the type set.

The in form is useful because an abbreviation can be given for a type set via an equate. If it is helpful

to introduce some abbreviations in defining the type set, these are given in the optional equates within

the type set. The scope of these equates is the entire type set.

A routine in a parameterized cluster may have a where clause in its heading, and can place further

constraints on the cluster parameters. For example, any type is permissible for the array element type,

but the array similar operation requires that the element type have a similar operation. This means that

array[T] exists for any type T, but that array[T]$similar exists only when an actual operation parameter is

provided for T$similar (see Section 12.6). Note that a routine need not include in its where clause any of

the restrictions included in the cluster where clause.

12.6. Instantiations
To instantiate a parameterized module, constants or type specifications are provided as actual

parameters:

actual parm ::= constant

| type actual

type actual ::= type spec [with { opbinding , ... }]

opbinding ::= name , ... : primary

If the parameter is a type, the module’s where clause may require that some routines be passed as

parameters. These routines can be passed implicitly by omitting the with clause; the routine selected as a

default will be the operation of the type that has the same name as that used in the where clause.

82 Modules

Routines may also be passed explicitly by using the with clause, overriding the default. In this case, the

actual routine parameter need not have the same name as is required in the where clause, and need not

even be one of the type’s primitive operations.

The syntactic sugar that allows default routines to be selected implicitly works as follows. If a generator

requires an operation named op from a type parameter, and if the corresponding type actual, TS with {

... }, has no explicit binding for op, then Argus adds an opbinding of op to TS$op. (It will be an error if

TS$op is not defined.) Thus one only has to provide an explicit opbinding if the default is unsatisfactory.

For example, suppose a procedure generator named sort has the following heading:

sort = proc[t: type](a: array[t]) where t has gt: proctype(t,t) returns(bool)

and consider the three instantiations:

sort[int with {gt: int$gt}]
sort[int]
sort[int with {lt: int$lt}]

The first two instantiations are equivalent; in the first the routine int$gt is passed explicitly, while in the

second it is passed implicitly as the default. In the third instantiation, however, int$lt is passed in place of

the default. All three instantiations result in a routine of type:

proctype (array[int])

and so each could be called by passing it an array[int] as an argument. However a call of the third

instantiation will sort its array argument in the opposite order from a call of either the first or second

instantiation.

Within an instantiation of a parameterized module, an operation of a type parameter named t$op

denotes the actual routine parameter bound to op in the instantiation of that module. For example,

suppose we make the call:

sort[int with {gt: int$lt}] (my ints)

where my ints is an array of integers. If, in the body of sort, there is a recursive call:

sort[t with {gt: t$gt}] (a, i, j)

then t denotes the type int, and t$gt denotes the routine int$lt, so that the recursive sort happens in the

correct order.

A cluster generator may include routines with where clauses that place additional requirements on the

cluster’s type parameters. A common example is to require a copy operation only within the cluster’s

copy implementation.

set = cluster[t: type] is ..., copy
where t has equal: proctype(t,t) returns(bool)

rep = array[t]
...
copy = proc(s: cvt) returns(cvt) where t has copy: proctype(t) returns(t)

return(rep$copy(s))
end copy

The intent of these subordinate where clauses is to allow more operations to be defined if the actual type

parameter has the additional required operations, but not to make the additional operations an absolute

12.6 Instantiations 83

requirement for obtaining an instance of the type generator. For example, with the above definition of set,

set[any] would be defined, but set[any]$copy would not be defined because any does not have a copy

operation. We shall call the routine parameters required by subordinate where clauses optional

parameters.

Like regular required parameters, optional parameters can be provided when the cluster as a whole is

instantiated and can be provided explicitly or by default. For any optional parameter op that is not

provided explicitly by the type actual, TS with { ... }, we add an opbinding of op to TS$op if TS$op exists;

otherwise the opbinding is not added. The resulting cluster contains just those operations for which

opbindings exist for all the required routine parameters. For example, as mentioned above, set[any]

would not have a copy operation because any$copy does not exist and therefore the needed opbinding is

not present. On the other hand, set[int] does have a copy operation because int$copy does exist.

Finally, set[any with {copy: foo}], where foo is a procedure that takes an any as an argument and returns

an any as a result, would have a copy operation.

For an instantiation to be legal it must type check. Type checking is done after the syntactic sugars are

applied. The types of constant parameters must be included in the declared type, type actuals must be

types, and the types of the actual routine parameters must be included in the proctypes, itertypes, or

creatortypes declared in the appropriate where clauses. Of course, the number of parameters declared

must match the number of actuals passed and with each type actual parameter there must be an

opbinding for each required routine parameter. If the generator is a cluster, then opbindings must be

provided for all operations required in the cluster’s where clause; opbindings can (but need not) be

provided for optional parameters. Extra actual routine parameters are illegal.

Because the meaning of an instantiation may depend on the actual routine parameters, type equality

makes instances with different actual routine parameters distinct types. For example, consider the set

type generator again; the instance

set[array[int] with {equal: array[int]$equal}]

is not equal to

set[array[int] with {equal: array[int]$similar}]

Intuitively these instances should be unequal because the two equal procedures define different

equivalence classes and therefore the abstract behaviors of the two instances are different. However,

optional parameters do not effect type equality. For example,

set[array[int] with {copy: int$copy}]

and

set[array[int] with {copy: my copy}]

are equal types. This is intuitively justified because in each case set objects behave the same way even

though different sets are produced when sets are copied in the two cases.

Thus we have the following type equality rule, which defines when two type specs denote equal types

(after syntactic sugars are applied). A similar notion is also needed for routine equality. A formal type

84 Modules

identifier is only equal to itself for type checking purposes. Otherwise, two type names denote equal
10types if they denote the same Description Unit (DU). Similarly, Argus compares the names of routine

formals or the DUs of routines, or checks that they are the same operation in equal types. To decide the

equality of two type generator instantiations:

T[t with {op : act , ... op : act } , ..., t with {...}]1 1 1 m m n
and
T’[t ’ with {op : act ’, ... op : act ’} , ..., t ’ with {...}]1 1 1 m m n

Argus first checks whether:
1. T and T’ denote the same DU, and whether

2. they have the same number of type actuals, and t is equal to t ’, etc.1 1

Second, any optional parameter opbindings in either instantiation are deleted. After this step, Argus

checks that for each corresponding type actual there is the same number of opbindings and that each

corresponding opbinding is the same. (That is, the corresponding actual routines are equal.) The order

of the actual routine parameters does not matter, since Argus matches opbindings by operation names.

(The definition of routine equality for instantiations of routine generators is similar.) This definition, for

example, tells us that

set[array[int] with {equal: array[int]$equal}]

is different from

set[array[int] with {equal: array[int]$similar}] ,

(assuming set requires an equal operation from its type parameter). It also tells us that:

set[int with {equal: foo, copy: bar}]

and

set[int with {equal: foo, copy: xerox}]

are equal (assuming copy is required only by the set[int]$copy operation).

This type equality rule allows programmers to control what requirements affect type equality by

choosing whether to put them on a cluster or on each operation. A requirement on the cluster should be

used whenever the actuals make some difference in the abstraction. For example, in the set cluster, the

type parameter’s equal operation should be required by the cluster as a whole, since using different

equality tests for a set’s objects causes the set’s behavior to change.

One can require that a type parameter, say t, be transmissible by stating the requirement:

t has transmit

This requirement is regarded as a formal parameter declaration for a special "transmit actual", but Argus

does not provide syntax for passing it explicitly. The "transmit actual" is passed implicitly just when the

actual type parameter is transmissible and the generator requires it.

10This is name equality unless the type environment has synonyms for types.

12.7 Own Variables 85

12.7. Own Variables
Occasionally it is desirable to have a module that retains information internally between calls. Without

such an ability, the information would either have to be reconstructed at every call, which can be

expensive (and may even be impossible if the information depends on previous calls), or the information

would have to be passed in through arguments, which is undesirable because the information is then

subject to uncontrolled modification in other modules (but see also the binding mechanism described in

Section 9.8).

Procedures, iterators, handlers, creators, and clusters may all retain information through the use of

own variables. An own variable is similar to a normal variable, except that it exists for the life of the

program or guardian, rather than being bound to the life of any particular routine activation. Syntactically,

own variable declarations must appear immediately after the equates in a routine or cluster body; they

cannot appear in bodies nested within statements. Declarations of own variables have the form:

own var ::= own decl

| own idn : type spec := expression

| own decl , ... := call [@ primary]
Note that initialization is optional.

The own variables of a module are created when a guardian begins execution or recovers from a

crash, and they always start out uninitialized. The own variables of a routine (including cluster

operations) are initialized in textual order as part of the first call of an operation of that routine (or the first

such call after a crash), before any statements in the body of the routine are executed. Cluster own

variables are initialized in textual order as part of the first call of the first cluster operation to be called

(even if the operation does not use the own variables). Cluster own variables are initialized before any

operation own variables are initialized. Argus insures that only one process can execute a cluster’s or a

routine’s own variable initializations.

Aside from the placement of their declarations, the time of their initialization, and their lifetime, own

variables act just like normal variables and can be used in all the same places. As with normal variables,

an attempt to use an uninitialized own variable (if not detected at compile-time) will cause the guardian to

crash.

Declarations of own variables in different modules always refer to distinct own variables, and distinct

guardians never share own variables. Furthermore, own variable declarations within a parameterized

module produce distinct own variables for each distinct instantiation of the module. For a given

instantiation of a parameterized cluster, all instantiations of the type’s operations share the same set of

cluster own variables, but distinct instantiations of parameterized operations have distinct routine own

variables.

Declarations of own variables cannot be enclosed by an except statement, so care must be exercised

when writing initialization expressions. If an exception is raised by an initialization expression, it will be

86 Modules

treated as an exception raised, but not handled, in the body of the routine whose call caused the

initialization to be attempted. Thus, the guardian will crash due to this error.

13 Guardians 87

13. Guardians
This section is concerned with the form and meaning of the modules used to define guardians. Such a

module, called a guardian definition, declares the objects making up the guardian’s stable state and

volatile state, and provides implementations for the guardian’s handlers. It also defines one or more

creators: operations that produce new guardians that behave in accordance with the guardian definition.

In addition, a guardian definition may provide background code to carry out independent activities, and

recovery code to restore the volatile state when the guardian is restarted after a crash.

The syntactic form of a guardian definition is as follows:

idn = guardian [parms] is idn , ... [handles idn , ...] [where]
{ equate }
{ state decl }
[recover body end]
[background body end]
{ operation } creator { operation }
end idn

where

operation ::= creator

| handler

| routine

The initial idn names the guardian type or type generator (as explained in Section 6.4) and must agree

with the final idn. The guardian header contains two idn lists. The first, following is, gives the names of

the creators, which can be called to create and initialize new guardians (the objects belonging to the

guardian type). The second, following the handles, gives the names of the handlers that can be called

on these guardian objects. The names of all operations must be distinct. Creators may not be named

equal, similar, copy, or get h where h is the name of a handler. See Section 6.4 for the interface type

defined by a guardian definition. See Section 12.5 for the meaning of guardians having parms and where

clauses.

The remaining portions of the guardian definition are discussed in the subsections below.

13.1. The Guardian State
The state decls of the guardian definition declare a number of variables (with optional initialization):

state decl ::= [stable] decl

| [stable] idn : type spec := expression

| [stable] decl , ... := call

The scope of these declarations is the entire guardian definition. The objects reachable from variables

declared to be stable survive crashes of the guardian, while other objects do not.

For example, if the state decls were:

88 Guardians

stable buffer: atomic array[int] := atomic array[int]$new ()
cache: array[int] := array[int]$new ()

then the atomic array object denoted by buffer would survive a guardian crash, but the array object

denoted by cache would not. See Section 13.3 for more details of crash recovery. Volatile variables can

be assigned wherever an assignment statement is legal. However, stable variables may only be

assigned by an initialization when declared or in the body of a creator. The initializations of both stable

and volatile variables are executed within an action, as described below. However, the stable variables

are not reinitialized upon crash recovery, whereas volatile variables are reinitialized upon crash recovery.

Stable variables should denote resilient objects (see Section 15.2), because only resilient data objects

(reachable from the stable variables) are written to stable storage when a topaction commits. (This can

be ensured by having stable variables only denote objects of an atomic type or objects protected by

mutex.) Non-resilient objects stored in stable variables are only written to stable storage once, when the

guardian is created. Furthermore, the stable variables should usually denote atomic objects, because the

stable variables are potentially shared by all the actions in a guardian.

13.2. Creators
A guardian definition must provide one or more creators. The names of these creators must be listed

in the guardian header (internal creators are not allowed); each such name must correspond to a single

creator definition appearing in the body of the guardian definition.

A creator definition has the same form as a procedure definition, except that creators cannot be

parameterized, and the reserved word creator is used in place of proc:

idn = creator ([args]) [returns] [signals]
routine body
end idn

The initial idn names the creator and must agree with the final idn. The types of all arguments and all

results (normal and exceptional) must be transmissible.

A creator is an object of some creator type. This type is derived from the creator heading by removing

the creator name, rewriting the formal argument declarations with one idn per decl, deleting the idns of all

formal arguments, deleting any failure or unavailable signals, and finally, replacing creator by

creatortype. The signals failure(string) and unavailable(string) are implicit in every creator type (since

they can arise from any creator call). However, if these signals are raised explicitly by a creator, they

must be listed in the signals clause with string result types.

The semantics of a creator call are explained in Section 8.4. Typically, the body of a creator will

initialize some stable and volatile variables. It can also return the name of the guardian being created

using the expression self. Since the creator (and the state initialization) runs as an action, the creator

terminates by committing or aborting. If it aborts, the guardian is destroyed. If it commits, the guardian

begins to accept handler calls, and runs the background code, if any (see below). If an ancestor of the

creator aborts, the guardian is destroyed. If the creator and all its ancestors commit, the guardian

becomes permanent, and will survive subsequent crashes.

13.2 Creators 89

13.3. Crash Recovery
Once a guardian becomes permanent, it will be recreated automatically after a crash with its stable

variables initialized to the same state they were in at the last topaction commit before the crash. The

volatile variables are then initialized (in declaration order) by a topaction. To aid in this reinitialization, the

guardian definition can provide a recover section:

recover body end

to be run, as part of this topaction, after the initializations attached to the volatile variable declarations are

performed. The recover section commits when control reaches the end of the body, or when a return

statement is executed. The recover section may abort by executing an abort return statement or as a

result of an unhandled exception. The guardian crashes if the recover section aborts.

13.4. Background Tasks
Tasks that must be performed periodically, independent of handler calls, can be defined by a

background section:

background body end

The system creates a process to run this body as soon as creation or recovery commits successfully.

The body of the background section does not run as an action; typically it will perform a sequence of

topactions.

If the background process finishes executing its body (either by reaching the end of the block or by

returning), the process terminates, but the guardian continues to execute incoming handler calls.

13.5. Handlers and Other Routines
Typically, the principal purpose of a guardian is to execute incoming handler calls. A guardian accepts

handler calls as soon as creation or recovery commits.

The guardian header lists the names of the externally available handlers. Each handler listed must be

defined by a handler definition. Additional handler definitions may also be given, but these handlers can

be named only within the guardian to which they belong.

A handler definition has the same form as a procedure definition, except that handlers cannot be

parameterized, and the reserved word handler is used in place of proc:

idn = handler ([args]) [returns] [signals]
routine body

end idn

The initial idn names the handler and must agree with the final idn. The types of all arguments and all

results (normal and exceptional) must be transmissible.

A handler is an object of some handler type. This type is derived from the handler heading by

removing the handler name, rewriting the formal argument declarations with one idn per decl, deleting the

90 Guardians

idns of all formal arguments, deleting any failure or unavailable signals, and finally, replacing handler by

handlertype. The signals failure(string) and unavailable(string) are implicit in every handler type.

However, if these signals are raised explicitly by a handler, they must be listed in the signals clause, with

string as their result type.

As explained in Section 8.3, a handler call runs as a subaction of its caller, and arguments and results

are passed by value. A new process is created at the handler’s guardian to run the handler activation.

Since the handler activation is an action, it terminates by committing or aborting.

A guardian definition may also contain procedure and iterator definitions. These procedures and

iterators may be called only within the guardian to which they belong.

13.6. Guardian Lifetime and Destruction
A guardian does not become permanent until its creating action (the creator activation that initialized

the guardian) commits to the top. If the creating action or any of its ancestors aborts, the guardian will be

destroyed.

Once a guardian becomes permanent, it will survive node crashes (with high probability) and thus may

live forever. However, a shorter lifetime may be appropriate for some guardians. One guardian can

never destroy another, but a guardian can destroy itself. Destruction is accomplished by the terminate

statement (see Section 10.18). (A node’s guardian manager may also destroy guardians.)

A short-lived guardian can be implemented by using background code of the form:

background terminate end

The background code starts to run as soon as the creator returns. The terminate is delayed, however,

until the creating action commits to the top, so the creating action can make use of the new guardian

before it is destroyed. (If an ancestor of the creating action aborts, the guardian will be destroyed

automatically.)

The following is an example of a handler for destroying a permanent guardian:

finish = handler (...) returns (...) signals (not authorized)
...
terminate
return(...)
end finish

Here, finish might check whether its caller is authorized to make this request, and signal not authorized if

not. Otherwise it returns its vital state information to its caller and destroys its guardian.

13.7. An Example
To illustrate how most of the components of a guardian definition are used, an example of a simple

guardian is given in Figure 13-1. An action can use a spooler guardian to store objects until after the

action has committed to the top. The spooler then passes those objects to other guardians for

13.7 An Example 91

consumption. The spooler provides an operation for adding (object, consumer) pairs, and for destroying

the guardian.

Figure 13-1: Spooler Guardian

spooler = guardian [t: type] is create handles enq, finish
where t has transmit

utype = handlertype (t)
entry = struct[object: t, consumer: utype]
queue = semiqueue[entry]

stable state: queue := queue$create()

background
while true do

enter topaction
e: entry := queue$deq(state)
e.consumer(e.object)

except when unavailable (*): abort leave end
end except when failure, unavailable (*): end

end
end

create = creator () returns (spooler[t])
return(self)
end create

enq = handler (item: t, user: utype)
queue$enq(state, entry${object: item, consumer: user})
end enq

finish = handler ()
terminate
end finish

end spooler

The spooler guardian is parameterized by the type of object to be stored. The enq handler takes an

object of this type, and a handler for sending the object to the consumer, and adds this information to the
11stable state of the spooler. This state is an object of the semiqueue abstract data type . Each entry in

the semiqueue is a structure containing a stored object and its corresponding consumer handler. The

background code of the guardian runs an infinite loop that starts a topaction, removes an entry from the

queue, and sends the object using the associated handler.

Note that an unavailable exception arising from this handler call is caught inside the topaction, so that

an explicit abort can be performed. If the exception were caught outside the topaction, it would cause the

11See W. Weihl and B. Liskov, "Implementation of Resilient, Atomic Data Types", in ACM Transactions on Programming
Languages and Systems, volume 7, number 2, (April 1985), pages 244-269.

92 Guardians

topaction to commit, and the entry would be removed without being consumed. Note also that failure is

caught outside the topaction, since if an encode were to fail, or if the guardian did not exist, the

background process might aimlessly loop forever, because it would not be able to remove that entry.

A more extended example of a distributed system appears in the paper Liskov, B. and Scheifler, R.,

"Guardians and Actions: Linguistic Support for Robust, Distributed Programs," ACM Transactions on

Programming Languages and Systems, volume 5, number 3, (July 1983), pages 381-404.

14 Transmissibility 93

14. Transmissibility
A type is said to be transmissible if it defines a transmit operation that allows the values of its objects

to be sent in messages or stored in image objects. Only objects of transmissible type may be used as

arguments to handler calls or creator calls. This section describes how transmission is defined for the

Argus built-in types and for user-defined types.

14.1. The Transmit Operation
Transmissibility is a property of a data abstraction and must be stated in the specification of that

abstraction. A transmissible data type T can be thought of as having an additional operation,

transmit = proctype (T) returns (T) signals (failure(string))

which is called implicitly during message transmission. Given an object, transmit produces a different

object, which may even reside at a different guardian from the original. The relation between the original

object and the transmitted object is defined by the specification for transmit. Although the exact

specification of transmit is type dependent, the values of the two objects will typically be equal. (Value

equality is also part of a type’s specification; see the discussion in Section 13.3 of the CLU Reference
12Manual). The transmit operation for a type thus defines a call-by-value semantics for its objects.

14.2. Transmission for Built-in Types
The unstructured built-in types (int, char, bool, ...) are transmissible, with the exception of proctype,

itertype, and any. The transmit operations of the unstructured types preserve value equality, with the

exception of the real type, which, because of possible round-off errors, guarantees only that the two

values differ by very little.

The structured types (instances of array, struct, atomic variant, ...) are transmissible if and only if all

their type parameters are transmissible. The transmit operation for a structured type is defined in terms

of the transmit operations of the component types. For example, if an object x is an array containing

elements of type T, then the transmit operation for x creates a new array y with the same bounds as the

original, and with elements:

y[i] = T$transmit(x[i])

Thus transmission of the built-in structured types will preserve value equality only if transmission of the

component types does.

The transmit operation for mutex[T] acquires and holds the lock during the transmission (actually,

during the encoding, see below) of the contained object.

12Liskov, B. et al., CLU Reference Manual, Lecture Notes in Computer Science, volume 114, (Springer-Verlag, New York, 1981).

94 Transmissibility

14.3. Transmit for Abstract Types
The type implemented by a cluster is transmissible if the reserved word transmit appears in the is-list

at the head of the cluster. Unlike the other operations provided by a type, the transmit operation cannot

be called directly by users, and in fact is not implemented directly in the cluster. Instead, transmit is

implemented indirectly in the following way. Each transmissible type is given a canonical representation,

called its external representation type. The external representation type of an abstract type T is any

convenient transmissible type XT. This type can be another abstract type if desired; there is no

requirement that XT be a built-in type. Intuitively, the meaning of the external representation is that

values of type XT will be used in messages to represent values of type T. The choice of external

representation type is made for the abstract type as a whole and must be used in every implementation of

that type. (There are currently no provisions for changing the external representation of a type once it

has been established in the library.)

