
l

i
I .

~ . . .

A :

•IIITrT•.Y:&11U1•

A TECHNIQUE FOR CONSTRUCTING HIGHLY-AVAILABLE SERVICES

by

Rivka Ladin
Barbara Liskov

Liuba Shrira

December 1987

©Massachusetts Institute of Technology 1987

This research was supported in part by the Advanced Research Projects Agency
of the Department of Defense, monitored by the Office of Naval Research under contract
N00014-83-K-0125, by the National Science Foundation under grant DCR-8503662 and by the HTI
Postdoctoral Fellowship.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

"'
i

Table of C.M1J11Je·
1 Introduetioa
2 Orphan DetecQon

3 lmphm•• dte Nip Serrice
a.1 Op••••.._

4 1'he o..al a.,He.._ Tecllaiqae
5 Performaaee
I Ooul111ioat

L A.ppea4la
1.1 The Model
1.2~

I.2.11'.11•9*i-Mofilles.nic.
1.2.1 Ccln'tdll• ., .. s..iee

1.3 Clieat laWfue

1
2

• 8
11
13
15
1f'

1•
19
19
20
n
•

A Technique for Constructing Highly-Available Services

Rivka Ladin
Barbara Liskov

Liuba Shrira

MIT Laboratory for Computer Science
Cambridge, Ma. 0213Q

Abstract

This paper describes a general method for constructing a highly-available service for use in a distributed

system. It gives a specific implementation of the method and proves the implementation correct. The

service consists of replicas that reside at several different locations in a network. It presents its clients

with a consistent view of its state, but the view may contain old information. Clients can indicate how

recent the information must be. The method can be used in applications satisfying certain semantic

constraints. For applications that can use it, the method performs better than other replication

techniques.

Keywords: distributed systems, algorithms, reliability, availability, data replication

1

1 Introduction

This paper describes a general method for constructing a highly-available service for use in a distributed

system. It gives a specific implementation of the method and proves the implementation correct. The

service presents its clients with a consistent view of its state, but the view may contain old information.

Clients can indicate how recent the information must be. The method was invented as a way of

optimizing the orphan detection strategy developed for the Argus language and system [10], [11], but

appears to be applicable to a wide range of applications, including garbage collection of objects in a

distributed heap [12], locating movable objects in a distributed system [8], and deletion of unused versions

in a hybrid concurrency control scheme [19]. It requires that applications satisfy certain semantic

constraints. For such applications, the method performs better than other replication schemes.

The method is intended to be used in an environment in which individual computers, or nodes, are

connected by a communications network. Both the nodes and the network may fail; the method tolerates

these failures. The nodes are failstop processors [17]; we assume they can crash, but Byzantine failures

are not expected. We assume that nodes do eventually recover from crashes, and that each node has

access to a stable storage device that (with very high probability) preserves the information entrusted to

it [9]. After a crash, a node can recover the portion of its state that was written to its stable storage

device before the crash.

The network connecting the nodes can have an arbitrary topology. For example, it might consist of a

number of local area nets connected via gateways to a long-haul network. Again we rule out Byzantine

failures, but otherwise the network can behave arbitrarily badly. For example, it can partition.

Therefore messages can be lost, delayed, duplicated, and delivered out of order.

We are concerned here with a distributed implementation of a logically centralized service. Information

stored by the service is replicated at different nodes of the network. Reasons for implementing a service

in this way are high availability and low response time. However, in spite of its distributed

implementation, the service is logically centralized in the sense that it appears as a single entity to clients.

Clients interact with the service by calling its operations. Operation calls are atomic: they are mutually

indivisible, and a call either happens completely or not at all.

When data of a service is replicated at several nodes, the information at the different replicas may not

be identical. Clients can observe the information at the replicas only by calling service operations, and

the implementation of the operations can hide the inconsistencies. One way to implement operations is to

use a voting scheme as described in [6]. In such a scheme, the nodes visited by operations that modify the

service state must intersect those visited by operations that either read or modify the state. There is

some freedom in choosing how to implement the operations; for example, if there are three nodes,

2

information could be written to three nodes and read from only one, or information could be both read

and written at two nodes. The former choice enhances the availability and response time of reading;

availability of writing is poor since all three nodes have to be up and accessible, although this problem

can be mitigated to some extent by using the technique described in [4], [3]. Any choice made for reading

and writing results in at least some operations having reduced availability and requiring more message

passing than is needed if the service is not replicated.

An attractive alternative to voting schemes is to have both reading and writing take place at just one

replica; any convenient replica can be used. Replicas communicate new information among themselves in

background mode by exchanging "gossip" messages. Gossip schemes in which a replica resides at every

client node that uses the service are described in [5], [20]. As long as things are running well, information

will propagate quickly, so the amount of time replicas contain different information will be small. If

there are crashes and partitions, however, differences can persist for long periods of time.

Not all applications can use a gossip scheme. For example, if withdrawals from a bank account could

be made independently at different replicas there would be no way of preventing overdrafts. Other

applications are more forgiving. For example, in a mail system (e.g., [2]), a request to read mail need not

produce all messages that have been sent; a promise of timely delivery is sufficient. However, there may

be limits on how "old" the information used actually is. For example, it may be unacceptable for a user

to see a message that he deleted the last time he logged in. The above gossip schemes have no way of

ensuring that information seen by clients is "recent enough."

This paper describes a gossip scheme that exploits the semantics of the applications to provide high

availability. The scheme makes use of just a few replicas. Also, clients have a way of ensuring that the

information returned is "recent enough."

The remainder of this paper presents our approach. We begin by describing a particular service to be

implemented by the technique. Then we describe how that service is implemented; a proof that our

implementation works is given in the appendix. Next we generalize our technique and characterize what

applications can use the technique and how different requirements of applications affect the

implementation method. The following section compares the performance of our method with some other

replication methods. We conclude with a summary and discussion of future work.

2 Orphan Detection

To make our presentation concrete and to motivate our approach, we will describe how the replication

method works in the context of the particular application for which it was invented. The application is

orphan detection in the Argus system. Only part of our orphan detection strategy is described below; the

full method is discussed in [13].

3

Computations in Argus run as atomic tran8action8, or actionB for short. An action is an orphan if it is

active but an event has occurred that will prevent it from committing. One kind of event that causes

orphans is a node crash. If an action ran at a node, and then the node crashed while the action continued

to run elsewhere, the action cannot commit because any modifications it made at the node, and also any

locks that were being held there on its behalf, are lost in the crash.

The logical nodes of the Argus system are called guardian8. Each guardian resides on a single physical

node and communicates with other guardians by means of remote procedure calls. An action starts at

one guardian and spreads to others by means of remote calls. When an action commits, the guardians

visited by the action participate in the two-phase commit protocol [7] to ensure that the action either

commits everywhere, or aborts everywhere if committing is impossible.

We detect crash orphans by keeping track of crashes of guardians. Each guardian maintains a local

crash count and a map. The crash count is an integer that is incremented after every crash; it counts the

number of times its guardian has crashed since it was created. The map stores a crash count for each

guardian. (Information is not stored explicitly in the map for guardians that have not yet been created;

all such guardians are mapped implicitly to a crash count of zero.) After a guardian recovers from a

crash, it increments its crash count and stores the new value in stable storage. It also updates its map to

reflect its new crash count.

We also maintain a dependency list for each action; the list records each guardian visited by the action

and its crash count at the time of the visit. The list is sent with the action as it moves from guardian to

guardian. The dependency list and map together can be used to detect orphans. For example, suppose

that action A visited guardian G when G's crash count was 3. If later A visits guardian H, and H's map

contains a larger crash count than 3 for G, we can deduce at H that A is an orphan. When H discovers

this it causes A to abort.

