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Abstract 
Computers are rarely as secure as they could be. Users are lax or inconsistent in 
the ways they configure a computer's protection system, and these user mistakes 
often lead to serious security holes. For example, a privileged user might 
accidentally make his login initialization file publicly writable and that mistake 
could allow ordinary users to acquire super-user privileges. This sort of 
operational security problem is not caused by software bugs. It can happen even 
if all the computer's trusted programs behave according to their specifications. 
Operational security problems arise from complex interactions between the pieces 
of a computer's protection system. 

This report describes a tool for improving the operational security of 
discretionary access control systems. The tool is a rule based system that knows 
about the behavior of the computer's software and the tricks used by attackers. 
The tool uses this knowledge to deduce the set of privileges directly or indirectly 
accessible to each user. Once the set of accessible privileges has been deduced, 
that set can be compared against a site specific access policy and any differences 
can be reported. 

A prototype of this tool has been used at MIT to improve the security of its Unix 
computers. About twice each month the prototype identifies a database entry or 
file access mode that has been changed incorrectly and accidentally allows 
untrusted users to acquire super-user privileges. 
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Title: Professor of Electrical Engineering and Computer Science 
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security analysis, operational security, Unix, Kuang 
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Chapter One 

Operational Security Problems 

Computer systems are rarely as secure as they could be. Even when the 

operating system provides good protection mechanisms users may be lax or 

inconsistent in their use of the protection mechanisms leading to security holes. 

People make mistakes that cause to operational security problems. These 

problems are not caused by software bugs; they are caused by user errors. An 

operating system that has been certified to behave as expected (e.g., Al 

certification [3]) can still have operational security problems. A certified system 

will do exactly what it is told to do, but the overall effect may not be what the 

users desired. 

This thesis focuses on the computer aspect of operational security 

problems as opposed to the physical or administrative aspects of operational 

security. A typical operational security problem arises when one user allows a 

group of other users to have write access to his or her home directory. A user 

might grant this kind of access to create a project directory for a team of people, 

or it might be granted accidentally as part of making some file readable to the 

group. On many computer systems, granting this access allows all the members 

of the group to bootstrap their privileges to include the privileges available to the 

original user. 

On Unix, write access to a user's home directory grants access to that 

user's privileges because of an interaction between the file system kernel and the 

interactive command interpreter (i.e., the shell or executive). The Unix file 

system interprets write access to a directory to mean that a user can delete and 
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create files in that directory. When a user logs in, the Unix command interpreter 

automatically executes commands from an initialization file stored in the user's 

home directory. An attacker who has write access to the user's directory can 

delete the original login initialization file and replace it with a file that executes 

any desired commands. Those commands will be executed with the user's 

privileges next time that user logs in. Typically an attacker would choose 

commands that make it easier for him to get into that users account. For 

example, the commands might make all the user's files publically readable and 

writable. 

This example illustrates the central focus of this research. It shows how 

the interactions between trusted programs can lead to operational security 

problems. The goal of this research is to develop a rule based system that can 

systematically analyze these interactions and report on any undesirable 

interactions that are possible on a particular machine. 

Experience from this research shows that operational security problems are 

common and serious. One system with a sophisticated user community and a 

security conscious staff developed serious security holes about twice a month. 

The thesis of this dissertation is that rule based systems can be used to analyze 

the operational security of computer systems and identify protection decisions 

(e.g., the settings of the access controls on files and directories, or the contents of 

system tables) that lead to inconsistencies between the desired access policies and 

the actual access policies. 

The major contribution of this research is an abstract model for 

representing the security relevant behavior of trusted programs (e.g., operating 

systems, command interpreters, mail systems, archive daemons, etc.). The model 

has enough detail that it can represent many of the sources of operational 

security problems, but not so much detail that exhaustively analyzing the 
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interactions between trusted programs is infeasible. This thesis refers to security 

checkers based on this model as Kuang Systems1. 

The best way to show that Kuang systems can improve the security of 

information systems would be to build Kuang systems for several different 

information systems and test each one for its effectiveness at finding security 

holes. That would take a long time. This thesis takes a less time consuming 

approach that supports a weaker statement. The approach is to show that a 

Kuang system can solve both the easy and the hard problems which are known 

to arise in one information system. The philosophy behind this approach is that 

one learns more about a technique by finding its limits than by showing how it 

can solve a wide range of easy problems. 

I chose to build a Kuang system for Unix. The advantage of choosing 

Unix is that there are published works ( [10], [25]) that identify the operational 

security problems which can plague a Unix system. If the Unix checker, called 

U-Kuang can find all the problems that have been published, then that is a good 

indication that Kuang systems can significantly improve the security of 

information systems for which the problems are known in advance. 

The bulk of this thesis describes U-Kuang and the insights gained from 

running it on MIT's Project Athena computers. U-Kuang was able to detect all 

the problems that have been published, and by running it I learned that those 

problems are common and recurring. U-Kuang almost always found a problem 

when it was first run on a computer. After a learning period, the rate at which 

1Kuang rhymes with twang. This research project was inspired by William Gibson's book 
Neuromancer, which won the 1984 Nebula and Hugo awards for best science fiction novel. 
Gibson's book describes innovative ways to visualize the structure of information systems. In 
particular, it describes a program called a Kuang Grade Mark 11 Ice Breaker (ice refers to the 
mechanisms used to protect access to information). The program described here is a greatly 
simplified version of that ice breaker program. 
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holes were created settled down to a few serious security holes per month (most 

holes granted super-user privileges to all users). The error rate was highest on 

systems where the staff did not care about security. 

1.1 Existing Solutions to Operational Security Problems 

Operational security problems appear to be caused by the complexity of 

modern protection systems. Modern information systems contain numerous 

trusted programs that implement the automatic management and flexible sharing 

mechanisms desired by computer users (e.g., deleting old scratch files, or 

invoking programs to process incoming mail). The kind of flexibility and 

automatic management desired by computer users can be seen by comparing a 

locked bookcase to the publishing office of the New York Times. Both systems 

have a library of material that must be available to the users, but it should be 

obvious why the access control solution which works for a bookcase does not 

generalize to solve the problems of controlling access within the publishing office. 

The publishing office is going to have complexity problems that do not exist with 

a bookcase. The fundamental functional requirements for computers have 

changed in much the same way that the functional requirements of a newspaper 

publishing house differ from that of a bookcase. Condensing, distributing and 

otherwise adding value to information is the main job of the publishing house. 

Storing and retrieving information is only a small part of the job. The 

publishing house has many different kinds of resources that must be controlled 

including the private notes of reporters, the long distance phone services, the 

staff in the research library, the printing presses, the personnel data, the photo 

library, the janitors that clean offices, the editors who finalize articles, and the 

money that pays for it all. Protecting diverse resources requires diverse 

protection mechanisms that can interact in complex ways. If users want a 

computer system that is like a publishing office, they will have to cope with 

complexity problems that did not exist in older computer systems. 
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One way to solve the complexity problem is to build new kinds of 

protection systems that are easier to understand. This approach is discussed in 

the background section (1.4). So far, no one has proposed a system that is easy 

to understand, easy to analyze, and flexible enough to meet the needs of modern 

computer users2 . 

Currently system administrators cope with the complexity of their 

protection systems by enforcing a large number of rules-of-thumb. One such 

rule-of-thumb on Unix is to make sure that home directories can only be written 

by the person who logs into that directory. Other Unix injunctions deal with 

search paths, system tables, and programming conventions. 

This rule-of-thumb approach helps improve security but it is not 

systematic and it often sacrifices many of the desirable features of the computer 

system. Another problem is that these rules are ad hoc. Rules are generated as 

administrators notice problems. They are not generated from a deep 

understanding of the interactions between trusted program and thus tend to be 

incomplete. There is no assurance that they cover even a small fraction of the 

possible security problems. 

The rule-of-thumb technique for solving operational security problems 

tends to be severe. It often sacrifices the flexibility that initially attracted the 

users to a particular computer system. In order to simplify the rules, a wide 

range of desirable forms of sharing or automatic system management are 

forbidden. For example, a common rule for Unix is to insist that only the super­

user has write access to the I etc directory because anyone who can write that 

directory can replace the password file, /etc/passwd. This rule throws away 

the possibility of having a group of trusted users who could use that access to 

2Notice that two of the three goals can easily be achieved by just turning your computer off. 
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perform system maintenance. Without the restrictive rule-of-thumb, the 

administrator would need to check to see if untrusted users could indirectly 

acquire super-user privileges due to a security mistake made by the members of 

the trusted group. In order to avoid that time consuming task, the administrator 

enforces the strict rule-of-thumb. 

The security checking tool described in this thesis helps users cope with 

complexity without sacrificing flexible sharing or automatic system management. 

The idea is to build a know ledged based model of each trusted program and then 

use a general inference algorithm to analyze the interactions between these 

programs which can occur on a particular machine. To the extent that the 

model is accurate and complete, the tool can compute a list of the privileges 

accessible to each user of this particular computer. That list can be compared to 

the desired accesses and any mistakes can be identified and corrected. This 

approach is tailored to the security requirements of the computer's users. They 

only need to sacrifice as much flexibility as is required to meet their specific 

security policy. They do not need to follow rules-of-thumb that were designed 

for the most conservative situation. 

1.2 Kuang: Rule Based Security Checking 

A computer system is operationally secure if it behaves as its users expect 

it to behave. All the desired operations should be allowed, and all the undesired 

operations should be disallowed3. The task of checking operational security can 

be divided into an analysis phase which determines the set of privileges available 

to each user and a comparison phase which checks the accessible operations 

against the desired operations. 

3
Not allowing desired operations is just as much a problem as allowing undesired access. In 

fact, my experience is that security holes are often created when users are trying to make some 
particular piece of information available to others. They end up granting more access than they 
intended. 
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This research focuses on the analysis phase, so a very simple language is 

used to specify the desired access policy. The policy specification is table that 

shows which users should be able to access each privilege. A privilege is any 

ticket that the operating system checks to decide whether to grant access to a 

protected resource. On Unix there are two kinds of privileges called user-ids and 

group-ids. The details of which privileges should be required to access each file 

or directory are not stated. Only the distribution of privileges is specified. The 

purpose of the analysis is to determine which users can directly or indirectly 

access each privilege. 

The rule based security checker described here works by simulating the 

execution of a computer from power-up to shutdown and at each step of the 

simulation the attacker tricks are consulted to see if that step can be subverted 

to grant extra privileges to any user. U-Kuang starts with the knowledge that 

when a Unix system is booted, it executes the program 1n1 t with super-user 

privileges. The checker knows that 1n1 t executes commands found in the file 

I etc/re. When that finishes 1n1 t sets up login servers for the terminal devices 

specified in another file. U-Kuang knows that privileges are inherited by default 

when one program executes another, so U-Kuang examines the contents of the 

/etc/re file on the computer being checked to determine which other programs 

will be run with super-user privileges. As the simulation continues, all system 

daemons that are activated via the I etc/re file will be simulated. The logging 

in (and logging out) of all the users is handled as part of simulating the login 

server. Finally, the Unix shutdown program is simulated. 

At each step of the simulation U-Kuang examines the sources of 

information that control the behavior of the simulated processes. Each source of 

information provides a toehold for a user to acquire additional privileges. The 

analysis then applies its knowledge about attacker tricks to determine which 

users can exploit these toeholds. The level of detail of the simulation must 

13 



expose the toeholds without including so much information that an exhaustive 

analysis is infeasible. Chapter 3 describes the models for expressing information 

about the behavior of programs and the tricks attackers can use to exploit 

toeholds. 

In summary, the approach described in this thesis for detecting 

operational security problems is to build a rule based system that embodies 

knowledge about the behavior of trusted programs and knowledge about privilege 

bootstrapping tricks. The inference engine for the system deduces the set of 

privileges that are actually accessible to each user of a particular system. The 

accessible privileges can then be compared against the desired access. The 

constructive nature of this analysis makes it easy to identify the mistakes that 

lead to violations of the access policy. 

This knowledge based approach to checking operational security is more 

systematic and extensive than the rule-of-thumb approach currently used. This 

approach will make it easier for computer users to have both good system 

security and good tools for flexible sharing and automated system management. 

1.3 Outline of Thesis 

This chapter has introduced the general problem of operational security 

and pointed out that the focus of this work is on the analysis of online security 

problems (as opposed to physical or administrative aspects of operational 

security). The advantages of using knowledge based security checkers were 

presented, and the basic workings of a Kuang system were described. 

The second chapter describes the range of security problems that Kuang 

systems can and cannot check. The particular problems addressed by the 

prototype security checker are described in that chapter. For example, Kuang 
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Systems could check for source integrity problems (e.g., verifying that only 

authorized users can modify the source files for programs that will run with 

super-user privileges), but the prototype, U-Kuang, does not check for this kind 

of operational security problem. 

Chapter three presents the abstract model that is used to analyze the 

behavior of trusted programs. The model was created by generalizing the Unix 

protection system, but as discussed in chapter six, the model appears to be 

suitable for analyzing the major features of the TOPS-20 and the VAX/VMS 

operating systems. The abstract model highlights the toeholds that allow users 

to bootstrap their privileges. The model contains a simulation component that 

focuses on the sources of information that control processes, and a component 

that focuses on how a user can subvert those sources of information. Knowledge 

about trusted programs (e.g., the security kernel, the system daemons, the 

command interpreters, etc.) and knowledge about attacker tricks (e.g., how a 

user can extend his or her privileges) are embedded in both components of the 

model. The model includes high level abstractions like privileges, processes and 

files, and low level abstractions like search paths, disk partitions and swap 

spaces. 

The fourth chapter describes how the model is used by U-Kuang to check 

the operational security of Unix systems. The major modules of U-Kuang are 

described, and the specific knowledge it has about trusted programs and attacker 

tricks is presented. 

The experience gained by runnmg U-Kuang is presented in chapter five. 

This chapter describes the experiments that lead to this thesis' conclusion that 

even security conscious users make mistakes that cause serious security holes. 

