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Abstract

To help make logic programming more suitable for writing large systems, we develop
linguistic mechanisms that permit the organization of logic programs around abstractions.
In particular, we present the design of Denali, an equational logic programming language
that supports predicate and data abstraction.

The key issue in introducing predicate abstraction is dealing with the di�erence be-
tween the declarative and procedural interpretations of logic programs. We address this
issue by introducing a two-dimensional type system to describe predicate interfaces. The
two components are a sort system and a novel multi-valued mode system. Multi-valued
modes constrain the ways in which arguments to predicates may be instantiated. A
collection of such modes is de�ned by the programmer for each sort.

The key issue in introducing data abstraction is providing ways to obtain equational
uni�cation procedures. We develop a pragmatic approach that relies upon the pro-
grammer to implement these procedures. We facilitate this by supporting a variety of
techniques that simplify the problem. Among these techniques are treating uni�cation
on a sort-by-sort basis, layering implementations so as to exploit built-in uni�cation
procedures, and using the mode system to constrain the uni�cation problem.

Finally, we establish the basis for implementing Denali by developing procedures for
performing moded equational resolution and for combining moded equational uni�cation
procedures.

Keywords: Logic Programming, Equational Logic Programming, Programming Metho-
dology, Multi-valuedMode, Predicate Abstraction, Data Abstraction, Equational Theory,
Moded Equational Resolution, Moded Equational Uni�cation.
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1 Introduction

In this dissertation we investigate the problem of making logic programming more suit-

able for programming-in-the-large. We develop linguistic mechanisms that permit the

organization of logic programs around abstractions. This makes it possible to apply the

software engineering techniques that have been developed in the realm of conventional

languages. We illustrate our approach by presenting the design of Denali, an equational

logic programming language that supports predicate and data abstraction.

Our work synthesizes two major research directions that have evolved in the area

of programming language design in the past �fteen years. Both start from the premise

that large programs written in conventional languages are qualitatively more di�cult to

write than small ones. However, they adopt contrasting approaches to the problem of

reliably constructing large software systems. The �rst approach grants that conventional

languages are adequate for constructing small modules, and concentrates on the problem

of composing these modules to form larger systems. The second approach emphasizes

the need to develop more powerful programming languages and paradigms, and seeks

to make it possible to implement large systems with smaller, more easily understood

programs.

The �rst approach is exempli�ed by programming languages that encourage the or-
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14 1. Introduction

ganization of programs around independent abstractions, and by speci�cation languages

that can be used to describe these abstractions in an implementation independent fash-

ion. Examples of such programming languages abound, and include Simula 67 [Dahl 70],

CLU [Liskov 81], Smalltalk [Goldberg 84], and Ada [Barnes 80]. Examples of speci�-

cation languages, which are hardly less numerous but perhaps less well known, include

Larch [Guttag 85], Clear [Burstall 81], Iota [Nakajima 80], and Z [Abrial 80].

A programming method that exploits the distinction between the speci�cation and

implementation of an abstraction enjoys two advantages. The implementor of an ab-

straction needs to know nothing about the program in which the implementation will be

embedded, because implementations that are correct relative to a given speci�cation can

be freely interchanged without compromising the correctness of the containing program.

The client of an abstraction needs to know nothing about the idiosyncrasies of any par-

ticular implementation, since the relevant details of its behavior can be determined from

its speci�cation.

The second approach is exempli�ed by the growing class of programming languages

whose semantics are based upon formal logics. Prolog [Kowalski 74], the canonical logic

programming language, is grounded in �rst-order predicate logic. Eqlog [Goguen 86] and

Tablog [Malachi 86] are both based upon �rst-order logic with equality.

The logic-based languages enjoy di�erent kinds of advantages. Because their seman-

tics have a direct mathematical basis, the meanings of programs are easily expressed.

This means that programs are amenable to formal analysis, reducing the demand upon

independent speci�cations. The problem of combining programs into larger systems is

simpli�ed because it is easier to extend these languages to higher-order domains. As a

result, implementations are typically smaller than in a conventional language.

Relatively little attention has been paid to the potential bene�ts of combining these

two approaches to programming. We believe that the two schools of thought can be

combined to their mutual bene�t.

Writing speci�cations for conventional programs is complicated by the semantics of

the languages in which they are written. Though logic-based languages permit more

succinct implementations, as programs become larger problems of scale rapidly become
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paramount. Programs written in logic-based languages would be easier to construct if a

speci�cation-based methodology could be adapted to their nature.

We will make the discussion in this dissertation concrete by presenting a design for an

equational logic language, called Denali, that incorporates abstraction mechanisms into

pure Prolog. Our research proceeds from the assumption that Denali programs will be

designed, implemented, and understood using speci�cations. Our research goals can be

cast as design goals for Denali.

First, Denali should be an extension of pure Prolog. Although Denali need not be a

superset of Prolog, it should be possible to translate Prolog programs directly into Denali

and to interpret them without excessive overhead.

Second, Denali should provide the kinds of abstractions that are appropriate for orga-

nizing logic programs. We believe that these abstractions are predicate and data abstrac-

tions. These are similar to, but not identical to, the procedural and data abstractions

that are appropriate for conventional languages.

Finally, the design of Denali should be pragmatic. We should ensure that Denali can

be implemented using existing technology, can be used easily by a programmer, and can

be extended conveniently to adapt to future technological advances.

The remainder of this chapter is organized as follows. In Section 1.1 we give the

background of our work. We show how the di�culty of organizing Prolog programs

around abstractions limits the suitability of Prolog for programming in the large. We

also make arguments about the form that predicate and data abstractions should take in

a language based upon Prolog.

In Section 1.2 we give a brief overview of Denali and show how it addresses the

problems of Prolog. We do this by discussing simple examples of predicate and data

abstractions in Denali.

In Section 1.3 we survey related work, and in Section 1.4 we highlight the contributions

of our research. We outline the balance of the dissertation in Section 1.5.
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1.1 Prolog

Prolog exists in two substantially di�erent forms. For our purposes, Prolog means de�nite

clause programming. Often called pure Prolog, it has an abstract semantics based upon

�rst-order logic [Emden 76], and has a straightforward interpreter based upon depth-�rst

linear resolution. Because of its simplicity and purity, it is the starting point for all other

logic programming languages.

In other contexts, Prolog is taken to be the more practical programming language

that has evolved over the years. In response to the requirements imposed by applica-

tions, a number of extra-logical features have been grafted to the base language. These

features encourage a number of programming paradigms that are foreign to the pure

subset. [Sterling 86] gives a thorough grounding in the techniques of programming in

this language, which we will call standard Prolog.

We use the pure subset of Prolog as the starting point of our language design for three

reasons. First, the subset is easy to characterize formally. This is an advantage since we

will deal with the formal basis of our extensions. Second, since we are interested only in

de�ning the framework of our new language, we expect that further re�nements will be

necessary before Denali can be considered a practical language. By extending the pure

subset, we can more easily avoid incorporating obstacles to future re�nements of Denali.

Finally, the speci�c drawback of pure Prolog that we address in our work|the absence

of abstraction mechanisms|is shared by standard Prolog as well.

In Section 1.1.1 we give a summary of pure Prolog. In Sections 1.1.2 and 1.1.3 we

explain what we mean by predicate and data abstraction in the context of Prolog. We

argue that the addition of these abstraction mechanisms would complement and enhance

the essential characteristics of Prolog.

1.1.1 Background

We assume that the reader is already somewhat familiar with Prolog; our goal is to es-

tablish a common basis for discussion. We will repeat most of the de�nitions given below

in a more formal context when we discuss moded equational resolution in Chapter 5.
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A term is either a variable symbol, e.g., N , or a function symbol followed by a

sequence of subterms, e.g., cons(X;nil ). We distinguish variable symbols by capitalizing

them. A literal is a predicate symbol that is followed by a sequence of terms, e.g.,

size(cons(X;nil ); N).

It is important to bear in mind the distinction between function and predicate sym-

bols, and, correspondingly, between terms and literals. Function symbols are object

constructors, while predicate symbols denote relations de�ned by the Prolog program in

which they appear. Terms are the data objects manipulated by Prolog programs, while

literals are invocations of relations.

A substitution is a mapping from variables to terms, e.g., hX=0 ; N=1 i. It is convenient

to extend substitutions to mappings from terms to terms and from literals to literals. For

example, �(size(cons(X;nil ); N)), where � is the substitution given above, is the literal

size(cons(0 ;nil ); 1 ). A substitution � is called a uni�er of two terms (or literals) t and

r if �t = �r.

We say that � is an instance of �, and write � � �, whenever � can be made identical

to � by instantiating its variables. We say that � is a most general uni�er of a pair of

terms if every other uni�ers of that pair is an instance of �.

Solutions to literals are expressed as substitutions. For example, suppose that append

denotes the relation containing all list triples (L1; L2; L3) such that L1 and L2, when

appended, form L3. A solution to the literal append(cons(1 ;nil ); cons(2 ;nil ); L) is the

substitution hL=cons(1 ; cons(2 ;nil ))i. In general, if P denotes a relation R, then � is a

solution to the literal P (t1; : : : ; tn) whenever the tuple (�t1; : : : ; �tn) is an element of R.

A query is any sequence of literals. A substitution � is a solution to the query

 L1; : : : ;Ln

if � is a solution of each of the literals Li. For example, a solution to the query

 append(L1; L2; cons(1;nil)); append(L1; nil; nil)

is the substitution hL1=nil ; L2=cons(1 ;nil)i.

Since a query can have more than one solution, we are generally interested in obtaining

complete solutions. A complete solution of a query Q is a set of solutions � such that

any solution � of Q is an instance of some � 2 �.
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A de�nite clause is a sequence of literals, conventionally written as a reverse impli-

cation. The leftmost literal of a clause is its head, while the balance of the clause is

its (possibly empty) body. The following two de�nite clauses constitute a program that

de�nes the predicate symbol append .

append(nil; L; L):
append(cons(N;L1); L2; cons(N;L3)) append(L1; L2; L3):

The implication symbol is suppressed when the body is empty.

The relation that is associated by a Prolog program with each of its predicate symbols

can be determined by regarding the program as a sentence of �rst-order logic [Emden 76].

Prolog interpreters employ a variant of Robinson's resolution procedure [Robinson 65] to

solve queries relative to a program's abstract meaning.

The Prolog interpreter is based upon sld resolution [Kowalski 71]. Let Q be the

query

 L1; : : : ;Ln,

let C be the program clause

M M1; : : : ;Mm,

and let � be a most general uni�er of the leftmost literal of the query (L1) and the head

of the clause (M). The query

 �(L2); : : : ; �(Ln); �(M1); : : : ; �(Mm).

is the resolvent of Q with C using �.

Solving a query Q involves �nding a chain of resolvents that begins at Q and ends

with the empty query. The composition of the sequence of substitutions used to form

this chain is a solution of Q. The set of all such substitutions is a complete solution of

Q.

sld resolution operates by constructing and searching a tree that contains all possible

chains of resolvents. The root node contains the query to be solved; every other node

contains a resolvent of its parent. Each branch from a given node corresponds to a

program clause that is uni�able with the node's query. The order of the branches depends

upon the relative order of the clauses in the program. Because some chains of resolvents

are in�nite, and because the tree is searched in a depth-�rst order, sld resolution does
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not always �nd a complete solution.

1.1.2 Predicate abstraction

Conventional programs are organized, at least in part, around implementations of proce-

dures. The values returned and the side-e�ects generated by the possible invocations of

a procedure can be speci�ed independently of any implementation. Such speci�cations

are useful, of course, only when coupled with some means of judging the correctness of

an implementation relative to its speci�cation.

The separation of speci�cation and implementation a�ords signi�cant leverage when

constructing and reasoning about programs. The design and implementation phases of

program construction can be e�ectively decoupled. Reasoning about invocations of a

procedure can proceed from the speci�cation, which is designed to facilitate reasoning,

rather than from the implementation, which is not. Correct implementations can be

freely interchanged without compromising the correctness of the containing program.

Predicates in Prolog are analogous to procedures in conventional languages. A Prolog

program de�nes a set of predicates which map input (a tuple of terms) to output (a

sequence of substitutions). Literals can be regarded as predicate invocations, and thus

are the analogs of procedure invocations in conventional programs. This is called the

procedural interpretation of Prolog programs.

The analogy can be stretched no further. If Prolog consistently extended the ideas

behind conventionally programming language design, logic programs would be organized

around implementations of predicates. Instead, the only unit of encapsulation smaller

than an entire program is an individual de�nite clause.

Predicates are de�ned in a 
at name space that neither circumscribes the scope nor

restricts the reuse of predicate names. Since several clauses are typically needed to

de�ne each predicate, there is no way to detect inadvertent overloading. The order in

which clauses are loaded into the interpreter is signi�cant, and is explicitly relied upon

by programmers. As applications become larger, problems of name space management

rapidly become critical.

By itself, this defect is easily remedied. It would not be di�cult to package all
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of the clauses needed to de�ne a predicate into a single syntactic unit. However, the

absence of an encapsulation mechanism for Prolog predicates is just one manifestation

of a larger problem. That problem is the absence of a discipline for treating predicates

as independently speci�able components of a larger program.

There is a tendency to view this larger problem as unimportant for the following

reasons. Because a Prolog program can be viewed as a sentence of logic, its abstract

meaning can be obtained directly. Consequently, it is possible to view a Prolog program

as both a speci�cation and an implementation of the same abstraction, namely, some set

of relations. This is called the declarative interpretation of Prolog programs.

There are two problems with this rationalization. First, when viewed as a sentence of

logic, a Prolog program simultaneously speci�es an entire set of predicates. It does not

specify the predicates individually, and the relationships between them can be complex.

Second, the meaning of a program when viewed as a speci�cation is di�erent from

its meaning when viewed as an implementation. The root of the problem is that the

resolution strategy used to solve Prolog queries is incomplete. Given a Prolog program,

a complete solution can generally be obtained only for some subset of the possible queries.

For programs outside of this subset, the interpreter diverges.

The di�erence between the two interpretations would not be so serious if it were

consistently predictable. In practice, though, two programs that have identical meanings

as speci�cations can have di�erent interpretations as implementations. That is, they can

produce complete solutions for di�ering classes of queries.

An example of two such programs appears below. The predicates reverse1 and re-

verse2 each relate a list to its reverse. The predicate su�x relates its �rst argument, a

list, and its second argument, an element, to its third argument, the list with the element

appended.
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reverse1(cons(X;L1);L2) reverse1(L1;L3); su�x(L3;X;L2):
reverse1(nil;nil):

reverse2(L1; cons(X;L2)) reverse2(L3;L2); su�x(L3;X;L1):
reverse2(nil;nil):

su�x(nil;X; cons(X;nil)):
su�x(cons(Y;L1);X; cons(Y;L2)) su�x(L1;X;L2):

While the two reversal predicates possess identical meanings as speci�cations, they

exhibit incompatible behavior for some queries. Unless the �rst argument to a reverse1

literal is fully instantiated, an attempted solution of the literal diverges. Conversely,

reverse2 requires that its second argument be fully instantiated. The query

 reverse1(cons(1; cons(2;nil));L)

can be solved, while the query

 reverse2(cons(1; cons(2;nil));L)

cannot.

These two implementations, while they ostensibly satisfy the same speci�cation, are

not interchangeable. The problem is that not all of the necessary interface information,

i.e., the degree to which arguments must be instantiated, is speci�ed. In practice, Prolog

programmers construct programs and queries so that implicit constraints such as the

above are not violated. However, if a speci�cation methodology such as the one that has

grown up around procedural languages is to be followed, the limitations upon the use of

predicates should be explicit in both implementation and speci�cation.

1.1.3 Data abstraction

Conventional programming languages provide a variety of built-in scalar and composite

data types, such as integers, records, and arrays. The di�ering data types are intended to

provide expressive power and e�ciency. This variety can be exploited by a programmer

when designing the data structures for an application. Finding appropriate representa-

tions for data is a major part of the engineering e�ort required in writing a conventional

program.

This form of engineering is not possible in Prolog. There is but a single built-in

data type, uninterpreted terms, which are equivalent to immutable trees. Although all
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representations can be coded into this form, uninterpreted terms are de�cient in many

situations. For example, an e�cient implementation of a hash table, which requires a

data structure (such as an array) that provides random access in constant time, is not

realizable in Prolog.

The absence of a variety of data types from Prolog is a serious drawback. The addition

of new built-in data types to Prolog, however, is not straightforward. We must consider

the generic characteristics exhibited by the uninterpreted term in its role as the sole

Prolog data structure, and be careful to preserve these characteristics as we add new

types.

There are three characteristics of Prolog terms that should be preserved by any other

built-in type that is added to the language. First, terms can contain and can even be

variables. Second, pairs of terms can be uni�ed to produce substitutions. Third, terms

can be denoted directly and can be written into programs. We will consider each of these

points more closely.

The primary source of the expressive power of Prolog is its treatment of variables and

variable-containing terms as �rst-class objects. This enables a number of programming

paradigms that are unique to Prolog. The exploitation of these paradigms ought to be

possible even when objects other than uninterpreted terms are added to the language.

Any data types that are added must provide variable and variable-containing objects.

Uni�cation is central to the interpretation of Prolog programs, much as parameter

passing is central to conventional languages. The uni�cation algorithm used in Prolog

is a consequence of the fact that Prolog terms are uninterpreted. Syntactically distinct

terms are always treated as being semantically distinct.

This form of uni�cation is not appropriate for data types in which relationships exist

among objects. These relationships must be taken into account by the uni�cation algo-

rithm. For example, assuming the normal interpretation given to natural numbers, the

numbers X+2 and 3 should be uni�able by the substitution hX=1 i.

If multiple data types are added to Prolog, the uni�cation algorithm can no longer

be viewed as a �xed component of the interpreter. Instead, each data type must provide

an appropriate uni�cation algorithm.



1.2. Denali 23

Not all objects in conventional languages possess denotations. For example, arrays in

some languages cannot be written directly into the program text, but must instead be

obtained indirectly through the evaluation of procedure invocations. In Prolog, however,

every object can be denoted directly. This is a crucial aspect of the language's expressive

power.

The means of denoting the objects provided by a data type should be regarded as

part of that data type's interface, and should be independent of implementation details.

For example, we denoted natural numbers earlier using term notation, but no reasonable

implementation would represent them that way.

This completes our brief survey of the properties that might be expected of any data

types added to Prolog. (We will pursue this topic further in Chapter 4.) The de�ciency of

Prolog, however, goes beyond the paucity of built-in data types. Most modern languages

also support the de�nition, by the programmer, of abstract data types.

Experience in conventional languages has proven the value of organizing programs

around data abstractions. Together with procedural abstractions, data abstractions pro-

vide a convenient means of specifying and reasoning about programs. If additional built-

in data structures are to be added to Prolog, so should a mechanism for the creation of

user-de�ned data types. These user-de�ned types should exhibit the properties outlined

above.

1.2 Denali

Denali programs consist of implementations of predicate and data abstractions. In this

section we will give some simple examples that illustrate the form such abstractions take

in Denali. We will use these examples to illustrate some of the issues that we have raised

and resolved in designing Denali.

1.2.1 Predicate abstraction

We begin with an example of an implementation of a predicate abstraction. The predicate

half relates pairs of natural numbers in which the �rst is twice the second.
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half = pred (nat;nat) moding (gnd; any); (any; gnd)
half(0; 0):
half(s(s(N)); s(M)) half(N;M):

The body of this predicate is composed of two de�nite clauses. The header of the

predicate, and the way that it is used, is more novel. In addition to the name of the

predicate, the header gives sort and mode restrictions. These restrictions constrain the

formation and solution of literals headed by half .

The sort symbol nat and the mode symbols gnd and any are not prede�ned. They

are de�ned by an implementation of the data abstraction that we will examine below.

Sort restrictions are comparable to the type restrictions of conventional languages.

They control the class of arguments that can be used to compose literals. In the example

above, the sort restriction requires that both arguments to half be natural numbers. Sort

restrictions are static, so they can be decided before runtime.

Mode restrictions augment the sort restrictions by further constraining the form of

arguments. They control the degree to which the arguments must be instantiated. The

mode restriction expressed above, for example, requires that at least one of the arguments

to half be a variable-free natural number.

Some existing logic languages also have mode systems, but they distinguish only

between variables and non-variables. We will call these bi-valued mode systems. The

more expressive Denali modes are de�ned by the programmer on a sort-by-sort basis,

with di�erent modes used to constrain the objects of di�erent sorts. Consequently, they

can make �ner sort-speci�c distinctions. We will term the Denali approach a multi-valued

mode system.

The incorporation of multi-valued mode restrictions into the interfaces of predicates is

designed to make it possible to realize predicate abstraction in Denali. Mode restrictions

must be given in speci�cations as well as in implementations. They specify the portion

of the well-sorted domain in which completeness is required of an implementation.

Unlike well-sortedness, which is a static property, well-modedness is dynamic and

cannot be tested until runtime. This is because the degree to which the terms of a literal

are instantiated can change as substitutions are applied. Mode restrictions are exploited
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by Denali to control the order in which the literals of queries are solved. The evaluation

order is moded-�rst rather than leftmost-�rst.

1.2.2 Data abstraction

The interface of a data abstraction appears below. In this chapter, we give only the

interface because we have not yet developed enough background to describe an imple-

mentation.

nat = cluster
denoted by

0 :! nat
s : nat ! nat
+ : nat;nat! nat

modes any > gnd
uni�ed by

X+0 = X
X+Y = Y+X
s(X)+Y = s(X+Y)

square = pred (nat;nat) moding (gnd; any)
end

Each data abstraction introduces a sort name and provides a set of objects of that

sort. The interface of a data abstraction has four components which, when implemented,

provide di�erent ways of manipulating the objects. These components are

� a grammar for denoting the objects as terms in programs,
� a set of modes suitable for constraining predicates that use the objects,
� a procedure for unifying pairs of the objects, and
� a set of predicates de�ned over the objects.

It is instructive to compare data abstraction in Denali with data abstraction in con-

ventional languages. Data abstractions in conventional languages typically provide a set

of procedures de�ned over a set of objects. If the abstraction is implemented as a built-

in type, the abstraction will also usually provide a means of directly denoting objects.

Such a facility is usually not available for user-implemented abstractions. Modes and

uni�cation procedures, since they are pertinent only in logic languages, are not provided.

An implementation of a data abstraction in Denali is called a cluster, and can be

either built into the language or de�ned by the programmer. An implementation, as
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in a conventional language, �xes a concrete representation for the abstract objects it

provides. It then implements the components of the interface in terms of this internal

representation. In a well-constructed implementation, the representation details are not

visible to users of the abstraction.

The placement of the denotation scheme in the interface, independent of the represen-

tation scheme, is a signi�cant design decision. In the implementation of an abstraction,

a mapping must be de�ned from denotations to representations. Before a program can

be evaluated, this mapping must be used to translate all denotations into representa-

tions. This discipline is necessary to ensure that the users of an abstraction need not be

concerned with its implementation details.

If the denotation and representation were not distinct, changes to the representation

would require that modi�cations be made to each client of the abstraction. The design

of a denotation and the choice of a representation must satisfy di�erent criteria. This

mandates that they be separable.

The choice of which modes and predicates to provide in the interface of a data ab-

straction is based upon knowledge of how the abstract objects will be used. This is

analogous to how the procedures provided in a conventional data abstraction are chosen.

Modes cannot be de�ned outside a cluster since their implementations must be privy to

representation information. Predicates can be de�ned either inside or outside a cluster;

however, only those predicates de�ned inside can exploit knowledge of the representation.

The equations specify the functional relationships between the symbols of the deno-

tation. The uni�cation procedure provided by the implementation must treat as equal

pairs of terms that can be proven equal using the equations. Uni�cation based upon

equations in this fashion is called equational uni�cation.

The uni�cation procedure for each sort is written as a binary predicate over pairs of

abstract objects. Simplifying the problem of implementing uni�cation predicates for ar-

bitrary abstract types is a critical facet of the design of Denali. A large body of research

addresses the problem of equational uni�cation. Equational uni�cation algorithms are

known for a variety of sets of equations that express general properties such as associa-

tivity and commutativity. For the most part, however, these algorithms are inaccessible
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to the non-specialist.

The body of existing equational uni�cation algorithms is a useful source for the uni�-

cation predicates of built-in abstractions. It is of little help, however, for the programmer

implementing a cluster. Three aspects of Denali help simplify the problem faced by the

programmer.

First, because cluster implementations are based upon concrete representations, uni-

�cation predicates need not be constructed from �rst principles. Denali can provide a

rich variety of built-in data abstractions that exhibit diverse behavior with respect to

uni�cation. With an appropriate choice of representation, a programmer-de�ned imple-

mentations of uni�cation can be based upon an existing implementation that is already

close to the required form. The possibility of building upon existing implementations

of uni�cation is a direct consequence of the separation of denotation and representation

concerns.

Second, user-de�ned uni�cation procedures are implemented on a sort-by-sort basis.

The individual procedures are ultimately combined by the Denali interpreter to obtain an

overall uni�cation algorithm. This reduces the burden on the programmer by factoring

the task into more manageable units.

Third, just as with ordinary predicates, modes can be used to restrict the interfaces

of uni�cation predicates. This can eliminate the necessity of de�ning the predicate over

troublesome parts of its domain. As an extreme example, restricting uni�cation to pairs

of ground terms reduces the problem to an equality test modulo the set of equations. Of

course, this restriction also sacri�ces a large degree of the expressive power of uni�cation.

In general, the imposition of mode restrictions upon uni�cation represents a tradeo�

between ease of implementation and expressive power.

1.3 Related work

In this section we summarize some of the research that is related to the work reported

in this dissertation. This related work falls into two broad categories: logic languages

that exploit modes and logic languages that incorporate equality. Our intention here is
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to provide an outline; everything mentioned here is described in greater detail in later

chapters.

We have brie
y outlined the di�erences between Denali's multi-valued mode system

and the simpler bi-valued mode systems of existing languages. At least four applications

have been found for these bi-valued modes. In the Edinburgh Prolog compiler, modes are

used to annotate predicate de�nitions to permit more e�cient compilation [Warren 77].

Several sequential logic languages use modes to control the order of evaluation of liter-

als, including Epilog [Porto 82] and Mu-Prolog [Naish 85]. The parallel logic languages

Parlog [Clark 85] and Concurrent Prolog [Shapiro 83] use modes for concurrency con-

trol. Finally, modes are used to help plan the evaluation of database queries in NAIL!

[Ullman 85]. A more detailed discussion of these uses of bi-valued modes appears in

Chapter 2.

We have also discussed our pragmatic approach to incorporating equality. It involves

providing a collection of linguistic mechanisms that permit the programmer to restrict

and thus simplify the equational uni�cation problem. Of the other logic languages that

incorporate equality, only Kornfeld's extension to Prolog [Kornfeld 86] adopts a com-

parably pragmatic approach. His approach is to permit the implementation of equality

procedures in Lisp. Eqlog [Goguen 86] allows the programmer to specify equality with

a set of equations; the language implementation is responsible for synthesizing an equa-

tional uni�cation procedure from these equations. Tablog [Malachi 86] is based upon a

proof system, completely independent of resolution, that explicitly incorporates both def-

inite clauses and equations. SLOG [Fribourg 84] is based upon de�nite clauses that de�ne

equality, and is implemented with a variant of resolution. We discuss these languages

further in Chapter 3.

1.4 Contributions

In this section we summarize the primary contributions presented in this dissertation.

We identify the two forms of abstraction|predicate and data|around which we

believe logic programs should be organized, and show how programs can be constructed
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using them. In most logic languages, programs are composed of individual de�nite clauses

and, sometimes, equations. In Denali, they are composed of implementations of predicate

and data abstractions. Two of our key contributions are the idea that the interfaces of

predicate abstractions should express multi-valued mode restrictions upon arguments,

and the idea that the language should make it possible for the programmer to implement

equational uni�cation procedures.

The mode system of Denali is more pervasive than that of other logic languages.

In other languages, modes are used only as annotations that help control the order of

interpretation. In Denali, modes are exploited in almost all aspects of an implementation.

In addition to helping control the interpreter, modes document predicate interfaces, serve

as guards of clauses, and help simplify the implementation of uni�cation by restricting

the formation of objects. The runtime checking of mode restrictions serves to catch

programming errors that would otherwise be undetected.

Denali modes are also more expressive than those of other languages. Existing lan-

guages provide modes that distinguish only between variables and non-variables. These

bi-valued modes are generic to all types of objects, and thus can be built directly into the

language. Denali's multi-valued modes can express the �ner-grained distinctions that are

needed to fully document predicate interfaces. Because the distinctions that are required

depend upon the application, Denali modes are de�ned by the programmer.

Denali is the �rst logic language that distinguishes between the way abstract objects

are denoted and the way that they are represented. This separation makes it possible to

build programs in layers of abstractions, as in conventional programming languages. It

also makes it possible to engineer representations.

We adopt a novel approach to obtaining implementations of equational uni�cation.

Other languages attempt to handle uni�cation automatically by synthesizing implemen-

tations from equations. The known approaches have limited applicability and almost

always produce ine�cient implementations. Furthermore, there are theoretical limita-

tions upon how well any such approach can ever perform. In Denali, we place the burden

of implementing uni�cation procedures upon the programmer. To make this approach

feasible, we place at the disposal of the programmer a number of techniques of restricting
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and thus simplifying uni�cation. Uni�cation procedures are de�ned on a sort-by-sort ba-

sis and then combined by the implementation. Because implementations of abstractions

can be layered, uni�cation procedures provided by built-in abstractions can be incorpo-

rated into user-de�ned implementations. Most importantly, modes can be used both to

place interface restrictions upon uni�cation procedures and to restrict the formation of

objects.

Besides presenting a language design, we also establish the formal basis for Denali.

We de�ne a new form of resolution, moded equational resolution, and use it to de�ne

the semantics of Denali and provide the basis for constructing speci�cations and de�ning

satisfaction for Denali programs. By extending an existing algorithm for combining

uni�cation algorithms, we establish the cornerstone of a Denali interpreter.

1.5 Roadmap

The remainder of this dissertation is composed of seven chapters. Chapters 2, 3, and 4

comprise an informal development of Denali, while Chapters 5 and 6 deal rigorously with

moded equational resolution and moded equational uni�cation. In Chapter 7 we draw

the �ve preceding chapters together by developing a formal basis for Denali. We then

conclude in Chapter 8.

In Chapter 2 we describe Denali's predicate abstraction mechanism, which provides

a way to constrain the interfaces of predicate implementations. We develop our system

of de�ning and using multi-valued modes, and contrast it with the bi-valued modes used

in various existing logic languages.

In Chapter 3 we discuss how term equality is handled in Denali. As in other logic

languages that permit the imposition of equality constraints, our method is centered

around equational uni�cation. Our mode system, however, �gures prominently in con-

straining the problem of equational uni�cation. The introduction of mode constraints in

this context requires the development of moded equational uni�cation and resolution.