Our orphan detection algorithm requires that when a guardian G processes a message from guardian H,

G's map must contain information at least as recent as that in H's map. (The reason for this requirement

is discussed in [18], [13].) We satisfy this condition by sending H's map in the message; G can then merge

any new information into its map to satisfy the condition.

Thus, every message M contains the map of its sending guardian. In addition, each message sent on

behalf of a remote call (this message is either a call message or a reply message) contains the dependency

list of its action.

Orphans are recognized as part of the processing of incoming messages. When a message M arrives at

guardian G, it is processed as follows:

4

1. The dependency list of each action A that is running at G is compared with M's map. If some
guardian in the A's dependency list has a higher crash count in M's map than in the list, A is
an orphan.

2. The maps are merged by retaining the larger of the two crash counts for each guardian, and
the merged map replaces G's map.

3. If the incoming message is a call or reply message, then M's dependency list is compared with
G's map, and if any guardian in common has a larger crash count in G's map, the calling or
replying action is an orphan, and the message is discarded.

In addition, a guardian's map is written to stable storage whenever the guardian prepares during 2-

phase commit, so that the guardian can recognize orphans properly after it recovers from a crash.

The problem with the above algorithm is that the map can be very large since it must contain an entry

for every guardian that ever existed. Not only must this information flow in messages, thus consuming

bandwidth, but it must be processed whenever a message is received, which can be costly. The central

service technique was invented to solve these problems. The idea is to store the map at a central map

service, and to associate with each distinct map value a unique timestamp. The timestamp is sent in

messages instead of the map. Timestamps are ordered, and later timestamps correspond to maps

containing more recent information.

The map service provides three operations:

1. The enter operation

enter (guardian-id, integer) returns (timestamp)

is used to advance a guardian's crash count; it is called when a guardian is first created, and
each time a guardian recovers from a crash. It takes the guardian's identifier (the
guardian-id) and its current crash count as arguments. The service installs the crash count in
its map, increments its timestamp, and stores both on stable storage. Then it returns its
timestamp.

2. The refresh operation

refresh (timestamp) returns (map, timestamp)

is called whenever a guardian needs more up-to-date information. It takes a timestamp as an
argument; it returns a map and a timestamp. The returned timestamp is guaranteed to be
greater than or equal to the argument timestamp. (The reason for the timestamp argument
will be explained shortly.)

3. The delete operation

delete (guardian-id) returns (timestamp)

is called to notify the service that a guardian has been destroyed. It takes the guardian-id as
an argument. It records information about the destruction in its map, increments its
timestamp, stores both on stable storage, and then returns the timestamp.

5

Each message M has a timestamp, M.ts; this is the timestamp of its sending guardian. The receiving

guardian G also has a timestamp, G.ts. When G receives a message, the following processing takes place:

1. If M.ts = G.ts, then no orphan detection need be done since both the sender and receiver have
the same map.

2. If M.ts < G.ts, there is no danger of any actions running at G being recognized as orphans
due to information in M because all crash counts in G's map are equal to or greater than those
in the map of the sender of M. However, the information in G's map is used to detect whether
a call or reply message is an orphan.

3. Otherwise, G calls the refresh operation to obtain an up-to-date map and timestamp. It uses
the new information to detect and destroy any of its running actions that may be orphans.
Then it proceeds as in step 1 or 2 above.

G no longer needs to store its map in stable storage, since the service is responsible for this. However, it

does need to keep its current crash count in stable storage.

Orphans can be detected more rapidly using the service than in the original algorithm. The reason is

that the map returned by the refresh operation may contain more recent information than what was

available by merging a guardian's map with the map in an incoming message. In essence, our algorithm

relies on propagation of information as messages flow around the system. Since everyone communicates

with the service, it provides a communication path that allows especially fast propagation. Fast

propagation is good since it allows orphans to be detected sooner.

Using a map service is efficient if guardians usually need not communicate with the service before

processing a message. Communication at such a time can be avoided for two reasons. First, since crashes

are rare, the map changes infrequently. Therefore, the system is likely to have long periods of time in

which all guardians store the same map and timestamp. In addition, guardians can communicate with

the service periodically in background mode to keep their map and timestamp up to date and can detect

local orphans when responses from the service arrive. Therefore little work need be done to detect

orphans when messages from other guardians arrive.

However, if the service resides on a single node, inaccessibility of that node because of a crash or

partition would be a problem. Guardians could not recover from crashes, and incoming messages might

not be able to be processed. Instead the service must be replicated so that it will be highly available. In

the next section we describe how such a service can be implemented.

In our implementation, enters and deletes are executed at just one replica. When a replica carries out a

refresh operation, it might have out-of-date information in its map. For example, it might not know

about some enter that is recorded in either the sending or receiving guardian's current map. The orphan

6

algorithm, however, requires that the new map at the receiving guardian record all these events.

Therefore, we need a way of ensuring that refresh returns information that is recent enough.

We solve by this problem by passing a timestamp as an argument to refresh. Our timestamps are

partially ordered as explained further below. Larger timestamps are associated with more recent states,

i.e., those mapping guardians to larger timestamps. Timestamps can be merged; merging t and s

produces a timestamp r that is greater than or equal to both t ands.

To ensure that refresh returns recent information, the receiving guardian (in step (3) above) merges its

timestamp with that of the message, and sends the merged timestamp as an argument of refresh. The

timestamp returned by refresh is guaranteed to be greater than or equal to this timestamp, and therefore

the map returned by refresh has information at least as recent as the guardian's old map and the sender's

map.

3 Implementing the Map Service

This section describes how to implement the map service to provide high availability. In what follows

we describe the processing and the stored information in a general way, without considering possible

optimizations; some optimizations are discussed in Section 3.1. Before discussing the implementation,

however, we give a more precise specification of the map service. A formal specification is given in the

appendix, which also contains a proof that our implementation works correctly.

Recall that the service provides three operations:

enter (guardian-id, integer) returns (timestamp)
delete (guardian-id) returns (timestamp)
refresh (timestamp) returns (map, timestamp)

A client receives timestamps as results of executing enters and deletes, but is able to observe the state

only by executing the refresh operation. Therefore, the specification is expressed in terms of what can be

observed by calls of refresh:

1. If a refresh is after a delete (i.e., its argument timestamp is greater than or equal to that
returned by the delete), it will not observe an association for the deleted guardian.

2. If a refresh is after an enter, it will observe the <guardian-id, crash-count> pair unless the
enter has been superseded either by another enter for that guardian with a later crash count,
or by a delete for that guardian.

3. The timestamp returned by a refresh is greater than or equal to the argument timestamp, and
every <guardian-id, crash-count> pair in the returned map was added by an enter operation.

The service is implemented by a small number of replicas (e.g., 3 to 7). We assume in this paper that

7

there are a fixed number of replicas residing at fixed locations. Therefore both clients and replicas know

how to locate replicas.

When a service operation is called by a client, code running at the client sends an appropriate message

to a replica. There is a message type corresponding to each operation. The replica responds by sending

back a reply message. If the response is slow, the code at the client may send the message to a different

replica, or the client might send messages to all replicas in parallel. Therefore a single operation call can

result in messages being sent to several different replicas. As mentioned above, we assume messages can

be lost, delayed, duplicated, and delivered out of order.

Each replica maintains a state and the timestamp of that state. The state is simply a map that

associates guardian-ids with either crash counts or a special value representing a deletion. Entries are

stored in this map only for guardian-ids that map to nonzero crash counts; thus, if there is no entry for a

guardian-id, that guardian's crash count is zero. Initially the map at each replica contains no entries, and

the timestamp at each replica is zero. Replicas respond to messages sent by operations by either looking

up information in the state, or by generating a new local state and timestamp. They communicate with

one another periodically by exchanging gossip messages.

The mam problem that must be solved to make this work efficiently is the generation of timestamps.