This chapter describes some tools that would make it easier to keep a Unix 

system secure. This chapter is not meant to be a criticism of Unix security. I 

believe any complex protection system will have similar problems. 
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Chapter six discusses the limitations and extensions of the rule based 

approach to security analysis. An important result presented in this chapter is 

that a rule based model can be used to answer general questions about a security 

system. For example one question that can be answered is whether conspiracy is 

a problem on Unix computers. That is, can two users working together acquire 

greater privileges than the union of the privileges they can acquire working 

alone? If they can, then the checker must analyze the implications of different 

conspiracies of untrusted users. Consider the protection system of bank vaults. 

Vaults cannot be opened without conspiracy. Two people must work together to 

open the vault. Neither person can achieve access to the vault working alone. 

Within U-Kuang's model of Unix, conspiracy cannot lead to privileges that would 

not be accessible to a single user. 

The last chapter presents the general conclusions of this research: that 

operational security problems are serious and that rule based systems are a 

promising framework for solving these problems. 

1.4 Intellectual Background 

This research project applies expert systems technology to solve the long 

standing problem in computer security of ensuring the operational security of a 

computer. The existing solutions to this problem were discussed in section 1.1. 

This section discusses the intellectual background that helped shape the solution 

presented in this thesis. 

This research draws on results in the fields of computer security and 

artificial intelligence. Work on protection mechanisms and on security models is 

used to design a language for describing the behavior of pieces of a protection 

system. Early Al research on planning and searching systems is used to develop 

the system for analyzing the interactions within a complex protection system. 
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Later work on knowledge based systems provide the syntax and algorithms for 

representing and manipulating knowledge about security systems. 

The expert system used in this project is a goal-directed backward­

chaining planning system. The planning system is not novel, it is much like 

NOAH [21 ]. The novel aspect of the planning system is organizing information 

about the behavior of the pieces of a protection system around attacker-oriented 

goals. The hard part of any rule based system is developing the correct 

abstractions for expressing knowledge in the problem domain. Thus the main 

intellectual contribution of this thesis is the abstract model of computer security 

systems that is presented in chapter 3. 

Within the computer security field this research focuses on analyzing the 

behavior of large protection systems. It is assumed that the security system of a 

flexible computer system will consist of a large number of trusted programs 

outside of the operating system. Further, this project assumes that each piece 

behaves according to its specification, whereas much of the current work in 

computer security focuses on ensuring that a piece of a security system conforms 

to its specification. Given these assumptions, the remaining question is whether 

the protection system as a whole has been told to behave in a manner that is 

consistent with the users' security requirements. 

Finally, this project explores a new meaning for security requirements. 

Most work defines the security requirements as a few general statements that 

govern information flow and information integrity. This project explores the 

advantages of fine grain security requirements that can be specified by the users 

of each computer. 
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1.4.1 Protection Models and Analysis 

Models for protection systems enter this research at two levels. First, the 

models provide a way of viewing knowledge about protection systems and thus 

they suggest natural ways to represent the rules describing the behavior of pieces 

of a protection system. Second, they suggest a language for expressing fine grain 

security requirements. 

The most general discretionary protection model is the access matrix 

described in [13], which generalizes the access control list model and the 

capability model [23]. The problem with all discretionary models is the difficulty 

of enforcing global policies such as restricting the flow of information between 

different users. To deal with this problem, both the access matrix model and the 

capability model have been extended to embody information flow requirements 

resulting in the model proposed by Bell & LaPadula [1] and the lattice model of 

Denning [6]. The Bell & LaPadula model has been further extended to 

incorporate information integrity requirements [7]. Unfortunately these extended 

models restrict the flexible information sharing mechanisms that were present in 

the original models. The approach explored in this thesis attempts to achieve the 

flexibility of the original models as well as the global policy features of the 

extended models. 

Very little research has been done on analyzing the configuration of 

protection systems. Early work by Harrison, et al. [11] presented a method for 

modeling protection systems and showed that deciding whether an attacker could 

gain access to a particular object is like deciding whether a grammar is 

unambiguous. No single procedure can decide the accessibility question for all 

protection systems that can be expressed within their model, and there are 

protection systems that can emulate Turing machines so for those systems no 

decision procedure exists. However, their paper presents one model which does 

have a decision procedure. They state that this model is too simple to be of 
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interest, but in fact the attacker-oriented rules used in this research generate an 

example of this simple model. 

The attacker-oriented rules can be viewed as defining a set of commands 

for an abstract protection system. Each command examines the state of an 

access matrix to decide if it can be applied, and if so, it adds at most one token 

to the access matrix. The commands never add subjects (users) or objects (files) 

to the abstract access matrix, even though in a real Unix system applying the 

rule might involve creating a new file that takes the place of an existing one. 

Since the access matrix cannot grow, a simple counting argument shows that a 

decision procedure must exist. 

The problem of indirect access to objects has been studied with the take­

grant model for capability systems as in [23]. A variant of the take-grant model, 

called the schematic send-receive model, can be analyzed in linear time if 

ordinary users cannot create other users with greater privileges [22]. Neither of 

these models embody the complexity of protection systems that consist of several 

pieces of trusted software, so the results have limited applications to the real 

computer systems considered in this research. 

1.4.2 Protection Mechanisms 

One goal of this research is to describe how to build rule based systems 

that can analyze complex protection systems. For that reason knowledge about 

existing computer protection systems is relevant. One family of real computers 

has tried to meet the needs of the military computing environment and they tend 

to have a rich set of protection mechanisms. This includes ADEPT-50 [24], Multics 

[18], and most recently the Honeywell SCOMP [12]. This family of systems can 

enforce some global security requirements such as information flow control, but 

they do not address the problem of ensuring a match between the settings of the 

security configuration and the detailed security requirements of each site. 
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The classic example of a capability system is Hydra [26]. It has a general 

model that allows ordinary users to create capabilities to access objects and 

capabilities to create capabilities. A system like Unix could be viewed as a 

capability system, but it lacks the generality present in Hydra. 

The range of commercial computer protection systems studied in this 

project has Unix [10] at one end representing simple access control list security, 

and VMS [5] at the other representing a complicated cross between list and 

capability protection. The VMS model also includes objects with diverse 

abstraction such as files and page tables. Due to lack of availability, I ignored 

retrofitted security systems like RACF for IBM systems. 

1.4.3 Rule Based Systems 

This project draws on research in the area of expert systems to build a 

security checker. Expert systems have used several different methods for 

representing knowledge and for drawing inferences from that knowledge. 

Levesque and Brachman have summarized these different approaches and pointed 

out a fundamental tradeoff between the representation of the knowledge base 

and the kinds of inferences that can be easily made from the knowledge base 

[14]. The prototype security checker for Unix demonstrates that simple goal­

oriented rules and a backward-chaining planning system can analyze an 

interesting range of security problems. 

Early AI research developed hierarchical planning systems like NOAH 

[21] which are general enough to analyze a protection system once the system 

has been properly described. More recent AI research on rule based systems has 

developed different mechanisms for representing facts and procedures for 

reasoning with facts. For example, an early Unix security checker had twelve 

rules concerning programs controlled by databases; the final U-Kuang system had 

20 



just two general rules about how databases can control programs and then it had 

several facts about what programs are eoaUolled hy wWeh d.&tabuee. Separatiag 

facts from the techniques for using thoee fade lead to a simpler knowledge base 

that wu easier to understand and extend. Tile lafonlMinn structuring features 

or U-Kuang's rule hued S)'Btem were selected ff'Olll __...modern expert system 

shells (IKE (19), KRL (2), and KEE (8)). 
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Chapter Two 

Scope of the Solution 

Operational security covers a wide range of areas so it is important to 

define the specific goals and problem areas addressed in this research. This 

chapter presents the problem areas that U-Kuang addresses by describing the 

general areas, and within those areas, which problems are handled by U-Kuang. 

The first section lists the kinds of operational security holes that Kuang systems 

could find and the particular problems that U-Kuang finds. The second section 

presents a functional specification of Kuang systems in general and U-Kuang 

specifically. The third section describes different modes of operations for security 

checkers and the particular mode of operation for U-Kuang. The last section 

discusses policy specification languages and presents the simple language used by 

U-Kuang. 

2.1 Operational Security Problems 

Operational security problems are quite different from the problems that 

arise from design or implementation mistakes. Operational problems arise from 

the incorrect operation of the computer. They can exist even if the design and 

implementation have been certified to conform to each each and to some global 

model of the user's security requirements. This study of operational security 

problems assumes that the trusted programs behave as expected. The question it 

asks is whether the security system has been configured to enforce the desired 

security policy. That is, are there unexpected interactions between the pieces of 

the security system that allow users to perform undesired operations? 
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This section describes different kinds of operational security problems and 

identifies the ones that are handled by the prototype security checker. In general 

a Kuang system can check for any security hole that involves changing a file or 

table on the computer system. A list of operational security problems that do 

not fit this paradigm are presented in figure 2-1. The kinds of problems that do 

fit this paradigm are listed in figure 2-2. The extent to which U-Kuang checks 

for these problems is discussed below. 

• Wire tapping. Communication channels are secure. 

• Unlocked machine. Physical access to the system is well controlled. 

• Bad passwords. The users have chosen good passwords. 

• Authentication Integrity. The databases and programs that are used 
to authenticate users have not been tampered with. 

• Installation Integrity. The people and data sources that update the 
system are trusted. 

Figure 2-1: Unhandled Operational Security Problems 

Of the problems listed in figure 2-2, U-Kuang checks for indirect access, 

privilege bootstrapping, and resolution integrity. It handles a limited form of 

authentication integrity. It can report on all the users who could modify the 

authentication system, but it cannot tell if the system has been modified. It does 

not check for source integrity problems in general, but it does check one special 

case where a database that controls the mail delivery program is converted from 

text to binary form. Object integrity and installation integrity are not checked, 

and in general I believe it is hard for Kuang systems to check for these kinds of 

operational problems because they require knowledge that is hard to represent in 

the abstract model presented in Chapter 3. 
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• Indirect Access. Given the operating system's rule for changing access 
controls, be sure that only desired users can access an object. 

• Privilege Bootstrapping. Prevent users from acquiring additional 
privileges by changing the controlling databases of trusted programs. 

• Resolution Integrity. When a program is invoked make sure the 
desired executable object is used. This category includes trojan horses 
and search path attacks. 

• Object Integrity. The executable image of a program corresponds to 
the correct source code. 

• Source Integrity. Only authorized persons can change the source code 
or the object libraries that form trusted programs. 

Figure 2-2: Operational Security Problems 

It is worth emphasizing that this security analysis system does not and 

cannot find software bugs. For example, version 4.2 of Berkeley Unix had a bug 

in the implementation of shared code segments that made it possible for anyone 

to acquire super-user privileges. The security checker could not find this 

problem. One could build a rule based system that incorporates knowledge 

about software bugs but it would not be Kuang system since it would not use the 

abstract model presented in Chapter 3. 

2.2 Functional Specification of U-Kuang 

The simplest Kuang system can be viewed as a boolean function of two 

arguments. The function examines a Security Configuration and an Access 

Policy Specification and returns True if the security configuration is consistent 

with the access policy. It returns True if and only if the computer is configured 

to allow all the specified access and disallow all the unspecified access. 
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A computer's security configuration is the sum of all the information that 

controls access to information. This includes the file and directory protection 

modes which are used by the kernel and all the system tables and configuration 

files examined by trusted programs. For example, the login program runs with 

super-user privileges, so the databases it reads, like the password file and the 

directory containing the password file, are part of the security configuration. 

The contents of each user's login initialization file are part of the security 

configuration, since those commands are automatically executed with the 

privileges of that user. 

U-Kuang has a very simple policy specification language. Section 2.4 

discusses the general issues. The goal of the simple language is to allow a system 

administrator to specify the set of privileges (i.e., group-ids and user-ids) that can 

be accessed by each user. The specification is exhaustive; any access not 

explicitly granted should be inaccessible. 

This simple language does not address the problem of specifying which 

privileges should be necessary to access each file. A more general language would 

allow an administrator to specify which users are allowed access to each file or 

group of files. The simple language lets an administrator specify the distribution 

of privileges among the users, but there is no way to make sure that files 

containing sensitive information are protected by the correct privileges. 

The pnmary inputs to the U-Kuang program are the security 

configuration and the desired access policy for the computer being analyzed. 

These inputs are different for each computer analyzed. The facts and rules that 

describe the privileged programs running on the computer (including the 

operating system) form a secondary input to U-Kuang. The secondary input 

would only change when the security model for Unix was changed or refined. 
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The output of U-Kuang is a list of plans that describe how the security 

configuration allows users to violate the access policy. If the list is empty, then 

the site is secure against the attacks that U-Kuang detects. To the extent that 

U-Kuang has an accurate and complete model of the trusted programs that run 

on Unix machines, an empty list means that the site does not have any 

operational security holes. Only (and all of) the specified privileges are accessible 

to the specified users. 

2.3 Modes of Operation 

A Kuang system could be used as a stand-alone auditing program, or it 

could be integrated into the operating system. U-Kuang is a stand-alone security 

checker. It is a program that can be run periodically to detect human errors that 

lead to operational security holes. U-Kuang takes less than a minute to run, so it 

could be performed whenever a privileged user makes changes to system tables. 

The experiments performed for this research involved running U-Kuang weekly.4 

The auditing program does not prevent operational security holes; it just 

detects them. To get better security, a Kuang system could be integrated into 

the security kernel. Changes to the security configuration would be grouped into 

atomic transactions that are reviewed by the Kuang system and only transactions 

that leave the system in an acceptable state would be applied. This approach 

would only be feasible if the rule based system was fast enough. 