In Chapter 4 we describe Denali's data abstraction mechanism. In addition to de-

veloping the composition of data abstractions, we give two ways of implementing them,
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called implicit and explicit implementations. In implicit implementations the denotation

doubles as the representation, and the uni�cation predicate is speci�ed rather than imple-

mented. This technique is applicable only when an algorithm for the speci�ed uni�cation

predicate is known to the language implementation. Explicit implementations, on the

other hand, are based upon concrete representations.

In Chapter 5 we develop a formal basis for moded equational resolution. Beginning

with linear equational resolution, we consider a series of variations on the selection rule.

This process culminates with a selection rule, based upon modes, that forms the basis of

the semantics of Denali.

In Chapter 6 we consider the subsidiary problem of moded equational uni�cation.

We review the existing techniques for obtaining equational uni�cation algorithms, and

sketch how they can be extended to deal with modes. We then extend Yelick's algorithm

[Yelick 85] for combining uni�cation algorithms for disjoint sets of equations into an over-

all uni�cation algorithm. The resulting extended combining procedure, which exploits

sorts and modes, is suitable for use in the Denali abstract interpreter.

In Chapter 7 we present a more rigorous development of Denali than was possible in

Chapters 2 through 4. It includes a formal semantics based upon the moded resolution

developed in Chapter 5, and an abstract interpreter based upon the combining procedure

of Chapter 6.

We conclude in Chapter 8 by highlighting the contributions of our work and suggesting

avenues for further research. The most prominent of these is an implementation of Denali.





2 Predicate abstraction

in Denali

In this chapter we informally describe Denali's predicate abstraction mechanism. We

illustrate the changes that must be made to pure Prolog and its interpreter to support

this form of abstraction. We develop the changes incrementally, and gradually evolve

away from Prolog to a subset of Denali.

We begin in Section 2.1 by discussing the structure of the predicate abstraction mech-

anism. The addition of a two-dimensional type system for describing predicate interfaces

is of primary interest. This system includes both sort restrictions, which are common in

most type systems, and mode restrictions, which are meaningful only in logic languages.

We will assume that each predicate possesses an independent speci�cation as a �rst-

order relation. Mode restrictions can be used by a programmer to restrict the domain of

a predicate to a subset for which it can be e�ectively computed. This makes it possible

to precisely implement a given speci�cation. We thus explicitly recognize and deal with

a pervasive limitation of logic languages: only su�ciently instantiated queries can be

solved by a practical interpreter.

Mode restrictions, unlike sort restrictions, can be checked only at runtime. In Sec-

tion 2.2 we show how the Prolog interpreter can be modi�ed to cope with, and even

exploit to advantage, the mode restrictions associated with each predicate interface.

33
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The mode restrictions that we study initially are expressed using bi-valued modes.

Similar kinds of mode restrictions have appeared previously in a number of logic lan-

guages. Although they are useful for illustrating the structure of our type system, bi-

valued modes are not expressive enough for our purposes. In Section 2.3 we show why,

and replace them with multi-valued modes.

The most important contribution of this chapter is our development of Denali's multi-

valued mode system and our description of how it is used. In Section 2.4 we summarize

the mode-related de�nitions that are introduced throughout the chapter.

We show how multi-valued modes can be syntactically de�ned in Section 2.5. We

conclude the chapter in Section 2.6 by discussing the body of related work that has

developed and exploited bi-valued modes.

2.1 Predicate interfaces using bi-valued modes

Any two Denali predicate implementations that satisfy the same speci�cation can be

freely interchanged without a�ecting the remainder of the program in which they ap-

pear. We achieve this property by using the type system to express interface restrictions

upon predicates. These restrictions can be used to limit predicates to domains over

which complete implementations are realizable. By making the restrictions part of the

speci�cation, and by appropriately de�ning satisfaction, implementation transparency is

obtained.

In this section we develop a preliminary version of the two-dimensional Denali type

system. We describe the �rst dimension, a sort system, in Section 2.1.1. The sort system

is comparable to the type systems of most typed languages. The terms manipulated by

programs are divided into disjoint sets that are named by sorts. These sorts are used in

turn to give signatures to predicates. Predicates need be de�ned only over well-sorted

queries. Denali sort restrictions are static and can thus be veri�ed before runtime.

We have seen that the Prolog evaluation strategy is incomplete for certain queries.

In general, the less fully instantiated a query, the less likely it is that the query can

be completely solved. The second component of the type system is a mechanism for
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imposing restrictions in the form of constraints upon the degree to which a literal must

be instantiated before it can be evaluated.

Such restrictions are called mode restrictions. In Denali, a mode restriction is as-

sociated with each predicate symbol as part of its type interface. A literal cannot be

evaluated until it satis�es the mode restriction associated with its head predicate sym-

bol. Since the degree of instantiation of a term can change under the application of

substitutions, mode restrictions must be checked at runtime.

In Section 2.1.2, we illustrate this second component of the Denali type system by de-

scribing how bi-valued modes can be used to express mode restrictions. Bi-valued modes

are the simplest possible form of mode, and are the kind that have appeared previously

in, among others, the Warren Prolog compiler [Warren 77], an extended version of Pro-

log called Epilog [Porto 82], and a concurrent logic language called Concurrent Prolog

[Shapiro 83].

2.1.1 Sorts

A Denali program contains a set of encapsulated predicate implementations. An imple-

mentation consists of a sorted, moded header and a list of de�ning Horn clauses. We will

ignore the moded portion of headers for now.

A length predicate, for example, is presented as:

length = pred (list;nat)
length(nil; 0):
length(cons(X;L); s(N)) length(L;N):

The header speci�es that any literal headed by length must have two argument terms.

The �rst must have sort list and the second must have sort nat .

Sorts are associated with terms by explicitly declaring the signatures of function

symbols in the usual way, e.g.,

0: ! nat nil: ! list
s: nat ! nat cons: nat; list! list:

Terms must be constructed consistently with the signatures. For simplicity, variables are

not declared, though they must be used consistently within each clause.
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So long as it is well-sorted, the meaning of a Denali program as described thus far is

identical to the pure Prolog program obtained by deleting the function symbol declara-

tions and predicate headers.

The Denali sort mechanism provides a syntactic check upon the structure of programs,

makes possible the construction of a complementary mode system, and is the basis of

data abstraction. However, it imposes restrictions not present in Prolog and is probably

too restrictive for practical use. Modern polymorphic type systems such as that used in

ML [Milner 78] would be more appropriate to Denali. As we are primarily interested in

the more novel aspects of Denali, we have not incorporated these ideas here. There is no

apparent reason, however, why the sort system could not be extended.

2.1.2 Bi-valued mode systems

Not all literals can be solved to yield a manageable sequence of substitutions within a

reasonable amount of time. Some evaluations diverge by neither yielding a substitution

nor terminating. Other evaluations are ine�cient, yield a large or in�nite number of

substitutions, or both. Conscientious Prolog programmers must be careful to avoid the

construction of programs or queries that permit no reasonable solution.

Consider the predicate length de�ned above. Using it, an interpreter can successfully

solve any of the three queries

 length(nil; 0),
 length(cons(0;nil);N), or
 length(L; s(s(0))),

producing a single substitution. However, if both of the arguments are uninstantiated,

as in

 length(L;N),

an attempted evaluation will generate an in�nite sequence of substitutions. Although it

depends upon the circumstances, this behavior is usually unacceptable.

Some logic languages address this and related problems by providing bi-valued modes.

These modes allow the programmer to specify restrictions, enforced by the interpreter,

that prevent the evaluation of insu�ciently instantiated literals. Mode restrictions can
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also be exploited by the interpreter to control the order of evaluation of the literals of a

query.

A mode is a set of terms. Set membership depends upon structural properties, such

as whether or not a term is a variable. The two modes of our bi-valued mode system

are all , which contains all of the terms, and nonVar , which contains only non-variable

terms. (This particular system is a composite example, but it is representative of existing

bi-valued mode systems.) We will refer to the modes of a bi-valued system as bi-valued

modes.

We say that a term t has modeM , and write M(t), if t 2M . A term can have more

than one mode. In our bi-valued system, for example, any non-variable term has both

modes, all and nonVar .

One or more n-tuples of modes are associated with each n-ary predicate symbol.

A literal P (t1; : : : ; tn) is well-moded if P is associated with a mode tuple (M1; : : : ;Mn)

such that 8iMi(ti). The set of all tuples of terms (r1; : : : ; rn) such that P (r1; : : : ; rn) is

well-moded is called the moding of P .

Mode tuples, and thus modings, are associated with Denali predicates by annotating

their headers. For example, the moding of length is given by writing:

length = pred (list;nat) moding (nonVar; all); (all;nonVar).

This speci�es that a well-moded length literal must contain at least one non-variable

term.

Only a single change need be made to the semantics of Denali to enforce mode restric-

tions. If an ill-moded literal is selected for reduction, the interpreter can fail immediately.

Such a failure is termed a mode failure. For example, consider the query

 length(cons(0;L);N).

The literal is well-moded, so one step of reduction leads to the query

 length(L;M).

The remaining literal satis�es neither of the mode tuples of length, so the interpreter

reports a mode failure. This prevents the generation of the undesired in�nite sequence

of substitutions.

Mode failures are distinct from the overlap failures that occur in resolution-based
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interpreters. A mode failure is the run-time discovery that the original query was insuf-

�ciently instantiated to permit solution. It is a hard error, corresponding to a runtime

type error, and cannot be recovered. An overlap failure, which occurs when a selected

literal uni�es with no clause, is a normal part of interpretation. It is recovered through

backtracking.

2.2 Moded evaluation

As described so far, mode restrictions serve only to constrain the interpreter. In this

section we describe two ways in which Denali and its interpreter can be made more

robust by exploiting mode restrictions.

An attempt to evaluate an ill-moded literal leads to a runtime failure from which

recovery is not possible. Fortunately, mode restrictions can be exploited by an inter-

preter to improve the order of evaluation of queries. We describe in Section 2.2.1 how

the leftmost-�rst selection rule of Prolog can be replaced with a selection rule that dy-

namically alters the selection order so that the evaluation of ill-moded literals is deferred

until they become su�ciently instantiated. This reduces the incidence of mode failures.

Modes can also be used to a�ect which of the multiple clauses of a predicate de�nition

can be used to reduce a given literal. We describe mode guards, which make this possible,

in Section 2.2.2.

2.2.1 Moded selection

The Prolog strategy for evaluating a query involves solving literals in a strict left-to-right

order. We relax this strategy in Denali by always solving instead the leftmost well-

moded literal. This has two e�ects. First, mode failures occur less frequently since they

occur only when none of the literals of a query is well-moded. Second, some predicate

implementations are rendered more robust, since they can tolerate a greater diversity in

the modes of their arguments.

We illustrate these points with the following example.
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double = pred (nat;nat) moding (nonVar; all); (all;nonVar)
double(0; 0).
double(s(N); s(s(M))) double(N;M).

Suppose that we pose the following query, with the goal of �nding the natural number

K that can be quadrupled to obtain 0 :

 double(K;L);double(L; 0).

Under the original leftmost-�rst selection rule, the evaluation would fail immediately

since the �rst literal is ill-moded. Under the alternative semantics, however, the second

literal can be selected for reduction, leading after one step to

 double(K; 0).

Because the variable L has been instantiated, the remaining literal is now well-moded

and can be reduced, obtaining the solution substitution hK=0 i.

We could equally well specify that the selection rule select an arbitrary well-moded

literal for reduction. We specify that the leftmost well-moded literal be chosen so that

the reduction order for any particular query is deterministic.

Prolog's interpreter is based upon sld resolution [Kowalski 71], which observes an

invariant that must be respected under the new evaluation strategy. This invariant

requires that a literal, once selected, be completely reduced before any other literal of

the query is selected.

In Prolog, a literal that has been selected for reduction is replaced in the query

by its resolvent. This fact, combined with left-to-right evaluation, guarantees that the

invariant will hold. If this strategy of replacing a literal with its resolvent to obtain a

new query were to be followed in Denali, however, the invariant would be breached, since

the selection rule is di�erent.

This observation can be illustrated with the following example. Using the length

predicate de�ned above, and the nonzero predicate de�ned here,

nonzero = pred (nat; list) moding (nonVar; all)
nonzero(s(X);nil).

we can pose the following query:

 length(cons(0;L);N);nonzero(N;L).

Since only the �rst literal is well-moded, one step of reduction can lead to
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 length(L;M);nonzero(s(M);L).

Now, even though the reduction of the original literal is incomplete, the nonzero predicate

has been su�ciently instantiated to be solved, leading to

 length(nil;M).

We can now complete the solution of the originally reduced literal.

It may seem at �rst that violating the invariant in this way is bene�cial since it

permits the solution of queries that would otherwise meet with mode failure. The query

above, for example, could not be solved if the original length literal had to be completely

solved before the nonzero literal could be solved. Unfortunately, violating the invariant

compromises the integrity of predicate abstraction in Denali.

The problem is that predicates that satisfy the same speci�cation can exhibit di�erent

behaviors with respect to the production of intermediate substitutions. If an interpreter

is allowed to exploit these intermediate substitutions, then di�erences between two im-

plementations can be detected.

Suppose, for example, that length were de�ned in the following way:

length = pred (list;nat) moding (nonVar; all); (all;nonVar)
length(nil; 0).
length(cons(X;L);N) length(L;M); increment(M;N).

increment = pred (nat;nat) moding (nonVar; all)
increment(N; s(N)).

This de�nition of length behaves identically to the original implementation, except that

no intermediate substitutions are generated. Hence, the query posed above, after one

reduction, would stand at:

 length(L;M); increment(M;N);nonzero(N;L).

Since each of the literals is ill-moded, a mode failure would occur at this point.

Adopting the permissive evaluation strategy sketched above would require that the

mode system document the possibilities for the partial reduction of a literal. Otherwise,

implementation di�erences in predicates satisfying the same speci�cation could be de-

tected. Rather than complicate the mode system, we take a conservative approach and

forbid the adoption of the permissive evaluation strategy. Instead, we require that the



2.2. Moded evaluation 41

resolvent spawned by the reduction of a literal in a query be solved as a subquery before

any of the other literals in the original query are reduced.

Notice that although we have avoided the necessity of specifying the modes of terms

contained in intermediate substitutions, nowhere in a predicate interface do we specify

the modes of terms appearing in result substitutions. It thus appears that di�erences

in the implementations of predicates could be detected by observing the modes of the

substitutions they produce. Fortunately, this is not the case. We will show in Chapter 5

that the modes of the substitutions produced by a correct implementation are a function

of its inputs, and thus are indirectly �xed by its speci�cation.

2.2.2 Mode guards

Denali's moded selection rule makes it easier to de�ne predicates that operate over a

wide range of modes. This can be illustrated with the predicate twiceLength:

twiceLength = pred (list;nat) moding (nonVar; all); (all;nonVar)
twiceLength(L;N) length(L;M);double(M;N).

This implementation is workable only because the order in which the literals of the

de�ning clause are evaluated depends upon the modes of the arguments. Not all predicate

de�nitions are readily invertible, so it is not always possible to successfully implement

predicates in this way. It is sometimes necessary to use completely di�erent approaches

depending upon the modes of the arguments.

Mode guards, a control primitive provided by Denali, make this possible. The clauses

that de�ne a Denali predicate can compose either a guarded or an unguarded block. All

of the predicates that we have presented thus far have been implemented with unguarded

blocks. When a literal is reduced by an unguarded predicate implementation, each of the

clauses in the block is considered in turn from top to bottom. Top to bottom evaluation

is speci�ed to make evaluation orders predictable, but is not crucial.

Each clause of a guarded block is pre�xed by a mode tuple whose arity equals the

arity of the containing predicate. These tuples, or mode guards, are used to arbitrate

which clause is used to reduce a literal. Only a single clause is used: the topmost clause

whose mode guard is satis�ed by the arguments to the literal.
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Consider, for example, the following predicate for squaring natural numbers.

square = pred (nat;nat) moding (nonVar; all); (all;nonVar)
(nonVar; all): square(N;M) times(N;N;M).
(all;nonVar): square(N;M) newtonMethod(M;N).

A literal formed from the square predicate is reduced with the upper clause if its �rst

argument is ground, and by the lower clause otherwise.

The moded selection rule and mode guards possess complementary properties. Both

support the de�nition of predicates that have 
exiblemode restrictions. The selection rule

provides the 
exibility needed when a single approach is su�cient for solving a problem

for all possible modings. Mode guards provide the 
exibility needed when di�erent

approaches must be taken for di�erently moded arguments.

2.3 Predicate interfaces using multi-valued modes

Under an appropriately expressive system of modes, it should be possible to �nd an

acceptable solution to a well-moded literal with a reasonable amount of computation. It

is up to the programmer to determine which solutions are acceptable, to decide how much

computation is reasonable, and to place mode restrictions upon predicates accordingly.

It is up to the language designer to ensure that the programmer can express su�ciently


exible restrictions.

Bi-valued modes are often not su�ciently powerful to specify completely the structure

of terms that are acceptable to a predicate. Instead of specifying the circumstances under

which an acceptable solution can be reasonably computed, they specify the circumstances

under which one step of resolution reduction toward that end can be performed. For

example, although the literal contained in the query

 length(cons(0;L);N)

is well-moded, we have seen that a mode failure occurs after one reduction step.

A more expressive mode system is needed that can characterize as ill-moded a broader

class of literals whose reduction leads, immediately or ultimately, to a mode failure. Such

a system contributes to e�ciency by preventing fruitless resolution steps, and contributes

to robustness by enabling the interpreter to be more selective about reduction orders.
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Most importantly, as we will see in Chapter 5, it enables predicate abstraction by per-

mitting precise interface descriptions.

Bi-valued modes would be appropriate if terms were always either variables or ground.

The problem is that bi-valued modes cannot distinguish among the di�erent classes of

nonvariable terms. For example, the length predicate used in the example above would

be more precisely moded with restrictions along the lines of

length = pred (list;nat) moding (has no list variable; all); (all; ground)

Thus, literals like

length(cons(X; cons(0;nil));N)

would be considered well-moded while literals like

length(cons(X;L);M)

would not.

Multi-valued modes are designed to express such �ner-grained distinctions. In Sec-

tion 2.3.1 we will introduce a provisional de�nition of multi-valued modes, and in Sec-

tion 2.3.2 we will extend the de�nition.

2.3.1 Multi-valued mode systems

In multi-valuedmode systems, the sets of terms constituting modes are all of the same sort

and are closed under instantiation. We will refer to the modes of a multi-valued system as

multi-valued modes. Since they are sets of terms, multi-valued modes �t directly into the

framework of the Denali type system. The closure property ensures that a well-moded

literal will remain well-moded regardless of what substitutions are applied to it. The

semantics of Denali depends upon this monotonicity property.

Because of the monotonicity property, the order in which the well-moded literals of

a query are evaluated is immaterial. An interpreter can choose an arbitrary well-moded

literal for reduction without danger that some other well-moded literal will become ill-

moded as a result. This makes it possible to specify the behavior of a predicate by

specifying its behavior on individual literals, independent of the context in which the

literal appears.

We did not highlight this point earlier because closure under instantiation, and hence
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the monotonicity property, accrues automatically to the two bi-valued modes. It is the

monotonicity property, and not the closure property of which it is a consequence, that is

fundamental to the semantics of Denali. In Section 2.3.2 we will show how to relax the

closure requirement while retaining monotonicity.

We illustrate below some example multi-valued modes of sort nat . They are described

here in prose. We will show in Section 2.5 how to de�ne them syntactically.

all all terms of sort nat ,
nonVar all nonvariable terms of sort nat , and
gnd all variable-free terms of sort nat .

The modes all and nonVar are identical to their bi-valued namesakes, while gnd is

distinct.

The modes de�ned above can be used to place more appropriate mode restrictions

upon the double predicate than were possible in the previous section:

double = pred (nat;nat) moding (gnd; all); (all; gnd)

Any well-moded double literal can now be evaluated completely with no possibility of

mode failure. This is because some literals that were well-moded under the bi-valued sys-

tem, such as double(s(N);M), are now ill-moded. Recall that previously the evaluation

of this literal led almost immediately to a mode failure.

As a second example, some example modes for lists are

all all terms of sort list ,
enum all terms of sort list that contain no list variable, and
gnd all ground terms of sort list .

These modes can be used to place the mode restrictions, expressed above in prose, upon

length:

length = pred (list;nat) moding (enum; any); (any; gnd).

2.3.2 Moded bases

Consider the set pure of all nat terms that are either variables or ground terms, thus

excluding terms such as s(X). This set is not a mode under our current de�nition because

it is not closed under instantiation. For example, applying the substitution hX=s (Y )i to

the term X yields the term s(Y ), which is not in pure.
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There are circumstances under which it is desirable to treat such a set as a mode.

This requires altering our de�nition of what it means for a set to be a mode. The problem

is to relax the requirement that modes be closed under instantiation without sacri�cing

the monotonicity property of well-moded literals.

The key observation is that a mode need be closed only under the application of

the substitutions that can be generated by a program. We can exploit this observation

by introducing a distinction between moded and unmoded terms. The moded terms,

collectively called the moded base of a program, are all of the terms that belong to some

mode of the program. A moded substitution is a substitution that maps all variables to

moded terms.

We need no longer require that each mode be closed under instantiation. Instead,

we require two less restrictive conditions. First, each mode must be closed under the

application of moded substitutions. Second, every pair of moded terms must have a

most general uni�er that is a moded substitution.

These two conditions are su�cient to guarantee the monotonicity property of well-

moded literals so long as we can guarantee that no unmoded terms are ever uni�ed in

the course of interpreting a Denali program. The easiest way to do this would be to

forbid the appearance of unmoded terms in programs. In Chapter 3 we will devise a less

restrictive means of making this guarantee.

De�ning a set of modes is now a two-step process. The �rst step is to establish

the moded base of terms. By convention, we will do this by de�ning, for each sort, a

distinguished mode any. The union taken over each such mode any is the moded base.

All other modes are then de�ned as subsets of the moded base.

For example, consider the terms of sort nat . If we let the moded base be the set of

all ground terms and variables, then the following two sets are modes:

any the set of all variables and ground terms of sort nat , and
gnd the set of all ground terms of sort nat .

Notice that the mode any is the set pure de�ned above.
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2.4 Summary of mode de�nitions

We summarize below the mode-related de�nitions that were developed incrementally

in this chapter. We will draw upon these de�nitions throughout the balance of the

dissertation. In Chapter 5 we will generalize the de�nitions of both moded bases and

modes to account for equality. None of the other de�nitions will require further revision.

All of the de�nitions that follow are made with respect to some �xed moded base of

terms. A moded base is any set of terms that contains all of the variable terms and is

closed under moded instantiation and uni�cation.

� (instantiation) moded(�) ^moded(t) ) moded(�t).
� (uni�cation) moded(r) ^moded(t) ^ uni�able (r; t) ) 9� s.t.

� is a most general uni�er of r and t, and
moded(�).

A term is moded if it belongs to the moded base; otherwise, it is unmoded. A substitution

is moded if it maps every variable to a moded term; otherwise, it is unmoded.

A mode M of sort S is any set of moded terms of sort S that is closed under moded

instantiation:

� moded(�) ^ t 2M ) �t 2M .

A mode tuple of signature (S1; : : : ; Sn) is an n-tuple (M1; : : : ;Mn) such that each Mi

is a mode of sort Si.

A literal P (t1; : : : ; tn) is well-moded with respect to a mode tuple (M1; : : : ;Mn) if each

ti is an element of Mi. Otherwise the literal is ill-moded.

A set of mode tuples fM1 : : : ;Mmg is paired with each predicate symbol P . The

moding of P is the set of all term tuples (t1; : : : ; tn) such that P (t1; : : : ; tn) is well-moded

with respect to one of the M i.

Modes are related to their moded base as follows. Each mode is a subset of the moded

base. Although they do not partition the moded base, the union of all of the modes is

the moded base.
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2.5 De�ning multi-valued modes

In this section we describe a syntactic method for de�ning moded bases and modes. It is

not expressively complete; that is, it cannot be used to de�ne all possible combinations

of moded bases and modes. When used within its limitations, however, it is an e�ective

and easily implemented facility.

The technique involves giving, for each sort, a set of mode signatures. These signatures

specify the relationship between the modes of the subterms of a term and the mode of

the term. Any number of modes may be de�ned for each sort, but one of them must be

any. By convention, variables and all other moded terms are always of mode any.

This convention is observed for the following reason. The mode signature technique

indirectly de�nes the moded base since it is the union of the mode any of each sort. By

de�nition, the moded base must contain all variable terms.

As a �rst example, consider the three modes for nats that were de�ned informally in

Section 2.3.1. If we rename the mode all to be any, they can be speci�ed as follows.

0: ! gnd s: gnd! gnd
0: ! nonVar s: nonVar! nonVar
0: ! any s: any! any

There is often an inclusion relationship between modes of the same sort. In the

example above, for instance, any contains nonVar , which in turn contains gnd . By

explicitly noting the inclusion relationships as part of a mode name presentation, shorter

and clearer presentations can be constructed. For example, the mode presentation above

can be recast as:

any > nonVar > gnd
0: ! gnd
s: gnd! gnd
s: nonVar! nonVar
s: any! any

Since 0 is always of mode gnd , the inclusion relationships let us conclude that it is also

always of modes nonVar and any.

Let P be a set of mode signatures, and let > be an inclusion ordering. If t is a

variable, then M(t) if and only if
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M = any.

If t is the non-variable term f(t1; : : : ; tn), then M(t) if and only if

9 f :N1; : : : ; Nn!N 2 P such that 8iNi(ti) and M � N .

The mode any must include all others in an inclusion ordering. Under the de�nition

above, this ensures that all moded terms are of mode any.

In the preceding example, the mode any contains all terms of sort nat . Recall that this

was not the case with the alternate modings for nat that we constructed in Section 2.3.2.

They can be speci�ed by:

any > gnd
0: ! gnd
s: gnd! gnd

Here s(X) is unmoded because no mode signature applies to it.

Our �nal example is a presentation for the three modes of list .

any > enum > gnd
nil: ! gnd
cons: gnd; gnd! gnd
cons: any; enum! enum
cons: any; any! any

Notice that these mode signatures incorporate the modes for nats, and that the mode

names are overloaded.

A complete speci�cation of the modes of a program includes a mode presentation for

each sort. The set of terms associated by a presentation with a mode name is always

a mode, and the union of each of the modes any is always a moded base. When we

extend the de�nitions of moded bases and modes in Chapter 5 to account for equality

constraints, this will no longer be the case. At that time we will de�ne a syntactic check

upon mode presentations that gives a partial guarantee of this property.

Our mode de�nition technique is not su�ciently powerful to describe arbitrary modes.

For example, the mode that contains exactly the prime numbers cannot be de�ned using

mode signatures. While it is not a complete technique, the advantages of the mode

signature technique are its simplicity and ease of checking.
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2.6 Related work

Bi-valued modes were �rst introduced by Warren as declarations for a Prolog compiler

[Warren 77]. The interfaces of predicates can be annotated with bi-valued modes, per-

mitting the Edinburgh Prolog compiler to optimize the compiled code. As long as they

are correct, the annotations have no other e�ect. In fact, the annotations are ignored

when uncompiled clauses are interpreted directly.

Bi-valued moding schemes have appeared in a number of languages designed as succes-

sors to Prolog, including Epilog [Porto 82] and Mu-Prolog [Naish 85]. In these languages,

the modes are used to control the selection rule as described in this section.

Variants of bi-valued modes have also appeared in logic languages designed for con-

current applications. Modes are used in these languages to control the parallel solution

of literals possessing shared variables. In such languages, the literals of a query are

evaluated in parallel, with the evaluation of ill-moded literals suspended until they are

su�ciently instantiated. This provides a simple form of concurrency control. The mode

mechanism of Parlog [Clark 85] is of the bi-valued variety that we have described. In

Concurrent Prolog [Shapiro 83], the mode restrictions are attached to the point of call

rather than to the point of de�nition. The same e�ect is achieved, and some additional


exibility is obtained.

Modes have also been used to plan the evaluation of queries. [Dembinski 85] describes

a scheme that exploits bi-valued mode declarations to perform intelligent backtracking in

a Prolog-like interpreter. In the database language NAIL! [Ullman 85], bi-valued modes

are combined with capture rules to preplan the evaluation of database queries. This

approach is based on the assumption that the data values are either variable or ground,

which makes its use of bi-valued modes entirely appropriate.





3 Equational uni�cation

in Denali

The function symbols used to construct terms in logic programs are sometimes implic-

itly interrelated so that syntactically distinct terms are semantically identical. Well-

constructed logic programs should treat such terms as equal. In Prolog, and in Denali as

de�ned so far, this can be done only by coding equality constraints indirectly into each

predicate implementation.

We can illustrate this point with the sort list . Since nil and cons are the only

constructors, all syntactically distinct list terms are also semantically distinct. Consider

what happens if we add a function symbol append with the usual interpretation. We can

construct syntactically distinct terms, e.g., cons(0 ;nil ) and append(nil ; cons(0 ;nil )),

that denote semantically identical lists.

Any predicate that manipulates lists should treat this pair, and others like it, as

equals. We could rede�ne the length predicate, for example, to ensure this:

length = pred (list;nat) moding (enum; any); (any; gnd)
length(nil; 0).
length(cons(N;L); s(M)) length(L;M).
length(append(L1;L2);N) length(L1;N1); length(L2;N2);

plus(N1;N2;N).

Under this de�nition, the twin queries

51
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 length(cons(0;nil);N),
 length(append(nil; cons(0;nil));N),

can both be reduced, albeit by di�erent clauses, to produce the result hN=s(0 )i. The

lengths of any two equal terms will be found to be the same.

The success of this ad hoc technique requires that the programmer consistently em-

bed the appropriate notion of equality in all predicate de�nitions. A number of logic

languages, some of which we will examine at the end of this chapter, make term equal-

ity explicit by providing a mechanism for directly de�ning equality constraints. There

are several advantages to this approach. The imposition and maintenance of equality

constraints is centralized. Predicate de�nitions are simpler when they are permitted to

exploit equality instead of being required to de�ne it. Equality constraints, such as com-

mutativity, that could not be embedded into a convergent predicate de�nition can be

handled.

In this chapter we show how equational uni�cation [Plotkin 72] can be used to sys-

tematically impose equality constraints in Denali. We begin in Section 3.1 by giving an

overview of equational uni�cation and its role of Denali. This overview is informal; we

reserve until Chapters 5 and 6 a more rigorous development. Besides illustrating the

utility of equational uni�cation, we point out the di�culties that it poses.

These di�culties pose obstacles to incorporating equational uni�cation into a practical

logic programming language. In Section 3.2 we show how the Denali mode system can

be used to reduce these obstacles by simplifying the task of implementing equational

uni�cation procedures. We will exploit these simplifying properties in Chapter 4 when

we describe how equational uni�cation procedures can be written in Denali.

In Section 3.3 we modify the semantics of Denali to take advantage of moded equa-

tional uni�cation. This change entails more than replacing classical uni�cation with

equational uni�cation. It involves basing a semantics upon moded equational resolution,

which we introduce.

We conclude the chapter in Section 3.4, where we discuss the ways in which existing

logic languages have incorporated equality constraints.
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3.1 Equational uni�cation

In Section 3.1.1 we introduce equational uni�cation. In Section 3.1.2 we outline the prob-

lems that we must solve before equational uni�cation can be incorporated into Denali.