Each implementation of the abstract type T must provide two operations to map between values of the

abstract type and values of the external representation type. There is an operation

encode = proc (a: T) returns (XT) [signals (failure(string))]
to map from T values to XT values (for sending messages) and an operation

decode = proc (x: XT) returns (T) [signals (failure(string))]
to map from XT values to T values (for receiving messages). The transmit operation for T is defined by

the following identity:

T$transmit (x) = T$decode (XT$transmit (T$encode(x)))

Intuitively, the correctness requirement for encode and decode is that they preserve the abstract T values:

encode maps a value of type T into the XT value that represents it, while decode performs the reverse
13mapping .

Encode and decode are called implicitly by the Argus system during handler and creator calls. If

encode and decode do not appear in the cluster’s is-list, then they will be accessible to the Argus system,

but may not be named directly by users of the type. A failure exception raised by one of these operations

will be caught by the Argus system and resignalled to the caller (see Section 8.3).

An abstract type’s encode and decode operations should not cause any side effects. This is because

the number of calls to encode or decode is unpredictable, since arguments or results may be encoded

and decoded several times as the system tries to establish communication. In addition, verifying the

correctness of transmission is easier if encode and decode are simply transformations to and from the

external representation.

When defining a parameterized module (see Section 12.5), it may be necessary to require a type

parameter to be transmissible. A special type restriction:

13Herlihy, M. and Liskov, B., "A Value Transmission Method for Abstract Data Types", ACM Transactions on Programming
Languages and Systems, volume 4, number 4, (Oct. 1982), pages 527-551.

14.3 Transmit for Abstract Types 95

has transmit

is provided for this purpose. To permit instantiation only with transmissible type parameters, this

restriction should appear in the where clause of the cluster. Alternatively, by placing identical where

clauses in the headings of encode and decode procedures, one can ensure that an instantiation of the

cluster is transmissible only if the type parameters are transmissible (see Section 12.5).

As an example, Figure 14-1 shows part of a cluster defining a key-item table that stores pairs of values,

where one value (the key) is used to retrieve the other (the item). The key-item table type has operations

for creating empty tables, inserting pairs, retrieving the item paired with a given key, deleting pairs, and

iterating through all key-item pairs. The table is represented by a sorted binary tree, and its external

representation is an array of key-item pairs. The table type is transmissible only if both type parameters

are transmissible.

Figure 14-1: Partial implementation of table.

table = cluster [key, item: type] is create, insert, lookup, allpairs, delete, transmit, ...
where key has lt: proctype (key, key) returns (bool),

equal: proctype (key, key) returns (bool)

pair = record[k: key, i: item]
nod = record[k: key, i: item, left, right: table[key, item]]
rep = variant[empty: null, some: nod]
xrep = array[pair] % the external representation type

% The internal representation is a sorted binary tree. All pairs in the table
% to the left (right) of a node have keys less than (greater than) the key in
% that node.

% ... other operations omitted

encode = proc (t: table[key, item]) returns (xrep)
where key has transmit, item has transmit

xr: xrep := xrep$new() % create an empty array
% use allpairs to extract the pairs from the tree
for p: pair in allpairs(t) do

% Add the pair to the high end of the array.
xrep$addh(xr, p)
end

return(xr)
end encode

decode = proc (xtbl: xrep) returns (table[key, item])
where key has transmit, item has transmit

t: table[key, item] := create() % create empty table
for p: pair in xrep$elements(xr) do

% xrep$elements yields all elements of array xr
insert(t, p.key, p.item) % enter pair in table
end

return(t)
end decode

end table

96 Transmissibility

14.4. Sharing
When an object of structured built-in type is encoded and decoded, sharing among the object’s

components is preserved. For example, let a be an array[T] object such that a[i] and a[j] refer to a single

object of type T. If a2 is an array[T] object created by transmitting a, then a2[i] and a2[j] also name a

single object of type T.

All sharing is preserved among all components of multiple objects of built-in type when those objects

are encoded together. Thus, sharing is preserved for objects that are arguments of the same remote call

or are results of the same remote call, unless the arguments are encoded at different times (see the

discussion of the bind expression in Section 9.8). For example, let a and b be array[T] objects such that

a[i] and b[j] refer to a single object of type T. If a2 and b2 are arrays created by sending a and b as

arguments in a single handler call, then a2[i] and b2[j] also refer to a single object.

Whether an abstract type’s transmit operation preserves sharing is part of that type’s specification, but

sharing should usually be preserved for abstract types. In the key-item table implementation of Figure

14-1, there are two types of sharing that should be preserved: sharing of keys and items among multiple

tables sent in a single message, and sharing of items bound to the same key in a single table. The

key-item table example shows how to implement an abstract type whose transmission preserves sharing

by choosing an external representation type whose transmit operation preserves sharing.

Care must be taken when the references among objects to be transmitted are cyclic, as in a circular

list. Decoding such objects can result in a failure exception unless encode and decode are implemented

in one of two ways:
1. the internal and external representation types are identical and encode and decode return

their argument object without modifying it or accessing its components, or

2. the external representation object must be free of cycles.

15 Atomic Types 97

15. Atomic Types
In Argus, atomicity is enforced by the objects shared among actions, rather than by the individual

actions themselves. Types whose objects ensure atomicity of the actions sharing them are called atomic

types; objects of atomic types are called atomic objects. In this chapter we define what it means for a

type to be atomic and describe the mechanisms provided by Argus to support the implementation of

atomic types.

Atomicity consists of two properties: serializability and recoverability. An atomic type’s objects must

synchronize actions to ensure that the actions are serializable. An atomic type’s objects must also

recover from actions that abort to ensure that actions appear to execute either completely or not at all.

In addition, an atomic type must be resilient: the type must be implemented so that its objects can be

saved on stable storage. This ensures that the effects of an action that commits to the top (that is, an

action that commits, as do all of its ancestors) will survive crashes.

This chapter provides definitions of the mechanisms used for user-defined types in Argus. For

example implementations, see Weihl, W. and Liskov, B., "Implementation of Resilient, Atomic Data

Types," ACM Transactions on Programming Languages and Systems, volume 7, number 2 (April 1985),

pages 244-269.

The remainder of this chapter is organized as follows. In Section 15.1 and Section 15.2, we present

the details of the mechanisms. Section 15.1 focuses on synchronization and recovery of actions, while

Section 15.2 deals primarily with resilience. In Section 15.3, we discuss some guidelines to keep in mind

when using the mechanisms described in Section 15.1 and Section 15.2. In Sections 15.4 and 15.5, we

define more precisely what it means for a type to be atomic. Finally, in 15.6, we discuss some details that

are important for user-defined atomic types that are implemented using multiple mutexes.

15.1. Action Synchronization and Recovery
In this section we describe the mechanisms provided by Argus to support synchronization and recovery

of actions. These mechanisms are designed specifically to support implementations of atomic types that

allow highly concurrent access to objects.

Like a non-atomic type, an atomic type is implemented by a cluster that defines a representation for the

objects of the type, and an implementation for each operation of the type in terms of that representation.

However, the implementation of an atomic type must solve some problems that do not occur for ordinary

types, namely: synchronizing concurrent actions, making visible to other actions the effects of committed

actions, hiding the effects of aborted actions, and providing resilience against crashes.

An implementation of a user-defined atomic type must be able to find out about the commits and aborts

of actions. In Argus, implementations use objects of built-in atomic types for this purpose. The

representation of a user-defined atomic type is typically a combination of atomic and non-atomic objects;

98 Atomic Types

the non-atomic objects are used to hold information that can be accessed by concurrent actions, while the

atomic objects contain information that allows the non-atomic data to be interpreted properly. The built-in

atomic objects can be used to answer the following question: did the action that caused a particular

change to the representation:

• commit (so the new information is now available to other actions),

• abort (so the change should be forgotten), or

• is it still active (so the information cannot be released yet)?

The operations available on built-in atomic objects have been extended to support this type of use; in

particular, the can read and can write operations on atomic arrays, records and variants, and the tagtest

and tagwait statements, are intended to be used for this purpose. (We do not expect user-defined

atomic types to support such operations, however.)

The use of atomic objects in the representation permits operation implementations to discover what

happened to previous actions and to synchronize concurrent actions. However, since part of the

representation of a user-defined atomic object may be non-atomic, the implementation also needs a way

to synchronize concurrent operation executions on that non-atomic data.

Synchronization for non-atomic data is provided by the mutex type generator. As discussed in Section

6.7, a mutex[T] object is essentially a container for an object of some type, T, that can be used to provide

mutual exclusion for the contained object. The seize statement, described in Section 10.16 , is used to

gain possession of a mutex object. The seize statement ensures that a process has exclusive access to

a mutex object while it executes the body of the seize. Sometimes a process discovers after examining

an object that it needs to wait (for example, until some action completes) before it can continue. The

pause statement, described in Section 10.17, can be used in the body of a seize statement to release

possession of the seized object, pause for an indeterminate amount of time, and then regain possession.

15.2. Resilience
If a user-defined atomic object is accessible from the stable variables of some guardian, it should be

written to stable storage whenever an action that modified it commits to the top. In this section, we

discuss how user-defined atomic types can be implemented to ensure that their objects are written to

stable storage properly. Such an implementation will make use of some additional properties of mutex

objects.

In addition to its use for synchronizing user processes, mutex is used for three other functions:

notifying the system when information needs to be written to stable storage, defining what information is

written to stable storage, and ensuring that information is written to stable storage in a consistent state.

To minimize the amount of information that must be written to stable storage when actions commit, the

Argus system only copies new information to stable storage. For built-in atomic objects, it copies

accessible objects modified or made newly accessible from a stable variable by an action that commits to

the top. For mutex objects, it also copies newly accessible objects to stable storage. In addition, the

mutex operation

15.2 Resilience 99

changed = proc (m: mutex[T])

is provided for notifying the system that an existing mutex object should be written to stable storage.

Calling this operation will cause the object to be written to stable storage (assuming it is accessible) by

the time the action that executed the changed operation commits to the top. Sometime after the action

calls changed, and before its top-level ancestor commits, the system will copy the mutex object to stable

storage. Changed must be called from a process running an action.

Mutex objects also define how much information must be written to stable storage. Copying a mutex

object involves copying the contained object. By choosing the proper granularity of mutex objects the

user can control how much data must be written to stable storage at a time. For example, a large data

base can be broken into partitions that are written to stable storage independently by dividing it among

several mutex objects. Such a division can be used to limit the amount of data written to stable storage

by calling changed only for those partitions actually modified by a committing action.

In copying a mutex object, the system will copy all objects reachable from it, excluding other mutex or

built-in atomic objects. A contained mutex or built-in atomic object will be copied only if necessary; that is,

only if it is:

• a mutex object for which (a descendant of) the completing action called the changed
operation,

• a built-in atomic object that was modified by the action, or

• a newly accessible object for which no stable copy exists.

Furthermore, the component is copied independently of the containing mutex object; they may be copied

in either order (or simultaneously), subject to the constraint that the system cannot copy a mutex object

without first gaining possession of it.

Finally, mutex objects can be used to ensure that information is in a consistent state when it is written

to stable storage. The system will gain possession of a mutex object before writing it to stable storage.

By making all modifications to mutex objects inside seize statements, the user’s code can prevent the

system from copying a mutex object when it is in an inconsistent state.

Some details of the effect of changed are important for atomic types that are implemented as multiple

mutexes. These details are presented in Section 15.6.

15.3. Guidelines
This section discusses some guidelines to be followed when implementing atomic types. There are

additional guidelines to follow when multiple mutexes are used to implement an atomic type; those

guidelines are discussed in Section 15.6.

An important concept for describing the resilience of user-defined atomic types is synchrony. An object

is synchronous if it is not possible to observe that any portion of the object is copied to stable storage at a

different time from any other portion. For example, an object of type array[mutex[int]] would not be

100 Atomic Types

synchronous, because elements of the array can be copied at different times. A type is synchronous if all

of its objects are synchronous. Whether a type is synchronous or not is an important property of its

behavior and should be stated in its specification. The built-in atomic types are synchronous; user-

defined types must also be synchronous if they are to be atomic.

To ensure the resilience and serializability of a user-defined atomic type independently of how it is

used, the form of the rep for an atomic type should be one of the following possibilities.
1. The rep is itself atomic. Note that mutex is not an atomic type.

2. The rep is mutex[t] where t is a synchronous type. For example, t could be atomic, or it
could be the representation of an atomic type, if the operations on the this fictitious atomic
type are coded in-line so that the entire type behaves atomically.

3. The rep is an atomic collection of mutex types containing synchronous types.

4. The rep is a mutable collection of synchronous types, and objects of the representation
type are never modified after they are initialized. That is, mutation may be used to create
the initial state of such an object, but once this has been done the object must never be
modified.

When using mutex objects, there are a few rules to remember. First, changed must be called after the

last modification (on behalf of some action) to the contained object. This is true because the Argus

system is free to copy the mutex to stable storage as soon as changed has been called.

In addition, changed should be called even if the object is not accessible from the stable variables of a

guardian. In part this rule is just an example of separation of concerns: the implementation of the atomic

type should be done independently of any assumptions about how the object will be used. Therefore the

type should be implemented as if its objects were accessible from the stable variables of some guardian.

However, in addition, if this rule is not followed, it is possible that stable storage will not be updated

properly. This situation can occur if an object was accessible, then becomes inaccessible, and later

becomes accessible again. The system guarantees that no problems arise if changed is always called

after the last modification to the object.

Mutex objects should not share data with one another, unless the shared data is atomic or mutex.

One reason for this rule is that in copying mutex objects to stable storage Argus does not preserve this

kind of sharing.

A final point about mutex objects is that it is unwise to do any activity that is likely to take a long time

inside a seize statement. For example, a handler call should not be done from inside a seize statement if

possible. Also, it is unwise to wait for a lock inside a seize unless the programmer can be certain that the

lock is available or will be soon. Otherwise, a deadlock may occur. An example of where waiting for a

lock in a nested seize statement is safe is where all processes seize the two mutex objects in the same

order.

15.4 A Prescription for Atomicity 101

15.4. A Prescription for Atomicity
In this section, we discuss how to decide how much concurrency is possible in implementing an atomic

type. In writing specifications for atomic types, we have found it helpful to pin down the behavior of the

operations, initially assuming no concurrency and no failures, and to deal with concurrency and failures

later. In other words, we imagine that the objects will exist in an environment in which all actions are

executed sequentially, and in which actions never abort.

Although a sequential specification of this sort does not say anything explicit about permissible

concurrency, it does impose limits on how much concurrency can be provided. Implementations can

differ in how much concurrency is provided, but no implementation can exceed these limits. Therefore, it

is important to understand what the limits are.

This section and the following section together provide a precise definition of permissible concurrency

for an atomic type. This definition is based on two facts about Argus and the way it supports

implementations of atomic type. First, in implementing an atomic type, it is only necessary to be

concerned about active actions. Once an action has committed to the top, it is not possible for it to be

aborted later, and its changes to atomic objects become visible to other actions. So, for example, an

implementation of an atomic type needs to prevent one action from observing the modifications of other

actions that are still active, but it does not have to prevent an action from observing modifications by

actions that have already committed. Second, the only method available to an atomic type for controlling

the activities of actions is to delay actions while they are executing operations of the type. An atomic type

cannot prevent an action from calling an operation, although it can prevent that call from proceeding.

Also, an atomic type cannot prevent an action that previously finished a call of an operation from

completing either by committing or by aborting.

Given the sequential specification of the operations of a type, these facts lead to two constraints on the

concurrency permitted among actions using the type. While an implementation can allow no more

concurrency than permitted by these constraints, some implementations, like that for the built-in type

generator atomic array (see Section II.10), may allow less concurrency than permitted by their

sequential specifications and our concurrency constraints.

The first constraint is that

• an action can observe the effects of other actions only if those actions committed relative to
the first action.

This constraint implies that the results returned by operations executed by one action can reflect changes

made by operations executed by other actions only if those actions committed relative to the first action.

For example, in an atomic array a, if one action performs a store(a, 3, 7), a second (unrelated) action can

receive the answer "7" from a call of fetch(a, 3) only if the first action committed to the top. If the first

action is still active, the second action must be delayed until the first action completes. This first

constraint supports recoverability since it ensures that effects of aborted actions cannot be observed by

other actions. It also supports serializability, since it prevents concurrent actions from observing one

another’s changes.

102 Atomic Types

However, more is needed for serializability. Thus, we have our second constraint:

• operations executed by one action cannot invalidate the results of operations executed by a
concurrent action.

For example, suppose an action A executes the size operation on an atomic array object, receiving n as

the result. Now suppose another action B is permitted to execute addh. The addh operation will increase

the size of the array to n + 1, invalidating the results of the size operation executed by A. Since A

observed the state of the array before B executed addh, A must precede B in any sequential execution of

the actions (since sequential executions must be consistent with the sequential specifications of the

objects). Now suppose that B commits. By assumption, A cannot be prevented from seeing the effects of

B. If A observes any effect of B, it will have to follow B in any sequential execution. Since A cannot both

precede and follow B in a sequential execution, serializability would be violated. Thus, once A executes

size, an action that calls addh must be delayed until A completes.

15.5. Commuting Operations
To state our requirements more precisely, consider a simple situation involving two concurrent actions

each executing a single operation on a shared atomic object X. (The actions may be executing

operations on other shared objects also, but in Argus each object must individually ensure the atomicity of

the actions using it, so we focus on the operations involving a single object.) A fairly simple condition that

guarantees serializability is the following. Suppose X is an object of type T. X has a current state

determined by the operations performed by previously committed actions. Suppose O and O are two1 2

executions of operations on X in its current state. (O and O might be executions of the same operation1 2

or different operations.) If O has been executed by an action A and A has not yet committed or aborted,1

O can be performed by a concurrent action B only if O and O commute: given the current state of X,2 1 2

the effect (as described by the sequential specification of T) of performing O on X followed by O is the1 2

same as performing O on X followed by O . It is important to realize that when we say "effect" we2 1

include both the results returned and any modifications to the state of X.

The intuitive explanation of why the above condition works is as follows. Suppose O and O are1 2

performed by concurrent actions A and B at X. If O and O commute, then the order in which A and B1 2

are serialized globally does not matter at X. If A is serialized before B, then the local effect at X is as if O1

were performed before O , while if B is serialized before A, the local effect is as if O were performed2 2

before O . But these two effects are the same since O and O commute.1 1 2

The common method of dividing operations into readers and writers and using read/write locking works

because it allows operations to be executed by concurrent actions only when the operations commute.

More concurrency is possible with our commutativity condition than with readers/writers because the

meaning of the individual operations and the arguments of the calls can be considered. For example,

calls of the atomic array operation addh always commute with calls of addl, yet both these operations are

writers. As another example, store(X, i, e) and store(X, j, e) commute if i ≠ j.1 2

We require only that O and O commute when they are executed starting in the current state.1 2

15.5 Commuting Operations 103

Consider a bank account object, with operations to deposit a sum of money, to withdraw a sum of money

(with the possible result that it signals insufficient funds if the current balance is less than the sum

requested), and to examine the current balance. Two withdraw operations, say for amounts m and n, do

not commute when the current balance is the maximum of m and n: either operation when executed in

this state will succeed in withdrawing the requested sum, but the other operation must signal insufficient

funds if executed in the resulting state. They do commute whenever the current balance is at least the

sum of m and n. Thus if one action has executed a withdraw operation, our condition allows a second

action to execute another withdraw operation while the first action is still active as long as there are

sufficient funds to satisfy both withdrawal requests.

Our condition must be extended to cover two additional cases. First, there may be more than two

concurrent actions at a time. Suppose A ,...,A are concurrent actions, each performing a single1 n

operation execution O ,...,O , respectively, on X. (As before, the concurrent actions may be sharing1 n

other objects as well.) Since A ,...,A are permitted to be concurrent at X, there is no local control over1 n

the order in which they may appear to occur. Therefore, all possible orders must have the same effect at

X. This is true provided that all permutations of O ,...,O have the same effect when executed in the1 n

current state, where effect includes both results obtained and modifications to X.

The second extension acknowledges that actions can perform sequences of operation executions.

Consider concurrent actions A ,...,A each performing a sequence S ,...,S , respectively, of operation1 n 1 n

executions. This is permissible if all sequences S ,...,S , obtained by concatenating the sequencesi1 in

S ,...,S , in some order, produce the same effect. For example, suppose action A executed addh1 n

followed by remh on an array. This sequence of operations has no net effect on the array. It is then

permissible to allow a concurrent action B to execute size on the same array, provided the answer

returned is the size of the array before A executed addh or after it executed remh.

Note that in requiring certain sequences of operations to have the same effect, we are considering the

effect of the operations as described by the specification of the type. Thus we are concerned with the

abstract state of X, and not with the concrete state of its storage representation. Therefore, we may allow

two operations (or sequences of operations) that do commute in terms of their effect on the abstract state

of X to be performed by concurrent actions, even though they do not commute in terms of their effect on

the representation of X. This distinction between an abstraction and its implementation is crucial in

achieving reasonable performance.

It is important to realize that the constraints that are imposed by atomicity based on the sequential

specification of a type are only an upper bound on the concurrency that an implementation may provide.

A specification may contain additional constraints that further constrain implementations; these

constraints may be essential for showing that actions using the type do not deadlock, or for showing other

kinds of termination properties. For example, the specification of the built-in atomic types explicitly

describes the locking rules used by their implementations; users of these types are guaranteed that the

built-in atomic types will not permit more concurrency than allowed by these rules (for instance, actions

writing different components of an array, or different fields of a record, cannot do so concurrently).

104 Atomic Types

15.6. Multiple Mutexes
Section 15.2 presented a discussion of copying mutex objects to stable storage. That discussion is

adequate for simple implementations that use just one mutex object. Sometimes, however, it is desirable

to use more than one mutex object in representing a user-defined atomic object; for example, a

partitioned data base would be implemented this way. Such implementations require an understanding of

some details that could be ignored when just one mutex object was used in the representation. In

particular, the implementor must understand the effects of crashes on recovery of mutex objects and

some problems that can arise because copying to stable storage is incremental.