4
on one undergraduate machine the program was run every Friday morning so holes could be 

fixed before the weekend. Eventually it was discovered that system crackers were running the 
program every Thursday evening. 
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2.4 Policy Specification Languages 

The basic question answered by a Kuang system is whether a particular 

site is in a 'safe' state. The characteristics of a safe state are determined on a 

per site basis, so there must be a way to specify such a state. Basically, a safe 

state is one in which all the desired accesses to information are allowed, while all 

the undesired accesses are disallowed. The specification can be viewed as a 

statement of the policies for acceptable accesses. This section discusses policy 

languages and describes the language used by U-Kuang. 

The policy specification can be viewed as a virtual access matrix. Like a 

conventional access control matrix [13], the matrix that has a row for each user 

and a column for each protected resource (e.g., files, mail queues, networks, and 

devices). Each cell of the matrix defines the set of operations that the user can 

perform on the resource. This access matrix is virtual in the sense that it does 

not include details about how each resource is named nor does it list the related 

operations that are required to perform a specified operation. For example, on 

Unix if a user should have read access to a file, he must also have search 

access to the directory containing the file. These details are left out of the 

virtual access matrix. 

When a Kuang system compares a policy to a security configuration there 

are several possible outcomes. The policy itself might be inconsistent. In that 

case the checker should describe how the policy statements contradict themselves. 

A checker that did not generate a constructive statement of the inconsistency 

would not help the user identify the source of the inconsistency. Recall that 

security checkers are motivated by the desire to help users deal with the 

complexity of protection systems. Another outcome could be that the policy is 

not realizable on the given operating system. In that case, the Kuang system 

should point out rules in the protection model that contradict statements in the 

27 



policy. For example, if the policy says that some directory owned by user alice 

should not be writable by alice, the checker should point out that on Unix the 

owner of a directory can always gain write access because the owner can change 

the access controls on the directory. Finally, a the system must say whether the 

site is configured to meet the policy and if not, it should describe a sequence of 

actions that a user could perform to violate the policy specification. U-Kuang 

only performs this last function. 

There is a trade-off between the expressiveness of the policy language and 

the difficulty of detecting inconsistencies (both within a policy specification and 

between a specification and a security configuration). The focus of this research 

is security analysis, so U-Kuang's policy specification was chosen to be very 

simple. The specification is a table very much like the table in the Unix file 

/etc/groups. The table lists for each privilege (user-ids and group-ids) the 

users who are allowed direct or indirect access to that privilege. For example, a 

user who has access to super-user privileges can indirectly access all user-ids or 

group-ids and that must be explicitly specified.5 

A great deal of research is possible in the area of policy specification 

languages. For example, it would be interesting to formalize the specification 

languages of different systems and then compare them in terms of expressiveness 

or completeness. Another project would be to find out what policies are required 

to solve security problems in different environments (schools, corporations, 

computer centers). Policies about default protections are particularly interesting 

because they express constraints on objects which do not yet exist. It is not clear 

how a rule based system could check a policy like "all files created by the 

foobar program in this directory should only be readable by bob." Operating 

systems are unlikely to help users implement detailed policies like that one. At 

least a security checking system could detect any existing violations of the policy. 

5In practice the policy table is generated by macros from a slightly more convenient language. 
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The only protected resources considered in U-Kuang's policy specification 

language are Unix user-ids and group-ids. The specification identifies the users 

who should have access to each privilege6. In this simple language files are not 

considered protected resources. The set of privileges required to access each file 

is not part of the specification. Only the distribution of privileges to users is 

specified. 

U-Kuang's policy specification is called a Privilege Access Table. The 

BNF for this table is given in figure 2-3. Terminal symbols are underlined. The 

table has a row for each privilege. A Unix system can have a user and group id 

with the same name, so the symbols u. and g. are used to distinguish them. 

Each row lists the users who should be able to directly or indirectly acquire that 

privilege. This specification is exhaustive. Any access that is not explicitly 

granted is forbidden. Further, all user and group privileges must be listed. It is 

a violation of the policy for the computer to have privileges that are not listed in 

the table. 

pol-spec - priv-spec priv-spec pol-spec 
priv-spec - priv : usernames 
usernames - username I usernames .L usernames 
priv - u. username Q.:_ groupname 
username - string 
groupname - string 

Figure 2-3: BNF for the Privilege Access Table 

A sample specification is given in figure 2-4. Notice that there is a user-id 

and a group-id named daemon as well as a user named daemon. The super-user, 

6 A privilege is any ticket checked by the operating system to determine whether to grant access 
to a protected resource. 
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root, has access to all privileges. The users alex and alice can use each 

others user-ids. For example, their entries in the password file might state that 

they have the same user-id even though they have different home directories. 

Unix does not enforce a one-to-one correspondence between users and user-ids. 

The user bob has allowed tom to use his account. For example, bob might have 

put tom in his . rhosts file which allows tom to log into bob's account without 

supplying a password. The details of how each form of access is grant are not 

important. The privilege access table just specifies the set of user who can 

acquire each privilege. 

user.daemon : daemon, root 
user.alice : alice, alex, root 
user.alex : alex, alice, root 
user.bob : bob, tom, root 
user.tom : tom, root 
group.guest : alex, alice, bob, daemon, tom, root 
group.staff : alex, alice, root 
group.daemon : daemon, root 

Figure 2-4: Sample Policy Specification 
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Chapter Three 

An Abstract Security Model 

The hard part of designing any rule based system is choosing the 

vocabulary and structures that will be used to represent facts in the problem 

domain. The goal is to pick a simple representation that facilitates answering 

the desired questions. In the case of a Kuang system, the important question is 

which users can indirectly access each privilege (e.g., user-id or group-id). To 

answer this question the system must create an abstract model of a computer's 

security system that clearly identifies the interactions each user could exploit to 

achieve greater privileges. 

The abstract model is the maJor intellectual contribution of this thesis. 

Once the model is understood, it is easy to see how operational security problems 

can be checked systematically. The model identifies the essential causes of these 

problems and describes how the analysis problem can be decomposed into simple 

steps. 

The model was developed as a generalization of the Unix protection 

system, but it can be applied to other systems. Section 3.2 describes the 

relationship between concepts in the abstract model and concepts in both the 

Unix and VMS operating systems. By presenting the model explicitly, this 

chapter makes it easier to decide whether this approach to security analysis can 

be applied to other systems. To the extent that the model can represent the 

significant features of a system, this work can be applied directly. 

The key idea of this model is to focus on the sources of information that 

31 



influence the behavior of a process (a runnmg program). If an attacker can 

change one of the sources of information, then the attacker can gam control of 

the process and thus acquire the privileges available to the process. This idea 

unifies the tricks that attackers use to extend their privileges. Every trick is an 

example of modifying a file, table, or database that crucially influences the 

behavior of some process. For example, adding commands to a user's login 

initialization file can be viewed as modifying one of the sources of controlling 

information for the process that executes that user's command interpreter. 

The first section of this chapter describes how the analysis problem can be 

decomposed into three simple steps. That section describes the information 

passed between each step. Sections two, three, and four describe those three 

steps in greater deal and present the models that are used to represent knowledge 

about trusted programs and attacker tricks. The chapter ends with a summary 

of the models. 

3.1 Decomposition of the Analysis Problem 

The general problem handled by a Kuang system is checking the 

configuration of a security system to ensure that the desired access policy is being 

enforced. The system must analyze the configuration to produce a table called 

the Privilege Access Table (PAT) that shows which users can indirectly access 

each privilege. This table has the same format as the one that specifies the 

access policy (see section 2.4) so it is easy to check the security. 

The PAT is computed in three steps. The first step uses knowledge about 

trusted programs and facts about the configuration of the system being analyzed 

to deduce the set of files and tables that allow an attacker to directly acqmre 

each privilege. That is, the first step examines the behavior of the trusted 

programs that will run on the computer being analyzed to produce a list of 
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toeholds for an attacker. The second step applies knowledge of attacker tricks to 

deduce all the techniques that could be used to directly exploit these toeholds. 

The last step performs a transitive closure operation to identify all the indirect 

relationships. The PAT is extracted from the matrix of indirect relationships. 

This decomposition is expressed in figure 3-1. 

Analysis Steps 

Model of <--- Rules, 
Trusted Programs Facts 

I 
I 
I Table of 
I Privilege 
I Controlling 
I Operations 
I 
v 

Model of <--- Rules, 
Attacker Tricks Facts 

I 
I 
I 
I Operation 
I Grant 
I Matrix 
I 
I 
I 
v 

Transitive <--- Rules, 
Closure 

v 

Privilege 
Access 
Table 

Facts 

Examples 

Facts 
- /etc/init forks shell to 

execute commands in /etc/re 

Privilege Controlling Operations 
u.root: {modify(/etc/rc) ... } 
g.staff: {modify(/etc/group) ... } 
u.tom: {modify(/usr/tom/.login) ... } 

Facts 
- /etc/re writable by {u.root} 
- /etc writable by {u.root, g. staff} 

Op. Grant Matrix 1 2 3 4 5 
acquire(u.root) 11 T T T 
acquire Cg.staff) 21 T T 
acquire Cu.tom) 31 T T 
modify(/ etc/re) 41 T T 
modify(/ etc) 51 T T 

Facts 
- user tom has {u.tom, g.guest} 

Privilege Access Table 
u.root: { root, tom } 
g.staff: { root, tom } 
u.tom: {root, tom} 

Figure 3-1: Steps in Security Analysis 
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The first two steps use different knowledge bases and they have different 

models for representing facts and rules. The details of these models are 

explained in sections 3.2 and 3.3. To highlight the purpose and function of each 

step the remainder of this section describes the interfaces between the steps. For 

U-Kuang, additional information is passed between the steps because it answers a 

more detailed question. Not only does it need to figure out which users can 

indirectly access each privilege, it must be able to describe how each privilege 

could be acquired. The descriptions make it easier to identify the cause of an 

operational security problem, but they do not add any new complications to the 

analysis process. 

3.1.1 Privilege Controlling Operations 

A key assumption of this research is that operational security holes are 

exploited by modifying files, tables, or other information that controls a process. 

This assumption defines the kind of security problems that are considered in this 

thesis. For example, one problem which is not considered is the problem of 

leaving the computer in an unlocked room. An attacker with physical access to 

the machine can often acquire privileges by using the console terminal to 

interrupt the normal power-up sequence of the machine. This sort of problem 

does not fit the key assumption. However, the problem of an attacker modifying 

the files or tables that specify the commands that will be executed when the 

machine reboots does fit the key assumption. Those commands are often 

executed with super-user privileges (i.e., on Unix these are a user-id privilege 

called u. root and a group-id privilege called g. wheel), and by changing these 

commands an attacker could create new accounts with any desired privileges. 

The key assumption suggests that one important concept is the notion of a 

Controlling-File (CF). A CF for a process is any file, directory, table, program, 

etc. that can be manipulated to allow an attacker to acquire the privileges 
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available to that process. A CF is a generalization that encompasses all the 

sources of information that can influence the behavior of a process. The concept 

of a Controlling-Operation (CO) for a process specifies both the CF and the kind 

of operation on the CF which is necessary to manipulate the process. For 

example, the Unix login program runs with super-user privileges and it is 

controlled by information in the password file, I etc/passwd. The operation 

write (/etc/passwd) is a co for the login process and thus an attacker who 

can perform that operation can acquire super-user privileges. 

In general there are read and modify cos. A specific operating system 

might have different forms of these operations like append or delete, and the 

available operations might depend on the type of controlling-file. The operations 

on directories could be different than the operations on files. U-Kuang models 

Unix CO's with three operations: read (cf), write (cf), and replace (cf). 

The read operation has the conventional meaning for files. For directories it 

means that the attacker has the ability to search the directory for a given file 

name. The write operation means that the contents of the CF can be modified 

without changing the ownership of the file or directory. The ownership can be 

changed as part of a replace operation. For example, a attacker can perform 

the replace (cf) operation by deleting the original file and creating a new one 

to take its place. This trick usually changes both the ownership and contents of 

the CF. 

The purpose of the first step in the analysis is to build a table of all the 

COs that grant access to each privilege. The table of Privilege Controlling 

Operations (PCO) is constructed using knowledge about the behavior of trusted 

programs which has been compiled into the security checker and facts about the 

contents of command files and tables which are read from the machine being 

analyzed. Basically, the execution of all the trusted programs is simulated and as 

these programs reference controlling information, cos are recorded for all the 

privileges available to the process. A sample PCO table is shown in figure 3-2. 
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A table of PCOs has a row for each privilege. Each row lists the set of COs 

that allow and attacker to control some process that runs with the given 

privilege. In figure 3-2, access to the super-user privilege, u. root 7, is controlled 

by the operations of writing the password file or reading the kernel memory (via 

the special device Id ev /km em). The password file is a controlling file for the 

login program, which runs in a process that has super-user privileges. The kernel 

memory is a controlling-file for all processes. In particular, it includes the 

terminal buffers for all users, so read access allows an attacker to watch other 

users type their passwords when they login. 

u.root: {modify(/etc/passwd), read(/dev/kmem) ... } 
g.staff: {modify(/etc/group) ... } 
u.tom: {mod1fy(/usr/tom/.log1n) ... } 

Figure 3-2: Sample Table of Privilege Controlling Operations 

3.1.2 Operation Grant Matrix 

The first step of the analysis process produced a list of the operations that 

would allow an attacker to directly acquire each privilege. For example, the first 

step used its knowledge about how a Unix system boots to deduce that a process 

with super-user privileges executes a program called I etc/1n1 t so it would add 

an entry to the table of privilege controlling operations stating that 

modify Cl etc/1n1 t) grants access to the super-user privilege, u. root. The 

second step of the analysis applies its knowledge of attacker tricks to find all the 

ways that an attacker could perform controlling operations. 

7Unix has user and group privileges. To distinguish a user privilege named daemon from a 
group privilege of the same name, the former is written as u. daemon while the later is written 
g.daemon. 

36 



The PCO table can be viewed as a list of goals that would help an attacker 

increase his privileges. The second step builds a list of subgoals that can be used 

to achieve those goals, and recursively, a list of sub-subgoals to achieve the 

subgoals, etc. The details of this inference process are described in section 3.3, 

while a description of the output of the process is described below. 