3.1.1 De�nition

The three equations below express the notion of equality that we have been associating

implicitly with the list constructors.

append(nil;L) = L
append(L;nil) = L
append(cons(N;L1);L2) = cons(N; append(L1;L2))

Two terms r and t are considered equal with respect to a set of equations E, written

r =E t, if r can be transformed into t (or t into r) using a series of rewriting steps.

Rewriting a term r using an equation e1 = e2 involves �nding a substitution � such that

�(e1) is identical to a subterm of r, and then replacing that subterm with �(e2). If r =E t

we say that the two terms are E-equal.

The two terms cons(0 ;nil ) and append(nil ; cons(0 ;nil)) can be proven E-equal by

using a single rewriting step. The right-hand side of the equation

append(nil;L) = L,

under the substitution hL=cons(0 ;nil)i, is equal to cons(0 ;nil ), which is the �rst of the

terms. Replacing this term with the instantiated left-hand side of the equation obtains

append(nil ; cons(0 ;nil )), which is the other term.

Equational uni�cation is de�ned with respect to E-equality. A substitution � is called

an E-uni�er of two terms r and t if and only if �r =E �t. For example, an E-uni�er

of the terms cons(0 ; L) and append(L; cons(0 ;nil )) is hL=nil i. E-uni�cation reduces to

classical uni�cation if the set E of equations is empty.

A query can be evaluated with respect to an equational theory E and a de�nite

clause program by replacing classical uni�cation with E-uni�cation in the interpreter.

The resulting proof procedure is called equational resolution [Plotkin 72]. Although we

will see shortly that this replacement is not straightforward, we will assume that it is for

the remainder of this section. We illustrate, using two examples, the power inherent in
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making the replacement.

In the �rst example, assume that we wish to adhere to the de�nition of list equality

that we have established. If uni�cation is done with respect to the list equations given

above, we can revert to our original de�nition of the length predicate.

length = pred (list;nat) moding (enum; any); (any; gnd)
length(nil; 0).
length(cons(N;L); s(M)) length(L;M).

Consider, now, the solution of the query

 length(append(cons(0;nil); cons(0;nil));S).

Using the substitution hN=0 ; L=cons(0 ;nil ); S=s(M)i, the query literal can be E-uni�ed

with the head of the second clause to obtain the reduced query

 length(cons(0;nil);M).

This can be solved in turn, and eventually the solution substitution hS=s(s(0 ))i is re-

ported. Even though the query contains an append function symbol and the de�nition

of length does not, the query can be solved under equational resolution.

In the second example, suppose that we augment the signature for natural numbers

to incorporate a constructor +:

0: ! nat any > gnd
s: nat! nat 0: ! gnd
+: nat;nat! nat s: gnd! gnd

s: any! any

+: gnd; gnd! gnd

+: any; any! any

Further assume that we perform uni�cation with respect to the equations:

0+X = X
X+Y = Y+X
s(X)+Y = s(X+Y).

The double predicate, which previously required a recursive de�nition, can now be

implemented as:

double = pred (nat;nat) moding (gnd; any); (any; gnd)
double(X;X+X).

This implementation is more succinct than was possible before. Its interpretation can be

illustrated with the query
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 double(N; s(s(0))).

Using the E-uni�er hX=s(0 ); N=s(0 )i the query can be reduced in one step.

3.1.2 Problems

We have been treating equational uni�cation as a panacea for introducing equality con-

straints into Denali. This is misleading, however, since incorporating it into the language

is more di�cult than is at �rst apparent. Implementations of logic languages are based

upon two properties of classical uni�cation. First, classical uni�cation yields at most

a single most general uni�er for any two pairs of terms. Second, e�cient algorithms

exist for �nding this uni�er. These properties are not, in general, shared by equational

uni�cation.

In the classical case, if two terms are uni�able, they possess exactly one most general

uni�er, unique up to variable renaming. Although the two terms may possess other

uni�ers, each of these is an instance of the most general one. The completeness of

resolution depends upon most general uni�ers being used at each step. If a non-general

uni�er is used during a resolution derivation, the solution derived may not be complete.

To illustrate this last point, we will show what happens when a non-general uni�er is

used. Consider the solution of the query

 length(L1; s(0)).

The most general uni�er of this literal and the head of the clause

length(cons(N;L); s(M)) length(L;M)

is hL1=cons(N;L); M=0i. This leads to the solution hL1=cons(N;nil )i. If, however, the

less general uni�er hL1=cons(0 ; L); M=0 i is used, the solution that is ultimately obtained

is hL1=cons(0 ;nil )i. This is a proper instance of the original solution, and as a result is

incomplete.

Depending upon the set of equations, two E-uni�able terms may not possess a single

most general E-uni�er. For example, consider unifying the two terms append(L1; L2) and

cons(0 ;nil ) in the list theory given earlier. These terms have the independent uni�ers

hL1=nil ; L2=cons(0 ;nil )i and hL1=cons(0 ;nil ); L2=nil i.
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Since we cannot depend upon an E-uni�cation algorithm �nding a single most general

E-uni�er, we must instead require that it �nd a complete set of E-uni�ers. A complete

set � of E-uni�ers for two terms s and t has the property that any other E-uni�er of

s and t is an instance of some member of �. For example, the two uni�ers given above

form a complete set.

Equational resolution must account for the possibility of multiple uni�ers. Each

uni�er of a clause and a literal must be used, in turn, to reduce the literal. This is a new

source of backtracking and can lead to multiple solutions, much as considering multiple

clauses can lead to multiple solutions. The key result in equational resolution is due to

Plotkin [Plotkin 72], who showed that E-resolution is complete so long as a complete

E-uni�cation procedure is available.

The problem of obtaining complete E-uni�cation procedures is not always easily

solved. Although e�cient algorithms exist for unifying terms in the classical case, the

existence and performance of equational algorithms depends upon the theory in ques-

tion. This is the key problem in implementing languages that incorporate equational

uni�cation.

3.2 Simplifying uni�cation

If we are to incorporate equational uni�cation into Denali, we must provide a way of

coping with the complexities outlined above. Although the discovery of more powerful

equational uni�cation procedures would be helpful, we are not basing Denali upon any

such development. Instead, we have designed Denali to support a methodology that

relies upon the programmer's exploiting three separate approaches to the problem of

containing the complexity of equational uni�cation.

First, the programmer can exploit the sort hierarchy to stratify an otherwise mono-

lithic equational theory so that the implementation of uni�cation can be decomposed.

The programmer is responsible for de�ning, for each sort, a uni�cation procedure over the

terms of that sort. The language implementation is responsible, in turn, for combining

these separate procedures into an overall uni�cation procedure. We will elaborate this
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strategy in Section 3.2.1.

Second, the programmer, by keeping in mind the limitations of uni�cation in Denali,

can strive to design realizable abstractions. It is possible to lessen the di�culty of uni-

fying the terms of a given sort by converting some of the constructors of that sort into

predicates. This approach is the topic of Section 3.2.2.

Third, the programmer can impose mode restrictions to constrain the domain of the

uni�cation procedure of each sort, consequently simplifying its implementation. In im-

posing the mode restrictions, the programmer must make an engineering tradeo� between

the expressive power of the uni�cation procedure and the di�culty of its implementa-

tion. We will describe this approach, which we call moded equational uni�cation, in

Section 3.2.3.

Although we discuss approaches to simplifying the demands upon implementations

of uni�cation, we do not describe how implementations are actually written. We will

consider the implementation problem in detail in Chapter 4.

3.2.1 Sort strati�cation

The operational semantics of Denali under equational uni�cation, which we will discuss

in Section 3.3, requires that the programmer provide a uni�cation procedure for each

sort. The implementation of a uni�cation procedure must respect an underlying equa-

tional theory. Thus, the nat uni�cation procedure, given any two terms of sort nat ,

should enumerate a complete set of uni�ers for the terms. For example, one complete

set of uni�ers of the two terms X+Y and s(0 ) is the sequence of two substitutions,

hX=0 ; Y=s(0 )i and hX=s(0 ); Y=0 i.

Because of sort restrictions, not all of the complexity of the equational theory that

underlies a program need be built into any particular uni�cation procedure. Only that

part of the theory that applies to terms of the sort in question need be considered. For

example, suppose that the theory underlying a program contains the union of the nat

and list theories. The list constraints need not be taken into account when unifying nats,

since no nat can contain a list . The converse is not true, however, since lists can contain

nats as elements.



58 3. Equational uni�cation in Denali

3.2.2 Simplifying abstractions

The programmer must be aware of the limitations of Denali, and avoid designing pro-

grams for which uni�cation procedures cannot be constructed. The most important

design decisions in this regard involve deciding what function symbols can be used to

construct terms for a given sort. Adding function symbols, while increasing expressive

power by making a greater variety of terms available, generally complicates the uni�ca-

tion problem since the relationships between symbols can become more complicated.

An alternative to providing an n-ary function as a constructor is to provide it as an

n+1-ary predicate instead. Providing it as a predicate lessens the expressive power of the

terms of its sort, since a lesser variety of terms can be constructed. But it simpli�es the

equational theory since that function symbol's interaction with the others is eliminated.

The e�ects of this tradeo� can be seen with the list sort that we have used repeatedly

as an example. When a binary append function is incorporated along with the nil and

cons functions, a non-empty equational theory is required to express their relationships.

If append is supplied as a ternary predicate, classical uni�cation su�ces for the remaining

list terms.

3.2.3 Moded uni�cation

The di�culty of obtaining a complete uni�cation procedure lies not with the equational

theory itself but in the set of terms with which the procedure must deal. The demands

upon an equational uni�cation procedure can be relaxed if the domain over which it

must operate is restricted. Regardless of the theory, for example, it is always trivial to

unify pairs of variables. In general, an implementation can be made more tractable by

eliminating the instances in which its worst-case performance occurs.

Given an appropriate change to the semantics of Denali, to be explained in Section 3.3,

modes can be used to place restrictions upon the interfaces of uni�cation procedures.

The resulting problem, moded equational uni�cation, is often easier to solve than the

corresponding unmoded equational uni�cation problem.

The weakest possible restriction is to require that both arguments to a uni�cation
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procedure be of mode any. We require that all uni�cation procedures be at least this

restrictive. This allows us to permit the appearance of unmoded terms in Denali programs

while ruling out the possibility that pairs of unmoded terms will ever be uni�ed.

The requirements of the uni�cation procedure drive the design of the moded base.

To illustrate this, consider the equational theory for nat . The smallest complete set of

uni�ers of the pair of terms X+Y and Z+W is in�nite. If no moded nat term ever

contains more than one variable, however, then every uni�able pair of moded nats will

possess a singleton complete set of uni�ers.

A programmer, having made this observation, might choose to de�ne the modes for

nat so that terms containing more than one variable are unmoded. This can be done by

giving the following mode signature:

any > gnd
0: ! gnd
s: gnd! gnd
s: any! any
+: gnd; gnd! gnd
+: gnd; any! any
+: any; gnd! any

The key to this is the omission of the stipulation that

+: any; any! any.

Since terms containing more than one variable are unmoded, they never need to be

considered by the uni�cation procedure.

It is sometimes necessary to impose stricter mode restrictions upon uni�cation. Con-

sider, for example, the problem of unifying the two list terms append(L1; L2) and append(L3; L4).

The smallest complete set of uni�ers is in�nite. On the other hand, unifying a pair of

list terms such as append(L1; L2) and cons(X; cons(Y; cons(Z;nil ))) is simpler, yielding

only four uni�ers. By imposing a mode restriction upon list uni�cation that requires that

one of the two terms be of mode any and the other of mode enum, better performance

can be guaranteed since the problem of unifying pairs of unenumerated lists need not be

considered by the implementation.

We will adopt the following general scheme for expressing the mode restriction that

is to be placed upon the uni�cation procedure for a sort S. A single mode M of sort
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S encodes the restriction for the procedure. One argument to the uni�cation procedure

must be of mode M , while the other must be of mode any. In other words, if the mode

restriction M is any, then the uni�cation moding is (any; any); otherwise, the moding

is (M; any); (any;M). The moding for nat uni�cation can be encoded as any, while the

moding for list uni�cation can be encoded as enum.

3.3 Moded equational resolution

We can now describe how moded equational uni�cation is incorporated into the resolution

procedure that underlies the semantics of Denali. We call the resulting procedure moded

equational resolution. We will assume that a moded equational uni�cation procedure is

provided for each sort. In Chapter 4 we will see how these procedures can be implemented

in Denali.

The sort-speci�c uni�cation procedures can yield multiple substitutions. We deal

with this problem by modeling each uni�cation procedure as a Denali predicate. We can

then treat the problem of unifying pairs of literals as one of solving a query derived from

the literal. We explain this approach in Section 3.3.1.

Adopting this approach permits us to exploit the mode restrictions upon uni�cation

to control the order in which individual terms are uni�ed, exactly as with ordinary Denali

queries. Some problems stemming from this will lead us to intermix the currently distinct

resolution steps of �rst unifying a literal with the head of a clause and then solving the

clause's body. We discuss this revised approach in Section 3.3.2.

3.3.1 Multiple uni�ers

The sort-speci�c uni�cation procedures can be regarded as Denali predicates. A uni�-

cation procedure maps pairs of terms to sets of substitutions. Viewed as a predicate, it

maps pairs of terms to sequences of substitutions. We can exploit this similarity as we

develop moded equational resolution.

We must create headers for the sort-speci�c uni�cation predicates. For example, the

headers for nat and list uni�cation are, respectively,
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natUnify = pred (nat;nat) moding (any; any),
listUnify = pred (list; list) moding (any; enum); (enum; any).

By convention, we will form the name of the predicate from the name of the sort over

which it operates. This also �xes the sort signature of the predicate. The mode tuples

are derived from the mode restriction upon uni�cation as we described earlier. Thus,

natUnify uni�es pairs of moded nats, and listUnify uni�es pairs of moded lists, at least

one of which must be of mode enum.

Modeling the uni�cation procedures as predicates in this manner a�ords us a conve-

nient way of illustrating equational resolution. We can model the problem of unifying a

pair of literals, e.g. P (nil ; N) and P (L; 0 ), as the problem of solving the query,

 natUnify(nil;L);natUnify(N; 0).

For example, consider the problem of solving the query

 less(s(0)+s(0); s(0)):

with respect to the de�nition

less = pred (nat;nat) moding (gnd; gnd)
less(s(X); 0):
less(s(X); s(Y)) less(X;Y):

Reducing the query with respect to the second clause of the implementation would nor-

mally involve, as a �rst step, unifying two literals. We can model this problem as one of

solving the query

 natUnify(s(X); s(0)+s(0));natUnify(s(Y); s(0)).

The solution obtained in this step, hX=s(0 ); Y=0 i, can then be used to instantiate the

remainder of the query as usual.

There are two advantages to treating the uni�cation step in this way. First, it provides

a natural way of dealing with multiple uni�ers. We are already accustomed to solving a

query for more than one substitution.

Second, this way of doing uni�cation gives us a way to enforce and exploit the mode

restrictions upon uni�cation. For example, consider solving the query

 double(s(0);N).

Recall that our de�nition of double is
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double = pred (nat;nat) moding (gnd; any); (any; gnd)
double(X;X+X).

This involves solving the uni�cation query

 natUnify(s(0);X);natUnify(N;X+X).

The second literal of this query, because it contains the unmoded termX+X, is not well-

moded. This means that we must solve the other literal �rst. Fortunately, in this step

the unmoded terms becomes su�ciently instantiated and its literal can be subsequently

solved.

3.3.2 Mode restriction anomaly

To this point we have maintained two separate phases of the resolution reduction of

a query. First a uni�er is obtained, and then that uni�er is applied to the remainder

of the query. This separation is not necessary and can actually be counterproductive.

Eliminating the separation leads to a more robust evaluation strategy.

The mode restriction upon a uni�cation predicate leads to an anomaly when it is

stricter than any. Because variables are always of mode any, such a restriction explicitly

forbids attempts to unify variables. For example, since the list uni�cation restrictions

require that one of the terms be of mode enum, the attempted uni�cation of two list

variables, as in

 listUnify(L1;L2)

is ill-moded and cannot be solved.

Since two variables can always be directly uni�ed, regardless of the underlying equa-

tional theory, imposing mode restrictions upon uni�cation appears to have a serious

drawback. We will now evaluate possible solutions to the problem.

Sometimes the apparent need to unify a pair of variables can be avoided because of

the ordering e�ects of modes. One of the variables can become su�ciently instantiated

before the uni�cation literal must be evaluated. This can be illustrated with the predicate

pre�x :
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pre�x = pred (list; list) moding (enum; any)
pre�x(append(L1;L2);L1)

This predicate relates the �rst argument to its pre�xes. It can be invoked, for example,

with the query query

 pre�x(cons(0;nil);L).

The �rst uni�cation step in reducing this query is the query

 listUnify(cons(0;nil); append(L1;L2)); listUnify(L1;L).

Even though the second literal is ill-moded, the �rst one is not and can be solved. It has

multiple solutions, and in one case leads to

 listUnify(cons(0;nil);L),

which is now well-moded and can be solved to yield a solution.

Unfortunately, not all attempts to unify variables can be avoided in this way. To

illustrate this, we de�ne another predicate,

nPre�x = pred (list;nat; list) moding (enum; gnd; any)
nPre�x(L3;N;L4) pre�x(L3;L4); length(L4;N).

This predicate reports only pre�xes of the speci�ed length. As before, the �rst step in

solving the query

 nPre�x(cons(0;nil); 1;L),

involves solving the uni�cation query

 listUnify(cons(0;nil);L3);natUnify(1;N); listUnify(L;L4).

Solving the �rst two well-moded uni�cation literals does not further instantiate the ill-

moded literal, and a mode failure results.

One potential solution to the problem is to treat variable uni�cation as a special case,

and always permit it regardless of mode restrictions. Although this solution is appealing

in its simplicity, it is defective and cannot be adopted.

Recall that we require that well-moded literals remain well-moded under instantiation.

If the variable exception were exploited in the solution of a uni�cation query, it might

be possible to instantiate one or both of the variables involved so that the exception

no longer applied but the uni�cation literal became ill-moded. For example, even if the

variable exception were exploited to solve the query above, solving the query instance
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 nPre�x(cons(0;nil); 1; cons(0;L),

would now lead to a mode failure. Because we want to ensure that the solvability of

queries is invariant under instantiation, we reject the simplistic solution.

Fortunately, we can go far toward solving the problem by eliminating the arbitrary

division between the uni�cation and reduction steps that is present in our evaluation

strategy. Instead, we permit the intermixing of the solution of uni�cation and clause

literals. This provides a greater opportunity for one term of a non-uni�able pair to

become further instantiated.

This change permits the solution of the query above. The �rst step in the solution is

to form the joint uni�cation/body query:

 listUnify(cons(0;nil);L3);natUnify(1;N);
listUnify(L;L4);pre�x(L3;L4); length(L4;N).

The �rst two uni�cation literals can be solved immediately, leading to

 listUnify(L;L4);pre�x(cons(0;nil);L4); length(L4; 1).

Now, even though the remaining uni�cation literal is ill-moded, the pre�x and then the

length literals can be solved, leading to

 listUnify(L; cons(0;nil)).

The uni�cation literal is now well-moded and can be solved, yielding a solution.

The modi�cation to the evaluation strategy described above does not always succeed

in preventing mode failure due to attempts to unify pairs of variables. It often does,

however, because the inclusion of a variable in a literal is usually a technique for obtaining

output from the evaluation of the literal. The modi�cation strictly enlarges the class of

queries that could be solved under the old strategy without changing the evaluation of

any previously solvable queries. Finally, the change is not particular to pairs of variables.

It helps prevent uni�cation-related mode failures for all terms.

3.4 Related work

Kornfeld [Kornfeld 86] was one of the �rst to suggest the power of incorporating equality

constraints into Prolog. His observations have inspired a number of other e�orts in this

direction. He incorporates equality by allowing the Prolog uni�cation procedure to invoke
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Lisp procedures whenever uni�cation fails. This ad hoc approach has no sound formal

basis.

Eqlog [Goguen 86] is closely related to our work, as it incorporates equational uni�-

cation in much the same way as Denali. Its approach to obtaining implementations of

equational uni�cation, however, is completely di�erent. Instead of relying upon a set

of pragmatic techniques for simplifying the uni�cation problem, Eqlog relies upon the

narrowing procedure [Fay 79] to compile sets of equations into uni�cation procedures.

Unfortunately, the narrowing procedure is primarily of theoretical interest, as it is gener-

ally nonterminating and usually produces ine�cient implementations. Furthermore, it is

applicable only to sets of equations that can be converted into a canonical set of rewrite

rules, and does not exploit modes. Under the narrowing procedure, the programmer has

little control over or intuition about the e�ciency characteristics of uni�cation.

Tablog [Malachi 86] is a logic language based upon the Manna-Waldinger deductive-

tableau proof system [Manna 80]. This proof system explicitly handles equations as well

as clauses. The language was designed and implemented as a demonstration that a logic

programming language can be based upon something other than the resolution procedure.

Its treatment of equality is incomplete, however, as it makes an asymmetrical distinction

between primitive and de�ned function symbols.

SLOG [Fribourg 84] is a logic language in which only one predicate may be de�ned by

a programmer. This predicate is equality. Queries are solved with a variant of resolution

called innermost superposition. The equality predicate is used to reduce not only entire

literals but also inner terms.





4 Data abstraction

in Denali

In this chapter we describe the Denali data abstraction mechanism, and show how user-

de�ned abstractions can be implemented. As in non-logic programming languages that

support user-de�ned data abstraction, this is done by �rst �xing a concrete representation

for the abstract objects, and then realizing the interface in terms of this representation.

This approach di�ers, however, from other languages that have extended Prolog, none

of which distinguish between the means used to represent objects and the means used to

denote them as terms.

The problem of implementing data abstractions in Denali is complicated by their

intricacy. We begin in Section 4.1 by developing the requirements for these abstractions.

In most languages, a data abstraction provides a set of abstract objects and operations.

Denali abstractions also provide a denotation scheme, a set of modes, and a uni�cation

predicate.

A data abstraction can be implemented in three ways. The �rst way, which we

mention for the sake of completeness, is by providing it as a built-in abstraction. This

method is appropriate only for abstractions of broad applicability such as integers and

lists. Fixing the set of built-in abstractions is a crucial part of a full language design.

However, as we are concerned only with designing the framework of Denali, we do not

67
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address this aspect here.

The remaining two implementation techniques apply to user-de�ned abstractions, the

focus of this chapter. We illustrate in Section 4.2 the technique of implicit implementa-

tion, in which denotations double as the concrete representations of objects. Abstract

modes are de�ned in terms of denotations. The uni�cation procedure is not explicitly

implemented; instead, a set of equations is given that speci�es the desired procedure. The

language implementation, in turn, synthesizes the appropriate uni�cation procedure.

In Section 4.3 we explain the technique of explicit implementation. With this tech-

nique, the programmer uses the objects of some other sort to stand as the concrete

representation. Exploiting levels of abstraction in this way leads to more 
exibility in

program design than does implicit implementation. However, the implementation pro-

cess is more complicated. The denotation scheme, the abstract modes, the uni�cation

procedure, and any exported predicates all must be explicitly implemented in terms of

the concrete representation.

In Section 4.4 we discuss the di�erences between implicit and explicit implementation,

and explain the circumstances under which each approach is applicable and appropriate.

We conclude our development of Denali in Section 4.5 by summarizing the role of

abstraction in reasoning about Denali programs.

4.1 Requirements

In this section we develop requirements for data abstraction in Denali. Since a data

abstraction encapsulates all of the information needed to characterize the objects of

some sort, it must include the three forms of external information we assumed present

when describing predicate abstraction in Chapter 2. This includes function signatures,

mode de�nitions, and implementations of uni�cation. A data abstraction also provides

a set of predicates.

We begin in Section 4.1.1 by examining the role of data abstraction in conventional

languages, and continue in Section 4.1.2 by considering the role of terms as abstract ob-

jects in Prolog. In Section 4.1.3 we synthesize our observations into a set of requirements
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for the Denali data abstraction mechanism.

4.1.1 Data abstraction in conventional languages

Data abstractions appear in one form or another in almost all programming languages.

Built-in implementations of data abstractions that appear almost universally include

scalar types such as integers and data structures such as arrays. Many modern languages

also provide facilities that support the construction of user-de�ned data abstractions.

The role of a data abstraction is to provide a set of objects together with a set of

operations to create, modify, and observe them. For example, languages that support

integers generally provide constants, implementations of the standard arithmetic func-

tions, and comparison relations. In some cases, an operation is logically related to a

particular abstraction even though it is not presented as such. For example, array and

record update operations are often described as special cases of assignment.

A trend in modern languages has been to support the construction of user-de�ned

data abstractions that present the same kind of interfaces as their built-in counterparts.

The programmer can design extensions to the set of data types provided by a language,

tailoring the language's expressive power to the requirements of the application.

Almost inseparable from the concept of data abstraction is the idea of encapsulation.

Ideally, the only way to manipulate the objects of an abstraction should be through

the means provided by the abstraction's interface. If this principle is observed when

implementing a data abstraction, several bene�ts accrue. The meaning of the abstraction

can be speci�ed by describing the behavior of the components of its interface. Because

of this, two implementations can be considered equivalent if they present behaviorally

identical interfaces. Equivalent implementations can be freely interchanged without fear

of altering the behavior of clients of the abstraction. When the principle of encapsulation

is observed, the interface need not be bound to any particular means of representing

abstract objects.

This last property is intrinsic to implementing built-in types, and is one of the con-

tributions of early programming languages. Thus, the implementation of integers in

almost all programming languages is hidden from the programmer. The principle of en-
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capsulation has been extended to user-de�ned abstractions. For example, two properly

constructed implementations of a set abstraction, one based upon arrays and the other

upon binary trees, can be transparently interchanged.

4.1.2 Data abstraction in Prolog

The requirements for data abstraction in the context of a logic language are more exten-

sive than for the conventional case considered above. The source of the di�erence is the

central role of uni�cation and the need to denote directly the values of objects within

the text of programs. Although Prolog provides no facilities for constructing user-de�ned

data abstractions, it implicitly supplies a single built-in data type. We analyze below the

role of this type in Prolog, in the process developing further insight into the requirements

for Denali's data abstraction mechanism.

The only built-in type in pure Prolog is the uninterpreted term. Terms serve the same

role in Prolog as objects do in imperative languages. They are similar, in some respects,

to records. The most signi�cant di�erence is that terms can contain, or can even be,

variables. Anything from an individual variable to a ground term is an acceptable object

in Prolog. This property is one source of Prolog's expressive power.

A data abstraction should provide all of the operations needed to manipulate its

abstract objects. In pure Prolog, the only means of manipulating terms is by unifying

and instantiating them. Because these two operations are central to the logic program-

ming paradigm, and because there is only one built-in data type, it is convenient to

regard them as built-in components of the Prolog interpreter. They could, however, be

regarded as abstract operations supplied by the single built-in type. The importance of

this distinction will become clear in Denali, in which more than one data abstraction can

appear.

We have not been careful thus far to distinguish the terms provided by Prolog from the

abstract objects they denote. It is important, however, to draw a distinction between an

abstract object, its denotation, and its internal representation. It is di�cult to motivate

the di�erence in pure Prolog since uninterpreted terms can conveniently serve as both

denotation and representation. Instead, we examine standard Prolog [Clocksin 81] to
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illustrate our point.

A specialized in�x list notation is used extensively in Prolog programs. In this nota-

tion, a single list object can have two or more distinct denotations. In an implementation

of Prolog, each list has a unique internal representation that is distinct from any deno-

tation. List denotations must be translated into this representation before they can be

manipulated with uni�cation and instantiation.

The example above illustrates that a denotation is a syntactic artifact that need have

no direct relationship to the representation of an object. This is especially true since

denotations and representations are generally chosen to suit di�erent criteria. The means

used to denote the objects provided by a data abstraction should be part of the syntactic

interface of the abstraction, and not a consequence of its implementation. Similar issues,

as we have seen, arise in connection with conventional languages.

4.1.3 Denali interfaces

We have discussed the nature of data abstractions in both conventional and logic lan-

guages. The underlying idea is that an abstraction must provide a set of abstract objects

in a way that separates the means of manipulating the objects from the means of imple-

menting them. The mechanisms provided by an abstraction for manipulating its objects

depends in part upon the nature of the language and in part upon the nature of the

abstraction.

The interface of an abstraction must provide the syntactic information that clients

need to use the abstract objects. We now describe the style of interface presented by data

abstractions in Denali. Although we will eventually need to explain how implementations

associate meaning with interfaces, we will concentrate for now upon their form.

The list below summarizes the �ve ways in which Denali objects can be derived and

observed. It provides the starting point for the design of data abstraction in Denali:
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nat = cluster
denoted by

0: ! nat
s: nat! nat
+: nat;nat! nat

modes any > gnd
unify mode any
add = pred (nat;nat;nat) moding (gnd; any; any);

(any; gnd; any); (any; any; gnd)
less = pred (nat;nat) moding (gnd; gnd)
end

Figure 4.1: Nat interface

� Objects can be denoted directly by terms.
� Modes can be used to classify objects according to their degree of instantia-
tion.
� Pairs of objects can be uni�ed to obtain substitutions.
� Literals containing objects as arguments can be resolved to obtain substitu-
tions.
� Substitutions can be applied to objects to derive new objects.

Data abstractions in Denali are implemented by clusters, and are de�ned on a sort-

by-sort basis. Each cluster implements the objects of a particular sort, presenting in

its interface the syntactic information needed to e�ect the manipulations listed above.

The interface of a nat abstraction appears in Figure 4.1. We will refer to it below as we

describe the components of cluster interfaces.

The header of the interface names the sort, in this case nat , to be de�ned by the

cluster. We will refer to this sort generically as the sort of interest.

The �rst portion of the interface gives the sorted grammar that de�nes how objects

of the sort of interest can be denoted. The range of every function symbol de�ned in

this grammar must be the sort of interest. Independently of the grammar, variables are

always valid denotations.

The expressive power of a data abstraction is related to the number of its objects

that can be denoted. Not every abstract object need be denotable; in fact, no method

of denotation need be given at all. In such a case, only variable objects can be written

directly. This does not imply, of course, that non-variable abstract objects cannot exist.
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It means instead that they must be constructed indirectly by solving literals. This is not

an unusual condition, since objects can be obtained only indirectly in languages that do

not support denotations.

The next portion of the interface identi�es the names of the modes provided by the

abstraction and indicates their inclusion relationship. Mode any is by convention the

most general mode. It must always appear in the interface, and it must include all other

modes. If it does not appear, we will assume it implicitly present. Modes are used, as in

Chapters 2 and 3, to classify classify abstract objects. They can appear in the headers

of predicates that manipulate arguments of the sort of interest.

A syntactic interface does not implement the mode names. However, the implemen-

tation is constrained by the interface to respect the indicated inclusion relationships.

Although they are formally unrelated to the denotation scheme, modes can be described

with respect to the denotation scheme, as in Chapter 2, whenever every abstract object

is denotable.