The writing of mutex objects to stable storage is recoverable for each topaction at each guardian:

either all mutexes modified by an action at a guardian are installed on stable storage, or none of them

are. That is, if an action modified more than one mutex object at a guardian, then after a crash either all

those objects will be recovered, or none of them will be. This property makes it easier to preserve

consistency among multiple mutex objects. However, even if an action aborts, the new versions of

mutexes it modified may still be recovered from stable storage after a crash; Argus only guarantees that if

any new versions are recovered, all of them will be. Note also that when an action aborts, it is possible

that new versions will be installed at some of the guardians but not at others.

Although mutex objects modified by a single action are installed on stable storage as a group, the

copies are made one at a time. Incremental copying has the following impact on programs. The true

state of an object usually includes the states of all contained objects, and a predicate (the representation

invariant) expressing a consistency condition on an object state would normally constrain the states of

contained objects. For example, suppose we had an atomic type semiqueue that allowed concurrent

actions to enqueue and dequeue different items (that is, for a semiqueue the enq and deq operations
14commute so long as they involve different objects in the semiqueue). Then consider an implementation

of a double-queue that (for some reason) kept two copies of the semiqueue and was represented by:

rep = struct [first, second: semiqueue]

where the representation invariant required that the states of the two semiqueues be the same. Now

suppose the system is handling the top-level commit of some action A that modified both semiqueues

contained in the double-queue, and while this is happening a second action B is modifying those

semiqueues. Then it is possible that when the first semiqueue is written to stable storage it contains B’s

changes, but when the second semiqueue is written to stable storage it does not contain B’s changes.

Therefore, the information in stable storage appears not to satisfy the representation invariant of the

double-queue.

However, the representation invariant of the double-queue really is satisfied, for the following reason.

First note that the information in stable storage is only of interest after a crash. So suppose there is a

crash. Now there are two possibilities:

14See Weihl, W. and Liskov, B., "Implementation of Resilient, Atomic Data Types," ACM Transactions on Programming
Languages and Systems, volume 7, number 2 (April 1985), pages 244-269.

15.6 Multiple Mutexes 105

1. Before that crash, B also committed to the top. In this case the data read back from stable
storage is, in fact, consistent, since it must reflect B’s changes to both the first and second
semiqueues.

2. B aborted or had not yet committed before the crash. In either case, B aborts. Therefore,
the changes made to the first semiqueue by B will be hidden by the semiqueue
implementation: at the abstract level, the two semiqueues do have the same state.

The point of the above example is that if the objects being written to stable storage are atomic, then the

fact that they are written incrementally causes no problems.

On the other hand, when an atomic type is implemented with a representation consisting of several

mutex objects, the programmer must be aware that these objects are written to stable storage

incrementally, and care must be taken to ensure that the representation invariant is still preserved and

that information is not lost in spite of incremental writing. If the implementation of a type requires that one

mutex object (call it M1) be written to stable storage before another (call it M2), then the write of M1 must

be contained in an action that commits to the top before the action that writes M2 is run.

106 Syntax

I Syntax 107

Appendix I
Syntax

We use an extended BNF grammar to define the syntax. The general form of a production is

nonterminal ::= alternative

| alternative

| ...
| alternative

The following extensions are used:

a , ... a list of one or more as separated by commas: "a" or "a, a" or "a, a, a", etc.

{ a } a sequence of zero or more as: " " or "a" or "a a", etc.

[a] an optional a: " " or "a".

Nonterminal symbols appear in normal face. Reserved words appear in bold face. All other terminal

symbols are nonalphabetic and appear in normal face.

module ::= { equate } equates

| { equate } guardian

| { equate } procedure

| { equate } iterator

| { equate } cluster

equates ::= idn = equates [parms [where]]
equate { equate }
end idn

guardian ::= idn = guardian [parms] is idn , ... [handles idn , ...] [where]
{ equate }
{ state decl }
[recover body end]
[background body end]
{ operation } creator { operation }
end idn

cluster ::= idn = cluster [parms] is opidn , ... [where]
{ equate } rep = type spec { equate }
{ own var }
routine { routine }
end idn

108 Syntax

operation ::= creator

| handler

| routine

routine ::= procedure

| iterator

procedure ::= idn = proc [parms] args [returns] [signals] [where]
routine body

end idn

iterator ::= idn = iter [parms] args [yields] [signals] [where]
routine body

end idn

creator ::= idn = creator args [returns] [signals]
routine body

end idn

handler ::= idn = handler args [returns] [signals]
routine body

end idn

routine body ::= { equate }
{ own var }
{ statement }

parms ::= [parm , ...]

parm ::= idn , ... : type

| idn , ... : type spec

args ::= ([decl , ...])

decl ::= idn , ... : type spec

returns ::= returns (type spec , ...)

yields ::= yields (type spec , ...)

signals ::= signals (exception , ...)

exception ::= name [(type spec , ...)]

I Syntax 109

opidn ::= idn

| transmit

where ::= where restriction , ...

restriction ::= idn has oper decl , ...
| idn in type set

type set ::= { idn | idn has oper decl , ... { equate } }

| idn

| reference $ name

oper decl ::= name , ... : type spec

| transmit

constant ::= expression

| type spec

state decl ::= [stable] decl

| [stable] idn : type spec := expression

| [stable] decl , ... := call

equate ::= idn = constant

| idn = type set

| idn = reference

own var ::= own decl

| own idn : type spec := expression

| own decl , ... := call [@ primary]

110 Syntax

statement ::= decl

| idn : type spec := expression

| decl , ... := call [@ primary]
| idn , ... := call [@ primary]
| idn , ... := expression , ...
| primary . name := expression

| primary [expression] := expression

| call [@ primary]
| fork call

| seize expression do body end

| pause

| terminate

| enter stmt

| coenter coarm { coarm } end

| [abort] leave

| while expression do body end

| for stmt

| if stmt

| tagcase stmt

| tagtest stmt

| tagwait stmt

| [abort] return [(expression , ...)]
| yield [(expression , ...)]
| [abort] signal name [(expression , ...)]
| [abort] exit name [(expression , ...)]
| [abort] break

| [abort] continue

| begin body end

| statement [abort] resignal name , ...
| statement except { when handler }

[others handler]
end

enter stmt ::= enter topaction body end

| enter action body end

I Syntax 111

coarm ::= armtag [foreach decl , ... in call] body

armtag ::= action

| topaction

| process

for stmt ::= for [decl , ...] in call do body end

| for [idn , ...] in call do body end

if stmt ::= if expression then body

{ elseif expression then body }
[else body]
end

tagcase stmt ::= tagcase expression

tag arm { tag arm }
[others : body]
end

tagtest stmt ::= tagtest expression

atag arm { atag arm }
[others : body]
end

tagwait stmt ::= tagwait expression

atag arm { atag arm }
end

tag arm ::= tag name , ... [(idn : type spec)] : body

atag arm ::= tag kind name , ... [(idn : type spec)] : body

tag kind ::= tag

| wtag

when handler ::= when name , ... [(decl , ...)] : body

| when name , ... (*) : body

others handler ::= others [(idn : type spec)] : body

body ::= { equate }
{ statement }

112 Syntax

type spec ::= null

| node

| bool

| int

| real

| char

| string

| any

| image

| rep

| cvt

| sequence [type actual]

| array [type actual]

| atomic array [type actual]

| struct [field spec , ...]

| record [field spec , ...]

| atomic record [field spec , ...]

| oneof [field spec , ...]

| variant [field spec , ...]

| atomic variant [field spec , ...]

| proctype ([type spec , ...]) [returns] [signals]
| itertype ([type spec , ...]) [yields] [signals]
| creatortype ([type spec , ...]) [returns] [signals]
| handlertype ([type spec , ...]) [returns] [signals]
| mutex [type actual]

| reference

field spec ::= name , ... : type actual

reference ::= idn

| idn [actual parm , ...]

| reference $ name

actual parm ::= constant

| type actual

type actual ::= type spec [with { opbinding , ... }]

opbinding ::= name , ... : primary

I Syntax 113

expression ::= primary

| call @ primary

| (expression)

| ~ expression % 6 (precedence)

| − expression % 6

| expression ** expression % 5

| expression // expression % 4

| expression / expression % 4

| expression * expression % 4

| expression || expression % 3

| expression + expression % 3

| expression − expression % 3

| expression < expression % 2

| expression <= expression % 2

| expression = expression % 2

| expression >= expression % 2

| expression > expression % 2

| expression ~< expression % 2

| expression ~<= expression % 2

| expression ~= expression % 2

| expression ~>= expression % 2

| expression ~> expression % 2

| expression & expression % 1

| expression cand expression % 1

| expression | expression % 0

| expression cor expression % 0

primary ::= entity

| call

| primary . name

| primary [expression]

call ::= primary ([expression , ...])

114 Syntax

entity ::= nil

| true

| false

| int literal

| real literal

| char literal

| string literal

| self

| reference

| entity . name

| entity [expression]

| bind entity ([bind arg , ...])

| type spec $ { field , ... }

| type spec $ [[expression :] [expression , ...]]

| type spec $ name [[actual parm , ...]]
| up (expression)

| down (expression)

field ::= name , ... : expression

bind arg ::= *

| expression

I Syntax 115

Comment: a sequence of characters that begins with a percent sign (%), ends with a newline

character, and contains only printing ASCII characters and horizontal tabs in between.

Separator: a blank character (space, vertical tab, horizontal tab, carriage return, newline, form feed) or

a comment. Zero or more separators may appear between any two tokens, except that at least one

separator is required between any two adjacent non-self-terminating tokens: reserved words, identifiers,

integer literals, and real literals.

Reserved word: one of the identifiers appearing in bold face in the syntax. Upper and lower case

letters are not distinguished in reserved words.

Name, idn: a sequence of letters, digits, and underscores that begins with a letter or underscore, and

that is not a reserved word. Upper and lower case letters are not distinguished in names and idns.

Int literal: a sequence of one or more decimal digits (0-9) or a backslash (\) followed by any number of

octal digits (0-7) or a backslash and a sharp sign (\#) followed by any number of hexadecimal digits (0-9,

A-F in upper or lower case).

Real literal: a mantissa with an (optional) exponent. A mantissa is either a sequence of one or more

decimal digits, or two sequences (one of which may be empty) joined by a period. The mantissa must

contain at least one digit. An exponent is ’E’ or ’e’, optionally followed by ’+’ or ’-’, followed by one or

more decimal digits. An exponent is required if the mantissa does not contain a period.

Char literal: a character representation other than single quote, enclosed in single quotes. A

character representation is either a printing ASCII character (octal value 40 through 176) other than

backslash, or an escape sequence consisting of a backslash (\) followed one to three printing characters

as shown in Table 6-1 or Table I-1 below.

String literal: a sequence of zero or more character representations other than double quote, enclosed

in double quotes.

Table I-1 shows most of the character literals supported by Argus, except for the higher numbered octal

escape sequences. For each character, the corresponding octal literal, hexadecimal literal, and normal

literal(s) are shown. Upper or lower case letters may be used in escape sequences of the form \#**, \^*,

\!*, \b, \t, \n, \v, \p, and \r. Note that an implementation need not support 256 characters, in which case

only a subset of the literals listed will be legal.

116 Syntax

Table I-1: Character Escape Sequences

’\000’ ’\#00’ ’\^@’ ’\100’ ’\#40’ ’@’ ’\200’ ’\#80’ ’\!@’ ’\300’ ’\#C0’ ’\&@’
’\001’ ’\#01’ ’\^A’ ’\101’ ’\#41’ ’A’ ’\201’ ’\#81’ ’\!A’ ’\301’ ’\#C1’ ’\&A’
’\002’ ’\#02’ ’\^B’ ’\102’ ’\#42’ ’B’ ’\202’ ’\#82’ ’\!B’ ’\302’ ’\#C2’ ’\&B’
’\003’ ’\#03’ ’\^C’ ’\103’ ’\#43’ ’C’ ’\203’ ’\#83’ ’\!C’ ’\303’ ’\#C3’ ’\&C’
’\004’ ’\#04’ ’\^D’ ’\104’ ’\#44’ ’D’ ’\204’ ’\#84’ ’\!D’ ’\304’ ’\#C4’ ’\&D’
’\005’ ’\#05’ ’\^E’ ’\105’ ’\#45’ ’E’ ’\205’ ’\#85’ ’\!E’ ’\305’ ’\#C5’ ’\&E’
’\006’ ’\#06’ ’\^F’ ’\106’ ’\#46’ ’F’ ’\206’ ’\#86’ ’\!F’ ’\306’ ’\#C6’ ’\&F’
’\007’ ’\#07’ ’\^G’ ’\107’ ’\#47’ ’G’ ’\207’ ’\#87’ ’\!G’ ’\307’ ’\#C7’ ’\&G’

’\010’ ’\#08’ ’\^H’ ’\b’ ’\110’ ’\#48’ ’H’ ’\210’ ’\#88’ ’\!H’ ’\310’ ’\#C8’ ’\&H’
’\011’ ’\#09’ ’\^I’ ’\t’ ’\111’ ’\#49’ ’I’ ’\211’ ’\#89’ ’\!I’ ’\311’ ’\#C9’ ’\&I’
’\012’ ’\#0A’ ’\^J’ ’\n’ ’\112’ ’\#4A’ ’J’ ’\212’ ’\#8A’ ’\!J’ ’\312’ ’\#CA’ ’\&J’
’\013’ ’\#0B’ ’\^K’ ’\v’ ’\113’ ’\#4B’ ’K’ ’\213’ ’\#8B’ ’\!K’ ’\313’ ’\#CB’ ’\&K’
’\014’ ’\#0C’ ’\^L’ ’\p’ ’\114’ ’\#4C’ ’L’ ’\214’ ’\#8C’ ’\!L’ ’\314’ ’\#CC’ ’\&L’
’\015’ ’\#0D’ ’\^M’ ’\r’ ’\115’ ’\#4D’ ’M’ ’\215’ ’\#8D’ ’\!M’ ’\315’ ’\#CD’ ’\&M’
’\016’ ’\#0E’ ’\^N’ ’\116’ ’\#4E’ ’N’ ’\216’ ’\#8E’ ’\!N’ ’\316’ ’\#CE’ ’\&N’
’\017’ ’\#0F’ ’\^O’ ’\117’ ’\#4F’ ’O’ ’\217’ ’\#8F’ ’\!O’ ’\317’ ’\#CF’ ’\&O’

’\020’ ’\#10’ ’\^P’ ’\120’ ’\#50’ ’P’ ’\220’ ’\#90’ ’\!P’ ’\320’ ’\#D0’ ’\&P’
’\021’ ’\#11’ ’\^Q’ ’\121’ ’\#51’ ’Q’ ’\221’ ’\#91’ ’\!Q’ ’\321’ ’\#D1’ ’\&Q’
’\022’ ’\#12’ ’\^R’ ’\122’ ’\#52’ ’R’ ’\222’ ’\#92’ ’\!R’ ’\322’ ’\#D2’ ’\&R’
’\023’ ’\#13’ ’\^S’ ’\123’ ’\#53’ ’S’ ’\223’ ’\#93’ ’\!S’ ’\323’ ’\#D3’ ’\&S’
’\024’ ’\#14’ ’\^T’ ’\124’ ’\#54’ ’T’ ’\224’ ’\#94’ ’\!T’ ’\324’ ’\#D4’ ’\&T’
’\025’ ’\#15’ ’\^U’ ’\125’ ’\#55’ ’U’ ’\225’ ’\#95’ ’\!U’ ’\325’ ’\#D5’ ’\&U’
’\026’ ’\#16’ ’\^V’ ’\126’ ’\#56’ ’V’ ’\226’ ’\#96’ ’\!V’ ’\326’ ’\#D6’ ’\&V’
’\027’ ’\#17’ ’\^W’ ’\127’ ’\#57’ ’W’ ’\227’ ’\#97’ ’\!W’ ’\327’ ’\#D7’ ’\&W’

’\030’ ’\#18’ ’\^X’ ’\130’ ’\#58’ ’X’ ’\230’ ’\#98’ ’\!X’ ’\330’ ’\#D8’ ’\&X’
’\031’ ’\#19’ ’\^Y’ ’\131’ ’\#59’ ’Y’ ’\231’ ’\#99’ ’\!Y’ ’\331’ ’\#D9’ ’\&Y’
’\032’ ’\#1A’ ’\^Z’ ’\132’ ’\#5A’ ’Z’ ’\232’ ’\#9A’ ’\!Z’ ’\332’ ’\#DA’ ’\&Z’
’\033’ ’\#1B’ ’\^[’ ’\133’ ’\#5B’ ’[’ ’\233’ ’\#9B’ ’\![’ ’\333’ ’\#DB’ ’\&[’
’\034’ ’\#1C’ ’\^\’ ’\134’ ’\#5C’ ’\\’ ’\234’ ’\#9C’ ’\!\’ ’\334’ ’\#DC’ ’\&\’
’\035’ ’\#1D’ ’\^]’ ’\135’ ’\#5D’ ’]’ ’\235’ ’\#9D’ ’\!]’ ’\335’ ’\#DD’ ’\&]’
’\036’ ’\#1E’ ’\^^’ ’\136’ ’\#5E’ ’^’ ’\236’ ’\#9E’ ’\!^’ ’\336’ ’\#DE’ ’\&^’
’\037’ ’\#1F’ ’\^ ’ ’\137’ ’\#5F’ ’ ’ ’\237’ ’\#9F’ ’\! ’ ’\337’ ’\#DF’ ’\& ’

’\040’ ’\#20’ ’ ’ ’\140’ ’\#60’ ’‘’ ’\240’ ’\#A0’ ’\& ’ ’\340’ ’\#E0’ ’\&‘’
’\041’ ’\#21’ ’!’ ’\141’ ’\#61’ ’a’ ’\241’ ’\#A1’ ’\&!’ ’\341’ ’\#E1’ ’\&a’
’\042’ ’\#22’ ’"’ ’\"’ ’\142’ ’\#62’ ’b’ ’\242’ ’\#A2’ ’\&"’ ’\342’ ’\#E2’ ’\&b’
’\043’ ’\#23’ ’#’ ’\143’ ’\#63’ ’c’ ’\243’ ’\#A3’ ’\&#’ ’\343’ ’\#E3’ ’\&c’
’\044’ ’\#24’ ’$’ ’\144’ ’\#64’ ’d’ ’\244’ ’\#A4’ ’\&$’ ’\344’ ’\#E4’ ’\&d’
’\045’ ’\#25’ ’%’ ’\145’ ’\#65’ ’e’ ’\245’ ’\#A5’ ’\&%’ ’\345’ ’\#E5’ ’\&e’
’\046’ ’\#26’ ’&’ ’\146’ ’\#66’ ’f’ ’\246’ ’\#A6’ ’\&&’ ’\346’ ’\#E6’ ’\&f’
’\047’ ’\#27’ ’\’’ ’\147’ ’\#67’ ’g’ ’\247’ ’\#A7’ ’\&’’ ’\347’ ’\#E7’ ’\&g’

’\050’ ’\#28’ ’(’ ’\150’ ’\#68’ ’h’ ’\250’ ’\#A8’ ’\&(’ ’\350’ ’\#E8’ ’\&h’
’\051’ ’\#29’ ’)’ ’\151’ ’\#69’ ’i’ ’\251’ ’\#A9’ ’\&)’ ’\351’ ’\#E9’ ’\&i’
’\052’ ’\#2A’ ’*’ ’\152’ ’\#6A’ ’j’ ’\252’ ’\#AA’ ’\&*’ ’\352’ ’\#EA’ ’\&j’
’\053’ ’\#2B’ ’+’ ’\153’ ’\#6B’ ’k’ ’\253’ ’\#AB’ ’\&+’ ’\353’ ’\#EB’ ’\&k’
’\054’ ’\#2C’ ’,’ ’\154’ ’\#6C’ ’l’ ’\254’ ’\#AC’ ’\&,’ ’\354’ ’\#EC’ ’\&l’
’\055’ ’\#2D’ ’-’ ’\155’ ’\#6D’ ’m’ ’\255’ ’\#AD’ ’\&-’ ’\355’ ’\#ED’ ’\&m’
’\056’ ’\#2E’ ’.’ ’\156’ ’\#6E’ ’n’ ’\256’ ’\#AE’ ’\&.’ ’\356’ ’\#EE’ ’\&n’
’\057’ ’\#2F’ ’/’ ’\157’ ’\#6F’ ’o’ ’\257’ ’\#AF’ ’\&/’ ’\357’ ’\#EF’ ’\&o’

I Syntax 117

’\060’ ’\#30’ ’0’ ’\160’ ’\#70’ ’p’ ’\260’ ’\#B0’ ’\&0’ ’\360’ ’\#F0’ ’\&p’
’\061’ ’\#31’ ’1’ ’\161’ ’\#71’ ’q’ ’\261’ ’\#B1’ ’\&1’ ’\361’ ’\#F1’ ’\&q’
’\062’ ’\#32’ ’2’ ’\162’ ’\#72’ ’r’ ’\262’ ’\#B2’ ’\&2’ ’\362’ ’\#F2’ ’\&r’
’\063’ ’\#33’ ’3’ ’\163’ ’\#73’ ’s’ ’\263’ ’\#B3’ ’\&3’ ’\363’ ’\#F3’ ’\&s’
’\064’ ’\#34’ ’4’ ’\164’ ’\#74’ ’t’ ’\264’ ’\#B4’ ’\&4’ ’\364’ ’\#F4’ ’\&t’
’\065’ ’\#35’ ’5’ ’\165’ ’\#75’ ’u’ ’\265’ ’\#B5’ ’\&5’ ’\365’ ’\#F5’ ’\&u’
’\066’ ’\#36’ ’6’ ’\166’ ’\#76’ ’v’ ’\266’ ’\#B6’ ’\&6’ ’\366’ ’\#F6’ ’\&v’
’\067’ ’\#37’ ’7’ ’\167’ ’\#77’ ’w’ ’\267’ ’\#B7’ ’\&7’ ’\367’ ’\#F7’ ’\&w’

’\070’ ’\#38’ ’8’ ’\170’ ’\#78’ ’x’ ’\270’ ’\#B8’ ’\&8’ ’\370’ ’\#F8’ ’\&x’
’\071’ ’\#39’ ’9’ ’\171’ ’\#79’ ’y’ ’\271’ ’\#B9’ ’\&9’ ’\371’ ’\#F9’ ’\&y’
’\072’ ’\#3A’ ’:’ ’\172’ ’\#7A’ ’z’ ’\272’ ’\#BA’ ’\&:’ ’\372’ ’\#FA’ ’\&z’
’\073’ ’\#3B’ ’;’ ’\173’ ’\#7B’ ’{’ ’\273’ ’\#BB’ ’\&;’ ’\373’ ’\#FB’ ’\&{’
’\074’ ’\#3C’ ’<’ ’\174’ ’\#7C’ ’|’ ’\274’ ’\#BC’ ’\&<’ ’\374’ ’\#FC’ ’\&|’
’\075’ ’\#3D’ ’=’ ’\175’ ’\#7D’ ’}’ ’\275’ ’\#BD’ ’\&=’ ’\375’ ’\#FD’ ’\&}’
’\076’ ’\#3E’ ’>’ ’\176’ ’\#7E’ ’~’ ’\276’ ’\#BE’ ’\&>’ ’\376’ ’\#FE’ ’\&~’
’\077’ ’\#3F’ ’?’ ’\177’ ’\#7F’ ’\^?’ ’\277’ ’\#BF’ ’\&?’ ’\377’ ’\#FF’ ’\!?’