The output of the second step is a boolean matrix that describes which 

goals are directly granted by each goal. The goals can be represented as 

operations that an attacker can perform on CFs or privileges. That is, the goals 

are modify (cf), read (cf), and acquire (pri v). The first two goals are 

exactly the same as the controlling operations that were introduced earlier. The 

third goal means that the attacker can run an arbitrary program in a process 

that has access to the pri v privilege. 

The notation was chosen to encourage the reader to think of 

acquire (pri v) as the ability to perform the acquire operation on an object 

of type privilege. This perspective unifies privileges and CFs into a single 

framework of performing operations on objects. Knowledge about the 

relationships between privileges and files can be expressed in the same terms as 

knowledge about relationships between COs. For example, one relationship 

between cos that exists in Unix is that for all files, f, in the directory, d, the 

operation modify (d) grants the operation modify (f). A similar relationship 

between privileges is that for each user-id privilege, u, that is a member of the 

group-id privilege, g, the operation acquire (u) grants acquire (g). 

In terms of these general operations, the purpose of the second step of 

analysis is to build a boolean matrix that describes what other operations are 

directly granted by each operation. The Operation Grant Matrix ( OGM) defines 

a relation between operations that is reflexive (an operation directly grants itself), 

but not necessarily symmetric (operation o1 directly grants o2 does not imply 

37 



that o2 directly grants o 1 ), nor transitive ( o 1 directly grants o2 and o2 directly 

grants o3 does not imply that o1 directly grants o3). The OGM only defines 

direct granting relationships between operations. The third step computes the 

transitive closure of the OGM to produce the indirect relationships. 

A sample OGM is shown in figure 3-3. The OGM is always square, so the 

labels for the ith column is the same as the label of the ith row. The rows and 

columns are numbered to facilitate reading labels. The symbol, T, is placed in 

the cell at the intersection of a row and a column if the row operation directly 

grants the column operation. An empty cell means that there is not a direct 

grant relationship between the operations. The first row of the OGM expresses 

the fact that the super-user privilege, u. root, directly grants itself, 

acquire Cu. root), and directly grants the modify operation for all CFs 

(/etc/re and /etc).8 The last cell of the second row expresses the fact that 

the staff group-id privilege has write access to the I etc directory, so it grants 

the modify(/ etc) operation. The third row indicates that anyone who can 

acquire the user-id privilege, tom, can acquire the group-id privilege, staff. 

The transitive closure operation will deduce that acquire Cu. tom) indirectly 

grants acquire Cu. root). 

The information in the OGM could also be expressed by a directed graph. 

The nodes would be the operations. An edge would lead from one node to 

another if the first operation granted the second. In fact, U-Kuang used a graph 

to represent the OGM. Similarly the table of PCOs could be viewed as a graph 

showing which cos grant the acquire operation for each privilege. Thus both 

the input and output of the second step of analysis can be viewed as a graph 

describing the direct grant relationship between operations. The second step uses 

8It is also true that the super-user privilege directly grants access to all other privileges by 
using the /bin/su command, but that knowledge is not included in this simple example. 
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1 2 3 4 5 
acquire Cu.root) 11 T T T 
acquire Cg.staff) 21 T T 
acquire(u.tom) 31 T T 
modify (/etc/re) 41 T T 
modify(/ etc) 51 T T 

Figure 3-3: Sample Operation Grant Matrix 

its knowledge of attacker tricks to expand the direct granting relationships that 

were deduced in the first step. 

3.1.3 Privilege Access Table 

The goal of a Kuang system is to compare the operations that each user 

can directly or indirectly perform against a specified access policy. In the case of 

U-Kuang the only operations that are specified are operations that acquire 

privileges. The output of the third and final step of the analysis is a Privilege 

Access Table (PAT), which has the same format as the table specifying the desired 

access policy. The table has a row for each privilege, and each row lists the users 

that should be able to access that privilege. Any access that is not explicitly 

permitted should be forbidden (see section 2.4 for details). 

A sample PAT is shown in figure 3-4. There are two user-id privileges, 

u. root and u. tom, and one group-id privilege, g. staff. The two users, root 

and tom, have access to all three privileges. It is no surprise that the super-user, 

root, has access to all privileges. However, the system deduced that tom could 

acquire u. root, so he too can access all three privileges. The PAT does not 

describe the plan by which tom can acquire super-user privileges. In order to 

build plans, each step of the analysis needs to keep track of extra information, 

but the nature of the analysis is not changed. 
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u.root: { root, tom } 
g.staff: { root, tom } 
u.tom: {root, tom} 

Figure 3-4: Sample Privilege Access Table 

The third step computes the transitive closure of the OGM and extracts 

just the information that deals with privileges. The computed matrix defines the 

indirectly grants relationship between privileges. The desired result is a table 

that defines the set of users who can acquire each privilege. To compute that 

result, the third step needs to consult facts about which privileges are initially 

accessible to each user. These facts come from the computer's authorization 

database, which on Unix is kept in the files /etc/passwd and /etc/group. 

3.2 Model for Trusted Programs 

The model of trusted programs defines the vocabulary and structures that 

are used to express facts and rules about the behavior of programs. The focus of 

the model is on the sources of information that an attacker could manipulate to 

gain control of the processes that execute these programs. By controlling a 

process, an attacker can acquire all the privileges available to that process. This 

section describes how knowledge about programs is represented and how that 

knowledge is used to deduce the set of operations that directly grant access to 

each privilege. 

The algorithm for making these deductions is similar to an algorithm for 

simulating the execution of the programs. The algorithm uses compiled-in 

knowledge about the behavior of programs (e.g., the fact that the 1n1 t program 

executes commands in the file I etc/re) and facts about the computer being 
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analyzed (i.e., list of commands found in that computer's I etc/re file) to 

deduce the new processes and programs that will run on the computer. This is 

not a true simulation since the order of execution does not need to be 

maintained. 

At each step of the simulation, a small set of rules are used to generate a 

list of cos that could change the outcome of that step. These COs are added to 

the set of cos for all the privileges currently available to the process. These sets 

form the PCO table. 

To motivate the model which is explained in section 3.2.1, table 3-1 lists 

the kinds of facts that must be represented by the model. The first fact in the 

table describes how Unix systems start execution. The important information is 

that the future action of a process with super-user privileges is determined by 

information found in a file named /etc/1n1 t. The second fact provides an 

explicit description of the important actions taken by the 1n1 t program. In 

general programs that are compiled into machine instructions must be simulated 

using compiled-in facts about their behavior. Programs which are written as a 

series of user-level commands (e.g., I etc/re) can be parsed directly by U­

Kuang, so their behavior does not need to be represented by compiled-in facts. 

The third fact is about the privileges available to a process. When a new 

process is created, it inherits the privileges of its parent. Combining this fact 

with the first two, the system can deduce that all the commands mentioned in 

I etc/re will be executed with super-user privileges. 

The fourth fact describes how one program, sh, converts a program name 

into the full name of the file that contains the instructions for the program. The 

details of how program names are resolved into file names are very important to 

the operational security of a computer. In particular, the fifth fact states that 
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1. When Unix boots it create a process with super-user privileges that 
executes the program in /etc/ini t. 

2. The program /etc/init creates a new process running the program 
/bin/sh to execute commands in the file /etc/re. 

3. By default, a new process has the same privileges as its parent 
process. 

4. The program /bin/sh uses a search path to resolve command names 
into executable files. 

5. Any directory searched to find a file that provides instructions for a 
process is a CF for that process. 

6. Any file that provides instructions for a process IS a CF for that 
process. 

Table 3-1: Sample Knowledge About Trusted Programs 

any directory search to find a program is a CF for the process. If an attacker can 

modify that directory, he can substitute his own program for the intended one 

and thus can acquire all the privileges available to the process. Similarly, the 

sixth fact says that if an attacker can modify the file that contains the 

instructions, then he can gain control of the process. 

3.2.1 Formal Model for Trusted Programs 

The key feature of the model for trusted programs IS the process 

abstraction. This abstraction is similar to the conventional operating system 

notion of a process. It represents the instantaneous state of a program. As the 

security checker simulates the behavior of trusted programs it creates process 

objects and modifies the state of these objects to model the behavior of the 

corresponding real processes. 

A process object has three state components. The behavior of each 
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Process 

• Privilege state - List of privileges available to the process. 
• Naming state - Context for resolving names. 
• Control state - Current actions plus list of remaining action. 

Figure 3-5: Attributes of a Process Object 

process is specified by a control state. The privileges available to the process are 

specified by a privilege state, and the naming environment used to convert names 

into disk addresses is specified by the naming state. As the analysis proceeds, 

the state of each process object is changed according to the list of actions 

specified in the control state. New processes are created and old processes are 

simulated to completion. The analysis ends when all processes have been 

simulated. To define the model precisely, the concepts used to define the state of 

a process are defined below. Figure 3-6 relates these concepts to those found in 

the Unix operating system. Figure 3-7 illustrates the same correspondence for 

the VMS operating system. 

A Privilege is any ticket which grants the ability to perform operations on 

protected resources. For example, the only privileges on Unix systems are user­

ids and group-ids. These grant access to all the files, directories and devices that 

exist in Unix. The VMS system has group and user ids but it also has 'privilege 

bits' which allow a user to perform operations like submitting batch jobs, and 

change the page-table (virtual memory map) for a process. All of these are 

privileges. The privilege state of a process is a list of privileges that a program 

could use. 

The model does not specify the restriction on how the privilege state can 

change. For example, on Unix only a process with super-user privileges can 

change its privilege state independently from changing the program that it is 
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Unix 
Process 

user-ids 
group-ids 

current-directory 
search-paths 
shell-variables 

programs 
shell-scripts 
control-tables 

create-process 
resolve-file-name 
execute-command-file 
execute-program 
change-privileges 
change-directory 
change-shell-variable 
copy-file 

Model for Trusted Program 
<privilege state, naming state, control state> 

Privileges 

Naming state 

Scripts = lists of actions 

Actions 

Figure 3-6: Unix and the Trusted Program Model 

executing. The model does not enforce this restriction. This detail about the 

behavior of Unix is expressed by the actions specified by programs. The model 

must be able to determine the privilege state of a process at each step, but it 

does not need include information about forbidden changes to the privilege state. 

The Naming state is a table that describes how file and program names 

can be resolved into disk addresses. This abstraction covers concepts like the 

current directory of a process, the list of directories search to find a file, and 

logical names (e.g., $HOME or SYS$SRC). When a process takes an action that 

must resolve a file or program name, the current naming state of the process is 

examined to determine the outcome. 

The Control State of a process is a current action plus a list of remaining 

actions call the remaining script for the process. Each step of the simulation 
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VMS 

Process 
Batch-job 

user-names 
group-names 
privilege-bits 

current-directory 
search-paths 
logical-names 

programs 
command-files 
control-tables 

create-process 
resolve-file-name 
execute-command-file 
execute-program 
set-privileges 
change-directory 
define-logical-name 
copy-file 

Model for Trusted Program 
<privilege state, naming state, control state> 

Privileges 

Naming state 

Scripts = lists of actions 

Actions 

Figure 3-7: VMS and the Trusted Program Model 

performs the current action, and then extracts the next action from the head of 

the remaining script. A process is fully analyzed when its remaining script is 

empty. 

The possible actions are listed in figure 3-8. They define the activities of a 

process that could lead to operational security holes. The first two actions allow 

a process to change its privilege and naming state. Again, the model does not 

incorporate details about which kinds of changes are allowed. The compiled-in 

actions or the actions parsed from files express these restrictions. The third 

action describes the creation of new processes. It includes the restriction that the 

initial privilege and naming states are the inherited from the parent process. If 

that state needs to change, the change must be modeled by explicit actions. For 

example, the first action in the script for a set-id program on Unix, or a VMS 
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program installed with privileges, must be an action that changes the privilege 

state. 

1. Change the privilege state according to a constant in the action. 

2. Change the naming state according to a constant in the action. 

3. Create a new process with the same privilege state and naming state 
as this process, but a new instruction state as specified by a constant 
in the action. 

4. Append or insert scripts to the list of remaining scripts. The scripts 
are specified by either 1) a constant in the action, or 2) a list of 
scripts parsed from a specified controlling-file. 

5. Copy one controlling-file to another. 

Figure 3-8: Possible Actions for a Process 

The fourth action in figure 3-8 describes how a process can add actions to 

its script of remaining actions. The new actions can be specified by a constant or 

they can be read from a controlling-file (e.g., program or shell-script). This 

feature gives the model general Turing capabilities and the possibility of infinite 

loops, but in practice, trusted programs have a straight-line behavior in terms of 

actions that are relevant to operational security holes. 

3.2.2 Representing Facts About Programs 

This section briefly describes how the model can be used to represent the 

knowledge about trusted programs that were presented in table 3-1. Factual 

knowledge is represented by assigning value to the attributes associated with 

objects. For example, there will be an object that represents the file 

/etc/1n1 t, and it will have a field that holds the list of privileges that grant 
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direct write access to that file. Each privilege is itself represented by an object. 

The facts in knowledge base can be thought of as pre-initialized objects. Facts 

that are deduced are recorded by creating new objects or by filling in the 

attributes of existing objects. Other knowledge describes how to compute the 

values of attributes. This knowledge is represented by rules. The antecedent of 

each rule selects one or more objects with particular properties, and the 

consequent fills in the value of some attribute. To avoid including syntax details 

the representations are described in english. 

The first fact in table 3-1 is that Unix systems boot by running the 

program I etc/1n1 t in a process with super-user privileges. This is represented 

by a compiled-in process object that starts off the simulation. The privilege state 

includes the super-user privileges, the naming state is empty, and the control 

state specifies a single action which is to read a script from /etc/1n1 t and add 

it to the list of remaining actions. 

The script for I etc/1n1 t is expressed as a compile-in fact. This fact is 

stored in the knowledge base as a property of the object that represents the file 

/etc/1n1 t. 