The third component of the interface is the mode restriction for the uni�cation pro-

cedure of the sort of interest. The procedure itself is, of course, provided by the imple-

mentation.

The remainder of the interface gives the headers of any predicates provided by the

abstraction. Just as in other languages, it is often advantageous to de�ne a predicate

inside of a cluster so that it can take advantage of the internal representation of abstract

objects. The set of predicates provided by the nat cluster, while by no means complete,

is intended to be representative.

Neither interfaces nor implementations deal explicitly with the means of applying

substitutions to abstract objects. This is because Denali treats the application of sub-

stitutions as a generic operation, analogous in some ways to assignment in imperative

languages. Applying a substitution to an object always involves replacing the variables

within the object with their images under the substitution. The generic treatment of

substitutions is only possible if certain relationships hold between abstract objects, their

denotations, and the means used to represent them. The most important relationship is

that abstract variables must be represented by concrete variables.



74 4. Data abstraction in Denali

bag = cluster
denoted by

nil: ! bag
cons: nat;bag ! bag

modes any > enum > gnd
unify mode enum
reduce = pred (bag;bag) moding (gnd; any)
length = pred (bag;nat) moding (enum; any)
end

Figure 4.2: Bag interface

4.2 Implicit implementation

An implicitly implemented cluster is, for the most part, a structured collection of the

external pieces of information upon which we based the de�nition of predicates in Chap-

ter 2. We will illustrate the technique of implicit implementation by showing how it can

be used to implement the bag interface that appears in Figure 4.2.

We �rst give an informal speci�cation of the bag abstraction. At the syntactic level,

the abstraction provides exactly the same set of objects as does the familiar list abstrac-

tion. Semantically, however, bags that contain the same elements in the same numbers

are treated as identical, regardless of the order in which they were originally formed. The

uni�cation procedure, of course, must respect this equality restriction. All bag objects

are moded; further, any object that contains no bag variable is of mode enum, and any

ground bag is of mode gnd .

An implicit implementation of the bag abstraction appears in Figure 4.3. We will

draw upon it as an example as we discuss each of the aspects of implicit implementation

in detail.

The denotation portion of an implicitly implemented cluster is carried over unadorned

from the syntactic interface. Because the denotation scheme is the basis of the imple-

mentation, no mechanism is needed to relate it to the other facets of the abstraction. We

will see that this is not the case under explicit implementation, in which the programmer

must give a way of translating denotations into representations.

The abstract modes named by the interface are de�ned with a set of mode signatures.
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bag = cluster
denoted by

nil: ! bag
cons: nat;bag ! bag

modes any > enum > gnd
unify mode enum
moded by

nil: ! gnd
cons: gnd; gnd! gnd
cons: any; enum! enum
cons: any; any! any

uni�ed by
cons(X; cons(Y;B)) = cons(Y; cons(X;B))

reduce = pred (bag;bag) moding (gnd; any)
reduce(nil;nil):
reduce(cons(N; cons(N;B1);B2) reduce(cons(N;B1);B2).

length = pred (bag;nat) moding (enum; any)
length(nil; 0):
length(cons(M;B); s(N)) length(B;N)

end

Figure 4.3: Implicit implementation of bag

Taken together with the inclusion relations carried over from the interface, these equations

specify the meanings of the modes as explained in Chapter 2.

The uni�cation procedure is implemented by presenting an equational theory that

appropriately constrains the function symbols introduced by the abstraction. In the

implementation of bag, for example, only the single equation

cons(X; cons(Y;B)) = cons(Y; cons(X;B))

needs to be given. As this equation gives no constraints upon the equality of nats, it

does not present the entire equational theory for bag objects. Given an implementation

of nat uni�cation, however, the Denali implementation is able to use this equation to

synthesize a procedure for bag uni�cation.

We are not yet prepared to describe in more than cursory fashion the means by which

this is done. Our approach is a generalization of the algorithms developed by Yelick

[Yelick 85] and Tiden [Tid�en 86] to combine uni�cation algorithms. We will explain and

justify this approach in Chapter 6. It is important to point out, however, that there are
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two important restrictions upon the synthesis approach.

First, the equational presentation given in an implicit implementation must describe

a theory for which a uni�cation procedure is known to the language implementation. The

equation given in the bag cluster presents the theory of left-commutativity, for which a

uni�cation algorithm exists [Jeanrond 80]. In a real language, the name of the theory

would probably appear instead of its specifying equations.

Second, the equational presentation must contain only function symbols whose range

is the sort of interest. Such a presentation is said to be homogeneous with respect to the

sort of interest. In the bag example, for instance, only the function symbol cons appears,

so the presentation is homogeneous with respect to bag.

Because the denotation is used as the representation, it makes no di�erence whether

or not a predicate is implemented inside or outside of a implicitly implemented cluster.

Because their interfaces appear in the cluster interface, we have implemented the bag

predicates reduce and length inside of the bag cluster. We will see in the next section that

the location of a predicate's de�nition is material in the case of explicit implementations.

4.3 Explicit implementation

Each implicitly implemented cluster must be implemented independently of all others.

Since the representation is tied to the denotation, there is no way to represent the ob-

jects of one abstraction in terms of the objects provided by another. The technique of

constructing programs by building layers of abstractions is central to other languages

that support user-de�ned abstract data types.

We now introduce a mechanism that complements implicit implementation by sup-

porting the layering of abstractions. We will illustrate this mechanism by showing how

to implement the set interface that appears in Figure 4.4. The key development is a

technique for translating denotation terms into concrete representations.

Again, we give a brief speci�cation. The set abstraction provides all of the set objects

that can be formed from the functions empty and insert . Only individual variables,

fully enumerated sets, and ground sets are moded. All other set objects are considered
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set = cluster
denoted by

empty: ! set
insert: nat; set! set

modes any > enum > gnd
unify mode any
size = pred (set;nat) moding (gnd; any)
end

Figure 4.4: Set interface

unmoded. All set objects, including the unmoded ones, can be denoted.

An explicit implementation of the set abstraction appears in Figure 4.5. We will draw

upon it as we discuss explicit implementation.

As with implicit implementations, the interface is carried over unchanged. The �rst

line that follows the interface information indicates that objects of sort bag are used

to represent abstract set objects. As in other languages that support user-de�ned data

abstraction, �xing the representation is the �rst step in designing an implementation.

The next step is to choose a representation invariant and an abstraction function. In

the present case, the representation invariant speci�es which bag objects are valid rep-

resentations, and the abstraction function speci�es a correspondence between valid bag

objects and set objects.

Because of the way substitution application is treated, the abstraction function must

satisfy the following condition. Abstract variables must always be represented by concrete

variables. Hence, this aspect of the representation is established by default. In the set

example, then, the programmer need only determine how non-variable sets are to be

represented.

We have chosen a straightforward representation invariant and abstraction function

for the set implementation. A bag is a valid representation unless it is a nonvariable that

contains an embedded bag variable. A set is represented by any bag that contains exactly

the elements of the set . The presence of duplicates is not forbidden, so more than one

bag can represent a single set .

Having �xed a representation scheme, the remainder of the implementation task is to
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set = cluster
denoted by

empty: ! set
insert: nat; set! set

modes any > enum > gnd
unify mode any
represented by bag
translated by setTrans
moded by

gnd from gnd
enum from enum
any from any

uni�ed by setUnify
setTrans = pred (set dnt;bag) moding (any; any)

setTrans(empty;nil):
setTrans(insert(N;L); cons(N;L)):

setUnify = pred (bag;bag) moding (any; any)
setUnify(nil;nil):
setUnify(cons(X;B1); cons(X;B2)) setUnify(B1;B2):
setUnify(cons(X;B1); cons(X;B2)) setUnify(cons(X;B1);B2):
setUnify(cons(X;B1); cons(X;B2)) setUnify(B1; cons(X;B2)):

size = pred (set;nat) moding (gnd; any)
size(B1;N) reduce(B1;B2); length(B2;N):

end

Figure 4.5: Explicit implementation of set

realize each of the four components of the interface in terms of the representation. We

examine these four aspects of the implementation in the following four sections.

4.3.1 Denotations

The relationship between the denotation and representation schemes must be given ex-

plicitly by the programmer. This is done by de�ning, within every explicitly implemented

cluster, a translation predicate that relates each denotation to its representation. In the

set example, this translation predicate is setTrans.

At compile time, translation predicates are used to �nd a representation for every

denotation in the program. The representations obtained this way are then used to

replace the denotations in the program. After a query is evaluated, the translation process

is reversed to obtain the denotation of the solution. To ensure that we translation process
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is reversible, we require that the translation predicate be de�ned over all well-sorted pairs

of terms.

In the translation process, the denotations must be treated purely syntactically, i.e.,

as uninterpreted terms. For this reason the translation predicate is not de�ned over

abstract objects but over denotation objects. This fact is apparent in the header of

setTrans, which is reproduced below.

setTrans = pred (set dnt;bag) moding (any; any)
setTrans(empty;nil):
setTrans(insert(N;L); cons(N;L)):

A translation predicate is de�ned over pairs of objects. The �rst argument must

be of the denotation sort corresponding to the abstract sort (in this case set dnt), and

the second argument must be of the representation sort (in this case bag). The sort

name set dnt is a reserved symbol that can appear and is meaningful only within an

explicitly implemented set cluster. It should be taken to be a sort that provides the same

constructors as the set denotations, but with altered signatures as suggested below:

empty: ! set dnt
insert: nat;bag! set dnt

We obtain the signatures for set dnt by replacing each occurrence of the sort set in

the domain of a function symbol with the representation sort, and by replacing each

occurrence of set in the range of a function symbol with set dnt .

The constructors of sort set dnt are designed so that the translation process can be

performed beginning with the innermost terms of a denotation and moving out. Con-

sider, for example, the translation of the set denotation insert(1 ; insert(N; empty)). The

innermost term is empty, which is a well-sorted set dnt term. Translating empty involves

posing and solving the query

 setTrans(empty;B);

where B is a fresh variable. Under the de�nition of setTrans, the substitution hB=nil i

is obtained. We use the value of B to replace empty in the original term. The partially

translated denotation is now insert(1 ; insert(N;nil )).

The innermost untranslated term, insert (N;nil ), is now a well-sorted set dnt term.

Consequently, we can translate it by posing and solving
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 setTrans(insert(N;nil);B),

obtaining the substitution hB=cons(N;nil )i.

Continuing in this fashion for one more step, we �nally obtain the translated value of

the original denotation, which is cons(1 ; cons(N;nil )).

We have only sketched the translation process. As we illustrated above, the task of

translating an entire program must be ordered so that subterms are translated before

outer terms. Furthermore, the translation predicates must be translated before they can

be used. In general, constraints are needed upon the de�nition of denotations to ensure

that a well-de�ned translation order always exists. We will discuss these constraints in

Chapter 7 when we discuss the meaning of Denali programs.

4.3.2 Abstract modes

When explicit representations are used, the modes for the abstract objects must be

de�ned in terms of the modes of the representation objects. This is done by explicitly

associating concrete modes with the abstract modes they implement. In general, a single

abstract modeM can be implemented by some number of concrete modes N1; : : : ; Nn by

writing

M from N1 + � � �+Nn.

Thus, a non-variable abstract object is of mode M only when it is represented by a

concrete object of some mode Ni. Not every concrete object of mode Ni need represent

an abstract object.

Abstract variables are always represented with concrete variables, and they are by

default always of mode any. It is thus possible to de�ne the abstract any in terms of

an arbitrary concrete mode without excluding variables. In the set implementation, for

example, the two abstract modes enum and any are both implemented in terms of the

concrete bag modes enum. Only any, however, contains the abstract variables.

We illustrate the determination of abstract modes by using the set example. Bear in

mind that we have overloaded the mode names between sets and bags. The set denotation

insert(1 ; insert(N; empty)) is represented by the bag object cons(1 ; cons(N;nil )). The
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latter term belongs to the bag modes any and enum. The implementation of the set

modes is reproduced below.

gnd from gnd
enum from enum
any from enum

The represented set term, then, has set modes any and enum. It is also easy to see

that the set denoted by insert(1 ; S) is unmoded, since its representation, cons(1 ; S), is

neither of mode enum nor of mode gnd .

4.3.3 Exported predicates

Predicates de�ned within an explicitly implemented cluster are written to deal with

concrete arguments. Thus, for example, the size predicate is written to expect bag

objects.

In the design of the set abstraction, we have have made a programming decision to

require that the set argument to size be of mode gnd . This is because the size of a set

cannot be known with certainty if it contains variables. We could have chosen instead to

accept arguments of mode enum. Finding the size of a set containing variables, however,

would require making assumptions for the values of the variables and reporting the size of

the resulting set for each case. We have thus chosen a more restrictive but more e�cient

variant.

The size of a set is obtained by deleting duplicates from the representation and then

taking the size of the resulting bag. If we could guarantee that no duplicate elements

would ever appear in a representation, we could streamline the implementation and avoid

the elimination of duplicates. Representation invariants such as this are often enforced

when implementing data abstractions in conventional languages.

The problem with taking this approach in Denali is that objects can contain variables.

The no-duplicate requirement expressed above cannot be enforced for non-ground objects.

This does not mean that the maintenance of representation invariants in Denali is not

a viable strategy. Rather, the class of invariants that can be enforced is di�erent. For

example, one invariant in force in the current example is that bags that are not of mode
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enum are not valid representations unless they are variables.

4.3.4 Uni�cation predicates

The uni�cation procedure for an explicitly implemented cluster is written as an ordinary

predicate over pairs of objects of the representation sort. It is natural to implement a

uni�cation procedure, which maps pairs of objects to sets of substitutions, as a uni�cation

predicate, which maps pairs of objects to sequences of substitutions. The predicate that

implements uni�cation, in this case setUnify, is identi�ed in the cluster implementation.

The language implementation is responsible for combining the uni�cation predicate of

each explicitly implemented cluster, and the synthesized uni�cation procedure of each im-

plicitly implemented cluster, into an overall uni�cation procedure for the entire program.

We will describe how this is done in Chapter 6.

This combining process treats variables as a special case. If one of the pair of terms

to be uni�ed is a variable, and the other argument does not contain that variable, then

the trivial uni�cation is done automatically. Consequently, the uni�cation predicate need

not be coded for this case. Since no moded set in the present example can contain a set

variable, the uni�cation of variables need not be treated explicitly at all in setUnify.

The implementation of setUnify given in the set cluster operates by pairing o� ele-

ments of each representation. Since a single element can be paired with more than one

element, elements are deleted nondeterministically.

To illustrate, consider the uni�cation of the two sets insert(1 ; insert(N; empty)) and

insert(1 ; empty). These sets are mapped into bag terms and their uni�cation is expressed

as the query

 setUnify(cons(1; cons(N;nil)); cons(1;nil)):

Of the four clauses in the de�nition of setUnify, only the last one leads to a successful

evaluation in this case. It reduces the query above to

 setUnify(cons(N;nil); cons(1;nil)),

which can eventually be solved by the substitution hN=1 i.

We could not have implemented sets by implicit implementation, because the under-

lying equational theory of uni�cation,



4.4. Comparison of implementation methods 83

insert(X; insert(Y;S)) = insert(Y; insert(X;S))
insert(X; insert(X;S)) = insert(X;S),

is not one for which a uni�cation algorithm is known.

4.4 Comparison of implementation methods

Because of the way uni�cation is treated, implicit implementation stands as a hybrid

implementation approach. An implicitly implemented cluster shares characteristics with

built-in abstractions and user-de�ned abstractions. It permits the presentation of a single

equational theory in any number of ways by combining it with a variety of denotations,

modes, and exported predicates. It would not be possible to provide every such variation

as a built-in abstraction.

Implicit implementation is possible only when every abstract object has a denotation

and the presented equational theory is one for which an algorithm is incorporated into the

language. Its advantage is that the denotation and uni�cation portions of an interface are

realized by default. There are, nonetheless, two serious drawbacks, one methodological

and one pragmatic.

First, because the implementation method is tied to the denotation scheme, imple-

mentations cannot be changed without a�ecting the denotations. Since the denotation

scheme is part of the interface, this violates the principle of encapsulation.

Further, the programmer is limited to a single strategy for representing abstract

objects. Experience with existing languages has shown that one of the most important

aspects of implementing a data abstraction is selecting a suitable representation. This

choice directly a�ects ease of implementation and e�ciency of execution. Using the

denotation as the representation is particularly restrictive since the function symbols

used to build denotations are uninterpreted. The fact that denotation terms are uni�ed

within the empty theory limits their expressive power as concrete representations.

Even though a programmer may be willing to accept the limitations of the implicit

implementation approach, it is not possible to use it for all abstractions. The set abstrac-

tion, for example, cannot be realized as a implicit implementation since its equational
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theory is one for which no uni�cation algorithm is known. The programmer has no

choice but to explicitly code a uni�cation predicate. This is facilitated by using mode

restrictions to simplify the task.

One distinctive aspect of the explicit implementation approach is that not all abstract

objects need possess denotations. We do not require the programmer to de�ne complete

denotation schemes because it is not always necessary to denote arbitrary objects. There

is probably no need to directly denote symbol tables, for example, as they are usually best

constructed incrementally through the solution of literals. The programmer should be

careful, however, that no non-denotable object is ever part of the solution of a query. If

so, it will not be possible to translate that object back into a denotation for presentation

to the user.

The drawback of explicit implementation is that it involves considerably more work

than does implicit implementation. The problem of implementing uni�cation predicates

is particularly subtle. The ability to exploit built-in implementations of uni�cation is a

tremendous advantage, and should be exploited whenever feasible.

4.5 Summary of abstraction in Denali

We conclude our discussion of the design of Denali by summarizing the roles of predicate

and data abstraction in reasoning about Denali programs.

We will adopt the point of view of the client of some set of abstractions. The interface

of each abstraction contains the information needed by the client to construct syntacti-

cally correct applications. To construct semantically correct applications, the client must

also know the meaning of each abstraction as given by its speci�cation. To ensure that

an application is modular, the client must rely only upon the speci�ed meaning of each

abstraction, and not upon the idiosyncrasies of a particular implementation.

Given a well-moded literal, the implementation of a predicate abstraction yields a

sequence of substitutions. In a correct implementation, this sequence is a complete

subset of some larger set of substitutions �xed by the speci�cation. This speci�cation

is a relation; the set of solutions of a literal can be de�ned relative to the specifying
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relation. The identity of this relation, along with the moding of the predicate and the

fact that a correct implementation will enumerate a complete subset, is all that a client

need know. The composition and order of the particular sequence that is generated is

immaterial.

The client of a data abstraction must know the set of objects provided by the ab-

straction. All other aspects of a data abstraction are de�ned in terms of these objects.

The client must also know

� which abstract object is denoted by each term of the denotation scheme,
� what set of objects is associated with each mode name,
� the equational theory that speci�es uni�cation, and
� the meaning of each predicate provided by the abstraction.

The speci�c implementation that is chosen for uni�cation is an irrelevant detail of the

realization of a data abstraction. This choice will be visible in the sequence of uni�ers

yielded for pairs of terms. The client needs to know only that the implementation of

uni�cation is complete.

In conventional languages that support both data abstraction and the sharing of

objects, it is possible to betray an important aspect of an implementation by exposing its

representation. When the representation is exposed, the value of an abstract object can

be altered by means other than the abstract operations. Even though Denali supports a

form of sharing|through shared variables|it is not possible to expose the representation

of a cluster. This is because objects can change only by becoming further instantiated

and cannot be arbitrarily mutated.

If all of the implementations that compose a program are correct relative to their

speci�cations, then the meaning of any query interpreted relative to this program is

partially determined by the speci�cations. Assuming that it terminates, the evaluation

of a query will either yield a complete solution or report a mode failure. The incidence

of solution or mode failure is a property of the speci�cations and is independent of the

implementations. Ensuring this property was an explicit goal of our research, and is a

consequence of Theorem 5.15, which we prove in Chapter 5. Implementation decisions

can show through only in the particular complete solution obtained for a query.

Suppose that a client program uses some set of abstractions. This program is modular
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if its proof of correctness can be based upon the speci�cations of the set of abstractions.

This will be the case so long as the client makes no assumptions about the visible imple-

mentation details of the used abstractions. A modular program is correct so long as its

used abstractions satisfy their speci�cations.



5 Moded equational

resolution

In this chapter we give a rigorous development of moded equational resolution. This

supplements and extends the informal treatment of Chapter 3, and provides us with the

vocabulary needed to de�ne the meaning of Denali programs in Chapter 7. The chapter

is divided into �ve sections.

We begin in Section 5.1 by presenting a summary of the background that we expect

of the reader. This background includes equational theories, the theory of equational

de�nite clause programs, and related completeness results. This serves to introduce the

central issue of the chapter: the development of e�cient procedures for interpreting

equational de�nite clause programs.

We continue in Section 5.2 by describing esl resolution, a class of procedures for

interpreting such programs. esl procedures extend the sl procedures commonly used to

interpret logic programs [Kowalski 71] in three ways. They deal with equational theories,

they interleave resolution and overlap steps, and they a�ord a formal way of characterizing

both completeness and incompleteness.

This �nal aspect of esl procedures is important, because complete equational res-

olution procedures are di�cult to implement. This is primarily because they require

complete equational uni�cation procedures. In Section 5.3 we introduce a subclass of the

87
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esl procedures called the moded esl procedures. While incomplete, these procedures

have the virtue of reducing the demands upon the underlying uni�cation procedures,

thus making them more easily realized.

In Section 5.4 we de�ne and analyze a series of three moded esl procedures. The goal

is to develop a procedure whose degree of incompleteness can be precisely described and

thus documented. The procedure that we ultimately develop, w-esl resolution, forms

the basis for the semantics of Denali.

We conclude in Section 5.5 by reviewing the chain of improvements that lead from

esl to w-esl resolution.

5.1 Background

In this section we give a concise grounding in de�nite clause programs with equality. The

discussion in the remainder of this chapter is predicated upon this background.

In Section 5.1.1, we describe equational theories and then de�ne the theory of de�nite

clause programs with equality. We continue in Section 5.1.2 by discussing the problem of

�nding equationally complete solutions to equations and queries. The terminology sur-

rounding equational theories follows that of [Huet 80], while the terminology concerning

the theory of de�nite clause programs follows that of [Emden 76] and [Ja�ar 84].

5.1.1 De�nite clause programs with equality

Let V be a countably in�nite set of variables, F a �nite set of function symbols, P a

�nite set of predicate symbols, and S a �nite set of sorts.

Associated with every variable v 2 V is a sort from S. Let VS be the set of all

variables of sort S. The assignment of sorts to variables is such that for each sort S, VS

is in�nite.

Associated with each function symbol f 2 F is an arity n and a signature of n + 1

sorts. A term of sort S is either a variable of sort S or is of the form f(t1; : : : ; tn), where

f has signature
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f : S1; : : : ; Sn ! S

and each of the ti is a term of sort Si. A term is ground if it contains no variables. The

set of all terms is denoted T, and the sort of a term t 2 T is denoted by sort(t). The set

of all terms of sort S is denoted TS; to avoid problems with empty sorts we assume that

each such set contains at least one ground element.

Associated with each predicate symbol P 2 P is an arity n and a signature of n sorts.

A literal is of the form P (t1; : : : ; tn), where the signature of P is

P : S1; : : : ; Sn

and each of the ti is a term of sort Si. The set of all literals is denoted by L. Literals,

which are headed by predicate symbols, are distinct from terms.

A substitution is a mapping from variables to terms denoted by a �nite set of iden-

tically sorted variable/term pairs, e.g. hX=2 ; L=nil i. All variables outside the set are

implicitly mapped to themselves. Substitutions can be extended in the natural way to a

homomorphism from terms to terms and from literals to literals. For a substitution, �,

the set fv j�v 6=vg, denoted D(�), is called its domain.

Two substitutions can be composed to form a new substitution, i.e., (�1 � �2)(t) =

�1(�2(t)). The domain of a substitution can be restricted to a set V to obtain a new

substitution, i.e., ��j
V
(v) is �(v) if v 2 V and is v otherwise.

An equation is any pair of equally sorted terms, r = t. The equational theory presented

by a set of equations E is the smallest equivalence relation E� over T that contains E

and is closed under the following two rules of inference. (We write r =E t whenever

r = t 2 E�.)

� (substitution) r =E t ) �r =E �t
� (equality) r1 =E t1 � � � rn =E tn ) f(r1; : : : ; rn) =E f(t1; : : : ; tn)

Term equality can be extended to substitutions. We write �1 =E �2 whenever for

every variable v, �1v =E �2v. Term equality can also be used to induce an ordering

relation over substitutions. We say that �1 is more general than �2 modulo E, and write

�1 �E �2, whenever �2 is an instance of �1. This is the case whenever there exists a

substitution � such that (� � �1)�jV =E �2�jV , where V is the domain of �1.

A clause is a sequence of literals of the form
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L L1; : : : ; Ln,
 L1; : : : ; Ln, or
L.

The literal L is the head and the sequence L1; : : : ; Ln is the body. Both are optional. If

the head of a clause is not present, it is a query; otherwise, it is a de�nite clause. A

de�nite clause with an empty body is a fact.

Let H be a set of de�nite clauses and let E be a set of equations. Then the de�nite

clause theory with equality of H over E, denoted H�E , is the smallest set of literals that

contains the facts of H and is closed under the following three rules of inference:

� (substitution) L 2 H�E ) �L 2 H�E
� (equality) r1 =E t1 � � � rn =E tn ^ P (r1; : : : ; rn) 2 H�E ) P (t1; : : : ; tn) 2 H�E
� (inference) L L1; : : : ; Ln 2 H ^ �L1 2 H�E � � � �Ln 2 H

�
E ) �L 2 H�E

The sort system we have adopted is particularly simple, and is an instance of the more

general sort system described in [Schmidt-Schauss 86]. The unsorted case is, in turn, the

special case of our system that occurs when the sort universe S contains exactly one

element. Although most of the existing results concerning equational and �rst-order

theories are based upon the unsorted case, they extend without di�culty to the many-

sorted case described above.

5.1.2 Equational completeness

Let �1 and �2 be sets of substitutions and letE be a set of equations. �1 is an equationally

complete subset of �2 with respect to E whenever

� �1 � �2

� 8�2 2 �2 9�1 2 �1 such that �1 �E �2

A substitution � is called an equational uni�er of terms r and t with respect to E,

or E-uni�er, whenever �r =E �t. Let UE(r; t) denote the set of all E-uni�ers of r and

t. A set of substitutions is a complete set of E-uni�ers of r and t if it is an equationally

complete subset of UE(r; t).

A complete equational uni�cation procedure is one that enumerates, for any two

terms, a complete set of uni�ers. Robinson's classical uni�cation algorithm is a complete

procedure for the special case in which the set E is empty [Robinson 65]. We will survey
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existing uni�cation procedures for other theories in Chapter 6.

Let L be a literal. A substitution � is called an equational satis�er of L with respect

to a set of equations E and a set of de�nite clauses H whenever �L 2 H�E . Let S
H
E (L)

denote the set of all HE-satis�ers of L. A set of substitutions is a complete set of satis�ers

of L if it is an equationally complete subset of SHE (L).

We can extend equational satisfaction to queries. Let Q be  L1; : : : ; Ln. SHE (Q)

denotes the set of all substitutions � such that � 2 SHE (L1); : : : ; � 2 SHE (Ln). A set of

substitutions is a complete set of satis�ers of Q if it is an equationally complete subset

of SHE (Q).

An equational de�nite clause program is a pair (E;H), where E is a set of equations

and H is a set of de�nite clauses. A complete equational satisfaction procedure is one

that enumerates, given any such program and any query Q, an equationally complete

subset of SHE (Q). We will be examining one class of complete satisfaction procedures,

the equational resolution procedures, in the remainder of this chapter.

5.2 ESL resolution

In this section we de�ne a class of equational resolution procedures called the esl reso-

lution procedures. This de�nition forms the basis for our development of a spectrum of

equational resolution procedures in subsequent sections.

esl resolution procedures operate by constructing and searching esl trees. Our

esl trees are based upon the kinds of trees constructed by the sl resolution procedure

[Kowalski 71]. sl resolution is a complete satisfaction procedure de�ned with respect to

the empty theory. It is a linear resolution strategy that imposes, at each step, charac-

teristic constraints upon the selection of the next literal for reduction. Although esl

trees are structurally distinct from sl trees, many of the di�erences are pedagogically

motivated. There are, however, three substantive di�erences.

First, esl trees are de�ned with respect to arbitrary equational theories. We dis-

cussed the rami�cations of incorporating non-empty equational theories into resolution

in Chapter 3. This extension is straightforward, made so by the pioneering work of
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Plotkin on the completeness of equational resolution [Plotkin 72].

Second, esl trees are more 
exible concerning the order in which uni�cation must

be performed. We illustrated the bene�ts of interleaving uni�cation and overlap steps in

Chapter 3. This additional 
exibility does not compromise completeness, and we will be

able to exploit it to considerable advantage.

Finally, we deal explicitly with incomplete esl trees. This allows us to de�ne incom-

plete esl resolution procedures, while at the same time understanding and characterizing

the limits of their completeness. Permitting controlled incompleteness is the centerpiece

of our approach to equational resolution.

Our development of esl resolution is organized as follows. We begin by giving the

two reduction rules that together form the basis for the construction of esl trees. In

Section 5.2.1 we de�ne the overlap reduction rule. This rule is a means of reducing the

problem of solving a literal to that of solving a set of queries. Next, in Section 5.2.2, we

de�ne the selection reduction rule. This rule provides a way of reducing the problem of

solving a query to that of solving a set of simpler queries. It assumes the existence of a

means of solving literals.

These two reduction rules can be combined to obtain a comprehensive strategy for

solving queries with respect to equational de�nite clause programs. This strategy involves

the construction and search of esl trees, in which each edge represents an application of

one of the two reduction rules. In Section 5.2.3 we de�ne esl trees.

The esl resolution procedures that we will eventually discuss operate by constructing

esl trees. They di�er according to the kinds of trees that they construct. We conclude

in Section 5.2.4 by describing how individual esl procedures are de�ned. We specify one

prototypical procedure, the n-esl procedure, and prove its correctness.

Much of the discussion in this section is conducted relative to an arbitrary equational

de�nite clause program (E;H). However, a number of concrete examples are also given.

In these cases, E should be taken to be the empty equational theory and H to be the set

of clauses given below.
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ord(W�nil).
ord(X�Y�L) X>Y; ord(Y�L).
3>2.
3>1.
2>1.

These clauses de�ne the two predicate symbols > and ord . The symbol > de�nes a

total ordering over the elements 3, 2, and 1. The predicate ord , which is de�ned over lists

of these elements, tests whether its argument is ordered with respect to >. Consequently,

its meaning is the set of all substitutions that render its argument ordered.

5.2.1 Overlap reduction

The overlap reduction rule is a way of reducing the problem of solving a literal to the

problem of solving a set of queries. There are two cases, which we will consider separately.

The �rst deals with the reduction of conventional literals, and the second deals with the

reduction of the distinguished uni�cation literals that are produced by the �rst case.

Conventional literals

The �rst case handles literals of the form P (t1; : : : ; tn). Let C be a clause that is headed

by the predicate symbol P :

P (r1; : : : ; rn) L1; : : : ; Lm.