118 Built-in Types and Type Generators

II Built-in Types and Type Generators 119

Appendix II
Built-in Types and Type Generators

The following sections specify the built-in types and the types produced by the built-in type generators

of Argus. For each type and for each instance of each type generator, the objects of the type are

characterized, and all of the operations of the type are defined. (An implementation may provide

additional operations on the built in types, as long as these are operations that could be implemented in

terms of those described in this section.)

All the built-in types (except for any) are transmissible. All instances of the built-in type generators

(except for proctype and itertype) are transmissible if all their type parameters are transmissible.

Transmission of the built-in types preserves value equality, except for objects of type real. However, in a

homogeneous environment, reals can be transmitted without approximations. In a homogeneous

environment, the only possible encode or decode failures are exceeding the representation limits of an

image, mutating the size of an array or atomic array while it is being encoded or decoded, and

improper decoding of cyclic objects (see Section 14.4).

All operations are indivisible except at calls to subsidiary operations (such as int$similar within

array[int]$similar), at yields, and while waiting for locks.

The specifications given below are informal and are adapted from the book Abstraction and

Specification in Program Development (Liskov, B. and Guttag, J., MIT Press, 1986). A specification starts

out by giving a list of the operations and declarations of any formal parameters for the type. This is

followed by an overview, which gives an introduction to the type and if necessary defines a way of

describing the type’s objects and their values. Following this the individual operations are described. For

each operation there is a heading and a statement of the operation’s effects. In the heading, the return

values may be given names. The effects section describes the normal and exceptional behavior of the

operation. The effects given are abstract, that is they are described using the vocabulary (or model)

defined in the overview section. For example, objects of type int are described using mathematical

integers. Thus arithmetic expressions and comparisons used in defining int operations are to be

computed over the domain of mathematical integers.

An operation that (abstractly) mutates one of its arguments lists the arguments that it mutates in the

clause following the word modifies. An operation is not allowed to mutate any objects, except for those

listed in the modifies clause. (For the built-in mutable atomic type generators, modification only refers to

the sequential state; it does not refer to changes in the locking information kept for each object.) When

an argument, say a, is mutated, it is often necessary to describe its state at the start of the call as well as

its final state at the end of the call. We use the notation a for a’s state at the start of the call and thepre

notation a for its state at the end of the call.post

Some operations of the built in type generators are only defined if the type generator is passed

appropriate actual routine parameters (see Section 12.6). For example, the copy operation of the array

120 Built-in Types and Type Generators

type generator, is only defined if there is an actual parameter passed (explicitly or implicitly) for the type

parameter’s copy operation. Thus array[int]$copy is defined but array[any]$copy is not defined. These

requirements are stated in a requires clause that precedes the description of the operation’s effect. The

type of the expected routine is also described; remember that the actual operation parameter can have

fewer signals (see Section 6.1 and Section 12.6).

By convention, the order in which exceptions are listed in the operation type is the order in which the

various conditions are checked.

Operations with the same semantics (for example, null$equal and null$similar) or that can be

described in the same way (for example, int$add and int$sub) are grouped together to save space.

In defining the built-in types, we do not depend on users satisfying any constraints beyond those that

can be type-checked. This decision leads to more complicated specifications. For example, the behavior

of the elements iterator for arrays is defined even when the loop modifies the array.

II.1. Null
null = data type is copy, equal, similar, transmit

Overview

The type null has exactly one, immutable, atomic object, represented by the literal nil. Nil is
generally used as a place holder in type definitions using oneofs or variants.

Operations

equal = proc (n1, n2: null) returns (bool)
similar = proc (n1, n2: null) returns (bool)

effects Returns true.

copy = proc (n: null) returns (null)
transmit = proc (n: null) returns (null)

effects Returns nil.

II.2. Nodes
node = data type is here, copy, equal, similar, transmit

Overview

Objects of type node are immutable and atomic, and stand for physical nodes. Implementations
should provide some mechanism for translating a node "address" into a node object and vice
versa. (However, these do not have to be operations of type node.)

Operations

here = proc () returns (node)
effects Returns the node object for the caller’s node.

equal = proc (n1, n2: node) returns (bool)
similar = proc (n1, n2: node) returns (bool)

effects Returns true if and only if n1 and n2 are the same node.

II.2 Nodes 121

copy = proc (n: node) returns (node)
transmit = proc (n: node) returns (node)

effects Returns n.

II.3. Booleans
bool = data type is and, or, not, equal, similar, copy, transmit

Overview

The two immutable, atomic objects of type bool, with literals true and false, represent logical truth
values.

The language also provides the operators cand and cor for conditional evaluation of boolean
expressions, see Section 9.15.

Operations

and = proc (b1, b2: bool) returns (bool)
effects Returns true if b1 and b2 are both true; returns false otherwise.

or = proc (b1, b2: bool) returns (bool)
effects Returns true if either b1 or b2 is true; returns false otherwise.

not = proc (b: bool) returns (bool)
effects Returns false if b is true; returns true if b is false.

equal = proc (b1, b2: bool) returns (bool)
similar = proc (b1, b2: bool) returns (bool)

effects Returns true if b1 and b2 are both true or both false; otherwise returns false.

copy = proc (b: bool) returns (bool)
transmit = proc (b: bool) returns (bool)

effects Returns b.

II.4. Integers
int = data type is add, sub, mul, minus, div, mod, power, abs, from to by, from to, max, min,

parse, unparse, lt, le, ge, gt, equal, similar, copy, transmit

Overview

Objects of type int are immutable and atomic, and are intended to model a subrange of the
mathematical integers. The exact range is not part of the language definition and can vary
somewhat from implementation to implementation. Each implementation is constrained to provide
a closed interval [int min, int max], with int min < 0 and int max ≥ char top (the number of
characters ⎯ see section II.6). An overflow exception is signalled by an operation if the result
would lie outside this interval. See Appendix I for the syntax of integer literals.

Operations

add = proc (x, y: int) returns (int) signals (overflow)
sub = proc (x, y: int) returns (int) signals (overflow)
mul = proc (x, y: int) returns (int) signals (overflow)

effects These are the standard integer addition, subtraction, and multiplication operations.
They signal overflow if the result would lie outside the represented interval.

122 Built-in Types and Type Generators

minus = proc (x: int) returns (int) signals (overflow)
effects Returns the negative of x; signals overflow if the result would lie outside the

represented interval.

div = proc (x, y: int) returns (q: int) signals (zero divide, overflow)
effects Signals zero divide if y = 0. Otherwise returns the integer quotient of dividing x by y;

that is, x = y q + r, for some integer r such that 0 ≤ r < |y|. Signals overflow if q would lie*
outside the represented interval.

mod = proc (x, y: int) returns (r: int) signals (zero divide, overflow)
effects Signals zero divide if y = 0. Otherwise returns the integer remainder of dividing x by

y; that is, r is such that 0 ≤ r < |y|, for some integer q: x = y q + r. Signals overflow if r*
would lie outside the represented interval.

power = proc (x, y: int) returns (int) signals (negative exponent, overflow)
yeffects Signals negative exponent if y < 0. Otherwise returns x ; signals overflow if the

0result would lie outside the represented interval. 0 = 1 by definition.

abs = proc (x: int) returns (int) signals (overflow)
effects Returns the absolute value of x; signals overflow if the result would lie outside the

represented interval.

from to by = iter (from, to, by: int) yields (int)
effects Yields the integers from from to to, incrementing by by each time, that is, yields from,

from+by, ... , from+n by, where n is the largest positive integer such that from+n by ≤ to.* *
If by = 0, then yields from indefinitely. Yields nothing if from > to and by > 0, or if from <
to and by < 0. This iterator is divisible at yields.

from to = iter (from, to: int) yields (int)
effects The effect is identical to from to by(from, to, 1).

max = proc (x, y: int) returns (int)
effects If x ≥ y, then returns x, otherwise returns y.

min = proc (x, y: int) returns (int)
effects If x ≤ y, then returns x, otherwise returns y.

parse = proc (s: string) returns (int) signals (bad format, overflow)
effects S must be an integer literal (see Appendix I), with an optional leading plus or minus

sign; if s is not of this form, signals bad format. Otherwise returns the integer
corresponding to s; signals overflow if the result would lie outside the represented
interval.

unparse = proc (x: int) returns (string)
effects Produces the string representing the integer value of x in decimal notation, preceded

by a minus sign if x < 0. Leading zeros are suppressed, and there is no leading plus sign
for positive integers.

lt = proc (x, y: int) returns (bool)
gt = proc (x, y: int) returns (bool)
le = proc (x, y: int) returns (bool)
ge = proc (x, y: int) returns (bool)

effects These are the standard ordering relations.

equal = proc (x, y: int) returns (bool)
similar = proc (x, y: int) returns (bool)

effects Returns true if x and y are the same integer; returns false otherwise.

copy = proc (x: int) returns (int)
effects Returns x.

II.4 Integers 123

transmit = proc (x: int) returns (y: int) signals(failure(string))
effects Returns y such that x = y or signals failure if x cannot be represented in the

implementation on the receiving end.

II.5. Reals
real = data type is add, sub, minus, mul, div, power, abs, max, min, exponent, mantissa, i2r, r2i,

trunc, parse, unparse, lt, le, ge, gt, equal, similar, copy, transmit

Overview

The type real models a subset of the mathematical numbers. It is used for approximate or floating
point arithmetic. Reals are immutable and atomic, and are written as a mantissa with an optional
exponent. See Appendix I for the format of real literals.

Each implementation represents a subset of the real numbers in:
D = {−real max, −real min} U {0} U {real min, real max}

where
0 < real min < 1 < real max

Numbers in D are approximated by the implementation with a precision of p decimal digits such
that:

∀r ∈ D Approx(r) ∈ Real
∀r ∈ Real Approx(r) = r

1−p∀r ∈ D − {0} | (Approx(r) − r)/r| < 10
∀r,s ∈ D r ≤ s ⇒ Approx(r) ≤ Approx(s)
∀r ∈ D Approx(−r) = −Approx(r)

We define Max width and Exp width to be the smallest integers such that every nonzero element
of real can be represented in "standard" form (exactly one digit, not zero, before the decimal
point) with no more than Max width digits of mantissa and no more than Exp width digits of
exponent.

Real operations signal an exception if the result of a computation lies outside of D; overflow
occurs if the magnitude exceeds real max, and underflow occurs if the magnitude is less than
real min.

Operations

add = proc (x, y: real) returns (real) signals (overflow, underflow)
effects Computes the sum z of x and y; signals overflow or underflow if z is outside of D, as

explained earlier. Otherwise returns an approximation such that:
(x,y ≥ 0 ∨ x,y ≤ 0) ⇒ add(x, y) = Approx(x + y)

1−padd(x, y) = (1 + ε)(x + y) |ε| < 10
add(x, 0) = x
add(x, y) = add(y, x)
x ≤ x’ ⇒ add(x, y) ≤ add(x’, y)

sub = proc (x, y: real) returns (real) signals (overflow, underflow)
effects Computes x − y; the result is identical to add(x, −y).

minus = proc (x: real) returns (real)
effects Returns −x.

mul = proc (x, y: real) returns (real) signals (overflow, underflow)
effects Returns approx(x y); signals overflow or underflow if x y is outside of D.* *

div = proc (x, y: real) returns (real) signals (zero divide, overflow, underflow)
effects If y = 0, signals zero divide. Otherwise returns approx(x/y); signals overflow or

underflow if x/y is outside of D.

124 Built-in Types and Type Generators

power = proc (x, y: real) returns (real)
signals (zero divide, complex result, overflow, underflow)

effects If x = 0 and y < 0, signals zero divide. If x < 0 and y is nonintegral, signals
ycomplex result. Otherwise returns an approximation to x , good to p significant digits;

ysignals overflow or underflow if x is outside of D.

abs = proc (x: real) returns (real)
effects Returns the absolute value of x.

max = proc (x, y: real) returns (real)
effects If x ≥ y, then returns x, otherwise returns y.

min = proc (x, y: real) returns (real)
effects If x ≤ y, then returns x, otherwise returns y.

exponent = proc (x: real) returns (int) signals (undefined)
effects If x = 0, signals undefined. Otherwise returns the exponent that would be used in

representing x as a literal in standard form, that is, returns
imax ({i | abs(x) ≥ 10 })

mantissa = proc (x: real) returns (real)
effects Returns the mantissa of x when represented in standard form, that is, returns

eapprox(x/10), where e = exponent(x). If x = 0.0, returns 0.0.

i2r = proc (i: int) returns (real) signals (overflow)
effects Returns approx(i); signals overflow if i is not in D.

r2i = proc (x: real) returns (int) signals (overflow)
effects Rounds x to the nearest integer and toward zero in case of a tie. Signals overflow if

the result lies outside the represented range of integers.

trunc = proc (x: real) returns (int) signals (overflow)
effects Truncates x toward zero; signals overflow if the result would be outside the

represented range of integers.

parse = proc (s: string) returns (real) signals (bad format, overflow, underflow)
effects Returns approx(z), where z is the value represented by the string s (see Appendix I).

S must represent a real or integer literal with an optional leading plus or minus sign;
otherwise signals bad format. Signals underflow or overflow if z is not in D.

unparse = proc (x: real) returns (string)
effects Returns a real literal such that parse(unparse(x)) = x. The general form of the literal

is:
[−] i field.f field [e ± x field]

Leading zeros in i field and trailing zeros in f field are suppressed. If x is integral and
within the range of represented integers, then f field and the exponent are not present. If
x can be represented by a mantissa of no more than Max width digits and no exponent
(that is, if −1 ≤ exponent(arg1) < Max width), then the exponent is not present.
Otherwise the literal is in standard form, with Exp width digits of exponent.

lt = proc (x, y: real) returns (bool)
le = proc (x, y: real) returns (bool)
ge = proc (x, y: real) returns (bool)
gt = proc (x, y: real) returns (bool)

effects These are the standard ordering relations.

equal = proc (x, y: real) returns (bool)
similar = proc (x, y: real) returns (bool)

effects Returns true if x and y are the same number; returns false otherwise.

II.5 Reals 125

copy = proc (x: real) returns (real)
effects Returns x.

transmit = proc (x: real) returns (real) signals (failure(string))
effects Returns approx’(x) where approx’ is the approximation function for the receiving

implementation of Argus or signals failure if this cannot be represented on the receiving
end.

II.6. Characters
char = data type is i2c, c2i, lt, le, ge, gt, equal, similar, copy, transmit

Overview

Type char provides the alphabet for text manipulation. Characters are immutable and atomic, and
form an ordered set. Every implementation must provide at least 128, but no more than 512,
characters; the first 128 characters are the ASCII characters in their standard order.

Operations i2c and c2i convert between ints and chars (using the ASCII coding for the first 128
characters). The smallest character corresponds to zero, and characters are numbered
sequentially up to char top, the integer corresponding to the largest character. This numbering
determines the ordering of the characters.

Printing ASCII characters (octal 40 through octal 176), other than single quote or backslash, can
be written as that character enclosed in single quotes. See Appendix I for the syntax of character
literals and tables of character escape sequences.

Operations

i2c = proc (x: int) returns (char) signals (illegal char)
effects Returns the character corresponding to x; signals illegal char if x is not in the range

[0, char top].

c2i = proc (c: char) returns (int)
effects Returns the integer corresponding to c (using the ASCII coding if c is an ASCII

character).

lt = proc (c1, c2: char) returns (bool)
le = proc (c1, c2: char) returns (bool)
ge = proc (c1, c2: char) returns (bool)
gt = proc (c1, c2: char) returns (bool)

effects These are the standard ordering relations, where the order is consistent with the
numbering of characters. That is, c1 < c2 just when c2i(c1) < c2i(c2).

equal = proc (c1, c2: char) returns (bool)
similar = proc (c1, c2: char) returns (bool)

effects Returns true if c1 and c2 are the same character, i.e., returns (c2i(c1) = c2i(c2)).

copy = proc (c1: char) returns (char)
effects Returns c1.

transmit = proc (c1: char) returns (char) signals (failure(string)
effects Returns c1. Signals failure only if c1 is not representable by the implementation on

the receiving end.

126 Built-in Types and Type Generators

II.7. Strings
string = data type is c2s, concat, append, substr, rest, size, empty, fetch, chars, indexs, indexc,

s2ac, ac2s, s2sc, sc2s, lt, le, ge, gt, equal, similar, copy, transmit

Overview

Type string is used for representing text. A string is an immutable and atomic tuple of zero or
more characters. The characters of a string are indexed sequentially starting from one. Strings
are lexicographically ordered based on the ordering for characters.

A string literal is written as a sequence of zero or more character representations enclosed in
double quotes. See Appendix I for a description of the character escape sequences that can be
used within string literals. No string can have a size greater than int max; however, an
implementation may restrict string lengths to a value less than int max. If the result of a string
operation would be a string containing more than the maximum number of characters, the
operation signals limits.

Operations

c2s = proc (c: char) returns (string)
effects Returns a string containing c as its only character.

concat = proc (s1, s2: string) returns (r: string) signals (limits)
effects Returns the concatenation of s1 and s2. That is, r[i]=s1[i] for i an index of s1 and

r[size(s1)+i]=s2[i] for i an index of s2. Signals limits if r would be too large for the
implementation.

append = proc (s: string, c: char) returns (r: string) signals (limits)
effects Returns a new string having the characters of s in order followed by c. That is,

r[size(s)+1] = c. Signals limits if the new string would be too large for the implementation.

substr = proc (s: string, at: int, cnt: int) returns (string) signals (bounds, negative size)
effects If cnt < 0, signals negative size. If at < 1 or at > size(s)+1, signals bounds.

Otherwise returns a string having the characters s[at], s[at+1], ... in that order; the new
string contains min(cnt, size−at+1) characters. For example,

substr ("abcdef", 2, 3) = "bcd"
substr ("abcdef", 2, 7) = "bcdef"
substr ("abcdef", 7, 1) = ""

Note that if min(cnt, size−at+1) = 0, substr returns the empty string.

rest = proc (s: string, i: int) returns (r: string) signals (bounds)
effects Signals bounds if i < 0 or i > size(s) + 1; otherwise returns a string whose first

character is s[i], whose second is s[i+1], ..., and whose size(r)th character is s[size(s)].
Note that if i = size(s)+1, rest returns the empty string.

size = proc (s: string) returns (int)
effects Returns the number of characters in s.

empty = proc (s: string) returns (bool)
effects Returns true if s is empty (contains no characters); otherwise returns false.

fetch = proc (s: string, i: int) returns (char) signals (bounds)
effects Signals bounds if i < 0 or i > size(s); otherwise returns the ith character of s.

chars = iter (s: string) yields (char)
effects Yields, in order, each character of s (i.e., s[1], s[2], ...).

II.7 Strings 127

indexs = proc (s1, s2: string) returns (int)
effects If s1 occurs as a substring in s2, returns the least index at which s1 occurs. Returns

0 if s1 does not occur in s2, and 1 if s1 is the empty string. For example,
indexs("abc", "abcbc") = 1
indexs("bc", "abcbc") = 2
indexs("", "abcde") = 1
indexs("bcb", "abcde") = 0

indexc = proc (c: char, s: string) returns (int)
effects If c occurs in s, returns the least index at which c occurs; returns 0 if c does not

occur in s.

s2ac = proc (s: string) returns (array[char])
effects Stores the characters of s as elements of a new array of characters, a. The low

bound of the array is 1, the size is size(s), and the ith element of the array is the ith
character of s, for 1 ≤ i ≤ size(s).

ac2s = proc (a: array[char]) returns (string)
effects This is the inverse of s2ac. The result is a string with characters in the same order

as in a. That is, the ith character of the string is the (i+array[char]$low(a)−1)th element
of a.

s2sc = proc (s: string) returns (sequence[char])
effects Transforms a string into a sequence of characters. The size of the sequence is

size(s). The ith element of the sequence is the ith character of s, for 1 ≤ i ≤ size(s).

sc2s = proc (s: sequence[char]) returns (string)
effects This is the inverse of s2sc. The result is a string with characters in the same order

as in s. That is, the ith character of the string is the ith element of s.

lt = proc (s1, s2: string) returns (bool)
le = proc (s1, s2: string) returns (bool)
ge = proc (s1, s2: string) returns (bool)
gt = proc (s1, s2: string) returns (bool)

effects These are the usual lexicographic ordering relations on strings, based on the
ordering of characters. For example,

"abc" < "aca"
"abc" < "abca"

equal = proc (s1, s2: string) returns (bool)
similar = proc (s1, s2: string) returns (bool)

effects Returns true if s1 and s2 are the same string; otherwise returns false.

copy = proc (s1: string) returns (string)
effects Returns s1.

transmit = proc (s1: string) returns (string) signals (failure(string))
effects Returns s1. Signals failure only if s1 is not representable on the receiving end.