The third fact states that new processes inherit the privilege and nammg 

state of the parent process. This fact is represented by the rules which create 

new process objects. There is a general operation to create new process objects 

in the knowledge base given the three components of its state, and each rule that 

calls this operation passes it the privilege and naming state of the parent process. 

The next fact states that the command interpreter, /bin/sh, uses a 

search path to resolve the names of programs into the files that contain the code 

for those programs. This fact is represented by an attribute in the naming state 

of a process. The routine that reads and parses commands from files checks this 
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flag to build the appropriate scripts. The resulting scripts identify both the 

program name and the label for the attribute that holds the search path used to 

resolve the program name. 

The fifth fact states that any directory searched to find a file that 

provides new actions for a process is a controlling-file for the process. This fact 

is expressed by a rule that examines the current action of each process and if 

that action involves reading a script from a file, then the appropriate directories 

of the search path (if any) are added to the table of process controlling 

operations. 

The last fact states that the file that provides a new script is also a CF for 

the process. This fact is also expressed by a rule that examines each action taken 

by a process. 

3.3 Model for Attacker Tricks 

The first step of the security analysis produces a table of privilege 

controlling operations. If an attacker can perform one of these operations, he 

can gain control of a process that is running with the specified privilege. An 

alternative view of the PCO is that for each privilege, p, the PCO specifies the CF 

operations that directly grant acquire (p). Taking this viewpoint, the PCO 

table can be used to fill in the initial rows and column of the operation grant 

matrix. 

The second step in the analysis uses knowledge of attacker tricks and facts 

about the computer being analyzed to add additional rows to the OGM and to fill 

in additional granting relations between the operations. The entries in the PCO 

can be viewed as a list of goals that an attacker would want to achieve, and the 

purpose of the second step is to find all the sub-goals that would help achieve the 
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initial goals. The analysis is recursively applied to the sub-goals, and it stops 

when there are no new goals. For example, the PCO table may say that 

modify (/etc/ini t) grants access to the u. root privilege. The attacker 

model would be used to find all other operations that grant that operation. For 

example, one attacker trick states that modify access to a directory grants 

modify access to all the files in that directory, so the modify(/ etc) operation 

would be added to the OGM. The analysis would then look for ways to achieve 

this new operation. 

The model for attacker tricks defines the vocabulary and relationships 

that are used to express attacker tricks. The examples in table 3-2 will clarify 

the kinds of knowledge that this model must be able to represent. The first two 

facts are information about specific files that exist on a specific machine. The 

analysis program must be able to read this information from the machine's file 

system. Similarly, the third fact describes a property of the g. staff privilege 

on this particular machine. 

1. The file I etc/re is directly writable using the u. root privilege. 

2. The directory /etc is directly writable using the u. root or g. staff 
privilege. 

3. The user-id privileges, u. tom and u. alice, have direct access to the 
group-id privilege, g. staff. 

4. Any privilege that has direct write access to a CF grants modify access 
to that CF. 

5. Modify access to a directory grants modify access to all the CFs in 
that directory. 

Table 3-2: Sample Facts for The Model of Attacker Tricks 

The key feature of the model for attacker tricks is the controlling-file 
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abstraction. The CFs objects have attributes that represent the basic access 

control information. For example, a file object would have attributes listing the 

privileges that grant direct read and write access to that file. Thus the attacker 

model uses a general access control list to represent the security mechanisms of 

the computer being analyzed. Unlike Unix, the model does not restrict the 

number or type of privileges that can be listed in these CF attributes. The Unix 

protection system restricts the list of writers to include at most one user-id 

privilege, one group-id privilege, and one special group-id privilege called other 

or world. The model only needs to know which privilege directly grant the 

write operation for each file. The detailed restrictions are not modeled. 

The fourth fact is a rule about how an attacker can use facts about the 

direct writers of a file. It states that for each privilege, p, in the list of writers of 

a file f, the acquire (p) operation grants the modify (f) operation. The last 

fact is similar. It says that for each file, f, in directory d, the operation 

modify (d) grants modify (f). 

From these facts, the analysis can deduce that acquire Cg.staff) 

grants modify(/etc) which in turns grants modify(/etc/init). The fact 

that modify(/ etc/ini t) grants acquire (u. root) was deduced using the 

model of trusted programs. 

3.3.1 Formal Model for Attacker Tricks 

These examples point out that the model of attacker tricks has two basic 

objects: privileges and controlling-files. A Kuang system can read and record 

properties of these objects. For example, file objects will have attributes like the 

list of privileges that grant write and read access and a reference to one or more 

directories that contain this file. Figure 3-9 lists the general properties of these 

two objects. For a particular system like Unix there will be multiple types of CFs 
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and privileges. The attributes for these specific objects will also vary from one 

operating system to another. 

• Controlling-Files 
writers: list of privileges 
readers: list of privileges 
parent-directory: controlling-file 

• Privileges 
members: list of privileges 

Figure 3-9: Object Properties in the Model of Attacker Tricks 

The two general operations on CFs are modify and read. Usually, the 

read operation does not help an attacker gain control of a process, but it might 

be used to find out security relevant information like the passwords for users or 

files. The one general operation on privileges is acquire. A specific operating 

system may have more than one instance of these general operations. For 

example, Unix has two kinds of modify operations. The replace operation 

allows changing the ownership of the file (e.g., this might happen if the file was 

deleted and a new file was created to replace it). The write operation does not 

allow the ownership to change, so if the file is deleted the file that takes it place 

must have the same owner. The object operations are summarized in figure 3-10. 

The model uses rules to describe attacker tricks. Each rule describes the 

conditions that allow one operation to grant another. The conditions are 

expressed as a predicate on the values of one or more attributes for selected 

objects. If the conditions are true, then the deduced grant relationship is added 

to the OGM. 
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• Controlling-Files 
modify (cf): Attacker can change information read from file. 
read (cf): Attacker can view information in the file. 

• Privileges 
acquire (p): Attacker can run any program m a process that has 
access to the privilege, p. 

Figure 3-10: Object Operations in the Model of Attacker Tricks 

3.3.2 Representing Attacker Tricks 

This section briefly describes how the model can be used to represent the 

facts about attacker tricks that were presented in table 3-2. To avoid including 

syntax details the representations are described in english. 

The first two facts describe the privileges that have direct write access to 

/etc/re and /etc. These facts are represented by the values of the writers 

attribute of CF objects associated those files. These values are computed by 

reading the protection information for the machine being analyzed. 

The third fact states that the u. tom and u. al ice privileges have direct 

access to the group-id privilege g. staff. This fact is represented by the value 

of the members attribute of the object associated with the g. staff privilege. 

The next fact relates the value of a writers attribute of a CF to the 

ability to perform the modify operation on the CF. It is represented by a rule 

that says the operation modify (f) is granted by the operation acquire (p) for 

all privileges, p, in the writers list of the file object for f. Similarly, the last 

fact is represented by a rule that says modify (f) is granted by modify (d) 

where d is the parent directory of the file f. 

In summary, facts about CFs and privileges are read from the protection 
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information of the computer being analyzed and stored as the values of 

attributes associated with those CFs and privileges. The deductions about the 

relationship between operations are recorded in the OGM, which is also the 

output of this step of the analysis. The operations can be thought of as attacker 

goals, and in this sense the rules which express attacker tricks describe how goals 

can be achieved in terms of properties of objects and the ability to achieve 

subgoals (i.e., other operations). 

3.4 Transitive Closure Step 

The only complication in the third step of security analysis is that the 

transitive closure algorithm must handle all the knowledge about attacker tricks 

that use more than one operation to grant the desired operation. For example, 

one attacker trick for Unix requires write access to multiple directories and that 

may require performing acquire operations on several privileges. On VMS 

systems there is a trick for acquiring super-user privileges that requires both the 

privilege to submit batch jobs and the privilege to set the privileges of a job. A 

regular transitive closure algorithm cannot handle this. 

After computing the transitive closure of the OGM, the third step extracts 

all the relationships between privilege operations and builds the privilege access 

table. To build this table, the program needs to know about the initial 

distribute of privilege to users. This information is read from the machine's 

authorization database (e.g., /etc/passwd and /etc/group) and stored in an 

attribute of the objects that represent each user. 
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3.5 Summary of Knowledge Model 

The knowledge model that a Kuang system uses to check computer 

security has one component that understands the behavior of trusted programs 

and another that understands tricks a user could use to extend his privileges. 

Each model has been presented by defining a number of objects that represent 

the facts deduced by that model. The attributes of these objects express facts 

about the configuration of the security system (e.g., the list of privileges that 

grant write access to a file, or the list of commands execute when the computer 

boots). Facts about the relationships between objects are recorded in separate 

tables. For example, the fact that modify access to the directory /etc grants 

modify access to the file I etc/1n1 t is recorded in the operation grant matrix. 

Tables 3-3 and 3-4 list the key objects and tables for the two models. 

New deductions are made by applying rules to the attributes of existing 

objects. Each rule has an antecedent and a consequent. The antecedent is a 

predicate that can select objects and test the values of attributes. If the 

predicate is true, the consequent can create new objects, set the values of existing 

attributes, or make entries in the tables. Conceptually, all antecedents are tested 

after any change to an object. In practice only a small number of antecedents 

need to be tested. The analysis ends when there are no new deductions. 
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• Process - Represents instantaneous state of a program. 

• Privilege - Represents the tickets of the protection system. 

• Script - List of actions a process will perform. 

• PCO - Table of operations that can control a process. Organized by 
the privileges available to the process. 

Table 3-3: Objects in the Model of Trusted Programs 

• Privilege - Represents the tickets of the protection system. Includes 
information about its relation to other privileges. 

• Controlling-File - Any source of information that controls a process 
including programs, data files and directories. 

• Controlling-Operation - A goal meaningful to an attacker. 

• OGM - Boolean matrix listing the cos directly granted by each CO. 

Table 3-4: Objects in the Model of Attacker Tricks 
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Chapter Four 

Description of U-Kuang 

This chapter presents information about the Unix (BSD 4.2) security 

analysis system. The previous chapter presented an abstract model that could be 

used by several Kuang systems, this chapter illustrates how the model is tailored 

to a particular computer system. The first section describes the major 

components of U-Kuang and the interfaces between those components. The 

second section presents the functionality and features of its rule based system. 

The last section lists the knowledge that it has about trusted programs and 

attacker tricks. 

4.1 Structure of U-Kuang 

The program is implemented in three layers as shown in figure 4-1. The 

lowest layer is a database for querying the security configuration of the computer 

being analyzed. The database supports simple queries to examine file protection 

information, and complex queries that involve parsing the contents of files. For 

example, the database can parse the password file and return a list of all the 

users. The Instance Database contains all the knowledge about the format of 

files on Unix. 

The rule based system (RBS) builds a graph that describes how access to 

each privilege can lead to access to other privileges. The RBS layer is described 

in detail in section 4.2. Its rules describe the behavior of privileged programs 

and the tricks that can be used to acquire privileges. The RBS uses the rules and 

the information in the instance database to build a model of the security relevant 
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Access Policy --> Policy Checker 
/\ 
I Privilege Graph 

Abstractions, I 
Facts, Rules --> Rule Based System <==> Domain 

/\ Model 
I Queries, Parsers 

Security I 
Configuration --> Instance Database 

Figure 4-1: Structure of U-Kuang 

operations that each user can perform. The model is built in a database module 

called the Domain Model. 

The top layer of the program checks for and reports on any violations of 

the specified access policy. The final result of the RBS is a directed multi-graph 

that describes how the privileges are connected. The nodes of the graph are 

privileges. Each plan for acquiring a privilege P1 using a privilege P2 is 

represented by an arc from P2 to PL The policy checker takes the transitive 

closure of this graph to compute the list the privileges accessible to each user. If 

the computed list differs from the list specified by the access policy, the checker 

scans the graph to identify the arcs that cause the violations. The plans 

corresponding to these arcs are displayed to help the user debug the security 

configuration. 

4.2 U-Kuang's RBS 

The rule based system used by U-Kuang is similar to IKE [19]. The main 

difference is that U-Kuang's RBS queries a database instead of a person when it 

needs information about the world being analyzed. The RBS is implemented in a 
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dialect of lisp called C-Scheme [20]. This dialect is well suited to a Unix analysis 

tool because it allows lisp programs to call functions written in the C 

programming language. A large amount of code for parsing Unix command files 

and system tables already exists in C, so I did not need to re-implement it in lisp. 

U-Kuang reasons about a model of the Unix security system that is 

represented by objects. Each object has a number of attributes, and it is the 

values of these attributes which represent facts about the security system. An 

object's type determines the set of attributes it possesses and the type of values 

that can be bound to each attribute. The values can be atomic objects (e.g., 

numbers, strings, lists) or references to other objects. 

Object types are defined by an abstraction tree. The abstraction tree 

defines a rooted hierarchy of types. Each type defines a set of attributes that are 

inherited by all its subtypes. The abstraction tree makes it possible to write a 

rule that applies to all subtypes of a given type. For example, many rules apply 

to both directories and files, so they are both subtypes of a database type. The 

abstraction tree for U-Kuang is shown in table 4-2. Details about some of these 

abstractions are presented in section 4.3. Objects are instances of the leaf types 

of the abstraction tree. As objects are created, they are placed in a database 

called the domain model. 

The inference engine contains both a planning system and a value-finding 

system. The rules for the value-finding system describe how unknown attribute 

values can be deduced from known attribute values. The rules for the planning 

system describe how goals can be achieved from subgoals. The two inference 

systems are unified by associating goals with attributes and by making plans be 

one of the atomic types supported by the RBS. In this framework a single 

backward-chaining inference algorithm can handle both planning and value­

finding. 
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1. Object-Root. Root of the tree. 

2. Process-Segment. One piece of the behavior of a process. 

3. FNE. Context for resolving file names. A table mapping strings to 
strings. 

4. Script. A list of actions a process-segment can take. 

5. Privilege. A security capability. 

a. User-Priv. Access to a user ID. 

b. Group-Priv. Access to a group ID. 