Replicas must be able to generate new timestamps independently, or our implementation will be

dependent on a timestamp service posing exactly the same problems we are trying to solve. Furthermore,

we must generate timestamps in such a way that later timestamps are associated with states containing

more recent information.

We solve this problem by using multipart timestamps, where there is one part for each replica. Thus if

there are n replicas, a timestamp t is

t = <t1, ... , t
0
>

where each part is a nonnegative integer. The initial (zero) timestamp contains a zero in each part. Since

there will typically be a small number of replicas, using such a timestamp is practical. (A similar

technique is described in [16].)

A replica generates a new timestamp by incrementing its part of its timestamp by one, while leaving all

other parts unchanged. Since each part can be advanced by only a single replica, we guarantee that the

resulting timestamps are unique. Some timestamps can be compared: For two timestamps t and s, t is

less than or equal to s provided t. is less than or equal to s. for each part i of the timestamp. Other
I I

timestamps are incomparable. Two timestamps t and s are merged by retaining the larger value for each

part; as required, the result of the merge is greater than or equal to both t and s.

8

The messages are processed at the replicas as follows: If a replica receives an enter(g, x) message, it

looks in its state to see if there is an association for g. If there is no association and x is greater than

zero, or if g is mapped to a value less than x, the replica associates x with gin its local state, advances its

timestamp, and returns the new timestamp in a reply message. Otherwise it simply returns its current

timestamp.

When a replica receives a delete(g) message, it looks up g in its local state. If g is already marked as

deleted, it returns its current timestamp; otherwise it marks g as deleted in the local state, advances its

timestamp and returns the new timestamp.

A refresh(t) message causes the replica to compare t with its timestamp, tR" If t is not less than or

equal to tR, the replica needs more information. Either it waits for gossip messages from the other

replicas or it sends a query to another replica to elicit the information. Communication between replicas

is discussed below. As soon as t ~ t R' it returns its map and t R"

Periodically, a replica sends a gossip message containing its timestamp and its state to other replicas.

When a replica receives a gossip message, it proceeds as follows: If the timestamp in the message is less

than or equal to its timestamp, it discards the message since it is old. Otherwise it merges the timestamp

of the message with its timestamp. The merged timestamp becomes the new timestamp of the replica.

Then it merges the state of the message with its own by retaining the larger value for each association

that is present in both states, and by retaining all associations that are present in only one state. The

special "delete" value is treated as larger than all integers in doing the merge.

As discussed further in Section 5, it may not be necessary for replicas to store their maps in stable

storage. In this case, a replica need not write to stable storage every time it processes an update. A

replica's part of its timestamp must be monotonic. It could be obtained by reading the replica's clock if

the clock were stable. Alternatively, the replica's timestamp part can be written to stable storage only

every n increments. After a crash, the value read from stable storage would be advanced by n and

written back.

3.1 Optimizations

There are a number of optimizations that can be done to make the map service run more efficiently.

For example, the size of gossip messages can be reduced by sending only recent changes; see [20] for a

discussion of such an optimization. The amount of information returned by refresh could be reduced by

returning just that portion of the map not known to the caller (in this case, the caller's current

timestamp would be needed as an extra argument). Also if enter returned the map associated with the

returned timestamp, the client could avoid a call of refresh.

9

An important optimization is to discard information about deleted guardians. The implementation

described above requires that such information be retained forever. This section describes such an

optimization, which is based on two assumptions:

1. Clients never enter a new crash count for a guardian after it has been deleted.

2. Clocks never run backwards.

The reason for these assumptions is explained further below.

If we discard information about deleted guardian-ids, an association that has not yet been entered would

be identical to one that has been deleted. Therefore, when we perform an enter operation, we would not

know whether to associate the guardian-id with the crash count or not. Note, however, that we would

have no problem if clients never enter a new crash count for a guardian after it has been deleted. This

constraint holds for the map service as used for orphan detection because guardian-ids are never reused in

our system. Therefore we will make this assumption about clients.

Even if clients never call enter after deleting an entry, there is still a problem with late messages. If an

enter message is delivered late, it may arrive after the deleted entry has been discarded. To solve this

problem, we have each message contain the time r at which it was sent and we impose an upper bound 6

on message delay. r is the time of the local clock at the sending node; it should not be confused with the

timestamps discussed above.

When a message arrives we compare its time r with the local clock time TR' If

T + fJ < TR

the message is discarded. To handle late enter messages that are not discarded but arrive after the delete

message, we retain information about a deletion at least 6 more than the time in the delete message. We

need the assumption that clocks are monotonic here because we assume that once a message is found to be

late at a particular replica, all earlier messages of that client will always be late at that replica.

Waiting 6 is sufficient to avoid problems with late messages from clients. It does not prevent problems

with gossip messages, however. Suppose replica R waited this long and then discarded an association for

guardian-id g. Then it sent a gossip message to replica S, which still had an association stored for g.

There would be no way at S to decide whether the association for g should be retained or not.

To solve this problem, we proceed as follows. We continue to store information about deleted entries in

the state. However, in such an entry, e, we store two additional pieces of information: e.time, the time

of the delete message, and e.ts, the multipart timestamp generated when the delete message was

processed. In addition, we maintain a replica table, ts-table, containing a multipart timestamp for each

replica. When a gossip message is processed, the timestamp in the message is stored in ts-table in the

10

entry for the replica that sent the message. Note that the real timestamp of the sending replica must be

at least as large as the one stored for it in ts-table.

It is safe to remove deleted entry e when:

1. its time e.time + 8 is less than the time of the local clock of the replica, and

2. its timestamp e.ts is less than or equal to all the timestamps stored in the replica's ts-table.

The first condition takes care of late enter messages. The second guarantees that the entry is retained

until we can be sure that a state mapping the guardian-id to a normal value will never be received in a

gossip message. If e.ts is less than or equal to all timestamps stored in ts-table, it is less than or equal to

the current timestamp of each replica. Therefore each replica has heard about deletion e. Any new

gossip messages generated by a replica will contain either information about the deletion or no

information for the guardian-id at all. Old, delayed gossip messages might contain bad information, but

they will be discarded, as mentioned above, because they contain a timestamp less than that of the

receiving replica.

One final point concerns duplicate delete messages processed at different replicas. In this case, the states

at the replicas will contain slightly different information for the deleted guardian-id. A simple approach

is for a replica to merge the information in the gossip message with its information. In this case, an entry

for a deleted guardian will contain a set of <time, timestamp > pairs. Each pair in the set can be

removed when it satisfies the criteria discussed above; the entry can be removed when the set is empty.

There are various ways of optimizing this, however. In fact, it is safe to remove the entry as soon as

there is a pair in the set satisfying the time criterion and another (possibly different) pair satisfying the

timestamp criterion. Using the earliest time works since even the earliest delete message is later than the

latest enter message. Using the first timestamp to satisfy the criterion works because every replica must

know at least about that particular delete. Thus, we could remove the entry as soon as just one of its

pairs satisfies both criteria, and, in fact, we can store just one pair in the entry. Since any pair will do, a

replica can, e.g., keep the pair it has and ignore the one in the gossip message.

For the system to run efficiently, it is sufficient that clocks of replica and client nodes be loosely

synchronized so that the skew of the local clocks is bounded by some t:. The delay 8 would be defined to

accommodate both the anticipated network delay and the clock skew. If clocks are not synchronized then

certain suboptimal situations can arise. If a client's clock is slow, then its messages may be discarded

even though it just sent them. Also, if a replica's clock is slow, it may retain information about deletes

for a long time.

In reality clocks drift by very little, and the value of f can be large, so that clocks may naturally be

loosely synchronized. If synchronization is needed, there are various algorithms that can be

11

used [14], [15]. The need for synchronization can be determined by the nodes themselves based on the

messages they exchange: If a node receives a message whose time is earlier than its local time + u - t,

where u is the actual expected message delay, then either its clock is slow or the sender's clock is fast, so a

resynchronization is needed.