128 Built-in Types and Type Generators

II.8. Sequences
sequence = data type [t: type] is new, e2s, fill, fill copy, replace, addh, addl, remh, reml, concat,

subseq, size, empty, fetch, bottom, top, elements, indexes, a2s, s2a,
equal, similar, copy, transmit

Overview

Sequences represent immutable tuples of objects of type t. The elements of the sequence can be
indexed sequentially from 1 up to the size of the sequence. Although a sequence is immutable,
the elements of the sequence can be mutable objects. The state of such mutable elements may
change; thus, a sequence object is atomic only if its elements are also atomic.

Sequences can be created by calling sequence operations and by means of the sequence
constructor, see Section 6.2.8.

Any operation call that attempts to access a sequence with an index that is not within the defined
range terminates with the bounds exception. The size of a sequence can be no larger than the
largest positive int (int max), but an implementation may restrict sequences to a smaller upper
bound. An attempt to construct a sequence which is too large results in a limits exception.

Operations

new = proc () returns (sequence[t])
effects Returns the empty sequence.

e2s = proc (elem: t) returns (sequence[t])
effects Returns a one-element sequence having elem as its only element.

fill = proc (cnt: int, elem: t) returns (sequence[t]) signals (negative size, limits)
effects If cnt < 0, signals negative size. If cnt is larger than the maximum sequence size

supported by the implementation, signals limits. Otherwise returns a sequence having
cnt elements each of which is elem.

fill copy = proc (cnt: int, elem: t) returns (sequence[t])
signals (negative size, limits, failure(string))

requires t has copy: proctype (t) returns (t) signals (failure(string)
effects If cnt < 0, signals negative size. If cnt is bigger than the maximum size of

sequences that the implementation supports, signals limits. Otherwise returns a new
sequence having cnt elements each of which is a copy of elem, as made by t$copy. Note
that t$copy is called cnt times. Any failure signal raised by t$copy is immediately
resignalled. This operation does not originate any failure signals by itself.

replace = proc (s: sequence[t], i: int, elem: t) returns (sequence[t]) signals (bounds)
effects If i < 1 or i > high(s), signals bounds. Otherwise returns a sequence with the same

elements as s, except that elem is in the ith position. For example,
replace(sequence[int]$[2,5], 1, 6) = sequence[int]$[6, 5]

addh = proc (s: sequence[t], elem: t) returns (r: sequence[t]) signals (limits)
effects Returns a sequence with the same elements as s followed by one additional

element, elem. That is, r[i]=s[i] for i an index of s, and r[size(s)+1]=elem. If the resulting
sequence would be larger than the implementation supports, signals limits.

addl = proc (s: sequence[t], elem: t) returns (r: sequence[t]) signals (limits)
effects Returns a sequence having elem as the first element followed by the elements of s

in order. That is, r[1]=elem and r[i]=s[i−1] for i = 2, ..., size(r). If the resulting sequence
would be larger than the implementation supports, signals limits.

remh = proc (s: sequence[t]) returns (r: sequence[t]) signals (bounds)
effects If s is empty, signals bounds. Otherwise returns a sequence having all elements of s

in order, except the last one. That is, size(r)=size(s)−1 and r[i]=s[i] for i = 1, ..., size(s)−1.

II.8 Sequences 129

reml = proc (s: sequence[t]) returns (r: sequence[t]) signals (bounds)
effects If s is empty, signals bounds. Otherwise returns a sequence containing all elements

of s in order, except the first one. That is, r[i]=s[i+1] for i = 1, ..., size(s)−1.

concat = proc (s1, s2: sequence[t]) returns (r: sequence[t]) signals (limits)
effects Returns the concatenation of s1 and s2; which is a sequence having the elements of

s1 followed by the elements of s2. That is, r[i]=s1[i] for i an index of s1 and
r[size(s1)+i]=s2[i] for i an index of s2. Signals limits if the resulting sequence would be
larger than the implementation supports.

subseq = proc (s: sequence[t], at, cnt: int) returns (sequence[t])
signals (bounds, negative size)

effects If cnt < 0, signals negative size. If at < 1 or at > size(s)+1, signals bounds.
Otherwise returns a sequence having the elements s[at], s[at+1], ... in that order; the
new sequence contains min(cnt, size−at+1) elements. Note that if min(cnt, size−at+1) =
0, subseq returns the empty sequence.

size = proc (s: sequence[t]) returns (int)
effects Returns the number of elements in s.

empty = proc (s: sequence[t]) returns (bool)
effects Returns true if s contains no elements; otherwise returns false.

fetch = proc (s: sequence[t], i: int) returns (t) signals (bounds)
effects If i < 1 or i > size(s), signals bounds. Otherwise returns the ith element of s.

bottom = proc (s: sequence[t]) returns (t) signals (bounds)
effects If s is empty, signals bounds. Otherwise returns s[1].

top = proc (s: sequence[t]) returns (t) signals (bounds)
effects If s is empty, signals bounds. Otherwise returns s[size(s)].

elements = iter (s: sequence[t]) yields (t)
effects Yields the elements of s in order (i.e., s[1], s[2], ...).

indexes = iter (s: sequence[t]) yields (int)
effects Yields the indexes of s from 1 to size(s).

a2s = proc (a: array[t]) returns (sequence[t])
effects Returns a sequence having the elements of a in the same order as in a.

s2a = proc (s: sequence[t]) returns (array[t])
effects Returns a new array with low bound 1 and having the elements of s in the same

order as in s.

equal = proc (s1, s2: sequence[t]) returns (bool) signals (failure(string))
requires t has equal: proctype (t, t) returns (bool) signals (failure(string))
effects Returns true if s1 and s2 have equal values as determined by t$equal. The effect of

this operation is equivalent to the following procedure body:
qt = sequence [t]
if qt$size(s1) ~= qt$size(s2) then return (false) end
for i: int in qt$indexes(s1) do

if s1[i] ~= s2[i] then return(false) end
resignal failure

end
return (true)

similar = proc (s1, s2: sequence[t]) returns (bool) signals (failure(string))
requires t has similar: proctype (t, t) returns (bool) signals (failure(string))
effects Returns true if s1 and s2 have similar values as determined by t$similar. Similar

works in the same way as equal, except that t$similar is used instead of t$equal.

130 Built-in Types and Type Generators

copy = proc (s: sequence[t]) returns (sequence[t]) signals (failure(string))
requires t has copy: proctype (t) returns (t) signals (failure(string))
effects Returns a sequence having as elements copies of the elements of s. The effect is

equivalent to that of the following procedure body:
qt = sequence[t]
y: qt := qt$new()
for e: t in qt$elements(s) do

y := qt$addh(y, t$copy(e)) resignal failure
end

return (y)

transmit = proc (s: sequence[t]) returns (sequence[t]) signals (failure(string))
requires t has transmit
effects Returns a sequence having as elements transmitted copies of the elements of s in

the same order. Sharing among elements is preserved. Signals failure if this cannot be
represented on the receiving end and also resignals any failures from t$transmit.

II.9. Arrays
array = data type [t: type] is create, new, predict, fill, fill copy, addh, addl, remh, reml,

set low, trim, store, fetch, bottom, top, empty, size, low, high, elements, indexes,
equal, similar, similar1, copy, copy1, transmit

Overview

Arrays are mutable objects that represent tuples of elements of type t that can grow and shrink
dynamically. Each array’s state consists of this tuple of elements and a low bound (or index). The
elements are indexed sequentially, starting from the low bound. Each array also has an identity
as an object.

Arrays can be created by calling array operations create, new, fill, fill copy, and predict. They can
also be created by means of the array constructor, which specifies the array low bound, and an
arbitrary number of initial elements, see Section 6.2.9.

Operations low, high, and size return the current low and high bounds and size of the array. For
array a, size(a) is the number of elements in a, which is zero if a is empty. These are related by
the equation: high(a) = low(a) + size(a) − 1.

For any index i between the low and high bound of an array, there is a defined element, a[i]. The
bounds exception is raised when an attempt is made to access an element outside the defined
range. Any array must have a low bound, a high bound, and a size which are all legal integers.
An implementation may restrict these to some smaller range of integers. A call that would lead to
an array whose low or high bound or size is outside the defined range terminates with a limits
exception.

Operations

create = proc (lb: int) returns (array[t]) signals (limits)
effects Returns a new, empty array with low bound lb. Limits occurs if the resulting array

would not be supported by the implementation.

new = proc () returns (array[t])
effects Returns a new, empty array with low bound 1. Equivalent to create(1).

II.9 Arrays 131

predict = proc (lb, cnt: int) returns (array[t]) signals (limits)
effects Returns a new, empty array with low bound lb. The absolute value of cnt is a

prediction of how many addhs or addls are likely to be performed on this new array. If cnt
> 0, addhs are expected; otherwise addls are expected. These operations may execute
faster than if the array had been produced by calling create. Limits occurs if the resulting
array would not be supported by the implementation because of its initial low bound (not
because of its predicted size or because of the predicted high or low bound).

fill = proc (lb, cnt: int, elem: t) returns (array[t]) signals (negative size, limits)
effects If cnt < 0, signals negative size. Returns a new array with low bound lb and size

cnt, and with elem as each element; if this new array would not be supported by the
implementation, signals limits.

fill copy = proc (lb, cnt: int, elem: t) returns (array[t])
signals (negative size, limits, failure(string))

requires t has copy: proctype (t) returns (t) signals (failure(string))
effects The effect is like fill except that elem is copied cnt times. If cnt < 0, signals

negative size. Normally returns a new array with low bound lb and size cnt and with
each element a copy of elem, as produced by t$copy. Any failure signal raised by t$copy
is immediately resignalled. This operation does not originate any failure signals by itself.
However, if the new array cannot be represented by the implementation, signals limits.

addh = proc (a: array[t], elem: t) signals (limits)
modifies a.
effects If extending a on the high end causes the high bound or size of a to be outside the

range supported by the implementation, signals limits. Otherwise extends a by 1 in the
high direction and stores elem as the new element. That is, a [high(a)+1] = elem.post pre

addl = proc (a: array[t], elem: t) signals (limits)
modifies a.
effects If extending a on the low end causes the low bound or size of a to be outside the

range supported by the implementation, signals limits. Otherwise extends a by 1 in the
low direction and stores elem as the new element. That is, a [low(a)−1] = elem.post pre

remh = proc (a: array[t]) returns (t) signals (bounds)
modifies a.
effects If a is empty, signals bounds. Otherwise shrinks a by removing its high element and

returning the removed element. That is, high(a) = high(a) − 1.post pre

reml = proc (a: array[t]) returns (t) signals (bounds)
modifies a.
effects If a is empty, signals bounds. Otherwise shrinks a by removing its low element and

returning the removed element. That is, low(a) = low(a) + 1.post pre

set low = proc (a: array[t], lb: int) signals (limits)
modifies a.
effects Modifies the low and high bounds of a; the new low bound of a is lb and the new

high bound is high(a) = high(a)+lb−low(a). If the new low (or high) bound is notpost pre pre
supported by the implementation, signals limits and does not modify a.

trim = proc (a: array[t], lb, cnt: int) signals (negative size, bounds)
modifies a.
effects If cnt < 0, signals negative size. If lb < low(a) or lb > high(a)+1, signals bounds.

Otherwise modifies a by removing all elements with index < lb or greater than or equal to
lb+cnt; the new low bound is lb. For example, if a = array[int]$[1,2,3,4,5], then:

trim(a, 2, 2) results in a having the value of array[int]$[2: 2, 3]
trim(a, 4, 3) results in a having the value of array[int]$[4: 4, 5]

132 Built-in Types and Type Generators

store = proc (a: array[t], i: int, elem: t) signals (bounds)
modifies a.
effects If i < low(a) or i > high(a), signals bounds; otherwise makes elem the element of a

with index i.

fetch = proc (a: array[t], i: int) returns (t) signals (bounds)
effects If i < low(a) or i > high(a), signals bounds; otherwise returns the element of a with

index i.

bottom = proc (a: array[t]) returns (t) signals (bounds)
effects If a is empty, signals bounds; otherwise returns a[low(a)].

top = proc (a: array[t]) returns (t) signals (bounds)
effects If a is empty, signals bounds; otherwise returns a[high(a)].

empty = proc (a: array[t]) returns (bool)
effects Returns true if a contains no elements; otherwise returns false.

size = proc (a: array[t]) returns (int)
effects Returns a count of the number of elements of a.

low = proc (a: array[t]) returns (int)
effects Returns the low bound of a.

high = proc (a: array[t]) returns (int)
effects Returns the high bound of a.

elements = iter (a: array[t]) yields (t) signals (failure(string))
effects Yields the elements of a, exactly once for each index, from the low bound to the high

bound (i.e., bottom(a), ..., top(a)). The elements are fetched one at a time, usingpre pre
the indexes that were legal at the start of the call. If, during the iteration, a is modified so
that fetching at a previously legal index signals bounds, then the iterator signals failure
with the string "bounds". The iterator is divisible at yields.

indexes = iter (a: array[t]) yields (int)
effects Yields the indexes of a from the low bound of a to the high bound of a . Notepre pre

that indexes is unaffected by any modifications done by the loop body. It is divisible at
yields.

equal = proc (a1, a2: array[t]) returns (bool)
effects Returns true if a1 and a2 refer to the same array object; otherwise returns false.

similar = proc (a1, a2: array[t]) returns (bool) signals (failure(string))
requires t has similar: proctype (t, t) returns (bool) signals (failure(string))
effects Returns true if a1 and a2 have the same low and high bounds and if their elements

are pairwise similar as determined by t$similar. This effect of this operation is equivalent
to the following procedure body (except that this operation is only divisible at calls to
t$similar):

at = array[t]
if at$low(a1) ~= at$low(a2) cor at$size(a1) ~= at$size(a2)

then return (false)
end

for i: int in at$indexes(a1) do
if ~t$similar(a1[i], a2[i]) then return (false) end

resignal failure
except when bounds: signal failure("bounds") end

end
return (true)

II.9 Arrays 133

similar1 = proc (a1, a2: array[t]) returns (bool) signals (failure(string))
requires t has equal: proctype (t, t) returns (bool) signals (failure(string))
effects Returns true if a1 and a2 have the same low and high bounds and if their elements

are pairwise equal as determined by t$equal. This operation works the same way as
similar, except that t$equal is used instead of t$similar.

copy = proc (a: array[t]) returns (b: array[t]) signals (failure(string))
requires t has copy: proctype (t) returns (t) signals (failure(string))
effects Returns a new array b with the same low and high bounds as a and such that each

element b[i] contains t$copy(a[i]). The effect of this operation is equivalent to the
following body (except that it is only divisible at calls to t$copy):

b: array[t] := array[t]$copy1(a)
for i: int in array[t]$indexes(a) do

b[i] := t$copy(a[i])
resignal failure
except when bounds: signal failure("bounds") end

end
return (b)

copy1 = proc (a: array[t]) returns (b: array[t])
effects Returns a new array b with the same low and high bounds as a and such that each

element b[i] contains the same element as a[i].

transmit = proc (a: array[t]) returns (b: array[t]) signals (failure(string))
requires t has transmit
effects Returns a new array b with the same low and high bounds as a and such that each

element b[i] contains a transmitted copy of a[i]. Sharing among the elements of a is
preserved in b. Signals failure if b cannot be represented on the receiving end or if
fetching an element at a legal index of a causes a bounds exception and resignals anypre
failure signals raised by t$transmit.

II.10. Atomic Arrays
atomic array = data type [t: type] is create, new, predict, fill, fill copy, addh, addl, remh, reml,

set low, trim, store, fetch, bottom, top, empty, size, low, high, elements, indexes,
aa2a, a2aa, equal, similar, similar1, copy, copy1, transmit,
test and read, test and write, can read, can write, read lock, write lock

Overview

Atomic arrays are mutable atomic objects that represent tuples of elements of type t that can
grow and shrink dynamically. Each atomic array’s (sequential) state consists of this tuple of
elements and a low bound (or index). The elements are indexed sequentially, starting from the
low bound. Each atomic array also has an identity as an object.

Atomic arrays can be created by calling atomic array operations create, new, fill, fill copy, and
predict. They can also be created by means of the atomic array constructor, which specifies the
array low bound, and an arbitrary number of initial elements, see Section 6.2.9.

Operations low, high, and size return the current low and high bounds and size of the
atomic array. For an atomic array a, size(a) is the number of elements in a, which is zero if a is
empty. These are related by the equation: high(a) = low(a) + size(a) − 1.

134 Built-in Types and Type Generators

For any index i between the low and high bound of an atomic array, there is a defined element,
a[i]. The bounds exception is raised when an attempt is made to access an element outside the
defined range. Any atomic array must have a low bound, a high bound, and a size which are all
legal integers. An implementation may restrict these to some smaller range of integers. A call
that would lead to an atomic array whose low or high bound or size is outside the defined range
terminates with a limits exception. limits exception.

Atomic arrays use read/write locking to achieve atomicity. The locking rules are described in
Section 2.2.2. It is an error if a process that is not in an action attempts to test or obtain a lock;
when this happens the guardian running the process will crash. As defined below, the only
operation that (in the normal case) does not attempt to test or obtain a lock is the equal operation.

Operations

create = proc (lb: int) returns (a:atomic array[t]) signals (limits)
effects Returns a new, empty atomic array a with low bound lb. Limits occurs if the

resulting atomic array would not be supported by the implementation. The caller obtains
a read lock on a.

new = proc () returns (atomic array[t])
effects Equivalent to create(1).

predict = proc (lb, cnt: int) returns (a: atomic array[t]) signals (limits)
effects Returns a new, empty atomic array a with low bound lb. The caller obtains a read

lock on a. This is essentially the same as create(lb), except that the absolute value of cnt
is a prediction of how many addhs or addls are likely to be performed on this new
atomic array. If cnt > 0, addhs are expected; otherwise addls are expected. These
operations may execute faster than if the atomic array had been produced by calling
create. Limits occurs if the resulting atomic array would not be supported by the
implementation because of its initial low bound (not because of its predicted size or
because of the predicted high or low bound).

fill = proc (lb, cnt: int, elem: t) returns (atomic array[t]) signals (negative size, limits)
effects If cnt < 0, signals negative size. Returns a new atomic array with low bound lb and

size cnt, and with elem as each element; if this new atomic array would not be supported
by the implementation, signals limits. The caller obtains a read lock on the result.

fill copy = proc (lb, cnt: int, elem: t) returns (atomic array[t])
signals (negative size, limits, failure(string))

requires t has copy: proctype (t) returns (t) signals (failure(string))
effects The effect is like fill except that elem is copied cnt times. If cnt < 0, signals

negative size. Normally returns a new array with low bound lb and size cnt and with
each element a copy of elem, as produced by t$copy. The caller obtains a read lock on
the result. Any failure signal raised by t$copy is immediately resignalled. This operation
does not originate any failure signals by itself. If the new array cannot be represented by
the implementation, signals limits.

addh = proc (a: atomic array[t], elem: t) signals (limits)
modifies a.
effects Obtains a write lock on a. If extending a on the high end would cause the high

bound or size of a to be outside the range supported by the implementation, then signals
limits. Otherwise extends a by 1 in the high direction, and stores elem as the new
element. That is, a [high(a)+1] = elem.post pre

II.10 Atomic Arrays 135

addl = proc (a: atomic array[t], elem: t) signals (limits)
modifies a.
effects Obtains a write lock on a. If extending a on the low end would causes the low bound

or size of a to be outside the range supported by the implementation, then signals limits.
Otherwise extends a by 1 in the low direction, and stores elem as the new element. That
is, a [low(a)−1] = elem.post pre

remh = proc (a: atomic array[t]) returns (t) signals (bounds)
modifies a.
effects Obtains a write lock on a. If a is empty, signals bounds. Otherwise shrinks a by

removing its high element, and returns the removed element. That is, high(a) =post
high(a) − 1.pre

reml = proc (a: atomic array[t]) returns (t) signals (bounds)
modifies a.
effects Obtains a write lock on a. If a is empty, signals bounds. Otherwise shrinks a by

removing its low element, and returns the removed element. That is, low(a) =post
low(a) + 1.pre

set low = proc (a: atomic array[t], lb: int) signals (limits)
modifies a.
effects Obtains a write lock on a. If the new low (or high) bound would not be supported by

the implementation, then signals limits. Otherwise, modifies the low and high bounds of
a; the new low bound of a is lb and the new high bound is high(a) =post
high(a)+lb−low(a).pre pre

trim = proc (a: atomic array[t], lb, cnt: int) signals (negative size, bounds)
modifies a.
effects If cnt < 0, signals negative size and does not obtain any locks. Otherwise obtains a

write lock on a. If lb < low(a) or lb > high(a)+1, signals bounds. Otherwise, modifies a by
removing all elements with index < lb or greater than or equal to lb+cnt; the new low
bound is lb. For example, if a = atomic array[int]$[1,2,3,4,5], then:

trim(a, 2, 2) results in a having value atomic array[int]$[2: 2, 3]
trim(a, 4, 3) results in a having value atomic array[int]$[4: 4, 5]

store = proc (a: atomic array[t], i: int, elem: t) signals (bounds)
modifies a.
effects Obtains a write lock on a. If i < low(a) or i > high(a), signals bounds; otherwise

makes elem the element of a with index i.

fetch = proc (a: atomic array[t], i: int) returns (t) signals (bounds)
effects If i < low(a) or i > high(a), signals bounds; otherwise returns the element of a with

index i. Always obtains a read lock on a.

bottom = proc (a: atomic array[t]) returns (t) signals (bounds)
effects If a is empty, signals bounds; otherwise returns a[low(a)]. Always obtains a read

lock on a.

top = proc (a: atomic array[t]) returns (t) signals (bounds)
effects If a is empty, signals bounds; otherwise returns a[high(a)]. Always obtains a read

lock on a.

empty = proc (a: atomic array[t]) returns (bool)
effects Returns true if a contains no elements, returns false otherwise. In either case

obtains a read lock on a.

size = proc (a: atomic array[t]) returns (int)
effects Returns a count of the number of elements of a, obtains a read lock on a.