6. Controlling-file. The basic abstraction of the Unix file system. 

a. File. Holder for directories, data files, and programs. 

b. Swap-Space. Device that grant access to the raw file storage. 

c. Partition. Device that grant access to the raw file storage. 

7. Path-Name. Abstracts canonical file and directory names. 

8. Program. Information about scripts that come from binary files or 
shell scripts. 

9. User. Information about a user. 

Figure 4-2: U-Kuang's Abstraction Tree 

Each rule has an antecedent and a consequent. The antecedent is a 

predicate on the state of objects found in the domain model. This predicate calls 

lisp functions to lookup or create new objects in the domain model. The 

consequent sets the value of an attribute for some object. If the attribute holds a 

list value, the consequent can append elements to the list. For example, a 
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consequence can add a plan for achieving a particular goal to an attribute which 

lists existing plans. 

When a backward-chaining inference algorithm needs to determine an 

unknown attribute, it searches its list of rules for the ones that might define the 

attribute. The antecedents of each of these rules are evaluated and then one or 

more consequents will assign a value to the attribute. This process is recursive 

because evaluating an antecedent may require determining another unknown 

attribute. 

The special object, model, has pointers to all the objects created in the 

domain model. It has attributes for each type of object and the values of these 

attributes are the lists of objects of each type. For example, the value of 

model. inode is the list of all the objects of type inode or any subtype of 

inode. One of the clauses that can appear in the antecedent of a rule tells the 

inference engine to apply the rule to each element of a list value. 

The initial contents of the domain model is described by a number of 

facts. Each fact creates an object and initializes its attributes. As the U-Kuang 

runs, it creates new objects and determines in the attributes for old and new 

objects. 

4.3 Example of Security Analysis 

This section presents a detailed example of how the rules and objects are 

used to uncover an operational security hole. Only a small part of the 

abstraction tree and rule base is presented in detail. The entire knowledge base 

is described in section 4.4. 

The security hole considered m this section allows a user with access to 
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the u. tom privilege to acquire access to the u. alice privilege. Presumably this 

access is contrary to the computer's access policy. The plan for exploiting this 

hole is illustrated in figure 4-3. Access to the u. tom privilege grants access to 

the g. guest privilege because Tom is a member of the guest group. The 

g. guest privilege has direct write access to the file /usr /alice/. login. 

That file is a controlling-file (CF) for a process that runs with the u. al ice 

privilege. Specifically, when the user Alice logs into the computer, her shell 

(command interpreter), /bin/ sh, reads a list of initialization commands from 

that file. An attacker who can add a command to this file can create a copy of 

the shell that sets it's user-id to the u. al ice privilege. The attacker could then 

use this special shell to execute any desired program and that program would 

inherit access to the u. alice privilege from the special shell9. The rules and 

objects used to create this plan are explained below. 

To uncover this hole, U-Kuang uses knowledge about the behavior of the 

/bin/sh program and knowledge about how someone could modify the file 

/usr /alice/. login. The facts associated with this knowledge are represented 

by the values of attributes of four types of objects: process-segment, privilege, 

script, and controlling-file. The attributes for each of these objects are listed in 

figure 4-4 and described below. 

The main difference between the abstract model presented in chapter 3 

and the model used by the Unix checker is that the checker must build detailed 

plans describing how each user can acquire the privileges that are accessible to 

that user. In the abstract model, the first step in the analysis just records the 

9
There are many ways an attacker can install a back-door that allows later access to Alice's 

privileges. Some people believe that the set-id feature is the root of all Unix security problems. 
This is wrong. The feature is just the simplest way to install a back-door. Alternatively, the 
attacker could change Alice's search path to include one of his directories. The attacker would 
install programs in this directory that had the side-effect of executing his commands as well as 
the commands that Alice intended. 
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Rule z 
acquire Cu. tom) ---------> 

Rule W 
acqu1re(u.al1ce) <---------

acquire Cg.guest) 
I 
I Rule Y 
I 
v 

wr1te(/usr/al1ce/.log1n) 
I 
I Rule X 
I 
v 

control(/bin/csh for alice) 

Figure 4-3: Plan to Exploit an Operation Security Hole 

controlling-operations that provide toeholds for each privilege. The Unix checker 

must identify the precise step in the behavior the process that provides the 

toehold. For example, on Unix the same process executes the login program and 

the shell for a user. Initially the process has access to super-user privileges, but 

later it just has the privileges available to the user. An attacker would prefer to 

control the process while it had super-user privileges. To keep track of the 

changing privilege state, the abstract process is modeled by a series of process 

segments (PSs ). Each segment has a fixed privilege and naming state. Actions 

that would change either component of the state, create new PSs. 

Another difference is that the abstract model has separate tables for 

recording the relationships between operations whereas U-Kuang records these 

facts in the attributes of the objects that represent process segments, privileges 

and controlling-files. As shown in figure 4-4, PS objects have an attribute that 

lists all the plans for controlling the PS. If an operation provides a toehold for 

controlling a particular segment of a process, then that operation is expressed as 

a plan and it is added to the list of plans in the controllable attribute for 

that segment. The set of privileges granted by this operation can be deduced 

from the pr1 vileges attribute of the PS. In this way, the pr1 vileges and 
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Process-Segment 

• privileges - Fixed list of privileges available to this PS. 
• naming - Fixed table of naming information. 
• current-action - Current action taken by this PS (mutable). 
• script - List of remaining actions (mutable). 
• controlling-files - Deduced list of controlling-files for this PS. 
• forks - Deduced list of programs forked by this PS. 
• sources - Deduced list of files that provide scripts. 
• controllable - Deduced list of plans to control this PS. 

Privilege 

• kind - Fixed value one of Group or User. 
• id - Fixed integer. 
• members - Fixed list of user-privs with access to this privilege. 
• processes - Deduced list of process-segments that have this privilege. 
• accessible - Deduced list of plans to acquire this privilege. 

Script 

• new-naming - Specification of changes to naming state. 
• new-priv - Specification of changes to privilege state. 
• to-fork - Specification of programs to fork. The name of the program 

file is resolved using the naming state of the PS. 
• to-source - Specification of files to parse to get scripts. Alternatively 

this can specify script constants. 

Con trolling-File 

• writers - Fixed list of privileges that grant direct write access. 
• readers - Fixed list of privileges that grant direct read access. 
• parent-directory - Fixed list of directories that contain this CF. 
• writable - Deduced list of plans for to achieve write (cf). 

• replaceable - Deduced list of plans for to achieve replace (cf). 

Figure 4-4: Object Attributes for Analysis Example 
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Rule 1: Any file sourced by a process is a controlling file 
for that process. 

Foreach ps in model.process-segments 
Bind action tops.current-action 
Foreach cf in action.to-source 

Then 
set ps.controlling-files includes cf 

Rule W: A privilege can be acquired by gaining control of 
one of the processes that runs with that privilege. 

Foreach priv in model.privileges 
Foreach ps in priv.processes 

If ps.controllable 
Then 

achieve priv.accessible 

Rule X: A process can be controlled by writing one of its 
controlling-files. 

Foreach ps in model.process-segments 
Foreach cf in ps.controlling-files 

If cf.writable 
Then 

achieve ps.controllable 

Rule Y: A controlling-file can be written using any of the 
privileges that have direct write access to that file. 

Foreach cf in model.controlling-files 
Foreach priv in cf .writers 

If priv.accessible 
Then 

achieve cf.writable 

Rule Z: A privilege can be directly acquired by all of the 
users who are 'members' of that privilege group. 

Foreach priv in model.privileges 
Foreach user-priv in priv.members 

If user-priv.accessible 
Then 

achieve priv.accessible 

Figure 4-5: Rules for Analysis Example 
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controllable attributes replace the table of privilege controlling operation 

that was described in chapter 3. 

In a similar way, the write (cf) and replace (cf) operations are 

represented by the values of the writable and replaceable attributes of the 

controlling-file object. A fact like write (/etc) grants replace C/etc/ini t) 

is expressed by a plan stored in the replaceable attribute of the I etc/ini t 

object. By representing the operation grant matrix by the values of attributes it 

is possible to express attacker tricks as rules for finding the values of attributes. 

In this case, the rule describes how to fill in the replaceable attribute for a file 

object from the value of the parent-directory attribute for this object. 

As the RBS runs it creates new PSs and simulates the actions specified in 

the script for each PS. At some point, the simulation will model the logging in of 

the user Alice. A PS will be created to execute the /bin/ csh program and its 

privileges attribute will include u. alice. 

When the PS for Alice's shell is created, Rule W of figure 4-5 is triggered. 

This rule expresses one of the attacker tricks. It says that the acquire (pri v) 

operation can be achieved by controlling any PS that includes pri v in its list of 

privileges. This information is encoded as follows: The foreach clause on the 

first line of Rule W tells the inference engine to apply this rule to all the 

privileges that are created m the domain model. The notation 

model. privileges selects the privileges attribute of the model object. 

Recall that the special object model records all the objects of each type. One at 

a time, each privilege is bound to the label pri v. Associated with each privilege 

is a list of the PSs that have this privilege in their privilege state10. The second 

line of Rule W binds the label ps to each one of those PSs. The remaining lines 

10 A different rule updates this attribute as new PSs are created. 

65 



of the rule construct a plan relating the ability to control the PS, ps, to the 

ability to access the privilege, pri v. 

The plan created by Rule W can be thought of as adding a grant 

relationship to the OGM. Equivalently the plan defines an arc in figure 4-3, 

which can be viewed as an operation grant graph. The accessible attribute of 

a privilege object represents the ability to perform the acquire Cpri v) 

operation. Likewise the controllable operation represent the control Cps) 

operation. The plan built by Rule W indicates that control Cps) grants 

acquire Cpri v). 

The behavior of the Alice's shell is represented by a compiled-in script. 

That script is held in an object of type program and it is extracted from the 

knowledge base using its canonical pathname (/bin/csh). One of the actions in 

that scribe tells the process to source (read and execute) commands from the file 

/usr/alice/. login. When this action becomes the current-action of the 

PS, Rule 1 of figure 4-5 will trigger. 

Rule 1 records a piece of knowledge about the behavior of trusted 

programs. It states that any file that provides commands for a process is a CF 

for that process. The first line of the rule binds ps to each PS in the domain 

model. The second line binds the label action to the current action of that PS. 

The effect of these two line is to cause this rule to be examined each time the 

current action changes for each PS created. The third line iterates over the list 

of files sourced by the current action. If such files exist, the consequent of the 

rule is executed. The consequent adds the name of the sourced file, in this case 

/usr/alice/. login, to the list of CFs for this process segment. 

Skipping the details of syntax, Rule X examines the list of CFs for each PS 

and constructs a plan relating the writable attribute for each CF to the 
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controllable attribute of the PS. This plan adds the arc in figure 4-3 between 

the write (/usr /alice/. login) operation and the control (/bin/sh for 

alice) operation. 

Other rules examine the controlling-files attribute and according to 

information found in the naming state of the PS, those rules add plans to the 

con troll able attribute of the PS. This extra level of indirection makes it easy 

to express knowledge about how names are resolved. If a CF is specified by a 

search path, then plans to control the PS are added for each directory searched 

before the CF was found. 

Each time a new CF object is created, Rule Y is triggered. This rule binds 

the label pri v to each privilege listed in the writers attribute of the CF. The 

value of that attribute is computed by a lisp function in the instance database. 

The function examines the security configuration of the computer being analyzed 

to see which privileges have direct write access to the CF. The last three lines of 

Rule Y construct a plan linking the writable attribute of this CF to the 

accessible attribute of the privilege identified by pri v. 

The final arc in figure 4-3 is filled in by Rule Z. That rule is applied to 

each privilege in the domain model. It binds the label, user-pri v, to each of 

the privileges listed in the members attribute. This list is empty for user-priv 

objects, but for group-priv objects it lists the user-priv objects that have direct 

access to this group-priv. In this example the privileges u. tom and u. al ice 

have direct access to g. staff. The consequence of Rule Z builds a plan that 

says acquire Cu. tom) grants acquire Cg.staff). 

Viewing figure 4-3 as an operation grant graph, the last step in the 

analysis is to take the transitive closure of the graph. The plans that allows an 

attacker to go from acquire Cu. tom) to acquire Cu. alice) are built by 

concatenating the plans for traversing each arc between those two node. 
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4.4 Knowledge about Unix Security 

The purpose of U-Kuang's model of Unix is to identify all the ways that 

trusted programs can be manipulated to grant users additional privileges. The 

model assumes that all programs function as expected and it includes all the 

attacks published by researchers at Bell Laboratories ( [25] and [10]). U-Kuang is 

not trying to find or exploit bugs in the software. The goal is to analyze the 

interactions between the kernel and the privileged program to see how access to 

one privilege can lead to access to other privileges. To carry out the analysis, the 

RBS needs knowledge about the tricks for extending privileges, and knowledge 

about the behavior of trusted programs. Basically, the RBS simulates the activity 

of the programs and looks for actions that can be tricked into extending the 

privileges available to some user. 

U-Kuang's model of the Unix security system contains abstractions and 

rules. The abstractions define object types and thus they define the organization 

of the facts that the RBS will deduce about Unix. The rules are organized around 

goals that are meaningful to an attacker of the system. The four goals in U­

Kuang 's model are acquire privilege, control process, write file, 

and replace file. The write and replace goals are both aimed at 

changing the information found when a process opens a file for reading. The 

difference is that the replace goal allows changing the ownership of the file 11 , 

whereas the write goal requires that the ownership of the file does not change. 

Basically, the goal of acquiring a privilege is achieved by controlling a process 

that runs with the desired privilege. Control is achieved by writing or replacing 

a file that is critical to the behavior of that process. Completing the loop, 

writing a file is achieved by acquiring access to a privilege. 

11For example, deleting the original file and creating a new one in its place is an acceptable 
way to replace a file. 
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This chapter presents the contents of U-Kuang's knowledge base without 

going into the details of how that knowledge is represented. Knowledge about 

attacker tricks will be presented first. 