Note that the correctness of our algorithm does not depend on clocks being synchronized. As mentioned

earlier, we do require that clocks never run backwards, so if a clock is found to be fast, its node must stop

processing messages until the new real time is at least as great as the value of the node's clock before the

synchronization.

The appendix contains a proof that our method, including the deletion optimization, works.

4 The General Replication Technique

In the preceding section we discussed how to implement a central service for a particular application. In

this section we discuss how the method can be applied in general and characterize the set of applications

that can use the service.

Any replication method provides two categories of operations: Update operations modify (but do not

read) the state stored in the replicas, while query operations access the stored information. For example,

the map service provides two update operations (enter and delete) and one query operation (refreBh).

(Sometimes an operation is both an update and a query.) Our method imposes constraints on updates

that make it possible for them to be performed at a single replica; we require that updates be idempotent

and commutative. We also require that queries be able to make use of old information. The replication

technique is suitable for any application whose operations satisfy these constraints.

ldempotency means that it does not matter how many times an operation is executed because the effect

is the same as if it were executed exactly once. Updates must be idempotent because we perform each

update multiple times, either in response to multiple update messages sent by the client, or simply in the

process of merging states. (When new information from one state is merged into another, this is

equivalent to performing the update that introduced the new information.) Idempotent updates are easy

to achieve; at worst each update must take a unique identifier as an argument.

Commutativity means that the effect of executing a group of updates is the same no matter what the

order of execution. Updates must be commutative because different replicas may execute them in

different orders. Map service updates satisfy this requirement as follows. Updates involving different

guardians are independent and therefore their execution order does not matter. Order does not matter

for updates for the same guardian because a larger crash count, or a delete, always prevails. For

12

example, if enter(g, 6) happens to be executed before enter(g, 3), the effect (once both have been

performed) is the same as it would be if the opposite order occurred. Similarly, whether delete(g) happens

before or after enter(g, n) for any n, the outcome is the same.

Some applications can make use of any information returned by a query, no matter how old. Others,

such as the orphan detection algorithm, need information that is "recent enough." Also, successive

queries by the same client may be executed at different replicas, so it is possible that the second query

might return older information than the first one. For some applications, such an anomaly would cause a

problem. We allow queries to take timestamps as arguments to capture the notion of "recent enough"

and to avoid the anomaly. Timestamps allow a query to identify the updates it depends on.

Using timestamps as query arguments makes queries easy to implement because the timestamp gives a

replica a local way of determining whether needed information exists at it: it merely compares the

query's timestamp with the its timestamp. When the system is running normally, the needed

information, even if very recent, will be at the replica, and the query can be answered without delay and

without the replica needing to communicate with other replicas. Only when there are problems such as

crashes and partitions will communication with other replicas be needed; these problems are discussed in

the next section.

Our method as described so far provides no way for a client to cause updates to be executed in a

particular order, but it can be extended to allow the client some control. This is done by having

timestamp arguments for updates. If update U is to be after update V, it takes as an argument a

timestamp t that is greater than or equal to the one returned by V. The service will guarantee that V

happens after U and the timestamp returned by V will be greater than t. When updates are ordered like

this, they no longer need to be commutative; only unordered updates need be commutative.

Ordered updates are useful for some applications. For example, consider a location service that

determines the current node of residence for an object. This service might provide a move operation that

takes the object uid and its new location as arguments. Clearly, if the service is to know where an object

is, it must order the moves correctly. Thus we have:

move(ts: timestamp, obj: uid, location: nodeid) returns (timestamp)

Each time move is called for object o, it is given the timestamp t returned by the last call of move for o

and it returns a timestamp larger than t. The timestamps guarantee that the service knows the correct

order of moves.

A service with commutative updates is particularly simple to implement. Since the order of

commutative operations does not matter, and since all updates are idempotent, a replica can execute

13

updates as soon as it finds out about them, either in processing client requests, or in processing gossip.

Ordered updates are slightly harder. One possibility is to delay processing an update if the replica's

timestamp is not large enough. However, the delay is really unnecessary since the effects of the update

will not be observed until some query runs that is after the update. Therefore the update can return

immediately. When a replica performs a query, it must be sure that it knows all needed updates, and

that it knows their order. A technique for implementing this is described in [12].

Whether or not there are ordered updates, there is likely to be a need to garbage collect old information

such as the information about deleted guardians. We described a general method for doing this garbage

collection. Our method makes use of three techniques:

1. Constraints on clients, e.g., that enter cannot be called after delete.

2. Bounds on how long messages can be in transit. This ensures that very old update messages
are discarded.

3. Recording information about the states of other replicas. This information can be used to
ensure that gossip messages containing problematical states are discarded.

We showed how these techniques allowed discarding of information in the map service; they can be used

similarly in other services.

5 Performance

In this section we compare our technique with other gossip schemes, with voting, and with the work on

ISIS [l].

Our method differs from other gossip schemes [5, 20] in two important ways. First, we need only a few

replicas, while they require replicas at every client node. Having many replicas is impractical in a system

of any size. One consideration is storage of replica state. In some applications, replicas store substantial

amounts of information while clients store very little. This dichotomy does not show up in the map

service, but it does, for example, in the garbage collector. In that service the replicas store information

about inter-object references for the entire system, while individual clients only store information about

their own objects that may be referred to by other clients. Another, more important, consideration

concerns network traffic. The amount of traffic among replicas grows quadratically with their number,

unless the replicas are connected by a broadcast medium. Therefore, we cannot afford a large number of

replicas in any environment larger than a single local area net.

The second point is that our method is more powerful than the other schemes. Those schemes allow

updates of individual clients to be ordered, and also queries of an individual client are ordered relative to

each other and to the client's updates. We allow orderings that involve multiple clients. Queries can use

14

a timestamp argument to require processing after updates of any other client of interest; we saw this in

the refresh operation. Updates can also use timestamps in this way.

In comparing our method with voting, it is important to realize that voting supports a wider range of

applications than our method. We require that updates be idempotent and that those not ordered by

clients be commutative; voting does not.

Our method outperforms voting when the system is working well (no crashes or partitions). In this case

both reads and writes can take place at a single replica with one message exchange and no locking except

what is needed for mutual exclusion at the replica. By contrast, with voting at least some operations

(typically writes) must take place at several replicas, must acquire and release locks, and must use more

than one exchange of messages with each replica.

To understand the performance of our system in the presence of failures, we look first at partitions and

then at crashes. Our method is robust in the presence of partitions and has higher availability than

voting. If a partition isolates a client from all replicas, no replication scheme with less than a replica

situated at every client node will help. A more common case, however, is a partition that divides nodes

into groups containing both replicas and clients.

Our updates can proceed as long as the client's group contains a single replica. A partition could

prevent queries from happening if the query required information about an update that was processed on

the other side of the partition. There are two cases to consider:

1. A client requires information about an update it did earlier, but the replica that processed the
update is separated from the client by a partition that happened after it sent the response to
the client but before it communicated with other replicas. This situation is highly unlikely if
gossip is frequent. We can make it even more unlikely by sending gossip immediately, in
parallel with, or even before, sending the update response to the client.

2. A client requires information about an update done by a different client on the other side of
the partition. This situation is impossible if the update was done after the partition formed,
because there is no way for the clients to communicate the timestamp of the update.
Therefore, the situation is similar to case 1 and can be prevented similarly.

Now we consider the case of crashes. Voting is robust in the presence of crashes, provided only a

minority of sites are crashed at a time. Our scheme is also robust, and continues to work even when a

majority of sites has crashed.