(We assume that the literal and the clause contain disjoint sets of variables. The variables

of the clause can be systematically renamed if necessary.) The query Q,

 unify(t1; r1); : : : ; unify(tn; rn); L1; : : : ; Lm,

is the overlap reduction of P (t1; : : : ; tn) using C. Any satis�er of Q is also a solution of

the original literal.

To illustrate, consider the literal ord(3 �Z �nil). One of the clauses that de�nes ord is

ord(X�Y�L) X>Y; ord(Y�L).

The overlap reduction of the literal above using this clause is the query

 unify(3�Z�nil;X�Y�L);X>Y; ord(Y�L).

Overlap reduction has the following completeness property. Suppose that H contains

exactly n clauses, C1; : : : ; Cn, that de�ne the head symbol of some literal L. This means
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ord(3�N�nil)

 unify(3�N�nil;W�nil)  unify(3�N�nil;X�Y�L);X>Y;ord(Y�L)

������������

b
b
b
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b
b
b
b
b
b

A

B C

Figure 5.1: Overlap reduction

that it is possible to form n distinct overlap reductions of L, Q1; : : : ; Qn. Suppose that

we obtain a complete set of satis�ers �i for each query Qi. Then the set
[
i

n
��j

V(L) j� 2 �i

o

is a complete set of satis�ers for L.

Uni�cation literals

The predicate symbol unify introduced in the de�nition above is a reserved symbol. It

is introduced so that we can construct literals that encode, and thus defer, uni�cation.

The meaning of a unify literal is de�ned by

SHE (unify(t1; t2)) � UE(t1; t2).

Solving a unify literal is thus equivalent to unifying its arguments.

The reduction of unify literals is handled by the second case of overlap reduction.

Here, no reduction to queries is possible or necessary. Any complete set of E-uni�ers

of t1 and t2 constitutes a complete set of satis�ers of unify(t1; t2). Such a set can be

determined by an appropriate E-uni�cation procedure.

Solving literals

Assuming that we can obtain complete solutions for queries, the completeness properties

described above suggest a procedure for obtaining complete solutions to literals. The

operation of such a procedure is suggested in Figure 5.1, which expresses the complete

solution to the literal ord(3 �N �nil).
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There are two kinds of nodes in Figure 5.1. Node A contains a literal, while nodes B

and C contain queries. The literal in node A is the literal to be solved, and each of the

children contains an overlap reduction of this root literal. Node B contains the overlap

reduction of the root with the �rst clause of the example program, and node C contains

the overlap reduction of the root with the second clause.

Let sols(Q) denote a complete set of satis�ers of a query Q. Then a complete set of

satis�ers of the root literal L of a tree T , denoted subs(T ), can be obtained as follows.

Let Q1; : : : ; Qn be the children of the root literal. Then

subs(T ) =
[
i

n
��j

V(L) j� 2 sols(Qk)
o

A complete set of satis�ers of the root literal can be obtained by �rst taking the union

of the complete sets of satis�er of the child queries, and then restricting the domains of

the substitutions in this set to the variables of the root literal. In Figure 5.1, sols(B) is

empty, and sols(C) is

[hX=3 ; N=2 ; Y=2 ; L=1 �nili; hX=3 ; N=1 ; Y=1 ; L=nil i].

Consequently, a complete solution to the root literal is

[hN=2 i; hN=1 i].

5.2.2 Selection reduction

The selection reduction rule is a way of reducing the problem of solving a query to the

problem of solving a simpler set of queries. It assumes that a method exists for solving

literals. Selection reduction has both a base case and a recursive case, which we will

consider separately.

Base case

The base case applies when the input query consists of exactly one literal. Let Q be the

query  L, and let � be any satis�er of the literal L. Then � is also a satis�er of Q.

Furthermore, if � is a complete set of satis�ers of L, then � is also a complete set of

satis�ers of Q.
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Recursive case

The recursive case applies when the input query contains more than one literal. Let Q

be the query  L1; : : : ; Ln, and let � be a satis�er of one of its literals Lk. The query

 �L1; : : : ; �Lk�1; �Lk+1; : : : ; �Ln,

obtained by removing Lk and applying �, is the selection reduction of Q at k using �.

Call this query Q0. If � is a satis�er of Q0, then � � � is a satis�er of Q.

To illustrate, let P be the query

 ord(3�Z�nil); ord(Z�1�nil).

One satis�er of the �rst literal of P is hZ=2 i. The selection reduction of P at 1 using

hZ=2 i is the query

 ord(2�1�nil).

Since the empty substitution is a satis�er of this reduced query, we can conclude by

selection reduction that hi � hZ=2 i, or simply hZ=2 i, is a satis�er of the original query

P .

The recursive case has the following completeness property. Returning to the abstract

de�nition above, suppose that we obtain a complete set of satis�ers � of the literal Lk.

Suppose also that, for each substitution �i 2 �, we obtain a complete set of satis�ers Ri

of the selection reduction of Q at k using �i. In this case, the set
[
i

n
(� � �i)�jV(Q) j � 2 Ri

o
,

is a complete set of satis�ers of the original query Q.

Solving queries

Assuming that we can solve literals, this property suggests a complete procedure for

solving queries. The procedure involves constructing and searching trees of the form

illustrated in Figure 5.2, which illustrates the solution of the query

 ord(3�N�nil); ord(3�M�nil);N>M.

Each node (Q; k;�) in Figure 5.2 contains three components. The upper half contains

a query Q, the lower left contains an integer k, and the lower right contains a sequence

of substitutions �. The three components are related as follows. � is a complete set of
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 ord(3�N�nil); ord(3�M�nil);N>M
1 [hN=2i; hN=1i]

 ord(3�M�nil); 2>M
1 [hM=2i; hM=1i]

 ord(3�M�nil); 1>M
2 []

 2>2
1 []

 2>1
1 [hi]
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Figure 5.2: Selection reduction

satis�ers of the kth literal of Q.

For example, in node A the sequence [hN=2 i; hN=1 i] is a complete set of satis�ers

of the literal ord(3 �N �nil ). In node E the empty sequence is a complete solution to

1 >M , since the literal has no satis�ers. In node G the sequence containing the empty

substitution is a complete solution to 2 >1 .

Each child is a selection reduction of its parent. Each parent node (Q; k;�) has one

child corresponding to each member of �. That is, the ith child is the selection reduction

of Q at k using the ith element of �.

In both nodes A and D, the indexed literal has two satis�ers. Consequently, each

node has two children. Literal 2 of node E has no satis�ers and thus no children. Nodes

F and G have no children because their queries contain only one literal. They represent

applications of the base case of selection reduction.

Let T be a tree with root node (Q; k;�). A complete set of satis�ers for Q, denoted

sols(T ), can be obtained recursively as follows. If the root node has no children, then

sols(T ) = �.

Otherwise the root child has n children, T1; : : : ; Tn, and its sequence of substitutions

contains n values, �1; : : : ; �n. In this case,
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sols(T ) =
[
i

n
(� � �i)�jV(Q) j � 2 sols(Ti)

o
,

There is one solution in this set for every path from root node to nonempty leaf node.

In Figure 5.2, there is only one such path. The value of sols(G) is fhig, so the value

of sols(D) is fhi�hM=1 ig, or fhM=1 ig. Similarly, the value of sols(A) is fhM=1 ; N=2 ig.

5.2.3 ESL trees

The two rules just discussed can be combined to form a single resolution strategy for

�nding complete solutions to queries. The selection reduction rule is predicated upon

the ability to solve literals, while the overlap reduction rule is based upon the ability

to solve queries. Furthermore, both have nonrecursive base cases. We can consequently

combine the two in a mutually recursive fashion.

The combined approach to solving a query Q is as follows. First, select an arbitrary

literal of Q and solve it using overlap reduction. Next, use the satis�ers obtained this

way to form and solve the selection reductions of Q. Finally, combine the satis�ers of the

selected literal with the satis�ers of the reduced queries to obtain a complete solution to

Q.

It is convenient to organize the series of reductions required to solve a query into a

tree. Such trees, which we call esl trees, are a combination of the two kinds of trees we

constructed to illustrate overlap and selection reduction.

As a �rst example, we return to the following query, whose solution under selection

reduction we illustrated earlier:

 ord(3�N�nil); ord(3�M�nil);N>M.

An entire esl tree for this query is large. We give in Figure 5.3 the nodes in the �rst

two layers.

The tree in Figure 5.3 can be decomposed into two subtrees that we have seen previ-

ously. The subtree consisting of nodes A, B, and C is the overlap tree of Figure 5.1 that

expresses the solution of the literal ord(3 �N �nil ). The subtree consisting of nodes A, D,

and E is identical to the �rst two levels of the selection tree of Figure 5.2.

As with the selection tree examined earlier, each node in this tree is divided into three
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 ord(3�N�nil); ord(3�M�nil);N>M
1 [hN=2i; hN=1i]

 unify(3�N�nil;W�nil)
1 []

 unify(3�N�nil;X�Y�L);X>Y;ord(Y�L)
1 [hX=3; Y=N; L=nili]

 ord(3�M�nil); 1>M
1 []

 ord(3�M�nil); 2>M
1 [hM=2; M=1i]
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Figure 5.3: Upper two levels of an esl tree

sections. The upper half contains a query Q. The lower left is an index k that identi�es

a literal Lk of Q. The lower right contains a set of substitutions �, which, as before, is

a complete solution to the literal Lk. In this case, however, its value is derived from the

remainder of the tree as described below.

The children that branch from the left side of a node T express the solution of the

indexed literal. Accordingly, they are the overlap reductions of Lk and compute �. The

value of � that they compute is exactly subs(T ) if we consider T to be just the node and

its left children.

The children that branch from the right side are the selection reductions of Q at k

using the members of �. The substitutions that they compute can be combined with

� to obtain a complete solution to Q. For a tree T , this complete solution is exactly

sols(T ) if we consider T to be just the node and its right children.

It is important to note the asymmetry between the left and right children of the root

node. The left children are overlap reductions; the right children are selection reductions.

A procedure for generating such a tree would have to compute at least some of the left

children �rst, since the elements of � are needed to form the right children.

Despite their asymmetry, however, both left and right children are queries, and they
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 unify(3�N�nil;X�Y�L);X>Y;ord(Y�L)
1 [hX=3; Y=N; L=nili]

 3>N; ord(N�nil)

@
@
@
@
@
@

Figure 5.4: esl tree with no left (overlap) children

can be recursively solved using the same techniques applied to the root. We will further

illustrate the technique of esl tree construction by giving three other nodes possessing

di�ering combinations of left and right children. The branching structure of a node

depends upon which case applies for each of the two reduction rules. The example we

have just seen employs the recursive case for both rules.

The example in Figure 5.4 represents the solution of the query

 unify(3�N�nil;X�Y�L);X>Y; ord(Y�nil).

This is the query that appears in node C of Figure 5.3.

Because the indexed literal is a unify literal, the base case of overlap reduction applies.

This means that the root node need have no left children. The set � can be obtained

directly by unifying the arguments of the literal. Since there is one uni�er in the complete

set, there is one right child.

The next example, in Figure 5.5, is part of the tree that expresses the solution of the

singleton query  ord(2 �nil).

The selected literal in this instance is not a unify literal, so its solution must be

computed recursively. There are two left children corresponding to the two possible

overlap reductions. A single solution, the empty substitution, is obtained this way. Since

the query contains a single literal, the base case of selection reduction applies and there

are no right children.

In the �nal example, shown in Figure 5.6, the base case for both reduction rules

applies. Here, the indexed literal is a unify literal, and the query contains but one literal.
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 ord(2�nil)
1 [hi]

 unify(2�nil;W�nil)  unify(2�nil;X�Y�L);X>Y;ord(Y�L)

������������������������

�
�
�
�
�
��

Figure 5.5: esl tree with no right (selection) children

The result is a terminal node.

5.2.4 N-ESL resolution

An esl resolution procedure is one that solves an input query Q by constructing an esl

tree T for Q and searching it to obtain the members of sols(T ). Because esl trees have

potentially in�nite depth and breadth, the implementation of an esl resolution procedure

must interleave the construction and searching phases to ensure that all branches are

eventually considered. We will abstract from this aspect of the problem, however, and

regard esl resolution as nothing more than the problem of constructing esl trees for

programs.

A given program can have an arbitrary number of esl trees. This is because an esl

resolution procedure enjoys two degrees of freedom when constructing trees. First, it

must select the indexed literal at each node. We will see that this is the most important

determinant of the character of the procedure. Second, when the indexed literal is a

unify literal, the procedure must choose a complete set of uni�ers. This aspect of the

resolution procedure's behavior is determined by the underlying uni�cation procedure.

We will specify esl resolution procedures by placing constraints upon these two de-

 unify(2�nil;W�nil)
1 [hW=2i]

Figure 5.6: esl tree with no children
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grees of freedom.

Restrictions upon uni�cation specify any properties, beyond completeness, required

of the underlying uni�cation procedure. We might, for example, require that a minimal

number of uni�ers always be produced. In practice, we will impose only the most general

kinds of restrictions. Unless stated otherwise, we will assume only that the underlying

uni�cation procedure is complete.

Restrictions upon index selection are expressed with selection rules. A selection rule

maps a query to a possibly empty set of literals. If R is a selection rule and Q a query,

then R(Q) must be a subset of the literals of Q. An esl tree respects a selection rule R

if the following two conditions hold at every node containing a query Q.

� If R(Q) is nonempty, then the indexed literal must lie in R(Q).
� If R(Q) is empty, then the indexed literal must be 0.

We have not previously permitted the appearance of 0 as an index in a node. In this

case we say that the node and the tree that contains it are blocked. If a node is blocked

it must have no children and its set of substitutions must be empty.

An esl tree expresses the solution of the query Q at which it is rooted. No guarantee

can be made about the completeness of a blocked tree. However, because unblocked esl

trees are equivalent to sl trees whenever E is empty, the following lemma follows from

the completeness result of [Kowalski 71].

Lemma 5.1 (Kowalski) Let T be an unblocked esl tree for the query Q with respect

to a program (E;H), where E is empty. Then sols(T ) is a complete subset of SHE (Q).

Plotkin [Plotkin 72] treats the general problem of converting complete resolution

strategies into complete strategies for equational theories. His results justify removing

the condition upon E in Lemma 5.1.

Lemma 5.2 (Plotkin) Let T be an unblocked esl tree for Q with respect to the program

(E;H). Then sols(T ) is a complete subset of SHE (Q).

Suppose that an esl resolution procedure is based upon a selection rule R. The goal

of that procedure, when given a query Q, is to produce an unblocked esl tree for Q that

respects R. If it always does this for any query, then the procedure is complete.
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We will design a number of selection rules in the sections that follow. All of our

selection rules will have both descriptive names and a single-letter abbreviation. Let R

be a selection rule. We will refer to the subset of the esl trees that respect R as r-esl

trees, and to the procedures based upon R as r-esl procedures.

The most general possible selection rule is the nondeterministic selection rule (N),

which permits the selection of any literal. Since all literals are selectable under this rule,

there can be no blocked n-esl trees. Thus, the n-esl trees are exactly the unblocked

esl trees, and the following theorem follows directly from Lemma 5.2.

Theorem 5.3 n-esl resolution is complete for all queries and all equational de�nite

clause programs.

In the next section we will motivate the need for a more restrictive selection rule. In

designing this selection rule, the dominant theme will be the tension between the twin

goals of improving the performance of resolution and avoiding the possibility of blocked

trees.

5.3 Moded resolution

Despite Theorem 5.3, n-esl resolution is not a panacea. Its completeness depends upon

the completeness of the underlying uni�cation procedure. We will see in Chapter 6

that e�cient and complete equational uni�cation procedures are di�cult, and sometimes

impossible, to obtain. We show in this section that by restricting the domain of an

equational resolution procedure, the demands upon the underlying uni�cation procedure

can be reduced.

For a given equational theory, the cost of performing a uni�cation step depends upon

the pair of terms being uni�ed. Consequently, the complexity of a uni�cation procedure,

as well as the di�culty of implementing it, can be reduced by restricting its domain. We

gave examples supporting this observation in Chapter 3.

Restricting uni�cation procedures in this way sacri�ces one dimension of their com-

pleteness. As a result, a resolution procedure based upon restricted uni�cation will itself
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be incomplete. This incompleteness can be expressed as a restriction upon the domain

over which an esl resolution procedure is complete. Because the form of queries and pro-

grams can be circumscribed, however, such domain restrictions are tolerable. We can thus

contemplate basing esl resolution procedures upon restricted uni�cation procedures.

We proceed in three steps. In Section 5.3.1 we extend the de�nitions of moded base

and mode to account for equational theories. These de�nitions were originally given in

Chapter 2 with respect to the empty theory. In Section 5.3.2 we describe how moded

bases can be used to express domain restrictions upon both equational uni�cation and

resolution procedures. Finally, in Section 5.3.3, we show how uni�cation procedures

that are restricted by moded bases can be incorporated into esl resolution procedures.

These esl procedures are based upon moded selection rules. The result is a more easily

implemented class of resolution procedures with restricted, but documented, domains.

5.3.1 Equational modes and moded bases

The de�nitions of moded base and mode, originally presented in Chapter 2, must be

altered slightly to account for equational theories. We discuss these changes below.

A moded base is any set of terms that is contains all of the variable terms and is closed

under moded instantiation, equality, and uni�cation.

� (instantiation) moded(�) ^moded(t) ) moded(�t).
� (equality) moded(r) ^ r =E t ) moded(t)
� (uni�cation) moded(r) ^moded(t) ) 9� s.t.

� is a complete set of E-uni�ers of r and t, and
� 2 � ) moded(�).

Closure under moded instantiation is as before. Closure under equality is a new

condition; it was not needed previously because distinct terms are always unequal in the

empty theory. Closure under uni�cation has been modi�ed to deal with complete sets of

E-uni�ers rather than most general uni�ers.

A mode M of sort S is any set of moded terms of sort S that is closed under moded

instantiation and equality.
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� (instantiation) moded(�) ^ t 2M ) �t 2M .
� (equality) r 2M ^ r =E t ) t 2M .

Closure under instantiation is as before; closure under equality has been added.

We commented in Chapter 2 that, if the underlying equational theory is empty, any

syntactic mode presentation is guaranteed to de�ne a moded base and a set of modes.

This guarantee cannot be made a priori in the equational case. It is possible for a mode

to be not closed under equality, and it is possible for the moded base to be not closed

under uni�cation. A simple syntactic check that guarantees the absence of the �rst

abnormality is outlined below. A check for the second problem, unfortunately, remains

an open problem.

The check for closure under equality operates as follows. We must guarantee that the

left- and right-hand sides of each equation in the presentation of the underlying equational

theory belong to identical sets of modes. We must also guarantee that this property is

invariant under the application of substitutions. This can be veri�ed by evaluating the

modes of both sides of each equation under all possible assumptions for the modes of

terms that can be substituted for the variables.

5.3.2 Using moded bases

We must be precise about how the domain restrictions upon uni�cation procedures are

expressed. Recall that an unrestricted uni�cation procedure is speci�ed by giving an

equational theory. We will specify restricted uni�cation procedures by giving, in addition,

a moded base of terms. The moded base forms the domain of the uni�cation procedure.

We adopt the convention that resolution is carried out with respect to both an equa-

tional theory and a moded base. Recall that a term is moded if it belongs to the moded

base. Similarly, a literal is moded if each of its terms is moded; a clause is moded if

each of its literals is moded; and a program is moded if each of its clauses is moded. A

substitution is moded if it maps each variable in its domain to a moded term.

A modally complete uni�cation procedure has two characteristics. It is complete

for all pairs of terms from the moded base, and it produces only moded substitutions.

(If the moded base is the set of all terms, modal completeness reduces to equational
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completeness.) Modally complete uni�cation procedures exist for all pairs of moded

bases and equational theories possessing complete uni�cation procedures. We can make

this guarantee because moded bases are closed under uni�cation.

An esl tree T is modally complete if T is complete and sols(T ) contains only moded

substitutions. A resolution procedure is modally complete for a given query if it produces

only modally complete trees for that query.

We will assume from this point that all uni�cation procedures are modally complete.

Lemma 5.4 establishes a su�cient condition for the modal completeness of esl trees in

this context.

Lemma 5.4 Let T be an n-esl tree for a query Q. If every selected unify literal in T

is moded, then T is modally complete for P .

Proof. It follows from the modal completeness of the underlying uni�cation procedure

that T is complete and only moded uni�ers are produced. The instantiation property of

moded bases guarantees that composing moded substitutions yields moded substitutions.

It follows that sols(T ) contains only moded substitutions, implying that T is modally

complete.

One way to guarantee the hypothesis of Lemma 5.4, thus obtaining a modal com-

pleteness theorem for n-esl resolution, is to de�ne a static test upon programs. This

test should report whether or not a program has any unmoded n-esl trees. Given such

a test, we can proscribe programs with unmoded n-esl trees as ill-formed. This strategy

is analogous to compile-time type checking.

Theorem 5.5 establishes one such check by showing that it is su�cient to restrict our

attention to programs containing only moded terms..

Theorem 5.5 n-esl resolution is modally complete for programs and queries that con-

tain only moded terms.

Proof. An n-esl tree for such a program can contain only moded literals, meaning that

every selected uni�cation literal must be moded. By Lemma 5.4, then, each n-esl tree

for a moded program is modally complete.
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5.3.3 Moded selection rules

Theorem 5.5 applies only to programs and queries that contain no unmoded terms. While

this restriction is su�cient to guarantee that the conditions of Lemma 5.4 are satis�ed, it

is not necessary. For some other programs it is possible to construct an esl tree in which

every selected literal is moded. This is because the selection and solution of a literal yields

moded substitutions that serve to instantiate the remaining literals in a query. (We saw

examples of this in Chapter 2.) In this section we begin to show how, by modifying the

selection rules, the completeness guarantee of Theorem 5.5 can be extended to a broader

class of programs.

We will investigate the e�ects of imposing a class of selection rules called moded

selection rules. A moded selection rule is any selection rule R that satis�es the following

three properties:

� (modedness) L 2 R(Q) ) moded(L)
� (instantiation) L 2 R(Q) ^moded(�) ) �L 2 R(�L)
� (equality) L 2 R( : : : ; L; : : :) ^ L =E L

0 ) L0 2 R( : : : ; L0; : : :)

Under a moded selection rule, a literal cannot be selected unless it is moded.

We will refer to resolution procedures based upon moded selection rules as moded

resolution procedures. Moded resolution makes it possible to �nd a modally complete

solution to some unmoded programs. Unfortunately, moded resolution can produce a

blocked tree. This can happen if, for example, all of the literals at some node are

unmoded.

In Section 5.4 we will investigate three di�erent moded resolution procedures. Al-

though the selection rules they are based upon are progressively more restrictive, they

share with all moded rules the properties established by the following three lemmas.

Lemma 5.6 is the basis for proving the completeness of moded resolution procedures.

It follows immediately from Lemma 5.4 and the fact that only moded literals can satisfy

R.

Lemma 5.6 Let R be a moded selection rule. Any unblocked r-esl tree is modally

complete.
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Lemma 5.7 states that the existence of an unblocked tree for a program implies the

existence of an unblocked tree for each of its moded instances.

Lemma 5.7 Let R be a moded selection rule, and let �1 and �2 be moded substitutions

such that �1 �E �2. If �1Q has an unblocked r-esl tree, then �2Q has one as well.

Proof. Proof is by induction. The induction hypothesis is that for any natural number

d, if we are given an unblocked r-esl tree for �1Q we can construct an r-esl tree for �2Q

that contains no blocked node within d nodes of the root. This is su�cient to establish

the lemma because blocked nodes always terminate �nite branches.

An unblocked r-esl tree for �1Q will be of the form shown below.

�1Q
k [�1 : : : �n]

�1Q1 �1Ql �1�1Q0 �n�1Q0

!!!!!!!!!!!!!!!

�
�

�
�

�
�

aaaaaaaaaaaaaaa

@
@
@
@
@
@

� � � � � �

Basis: The kth literal of �1Q satis�es R. By the instantiation and equality properties

of moded selection rules, the kth literal of �2Q must also satisfy R. Hence, no r-esl tree

for �2Q can be blocked in the root node. This establishes the basis, and also means there

is an r-esl tree for �2Q of the form shown below.

�2Q
k [�1 : : : �m]

�2Q1 �2Ql �1�2Q0 �m�2Q0

!!!!!!!!!!!!!!!

�
�

�
�

�
�

aaaaaaaaaaaaaaa

@
@
@
@
@
@

� � � � � �

Induction: We assume that the induction hypothesis holds to depth d, and show that

it holds to depth d + 1. The set f�1; : : : ; �ng is a complete solution for the kth literal of

�1Q, and each �i is a solution for the kth literal of �2Q. This means that for every �i
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there is a �j such that �j � �1 �E �i � �2. By the induction hypothesis, then, none of the

children of the root node of the tree above contains a blocked node within d nodes of the

root. Therefore, the entire tree contains no blocked node within d+1 nodes of the root.

Lemma 5.8 states that if an unblocked moded tree exists for a literal, then there is

no harm in selecting that literal for reduction at a node. This property will permit us to

rearrange trees in subsequent proofs.

Lemma 5.8 Let R be a moded selection rule, and let Q be a query that has an unblocked

r-esl tree. Let L be a literal of Q. Then  L has an unblocked r-esl tree () Q has

an unblocked r-esl tree in which L is selected in the root.

Proof. Assume without loss of generality that Q is of the form L1; L2.

(() Immediate.

()) Suppose that  L1 has an unblocked r-esl tree, and that Q has an unblocked

r-esl tree in which L2 is selected in the root. This implies that  L2 has an unblocked

r-esl tree. Consider the following r-esl tree for Q in which L1 is selected in the root.

 L1;L2
1 [�1; : : : ; �n]

Q1 Qm  �1L2  �nL2

!!!!!!!!!!!!!!!

�
�

�
�

�
�

aaaaaaaaaaaaaaa

@
@
@
@
@
@

� � � � � �

Because L1 has an unblocked r-esl tree, each of the left children has an unblocked

r-esl tree. Because  L2 has an unblocked r-esl tree, each of the right children has

an unblocked tree by Lemma 5.7.

5.4 Moded resolution procedures

In this section we propose and evaluate a series of three moded selection rules. These

rules give rise to three di�erent esl resolution procedures. The �rst two procedures
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contain instructive 
aws, which we correct in the third procedure. This third procedure

is the basis for the operational semantics of Denali.

We begin in Section 5.4.1 with the nondeterministic moded selection rule (M). This is

the most permissive possible moded rule, as it always allows the selection of any moded

literal. Because of its permissive nondeterminism, however, its behavior is unpredictable

in one crucial respect. For a given program and query, it is possible for an m-esl

procedure to generate a blocked tree in one execution and an unblocked tree in another.

This makes it impossible to characterize the cases for which m-esl resolution is complete.

We correct this problem in Section 5.4.2 by introducing the solvable selection rule

(S). If even a single unblocked m-esl tree exists for a program and query, then every

s-esl tree for that combination is unblocked. s-esl resolution is thus as robust as is

possible for a moded procedure, and is in principle completely predictable with respect

to completeness. Unfortunately, it is based upon the unrealistic assumption that perfect

knowledge is available concerning which single-literal queries have unblockedm-esl trees.

Because of this assumption, s-esl resolution is not always implementable.

In Section 5.4.3 we address this realizability problem by de�ning the well-moded selec-

tion rule (W).w-esl resolution is neither as robust nor as predictable as s-esl resolution.

It is, however, always consistent in whether or not it generates a blocked tree for a given

program and query. Because the well-moded selection rule is based upon an approxima-

tion to the perfect information assumed available to the solvable selection rule, w-esl

can sometimes block in cases in which s-esl resolution does not. If the approximation

is exact, however, w-esl reduces to s-esl.

5.4.1 Nondeterministic moded selection

The most general possible moded selection rule is the nondeterministic moded selection

rule (M). It imposes no restrictions beyond those required of all moded selection rules;

consequently, it selects all moded literals from a query.

By Lemma 5.6, any unblocked m-esl tree is modally complete. m-esl resolution

is not modally complete, though, since it can produce blocked trees. Moreover, the

approach of restricting the domain of m-esl resolution by imposing static checking, as
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we did for n-esl resolution, is not practical. In general, it is not possible to determine a

priori whether the evaluation of a program under m-esl resolution will lead to a blocked,

and thus incomplete, tree. This fact becomes apparent only during evaluation.

An alternative is to adopt a dynamic approach. A language interpreter based upon

m-esl resolution could reject, as ill-formed, programs that lead to blocked trees. This

strategy is analogous to run time type checking, in contrast to the static approach con-

sidered previously with n-esl resolution.

The problem with this approach is that some programs possess both blocked and

unblocked m-esl trees. The kind of tree that is generated depends upon the selections

made, within the constraints of the selection rule, at each node of the tree. As a result,

an m-esl interpreter as described above might reject in one execution a program that it

was able to solve in another execution.

Despite its 
aws, we will carry through with an analysis of m-esl resolution in prepa-

ration for the introduction of the solvable selection rule in Section 5.4.2. This rule

remedies the defects, without sacri�cing the generality, of the moded selection rule.

Programs can be divided into three disjoint sets, according to whether blocked or

unblocked m-esl trees can be produced for them. The �rst set contains the programs

that give rise only to unblocked trees. This set includes, but is not limited to, the set of

programs containing only moded terms. m-esl resolution is complete for these programs.

The second set contains the programs that give rise only to blocked trees. This set

includes, but is not limited to, the set of programs in which each literal is unmoded.

m-esl resolution is not applicable to these programs.

The third set consists of the problematic programs we described above, those that can

give rise to both blocked and unblocked trees. The kind of tree produced for a program

in this set is determined by the selection that is made at each node.

For example, consider the program composed of the equational theory

X+0 = X
X+Y = Y+X
s(X)+Y = s(X+Y)

and the de�nite clause
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double(N;N+N).

We will examine the solution of the query

 double(s(0);X);double(X;Y)

with respect to the moded base that is composed of all nat terms containing no more

than one variable. (We originally considered this moded base in Chapter 3.)

Both of the literals in the initial query are moded. Thus, either could be selected in

the root node of an m-esl tree for the query. The case in which the �rst literal is selected

is shown in Figure 5.7. This tree is unblocked. The case in which the second literal is

selected is shown in Figure 5.8. This tree is blocked because there is no moded literal in

the bottommost node.

This example illustrates that whether or not m-esl resolution is modally complete

for a particular program is not always an intrinsic property of that program. Instead, it

can be a function of what selections are made. In the next section we will revise m-esl

resolution so that it is complete for all programs for which at least one unblocked m-esl

tree exists.

5.4.2 Solvable selection

Our goal in this section is to devise a variant of esl resolution that is complete for all

queries that have at least one unblocked m-esl tree. We do this by imposing the solvable

selection rule (S). s-esl resolution relates to m-esl resolution as follows. If each of a

query's m-esl trees is blocked, then each of its s-esl trees is blocked as well. If, on the

other hand, a query has even one unblocked m-esl tree, then all of its s-esl trees are

unblocked.