136 Built-in Types and Type Generators

low = proc (a: atomic array[t]) returns (int)
effects Returns the low bound of a, obtains a read lock on a

high = proc (a: atomic array[t]) returns (int)
effects Returns the high bound of a, obtains a read lock on a.

elements = iter (a: atomic array[t]) yields (t) signals (failure(string))
effects Obtains a read lock on a and yields the elements of a, each exactly once for each

index, from the low bound to the high bound (i.e., bottom(a), ..., top(a)). Thepre pre
elements are fetched one at a time, using the indexes that were legal at the start of the
call. If, during the iteration, a is modified so that fetching at a previously legal index
signals bounds, then the iterator signals failure with the string "bounds". The iterator is
divisible at yields.

indexes = iter (a: atomic array[t]) yields (int)
effects Obtains a read lock on a, then yields the indexes of a from the low bound of a topre

the high bound of a . Note that indexes is unaffected by any modifications done by thepre
loop body. It is divisible at yields.

aa2a = proc (aa: atomic array[t]) returns (array[t])
effects Obtains a read lock on aa and returns an array a with the same (sequential) state.

a2aa = proc (array[t]) returns (aa: atomic array[t])
effects Returns an atomic array aa with the same state as a. Obtains a read lock on aa.

equal = proc (a1, a2: atomic array[t]) returns (bool)
effects Returns true if a1 and a2 refer to the same atomic array object; otherwise returns

false. No locks are obtained.

similar = proc (a1, a2: atomic array[t]) returns (bool) signals (failure(string))
requires t has similar: proctype (t, t) returns (bool) signals (failure(string))
effects Returns true if a1 and a2 have the same low and high bounds and if their elements

are pairwise similar as determined by t$similar. See the description of the similar
operation of array for an equivalent body of code. This operation is divisible at calls to
t$similar. Read locks are obtained on a1 and a2, in that order.

similar1 = proc (a1, a2: atomic array[t]) returns (bool) signals (failure(string))
requires t has equal: proctype (t, t) returns (bool) signals (failure(string))
effects Returns true if a1 and a2 have the same low and high bounds and if their elements

are pairwise equal as determined by t$equal. This operation works the same way as
similar, except that t$equal is used instead of t$similar. Read locks are obtained on a1
and a2, in that order.

copy = proc (a: atomic array[t]) returns (b: atomic array[t]) signals (failure(string))
requires t has copy: proctype (t) returns (t) signals (failure(string))
effects Returns a new atomic array b with the same low and high bounds as a and such

that each element b[i] contains t$copy(a[i]). See the description of the copy operation of
array for an equivalent body of code. This operation is divisible at calls to t$copy, and
obtains read locks on a and b.

copy1 = proc (a: atomic array[t]) returns (b: atomic array[t])
effects Returns a new atomic array b with the same low and high bounds as a and such

that each element b[i] contains the same element as a[i]. Read locks are obtained on a
and b.

II.10 Atomic Arrays 137

transmit = proc (a: atomic array[t]) returns (b: atomic array[t]) signals (failure(string))
requires t has transmit
effects Returns a new array b with the same low and high bounds as a and such that each

element b[i] contains a transmitted copy of a[i]. Read locks are obtained on a and b.
Sharing among the elements of a is preserved in b. Signals failure if b cannot be
represented on the receiving end or if fetching an element at a legal index of a causespre
a bounds exception and resignals any failure signals raised by t$transmit.

test and read = proc (aa: atomic array[t]) returns (bool)
effects Tries to obtain a read lock on aa. If the lock is obtained, returns true; otherwise no

lock is obtained and the operation returns false. The operation does not "wait" for a lock.
Even if the executing action "knows" that a lock could be obtained, false may be
returned. Even if false is returned, a subsequent attempt to obtain a read lock might
succeed without waiting.

test and write = proc (aa: atomic array[t]) returns (bool)
effects Tries to obtain a write lock on aa. If the lock is obtained, returns true; otherwise no

lock is obtained and the operation returns false. The operation does not "wait" for a lock.
Even if the executing action "knows" that a lock could be obtained, false may be
returned. Even if false is returned, a subsequent attempt to obtain a write lock might
succeed without waiting.

can read = proc (aa: atomic array[t]) returns (bool)
effects Returns true if a read lock could be obtained on aa without waiting, otherwise

returns false. No lock is actually obtained. Even if the executing action "knows" that a
lock could be obtained, false may be returned. Since some concurrent action may obtain
or release a lock on an atomic array at any time, the information returned is unreliable:
even if true is returned, a subsequent attempt to obtain the lock may require waiting; and
even if false is returned, a subsequent attempt to obtain a read lock might succeed
without waiting.

can write = proc (aa: atomic array[t]) returns (bool)
effects Returns true if a write lock could be obtained on aa without waiting, otherwise

returns false. No lock is actually obtained. Even if the executing action "knows" that a
lock could be obtained, false may be returned. Since some concurrent action may obtain
or release a lock on an atomic array at any time, the information returned is unreliable:
even if true is returned, a subsequent attempt to obtain the lock may require waiting; and
even if false is returned, a subsequent attempt to obtain a write lock might succeed
without waiting.

read lock = proc (aa: atomic array[t])
effects Obtains a read lock on aa.

write lock = proc (aa: atomic array[t])
effects Obtains a write lock on aa.

138 Built-in Types and Type Generators

II.11. Structs
struct = data type [n : t , ..., n : t] is replace n , ..., replace n , get n , ..., get n , s2r, r2s,1 1 k k 1 k 1 k

equal, similar, copy, transmit

Overview

A struct (short for "structure") is an immutable collection of one or more named objects. The
names are called selectors, and the objects are called components. Different components may
have different types.

An instantiation of struct has the form:
struct [field spec, ...]

where
field spec ::= name, ... : type actual

(see Appendix I). Selectors must be unique within an instantiation (ignoring capitalization), but the
ordering and grouping of selectors is unimportant. For example, the following name the same
type:

struct[last, first, middle: string, age: int]
struct[last: string, age: int, first, middle: string]

A struct is created using a struct constructor, see Section 6.2.10.

For purposes of the certain operations, the the names of the selectors are ordered
lexicographically. Lexicographic ordering of the selectors is the alphabetic ordering of the selector
names written in lower case (based on the ASCII ordering of characters).

Much as with sequences, a struct is immutable but may contain mutable objects; therefore, a
struct is atomic only if all its components are atomic.

In the following operation descriptions, let st = struct[n : t , ..., n : t].1 1 k k

Operations

replace n = proc (s: st, e: t) returns (st)i i
effects Returns a struct object whose components are those of s except that component ni

is e. There is a replace operation for each selector.

get n = proc (s: st) returns (t)i i
effects Returns the component of s whose selector is n . There is a get operation for eachi

selector.

s2r = proc (s: st) returns (rt)
effects Here rt is a record type whose components have the same selectors and types as st.

Returns a new record object whose components are those of s.

r2s = proc (r: rt) returns (st)
effects Here rt is a record type whose components have the same selectors and types as st.

Returns a struct object whose components are the corresponding components of r.

equal = proc (s1, s2: st) returns (bool) signals (failure(string))
requires each t has equal: proctype (t , t) returns (bool) signals (failure(string))i i i
effects Returns true if s1 and s2 contain equal objects for each component as determined

by the t $equal operations. Any failure signal is immediately resignalled. This operationi
does not itself originate any failure signal. The comparison is done in lexicographic order
of the selectors; if any comparison returns false, false is returned immediately.

II.11 Structs 139

similar = proc (s1, s2: st) returns (bool) signals (failure(string))
requires each t has similar: proctype (t , t) returns (bool) signals (failure(string))i i i
effects Returns true if s1 and s2 contain similar objects for each component as determined

by the t $similar operations. Any failure signal is immediately resignalled. This operationi
does not itself originate any failure signal. The comparison is done in lexicographic order
of the selectors; if any comparison returns false, false is returned immediately.

copy = proc (s: st) returns (st) signals (failure(string))
requires each t has copy: proctype (t) returns (t) signals (failure(string))i i i
effects Returns a struct containing a copy of each component of s; copies are obtained by

calling the t $copy operations. Any failure signal is immediately resignalled. Thisi
operation does not itself originate any failure signal. Copying is done in lexicographic
order of the selectors.

transmit = proc (s: st) returns (st) signals (failure(string))
requires each t has transmiti
effects Returns a struct containing a transmitted copy of each component of s. Sharing is

preserved among the components of s. Any failure signal from t $transmit isi
immediately resignalled. This operation does not itself originate any failure signal.

II.12. Records
record = data type [n : t , ..., n : t] is r gets r, r gets s, set n , ..., set n , get n , ..., get n ,1 1 k k 1 k 1 k

equal,similar, similar1, copy, copy1, transmit

Overview

A record is a mutable collection of one or more named objects. The names are called selectors,
and the objects are called components. Different components may have different types. A record
also has an identity as an object.

An instantiation of record has the form:
record [field spec , ...]

where
field spec ::= name, ... : type actual

(see Appendix I). Selectors must be unique within an instantiation (ignoring capitalization), but the
ordering and grouping of selectors is unimportant. For example, the following name the same
type:

record[last, first, middle: string, age: int]
record[last: string, age: int, first, middle: string]

A record is created using a record constructor, see Section 6.2.11.

For purposes of the certain operations, the the names of the selectors are ordered
lexicographically. Lexicographic ordering of the selectors is the alphabetic ordering of the selector
names written in lower case (based on the ASCII ordering of characters).

In the following definitions of record operations, let rt = record[n : t , ..., n : t].1 1 k k

Operations

r gets r = proc (r1, r2: rt)
modifies r1.
effects Sets each component of r1 to be the corresponding component of r2.

140 Built-in Types and Type Generators

r gets s = proc (r: rt, s: st)
modifies r.
effects Here st is a struct type whose components have the same selectors and types as rt.

Sets each component of r to be the corresponding component of s.

set n = proc (r: rt, e: t)i i
modifies r.
effects Modifies r by making the component whose selector is n be e. There is a seti

operation for each selector.

get n = proc (r: rt) returns (t)i i
effects Returns the component of r whose selector is n . There is a get operation for eachi

selector.

equal = proc (r1, r2: rt) returns (bool)
effects Returns true if r1 and r2 are the same record object; otherwise returns false.

similar = proc (r1, r2: rt) returns (bool) signals (failure(string))
requires each t has similar: proctype (t , t) returns (bool) signals (failure(string))i i i
effects Returns true if r1 and r2 contain similar objects for each component as determined

by the t $similar operations. Any failure signal is immediately resignalled. This operationi
does not itself originate any failure signal. The comparison is done in lexicographic order
of the selectors; if any comparison returns false, false is returned immediately.

similar1 = proc (r1, r2: rt) returns (bool) signals (failure(string))
requires each t has equal: proctype (t , t) returns (bool) signals (failure(string))i i i
effects Returns true if r1 and r2 contain equal objects for each component as determined by

the t $equal operations. Any failure signal is immediately resignalled. This operationi
does not itself originate any failure signal. The comparison is done in lexicographic order
of the selectors; if any comparison returns false, false is returned immediately.

copy = proc (r: rt) returns (rt) signals (failure(string))
requires each t has copy: proctype (t) returns (t) signals (failure(string))i i i
effects Returns a new record obtained by performing copy1(r) and then replacing each

component with a copy of the corresponding component of r. Copies are obtained by
calling the t $copy operations. Any failure signal is immediately resignalled. Thisi
operation does not itself originate any failure signal. Copying is done in lexicographic
order of the selectors.

copy1 = proc (r: rt) returns (rt)
effects Returns a new record containing the components of r as its components.

transmit = proc (r: rt) returns (rt) signals (failure(string))
requires each t has transmiti
effects Returns a new record containing a transmitted copy of each component of r.

Sharing is preserved among the components of r. Any failure signal from t $transmit isi
immediately resignalled. This operation does not itself originate any failure signal.

II.12 Records 141

II.13. Atomic Records
atomic record = data type [n : t , ..., n : t] is ar gets ar, set n , ..., set n , get n , ..., get n ,1 1 k k 1 k 1 k

ar2r, r2ar, equal,similar, similar1, copy, copy1, transmit,
test and read, test and write, can read, can write, read lock, write lock

Overview

An atomic record is a mutable atomic collection of one or more named objects. The names are
called selectors, and the objects are called components. Different components may have different
types. An atomic record also has an identity as an object.

An instantiation of atomic record has the form:
atomic record [field spec , ...]

where
field spec ::= name, ... : type spec

(see Appendix I). Selectors must be unique within an instantiation (ignoring capitalization), but the
ordering and grouping of selectors is unimportant. For example, the following name the same
type:

atomic record[last, first, middle: string, age: int]
atomic record[last: string, age: int, first, middle: string]

An atomic record is created using a atomic record constructor, see Section 6.2.11.

For purposes of the certain operations, the the names of the selectors are ordered
lexicographically. Lexicographic ordering of the selectors is the alphabetic ordering of the selector
names written in lower case (based on the ASCII ordering of characters).

Atomic records use read/write locking to achieve atomicity. The locking rules are described in
Section 2.2.2. It is an error if a process that is not in an action attempts to test or obtain a lock;
when this happens the guardian running the process will crash. As defined below, the only
operation that (in the normal case) does not attempt to test or obtain a lock is the equal operation.

In the following, let art = atomic record[n : t , ..., n : t].1 1 k k

Operations

ar gets ar = proc (r1, r2: art)
modifies r1.
effects Obtains a write lock on r1 and a read lock on r2, then sets each component of r1 to

be the corresponding component of r2.

get n = proc (r: art) returns (t)i i
effects Obtains a read lock on r and returns the component of r whose selector is n . Therei

is a get operation for each selector.

set n = proc (r: art, e: t)i i
modifies r.
effects Obtains a write lock on r and modifies r by making the component whose selector is

n be e. There is a set operation for each selector.i

ar2r = proc (ar: art) returns (r: art)
effects Obtains a read lock on ar and returns a record r with the same state.

r2ar = proc (r: art) returns (ar: art)
effects returns an atomic record ar with the same state as r. Obtains a read lock on ar.

142 Built-in Types and Type Generators

equal = proc (r1, r2: art) returns (bool)
effects Returns true if r1 and r2 are the very same atomic record object; otherwise returns

false. No locks are obtained.

similar = proc (r1, r2: art) returns (bool) signals (failure(string))
requires each t has similar: proctype (t , t) returns (bool) signals (failure(string))i i i
effects Obtains a read lock on r1, then a read lock on r2; then compares corresponding

components from r1 and r2 using the t $similar operations. Any failure signal isi
immediately resignalled. This operation does not itself originate any failure signal. The
comparison is done in lexicographic order of the selectors; if any comparison returns
false, false is returned immediately. If all comparisons return true, returns true.

similar1 = proc (r1, r2: art) returns (bool) signals (failure(string))
requires each t has equal: proctype (t , t) returns (bool) signals (failure(string))i i i
effects This operation is the same as similar, except that t $equal is used instead ofi

t $similar.i

copy = proc (r: art) returns (res: art) signals (failure(string))
requires each t has copy: proctype (t) returns (t) signals (failure(string))i i i
effects Obtains a read lock on r, then returns a new atomic record res obtained by

performing copy1(r) and then replacing each component with a copy of the corresponding
component of r. Copies are obtained by calling the t $copy operations. Any failure signali
is immediately resignalled. This operation does not itself originate any failure signal.
Copying is done in lexicographic order of the selectors. A read lock is also obtained on
the new atomic record res.

copy1 = proc (r: art) returns (res: art)
effects Obtains a read lock on r, then returns a new atomic record res containing the

components of r as its components. A read lock is also obtained on the new
atomic record res.

transmit = proc (ar: art) returns (art) signals (failure(string))
requires each t has transmiti
effects Returns a new atomic record containing a transmitted copy of each component of

ar. Sharing is preserved among the components of ar. A read lock is obtained on ar and
the new atomic array. Any failure signal from t $transmit is immediately resignalled.i
This operation does not itself originate any failure signal.

test and read = proc (ar: art) returns (bool)
effects Tries to obtain a read lock on ar. If the lock is obtained, returns true; otherwise no

lock is obtained and the operation returns false. The operation does not "wait" for a lock.
Even if the executing action "knows" that a lock could be obtained, false may be
returned. Even if false is returned, a subsequent attempt to obtain a read lock might
succeed without waiting.

test and write = proc (ar: art) returns (bool)
effects Tries to obtain a write lock on ar. If the lock is obtained, returns true; otherwise no

lock is obtained and the operation returns false. The operation does not "wait" for a lock.
Even if the executing action "knows" that a lock could be obtained, false may be
returned. Even if false is returned, a subsequent attempt to obtain a write lock might
succeed without waiting.

II.13 Atomic Records 143

can read = proc (ar: art) returns (bool)
effects Returns true if a read lock could be obtained on ar without waiting, otherwise returns

false. No lock is actually obtained. Even if the executing action "knows" that a lock
could be obtained, false may be returned. Since some concurrent action may obtain or
release a lock on an atomic record at any time, the information returned is unreliable:
even if true is returned, a subsequent attempt to obtain the lock may require waiting; and
even if false is returned, a subsequent attempt to obtain a read lock might succeed
without waiting.

can write = proc (ar: art) returns (bool)
effects Returns true if a write lock could be obtained on ar without waiting, otherwise returns

false. No lock is actually obtained. Even if the executing action "knows" that a lock
could be obtained, false may be returned. Since some concurrent action may obtain or
release a lock on an atomic record at any time, the information returned is unreliable:
even if true is returned, a subsequent attempt to obtain the lock may require waiting; and
even if false is returned, a subsequent attempt to obtain a write lock might succeed
without waiting.

read lock = proc (ar: art)
effects Obtains a read lock on ar.

write lock = proc (ar: art)
effects Obtains a write lock on ar.

II.14. Oneofs
oneof = data type[n : t , ..., n : t] is make n , ..., make n , is n , ..., is n , value n , ..., value n ,1 1 k k 1 k 1 k 1 k

o2v, v2o, equal, similar, copy, transmit

Overview

A oneof is a tagged, discriminated union; that is, a labeled object, to be thought of as "one of" a
set of alternatives. The label is called the tag part, and the object is called the value (or data part).

An instantiation of oneof has the form:
oneof [field spec , ...]

where (as for records)
field spec ::= name, ... : type actual

(see Appendix I). Tags must be unique within an instantiation (ignoring capitalization), but the
ordering and grouping of tags is unimportant.

Although there are oneof operations for decomposing oneof objects, they are usually decomposed
via the tagcase statement, which is discussed in Section 10.14.

A oneof is immutable but may contain a mutable object; therefore, a oneof is atomic only if all of
the types of its data parts are atomic.

In the following, let ot = oneof[n : t , ..., n : t].1 1 k k

Operations

make n = proc (e: t) returns (ot)i i
effects Returns a oneof object with tag n and value e. There is a make operation for eachi

selector.

is n = proc (o: ot) returns (bool)i
effects Returns true if the tag of o is n , else returns false. There is an is operation fori

each selector.

144 Built-in Types and Type Generators

value n = proc (o: ot) returns (t) signals (wrong tag)i i
effects If the tag of o is n , returns the value of o; otherwise signals wrong tag. There is ai

value operation for each selector.

o2v = proc (o: ot) returns (vt)
effects Here vt is a variant type with the same selectors and types as ot. Returns a new

variant object with the same tag and value as o.

v2o = proc (v: vt) returns (ot)
effects Here vt is a variant type with the same selectors and types as ot. Returns a oneof

object with the same tag and value as v.

equal = proc (o1, o2: ot) returns (bool) signals (failure(string))
requires each t has equal: proctype (t , t) returns (bool) signals (failure(string))i i i
effects Returns true if o1 and o2 have the same tag and equal values as determined by the

equal operation of their data part’s type. Any failure signal is immediately resignalled.
This operation does not itself originate any failure signal. This operation is divisible at the
call of t $equal.i

similar = proc (o1, o2: ot) returns (bool) signals (failure(string))
requires each t has similar: proctype (t , t) returns (bool) signals (failure(string))i i i
effects Returns true if o1 and o2 have the same tag and similar values as determined by

the similar operation of their value’s type. Any failure signal is immediately resignalled.
This operation does not itself originate any failure signal. This operation is divisible at the
call of t $similar.i

copy = proc (o: ot) returns (ot) signals (failure(string))
requires each t has copy: proctype (t) returns (t) signals (failure(string))i i i
effects Returns a oneof object with the same tag as o and containing as a value a copy of

o’s value; the copy is made using the copy operation of the value’s type. Any failure
signal is immediately resignalled. This operation does not itself originate any failure
signal. This operation is divisible at the call of t $copy.i

transmit = proc (o: ot) returns (ot) signals (failure(string))
requires each t has transmiti
effects Returns a oneof object with the same tag as o and containing as a value a

transmitted copy of o’s value. Any failure signal is immediately resignalled. This
operation does not itself originate any failure signal.

II.15. Variants
variant = data type [n : t , ..., n : t] is make n , ..., make n , change n , ..., change n ,1 1 k k 1 k 1 k

is n , ..., is n , value n , ..., value n , v gets v, v gets o,1 k 1 k
equal, similar, similar1, copy, copy1, transmit

Overview

A variant is a mutable, tagged, discriminated union. Its state is a oneof, that is, a labeled object,
to be thought of as "one of" a set of alternatives. The label is called the tag part, and the object is
called the value (or data part). A variant also has an identity as an object.

An instantiation of variant has the form:
variant [field spec , ...]

where
field spec ::= name, ... : type actual

(see Appendix I). Tags must be unique within an instantiation (ignoring capitalization), but the
ordering and grouping of tags is unimportant.

II.15 Variants 145

Although there are variant operations for decomposing variant objects, they are usually
decomposed via the tagcase statement, which is discussed in Section 10.14.