However, we do have a problem with crashes that is similar to the partition case (1), i.e., the crash

happened just after the replica processed an update and responded to the client but before it

communicated with other replicas. We can make this unlikely situation even less likely by sending gossip

15

before or in parallel with the update response. If the probability of failure is still considered too high, we

can do the following: A replica gossips with another replica (or several other replicas) and waits for an

acknowledgment before sending back the user response. Note that this solution differs from voting in

that a majority of replicas is still not needed. For example, only two replicas out of five or seven need be

involved in an update. Also locking is still not needed. However, the extra communication means that

the availability of updates will decline, so the decision here has to be made by trading off update

availability versus acceptable probability of being unable to process some queries for some period.

A final point to consider is whether stable storage is needed at the replicas. If replicas process updates

without communicating with one another, stable storage seems wise, since otherwise the crash of a single

replica could lose some updates forever. However, if replicas gossip (with acknowledgement) before

replying, stable storage may not be needed, except to store the replica's part of the timestamp as

discussed earlier. The choice here must weigh the availability of updates, the crash independence of the

nodes, the cost of stable storage, and the acceptable probability of lost updates.

Now we consider briefly the relationship of our work to ISIS [1]. ISIS supports the same applications

that we do, but the technique is different. Instead of using timestamps, ISIS piggybacks information

about updates on messages that flow around the system. Thus information about earlier updates will

flow on messages sent for later queries. When a query arrives, if the replica does not yet know about

some earlier updates, it can retrieve them from the message and process them. In essence, the ISIS

technique is similar to our original orphan-detection scheme, in which the entire map had to flow in every

message.

The advantage of the ISIS technique is that queries never need to be delayed while a replica

communicates with other replicas. By contrast, our method may have an occasional delay. However, our

system is more efficient in terms of information that must be remembered and size of messages. In

addition, our method generalizes easily to wide area nets, works in the presence of partitions, and avoids

a garbage collection problem that exists in ISIS, namely, knowing when it is safe to discard information

about old updates.

6 Conclusions

This paper has described a method for constructing highly-available central services for use in a

distributed system. The method was discussed with respect to a particular example, the map service. We

also discussed how the method could be used for other applications, and compared it with other

replication schemes.

As discussed in Section 4, applications can use a service implemented with our m, 1 l1o<l if they obey our

16

constraints. The constraints follow from the fact that we run operations at just one replica. For queries

this means that the application must make do with old information; timestamps can be used as query

arguments to control the age of the information. Updates must be idempotent and either their order is

not determined by clients (as was the case for the map service) or is partially determined by having them

take timestamp arguments. Updates not ordered by clients must be commutative; commutativity hides

the lack of order, because the meaning of running a group of such updates is the same no matter in what

order they run. The service is easier to implement in the commutative case, but can run efficiently in

either case.

We have studied several applications that can use our technique. These include garbage collection of

objects in a distributed heap, locating movable objects in a distributed system, deletion of unused versions

in a hybrid concurrency control scheme, and distributed deadlock detection.

In Section 5 we compared our method with other replication techniques. Our method is better than

other gossip schemes for wide area nets and also for cases where the replicas store lots of information that

clients need not store. In addition, it provides more power than those methods because updates by

different clients can be ordered, and clients can do queries that require information based on updates of

other clients. Our method is more limited than voting because of our restriction on operation semantics,

but where it can be used it is more efficient both when the system is working well and in the presence of

partitions and crashes. Our method supports the same set of applications as ISIS; we suffer an occasional

delay in exchange for a drastic reduction in the amount of information flowing in the system.

At present, we are doing an implementation of the map service as part of the Argus system, and we are

looking at extensions of the method. Areas under examination are implementing updates that are ordered

by clients, combining the method with multi-object transactions, and service reconfiguration.

Acknowledgments

We want to thank Alan Fekete, Sharon Perl, Bill Weihl and the anonymous referees for helpful

comments.

17

References

1. Birman, K., and Joseph, T. Exploiting Virtual Synchrony in Distributed Systems. Proc. of the
Eleventh ACM Symposium on Operating Systems Principles, November, 1987, pp. 123-138 ..

2. Birrell, A., Levin, R., Needham, R., and Schroeder, M., "Grapevine: An Exercise in Distributed
Computing". Comm. of the ACM 25, 4 (April 1982), 260-274.

3. El Abbadi, A., and Toueg, S. Maintaining Availability in Partitioned Replicated Databases. Proc. of
the 5th Conference on Principles of Database Systems, ACM, 1986.

4. El-Abbadi, A., Skeen, D., and Cristian, F. An efficient fault-tolerant protocol for replicated data
management. Proc. of the Conference on Principles of Database Systems, ACM, December, 1985.

5. Fischer, M. J., Lynch, N. A., and Paterson, M. S. Impossibility of distributed consensus with one
faulty process. Technical Report MIT/LCS/TR-282, M.I.T. Laboratory for Computer Science,
Cambridge, Ma., 1982.

6. Gifford, D.K. Weighted Voting for Replicated Data. Proc. of the Seventh Symposium on Operating
Systems Principles, ACM, December, 1979, pp. 150-162.

7. Gray, J. N. Notes on data base operating systems. In Lecture Notes in Computer Science, Goos and
Hartmanis, Eds., Springer-Verlag, 1978, pp. 393-481.

8. Hwang, D. Constructing Highly-Available Services in a Distributed Environment. S.M. Thesis,
M.I.T. Dept. of Electrical Engineering and Computer Science, Cambridge, Ma., December 1987.

9. Lampson, B. W., and Sturgis, H. E. Crash Recovery in a Distributed Data Storage System. Xerox
Research Center, Palo Alto, Ca., 1979.

10. Liskov, B., and Scheifler, R. W. "Guardians and actions: linguistic support for robust, distributed
programs". ACM Trans. on Programming Languages and Systems 5, 3 (July 1983), 381-404.

11. Liskov, B. Overview of the Argus language and system. Programming Methodology Group Memo
40, M.I.T. Laboratory for Computer Science, Cambridge, Ma., February, 1984.

12. Liskov, B., and Ladin, R. Highly-Available Distributed Services and Fault-Tolerant Distributed
Garbage Collection. Proc. of the 5th ACM Symposium on Principles of Distributed Computing, ACM,
Calgary, Alberta, Canada, August, 1986.

13. Liskov, B., Scheifler, R., Walker, E., and Weihl, W. Orphan Detection. Programming Methodology
Group Memo 53, M.I.T. Laboratory for Computer Science, Cambridge, Ma., 1987. Also published in Proc.
of the 17th International Symposium on Fault-Tolerant Computing, July 1987.

14. Lundelius, J. Synchronizing Clocks in a Distributed System. Technical Report MIT/LCS/TR 335,
M.I.T. Laboratory for Computer Science, Cambridge, Ma., 1984.

15. Marzullo, K. Loosely-Coupled Distributed Services: A Distributed Time Service. Ph.D. Th.,
Stanford University, Stanford, Ca., 1983.

16. Parker, D.S., Popek, G. J., Rudisin, G., Stoughton, A., Walker, B., Walton, E., Chow, J., Edwards,
D., Kiser, S., and Kline, C. "Detection of Mutual Inconsistency in Distributed Systems". IEEE
Transactions on Software Engineering SE-9 (May 1983), 240-247.

17. Schlichting, R. D., and Schneider, F. B. "Fail-Stop Processors: An Approach to Designing Fault­
Tolerant Computing Systems". ACM Trans. on Computing Systems 1, 3 (1983), 222-238.

18

18. Walker, E.W. Orphan Detection in the Argus System. Technical Report MIT/LCS/TR 326, M.l.T.
Laboratory for Computer Science, Cambridge, Ma., June, 1984.

1g. Weihl, W. Distributed Version Management for Read-only Actions. Programming Methodology
Group Memo 47, M.l.T Laboratory for Computer Science, Cambridge, Ma., 1986. To appear in IEEE
Trans. on Software Engineering, Special Issue on Distributed Systems, December 1986.