4.4.1 Attacker Tricks 

Knowledge about attacker tricks is organized by the four attacker goals: 

Acquire privilege, Control process, Replace file, and Write file. 

Acquire Privilege 

The goal of acquiring a privilege means that the attacker can execute an 

arbitrary program in a process with the effective user-id or group-id set to the 

desired privilege. U-Kuang has two tricks for acquiring a privilege. 

1. Find a user account that has direct access to the desired privilege, 
and does not have a password. 

2. Find a process segment that runs with the desired privilege and is 
controllable. 

Other possibilities include guessing at passwords or taking active measures 

to intercept a password. These were not modeled. 

Control Process 

A process is controllable if an attacker can cause it to execute (or create 

another process to execute) a program chosen by the attacker. 

The general trick for controlling a process is modifying a database that 

controls the process. For example, the file containing the executable code for a 

process is one of the controlling databases. Other controlling databases include 

directories that are searched or data files that influence the forking of processes. 

The knowledge about trusted programs and the simulation of those programs 

produces the list of databases that control each process that runs with a 
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particular privilege. The attacker trick for exploiting controlling databases has 

two forms depending on whether the ownership of the database is allowed to 

change. They are shown in figure 4-6. 

1. Find a process segment for this process that has a controlling 
database that is replaceable. 

2. Find a process segment for this process that has a controlling 
database that is writable (i.e., the ownership of the database file may 
not change). 

Figure 4-6: Rules to Control a Process 

In general, an attacker might need to modify several files in order to gain 

control of a process. Surprisingly, this research did not uncover any cases where 

more than a single file needed to be modified. The closest the model comes to 

the double-file situation is the workings of the rlogin program (see section 

4.4.2). If a user has a non-empty . rhosts file, then an attacker who can modify 

the host name table can masquerade as the user authorized in the . rhosts. 

This plan assumes that the attacker has super-user access on some computer 

attached via a network. This trick can only be used if the . rhos ts file is not 

empty and the /etc/hosts file is replaceable. It does not depend on the 

replaceablity of both files. 

Replace File 

A file can be replaced if the attacker can change the information obtained 

when a process opens and reads from that file. The ownership of the file is 

allowed to change. The tricks for achieving this are shown in figure 4-7. 

The last rule handles the recursive nature of the replace goal. Replacing 

a directory file can be achieved by replacing the directory which contains the 

original directory, etc. Making a list of all the directories that are examined 
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1. Achieve the goal wr1 te f 1le. 

2. Achieve the goal replace dlr for the parent directory of the file. 
This trick works by deleting the original file and replacing it one that 
has the desired contents. 

3. Achieve the goal replace dlr for any directory searched before the 
desired file was found. 

Figure 4-7: Rules to Replace a File 

when a file name is resolved is complicated by search paths and indirect file 

names (soft-links). A lisp function is used to handle these complexities. 

Write File 

For attackers to be able to write a file, they must be able to change the 

contents of the file without changing the ownership of the file. The tricks for 

achieving this are shown in figure 4-8 

1. Acquire super-user privileges. This rule expresses the importance of 
super-user access. 

2. Acquire access to any privilege that has direct write access to the file. 

3. Acquire access to the privileges of the file's owner. The owner can 
always change the protection modes of the file to grant herself write 
access. 

4. If the directory containing the file is writable, find a writable file on 
the same disk partition that has the same owner. 

Figure 4-8: Rules to Write a File 

The last rule works because the original file can be deleted and some other 

file with the same owner can take its place. This attack depends on the feature 

that the Unix move (rename) system call does not change the ownership as long 

as the file moves within the same disk partition. 
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4.4.2 Trusted Programs 

U-Kuang's knowledge about trusted programs is organized on a per­

program basis. The behavior of each program is specified separately. Since the 

underlying model was presented in the last chapter, and the knowledge inference 

techniques were presented section 4.2, the knowledge base can be presented by 

listing the facts that are known about each trusted program. 

Advocates of rule based systems claim that knowledge can be added in a 

modular fashion. Within limits, this statement is true. As long as the basic 

model that underlies the RBS does not need to change, information can be added 

easily. For example, adding information about another program that uses search 

paths is not difficult. However, adding the first program that used search paths 

was difficult. An early version of U-Kuang did not have the notion of a File 

Naming Environment. It could not represent attacks based on search paths. 

Adding the FNE required changing almost all of the rules. 

In it 

The 1n1 t program drives the session cycle (login, shell, logout). Before 

any sessions are started it forks (i.e., creates a new process to execute) a shell, 

/bin/sh, to execute the commands found in /etc/re. When that completes, 

1n1 t examines the database in /etc/ttys to determine which program to fork 

for each tty device. The default is to fork the program /bin/getty. The 

database can specify other programs to fork. 

Getty 

The program getty waits for a terminal device to become active, prints a 

greeting banner, and requests a username. By default it passes the username to 

the login program, but an alternative program can be specified in the file 

/etc/gettytab. The list of possible programs forked is computed by a script 

parsing function that examines /etc/gettytab. 
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lnetd 

The TCP /IP daemon, inetd, mediates all network connections. It behaves 

like getty for remote logins via a TCP /IP network. The mail daemon and file 

transfer daemon are forked by inetd. One of the first actions of this program is 

to change its user and group IDs to daemon. 

Login 

The login program forks a shell (or other program) for each user that can 

log in. The file /etc/ftpusers lists the users that are not allowed to login. 

The ftpusers database allows anonymous file and mail transfer without 

allowing anonymous login. The login program is modeled by a process that 

changes its privileges and forks a shell for each user in the file /etc/passwd 

that is allowed to login. The password file is treated as the source of a script for 

the login program. Any account that does not have a password can be accessed 

by all users via the login program. They are also accessible via the su 

program. 

Shells 

Shell programs are the Unix command interpreters. When a shell is 

started to read commands from a user's terminal (as opposed to executing 

commands from a file), it begins by reading commands from an initialization file. 

For example, the shell, sh, reads commands from the file . profile in the user's 

home directory. Some shells read command files on logout as wells as on login 

(e.g., csh ), and others read initiation files that are shared by several users (e.g., 

all the students taking a particular class). The behavior of each shell is 

represented by an initial script of actions for that shell. 

When a shell is invoked in non-interactive mode, it skips reading some of 

its initialization files. U-Kuang models this by treating the non-interactive shells 

as different programs that have different initial scripts. 
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Currently, U-Kuang's simulation does not include the fact that most user's 

invoke a text editor, or any of a number of other common programs. It would 

be easy to add this. The parser for the shell initialization file would be extended 

to append a list of programs which the given user executes. This information 

could be extracted from the system accounting records. To take advantage of 

this new information, the program should also be extended to include knowledge 

about the behavior of the common programs (e.g., gnuemacs, vi, and cc). 

These improvements are not necessary to check for the possibility that an 

attacker has created a hostile program that will be invoked when the user thinks 

he is invoking a friendly program (i.e., a trojan horse). This sort of attack is 

based on the fact that a search path is used to resolve command names. All the 

commands in the login initialization will be resolved with the aid of that search 

path (including commands to change the search path), so most initialization files 

will exercise the search path sufficiently to turn up any possibilities for trojan 

horses. 

Shell programs resolve command names in a complex way that refers to 

shell variables which are passed from one program to the next as part of a 

program's environment. For example, the command search path is stored in one 

shell variable whereas the editor library search path is held in a different 

variable. One shell, sh, uses a shell variable, IFS, to set the inter-field separator 

characters (normally blank and tab). U-Kuang knows about attacks that exploit 

this feature. U-Kuang has procedural knowledge about how shell variables are 

used to resolve file and command names. Each trusted program states which 

procedure is used to resolve each name. 

Cron 

The cron program executes commands periodically and it is the central 

feature of the automatic management system provided by Unix. Cron actually 
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runs continuously, but U-Kuang models it as a program that runs once 

performing all the actions that are specified in /usr/11b/crontab. That file is 

treated as the source of cron's script. In general, U-Kuang models system 

daemons as running once and performing all possible actions. The fact that 

cron runs with root privileges is deduced from the fact that it is forked by a 

command in /etc/re which is read by the 1n1 t program. 

Atrun 

The atrun program allows users to request that commands be executed at 

a later time. A trun provides the features of cron to ordinary users. Ordinary 

users are not allowed to write the cron tab file because any program mentioned 

in crontab will be run with super-user privileges. The atrun program 

determines the privileges it should use when executing a command by looking at 

the ownership of the request file in the directory /usr/spool/at. Anyone who 

can create a writable file in that directory with a given ownership can acquire 

privileges available to that owner. The attacker trick of moving files within a 

disk partition makes this easy, so many Unix sites do not run the atrun 

program. 

Remote Execution 

The rsh, rlogin, and rlogin programs allow remote operations. They 

allow a system administrator to state the list of all the hosts which are trusted by 

all users. This information is kept in the file /etc/hosts. equiv, and the host 

names in that database are resolved with the aid of a database stored in 

I etc/hosts.12 Each user can list additional hosts and users that he trusts by 

specifying them in a file, . rhosts, in his home directory. The server end of 

these programs (rshd, rlogind, and rcpd) insist that the . rhosts file is 

owned by the user whose account is being accessed. 

12
This research predates the conversion to a distributed nameserver system. 
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Syslog 

The syslog program records system activity and sends messages about 

critical system events. It appends messages passed to a Unix system call into one 

or more files as specified in /etc/syslog. conf. Since sys log runs with root 

privileges, replace access to sys log. conf grants append access to all files (like 

the password file). 

Send mail 

The heart of the Unix mail system is the sendmail program. It is 

invoked by any user who sends mail, and it is run with daemon privileges when 

it is invoked by inetd on inbound messages. It reads several databases any one 

of which can be used to gain access to the privileges that sendma11 is running 

with. The databases in the /usr /lib directory are: aliases, aliases. pag, 

aliases. dir, sendmail. cf, and sendma11. fc. It also reads a file in each 

user's home directory, . forward. An essential ingredient in all attacks based on 

these files is that the mailer can be told to invoke an arbitrary program in 

addition to appending a message to some mailbox file. 

The Unix mail system has several security problems, but these were the 

only ones that were modeled by U-Kuang . 

. .. and so for th 

A complete model of Unix would need to include several additional 

programs. All programs that run with super-user privileges should be modeled. 

Currently U-Kuang just prints warning messages identifying the program it 

doesn't know about. The programs it does know about were chosen to illustrate 

the range of interactions that are possible between trusted programs. 
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Chapter Five 

Experience Running U-Kuang 

An early version of U-Kuang has been run occasionally on about 30 

computers at MIT. The first time it is run, it almost always finds a hole that 

allows all users to acquire super-user privileges. Most of the problems are simple 

mistakes like group writable initialization files in the home directories of 

privileged users. After U-Kuang has been run a few times users learn about the 

interactions between different privileged programs and the simple errors 

disappear. In many cases system administrators were surprised to learn that 

there was no difference between the privileges they have been calling staff, 

operator, and wheel. 

privileges13 . 

They all could be used to acquire super-user 

U-Kuang has been run regularly on three machines that try to be secure 

and on these machines it finds approximately two new problems each month. 

One source of problems .is the fact that critical databases for super-user processes 

exist in several directories. There are numerous reasons for allowing users to 

have write access to one of those directories, and that access can be used to 

acquire super-user privileges. Another problem arises from a common procedure 

for updating system tables. The old file is renamed to preserve the information 

about its last write date, then a new copy is installed and edited. Unfortunately 

the new copy is created with the default protection settings of the current 

13 
As discussed in the chapter on limitations and extensions, it may be feasible to build a 

monitoring system that notices when a lower privilege like staff is being used to acquire super­
user privileges. 
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process, not the settings of the original file. The new settings usually create a 

security hole. A general tool for updating any system file would be easy to 

implement and would help eliminate this kind of error. Many system 

administrators use such a tool (vipw) to update the password file but they need 

a tool that can handle all system tables. 

Security holes that did not involve system tables usually involved two or 

three levels of indirection. Many users have personal bin directories which hold 

customized versions of their favorite programs. These directories appear first in 

the users' search path, and thus are good places to plant trojan horses. On one 

system, which was intended to be secure, U-Kuang found an operational security 

hole that allowed any user to acquire super-user privileges by going through three 

users, alice, bob and charles14. Alice philosophically objected to computer 

security, so she allowed anyone to write her home directory. Anyone could 

acquire her privileges by replacing her login initialization file. In particular, she 

was a member of the games group. Bob's personal bin directory was writable 

by anyone in the games group; anyone who could get access to the games 

privilege could plant a trojan horse in /usr /bob/bin and acquire bob's 

privileges. Bob was not a trusted user, but he was a member of the friends 

group which charles had set up for his friends. The last connection was that 

charles, who had operator privileges, had a program in his bin directory 

which was writable by anyone in the friends group. The program had been 

written by another member of the friends group, and Charles had moved it 

to his bin directory without changing its protection modes. By indirecting 

through alice's and bob's accounts, anyone could plant a trojan horse in that 

program and thus they could acquire operator privileges from charles. As 

mentioned earlier, opera tor privileges are usually sufficient to gain super-user 

privileges. It would be quite hard for a person to check for holes that involved 

three levels of indirection but U-Kuang has no trouble finding them. 

14Not their real usernames. 
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The running time of U-Kuang depends primarily on the number of group 

privileges, not on the number of users. It takes U-Kuang about 15 seconds to 

analyze a system with 100 users and 10 groups, and about 40 seconds for a 

system with 1100 users and 30 groups. More precisely, the running time of U­

Kuang is proportional to the number of edges in the privilege graph. The 

privilege graph is a multi-graph whose nodes are privileges and files. The 

number of edges between any two nodes depends on the number of rules which 

describe plans for using access to the first node to grant access to the second 

node. There are very few rules that specify how an attacker can go from a user 

privilege to a group privilege, whereas there are many rules specifying how to go 

between group privileges. Thus the running time depends primarily on the 

number of group privileges, rather than the number of user privileges (i.e., the 

number of users). 