The de�nition of the new selection rule depends upon the notion of solution set. The

solution set of an n-ary predicate symbol P with respect to a program (E;H) is the set of

all term tuples (t1; : : : ; tn) such that the query  P (t1; : : : ; tn) has an unblocked m-esl

tree. Thus, a solution set embodies complete knowledge of which literals can be solved

with m-esl resolution.

For example, the solution set of the predicate symbol double from the previous section

is the set of all pairs of natural numbers in which at least one element is ground. Thus,
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double(s(0);X);double(X;Y)
1 [hX=s(s(0))i]

unify(s(0);N);unify(X;N+N)
1 [hN=s(0)i]

double(s(s(0));Y)
1 [hY=s(s(s(s(0))))i]

unify(X; s(0)+s(0))
1 [hX=s(s(0))i]

unify(s(s(0));N);unify(Y;N+N)
1 [hN=s(s(0))i]

unify(Y; s(s(0))+s(s(0))
1 [hY=s(s(s(s(0))))i]
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Figure 5.7: Unblocked m-esl tree

double(s(0);X);double(X;Y)
2 []

unify(X;N);unify(Y;N+N)
1 [hN=Xi]

unify(Y;X+X)
0 []
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Figure 5.8: Blocked m-esl tree
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the solution set of double includes the pairs (s(0 );X) and (s(Y ); 0 ), but not (s(Y );X).

Lemma 5.9 identi�es a set of properties that solution sets possess.

Lemma 5.9 Let SS be the solution set of a predicate symbol P whose signature is

(S1; : : : ; Sn). Then

� (t1; : : : ; tn) 2M ) sort(ti) = Si,
� t 2M ) moded(t), and
� �1t 2M ^moded(�1) ^moded(�2) ^ �1 �E �2 ) �2t 2M .

Proof. We establish each of the three properties individually.

� By de�nition, the elements of SS share the same sort signature.
� Only moded literals can possess an unblocked m-esl tree.
� Consequence of Lemma 5.7.

We are now prepared to de�ne s-esl resolution. A literal unify(t1; t2) satis�es the

solvable selection rule only if it is moded. This case is identical to the moded selection

rule. A literal P (t1; : : : ; tn) satis�es the solvable selection rule only if (t1; : : : ; tn) is in the

solution set of P . Since every tuple in a solution set must at least be moded, this case

is a strict re�nement of the moded selection rule. Consequently, every unblocked s-esl

tree is also an unblocked m-esl tree.

Lemma 5.10 is the key to establishing the modal completeness of s-esl resolution.

Lemma 5.10 If a query has an unblocked m-esl tree, then each of its s-esl trees is

unblocked.

Rather than prove Lemma 5.10 directly, we prove the following more general lemma

instead. Lemma 5.11 will prove useful in other contexts as well. It establishes a means

of basing one selection rule upon another.

Lemma 5.11 Let R1 and R2 be moded selection rules such that L 2 R1(Q) holds only

if L has an unblocked r2-esl tree. If a query has an unblocked r2-esl tree, then each of

its r1-esl trees is unblocked.
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Proof. Proof is by induction. The induction hypothesis is that for any natural number

d, if an unblocked r2-esl tree exists for some query Q, then no r1-esl tree for Q has a

blocked node within d nodes of the root. This is su�cient to establish the lemma because

blocked nodes always terminate �nite branches.

Basis: Some literal L of Q is selected in the root of its unblocked r2-esl tree. Since

L has an unblocked r2-esl tree, it follows that R1(L) holds. Hence, every r1-esl tree

for Q must be unblocked at the root node.

Induction: We assume that the induction hypothesis holds to depth d, and show that

it holds to depth d+1. Let k be the index of some literal of Q that satis�es the selection

rule R1. The following tree is a representative r1-esl tree for Q.

 L1; : : : ;Ln
k [�1; : : : ; �m]

Q1 Ql �1Q0 �mQ0
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Since both Q and  Lk have unblocked r2-esl trees, if follows from Lemma 5.8 that

Q has an unblocked r2-esl tree in which literal k is selected in the root node.

 L1; : : : ;Ln
k [�1; : : : ; �p]

Q1 Ql �1Q0 �pQ0
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We can complete the proof by showing that every r1-esl tree for each child node

in the �rst tree is unblocked to depth d. This is immediate for the left children by the

induction hypothesis, since the left children are the same in the two trees. Because the

substitutions f: : : ; �i; : : :g are a complete solution to Lk, it follows that for each �i, there

is a �j such that �j �E �i. The induction hypothesis can then be applied along with
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Lemma 5.7.

Theorem 5.12 now follows immediately.

Theorem 5.12 s-esl resolution is modally complete for all queries that have at least

one unblocked m-esl tree.

5.4.3 Well-moded selection

We have shown that s-esl resolution is modally complete in the following sense. If a

query has an esl tree in which every selected literal and every substitution is moded,

then s-esl resolution is complete for that query. This means that s-esl resolution is at

least as broadly applicable as any other procedure based on a moded selection rule.

Unfortunately, s-esl resolution is not a practical procedure. It is applicable only if

it is possible to implement a test for membership in the solution set of each predicate

symbol. Testing a literal for membership, however, would require enumerating all of the

m-esl trees for that literal.

We address this problem in this section, and in the process transform s-esl resolution

into a realizable procedure. Our approach is to devise a resolution procedure that is

identical to s-esl resolution over a restricted domain of queries. This new procedure does

not require complete knowledge of the solution set of each predicate symbol. It instead

uses modings to describe a subset of each solution set. This addresses the problem

identi�ed above because we have a way of de�ning and checking for membership in

modings. The drawback of this approach is that fewer queries can be completely solved

than with s-esl resolution. The advantage is that the approach is easily implementable.

Recall that a moding is the set of all term tuples that are well-moded with respect

to some set of mode tuples that share a common signature. Modings possess the closure

properties of solution sets that we identi�ed in Lemma 5.9. This is a consequence of the

de�nition of modes given in Section 5.3.1.

We will work from this point with moded programs. A moded program is a triple

(E;H;M), where E is an equational theory, H is a set of de�nite clauses, and M is a

moding function. A moding function maps predicate symbols to modings. This means
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two things. First, it maps every predicate symbol from P to a moding that matches that

symbol's signature. Second, it maps every sort S to a moding of signature (S; S); this

corresponds to giving a set of modings for unify.

M(P ) is intended to be an approximation to the solution set of P for which an e�cient

decision procedure exists. Our approximation of the solvable selection rule is based upon

it. We say that a literal P (t1; : : : ; tn) is well-moded with respect to a program (E;H;M)

if (t1; : : : ; tn) 2M(P ). The well-moded selection rule (W) is satis�ed by any well-moded

literal. We will refer to resolution procedures based upon this rule as w-esl procedures.

We will only consider consistently moded programs. A moded program (E;H;M)

is consistently moded if, for every well-moded literal of the form P (t1; : : : ; tn), the query

 P (t1; : : : ; tn) possesses an unblocked w-esl tree.

One example of a consistently moded program is one in which the moding function

maps each predicate symbol to its solution set. In this case, w-esl and s-esl resolution

coincide for all queries. Whenever the moding function maps some predicate symbol to

a proper subset of its solution set, w-esl resolution is complete over a strictly smaller

domain.

We can now characterize the behavior of w-esl resolution with respect to consistently

moded programs. We can show that the w-esl trees for a consistently moded program

are either all blocked or all unblocked.

Lemma 5.13 Let the underlying program be consistently moded. Then either all of the

w-esl trees for a query Q are blocked, or none are.

Proof. In the statement of Lemma 5.11, let both R1 and R2 be W . The lemma follows

immediately.

w-esl resolution is the form of resolution used in Denali. One desirable property is

that programs satisfying the same speci�cation not exhibit di�erent behaviors in solv-

ing the same query. Lemma 5.14, which deals with operationally equivalent programs,

establishes the basis of this property.

Let (E;H1;M1) and (E;H2;M2) be consistently moded programs. The two are oper-

ationally equivalent with respect to a predicate symbol P if the following two conditions
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hold. First, M1(P ) = M2(P ). Second, for all well-moded literals P (t1; : : : ; tn), the

meanings of H1 and H2 are the same:

SH1

E (P (t1; : : : ; tn)) = SH2

E (P (t1; : : : ; tn)).

Lemma 5.14 Let P1 and P2 be consistently moded programs that are operationally equiv-

alent for each of the predicate symbols in some query Q. Then Q has an unblocked w-esl

tree with respect to P1 if and only if Q has an unblocked w-esl tree with respect to P2.

Proof. Proof is by induction. The induction hypothesis is that for any natural number

d, the existence of an unblockedw-esl tree for Q with respect to P1 implies the existence

of a w-esl tree for Q with respect to P2 that contains no blocked node within d nodes

of the root.

Basis. An unblocked w-esl tree for Q with respect to P1 will be of the form:

Q
k [�1; : : : ; �n]

Q1 Qm �1Q0 �nQ0
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Let Lk be the kth literal of Q. If Lk is well-moded with respect to P1, it is also well-

moded with respect to P2. This is because of the operational equivalence assumption.

Hence, there must be a w-esl tree for Q with respect to H2 of the following form:

Q
k [�1; : : : ; �l]

Q1 Qp �1Q0 �lQ0
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Induction: There exist unblocked left children for the tree above because Lk is well-

moded. By operational equivalence, the sets f�1; : : : ; �ng and f�1; : : : ; �lg are subsets of
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the same set, and the former set is complete. Thus, for every �j there is a �i such that

�i �E �j. Thus, by Lemma 5.7 and the induction hypothesis, each of the right children

of the tree above is unblocked to depth d.

The Operational Completeness Theorem follows directly from Lemmas 5.13 and 5.14.

Theorem 5.15 Let P1 and P2 be consistently moded programs that are operationally

equivalent for each of the predicate symbols in some query Q. The w-esl trees for Q,

with respect to both programs, are either all blocked or all unblocked.

5.5 Summary

Our goal in this chapter has been to develop a pragmatic equational resolution procedure

to serve as the basis of the semantics of Denali. We proposed four selection rules that gave

rise to four di�erent resolution procedures. In this section we summarize the properties

of each procedure and highlight the relationships among them.

We began with the non-deterministic selection rule. It is the most general possible

selection rule as it permits the selection of an arbitrary literal from any query. It gives rise

to n-esl resolution, which is complete (Theorem 5.3). Implementing n-esl resolution,

unfortunately, requires implementing a complete equational uni�cation procedure for the

theory contained in the program. Because complete equational uni�cation procedures

are ine�cient, complicated, and sometimes impossible to obtain, n-esl resolution is not

a practical procedure.

We addressed the problem of obtaining equational uni�cation procedures by exploiting

moded bases, and in the process shifted our attention to moded equational resolution.

We proposed the non-deterministic moded selection rule, which permits the selection of

any of the moded literals of a query. It leads to m-esl resolution, whose implementation

requires only that a modally complete equational uni�cation procedure for the theory

contained in the program be obtained. Although it is practical, m-esl resolution is

not complete. Worse, there are programs for which m-esl resolution sometimes returns

complete solutions and sometimes does not, depending upon which selections are made
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in the course of constructing a tree (Figures 5.7 and 5.8.) This makes it unsuitable for

use in de�ning Denali.

We then considered the solvable selection rule. It permits the selection of any literal

that possesses an unblocked, and therefore complete, m-esl tree. This rule gives rise to

s-esl resolution. s-esl resolution is not complete|no resolution procedure based upon a

moded selection rule can be|but its behavior is consistent. It is complete for all programs

and queries that possess at least one unblocked m-esl tree (Theorem 5.12). Because it

is based upon semantic information, however, the solvable selection rule is undecidable.

Determining whether a literal satis�es this selection rule requires enumerating its m-esl

trees.

We reached a pragmatic compromise with the well-moded selection rule. This rule is

based upon the use of modings to describe the circumstances under which a literal may

be selected. It gives rise to w-esl resolution. Like m-esl resolution, the selection rule

upon whichw-esl resolution is based can be e�ciently decided. Like s-esl resolution, its

behavior with respect to completeness is consistent (Lemma 5.13) so long as the moding

restrictions are imposed consistently. These two properties make it suitable for use in

de�ning Denali.

The Operational Equivalence Theorem (Theorem 5.15) is the most important result of

the chapter. It states that w-esl resolution does not di�erentiate between operationally

equivalent programs. This provides the basis for using moded equational de�nite clause

programs as speci�cations for Denali programs.



6 Moded equational

uni�cation

There are three general approaches to obtaining a uni�cation procedure for a given equa-

tional theory. In this chapter we will consider these approaches, show how they can

be extended to cope with and thus take advantage of moded equational theories, and

comment upon their role in the Denali interpreter.

The most broadly applicable approach is to develop directly a procedure for the theory

in question. This direct approach has been followed by a number of researchers.

The second method involves mechanically synthesizing a uni�cation procedure from

a presentation of the theory. Only a restricted class of theories are amenable to this

synthesis approach, however, and ine�cient non-terminating procedures generally result.

The third technique requires decomposing the theory into subtheories for which uni-

�cation procedures are known. The subtheory procedures can then be combined to yield

an overall uni�cation procedure. Several algorithms for the combining problem have been

developed; all impose restrictions upon the decomposition step.

In Section 6.1 we describe these three approaches in more detail. Direct implementa-

tion and procedure combination each have a role in implementing Denali. Consequently,

we will also describe how these two approaches can be adapted to obtaining moded

uni�cation procedures.

121
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A set of procedures based upon the combining algorithm described in Section 6.1

lies at the heart of the proposed Denali interpreter. The algorithm must be generalized,

however, before it can be exploited for this purpose. In Section 6.2 we identify the

limitations of the combining algorithm and then extend it appropriately.

6.1 Approaches to equational uni�cation

In this section we describe the three approaches to obtaining equational uni�cation al-

gorithms that we outlined above.

6.1.1 Direct implementation

A number of algorithms have been developed for uni�cation in the empty theory. The

earliest was described in [Robinson 65] and runs in time that is exponential in the size of

the input terms. Other algorithms have subsequently been developed that reduce worst-

case running time to polynominal [Corbin 83], almost linear [Martelli 82, Baxter 73], and

linear [Paterson 78].

Equational uni�cation procedures, and in most cases terminating algorithms, are cur-

rently known for a number of equational theories. Some examples include procedures

for the associative [Plotkin 72], commutative [Siekmann 79], associative-commutative

[Stickel 81, Livesey 76], identity [Arnborg 85], and one-sided distributive [Arnborg 85]

theories.

The uni�cation problem in some theories, e.g. the associative-distributive theory, has

been proven undecidable [Szab�o 78]. In others, such as the associative theory, no termi-

nating procedure exists [Makanin 77]. Terminating procedures, i.e. algorithms, exist for

the remainder of the theories mentioned above. Typically, the execution time for exist-

ing algorithms is high. The worst-case complexity of a number of uni�cation problems

have been classi�ed. Uni�cation in the commutative theory is NP-complete [Garey 79]

and in the associative-commutative theory is NP-hard [Benanav 85]. Identity uni�ca-

tion is also NP-hard [Arnborg 85], while one-sided distributive uni�cation is polynomial

[Arnborg 85].
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We have seen that the advantage of moded uni�cation arises from the possibility,

through the establishment of a moded base and the imposition moding constraints, of

restricting the domain of a uni�cation procedure to a more easily managed subset. The

severity of the restrictions that can be imposed is limited only by the expressive power

requirements of the application in which a given moded uni�cation procedure is embed-

ded.

We illustrated with the examples of Chapters 3 and 4 the utility of mode restrictions

for facilitating the construction of uni�cation predicates in Denali. We expect that the

moded uni�cation predicates constructed by Denali programmers will tend to be heavily

restricted so that they might be more easily implemented. Mode restrictions might also be

exploited in constructing more e�cient moded versions of existing uni�cation procedures

as built-in predicates.

All existing uni�cation procedures are automatically modally complete if the moded

base is the set of all terms. For smaller moded bases it might be necessary to devise

new procedures. In any event, the body of existing uni�cation procedures provides a rich

source for implementations of the built-in theories of Denali.

6.1.2 Narrowing

An approach based upon the narrowing operation of [Slagle 74] can be used to synthesize

uni�cation procedures for equational theories presented by a convergent term rewrit-

ing system [Fay 79]. The narrowing approach has been improved by [Hullot 80], who

gives su�cient conditions for its termination; by [Jouannaud 83], who generalizes it to

equational term rewriting systems; and by [R�ety 85], who improves its e�ciency.

Despite these improvements, the narrowing approach remains primarily of theoretical

interest. Except for a small class of equational presentations, the procedures produced by

narrowing are nonterminating. Furthermore, the procedures are in general too ine�cient

to be practical as part of a larger system.

The narrowing approach produces a modally complete uni�cation procedure whenever

the equational presentation upon which narrowing operates is composed entirely of moded

equations. No more general condition guaranteeing modal completeness is known.
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6.1.3 Combining algorithms

Three researchers [Yelick 85, Kirchner 85, Tid�en 86] have independently developed algo-

rithms that address the problem of combining complete uni�cation algorithms for disjoint

theories to produce a complete uni�cation algorithm for their union. Below, we character-

ize these approaches, which are designed to cope with unsorted theories and terminating

algorithms. We do this in preparation for extending their approach, in Section 6.2, to

account for sort restrictions, mode restrictions, and nonterminating procedures.

Suppose that we wish to obtain a uni�cation algorithm for an equational theory E�.

Suppose further that E can be decomposed into a set of n equational presentations

E1; : : : ; En such that E =
S
Ei, and that there exists a uni�cation algorithm Ui corre-

sponding to each Ei. It is possible to interconnect the Ui to obtain a complete uni�cation

algorithm for E if the Ei and the Ui meet the following four conditions.

First, it must be possible to partition the set of function symbols F into n pairwise

disjoint sets Fi such that each of the function symbols in presentation Ei lies in Fi. In

other words, let Ti be the set of terms formable from the function symbols Fi and the

variable symbols V. Every term in Ei must lie in Ti.

Second, each algorithm Ui must be complete with respect to the equational theory

E�i . It need be de�ned only for terms contained in Ti.

Third, each presentation Ei must contain only collapse-free equations. A collapse-free

equation is one in which either both sides are variables or both sides are non-variables.

Fourth, each presentation Ei must contain only regular equations. A regular equation

is one in which the set of variables appearing in the left-hand side is equal to the set of

variables appearing in the right-hand side. Kirchner's version of this restriction is slightly

stronger. Tid�en improves upon Yelick's algorithm by removing the regularity restriction

altogether, but his improvement is ine�cient. Although none of the extensions that we

will describe precludes using Tid�en's approach to removing the regularity restriction, we

will maintain it for reasons of e�ciency and clarity.

If the presentations Ei and the algorithms Ui meet these four restrictions, then the

combining algorithms of Yelick and Tid�en can link the Ui together to produce a complete
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uni�cation algorithm for the theory presented by
S
Ei.

For example, suppose that we wish to obtain a uni�cation algorithm for the theory

presented by the following three equations E.

X+Y = Y+X
X+(Y+Z) = (X+Y)+Z
f(f(X)) = f(X)

The decomposition approach is applicable because each of these equations is both collapse-

free and regular.

One three-way decomposition of E and F is as follows:

Ei Fi Ui

1 x+y = y+x + associative-
x+(y+z) = (x+y)+z commutative

2 f(f(x)) = f(x) f idempotent
3 F � f+; fg empty

If three uni�cation algorithms can be obtained, then the combining algorithm can produce

an overall uni�cation algorithm for arbitrary terms with respect to E.

The combining algorithm is central to the implementation of Denali. We will modify

it in Section 6.2 so that it can be used to combine the individual uni�cation predicates

provided for each sort in Denali into an overall uni�cation algorithm.

In preparation for this step, we present below the basic combining algorithm, which is

based upon that of Yelick. It has been rearranged somewhat to facilitate modi�cation. It

is composed of three procedures that we will discuss in turn. Our intention is to describe

only enough of the algorithm to facilitate the pending changes. The reader should consult

[Yelick 85] for a more detailed description and proof of correctness.



126 6. Moded equational uni�cation

E�ects: Returns a complete set of uni�ers for t1 and t2.

CRunify = proc (t1: term; t2: term) returns (substSet)
case

isVar(t1) ^ isVar(t2)) return(fht1=t2ig)
isVar(t1) ^ t1 62 V(t2)) return(fht1=t2ig)
isVar(t2) ^ t2 62 V(t1)) return(fht2=t1ig)
:isVar(t1) ^ :isVar(t2) ^ t1:head 2 Fi ^ t2:head 2 Fj ^ i 6= j)

return(fg)
else) return(doUnify(t1; t2))
end

end CRunify

CRunify treats the cases in which uni�cation can be performed independent of knowl-

edge about the equational theory, passing along the more complicated cases to doUnify.

The �rst three cases check for situations involving variables. The fourth case checks

whether the head symbols of non-variable arguments appear in di�erent function symbol

partitions. If so, the pair is assumed to be ununi�able because of the absence of collapse

equations from the equational presentations.

Requires: Head symbols of t1 and t2 lie in same partition.
E�ects: Returns a complete set of uni�ers for t1 and t2.

doUnify = proc (t1: term; t2: term) returns (substSet)
let �1(̂t1) = t1
let �2(̂t2) = t2
let � = �1 [ �2
case

9v s.t. t1 � �2v) return(fg)
9v s.t. t2 � �1v) return(fg)
else)

let R = Ui(̂t1; t̂2)
let � =

[
�2R

mapUnify (�; �; D(�)[D(�))

return(�)
end

end doUnify

The �rst phase of doUnify is to homogenize the input terms and �nd their preserving

substitutions. A term is homogenized by replacing, with fresh variables, all subterms

headed by function symbols that do not lie in the same partition as the term's head

symbol. The homogenized version of a term t is denoted by t̂. For example, suppose t is

the term X+(Y+f(Z)). Using the partitions identi�ed earlier, t̂ is the term X+(Y+W ),
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where W is any fresh variable.

The substitution that maps a homogenized term to its original form is called its

preserving substitution. The preserving substitution of t above is hW=f(Z)i. In doUnify,

the preserving substitution of t1 is �1, and the preserving substitution of t2 is �2. The

union of these two preserving substitutions is �.

If one argument term appears as a subterm (�) in the range of the other's preserving

substitution, then the two terms are not uni�able. This is a consequence of the absence

of non-regular equations from the underlying equational theory.

If neither subterm condition applies, the original terms are uni�ed in two steps. First,

the homogenized forms of the terms are uni�ed by using the appropriate Ui uni�cation

algorithm. Next, each such uni�er is uni�ed with � using mapUnify. The resulting set

of substitutions is a complete set of uni�ers of the input terms.

E�ects: Returns a complete set of uni�ers of �1 and �2 with respect to the
variables in VS.

mapUnify = proc (�1: subst; �2: subst; VS: varSet) returns (substSet)
case

jVSj = 0) return(fhig)
else)

let v 2 VS
let R = CRunify(�1v; �2v)
let T� = mapUnify(� � �1; � � �2; VS� v); 8� 2 R
let � =

[
�2R

[
�2T�

� � �

return(�)
end

end mapUnify

MapUnify uni�es pairs of substitutions by unifying, in turn, the images of each vari-

able in their domains.

6.2 Combining moded uni�cation procedures

A variant of the combining algorithm CRunify outlined in the previous section will form

the heart of the Denali interpreter that we describe in Chapter 7. CRunify has four

limitations, however, that we must remove to make this possible. In this section we

describe these limitations and devise a modi�ed version of CRunify that eliminates them.
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In Sections 6.2.1{6.2.4 we describe how CRunify can be modi�ed to cope with sorted

theories, non-terminating procedures, external procedures, and moded theories. In Sec-

tion 6.2.5 we accumulate these modi�cations and present a version of CRunify that is

appropriate for Denali.

6.2.1 Sorted algorithms

Although the combining algorithm was originally de�ned only for unsorted theories, it

extends immediately to the sorted case. If the input algorithms Ui are complete with

respect to their respective sorted subtheories, the combined algorithm will be complete

with respect to the sorted union of these subtheories. This holds because the combining

algorithm produces new substitutions only by composing existing ones. This cannot

introduce sort inconsistencies.

Suppose that the input procedures Ui, the equational presentations Ei upon which

they are based, and the function symbol sets Fi are partitioned along sort boundaries.

This means that each set Fi contains exactly the function symbols of some range sort S,

and there is one partition per sort. If so, we can exploit the presence of sort information

to relax two of the restrictions upon the combining algorithm.

From this point we will assume that partitions do in fact lie along sort boundaries.

We will emphasize this assumption by subscripting the input procedures, equational

presentations, and function symbol sets with sort names rather than with numbers. For

every sort S, then, the set FS contains all of the function symbols whose range is S.

The meanings of US and ES follow directly. Under this assumption on partitions we can

eliminate the condition that the sets ES be collapse-free and weaken the condition that

they be regular.

In the examples below, assume that we have two sorts, nat and list , and thus two

function symbol partitions, Fnat and Flist:

0: ! nat nil: ! list
1: ! nat cons: nat; list! list
�: nat;nat! nat
inverse: nat ! nat

Collapse equations are a problem in the general case because they permit pairs of



6.2. Combining moded uni�cation procedures 129

terms whose head symbols lie in distinct function symbol partitions to be equated. Since

CRunify relies on the assumption that such pairs are not uni�able, collapse equations

must be forbidden.

To illustrate, suppose that the collapse equation X+0 = X is in the equational

presentation. One consequence of this presentation in the unsorted case is the equation

nil+0 = nil . Even though the two terms nil+0 and nil are equal, CRunify will treat

them as ununi�able because their head symbols (+ and nil respectively) lie in separate

partitions. Consequently, collapse equations such as X+0 = X must be forbidden.

This construction is not possible in the sorted case if, as we assume, the partitions lie

along sort boundaries. This is because any equation relating terms with di�erent head

symbols is necessarily ill-sorted. In the sorted case, the equation nil+0 = nil is not well-

sorted. It is proper for CRunify to treat the two terms in this equation as ununi�able,

and collapse equations need not be forbidden.

Non-regular equations are a problem in the general case because they permit the

occurrence of a term t1 in the range of the preserving substitution of an equal term t2.

Since doUnify relies upon the assumption that pairs such as t1 and t2 are not uni�able,

non-regular equations must be forbidden.

To illustrate, suppose that the non-regular equation X � inverse(X) = 1 is in the

equational presentation. One consequence of this presentation in the unsorted case is the

equation

cons(1;nil) � inverse(cons(1;nil)) = 1.

The homogenized form of the left-hand side of this equation is W � W = 1 , and the

preserving substitution is hW=cons (1 ;nil)i. The preserving substitution contains the

right-hand side of the equation above as subterm. Because of this, CRunify will treat

the two terms in the equation as ununi�able. Consequently, collapse equations must be

forbidden.

This example would not cause a problem in the sorted case, because the equation

that leads to the problem is not well-sorted. Notice, however, that if we were to add a

nat constructor
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size: list! nat

to Fnat , then we would be able to infer the equation

size(cons(1;nil)) � inverse(size(cons(1;nil))) = 1.

This equation is well-sorted, and the preserving substitution of its left-hand side contains

the right-hand side as a subterm. It thus exhibits the characteristic problem of non-

regular equations even in the sorted case.

A non-regular equation may or may not cause a problem, depending upon the signa-

tures of the various function symbols. We will call an equation sort-regular if it cannot

lead to an embedding problem of the form illustrated above. It is easy to construct a

syntactic test for sort-regularity; it involves searching for sort cycles in function symbol

signatures.

The consequence of all of this is that non-regular equations need not be forbidden

altogether. CRunify can accommodate non-regular equations so long a they are sort-

regular.

6.2.2 Non-terminating procedures

CRunify requires that the subsidiary uni�cation procedures Ui be terminating algorithms.

Before CRunify can be incorporated into Denali, we must extend it to cope with nonter-

minating procedures that enumerate potentially in�nite complete sets of uni�ers.

The restriction of the combining algorithm to terminating procedures is necessitated

by the interface of CRunify rather than by any intrinsic characteristic of the problem.

Both Yelick and Tid�en point out that the extension needed to accommodate nontermi-

nating procedures is straightforward.

The interface of CRunify returns complete sets of substitutions. This is the same

interface that is assumed of the subsidiary procedures Ui. In Section 6.2.5, we will cast

CRunify and the subsidiary procedures as iterators that yield one substitution at a time.

So long as it is implemented in a fair fashion, CRunify can be made to to yield a complete

sequence of uni�ers even when the subsidiary iterators are nonterminating.
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6.2.3 Independent procedures

Our third extension involves the incorporation of self-contained uni�cation procedures

into the combining process. We have assumed to this point that each constituent uni�-

cation procedure US is

� de�ned over terms that are homogeneous in FS , and
� is complete with respect to ES.

In some instances, we might have available a more powerful uni�cation procedure US

that is

� de�ned over all terms of sort S, and
� is complete with respect to E.

We would like to be able to deal with such procedures in the combining process.

The need for this additional 
exibility is motivated by the design of Denali. Recall

that each sort is realized by either an implicit or an explicit implementation. In an

implicit implementation, the uni�cation predicate is provided by the implementation

and is of the �rst form identi�ed above. In an explicit implementation, the uni�cation

predicate is supplied by the programmer, and is of the second form identi�ed above.

Both kinds of procedures must be combined to obtain an overall uni�cation procedure

for a program.

If every uni�cation procedure US were of the second form above, the combining pro-

cess would involve only determining the sort of the terms to be uni�ed and invoking the

appropriate procedure. It should not be surprising, then, that such self-contained proce-

dures can be incorporated into CRunify without disruption. Self-contained procedures

can be called directly as subroutines whenever terms of sort S must be uni�ed.

In the remainder of this section, we will assume that S is divided into two disjoint

subsets containing the implicit and the explicit sorts. We will make di�erent assumptions,

detailed in Section 6.2.5, concerning the subsidiary uni�cation procedures US in each case.

6.2.4 Moded procedures

To this point we have dealt with the problem of combining complete subsidiary procedures

to produce a complete overall procedure. Our �nal extension is to treat the problem
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of combining modally complete subsidiary procedures to produce a modally complete

overall procedure. We must treat two separable concerns here. First, we must deal with

completeness relative to the underlying moded base of terms. Second, we must deal

with any restrictions in the form of modings that are imposed upon the interfaces of the

subsidiary procedures.

Treating the �rst concern is straightforward, because CRunify is transparent to moded

bases. If the constituent uni�cation procedures are modally complete, then the combined

procedure is itself modally complete. As was the case with sorted completeness, this is

because new substitutions are derived only through the composition of old ones. It is

thus not possible for CRunify to generate any unmoded substitutions.

Dealing with interface restrictions is not as simple. Assume that associated with each

sort S is a moding, denoted moding(S). This moding, which in a Denali program would

be imposed by the programmer, imposes an interface restriction upon the procedure US.

Ideally, we would like to be able to guarantee that given any two terms t1 and t2 of sort

S,

� if (t1; t2) 62 moding(S), then CRunify(t1; t2) reports a mode failure, and
� if (t1; t2) 2 moding(S), then CRunify(t1; t2) is modally complete.