20. Wuu, G. T. J., and Bernstein, A. J. Efficient solutions to the replicated log and dictionary
problems. Proc. of the Third Annual Symposium on Principles of Distributed Computing, ACM, August,
1984, pp. 233-242.

19

I. Appendix
In the appendix we prove the correctness of a system implementing a central service; in particular we

consider the map service. We begin by setting up a formal model for the operation of the map service.

Next we describe in the model the implementation of the service and prove that it preserves certain

invariants. Finally we state the specification of the service as seen by the clients, and prove that it is

satisfied by the implementation.

1.1 The Model

A system is a connected network of client nodes 0
1

, .. ., On and server nodes S1, .. ., Sk. The server

nodes represent the central service system, where S. stands for replica i. Nodes execute by sending
I

messages, receiving messages and updating their local states in response to received messages. We model

the execution of a node as a sequence of send and receive events and associate the local updates with the

corresponding receive events. The send events occur at the sender node and the receive events at the

receiver node.

An execution of system is then a set E of node events and a partial order relation -+ on E, denoted by

<E, -+ >. The partial order relation is the smallest relation satisfying two conditions:

1. POI: Events occurring at the same node are totally ordered.

2. P02: Let e1 be a send event and e
2

the corresponding receive event. Then e
1

-+ e
2

.

The relation -+ is called happens before or precedes. Note that it does not imply that messages arrive in

FIFO order. The event model is useful in characterizing an unreliable distributed system in which a send

event is not necessarily matched by a receive event.

In the following, we assume that crashes cause no loss of server information. We also assume that there

is more than one server node.

1.2 Implementation

We now describe the system MP implementing the map service, specify its correct behavior by defining

certain invariants, and prove that all executions of the system preserve the invariants.

20

1.2.1 Execution of the Service

This section describes MP by defining the local data and the events occurring at server nodes. We begin

by introducing some auxiliary notation for the precedes relation and define the components of an event.

Then we define the local data structures of a server node and the structure of messages. Next, we

introduce some useful abbreviations.

corresponding to the different events.

Finally, we define the operations performed at the server

If event e immediately precedes event e', we denote this by e -
1

e' . A receive gossip event has two

immediate predecessors: the remote send event that supplies the gossip message, denoted pr(e), and the

event that immediately precedes e locally, denoted p1(e). Send events have one immediate predecessor

p1(e). Receive enter and delete events also have one immediate predecessor p1(e) because we consider only

events at server nodes in the execution of MP. If an event is the first at its node, then p1(e) is a dummy

initial event.

Let e be an event. Node(e) denotes the node at which e occurs and op(e) denotes the type of the event,

which may be RecEnter, RecDelete, RecGossip or Send. D(e) denotes the contents of node(e) immediately

after e completed. M(e) denotes the data record in the message associated with e. Events have an

occurrence time. This is the time of the local clock when the event happened at the server node at which

the event occurred. Without loss of generality we assume here that events at a node happen

instantaneously.

The local data of a server node (replica) S. is described by a record D that contains the node's
I

timestamp TS and its part of the timestamp RTS, the set STATE of current associations, the set PEND

of pending delete associations, the set OTHERS of multipart timestamps of other server nodes, and the

time CLOCK corresponding to some time value read from the local operating system clock:

type D = record
TS: MultipartTimestamp;
RTS: OwnTsPart;
STATE: SetofAssociations;
PEND: SetofDeleteAssociations;
OTHERS: SetofNodeTsPairs;
CLOCK: Time;

end;

where an Association is:

type Association = record
UID: NodeName;
CC: CrashCount;

end

and a DeleteAssociation includes the time of the sender of the delete message and also the timestamp

produced by the server that processed the delete:

type DeleteAssociation = record
UID: NodeName;
TIME: Time;
TS: MultipartTimestamp;

end;

21

Note that D.CLOCK(e), where e is an event, denotes the value of the CLOCK field at e's node

immediately after e completes. This value is set during execution of e by reading a local clock at e's

node. Note also that D.CLOCK(e) is the occurrence time of e because of the assumption that events

happen instantaneously. Initially, TS and RTS are zero, CLOCK is the initial value of the node's clock,

and all other components are empty.

Now we describe the data in the message M of an event. We are concerned here only with messages of

events that cause state changes, namely the receive events of updates (enters and deletes) and gossip:

type M = record
NODE: SendingNodeName;

Op Type;

where

DATA:
end

OpType = Oneof
RecGossip (TS: MultipartTimestamp, STATE: SetofAssociations,

PEND: SetofDeleteAssociations);
RecEnter (A: Association, TIME: Time);
RecDelete (UID: NodeName, TIME: Time);

end

(A oneof is a discriminated union.) We introduce the following notation: If e is a RecEnter event, then

its time is denoted M.TIME(e), its association is M.A(e), and the UID in the association is M.UID(e).

Similarly, if op(e) = RecDelete, then its time is M.TIME(e) and its UID is M.UID(e). If op(e) =

RecGossip, then the components in the message are M.TS(e), M.STATE(e), and M.PEND(e).

Next we introduce a number of abbreviations. Let ts
1

and ts
2

be multipart timestamps. The merge of

two multipart timestamps is defined as

merge (ts1,ts2) =min {ts I ts 2'.: ts
1

and ts 2'.: ts2 }.

Also for timestamp ts and node n, tsl stands for n's part of ts.
n

Let s be a state of a node and a be an association: The predicate !sin defines what it means for a state

to reflect an association.

a !sins=
3 b E s s.t. a.DID = b.UID /\ a.CC ~ b.CC

Similarly, let sl and s2 be two node states. The predicate Subof defines what it means for a state to be

reflected in another state:

22

sl Subof s2 =
't/ a (a !sin sl ==? a !sin s2)

The binary operation Combine defines the state reflecting two other states:

sl Combine s2 =
{a I a E sl U s2 /\
(3 b E sl, c E s2 s.t. a.DID = b.DID = c.DID ==? (a.CC = max (b.CC, c.CC)) }

We express the assumed bound on message delays by a predicate late:

late(e) = M.TIME(e) + 8 < D.CLOCK(e).

As discussed in the body of the paper, for the system to work efficiently 8 must be large enough to

accommodate both the actual delay in sending messages and the clock skew among the client and server

nodes.

Now we define the processing associated with the local operations at a server nodes of :MP. Processing

of any event involves a call to a system routine GetTime to read the local clock. Processing of a send

event at a server node corresponds to a message being sent that contains the necessary components of the

sender's state. Thus, for event e s.t. op(e) = RecGossip (i.e. op(pr(e)) = Send), M.STATE(e) =

D.STATE(pr(e)), M.PEND(e) = D.PEND(pr(e)), and M.TS(e) = D.TS(pr(e)). Only processing of receive

enter, delete or gossip events changes the node's state; this processing is defined below. If event e is the

first event to be processed by the node, then D(p1(e)) contains the initial values. Also, we assume that if

processing of the event does not produce D(e) explicitly, then D(e) has the corresponding values of

D(p1(e)).

op(e) = RecEnter:
D.CLOCK(e) = GetTime
if late(e) then exit

if 3 delete association a E D.PEND(p1(e)) s.t. a.DID= M.DID(e) then exit

if M.A(e) !sin D.STATE(p1(e)) then exit

D.RTS(e) = D.RTS(p1(e)) + 1

D.STATE(e) = D.STATE(p1(e)) Combine { M.A(e) }
D.TS(e)lnode(e) = D.RTS(e)

op(e) = RecDelete:
D.CLOCK(e) = GetTime
if late(e) then exit

if 3 delete association a E D.PEND(p1(e)) s.t. a.DID= M.DID(e) then exit
D.RTS(e) = D.RTS(p1(e)) + 1