U-Kuang has also been used to find back-doors15 left by someone who 

cracked into a system. U-Kuang quickly finds any file protection modes that 

have been changed by the cracker. In one case it found an extra device file for 

the disk partition that contained the /bin directory. The cracker had a 

program that could use write access to that disk partition to create a shell with 

super-user privileges. One blind spot of U-Kuang is that it does not check for 

extra programs that have the set-user-id feature. Crackers often create such 

programs with the super-user or operator privileges. This blind spot could be 

corrected by adding a few facts to the knowledge base. 

Another weakness is that the program does not check for extra accounts 

that the cracker might have created, or unused accounts that now have 

passwords known to the cracker. It is not clear whether a rule based approach 

15 A back-door is any modification that makes it easier for a system cracker to get back into a 
system. 
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could syatem.Mically eeareh for thia kind fJl baek .. door. I\ may be that tae best 

way to check for back-doors is to compare die systea to an eadier.mapshot of. 

itself as suggested in (26). 

This experience does not imply that tahe Unix __.ty tty1tem is ftawed. 

The correct conclusion ia that people make Jllill.._ wtaea ._,. cha.age the 

configuration of complex security systems. U-K\l68g .... theee mistakes. 
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Chapter Six 

Limitations and Extensions 

Preceding chapters have described a rule based system that can analyze 

Unix systems and identify serious operational security holes. This chapter 

discusses the limitations and extensions of a rule based approached to security 

problems. The first section addresses the question of building Kuang systems for 

other operating systems. The second section points out that it is possible to 

answer interesting questions about a security system by examining properties of 

the rule based model for that system. Section three identifies two obstacles that 

make it difficult to synthesize protection decisions from specifications of the 

access policy. The last section discusses the possibility of using a rule based 

approach to detecting inappropriate system activity. 

6.1 Other Operating Systems 

Many features of computer systems can be simulated usmg the model 

presented in Chapter 3. The question is whether there are important features of 

a system which are not captured by the model. For example, DEC's VAX/VMS 

system has a flexible file protection mechanism that includes both group 

restrictions and access control lists. This turns out to be easy to convert into the 

abstract model because the model uses general access control lists. However, this 

does not prove the the model can handle all the security relevant features of VMS. 

A Kuang system for VMS would need to know about third-party software 

like the TCP /IP network facilities. In general, third-party software does not use 

the protection facilities as well as the software which was developed by DEC. It 
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would be important for the Kuang system to know about these packages and 

know how to tell if they are being used. 

6.2 Analyzing the Rules 

The rules that describe a particular operating system form a 

representation of that system, and as with all representations there will be 

questions which are easier to answer using that representation than others. The 

rule based description can provide new insights into the nature of the system, or 

provide an easier way to analyze a suggested change to the system. 

One interesting question to ask about a security system is whether 

conspiracy between users can yield surprising results. For example, most bank 

vaults cannot be opened unless two employees conspire to open it. More 

precisely, the question is whether the set of privileges achievable by two users 

working together can be larger than the union of the privileges achievable by 

each user operating alone. If conspiracy yields greater gains than the union of 

each conspirator's privileges, then the security checker's job becomes more 

complex. It must consider the privileges accessible to each group of conspirators. 

The policy specification language become correspondingly more complex since it 

must specify the acceptable and unacceptable forms of conspiracy. 

The conspiracy question can be answered by examining the rules 

describing a security system. If the antecedent of each rule requires at most one 

privilege, then conspiracy does not yield surprising results. U-Kuang's rules have 

this property, so conspiracy is not a problem within its model of the Unix 

security system. 

There is nothing inherent in the Unix operating system that eliminates 

conspiracy. It would be easy to build an trusted program that could not be 
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subverted unless two files could be written. If those files reqmre different 

privileges for writing then a conspiracy might be required to subvert the process. 

Notice that if one of the two files required super-user privileges to change, then 

conspiracy is not necessary. The program can be subverted if and only if the 

attacker can acquire super-user privileges. For some reason, programs like this 

do not exist on current Unix systems. 

6.3 Synthesizing Protection Decisions 

This project focused on the analysis of security systems, but an obvious 

extension is a system that can synthesize protection decisions (e.g., the ownership 

and protection modes for a file or directory) from a specified access policy. The 

system would need to handle new objects added to the file system and new rules 

added to the policy specification. The access policy would have to categorize 

objects which will be created in the future and then specify the access restrictions 

for each category. For example, a simple policy language might allow objects to 

be categorized by the program that created them or the directory that will 

contain them. Once the rule based system knows what restrictic:ms apply to the 

new object, it must pick access controls that are consistent with all existing 

access policies. That is, it must be sure that the new object does not allow an 

attacker to acquire some new privilege. That part is easy; U-Kuang already 

performs that computation. The hard part is picking the correct access 

restrictions efficiently. Presumably the system would have rules that would 

guide this choice. 

The second problem with synthesis is changing or amending the policy 

specification. It is easy to imagine that a new restriction could force a large 

number of protection decisions to change. It is also possible to add a rule which 

makes the policy specification inconsistent or unrealizable. If the policy 
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specification language is complex, the questions about whether a policy is 

consistent or realizable becomes undecidable. However, the fact that some 

policies lead to undecidablities does not force us to give up hope. A single 

decision procedure may exist that can make the decision in bounded time for 

most policy specifications. 

6.4 Computer Security Monitoring 

Often users have the capability to perform some operation, but they are 

expected to refrain from performing it. If a computer had a truly flexible and 

convenient protection system, this sort of excess capability would not exist. 

However, modern protection systems are inflexible and hard to use, so this case 

arises frequently. The administrators of such systems would like to monitor 

these trusted users to determine whether they have become untrustworthy or 

whether someone else is using their account to crack into the system. 

Most Unix sites have excess capability associated with the staff or 

operator group. Either of these privileges is usually sufficient to acquire super­

user privileges. To the extent that U-Kuang's model is complete and accurate, it 

can construct all the plans that use those privileges to acquire super-user access. 

Thus U-Kuang could be an important piece of a Unix security monitor. It would 

be the piece that knows how an attacker might bootstrap his privileges. The rest 

of the monitor would have the job of examining the system activity (or the logs 

of system activity) to see if any of the plans are being performed. A general rule 

based system could encompass both the plan generation and the activity 

checking. 
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Chapter Seven 

Conclusions 

This thesis presents a novel solution to a long standing problem in the 

field of computer security. The problem is that a security system can be no 

better than the people who use it. Even if a computer's protection mechanism 

are free from software bugs, users can be lax or inconsistent in the ways that 

they use the protection mechanisms, and this leads to security holes. The 

computer will be doing exactly what it was told to do, but the overall effect 

could allow an attacker to acquire undesired access. Such an effect is called an 

operational security problem to distinguish it from a problem due to the design 

or implementation of the system. This thesis presents a general model for 

analyzing the operational security of computers and it describes how that model 

was used to implement a rule based security checker for Unix. The checker, U­

Kuang, was run on several of MIT's undergraduate machines and it frequently 

found significant security holes. 

7 .1 Highlights of the Problem 

A computer is operationally secure if the collection of operations that each 

user can perform is consistent with the security policy for that computer. Two 

approaches have been used to ensure the operational security of computers. The 

first approach is to choose a restrictive language for expressing security policies 

and then build protection mechanisms that directly read and enforce the policy 

specification. Operating systems aimed at military users have taken this 

approach. Such systems include ADEPT-50 [24], Multics [18], and SCOMP [12]. 
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Unfortunately the range of policies that these systems can express is limited, and 

it is still possible for severe operational security problems to arise. For example, 

the system administrator might leave his login initialization file publicly writable 

and this could allow other users to execute commands using the administrator 

privileges. A serious problem with these restrictive languages is their assumption 

that the major function of a computer is to store and retrieve information. 

Basically, computers are treated as glorified bookcases. It is not clear how these 

languages can be extended to handle an information system that is more like 

newspaper publishing house than a bookcase. 

The other technique for ensuring operational security requires that the 

computer's administrator periodically audits the configuration of the security 

system. The security configuration includes the protection information of all 

files, directories, and programs. The full security configuration is quite large. To 

simplify the audit, administrators enforce restrictive policies that reduce the 

complexity of the audit. However these policies may be hard to enforce, and if 

they are enforced, they may sacrifice the flexibility that initially attracted the 

users to the computer system. For example, Unix has an information sharing 

mechanism that allows a user to specify a program that the system should invoke 

when electronic mail is delivered to that user. Some sites turn off this feature to 

avoid complex interactions with other programs in the security system. No 

matter what the policies are, they are only checked when the administrator has 

time to check them. There is little guarantee that the system will stay in a 

secure state after the audit. 

As systems implement new mechanism for flexible information sharing and 

automatic system management, the complexity of the security system increases. 

Additional features lead to additional programs that must be considered part of 

the security system. A few examples should convince the reader that the number 

of trusted programs has already increased as computers have become more 
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useful. The trusted programs in Unix include: the login server, the command 

interpreter, the program that executes batch commands, the program that 

executes commands on other computers, and the program that automatically 

installs new software that has been released over a trusted network connection. 

The possible interactions between these programs makes security checking a 

complex problem. 

7 .2 Overview of the Solution 

This thesis presents a rule based approach to security checking and 

describes a program that can automatically audit the operational security of Unix 

computers. The primary benefit of this new approach is that it is systematic and 

thorough. It harnesses the power of the computer to help users cope with the 

complexity of the security system. A rule based system can use knowledge about 

the behavior of trusted programs and knowledge about the tricks attackers use to 

extend their privileges to exhaustively analyze the ways that each user could 

achieve additional privileges. By dealing with the complexity of the auditing 

problem, this approach provides a new way to resolve the conflicting 

requirements of security and flexibility. 

The major intellectual contribution of this work is a model for 

representing and reasoning about security systems. Chapter 3 presents the 

general model and discusses how the model represents the major concepts found 

in the Unix and VMS operating system. Chapter 4 describes the implementation 

of a Unix security check based on the general model. 

The unifying principle of the model is that operational security problems 

arise when an attacker can modify one of the sources of information that controls 

a trusted program. For example, the search path that is used to convert a 

program name into a file name defines a security critical database for the 
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command interpreter. If an attacker can modify part of this database, then he 

can gain control of the privileges available to the command interpreter by 

substituting his own program for the expected one. 

The unifying principle leads to the concept of a controlling-file (CF). This 

concept includes programs, data files, directories, system tables and logical 

names. Any source of information that allows an attacker to gain control of a 

process is considered a controlling-file for that process. The principle also helps 

to identify the key information that must be known about programs. The only 

facts that must be represented about the behavior of a program are those that 

influence the choice of controlling-files and the set of privileges available to the 

program. 

Chapter 3 describes a simple model that is used to express the tricks that 

attackers use to exploit CFs. The model has two types of objects: privileges and 

CFs. The privilege object represents any ticket that the operating system checks 

to decide whether to allow access to a protected resource. For example a Unix 

user-id is a privilege. Both types of objects have attributes that express facts 

about the security configuration. For example, a privilege object would have a 

members attribute listing the other privileges that grant direct access to this 

privilege. A CF object would include a writers attribute listing the privilege 

objects that grant direct write access to the CF. The CF object for a file would 

include a parent-directory attribute that refers to the CF object representing 

the directory that contains this file. 

The goals of an attacker are expressed in terms of abstract operations on 

privilege and CF objects. The basic goals are acquire Cpri v) which means an 

attacker can gain control of a process that runs with the privilege pri v, and 

modify (cf) which means that an attacker can change the information that a 

program would find if it accessed cf. The purpose of a security analysis is to 
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compute the list of goals that each user can achieve. This list can then be 

compared against a policy specification and any differences can be reported. 

An attacker trick is represent by a rule that describes the conditions under 

which one goal can be achieved by another goal. The conditions are expressed as 

a predicate on the the values of attributes. For example, if modify access to a 

directory grants modify access to all the files in that directory (e.g., all the files 

can be deleted and recreated with the desired contents), this trick can be 

expressed by the rule: 

if d =£.parent-directory 
then 

modify(d) grants modify(f) 

To find out which users can acquire each privilege, the knowledge about 

trusted programs is used to compute the list of CFs that grant access to each 

privilege, and then the knowledge about attacker tricks is used to find all the 

ways that those CFs could be modified by each user. Section 4.3 describes this 

analysis process in detail. 

7 .3 Conclusions 

The experience related in chapter 5 shows that the Unix security checker 

can uncover serious operation security problems. These security holes are created 

by user mistakes, not by software bugs. It appears that even a security conscious 

user community will make serious mistakes on a monthly basis. Most of these 

mistakes involved three or more levels of indirection, so they would be very hard 

to find manually. The experience with U-Kuang demonstrates that a rule based 

system can analyze the complexities of a modern security system. 

One benefit of an automated security checker is that the frequency of 

security audits can be increased. A manual audit takes a long time so it is done 
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rarely. The automated audits take less than a minute on Unix so they ·can be 

done frequently. These audits do not prevent operational security holes, but they 

do detect them quickly. Of course quick detection aids both the attacker and the 

administrator of the system. It may be possible to prevent holes by integrating a 

checker into the operating system. The checker would examine a sequence of 

changes to the security configuration and only apply the sequence if it leaves the 

system in an acceptable state. Additional benefits and limitations of rule based 

security checkers will become apparent after they have been implemented for 

other operating systems. 

This research touched on two areas that are ripe for further research. 

Users need to express their desired access policy, but languages for expressing 

these policies do not exist. It is clear that a vocabulary based on read and write 

operations is not sufficiently expressive to meet even existing needs. It is not 

clear what would make a better vocabulary or what would serve as appropriate 

operators for combining pieces of a policy specification. Another area to explored 

is the use of rule based systems to synthesize security configurations from policy 

specifications. This area is has several computability problems, but carefully 

chosen restrictions might avoid these problems in practice. 
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