In the following let vt = variant[n : t , ..., n : t].1 1 k k

Operations

make n = proc (e: t) returns (vt)i i
effects Returns a new variant object with tag n and value e. There is a make operation fori

each selector.

change n = proc (v: vt, e: t)i i
modifies v.
effects Modifies v to have tag n and value e. There is a change operation for eachi

selector.

is n = proc (v: vt) returns (bool)i
effects Returns true if the tag of v is n ; otherwise returns false. There is an is operationi

for each selector.

value n = proc (v: vt) returns (t) signals (wrong tag)i i
effects If the tag of v is n , returns the value of v; otherwise signals wrong tag. There is ai

value operation for each selector.

v gets v = proc (v1, v2: vt)
modifies v1.
effects Modifies v1 to contain the same tag and value as v2.

v gets o = proc (v: vt, o: ot)
modifies v.
effects Here ot is the oneof type with the same selectors and types as vt. Modifies v to

contain the same tag and value as o.

equal = proc (v1, v2: vt) returns (bool)
effects Returns true if v1 and v2 are the same variant object.

similar = proc (v1, v2: vt) returns (bool) signals (failure(string))
requires each t has similar: proctype (t , t) returns (bool) signals (failure(string))i i i
effects Returns true if v1 and v2 have the same tag and similar values as determined by the

similar operation of their value’s type. Any failure signal is immediately resignalled. This
operation does not itself originate any failure signal. This operation is divisible at the call
of t $similar.i

similar1 = proc (v1, v2: vt) returns (bool) signals (failure(string))
requires each t has equal: proctype (t , t) returns (bool) signals (failure(string))i i i
effects Same as similar, except that t $equal is used instead of t $similar.i i

copy = proc (v: vt) returns (vt) signals (failure(string))
requires each t has copy: proctype (t) returns (t) signals (failure(string))i i i
effects Returns a variant object with the same tag as v and containing as a value a copy of

v’s value; the copy is made using the copy operation of the value’s type. Any failure
signal is immediately resignalled. This operation does not itself originate any failure
signal. This operation is divisible at the call of t $copy.i

copy1 = proc (v: vt) returns (vt)
effects Returns a new variant object with the same tag as v and containing v’s value as its

value.

146 Built-in Types and Type Generators

transmit = proc (v: vt) returns (vt) signals (failure(string))
requires each t has transmiti
effects Returns a variant object with the same tag as v and containing as a value a

transmitted copy of v’s value. Any failure signal is immediately resignalled. This
operation does not itself originate any failure signal.

II.16. Atomic Variants
atomic variant = data type [n : t , ..., n : t] is make n , ..., make n , change n , ..., change n ,1 1 k k 1 k 1 k

av gets av, is n , ..., is n , value n , ..., value n , av2v, v2av,1 k 1 k
equal, similar, similar1, copy, copy1, transmit,
test and read, test and write, can read, can write, read lock, write lock

Overview

An atomic variant is a mutable, atomic, tagged, discriminated union. Its state is a oneof, that is, a
labeled object, to be thought of as "one of" a set of alternatives. The label is called the tag part,
and the object is called the value (or data part). An atomic variant also has an identity as an
object.

An instantiation of atomic variant has the form:
atomic variant [field spec , ...]

where
field spec ::= name, ... : type actual

(see Appendix I). Tags must be unique within an instantiation (ignoring capitalization), but the
ordering and grouping of tags is unimportant.

Although there are atomic variant operations for decomposing atomic variant objects, they are
usually decomposed via the tagtest statement or tagwait statement, which are discussed in
Section 10.15.

In the following, let avt = atomic variant[n : t , ..., n : t].1 1 k k

Operations

make n = proc (e: t) returns (av: avt)i i
effects Returns a new atomic variant object av with tag n and value e. Obtains a read locki

on av. There is a make operation for each selector.

change n = proc (v: avt, e: t)i i
modifies v.
effects Obtains a write lock on v, then modifies v to have tag n and value e. There is ai

change operation for each selector.

av gets av = proc (v1, v2: avt)
modifies v1.
effects Obtains a read lock on v2 and then a write lock on v1, then modifies v1 to contain

the same tag and value as v2.

is n = proc (v: avt) returns (bool)i
effects Obtains a read lock on v, then returns true if the tag of v is n ; otherwise returnsi

false. There is an is operation for each selector.

value n = proc (v: avt) returns (t) signals (wrong tag)i i
effects Obtains a read lock on v. Then, if the tag of v is n , returns the value of v; otherwisei

signals wrong tag. There is a value operation for each selector.

II.16 Atomic Variants 147

av2v = proc (av: avt) returns (v: vt)
effects Here vt is a variant type with the same selectors and types as avt. Obtains a read

lock on av and returns a variant v with the same state.

v2av = proc (v: vt) returns (av: avt)
effects Here vt is a variant type with the same selectors and types as avt. Returns an

atomic variant av with the same state as v. Obtains a read lock on av.

equal = proc (v1, v2: avt) returns (bool)
effects Returns true if v1 and v2 are the same atomic variant object. No locks are

obtained.

similar = proc (v1, v2: avt) returns (bool) signals (failure(string))
requires each t has similar: proctype (t , t) returns (bool) signals (failure(string))i i i
effects Obtains read locks on v1 and v2, in order, and then compares the objects; returns

true if v1 and v2 have the same tag and similar values as determined by the similar
operation of their type. Any failure signal is immediately resignalled. This operation does
not itself originate any failure signal. This operation is divisible at the call of t $similar.i

similar1 = proc (v1, v2: avt) returns (bool) signals (failure(string))
requires each t has equal: proctype (t , t) returns (bool) signals (failure(string))i i i
effects Same as similar, except that t $equal is used instead of t $similar.i i

copy = proc (v: avt) returns (avt) signals (failure(string))
requires each t has copy: proctype (t) returns (t) signals (failure(string))i i i
effects Obtains a read lock on v, then returns an atomic variant object with the same tag as

v and containing as a value a copy of v’s value; the copy is made using the copy
operation of the value’s type. Any failure signal is immediately resignalled. This
operation does not itself originate any failure signal. This operation is divisible at the call
of t $copy. A read lock is obtained on the result.i

copy1 = proc (v: avt) returns (avt)
effects Obtains a read lock on v, then returns a new atomic variant object with the same tag

as v and containing v’s value as its value. A read lock is obtained on the result.

transmit = proc (v: avt) returns (avt) signals (failure(string))
requires each t has transmiti
effects Returns an atomic variant object with the same tag as v and containing as a value a

transmitted copy of v’s value. Obtains a read lock on v. Any failure signal is immediately
resignalled. This operation does not itself originate any failure signal.

test and read = proc (av: avt) returns (bool)
effects Tries to obtain a read lock on av. If the lock is obtained, returns true; otherwise no

lock is obtained and the operation returns false. The operation does not "wait" for a lock.
Even if the executing action "knows" that a lock could be obtained, false may be
returned. Even if false is returned, a subsequent attempt to obtain a read lock might
succeed without waiting.

test and write = proc (av: avt) returns (bool)
effects Tries to obtain a write lock on av. If the lock is obtained, returns true; otherwise no

lock is obtained and the operation returns false. The operation does not "wait" for a lock.
Even if the executing action "knows" that a lock could be obtained, false may be
returned. Even if false is returned, a subsequent attempt to obtain a write lock might
succeed without waiting.

148 Built-in Types and Type Generators

can read = proc (av: avt) returns (bool)
effects Returns true if a read lock could be obtained on av without waiting, otherwise

returns false. No lock is actually obtained. Even if the executing action "knows" that a
lock could be obtained, false may be returned. Since some concurrent action may obtain
or release a lock on an atomic variant at any time, the information returned is unreliable:
even if true is returned, a subsequent attempt to obtain the lock may require waiting; and
even if false is returned, a subsequent attempt to obtain a read lock might succeed
without waiting.

can write = proc (av: avt) returns (bool)
effects Returns true if a write lock could be obtained on av without waiting, otherwise

returns false. No lock is actually obtained. Even if the executing action "knows" that a
lock could be obtained, false may be returned. Since some concurrent action may obtain
or release a lock on an atomic variant at any time, the information returned is unreliable:
even if true is returned, a subsequent attempt to obtain the lock may require waiting; and
even if false is returned, a subsequent attempt to obtain a write lock might succeed
without waiting.

read lock = proc (av: avt)
effects Obtains a read lock on av.

write lock = proc (av: avt)
effects Obtains a write lock on av.

II.17. Procedures and Iterators
proctype = data type is equal, similar, copy
itertype = data type is equal, similar, copy

Overview

Procedures and iterators are objects created by the Argus system. The type specification for a
procedure or iterator contains most of the information stated in a procedure or iterator heading; a
procedure type specification has the form:

proctype ([type spec , ...]) [returns] [signals]
and an iterator type specification has the form:

itertype ([type spec , ...]) [yields] [signals]
where

returns ::= returns (type spec , ...)

yields ::= yields (type spec , ...)

signals ::= signals (exception , ...)

exception ::= name [(type spec , ...)]
(see Appendix I). The first list of type specifications describes the number, types, and order of
arguments. The returns or yields clause gives the number, types, and order of the objects to be
returned or yielded. The signals clause lists the exceptions raised by the procedure or iterator; for
each exception name, the number, types, and order of the objects to be returned are also given.
All names used in a signals clause must be unique. The ordering of exceptions is not important.
For example, both of the following type specifications name the procedure type for string$substr:

proctype (string, int, int) returns (string) signals (bounds, negative size)
proctype (string, int, int) returns (string) signals (negative size, bounds)

II.17 Procedures and Iterators 149

Procedure and Iterator objects are created by compiling modules (and by the bind expression,
see Section 9.8). Procedure and iterator types are not transmissible and are considered to be
immutable and atomic in normal use. However, some uses of own data (see Section 12.7) in
procedures and iterators can violate this assumption.

In the following operation descriptions, t stands for a proctype or itertype.

Operations

equal = proc (x, y: t) returns (bool)
similar = proc (x, y: t) returns (bool)

effects These operations return true if and only if x and y are the same implementation of
the same abstraction, with the same parameters (see Section 12.6).

copy = proc (x: t) returns (t)
effects Returns x.

II.18. Handlers and Creators
handlertype = data type is equal, similar, copy, transmit
creatortype = data type is equal, similar, copy, transmit

Overview

Handlers and creators are created by the Argus system. The type specification for a handler or
creator contains most of the information stated in a handler or creator heading; a handler type
specification has the form:

handlertype ([type spec , ...]) [returns] [signals]
and a creator type specification has the form:

creatortype ([type spec , ...]) [returns] [signals]
where

returns ::= returns (type spec , ...)

signals ::= signals (exception , ...)

exception ::= name [(type spec , ...)]
(see Appendix I). The first list of type specifications describes the number, types, and order of
arguments. The returns clause gives the number, types, and order of the objects to be returned.
The signals clause lists the exceptions raised by the handler or creator; for each exception name,
the number, types, and order of the objects to be returned are also given. All names used in a
signals clause must be unique; none can be unavailable or failure, which have a pre-defined
meaning for remote calls (see Section 8.3). The ordering of exceptions is not important.

Creators are created by compiling modules, and handlers are created as a side-effect of guardian
creation. Handlers and creators are transmissible and are considered to be immutable and atomic
in normal use. Certain uses of own data in handlers can violate this assumption.

In the following operation descriptions, t stands for a handlertype or creatortype.

Operations

equal = proc (x, y: t) returns (bool)
similar = proc (x, y: t) returns (bool)

effects These operations return true if and only if x and y are the same object (see Section
12.6 for an exact definition for the case of creators in guardian generators).

150 Built-in Types and Type Generators

copy = proc (x: t) returns (t)
transmit = proc (x: t) returns (t)

effects Returns x.

II.19. Anys
any = data type is create, force, is type

Overview

An object of type any contains a type T and an object of type T. Anys are immutable and are not
transmissible. Anys are atomic only if their contained object is atomic.

Operations

create = proc[T: type] (contents: T) returns (any)
effects Returns an any object containing contents and the type T.

force = proc[T: type] (thing: any) returns (T) signals (wrong type)
effects If thing contains an object of a type included in type T, then that object is returned;

otherwise wrong type is signalled.

is type = proc[T: type] (thing: any) returns (bool)
effects If thing contains an object of a type included in type T, then true is returned;

otherwise, false is returned.

II.20. Images
image = data type is create, force, is type, copy, transmit

Overview

An object of type image is the value of an arbitrary transmissible type. See Section 14 for more
details. Images are immutable, atomic, and transmissible.

Operations

create = proc[T: type] (contents: T) returns (image) signals (failurestring)
requires T has transmit
effects Returns an image object obtained from contents via the encode operation of T.

Resignals any failure signal raised by T’s encode operation.

force = proc[T: type] (thing: image) returns (T) signals (wrong type, failure(string))
requires T has transmit
effects If thing encodes an object of a type included in type T, then that object is extracted

using the decode operation of T and returned. Otherwise wrong type is signalled.
Resignals any failure signal raised by T’s decode operation.

is type = proc[T: type] (thing: image) returns (bool)
requires T has transmit
effects If thing encodes an object of a type included in type T, then true is returned;

otherwise, false is returned.

copy = proc (thing: image) returns (image)
transmit = proc (thing: image) returns (image)

effects Returns thing.

II.21 Mutexes 151

II.21. Mutexes
mutex = data type[t: type] is create, set value, get value, changed, equal, similar, copy, transmit

Overview

A mutex is a mutable container for an object of type t. A mutex also has an identity as an object.

An object of type mutex[t] provides mutual exclusion for process synchronization, and allows
explicit control over how information contained in the mutex is written to stable storage (see
Section 15.1).

The seize statement is used in order to gain possession of a mutex. See section 6.7.

Although mutex objects are mutable, sharing among mutex objects is usually wrong, because the
contained object should only be accessible through the mutex. Hence there is no copy1
operation, since this would introduce sharing, and there is no similar1 operation to check for
sharing (see Section 6.7).

Operations

create = proc (thing: t) returns (mutex[t])
effects Returns a new mutex object containing thing.

set value = proc (container: mutex[t], contents: t)
modifies container.
effects Modifies container by replacing its contained object with contents.

get value = proc (container: mutex[t]) returns (t)
effects Returns the object contained in container.

changed = proc (container: mutex[t])
effects Informs the Argus system that the calling action requires the contents of container to

be copied to stable storage by the time the action commits, provided container is
accessible from a stable variable. It is a programming error if a process that is not
running an action calls this operations, and if this is done the guardian will crash.

equal = proc (m1, m2: mutex[t]) returns (bool)
effects Returns true if and only if m1 and m2 are the same object.

similar = proc (m1, m2: mutex[t]) returns (bool) signals (failure(string))
requires t has similar: proctype(t, t) returns(bool) signals (failure(string))
effects Seizes m1, then seizes m2, and calls t$similar to determine its result; any failure

signal is immediately resignalled. Possession of both mutexes is retained until t$similar
terminates.

copy = proc (m1: mutex[t]) returns (m2: mutex[t]) signals (failure(string))
requires t has copy: proctype(t) returns(t) signals (failure(string))
effects Seizes m1, then calls t$copy to make a copy which it places in the new mutex object

m2. Any failure signal is immediately resignalled. Possession of m1 is retained until
t$copy terminates.

transmit = proc (m1: mutex[t]) returns (mutex[t]) signals (failure(string))
requires t has transmit
effects Seizes m1, and returns a new mutex containing a transmitted copy of the contained

object. Any failure signal is immediately resignalled. Possession of m1 is retained until
t$transmit terminates.

152 Rules and Guidelines for Using Argus

III Rules and Guidelines for Using Argus 153

Appendix III
Rules and Guidelines for Using Argus

This appendix collects the rules and guidelines that should be followed when programming in Argus.

Following these rules makes seize statements meaningful, actions atomic, and so on. In some rare

cases there may be valid reasons for violating these guidelines, but doing so greatly increases the

difficulty of building, debugging, and running the resulting system.

All of the rules listed in this appendix are based on information appearing elsewhere in the manual.

Each rule is followed by a brief rationale, including a reference to the section of the manual from which it

is drawn.

III.1. Serializability and Actions
• Actions should share only atomic objects.

Rationale: Actions that share non-atomic data are not necessarily serializable. [Section 2.2.2]

• A subaction that aborts should not return any information obtained from data shared with other

concurrent actions.

Rationale: Returning such data may violate serializability. [Section 2.2.1]

• A nested topaction should be serializable before its parent. This is true if either
1. the nested topaction performs a benevolent side effect (a change to the state of the

representation that does not affect the abstract state), or

2. all communication between the nested topaction and its parent is through atomic objects.

Rationale: Other uses may violate serializability. [Section 2.2.3]

• The creation or destruction of a guardian must be synchronized with the use of that guardian via

atomic objects such as the catalog.

Rationale: Otherwise serializability may be violated. [Section 10.18]

III.2. Actions and Exceptions
• If an exception raised by a call should not commit an action, the exception must be handled within

that action.

Rationale: If an exception raised within an action body is handled outside the action, the implicit flow of

control outside of the action will commit the action. [Section 11.5]

154 Rules and Guidelines for Using Argus

III.3. Stable Variables
• Stable variables should denote resilient data objects.

Rationale: Only data objects that are (reachable from the stable variables and) resilient are written to

stable storage when a topaction commits. (This can be ensured by having stable variables only denote

objects of an atomic type or objects protected by mutex.) Non-resilient objects stored in stable variables

are only written to stable storage when the guardian is created. [Section 13.1]

• If a bound procedure or iterator will be accessible from a stable variable,
1. the procedure or iterator being bound must be atomic and

2. only atomic objects should be bound as arguments.

Rationale: The bound procedure or iterator may be stored in stable storage, and non-atomic data is

only written to stable storage once. [Section 9.8]

III.4. Transmission and Transmissibility
• An abstract type’s encode and decode operations should not cause side effects.

Rationale: The number of calls to an encode or decode operation is unpredictable, since arguments or

results may be encoded and decoded several times as the system tries to establish communication. In

addition, verifying the correctness of transmission is easier if encode and decode are simply

transformations to and from the external representation. [Section 14.3]

• If the naming relation among objects to be transmitted is cyclic (e.g., a circular list) then encode and

decode must be implemented in one of two ways:
1. The internal and external representation types must be identical, and encode and decode

return their argument without modifying or accessing it, or

2. The external representation object must be acyclic.

Rationale: A circular external representation may cause decode to fail. [Section 14.4]

• Objects that share other objects should be bound into a handler or creator in the same bind

expression.

Rationale: Sharing is only preserved among objects bound at the same time. [Section 9.8]

III.5. Mutex
• Mutual exclusion or atomic data should be used to synchronize access to all shared objects.

Rationale: In the presence of concurrency, any interleaving of indivisible events is possible. Without

synchronization mechanisms, this concurrency will be visible to programs, significantly complicating

coding and testing. [Section 8]

III.5 Mutex 155

• All modifications to mutex objects should be made inside seize statements.

Rationale: The system will gain possession of a mutex object before writing it to stable storage; thus,

seizing a mutex in order to modify it will prevent the system from copying a mutex object when it is in an

inconsistent state. This also prevents other processes from seeing inconsistent data [Section 15.2 and

Section 15.1]

• Nested seizes should be avoided when pause is used, and pause must be avoided when nested

seizes are used.

Rationale: A pause in a nested seize does not actually release possession of the mutex object.

[Section 10.17]

• If an object is referred to by a mutex object, it should not be referred to by any other object, nor

should it be denoted by a variable except when in possession of the containing mutex.

Rationale: If an object contained in a mutex can be reached by a method other than seizing the mutex,

the mutual exclusion property of the mutex is undermined. [Section 6.7]

• No activity that is likely to take a long time should be performed while in a seize statement. In

particular, programs should not make handler calls or wait for locks on atomic objects while in possession

of a mutex.

Rationale: Waiting for a lock while in a mutex is likely to cause a deadlock with other actions or

between the action holding the mutex and the Argus system. [Section 15.3]

• Mutex objects should not share data with one another, unless the shared data is atomic or mutex.

Rationale: Sharing of non-atomic objects between mutex objects is not preserved when the mutexes

are written to stable storage. [Section 15.3]

• Mutex[t]$changed must be called after the last modification (on behalf of some action) to the

contained object of a mutex.

Rationale: The Argus system is free to copy the mutex to stable storage as soon as mutex[t]$changed

has been called. Changes after the last call to mutex[t]$changed but before topaction commit may not

be written to stable storage. [Section 15.3]

• Mutex[t]$changed should be called even if the mutex object changed is not accessible from the

stable variables.

Rationale: In a scenario where the object was accessible, becomes inaccessible, then becomes

accessible again, it is possible that stable storage would not be updated properly if this rule were not

followed. The system guarantees that no problems with updating stable storage will arise if

mutex[t]$changed is always called after the last modification to the object. [Section 15.3]

156 Rules and Guidelines for Using Argus

• An atomic type implemented with a representation consisting of several mutex objects should use

separate topactions to ensure that the mutexes are written to stable storage in an order that preserves

the correctness of the representation.

Rationale: Mutexes are written to stable storage incrementally. Sometimes, subtle timing problems

can be caused by incremental writing if this rule is not followed. [Section 15.3]

III.6. User-Defined Atomic Objects
• If an atomic object X of type T provides operations O and O , and action A has executed O but not1 2 1

yet committed, then operation O can be performed by a concurrent action B only if O and O commute:2 1 2

given the current state of X, the effect (as described by the sequential specification of T) of performing

O , then O is the same as performing O , then O . "Effect" includes both results returned and the1 2 2 1

(abstract) state modified.

Rationale: There are two concurrency constraints for user-defined atomic objects:
1. An action can observe the effects of other actions only if those actions committed relative to

the first action.

2. Operations executed by one action cannot invalidate the results of operations executed by
a concurrent action.

Two operations (or sequences of operations) that commute in their effect on the abstract state of X may

be permitted to run concurrently, even if they do not commute in their effect on the representation of X.

This distinction between an abstraction and its implementation is crucial in achieving reasonable

performance. [Section 15.4]

• If a user-defined atomic object is accessible from the stable variables of some guardian, it should be

written to stable storage whenever an action that modifies it commits to the top.

Rationale: A user-defined atomic type that is not written to stable storage on topaction commit will not

be resilient. [Section 15.2]

• The form of the rep for a user-defined atomic type should be one of the following possibilities.
1. The rep is itself atomic. Note that mutex is not an atomic type.

2. The rep is mutex[t] where t is a synchronous type. For example, t could be atomic, or it
could be the representation of an atomic type, if the operations on the this fictitious atomic
type are coded in-line so that the entire type behaves atomically.

3. The rep is an atomic collection of mutex types containing synchronous types.

4. The rep is a mutable collection of synchronous types, and objects of the representation
type are never modified after they are initialized. That is, mutation may be used to create
the initial state of such an object, but once this has been done the object must never be
modified.