D.STATE(e) = D.STATE(p1(e)) - {a I a.DID= M.DID(e) }
D.TS(e)lnocte(e) = D.RTS(e)

D.PEND(e) = D.PEND(p1(e)) U { makeDeleteAssociation (M.UID(e), M.TIME(e), D.TS(e)) }

op(e) = RecGossip:
D.CLOCK(e) = GetTime

23

if M.TS(e) :S D.TS(e) then exit
D.TS(e) = merge (D.TS(p1(e)), M.TS(e))
D.STATE(e) = D.STATE(p1(e)) Combine M.STATE(e)

- {a I 3 b, b.UID = a.UID, b E D.PEND(p1(e)) U M.PEND(e) }
D.OTHERS(e) = { p I p E D.OTHERS(p1(e)) /\ p.NODE '::/: M.NODE(e) }

U { makePair (M.NODE(e), M.TS(e)) }
D.PEND(e) = { a I a E D.PEND(p1(e)) U M.PEND(e)

/\((a.TIME ~ D.CLOCK(e) - 6
V 3 p E D.OTHERS(e) s.t. a.TS-.::; p.TS) }

1.2.2 Correctness of the Service

In this section we state and prove the invariants maintained by executions of System MP.

Under the assumptions (stated formally below) that server clocks never run backwards and that for any

given association clients never perform an update after a delete, the correctness criteria for the

implementation of system MP is as follows:

INV ARIA.NT MP

Il. No Spurious Associations: Let <E, --+ > be an execution of the MP system,
e an event in E, and a an association. Then

a E D.STATE(e):::}
3 event f EE s.t. op(f) = RecEnter, -.late(f), M.A(f) =a, and D.TS(f) :S D.TS(e).

12. Enters affect the state: Let <E, --+ > be an execution of the MP system
and e be an event in E. Then

op(e) = RecEnter and -.late(e):::}
M.A(e) !sin D.STATE(e)

or (3 f E E s.t. op(f) = RecDelete, -.late(f),
M.UID(f) = M.UID(e) and D.TS(f) :S D.TS(e)).

13. Associations remain in the state: Let <E, --+ > be an execution of the MP
system and e and f be events in E. Then

D.TS(e) :S D.TS(f):::}
D.STATE(e) - { a I a E D.STATE(e) and

(3 event h s.t. op(h) = RecDelete, -.late(h),
M.UID(h) = a.UID and D.TS(h) :S D.TS(f)) }

Subof D.STATE(f).

14. Deletes remove associations: Let <E, --+ > be an execution of the system
and e and f be events in E. Then

op(f) = RecDelete and -.Iate(f) and D.TS(f) :S D.TS(e):::}
-. 3 association a E D.STATE(e) s.t. a.UID = M.UID(f).

The invariant is true only if clients obey the constraint:

CLIENT CONSTRAINT

24

Let Ebe an execution of MP and f and g be events in E s.t. op(f) = RecEnter,
op(g) = RecDelete. Then

M.UID(f) = M.UID(g) =} M.TIME(f) < M.TIME(g).

and server clocks obey the constraint:

CLOCK CONSTRAINT

Let E be an execution of MP and f and g be events in E s.t. node(f) = node(g).
Then f---+- g =} D.CLOCK(f) ~ D.CLOCK(g).

Note that client clocks must be monotonic in so far as is needed to satisfy the CLIENT_ CONSTRAINT.

In much of what follows we will be concerned with enter events whose processing causes an association

to be entered into the state. Such events will be referred to as source events. We have two categories of

such events: sourceEnter events and sourceDelete events, where

sourceEnter(e) = (op(e) = RecEnter and D.RTS(e) > D.RTS(p1(e))).
sourceDelete(e) = (op(e) = RecDelete and D.RTS(e) > D.RTS(p1(e))).

Note that if e is a sourceEnter event, then -ilate(e) and 3 association a s.t. a~ D.STATE(p1(e)) and a E

D.STATE(e) and a = M.A(e). Similarly, if e is a sourceDelete event, then -.late(e) and 3 delete

association a E D.PEND(e) s.t. a.UID = M.UID(e) and a.TS = D.TS(e) and --, 3 delete association b E

D.PEND(p1(e)) s.t. b.UID = M.UID(e).

We now prove that for all executions of system MP, INVARIANT _MP holds. We begin with a very

basic Lemma 1 that shows how timestamps relate to the precedes ordering and then in Lemma 2 prove

invariant 11.

Lemma 1: Let f and g be events in E s.t. f---+- g. Then D.TS(f) ~ D.TS(g).

Proof: Since f ---+- g, there exists a sequence

f = hl -1 h2 -1 ... -1 hk = g.

By inspection of the code, we know that V events e
1

and e2 s.t. e
1

---+-
1

e2, D.TS(e
1

) ~ D.TS(e2). Therefore

D.TS(f) ~ D.TS(g). D

Lemma 2: Let e be an event E E and a be an association in D.STATE(e). Then 3 enter
event f EE s.t. sourceEnter(f) and M.A(f) =a and D.TS(f) ~ D.TS(e).

Proof: The proof is by induction on the size s of the set of predecessors of e. The basis is s = 0. In

this case, e is the desired event f. Assume the claim holds for events where size s < n and consider e s.t. s

= n. If op(e) ;/= RecEnter and op(e) ;/= RecGossip, a E D.STATE(p1(e)) so f exists by the induction

assumption and has a proper timestamp by Lemma 1. If op(e) = RecGossip, either a E D.STATE(p1(e))

or a E M.STATE(e). In either case the desired event f exists by the induction assumption and Lemma 1.

25

If op(e) = RecEnter, there are two cases. If processing of e added a to the state, then e is the desired

event f. Otherwise, a E D.STATE(p1(e)) and f exists by the induction assumption and Lemma 1. 0

Next, in Lemma 3 we establish a basic fact about delete associations, namely, that delete associations

are added to PEND only by the processing of delete events. Then Lemma 4 proves the 12 part of the

invariant: we show that an enter event causes an association to be reflected into the state unless an

earlier delete event for its UID has already been processed.

Lemma 3: Let e be an event in E and b a delete association in D.PEND(e). Then 3 f EE
s.t. sourceDelete(f), M.UID(f) = b.UID, D.TS(f) = b.TS, and D.TS(f) ~ D.TS(e).

Proof: By induction on the size of the set of predecessors of e, similar to the proof of Lemma 2. 0

Lemma 4: Let e be an event in E. s.t. op(e) = RecEnter and -.late(e). Then M.A(e) !sin
D.STATE(e) or 3 f EE s.t. sourceDelete(f) and M.UID(f) = M.UID(e) and D.TS(f) ~ D.TS(e).

Proof: Since e is not late, by the code we see that its processing will ensure that a is reflected into

D.STATE(e) unless 3 delete association b E D.PEND(p1(e)) s.t. b.UID = a.UID. If a is in the state, we

are done, so assume it is not. Then by Lemma 3 the required event f exists. O

Before gomg on to invariant 13 we introduce a handy abbreviation that characterizes removing of

associations and state two useful facts that follow directly from inspection of the processing code.

During the execution E, sets of associations (PEND or STATE) are carried in messages associated with

events and are merged into corresponding states at the node where the receive events occur. Thus w.r.t.

the partial order defined on E, associations from predecessor states are combined and reflected m

successor states. Now, let e and f be events in E s.t. f -
1

e. If a is an association reflected m

D.STATE(f) and not reflected in D.STATE(e), we say that that association a has been removed from the

state off by event e. Similarly, if b E D.PEND(f) and b ~ D.PEND(e), then we say that b has been

removed from D.PEND(f) by event e.

The following two facts follow directly from inspection of the code.