The �rst condition is easy to guarantee by checking whether arguments are properly

moded and reporting a mode failure if they are not. The second condition cannot be

guaranteed because an execution of CRunify can entail recursive calls to subsidiary pro-

cedures whose modings may not be compatible. Incompatibility is a possibility because

the modings are imposed by programmers. Consequently, we modify CRunify to report

inadvertent mode failures as they occur.

6.2.5 An extended combining procedure

We are now prepared to describe the combining procedure, which we have extended along

the lines discussed in the preceding four sections. The most important di�erence is that

the interfaces of the combining procedures are now cast as iterators. These iterators yield

substitutions one at a time, and signal mode failures when they occur.

Before presenting the modi�ed iterators, we will restate the revised restrictions that
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we have accumulated. Suppose that we wish to obtain a uni�cation iterator for a sorted

and moded equational theory E�, and that the set of sorts S is divided into the implicit

and the explicit sorts. For each sort S, let US be a uni�cation iterator and let ES be the

set of all equations from E of sort S. It is possible to interconnect the US to obtain a

moded uni�cation iterator for E if the US and the ES meet the following three conditions.

First, for each implicit sort S, US must be de�ned over the set of terms that are

homogeneous in FS , and must be modally complete with respect to ES .

Second, for each explicit sort S, US must be de�ned over all terms of sort S, and must

be modally complete with respect to E.

Third, for each implicit sort S, ES must contain only sort-regular equations.

If these conditions are satis�ed, then the combining iterator CRunify can link the

iterators US together to produce a modally complete uni�cation procedure for the theory

presented by E.

E�ects: Yields a complete sequence of uni�ers of t1 and t2. Signals mode-
Failure if the arguments are ill-moded or if a mode failure occurs during
execution.

CRunify = iter (t1: term; t2: term) yields (subst) signals (modeFailure)
let S = sort(t1)
case

(t1; t2) 62 moding(US)) signal modeFailure
isVar(t1) ^ isVar(t2)) yield(ht1=t2i)
isVar(t1) ^ t1 62 V(t2)) yield(ht1=t2i)
isVar(t2) ^ t2 62 V(t1)) yield(ht2=t1i)
explicit(S)) reyield(US(t1; t2))
implicit(S)) reyield(doUnify(t1; t2))
end resignal modeFailure

end unify

A check has been added to CRunify to ensure that the terms being uni�ed meet the

modings restrictions for their sort. The check that head symbols lie in the same partition

is no longer necessary and has been removed; as we pointed out in Section 6.2.1, this is

a consequence of sort consistency. The strategy used to unify a particular pair of terms

now depends upon whether their sort is explicit or implicit. In the former case, the

appropriate iterator is invoked directly. In the latter case, doUnify is invoked as before.



134 6. Moded equational uni�cation

Requires: Head symbols of t1 and t2 lie in same partition.
E�ects: Yields a complete sequence of uni�ers of t1 and t2. Signals modeFail-
ure if one occurs during execution.

doUnify = iter (t1: term; t2: term) yields (subst) signals (modeFailure)
let S = sort(t1)
let �1(̂t1) = t1
let �2(̂t2) = t2
let � = �1 [ �2
case

9v s.t. t1 � �2v) return

9v s.t. t2 � �1v) return

else)
for � 2 S� unify(̂t1; t̂2) do

for � 2 mapUnify(�; �; D(� [ D(�)) do
yield(�)
end

end

end resignal modeFailure
end doUnify

The only important di�erence in the new version of doUnify is that the uni�cation

procedures are unrolled into loops to ensure fairness.

E�ects: Yields a complete sequence of uni�ers of �1 and �2 with respect to
the variables in V S.

mapUnify = iter (�1: subst; �2: subst; VS: varSet) yields (subst)
signals (modeFailure)

case

jVSj = 0) yield(hi)
else)

let v 2 VS s.t. US(�1(v); �2(v)) is well moded
signal modeFailure if none exist

for �1 2 CRunify(�1(v); �2(v)) do
for �2 2 mapUnify(�1 � �1; �1 � �2; VS� v) do

yield(�2 � �1)
end

end

end resignal modeFailure
end mapUnify

MapUnify is also unrolled from its previous form. Notice also that at each step is

uses mode information to choose which variable to treat next. If none is appropriate, it

signals modeFailure. This ordering makes it more robust with respect to mode failures.
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In this chapter we draw upon the material of Chapters 5 and 6 to de�ne the semantics

of Denali.

Denali programs can appear in either denotation or representation form. All of the

examples that we have seen thus far have been in denotation form, because this is the

form in which programs must be written. We describe denotation form programs in

Section 7.1 by giving their syntax and static semantics.

Representation form is a partially compiled version that is more convenient for de-

scribing the semantics. In Section 7.2 we de�ne this form by showing how programs can

be converted from denotation into representation form.

A key part of the translation between the two forms is a procedure that translates the

denotation of an abstract object into its representation. This procedure is based upon

the translation predicates that are included with each explicitly implemented cluster. We

develop this translation procedure in Section 7.3.

In the �nal two sections we give the abstract and operational semantics of Denali

programs. The abstract de�nition, given in Section 7.4, involves regarding a program

as a moded equational de�nite clause program. It draws upon the material on moded

resolution developed in Chapter 5. The operational de�nition, given in Section 7.5, is

135
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length = pred (bag;nat) moding (enum; any)
length(nil; 0):
length(cons(N;B); s(X)) length(B;X):

reduce = pred (bag;bag) moding (gnd; any)
reduce(nil;nil):
reduce(cons(X; cons(X;B1);B2) reduce(cons(X;B1);B2):

sequential = pred (set;nat) moding (enum; any)
sequential(insert(N; insert(s(N); )); s(N)):

Figure 7.1: Predicate implementations

based upon an interpreter whose implementation we sketch. It draws upon the CRunify

procedure that we extended in Chapter 6.

The formulation of the semantics of Denali contained in this chapter does not take

into account the mode guard construct of Chapter 2. Incorporating mode guards into

the framework of our semantic de�nition remains an open problem.

7.1 Denotation form

In this section we give the abstract syntax and static semantics of Denali programs that

are written in denotation form. Chapters 2 and 4 contain an informal development of the

concrete syntax of Denali. We have duplicated several of the examples from Chapter 4

in Figures 7.1{7.3. We will refer to the implementations in these �gures throughout this

chapter.

We will develop the syntactic description incrementally, with each set of productions

paired with the static semantic restrictions that apply to them. Along the way we

will de�ne a number of functions over the syntactic domain. Their names, e.g. sorts,

are written with small capitals. These functions are used to express static semantic

constraints, and are also used later when de�ning the meaning of programs. Syntactic

productions are highlighted by hollow bullets (�), and static semantic restrictions are

highlighted by solid bullets (�).

We begin by giving the top-level productions that characterize the module structure
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nat = cluster

denoted by

0: ! nat
s: nat ! nat

modes any > gnd
unify mode any
moded by

0: ! gnd
s: gnd ! gnd
s: any! any

end

bag = cluster

denoted by

nil: ! bag
cons: nat;bag ! bag

modes any > enum > gnd
unify mode enum
moded by

nil: ! gnd
cons: gnd; gnd! gnd
cons: any; enum! enum
cons: any; any! any

uni�ed by

cons(X; cons(Y;B)) = cons(Y; cons(X;B))
end

Figure 7.2: Implicitly implemented clusters

of programs. Non-terminals, e.g. hprogrami, are delimited by angle brackets. Within a

production, a vertical bar denotes an alternative and an asterisk denotes a sequence of

zero or more elements.

� hprogrami ::= hmodulei*
� hmodulei ::= hclusteri j hpredicatei
� hclusteri ::= himplicitClusteri j hexplicitClusteri
� himplicitClusteri ::= hclusterHeadi himplicitImpli
� hexplicitClusteri ::= hclusterHeadi hexplicitImpli hpredicatei*
� hpredicatei ::= hpredHeadi hpredImpli

The examples in Figures 7.1{7.3 constitute a hprogrami composed of six hmodulesi.

Figure 7.1 contains three hpredicatesi, Figure 7.2 contains two himplicitClustersi, and

Figure 7.3 contains one hexplicitClusteri.



138 7. Semantics of Denali

set = cluster

denoted by

empty: ! set
insert: nat; set! set

modes any > enum > gnd
unify mode any
represented by bag
translated by setTrans
moded by

gnd from gnd
enum from enum
any from enum

uni�ed by setUnify
setTrans = pred (set dnt;bag) moding (any; any)

setTrans(empty;nil):
setTrans(insert(N;B); cons(N;B)):

setUnify = pred (bag;bag) moding (enum; enum)
setUnify(nil;nil):
setUnify(cons(X;B1); cons(X;B2)) setUnify(B1;B2):
setUnify(cons(X;B1); cons(X;B2)) setUnify(cons(X;B1);B2):
setUnify(cons(X;B1); cons(X;B2)) setUnify(B1; cons(X;B2)):

size = pred (set;nat) moding (gnd; any)
size(B1;N) reduce(B1;B2); length(B2;N):

end

Figure 7.3: Explicitly implemented cluster

The presentation of the remainder of the syntax is divided into four sections. Sec-

tion 7.1.1 concerns the elaboration of hclusterHeadi and hpredHeadi, which present the

interface information for clusters and predicates respectively. These module headers es-

tablish the name spaces with respect to which the static semantic constraints are de�ned.

In Section 7.1.2 we show how himplicitImpli, hexplicitImpli, and hpredImpli are elab-

orated. These are the implementations of implicit clusters, explicit clusters, and predi-

cates.

Corresponding to every explicitly implemented sort S is a reserved sort symbol S dnt .

These are the denotation sorts, which are used in the translation predicates where terms

of sort S must be treated as uninterpreted syntactic objects. In Section 7.1.3 we discuss

the role of these denotation sorts. Although they are not de�ned by the programmer,
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their implicit implementations can be derived mechanically from the program in which

they appear.

In Section 7.1.4 we complete the syntactic description by giving the sort-checking

rules.

7.1.1 Interfaces

The headers of clusters and predicates de�ne the name spaces for sorts, predicates, func-

tions, and modes. They also associate sort and mode signatures with predicates, and

sort signatures with function names.

Cluster headers

The top-level production for hclusterHeadi is

� hclusterHeadi ::= hsorti hfuncDecli* hmodeOrderingi* hunifyModei

The following restriction applies.

� Each hclusterHeadi must introduce a globally unique hsorti. Let sorts be the
set of all hsortsi introduced in a hprogrami.

We say that a sort is explicitly implemented if it is introduced in a hexplicitClusteri,

and that it is implicitly implemented otherwise. In addition to the sort symbols introduced

in cluster headers, a collection of denotation sorts are introduced implicitly. For every

explicitly implemented sort S, the set sorts also contains the implicitly implemented

sort S dnt . In the example,

sorts = fnat;bag; set; set dntg.

The implicitly implemented sorts are nat , bag, and set dnt , while set is explicitly imple-

mented.

We will consider the three remaining components of a hclusterHeadi individually.

First, the hfuncDecli section introduces a set of function signatures. These signatures are

used to construct abstract objects of the cluster's sort.

� hfuncDecli ::= hfunci hsortDomaini hsortRangei
� hsortDomaini ::= hsorti*
� hsortRangei ::= hsorti

The following restrictions apply.
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� Each hfunci must be globally unique. Let funcs(S) be the set of all function
symbols introduced in a cluster S.
� Each hsortRangei in a cluster S must be S.
� Each hsorti of a hsortDomaini must be in sorts. Let sig(f; S) denote the
signature associated with function name f de�ned in cluster S.

In the example,

funcs(set) = fempty; insertg,
sig(empty; set) = (! set),
sig(insert; set) = (nat; set! set).

The uniqueness requirement for function symbols is imposed to simplify our syntactic

development. In practice, overloading can be permitted since sort information can be

used to disambiguate overloaded symbols.

Second, the hmodeOrderingi section of a hclusterHeadi introduces a partially ordered

set of mode names. We have included the ordering symbol, technically part of the concrete

syntax, for clarity.

� hmodeOrderingi ::= hmodei > hmodei

Mode names must be unique within, but may be overloaded among, clusters.

� The mode name any must appear in each hmodeOrderingi section. Let
modes(S) denote the set of mode names introduced in the hmodeOrderingi
section of a cluster S.
� There must be a partial ordering compatible with the ordering restrictions of
a hmodeOrderingi section. Let � be the minimal such partial order.
� The partial order � must have any as a greatest element.

In the example modes(bag) = fany; enum; gndg, and the modes are ordered as shown.

Third, the huni�eri section of a hclusterHeadi gives the mode restriction for the uni-

�cation predicate.

� huni�eri ::= hunifyModei
� The hunifyModei of a cluster S must be a member of modes(S). Denote this
mode by umode(S).

In the example umode(set ) = fanyg.

Predicate headers

The top-level production for hpredHeadi is
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� hpredHeadi ::= hpredi hsortSigi hmodeSigi*

The following restriction applies

� Each hpredHeadi must introduce a globally unique hpredi. Let preds denote
the set of all hpredsi introduced in a hprogrami.

In the example,

preds = flength; reduce; sequential; setUnify; setTrans; sizeg.

Both sort and mode information are present in predicate headers.

� hsortSigi ::= hsorti*
� hmodeSigi ::= hmodei*
� Each hsorti in a hsortSigi must be a member of sorts. Let abstsig(P) denote
the hsortSigi of a predicate P .
� Each hmodeSigi must have the same arity as its associated hsortSigi. Let the
set of hmodeSigsi of a predicate P be denoted by modings(P )
� Let (S1; : : : ; Sn) be a hsortSigi and (M1; : : : ;Mn) a hmodeSigi of the same
header. Then each Mi must be a member of modes(Si).

In the example,

abstsig(size) = (set;nat).
abstsig(reduce) = (bag;bag).

Inside of an explicitly implemented cluster, we sometimes require that the representa-

tion of an abstract object appear where the abstract object would be otherwise required.

We make a provision for this possibility by de�ning the concrete signatures of predicates.

Suppose that abstsig(P ) = (S1; : : : ; Sn), where P is a predicate de�ned within an ex-

plicit cluster S. Then concsig(P ) = (R1; : : : ; Rn), where Ri = Si unless Si = S in

which case Ri = rep(S). (rep(S), which is de�ned below, is the representation sort of

S.) If P is not de�ned within an explicit cluster, then abstsig(P ) and concsig(P ) are

identical. In the example,

concsig(size) = (bag;nat).
concsig(reduce) = (bag;bag).

7.1.2 Implementations

Implicit cluster implementations

In an implicit implementation, only the modes and the equational theory for uni�cation

need be given.
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� himplicitImpli ::= hdirModeImpli hdirUnifImpli

First, the hdirModeImpli section gives the meaning of the modes introduced in the

hmodeOrderingi section.

� hdirModeImpli ::= hmodeDecli*
� hmodeDecli ::= hfunci hmodeDomaini hmodeRangei
� hmodeDomaini ::= hmodei*
� hmodeRangei ::= hmodei
� Let f : M1; : : : ;Mn ! M be a hmodeDecli of a cluster S, where sig(f; S) is
(S1; : : : ; Sn) ! S. Then M must be in modes(S) and each Mi must be in
modes(Si).

Second, the hdirUnifImpli section gives a set of equations that specify the equational

theory of uni�cation for the cluster.

� hdirUnifImpli ::= hequationi*
� hequationi* ::= htermi = htermi

A sort restriction applies to each equation. The function termsorted, which checks

that terms are well-sorted, is de�ned later.

� For each equation r = t appearing in a cluster S, there must be a mapping V
from the variables of r and t to sorts such that termsorted(r; S; V ) and
termsorted(t; S; V ) are both true. One consequence of this is that both r
and t are of the same sort.
� Only function symbols with range sort S can appear in an hequationi within
a cluster S.
� Every hequationi must be sort-regular as de�ned in Chapter 6.

Explicit cluster implementations

Explicit implementations of clusters are more involved than implicit implementations.

� hexplicitImpli ::= hrepSorti hexpModeImpli hexpDntImpli* hexpUnifImpli

We discuss the four non-terminals in the production above in turn.

First, the hrepSorti of an hexplicitClusteri is the sort upon which the implementation

is based.

� hrepSorti ::= hsorti
� The hrepSorti of a cluster S must be in sorts. Denote this sort by rep(S).

In the example, rep(set) = bag .
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Second, the hexpModeImpli section gives the implementation of the modes introduced

in the hmodeOrderingi section.

� hexpModeImpli ::= hmodeMappingi*
� hmodeMappingi ::= habsModei hrepModei*
� habsModei ::= hmodei
� hrepModei ::= hmodei
� Each habsModei appearing in a cluster S must be in modes(S).
� Each hrepModei appearing in a cluster S must be in modes(rep(S)).

Third, the hexpDntImpli section names a function that accomplishes the translation

of denotation to representation.

� hexpDntImpli ::= hfunci hpredi

� The hexpDntImpli of a cluster S, denoted dpred(S), must be in preds.
� The abstsig of dpred(S) must be (S dnt ; R), where R = rep(S).

In the example, dpred(set ) = setTrans.

Fourth, the hexpUnifImpli section identi�es a predicate that performs uni�cation.

� hexpUnifImpli ::= hpredi

� The hexpUnifPredi of a cluster S, denoted upred(S), must be in preds.
� The abstsig of upred(S) must be (R;R), where R = rep(S).

In the example, upred(set) = setUnify .

Predicate implementations

We now consider the hpredImpli section.

� hpredImpli ::= hclausei*
� hclausei ::= hheadi hqueryi
� hheadi ::= hliterali
� hqueryi ::= hliterali*

The functions headsorted and tailsorted check literals for sort correctness. They

are de�ned later.

� The head symbol of each hheadi appearing in a hpredImpli P must be P .
� For each hclausei L L1; : : : ; Ln there must be a mapping V from the vari-
ables of the clause to sorts such that headsorted(L; V ) holds for the head
literal and tailsorted(Li; V ) holds for each other literal.
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set dnt = cluster

denoted by

empty: ! set dnt
insert: nat;bag ! set dnt

modes any
unify mode any
moded by

empty: ! any
insert: any; any! any

end

Figure 7.4: Derived implementation of set dnt

7.1.3 Denotation sorts

Although denotation sorts are used in programs (see setTrans in Figure 7.3), they are

nowhere de�ned. This is because the implicit implementation of a denotation sort S dnt

can be derived mechanically from the interface of the explicitly implemented sort S. We

show below how the denotation, modes, and uni�cation sections of these implementations

are derived. We will use set dnt , whose implicit implementation appears in Figure 7.4,

as an example. This implementation is derived from that of set in Figure 7.3.

Objects of a denotation sort S dnt are denoted using constructors with the same

name as, but with di�erent signatures than, the constructors of the sort S. This is the

only instance in which function name overloading is permitted. For example, the two

constructors of sort set are

empty: ! set.
insert: nat; set! set.

The two constructors of sort set dnt are

empty: ! set dnt.
insert: nat;bag! set dnt.

The transformed signatures are obtained by replacing each occurrence of the abstract sort

(set) in the original domain with the representation sort (bag), and by replacing each

occurrence of the abstract sort in the original range with the denotation sort (set dnt).

Thus, objects of a denotation sort are a kind of hybrid between abstract denotations and

concrete representations.



7.1. Denotation form 145

Every denotation sort S dnt has but one mode, which by default must be any. Con-

sequently, the mode signatures are simple. There is one signature for each constructor;

each signature contains only the mode any.

Since a sort S dnt has only mode any, its uni�cation mode must be any. Because

denotation terms are always treated syntactically, the theory of uni�cation of each sort

S dnt is empty. Consequently, no equations need be given in the implementation.

In Section 7.1.1 we de�ned several functions over the syntactic domain. When these

functions are evaluated for a given program, they should de�ned over the implicitly

implemented denotation sorts. We noted earlier that sorts should contain set dnt in

addition to nat , bag, and set . Similarly, funcs and sig should be augmented so that

funcs(set dnt) = fempty; insertg,
sig(empty; set dnt) = (! any),
sig(insert; set dnt) = (nat;bag ! set dnt).

In addition, modes(set dnt) should be fanyg, and umode(set dnt ) should be any.

7.1.4 Sort checking

We can now de�ne the sort-checking rules, which, with one exception, are straightforward.

The three sort-checking functions are headsorted and tailsorted for literals, and

termsorted for terms. Each of the three takes an argument that is a mapping from

variables to sorts. This argument is necessary because variable symbols are unsorted in

Denali. The only requirement is that they be used consistently within individual clauses

and literals.

We begin with the syntactic productions for htermsi and hliteralsi.

� hliterali ::= hpredi hargsi
� htermi ::= hfunci hargsi j hvari
� hargsi ::= htermi*

Each of the literal functions takes two arguments: the literal to be checked and the

variable mapping. headsorted applies to the head literals of clauses. It checks the

literal with respect to its concrete signature in case the literal lies within an explicitly

de�ned cluster. (If not, the concrete and abstract signatures are identical.)
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� headsorted(P (t1; : : : ; tn); V ) ()
concsig(P )=(S1; : : : ; Sn) ^ 8itermsorted(ti; Si; V ).

tailsorted applies to all other literals. It checks the literal with respect to its abstract

signature.

� tailsorted(P (t1; : : : ; tn); V ) ()
abstsig(P )=(S1; : : : ; Sn) ^ 8itermsorted(ti; Si; V ).

termsorted takes three arguments: the literal to be checked, the sort required of

the term, and the variable mapping.

� termsorted(v; S; V ) () V (v)=S.
� termsorted(f(t1; : : : ; tn); S; V ) ()

sig(f; S)=(S1; : : : ; Sn ! S) ^ termsorted(ti; Si; V ).

7.2 Representation form

Programs in representation form consist of a set of de�nite clauses, a set of equations with

associated uni�cation information, and a set of mode name presentations. Because they

are close to equational de�nite clause programs, we base the de�nition of the semantics

of Denali upon programs in this form.

In this section we describe how programs written in denotation form are converted

to representation form. The overall conversion process is straightforward. The single

complication is the translation of literals, which involves using the translation predicates

that are included with every explicitly implemented cluster. To avoid cluttering this

section we will assume the existence of a function, Tliteral , for translating literals and

defer its de�nition to Section 7.3.

We treat each step of the conversion separately. We begin in Section 7.2.1 by spec-

ifying the sets of symbols from which programs in representation form are constructed.

In Section 7.2.2 we discuss clauses, in Section 7.2.3 we discuss uni�cation, and in Sec-

tion 7.2.4 we discuss modes.

7.2.1 Symbols

The �rst step in the conversion to representation form is �xing the sets of symbols to

be used. These sets are the sort names S, the function symbols F, and the predicate
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S = fnat;bag; set; set dntg
F = f0; s;nil; cons; empty; insert;Asetg
P = flength; reduce; setUnify; setTrans; size; s�ze; sequentialg

0: ! nat
s: nat ! nat
nil: ! bag
cons: nat;bag ! bag
empty: ! set dnt
insert: nat;bag ! set dnt
Aset: bag ! set

length = pred (bag;nat) moding (enum; any)
reduce = pred (bag;bag) moding (gnd; any)
setUnify = pred (bag;bag) moding (enum; enum)
setTrans = pred (set dnt;bag) moding (any; any)
size = pred (set;nat) moding (gnd; any)
s�ze = pred (bag;nat) moding (any; any)
sequential = pred (set;nat) moding (enum; any)

Figure 7.5: Symbols of converted program

symbolsP. We must also associate a sort signature with each function symbol, and a

sort and mode signature with each predicate symbol. The symbols and signatures of the

translated example program are given in Figure 7.5.

The sort universe S is exactly the set of sorts introduced by the program, i.e. sorts.

In our example, then, S is fnat ; bag ; set ; set dntg.

The de�nition of the function symbol universe F is almost as straightforward. For

every implicitly implemented sort S, F contains funcs(S). For every explicitly imple-

mented sort S, however, F contains only the single sort symbol AS . This symbol is a

syntactic version of the abstraction function. We introduce it in order to have an explicit

constructor that is independent of the denotation symbols. In our example,

F = f0; s;nil; cons; empty; insert;Asetg.

Note that empty and insert remain, but only as constructors of sort set dnt .

We must also specify the sort signature associated with each function symbol in F.

For a constructor f of an implicit sort, this signature is sig(f). For each symbol AS , the

signature is (rep(S)! S). Some representative signatures from our example are



148 7. Semantics of Denali

0: ! nat
Aset: bag ! set
insert: nat;bag! set dnt

The predicate symbol universe P is a superset of preds. In addition to the symbols

in preds, P also contains a symbol P corresponding to each predicate symbol P from

preds whose abstract and concrete signatures di�er. These additional predicate symbols

are required to account for the dual interpretation that such predicates receive. In our

example, P is flength ; reduce; setUnify; setT rans; size; s�ze; sequentialg.

The sort signature associated with each predicate symbol P is abstsig(P ), and the

mode signature is carried over unaltered. The mode signature associated with each

predicate symbol P is concsig(P ), and the mode signature is the tuple containing only

any. In our example, the sort and mode signatures of size and s�ze are as follows:

size = pred (set;nat) moding (enum; any)
s�ze = pred (bag;nat) moding (any; any)

7.2.2 Clause conversion

The second step of conversion is to de�ne the set of de�nite clauses. This set is derived

from the clauses used to implement the predicates in the source program. The clauses

cannot be carried over unaltered for two reasons. First, the terms that they contain

must be translated from denotation to representation form. Second, we must account

for the dual interpretations a�orded to predicates that are de�ned inside of explicitly

implemented clusters. The de�nite clauses of our converted example program appear in

Figure 7.6.

We assume the existence of a translation function Tliteral that maps the denotations of

objects to their representations. The implementation of this function exploits the trans-

lation predicates that are included in explicitly implemented clusters. We will discuss

Tliteral in detail in Section 7.3.

We �rst consider predicate de�nitions whose abstract and concrete signatures are

identical. Each such de�nition consists of a header and one or more de�nite clauses of

the form
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length(nil; 0):
length(cons(N;B); s(X)) length(B;X):

reduce(nil;nil):
reduce(cons(X; cons(X;B1);B2) reduce(cons(X;B1);B2):

sequential(Aset(cons(N; cons(s(N);nil))); s(N)):

setTrans(empty;nil):
setTrans(insert(N;B); cons(N;B)):

setUnify(nil;nil):
setUnify(cons(X;B1); cons(X;B2)) setUnify(B1;B2):
setUnify(cons(X;B1); cons(X;B2)) setUnify(cons(X;B1);B2):
setUnify(cons(X;B1); cons(X;B2)) setUnify(B1; cons(X;B2)):

size(Aset(B);N) s�ze(B;N)

s�ze(B1;N) reduce(B1;B2); length(B2;N):

Figure 7.6: Clauses of converted program

L L1; : : : ;Ln.

For each such clause, the version that is added to the converted program is

Tliteral(L) Tliteral(L1); : : : ;Tliteral(Ln).

Thus, nothing more is done than translate the literals. For example, converting the

predicate de�nition

sequential = pred (set;nat) moding (enum; any)
sequential(insert(N; insert(s(N); )); s(N)):

entails adding the clause

sequential(Aset(cons(N; cons(s(N);nil))); s(N)):

to the converted program.

We now consider predicate de�nitions whose abstract and concrete signatures di�er.

Let P be such a predicate de�ned within a cluster S. Let abstsig(P ) = (S1; : : : ; Sn) and

concsig(P ) = (R1; : : : ; Rn). The �rst step in the conversion of P is to add the clause

P(t1; : : : ; tn) P(v1; : : : ; vn)

to the converted program. The vi are fresh variables; if Si = S then ti is AS(vi) and is vi

otherwise.

For example, consider the de�nition of size, which appears within the explicitly im-

plemented set cluster.
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cons(X; cons(Y;B)) = cons(Y; cons(X;B))

set predicate = setUnify

nat moding = (any; any)
bag moding = (any; enum); (enum; any)
set dnt moding = (any; any)
set moding = (any; any)

Figure 7.7: Uni�cation information of converted program

size = pred (set;nat) moding (gnd; any)
size(B1;N) reduce(B1;B2); length(B2;N):

Its abstract signature is (set ;nat) while its concrete signature is (bag;nat). The converted

clause is

size(Aset(B);N) s�ze(B;N):

The e�ect of this clause is to transform the set argument in size into a bag argument in

s�ze.

The second step in the conversion of a predicate such as P is to convert each of the

clauses of its body. Suppose that one of these clauses is of the form

P(t1; : : : ; tn) L1; : : : ;Lm.

The clause

Tliteral(P(t1; : : : ; tn)) Tliteral(L1); : : : ;Tliteral(Lm):

is added to the converted program. (There is no sort inconsistency between P and P

because the concrete signature applies to P .) For example, the clause that constitutes

the body of size is converted to

s�ze(B1;N) reduce(B1;B2); length(B2;N):

7.2.3 Uni�cation conversion

The third step of conversion is to carry over the information that pertains to uni�cation.

The classes of information that must be extracted are the equations from implicitly

implemented clusters, the uni�cation predicates from the explicitly implemented clusters,

and the mode restrictions upon uni�cation.
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The uni�cation informal is collected in three steps. First, each of the uni�cation

equations from the implicitly implemented clusters are accumulated. They form the

equational theory that underlies the converted program. The single equation in our

converted program appears in the �rst portion of Figure 7.7.

Second, the uni�cation predicate for each explicitly implemented sort S is recorded.

This predicate is upred(S). These predicates are used to augment the theory presented

by the equations. The uni�cation predicate for set , the only explicitly implemented sort

in our example, appears in the second portion of Figure 7.7.

Third, the moding that restricts the uni�cation of the terms of each sort S is derived

from the implementation of S. LetM be umode(S). Then the mode tuples that restrict

uni�cation are (any;M) and (M; any). For example, umode(bag) = enum , so its uni-

�cation mode tuples are (any ; enum) and (enum; any). The uni�cation mode tuples for

our example program are recorded in the third portion of Figure 7.7.

7.2.4 Mode conversion

The �nal step in conversion is to obtain the mode signatures that de�ne the mode names

for each sort. There signatures are ultimately used to obtain the moded base of the

program, as well as to determine the moding of each predicate symbol. The mode

signatures for our converted example appears in Figure 7.8.

The mode signatures are carried over unaltered from the implicitly implemented clus-

ters. The mode signatures for the explicitly implemented sorts are based upon the mode

implementations. For each mode mapping of the form

M from N1; : : : ;Nn

in an explicitly implemented cluster S, we include the n mode signatures

AS: Ni !M:

in the converted program.

For example, the mode implementation section of the set cluster is
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(nat) any > gnd
0: ! gnd
s: gnd! gnd
s: any ! any

(bag) any > enum > gnd
nil: ! gnd
cons: gnd; gnd! gnd
cons: any; enum! enum
cons: any; any! any

(set) any > enum > gnd
Aset: gnd! gnd
Aset: enum! enum
Aset: any! enum

(set dnt) any
empty: ! any
insert: any; any! any

Figure 7.8: Mode signatures of converted program

modes any > enum > gnd
moded by

gnd from gnd
enum from enum
any from enum

Its converted form is

any > enum > gnd
Aset: gnd! gnd
Aset: enum! enum
Aset: any! enum

7.3 Translating denotations to representations

The only portion of the conversion between denotation and representation form pro-

grams that we have not de�ned is the translation function Tliteral . This function expects

as an argument a literal whose terms are written as denotations, and returns a literal

whose terms are written as representations. In the two forms the terms should stand

for equivalent abstract objects, where equivalence is de�ned by the translation predicate
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that appears in each explicitly implemented cluster.