Rationale: In any other case it will be impossible to guarantee the resilience or serializability of the

type’s objects independently of how they are used. [Section 15.3]

III.7 Subordinate Where Clauses 157

III.7. Subordinate Where Clauses
• A where clause requirement on a cluster as a whole should be used whenever the actual parameters

make some difference in the abstraction. For example, in a set cluster, the type parameter’s equal

operation must be required by the cluster as a whole, in order to preserve type safety and the

representation invariant.

Rationale: Argus assumes that requirements that are not placed on the cluster as a whole do not

affect the semantics of the abstraction or the representation. [Section 12.6]

158 Changes from CLU

IV Changes from CLU 159

Appendix IV
Changes from CLU

This appendix lists the changes made to Argus that are not upward compatible with CLU, that is, those

which are not merely additions to CLU and that would cause a CLU program to be illegal or to run

differently.

IV.1. Exception Handling
Unlike CLU, which propagated unhandled exceptions (by turning them into failure exceptions) and gave

the failure exception special status, unhandled exceptions in Argus are considered errors and always

cause a crash of the guardian, and failure is not given special status. All exceptions signalled in a

procedure, iterator, handler, or creator must be declared in the routine’s header, and there are no implicit

resignals of failure exceptions. See Section 11.6 for details.

IV.2. Type Any
The type any is now a type like any other type, with parameterized routines force, create, and is type.

Thus the CLU manual’s notion of "type inclusion" is no longer necessary (but there is a new notion of type

inclusion in Argus, see Section 6.1). The any$force routine only signals "wrong type" if the any object’s

underlying type is not included in the type parameter given, but the type of the result of any$force is its

type parameter. The any$is type routine returns false if the any object’s underlying type is not included

in the type parameter given. The CLU reserved word "force" was eliminated from Argus, and the creation

of an any object is never implicit in an assignment in Argus.

IV.3. Built-in Types
Several changes to the interfaces of the built-in types were necessitated by the changes to exception

handling. Specifically, the following changes were made to the built-in types.
1. The string operations concat, append, s2ac, ac2s, s2sc, and sc2s, can now all signal limits.

A string literal that would be too large to represent will not be compiled.

2. The sequence operations fill, fill copy, addh, addl, and concat can now all signal limits. A
sequence constructor that would be too large to represent will not be compiled.

3. The array (and atomic array) operations create, predict, set low, fill, fill copy, addh, and
addl can now all signal limits. An array constructor that cannot be legally represented will
either not be compiled (if this can be detected at compile time) or will signal limits.

4. The copy operations of the structured built-in type generators, and the fill copy operations
of sequence and array (and atomic array), allow the copy operations of their type
parameters to have a failure(string) exception. They will resignal such a failure exception.
(Note that the type inclusion rule allows a type parameter to be used even if its copy
operation does not have exceptions.)

5. The similar operations of the built-in structured type generators allow the similar operations
of their type parameters to have a failure(string) exception. They will resignal such a failure
exception.

6. The equal operations of the type generators sequence, struct, and oneof, and the similar1

160 Changes from CLU

operations of the type generators array, record, and variant (and their atomic
counterparts), allow the equal operation of their type parameters to have a failure(string)
exception. They will resignal such a failure exception.

7. The elements iterator and the similar and similar1 procedures of the type generator array
(and atomic array) will raise a failure(string) exception if the array argument is mutated in
such a way as to cause a bounds exception when an element is fetched.

IV.4. Type Inclusion
Type inclusion (the new notion, see Section 6.1) is used in all contexts, including the decls of except

and tagcase statements, where CLU had previously required type equality.

IV.5. Where Clauses
CLU had syntax in the where clause (specifically the production for op name) that allowed one to

require an instantiation of a type parameter’s generator. This little used feature has been superseded by

the mechanism described in Section 12.6.

IV.6. Uninitialized Variables
An uninitialized variable reference error is defined to cause a crash of the guardian, rather than raising

a failure exception, which could conceivably be caught.

IV.7. Lexical Changes
Several new reserved words were added. In addition, the semicolon (;) was banished from the syntax.

IV.8. Input/Output Changes
The input/output data types (file name, stream, and istream) and the library procedures described in

appendix III of the CLU manual are not furnished by the Argus system. Our current implementation of

Argus provides a keyboard cluster for input and a pstream cluster for output. In addition, most of the

built-in types currently have print operations defined, for pretty-printing objects onto pstreams. These I/O

mechanisms, however, are still experimental, and so are not documented in this reference manual.

Index 161

Index
" 24 action 8
$ 47, 48, 79 built-in atomic types 9, 30, 133, 141, 146
% 20, 115 object 9
& 53 type 9, 97
’ 23 Atomic array 30, 52, 133
(*) 71 Atomic record 30, 52, 141
** 53, 55 Atomic variant 30, 64, 146
+, −, etc. 53
. 27, 58 Background 8, 89

Bind 48... 17
and equates 50// 53
and routine equality 49::=, |, { }, [] 17

Block 58
:= 39, 58

Block structure 36
<, >, etc. 53

BNF 17, 107
= 53

Body 57
@ 44, 51, 57

Bool 22, 54, 121
[] 26, 58

Break 63
\ 23

Built-in
| 53

atomic types 9, 30
|| 53

type 22, 119
~ 53

Built-in type
versus CLU 159

Abort 8, 10, 60, 61, 69, 72, 88, 97
and exception handling 73

Call 4, 40, 41, 44, 50, 51, 57
of a remote call action 41

action 41
of a subaction 9

by sharing 4, 40
qualifier 59, 61, 69, 72

by value 4, 12, 41, 93
Action 8, 59, 88, 97

creator 44, 51
abortion versus seize statements 60

expression 50
activation action 41, 43

handler 50
ancestors 10

local 40
and exception handling 73

message 43
call action 41

procedure 50
coenter statement 59

remote 11, 41, 44, 50, 51, 89
deadlock 13

semantics of creator call 44
descendants 10

semantics of remote call 43
divisible termination of 60

statement 57
enter statement 59

Call action 41, 43, 44
nested 8

Cand 54
nested topaction 11, 60

Catalog 15
orphan 12, 61

Char 23, 125
parent of 9

escapes 115, 23
subaction 8

Closure 48
termination 60, 69

CLU 3, 11, 21, 24, 73, 159
topaction 9

built-in types taken from 22
See also atomic

differences from 159
Activation action 41, 43

Cluster 77
Actual argument 40

Coarm 59
Actual parameter 80, 81

controlling 60
Ancestor 10

Coenter 59
Any 22, 24, 32, 150

foreach clause 59
versus CLU 159

Comment 20, 115
versus image 32

Commit 8, 10, 59, 60, 69, 88, 97
Argument

and exception handling 73
actual 40

committed descendant 10
versus parameter 80

of a remote call action 41
Array 25, 52, 130

of a subaction 9
constructor 26

to the top 10
Assignment 4, 39, 40

two phase commit protocol 8, 60
and concurrency 39

Concurrency 8, 33, 39, 59
implicit 39

Constant 38, 47, 81
multiple 39

Constructor 52
simple 39

array 26, 52
statement 39

none for user-defined types 52
type checking for 39

record 27, 52
Atomic 3, 8, 97

162 Index

sequence 25, 52 Failure 11, 42, 43, 44, 73
struct 27 of communications in a remote call 43
structure 52 versus CLU 73, 159

Continue 63 See also crash
Controlling coarm 60 False 22, 121
Cor 54 Fetch 51
Crash 8, 85, 89 Floating point

and own variables 85 See also real
recover code 8 For 62
recovery 89 Force

Creator 7, 11, 32, 44, 48, 88, 149 See also any
bound 49 Foreach 59
equality of bound creators 49 Fork 58
type 149 Formal

Creator call 44 argument 40, 76
as expression 51 parameter 80
as statement 57
semantics of 44 Generator 21, 80

Creatortype 32, 149 instantiation 81
Critical section 13, 66 Get 51
Cvt 78 Global object 3, 7

Guardian 5, 7, 15, 31, 41, 44, 87
Data abstraction 7, 77 background code 89
Data type 77 crash 73
Deadlock 13 creation 15, 44, 88
Declaration 36, 57, 78 definition 87

as statement 57 guardian image 15
simple 36 interface 31
with initialization 36 lifetime 90

Decode 12, 21, 41, 43, 49, 94 permanence 90
Description unit 15, 84 recovery 89
Divisible spooler example 90

termination 60 stable state 87
Divisible termination 60 state 87
Down 55, 78 temporary 90
DU termination 67, 90

See also description unit type of 31
versus guardian interface 31

Effects 119 Guidelines 153
Else 62
Elseif 62 Handler 7, 32, 89, 149
Encode 12, 21, 41, 43, 44, 49, 61, 94 bound 49

with bind 49 call 41
Enter 59 equality of bound handlers 49
Entity 48 type 149
Equate 37, 79 See also exception
Equate module 34, 79 Handlertype 32, 149

reference 47 Hidden routine 78, 90
Equated identifier 47
Example Identifier 19

key-item table 95 equated 47
replicated data base 60 See also idn, name
spooler guardian 90 Idn 35, 115

Except 70 versus name 35
Exception 41, 69 If 62

action termination 73 Image 12, 21, 32, 93, 150
handler 70 versus any 32
handling 70 See also guardian image
name 69 Immutable 3, 21
raise 70 Indivisibility 39
result 69 Indivisible 21
unhandled 73 Input/output 160
versus CLU 73, 159 versus CLU 160

Exit 72 Instance 81
Expression 47 Instantiate 80

conditional 54 Instantiation 81, 160
forms of 47 type checking of 83

External representation type 12, 94 Int 22, 121

Index 163

Iterator 48, 62, 76, 148 indivisibility 21, 119
bound 48 Operator 20
equality of bound iterators 49 binary 53
type 148 infix 53

Itertype 148 precedence 54
prefix 53

Keyboard 160 unary 53
Optional parameter 82, 84

Leave 61 Orphan 12, 44, 61
Lexicographic order 126, 138, 139, 141 Overview 119
Library 15 Own data 49, 85
Literal 20, 47 Own variable 85

char 115 and crash recovery 85
int 115
real 115 Parameter 47, 80
string 115 actual 81

Local 3 optional 82
call 40, 50 versus argument 80
object 7 Parameterization 80

Locking 9, 10, 13, 30 Parameterized type 21, 81
deadlock 13 instantiation of 81
for built-in atomic types 9 Parent 9
table of locking rules 10 Pause 66

Loop 62 Post 119
Pragmatics 153

Modifies 119 Pre 119
Module 5, 75, 87 Precedence 54

instantiation of 80, 81 Principal argument 30
parameterized 80 Print 160

Mutable 3, 21 Private routine 78
versus atomic 22 Procedure 48, 75, 148

Mutex 11, 33, 98, 151 bound 48
changed operation 99 closure 48
guidelines 99 equality of bound procedures 49
multiple 104 type 148
sharing 100 Process 8, 59

See also action
Name 35, 115 Proctype 148

versus idn 35 Pstream 160
Nested action 8 Punctuation token 20
Nested topaction 11, 60
Nil 22, 120 Qualifier
Node 34, 44, 120 abort 59, 61, 69

of guardian creation 44 action, topaction 59
Null 22, 120

Raise 70
Object 3, 21, 77, 78 Read lock 9

abstract 78 Reader 30
as value of expression 47 Real 23, 123
atomic 3, 21, 97 Record 52, 139
concrete 78 constructor 27
global 3, 7 Recover code 8, 89
immutable 3, 21 Recoverable 8, 97, 98
implementation of 77 Recovery 8, 89, 97
local 3, 7 Refer 3
mutable 3, 21 Reference 34, 47
non-atomic 21 Remote call 11, 41, 44, 50, 51, 89
references 3 semantics of 43
representation 77 Replicated database example 60
sharing 3, 96, 100 Representation 77
stable 3, 7 concrete 78
transmissible 3, 12, 21, 93 external 12, 94
transmission of cyclic objects 96 Required operation 81
versus variable 3 Reserved word 19, 115
volatile 7 Resignal 72

Oneof 63, 143 Resilience 97, 98
Opbinding 81 See also recoverable
Operation 77 Restriction 80, 81

164 Index

Result 47 tagwait 65
Return 61 terminate 67
Routine 75, 76, 90 update 58

equality 83 while 62
See also iterator, procedure yield 62

RPC Store operation 58
See also remote call String 24, 126

Rules 153 See also char escapes
Struct 26, 52, 138

Scope 35, 78 constructor 27
rules 35 Structure
unit 35 See also struct

Seize 66, 98 Subaction 8, 10, 41, 59
Selection Synchronization 39, 97

of component 51 Synchronous 99
of element 51 Syntax 107

Self 48, 88
Separator 19, 20, 115 Table example, transmission of 95
Sequence 25, 52, 128 Tagcase 63

constructor 25 Tagtest 64
Serializable 8, 9, 67, 97 Tagwait 65
Set operation 58 Terminate 67
Sharing 3 Termination

and mutex 103 exceptional 69
and transmission 96 of a guardian 67, 90

Signal 69 of a routine 40
See also exception Then 62

Spooler guardian 90 Token 19, 115
Stable Topaction 9, 59

object 3, 7 nested 11
state 8, 87 Transmissible 3, 12, 21, 93
storage 8, 97 object 12
storage and closures 49 Transmit 21, 41, 78, 84, 93
storage recovery 89 actual 84
variable 3, 87 for parameterized modules 94
See also resilience True 22, 121

Statement 57 Two-phase commit 8, 59, 60, 73
abort break 63 Type 3, 4, 15, 21, 39, 77, 81
abort continue 63 actual 81
abort leave 61 atomic 9, 97
abort prefix 59 built-in 22, 119
abort resignal 72 built-in atomic types 9
abort return 61 correctness 4
abort signal 69 equality 83
assignment 39 external representation 12, 94
block 58 generator 21, 80, 81
break 63 guardian interface 31
coenter 59 implementation of 77
component update 58 inclusion 4, 22
conditional 62 of a creator 32, 149
continue 63 of a guardian 31
control 57 of a handler 32, 149
element update 58 of a iterator 148
enter 59 of a procedure 148
except 70 parameter 34, 81
exit 72 parameterized 9, 21, 80
for 62 safety 4
fork 58 set 80
if 62 transmissible 12, 21, 93
iteration 62 user-defined 34, 52, 77
leave 61 versus type actual 82
pause 66 See also cluster, guardian
resignal 72 Type checking 15, 39, 83
return 61 of an instantiation 83
seize 66 Type inclusion 4, 22
signal 69 versus CLU 160
tagcase 63 Type spec 21
tagtest 64

Index 165

Unavailable 11, 42, 43, 44, 59, 60
Unhandled exception 73

versus CLU 159
Uninitialized variable 36

versus CLU 160
Up 55, 78
Update statement 58

Value 47
Variable 3, 36, 47

own variable 85
stable 3, 97
uninitialized 36
versus object 3

Variant 63, 144
Version

of an atomic object 9
Volatile

object 7
state 8, 87
variable 87

Where clause 80, 160
subordinate 82

While 62
With 81
Write lock 9
Writer 30

Yield 62

166 Table of Contents

Table of Contents i

Table of Contents
1. Overview 3

1.1. Objects and Variables 3
1.2. Assignment and Calls 4
1.3. Type Correctness 4
1.4. Rules and Guidelines 4
1.5. Program Structure 5

2. Concepts for Distributed Programs 7
2.1. Guardians 7
2.2. Actions 8

2.2.1. Nested Actions 8
2.2.2. Atomic Objects and Atomic Types 9
2.2.3. Nested Topactions 11

2.3. Remote Calls 11
2.4. Transmissible Types 12
2.5. Orphans 12
2.6. Deadlocks 13

3. Environment 15
3.1. The Library 15
3.2. Independence of Guardian Images 15
3.3. Guardian Creation 15
3.4. The Catalog 15

4. Notation 17
5. Lexical Considerations 19

5.1. Reserved Words 19
5.2. Identifiers 19
5.3. Literals 20
5.4. Operators and Punctuation Tokens 20
5.5. Comments and Other Separators 20

6. Types, Type Generators, and Type Specifications 21
6.1. Type Inclusion 22
6.2. The Sequential Built-in Types and Type-generators 22

6.2.1. Null 22
6.2.2. Bool 22
6.2.3. Int 22
6.2.4. Real 23
6.2.5. Char 23
6.2.6. String 24
6.2.7. Any 24
6.2.8. Sequence Types 25
6.2.9. Array Types 25
6.2.10. Structure Types 26
6.2.11. Record Types 27
6.2.12. Oneof Types 28
6.2.13. Variant Types 28
6.2.14. Procedure and Iterator Types 29

6.3. Atomic Array, Atomic Record, and Atomic Variant 30
6.4. Guardian Types 31
6.5. Handler and Creator Types 32

ii Table of Contents

6.6. Image 32
6.7. Mutex 33
6.8. Node 34
6.9. Other Type Specifications 34

7. Scopes, Declarations, and Equates 35
7.1. Scoping Units 35

7.1.1. Variables 36
7.1.2. Declarations 36

7.2. Equates and Constants 37
7.2.1. Abbreviations for Types 38
7.2.2. Constant Expressions 38

8. Assignment and Calls 39
8.1. Assignment 39

8.1.1. Simple Assignment 39
8.1.2. Multiple Assignment 39

8.2. Local Calls 40
8.3. Handler Calls 41

8.3.1. Semantics of Handler Calls 43
8.4. Creator Calls 44

8.4.1. Semantics of Creator Calls 44

9. Expressions 47
9.1. Literals 47
9.2. Variables 47
9.3. Parameters 47
9.4. Equated Identifiers 47
9.5. Equate Module References 47
9.6. Self 48
9.7. Procedure, Iterator, and Creator Names 48
9.8. Bind 48
9.9. Procedure Calls 50
9.10. Handler Calls 50
9.11. Creator Calls 51
9.12. Selection Operations 51

9.12.1. Element Selection 51
9.12.2. Component Selection 51

9.13. Constructors 52
9.13.1. Sequence Constructors 52
9.13.2. Array and Atomic Array Constructors 52
9.13.3. Structure, Record, and Atomic Record Constructors 52

9.14. Prefix and Infix Operators 53
9.15. Cand and Cor 54
9.16. Precedence 54
9.17. Up and Down 55

10. Statements 57
10.1. Calls 57
10.2. Update Statements 58

10.2.1. Element Update 58
10.2.2. Component Update 58

10.3. Block Statement 58
10.4. Fork Statement 58

Table of Contents iii

10.5. Enter Statement 59
10.6. Coenter Statement 59
10.7. Leave Statement 61
10.8. Return Statement 61
10.9. Yield Statement 62
10.10. Conditional Statement 62
10.11. While Statement 62
10.12. For Statement 62
10.13. Break and Continue Statements 63
10.14. Tagcase Statement 63
10.15. Tagtest and Tagwait Statements 64

10.15.1. Tagtest Statement 64
10.15.2. Tagwait Statement 65
10.15.3. Common Constraints 65

10.16. Seize Statement 66
10.17. Pause Statement 66
10.18. Terminate Statement 67

11. Exception Handling and Exits 69
11.1. Signal Statement 69
11.2. Except Statement 70
11.3. Resignal Statement 72
11.4. Exit Statement 72
11.5. Exceptions and Actions 73
11.6. Failure Exceptions 73

12. Modules 75
12.1. Procedures 75
12.2. Iterators 76
12.3. Clusters 77
12.4. Equate Modules 79
12.5. Parameterized Modules 80
12.6. Instantiations 81
12.7. Own Variables 85

13. Guardians 87
13.1. The Guardian State 87
13.2. Creators 88
13.3. Crash Recovery 89
13.4. Background Tasks 89
13.5. Handlers and Other Routines 89
13.6. Guardian Lifetime and Destruction 90
13.7. An Example 90

14. Transmissibility 93
14.1. The Transmit Operation 93
14.2. Transmission for Built-in Types 93
14.3. Transmit for Abstract Types 94
14.4. Sharing 96

15. Atomic Types 97
15.1. Action Synchronization and Recovery 97
15.2. Resilience 98
15.3. Guidelines 99
15.4. A Prescription for Atomicity 101

iv Table of Contents

15.5. Commuting Operations 102
15.6. Multiple Mutexes 104

Appendix I. Syntax 107
Appendix II. Built-in Types and Type Generators 119

II.1. Null 120
II.2. Nodes 120
II.3. Booleans 121
II.4. Integers 121
II.5. Reals 123
II.6. Characters 125
II.7. Strings 126
II.8. Sequences 128
II.9. Arrays 130
II.10. Atomic Arrays 133
II.11. Structs 138
II.12. Records 139
II.13. Atomic Records 141
II.14. Oneofs 143
II.15. Variants 144
II.16. Atomic Variants 146
II.17. Procedures and Iterators 148
II.18. Handlers and Creators 149
II.19. Anys 150
II.20. Images 150
II.21. Mutexes 151

Appendix III. Rules and Guidelines for Using Argus 153
III.1. Serializability and Actions 153
III.2. Actions and Exceptions 153
III.3. Stable Variables 154
III.4. Transmission and Transmissibility 154
III.5. Mutex 154
III.6. User-Defined Atomic Objects 156
III.7. Subordinate Where Clauses 157

Appendix IV. Changes from CLU 159
IV.1. Exception Handling 159
IV.2. Type Any 159
IV.3. Built-in Types 159
IV.4. Type Inclusion 160
IV.5. Where Clauses 160
IV.6. Uninitialized Variables 160
IV.7. Lexical Changes 160
IV.8. Input/Output Changes 160

Index 161

List of Figures v

List of Figures
Figure 2-1: Locking and Version Management Rules for a Subaction S, on Object X 10
Figure 13-1: Spooler Guardian 91
Figure 14-1: Partial implementation of table. 95

vi List of Tables

List of Tables vii

List of Tables
Table 5-1: Reserved Words 19
Table 5-2: Operator and Punctuation Tokens 20
Table 6-1: Character Escape Sequence Forms 24
Table 9-1: Prefix and Infix Operators: shorthands and expansions 53
Table 9-2: Precedence for Infix Operators 54
Table 10-1: Legality of coenter statements. 60
Table I-1: Character Escape Sequences 116