Before proceeding with the de�nition of Tliteral , we establish the idea behind it by

working through an example. Consider the abstract set object that contains the natural

numbers 1 and 2. One of its denotations is the set term insert(0 ; cons(1 ; empty)), and

one of its representations is the bag term cons(0 ; cons(1 ; empty)). We could, in principle,

use this second term to stand for the set in a representation form program. Because of

overloading, however, we would be unable to tell whether a term in representation form

was a set or a bag.

We take a di�erent approach instead. We use the term Aset(cons(0 ; cons(1 ; empty)))

to stand for the setdiscussed above. The abstracting function symbol Aset is a syntactic

coercion that converts representations of abstract objects to the abstract sort. The

translation process involves using the translation predicates to �nd the representations

that correspond to denotations, and then applying abstracting functions as necessary to

preserve sort correctness.

The translation is done beginning at the inside of the term and moving out. The �rst

step in translating the term insert(0 ; cons(1 ; empty)), for example, is to translate the

innermost term empty. To do this, it is necessary to regard empty not as a term of sort

set , but as a term of sort set dnt , because the translation function is written to expect

arguments of sort set dnt . This is possible because of the deliberate overloading of the

constructor symbols between set and set dnt .

The set translation predicate setTrans maps empty to the bag term nil . (The nat

term 1 , which is also an innermost term, requires no translation as it is of an implic-

itly implemented sort.) We replace the innermost terms with their representations and

consider the next term out, which is now cons(1 ;nil ). With its subterms having been

replaced with representations, this term is now a well-sorted set dnt term. Consequently,

we can use setTrans to translate it to its representation, insert(0 ; cons(1 ;nil )).

Continuing in this fashion for one more step, we obtain the representation version

of the original abstract object. Following the application of the abstracting function

symbol, the translation is complete. It is possible for abstracting functions to be nested;

this poses no problem.
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Although we began by posing the problem of translating literals, we have proceeded

by considering the problem of translating terms. This is because the function Tliteral

does nothing more than use a subsidiary function to translate each of the terms in its

argument literal.

Tliteral(P(t1; : : : ; tn)) = P(̂t1; : : : ; t̂n)

where t̂i = Tterm(ti;Si) and sig(P) = (Si; : : : ;Sn)

It is the function Tterm that does the term translation.

In the remainder of this section we will describe more rigorously the translation

process in general and Tterm in particular. In Section 7.3.1 we show how Tterm can be

de�ned over ground terms, and then in Section 7.3.2 we show how Tterm can be extended

to cope with variable-containing terms. Finally, in Section 7.3.3, we describe how this

translation process can be used to incrementally transform a program that itself contains

the translation predicates.

7.3.1 Translating ground terms

The function Tterm takes two arguments. The �rst is the denotation t of an abstract

object, and the second is the sort S of that term. (This second argument is necessary

because of overloading.) Tterm translates t into a representation form term of the same

sort.

Tterm(t;S) =

(
t̂; if implicit(S)
AS(̂t); if explicit(S)

where t̂ = TS(t;S)

There are two cases, depending upon whether the S is implicitly or explicitly imple-

mented. In both cases, the function TS is invoked to perform the translation. In the

latter case, the abstracting function symbol AS is used to enclose the representation as

discussed earlier.

There is one instance of the function TS for every sort S. There are two explicit

arguments. The �rst is the denotation t of an abstract object, and the second is the sort

R of t. The implicit argument S is the sort of the term in which t is embedded. Tterm

translates t into a representation of t.
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TS(f(t1; : : : ; tn);R) =

(
Tterm(f(t1; : : : ; tn);R); if S 6= R
translateS(f(̂t1; : : : ; t̂n)); otherwise

where t̂i = TS(ti;Ri) and sig(f;R) = (R1; : : : ;Rn! R)

There are two cases. If R and S are not the same, then t is not the same sort as

its parent term. Since the translation of t must be embedded in an abstracting function

symbol, the function Tterm is recursively invoked in this case. If R and S are the same,

the subterms are recursively translated and the resulting term is then translated by the

function translateS .

If S is an implicit sort, then the function translateS is the identity function. Otherwise,

the function application translateS(t) is reduced as follows. The query

 translateS(t;V)

is formed and solved to obtain a substitution �. Here, translateS is the translation

predicate from the sort S and V is a fresh variable. The result of the function application

is �V .

7.3.2 Translating general terms

The de�nitions of TS and translateS are given above only for ground terms. In this

section we show how to extend the translation functions to deal with variables and

variable-containing terms. We �rst discuss why variables must be treated as a special

case, and then give the extensions.

In principle, a set variable, such as S, should be translated to an abstracted variable,

such as Aset(B), where B is a bag variable. It is important to ensure that all occurrences

of a variable in a program are translated to the same abstracted variable. We ensure this

by reusing the variable names of an abstract sort in a denotation form program as the

variable names of the representation sort in the converted program.

Thus, the denotation variable S is translated to the representation variable Aset(S).

There is no danger in reinterpreting S as a bag variable since all occurrences of S will be

translated. We now see how this is accomplished.

The de�nition of TS can be extended to account for variables as follows. If S is an

implicit sort, then
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TS(v;R) = v

because such a variable requires no translation. For explicitly implemented sorts S,

TS(v;R) = Tterm(v;rep(R))

By invoking Tterm , we ensure that the proper abstracting function is wrapped around the

variable.

The di�culty encountered by translateS when applied to terms that contain variables

is more subtle. Consider the solution of the query

 translateset(insert(N;nil));V).

The substitution that we would like to obtain is hV=cons (N;nil i, which is the most

general possible solution. However, the substitution hV=cons(1 ;nil )i, with the variable

N instantiated to 1 , is also a solution.

When solving a translation query, we must require that the variables of the term

being translated be treated as uninterpreted constants rather than as variables. With

this restriction, we avoid the possibility of the program variables being accidentally, and

unnecessarily, instantiated.

7.3.3 Translation paradigm

In our discussion of the translation process, we have assumed that the literals and terms

being translated are separate from the program that de�nes the translation predicates.

When translating a Denali program, this will not be the case.

Because of this, Denali programs must be translated incrementally. Before a term of

an explicit sort S can be converted to representation form, the translation predicate for

S must itself be translated. This will always be possible so long as terms of a sort S dnt

are not permitted to contain objects of sort S. This is in fact a restriction of Denali.

7.4 Abstract meaning

Because a Denali program in representation form is already close to an equational de�nite

clause program, its semantics can be given directly. Recall that a moded equational

de�nite clause program is a triple (H;E;M) composed of a set of de�nite clauses H, an
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equational theory E�; and a set of predicate and uni�cation modings M . The triple is

based upon a set of sorts S, a set of function symbols F, a set of predicate symbols P,

and a set of variable symbols V.

In this section we will show how to extract a moded equational de�nite clause program

from a Denali program that is in representation form. The meaning of the de�nite clause

program, as developed in Chapter 5, is also the meaning of the Denali program.

We begin with the sets of symbols S, F, P, and V. The �rst three of these sets are

already components of a representation form program. The choice of the variable name

universe V is of technical interest only. We will assume, without loss of generality, that

variable names are used consistently throughout Denali programs. This condition can be

imposed, if necessary by a systematic renaming of variables. Under this assumption, we

can choose V to be any consistently sorted superset of the program variables such that

there are a countably in�nite number of variables of each sort.

The set H of de�nite clauses is the set of clauses that appears in the representation

form program.

A set R of equations appears in a representation form program. This set cannot

be the sole basis of the equational theory E� because it constrains only the implicitly

implemented sorts. Instead, we must de�ne E� indirectly to be the smallest equational

theory with the following two properties. First, it must contain R. Second, for all terms

AS (t1) and AS(t2) of an explicitly implemented sort S whose uni�cation predicate is P ,

it must be the case that P (t1; t2) 2 H�E if and only if t1 = t2 2 E�.

Finally, the setM of predicate and uni�cation modings can be obtained from the mode

tuples of the representation form program by interpreting the mode name presentations

as described in Chapter 2.

7.5 Operational Meaning

In this section we describe the meaning of Denali programs in an operational fashion by

sketching an abstract interpreter. This interpreter is de�ned over Denali programs written

in representation form, with the program treated as an implicit argument. In addition
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to objects of the abstract syntax, the interpreter manipulates and returns substitutions.

We will describe the interpreter in two stages. We begin in Section 7.5.1 by giving the

giving the bulk of the interpreter. It mimics the incremental generation and traversal of

an w-esl tree for a query. Next, in Section 7.5.2 we consider uni�cation, and show how

the CRunify iterator of Chapter 6 can be harnessed to perform uni�cation in Denali.

7.5.1 Interpreter

The iterator interpret is the top level of the interpreter. It takes a query as an argument

and yields a possibly in�nite sequence of substitutions as a result. If a mode failure

occurs at any point during interpretation, it signals modeFailure.

interpret = iter (q: query) yields (subst) signals (modeFailure)
for � 2 solveQuery(q) do

yield(�)
end resignal modeFailure

end interpret

The mutually recursive iterators solveQuery and solveLiteral are used to simultane-

ously construct and search, in depth-�rst fashion, an w-esl tree for a query.

The base case of solveQuery is the empty query, which is solved immediately by the

empty substitution. If the query is nonempty, then a well-moded literal is selected and

solved. This amounts to completely solving a node of an w-esl tree. The outer loop

corresponds to solving the left children, and the inner loop corresponds to solving the

right children. If there is no well-moded literal, or if a mode failures occurs when solving

one of the children, then modeFailure is signalled and the attempted solution terminates.
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solveQuery = iter (q: query) yields (subst) signals (modeFailure)
case

jqj = 0) yield(hi)
else)

let l = select(q)
for �1 2 solveLiteral(l) do

for �2 2 solveQuery(�1(q� l)) do
yield(�2 � �1)
end

end

end resignal modeFailure
end solveQuery

Because uni�cation literals must be solved using di�erent techniques from all other

literals, solveLiteral maps literal solution to two separate cases.

solveLiteral = iter (l: literal) yields (subst) signals (modeFailure)
case

l = unify(t1; t2)) reyield(CRunify(t1; t2))
else) reyield(solveRegular(l))
end resignal modeFailure

end solveLiteral

For each clause from the predicate that implements the head symbol of the literal,

solveRegular forms and solves the overlap reduction.

solveRegular = iter (l: literal) yields (subst) signals (modeFailure)
for q 2 overlaps(l) do

for � 2 solveQuery(q) do
yield(�)
end

end resignal modeFailure
end solveRegular

The procedure select returns an arbitrary well-moded literal from its argument query,

and signals modeFailure if there is none. Its implementation would make use of mode

signatures as described in Chapter 2.

select = proc (q: query) returns (literal) signals (modeFailure)

The iterator overlaps yields each of the overlap reductions of its argument literal .

overlaps = iter (l: literal) yields (query)

That is, assuming l is of the form P (t1; : : : ; tn), it yields the query
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unify(t1; r1); : : : ;unify(tn; rn);L1; : : : ;Lm

for each program clause of the form

P(r1; : : : ; rn) L1; : : : ;Lm.

7.5.2 Uni�cation

We rely upon the iterator CRunify to unify pairs of terms in the implementation of

solveLiteral . Its de�nition in Chapter 6 assumes the existence of a subsidiary uni�cation

procedure US corresponding to each sort S. In this section we show how, by suitably

de�ning these procedures US , CRunify can be harnessed for use in the abstract inter-

preter.

Recall that CRunify makes three requirements concerning the subsidiary procedures

US . They are

� The equations constraining each implicit sort S must contain only sort-regular
equations.
� For each implicit sort S, US must be de�ned over the set of terms that are
homogeneous in FS .
� For each explicit sort S, US must be de�ned over all terms of sort S.

We now show how each of these requirements is satis�ed.

The �rst requirement is guaranteed by a static semantic constraint upon implicitly

implemented clusters.

The uni�cation predicates US of the second requirement are provided by the language

implementation. Consequently, only sets of equations for which uni�cation procedures

are known to the implementation can be incorporated into implicit implementations of

clusters.

The uni�cation predicates US of the third requirement are based upon the uni�ca-

tion predicates supplied by the programmer within explicitly implemented clusters. The

following iterator Uset illustrates the principle.
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Requires: The arguments t1 and t2 are of sort set.

Uset = iter (t1: term; t2: term) yields (subst) signals (modeFailure)
assume t1 = Aset(r1)
assume t2 = Aset(r2)
for � 2 solveQuery(setUnify(r1; r2)) do

yield(�)
end resignal modeFailure

end Uset

The iterator forms and solves a query based upon the uni�cation predicate for set , which

is setUnify.





8 Conclusions

In this dissertation we have described the design of Denali, an equational logic program-

ming language. Denali is based upon the premise that programs and pieces of programs

written in logic languages should be separately speci�able and implementable, just as in

conventional languages. The major design goal of Denali was to support such a program-

ming methodology.

Achieving this goal required developing a coherent collection of new approaches to

organizing, implementing, and describing equational logic programs. We summarize these

research contributions in Section 8.1. In the course of our research we have identi�ed a

number of areas that merit further investigation; we outline these areas in Section 8.2.

8.1 Contributions

The primary contribution of this dissertation is the development of the framework that is

the basis of Denali, a logic programming language designed to support programming-in-

the-large. Elaborating this framework involved identifying the two forms of abstraction

around which we believe logic programs should be organized and showing how programs

could be constructed using them.

163
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In most logic languages, programs are composed of individual de�nite clauses and,

in some cases, equations. In Denali, they are composed of implementations of predicate

and data abstractions. The cornerstone of predicate abstraction is the idea that multi-

valued modes should be used, as part of a two-dimensional type system, to express

structural restrictions upon arguments. The cornerstone of data abstraction is the idea

that programmers should be helped to implement equational uni�cation procedures.

The mode system of Denali is more pervasive than that of logic languages in which

modes are used only as annotations that help control the order of interpretation. In

Denali, modes are exploited in almost all aspects of an implementation. In addition

to helping control the interpreter, modes document predicate interfaces, provide control


ow by serving as guards of clauses, and help simplify the implementation of uni�cation

by restricting the formation of objects. The runtime checking of mode restrictions serves

to catch programming errors that would otherwise be undetected.

Denali modes are also more expressive than those of other languages. Existing lan-

guages provide modes that distinguish only between variables and non-variables. These

bi-valued modes are generic to all types of objects, and thus can be built directly into

the language. Denali's multi-valued modes can express the �ner-grained distinctions that

are needed to fully document predicate interfaces. Because the distinctions that are re-

quired depend upon the application, Denali modes must be de�ned by the programmer.

Consequently, we developed a mode signature technique for de�ning them.

Denali is the �rst logic language that distinguishes between the way abstract objects

are denoted and the way that they are represented. This is one of the aspects of Denali

that makes it possible to build programs in layers of abstractions, as is possible in con-

ventional programming languages. It also makes it possible to introduce built-in types

with which representations other than terms can be constructed.

We adopted a novel approach to obtaining implementations of equational uni�cation.

Other languages attempt to handle uni�cation automatically by synthesizing implemen-

tations from equations. The known approaches have limited applicability and almost al-

ways produce ine�cient implementations. Furthermore, there are theoretical limitations

upon both the applicability and performance of such approaches. In Denali, we place
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the burden of implementing uni�cation procedures upon the programmer. To make this

approach feasible, we place at the disposal of the programmer a number of techniques

for restricting and thus simplifying uni�cation. Uni�cation procedures are de�ned on a

sort-by-sort basis and then combined by the implementation. Because implementations

of abstractions can be layered, uni�cation procedures provided by built-in abstractions

can be incorporated into user-de�ned implementations. Most importantly, modes can be

used both to place interface restrictions upon uni�cation procedures and to restrict the

formation of objects.

Besides presenting a language design, we have also established the formal basis for De-

nali. By devising w-esl resolution, we provided the basis for the semantics of Denali and

the basis for constructing speci�cations and de�ning satisfaction for Denali programs. By

extending an existing algorithm to obtain a procedure for combining moded uni�cation

procedures, we established the cornerstone of a Denali interpreter.

8.2 Further work

In Chapter 5 we developed the background necessary for de�ning the correctness of

implementations of abstractions relative to speci�cations expressed as moded equational

de�nite clause programs. We have not yet completed the de�nition of satisfaction, so this

represents an important avenue for further work. The key to the de�nition of satisfaction

is Theorem 5.15, which establishes the fact that operationally equivalent programs are

interchangeable.

We have omitted from our semantics of Denali the consideration of predicates that

are implemented by the guarded blocks introduced in Chapter 2. Incorporating guarded

blocks into the operational semantics would be a simple extension. Accounting for them

in the abstract semantics is not as easy, since these semantics are based upon unguarded

de�nite clause programs.

By 
eshing out the design framework that we have presented, and then implementing

Denali, it would be possible to obtain experimental evidence of how closely Denali comes

to satisfying its design goals. The most critical remaining design issue is determining
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the set of built-in data abstractions and uni�cation procedures. Similarly, the most

challenging part of an implementation would be realizing these built-in components.

The rest of the language implementation should be straightforward.

Not surprisingly, modes provide a number of directions for further research. For ex-

ample, it should be possible to liberalize their de�nition. We currently require that every

mode be closed under both instantiation and uni�cation. By combining these two closure

properties and requiring only that a mode be closed under instantiation by substitutions

produced through uni�cation, we could obtain a more expressive mode system. One

drawback of this approach is that it would eliminate our ability to syntactically check

that modes are closed under instantiation.

In a similar vein, a more powerful technique for implementing modes would also add

expressive power. The mode signature technique, while simple and e�cient, is far from

complete. The evolution of modes along the lines that have been followed by polymorphic

type systems in programming languages would also be valuable.

It might be possible to exploit modes in domains other than resolution. For example,

narrowing and related uni�cation synthesis techniques might be rendered more robust and

e�cient if they could exploit mode restrictions. This would in turn make the synthesis

approach more appealing as a means of implementing an equational logic language.

Finally, there could be other applications for moded uni�cation. Equational uni�ca-

tion algorithms are used in a number of contexts other than logic languages, including

term rewriting systems and theorem provers. All systems that depend upon equational

uni�cation are limited by the availability of e�cient uni�cation algorithms. It might be

possible to exploit the potentially more e�cient moded uni�cation algorithms instead.



References

[Abrial 80] J. R. Abrial. The Speci�cation Language Z: Syntax and \Seman-
tics". Technical report, Programming Research Group, Oxford
University, April 1980.

[Arnborg 85] S. Arnborg and E. Tid�en. Uni�cation Problems with One-Sided
Distributivity. In J.-P. Jouannaud, editor, Proceedings of the First
International Conference on Rewriting Techniques and Applica-

tions, Dijon, France, pages 398{406, Berlin, May 1985. LNCS 202,
Springer-Verlag.

[Barnes 80] J. G. P. Barnes. An Overview of Ada. Software|Practice and

Experience, 10(11):851{887, November 1980.

[Baxter 73] L. D. Baxter. An E�cient Uni�cation Algorithm. Technical Re-
port CS-73-23, Department of Applied Analysis and Computer Sci-
ence, University of Waterloo, Waterloo, Ontario, July 1973.

[Benanav 85] D. Benanav, D. Kapur, and P. Narendran. Complexity of Match-
ing Problems. In J.-P. Jouannaud, editor, Proceedings of the First

International Conference on Rewriting Techniques and Applica-

tions, Dijon, France, pages 417{429, Berlin, May 1985. LNCS 202,
Springer-Verlag.

[Burstall 81] R. M. Burstall and J. A. Goguen. An Informal Introduction to
Speci�cations using CLEAR. In R. S. Boyer and J. S. Moore,
editors, The Correctness Problem in Computer Science, pages 185{
213. Academic Press, London, 1981.

[Clark 85] K. L. Clark and S. Gregory. Notes on the Implementation of Par-
log. Journal of Logic Programming, 2(1):17{42, May 1985.

[Clocksin 81] W. F. Clocksin and C. S. Mellish. Programming in Prolog.
Springer-Verlag, Berlin, 1981.

[Corbin 83] J. Corbin and M. Bidoit. A Rehabilitation of Robinson's Uni�ca-
tion Algorithm. In R. E. A. Mason, editor, Information Process-

ing 83. Proceedings of the IFIP Ninth World Computer Confer-

ence, Paris, pages 909{914, Amsterdam, September 1983. North-
Holland.

167



168 References

[Dahl 70] O. Dahl, B. Myhrhaug, and K. Nygaard. The SIMULA 67 Com-
mon Base Language. Publication S-22, Norwegian Computing
Center, Oslo, 1970.

[Dembinski 85] P. Dembinski and J. Maluszynski. And-parallelism with Intelligent
Backtracking for Annotated Logic Programs. In Proceedings of the

1985 Symposium on Logic Programming, Boston, pages 29{38, Los
Angeles, July 1985. IEEE Computer Society.

[Emden 76] M. H. van Emden and R. A. Kowalski. The Semantics of Pred-
icate Logic as a Programming Language. Journal of the ACM,
23(4):733{742, October 1976.

[Fay 79] M. Fay. First-order Uni�cation in an Equational Theory. In Pro-

ceedings of the Fourth Workshop on Automated Deduction, Austin,
TX, pages 161{167, February 1979.

[Fribourg 84] L. Fribourg. Oriented Equational Clauses as a Programming Lan-
guage. Journal of Logic Programming, 1(2):165{177, August 1984.

[Garey 79] M. R. Garey and D. S. Johnson. Computers and Intractability; A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
San Francisco, 1979.

[Goguen 86] J. A. Goguen and J. Meseguer. EQLOG: Equality, Types, and
Generic Modules for Logic Programming. In D. DeGroot and
G. Lindstrom, editors, Logic Programming. Functions, Relations,

and Equations, pages 295{363. Prentice-Hall, Englewood Cli�s,
NJ, 1986.

[Goldberg 84] A. Goldberg and D. Robson. Smalltalk 80: The Language and Its

Implementation. Addison-Wesley, Reading, MA, 1984.

[Guttag 85] J. V. Guttag, J. J. Horning, and J. M. Wing. Larch in Five Easy
Pieces. Technical Report 5, Digital Equipment Corporation Sys-
tems Research Center, Palo Alto, CA, July 1985.

[Huet 80] G. Huet and D. C. Oppen. Equations and Rewrite Rules: A Sur-
vey. In R. V. Book, editor, Formal Language Theory: Perspectives

and Open Problems, pages 349{405. Academic Press, New York,
1980.

[Hullot 80] J.-M. Hullot. Canonical Forms and Uni�cation. In W. Bibel and
R. A. Kowalski, editors, Proceedings of the Fifth Conference on

Automated Deduction, Les Arcs, France, pages 318{334, Berlin,
July 1980. LNCS 87, Springer-Verlag.



References 169

[Ja�ar 84] J. Ja�ar, J.-L. Lassez, and M. J. Maher. A Theory of Complete
Logic Programs with Equality. Journal of Logic Programming,
1(3):211{223, November 1984.

[Jeanrond 80] J. Jeanrond. Deciding Unique Termination of PermutativeRewrite
Systems: Choose Your Term Algebra Carefully. In W. Bibel and
R. A. Kowalski, editors, Proceedings of the Fifth Conference on

Automated Deduction, Les Arcs, France, pages 335{355, Berlin,
July 1980. LNCS 87, Springer-Verlag.

[Jouannaud 83] J.-P. Jouannaud, C. Kirchner, and H. Kirchner. Incremental Con-
struction of Uni�cation Algorithms in Equational Theories. In
J. Diaz, editor, Proceedings of the Tenth EATCS International Col-

loquium on Automata, Languages, and Programming, Barcelona,
pages 361{373, Berlin, July 1983. LNCS 154, Springer-Verlag.

[Kirchner 85] C. Kirchner. Methodes et Outils de Conception Systematique

d'Algorithms d'Uni�cation dans les Th�eories Equationalles. PhD
thesis, Centre de Recherche en Informatique de Nancy, UER de
Mathematiques, Universit�e de Nancy I, Nancy, France, June 1985.

[Kornfeld 86] W. A. Kornfeld. Equality for Prolog. In D. DeGroot and G. Lind-
strom, editors, Logic Programming. Functions, Relations, and

Equations, pages 279{293. Prentice-Hall, Englewood Cli�s, NJ,
1986.

[Kowalski 71] R. A. Kowalski and D. Kuehner. Linear Resolution with Selection
Function. Arti�cial Intelligence, 2(3/4):227{260, Winter 1971.

[Kowalski 74] R. A. Kowalski. Predicate Logic as Programming Language. In
J. L. Rosenfeld, editor, Information Processing 74. Proceedings of

IFIP Congress 74, Stockholm, pages 569{574, Amsterdam, August
1974. North-Holland.

[Liskov 81] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Scha�ert,
R. Schei
er, and A. Snyder. CLU Reference Manual. LNCS 114,
Spriger-Verlag, Berlin, 1981.

[Livesey 76] M. Livesey and J. H. Siekmann. Uni�cation of A+C Terms (Bags)
and A+C+I Terms (Sets). Interner Bericht 3/76, Institut f�ur In-
formatik I, Universit�at Karlsruhe, 1976.

[Makanin 77] G. S. Makanin. The Problem of Solvability of Equations in a Free
Semigroup. Soviet Mathematics|Doklady, 18(2):330{334, March-
April 1977.

[Malachi 86] Y. Malachi, Z. Manna, and R. Waldinger. TABLOG: A New Ap-
proach to Logic Programming. In D. DeGroot and G. Lindstrom,



170 References

editors, Logic Programming. Functions, Relations, and Equations,
pages 365{394. Prentice-Hall, Englewood Cli�s, NJ, 1986.

[Manna 80] Z. Manna and R. Waldinger. A Deductive Approach to Program
Synthesis. ACM Transactions on Programming Languages and

Systems, 2(1):90{121, January 1980.

[Martelli 82] A. Martelli and U. Montanari. An E�cient Uni�cation Algo-
rithm. ACM Transactions on Programming Languages and Sys-

tems, 4(2):258{282, April 1982.

[Milner 78] R. Milner. A Theory of Type Polymorphism in Programming.
Journal of Computer and System Sciences, 17(3):348{375, Decem-
ber 1978.

[Naish 85] L. Naish. Automatic Control for Logic Programs. Journal of Logic
Programming, 2(3):167{183, November 1985.

[Nakajima 80] R. Nakajima, M. Honda, and H. Nakahara. Hierarchical Program
Speci�cation and Veri�cation|a Many-sorted Logical Approach.
Acta Informatica, 14(2):135{155, August 1980.

[Paterson 78] M. S. Paterson and M. N. Wegman. Linear Uni�cation. Journal

of Computer and System Sciences, 16(2):158{167, April 1978.

[Plotkin 72] G. D. Plotkin. Building-in Equational Theories. In B. Meltzer
and D. Michie, editors, Machine Intelligence 7, pages 73{90. John
Wiley & Sons, Toronto, 1972.

[Porto 82] A. Porto. A Language for Extended Programming in Logic. In
M. V. Carneghem, editor, Proceedings of the First International

Logic Programming Conference, Marseille, pages 31{37, September
1982.

[R�ety 85] P. R�ety, C. Kirchner, H. Kirchner, and P. Lescanne. NARROWER:
a New Algorithm for Uni�cation and its Application to Logic Pro-
gramming. In J.-P. Jouannaud, editor, Proceedings of the First

International Conference on Rewriting Techniques and Applica-

tions, Dijon, France, pages 141{156, Berlin, May 1985. LNCS 202,
Springer-Verlag.

[Robinson 65] J. A. Robinson. A Machine-Oriented Logic Based on the Resolu-
tion Principle. Journal of the ACM, 12(1):23{41, January 1965.

[Schmidt-Schauss 86] M. Schmidt-Schauss. Uni�cation in Many-Sorted Equational The-
ories. In J. H. Siekmann, editor, Proceedings of the Eighth Inter-

national Conference on Automated Deduction, Oxford, England,
pages 538{553, Berlin, July 1986. LNCS 230, Springer-Verlag.



References 171

[Shapiro 83] E. Shapiro. A Subset of Concurrent Prolog and its Interpreter.
Technical Report TR-003, ICOT, Tokyo, February 1983.

[Siekmann 79] J. H. Siekmann. Uni�cation of Commutative Terms. In E. W. Ng,
editor, EUROSAM '79, An International Symposium on Symbolic

and Algebraic Manipulation, Marseille, pages 530{545, Berlin, June
1979. LNCS 72, Springer-Verlag.

[Slagle 74] J. R. Slagle. Automated Theorem-Proving for Theories with Sim-
pli�ers, Commutativity and Associativity. Journal of the ACM,
21(4):622{642, October 1974.

[Sterling 86] L. Sterling and E. Shapiro. The Art of Prolog: Advanced Program-

ming Techniques. MIT Press, Cambridge, MA, October 1986.

[Stickel 81] M. E. Stickel. A Uni�cation Algorithm for Associative-
Commutative Theories. Journal of the ACM, 28(3):423{434, July
1981.

[Szab�o 78] P. Szab�o. The Undecidability of the D+A-Uni�cation Problem.
Technical report, Institut f�ur Informatik I, Universit�at Karlsruhe,
1978.

[Tid�en 86] E. Tid�en. Uni�cation in Combinations of Collapse-Free Theories
with Disjoint Function Symbols. In J. H. Siekmann, editor, Pro-
ceedings of the Eighth International Conference on Automated De-

duction, Oxford, England, pages 431{449, Berlin, July 1986. LNCS
230, Springer-Verlag.

[Ullman 85] J. D. Ullman. Implementation of Logical Query Languages for
Databases. ACM Transactions on Database Systems, 10(3):289{
321, September 1985.

[Warren 77] D. Warren. Implementing Prolog|Compiling Predicate Logic
Programs, Volume 1. DAI Research Report 39, University of Ed-
inburgh, May 1977.

[Yelick 85] K. A. Yelick. A Generalized Approach to Equational Uni�cation.
Technical Report TR-344, MIT Laboratory for Computer Science,
Cambridge, MA, August 1985.





Biography

Joseph L. Zachary was born in Taylorsville, North Carolina, where he attended the
public school system, graduating from Alexander Central High School in May 1975. He
subsequently enrolled at the Massachusetts Institute of Technology and graduated in
June 1979 with the S.B. degree in Computer Science and Engineering. He then worked
for a year in the Word Processing Group of the Digital Equipment Corporation as one
of the last software engineers to program the PDP-8. This experience inspired him to
return to MIT, where he entered graduate school in the fall of 1980. His tenure at
MIT was interrupted in the summer of 1982, when he worked at the Xerox Palo Alto
Research Center, and in the summer of 1983, when he visited the Universit�e de Nancy.
He received the S.M. degree in Computer Science in June 1983, and expects to receive the
Ph.D. degree in Computer Science in September 1987. He will assume an appointment
as Assistant Professor of Computer Science at the University of Utah at that time.

173