Proposition 5: Let f and e be events in E s.t. f -
1

e and b be a delete association E

D.PEND(f). Then either b E D.PEND(e) or V p server nodes, D.OTHERS(e)(p) > b.TS.
(Here we are treating D.OTHERS as a map from nodes to timestamps.)

Proposition 6: Let f and e be events in E s.t. f -
1

e and let a be an association E

D.STATE(f). If f = p1(e), either a !sin D.STATE(e) or a is removed from D.STATE(f) by e.
If f = pr(e), then either a !sin D.STATE(e) or a is removed from M.STATE(e) bye.

26

We now turn to invariant 13. We need to prove that for a given execution, if an association in some

event's state is missing in some successor event's state, then this successor event is also preceded by a

delete event for the missing association. We begin in Lemma 7 by showing that a source event precedes

all the events with timestamps larger then its timestamp. In Lemma 8 we show that if an association in

some event's state is missing from a successor event's state, then there exists an event preceding the

successor event that removes the association. Finally, Lemma 9 proves 13.

Lemma 7: Let f and g be events s.t. sourceEnter(f) or sourceDelete(f) and f ~ g. Then
D.TS(f) ~ D.TS(g) ==} f-+ g.

Proof: D.TS(f) ~ D.TS(g) ==} D.RTS(f) ~ D.TS(g)lnode(f)" Note that for any given value of timestamp

ts only the server p could set the value of tsl and this is done as part of the processing of some source
p

event at p. Thus, if D.TS(g) has a value tin its component D.TS(g)lnode(f)' 3 source event e s.t. D.RTS(e)

= t and node(e) = node(f). If g =ewe are done. Otherwise 3 a sequence of ordered events

e = hl -+l ··· -+l hk = g

s.t. t = D.TS(h)lnode(f)' i = 1, ... , k, and therefore f-+ g. D

Lemma 8: Let f and e be events of E s.t. f-+ e and op(f) = RecEnter, and let a = M.A(f).
Assume a !sin D.STATE(f) and a -.!sin D.STATE(e). Then 3 event g, D.TS(g) ~ D.TS(e),

s.t. the processing of g removed association a from D.STATE(p1(g)) or M.STATE(g).

Proof: f -+ e implies there is an ordered sequence

f = hl -+l ... -+l hk = e.

Since a !sin D.STATE(f) and a -./sin D.STATE(e), 3 g = hi' where 1 < i ~ k, s.t. a !sin

D.STATE(hi_
1

) and a -./sin D.STATE(g). Since a !sin D.STATE(hi_
1
), this means 3 association b E

D.STATE(hi_1)) s.t. a.UID = b.UID. By Proposition 6, b is removed from D.STATE(hi_1) by the

processing of g and D.TS(g) ~ D.TS(e) by Lemma 1. Therefore g is the required event. O

Lemma U: Let e and g be events in E s.t. D.TS(e) ~ D.TS(g). Let a be an association s.t.
a !sin D.STATE(e) and a -./sin D.STATE(g). Then 3 event f s.t. D.TS(f) ~ D.TS(g),
sourceDelete(f), and M.UID(f) = a.UID.

Proof: Without loss of generality we can assume that a E D.STATE(e). Lemma 2 then implies that 3 h

s.t. sourceEnter(h), M.A(h) = a, D.TS(h) ~ D.TS(e), and a E D.STATE(h). Since, a -./sin D.STATE(g),

h ~ g. Since D.TS(h) ~ D.TS(e) ~ D.TS(g), by Lemma 7 h-+ g. Since a~ D.STATE(g), by Lemma 8

3 event h', D.TS(h') ~ D.TS(g), s.t. the processing of h' removed a from either D.STATE(p1(h')) or

M.STATE(h'). Consider the event h' and the two possibilities for the removal of a. First, assume a was

removed from D.STATE(p1(h')). This implies by inspection of the code that either op(h') = RecDelete,

M.UID(h')=a.UID, and h' is the requested event f, or op(h') = RecGossip and 3 delete association b E

27

M.PEND(h') s.t. b.UID = a.UID, which by Lemma 3 implies the desired event f exists. Secondly,

suppose a was removed from M.STATE(h'). The removal implies 3 delete association b E D.PEND(p
1
(h'))

s.t. b.UID = a.UID. As in the first case, by Lemma 3 the existence of the required event f follows. D

Finally, we prove invariant 14 by showing that states associated with events following delete events

cannot contain the deleted associations. Lemma 10 proves that delete associations "reach" a node when

its timestamp first exceeds that of the corresponding source delete event, Lemma 11 proves that each node

"gets to see" a delete association before it is removed, and Lemma 12 proves 14.

Lemma 10: Let f be an event in E s.t. f is a sourceDelete event, and let b be a delete
association s.t. b E D.PEND(f), b.UID = M.UID(f), and b.TS = D.TS(f). Let e be the first
event at its node s.t. D.TS(e) 2: D.TS(f). Then b E D.PEND(e) or the processing of e removed
b from M.PEND(e).

Proof: If e = f, the claim follows immediately. If e ~ f, then f --> e by Lemma 7, so there is an

ordered sequence

f = hl _.1 ... _.1 hk = e.

Since e is the first event at its node with timestamp 2: D.TS(f), node(h) ~ node(e) for i = 1, ... , k - 1.

By the assumption that b E D.PEND(f) and Proposition 5 either b ED.PEND(e) or 3 hi, 1 < i ~ k, s.t.

b ft D.PEND(h) and V nodes p, D.OTHERS(h)(p) 2'.:b.TS and in particular, D.OTHERS(h)(node(e)) 2:
b.TS. If i < k, there must exist gossip event e', node(e) = node(e'), s.t. e' --+ hi and

D.OTHERS(h)(node(e)) = D.TS(e') 2: b.TS. But e' --+ hi means that e' --> e, which is a contradiction

since we assumed that e is the first event at its node with timestamp 2: b.TS. Therefore b E D.PEND(h)

for i = 1, ... , k - 1, and either b E D.PEND(e) or processing of e removes b from M.PEND(e). (Note that

the case where processing of e removes b can occur only in a system with exactly two server nodes.) 0

Lemma 11: Let f and e be events in E s.t. f--> e and sourceDelete(f), and let b be the delete
association added by f to D.PEND(f) and b ft D.PEND(e). Then 3 event g, g = e or g --+ e,
s.t. node(g) = node(e) and the processing of g removed b from D.PEND(p1(g)) or M.PEND(g).

Proof: Let e' be the first event at node(e) s.t. D.TS(e') 2: D.TS(f). Then e' = e or e' --> e. We know

by Lemma 10 that b E D.PEND(e') or processing of e' removed b from M.PEND(e'). If processing of e'

removed b from M.PEND(e'), then e' is the desired event g. So assume b E D.PEND(e'). Since b ft

D.PEND(e), e ~ e' and therefore there is a sequence

e' = hl ->1 ... _.1 hk = e

s.t. node(h.
1
) = node(e) for i = 1, ... , k. The desired g is the first h. s.t. b E D.PEND(h.

1
) and b ft

1 ~

D.PEND(h.) and clearly g = e or g--> e. D
I

Lemma 12: Let g and f be events in E s.t. sourceDelete(f) and D.TS(f) ~ D.TS(g). Then -,
3 association a E D.STATE(g) s.t. a.UID = M.UID(f).

28

Proof: If f = g then the claim holds immediately by inspection of the code, so assume f ~ g. By

Lemma 7, f -+ g. Now we prove that -.., 3 association a E D.STATE(g) s.t. a.UID = M.UID(f). The

proof is by induction on the size s of the set of predecessors of g in E. The basis is s = 1. In this case f is

the only predecessor of g, and by inspection of the code we see that processing of g cannot add a to

D.STATE(g). Assuming the claim holds for all events wheres < n, consider event g s.t. s = n. If 3 b E

D.PEND(g) s.t. b.UID = a.UID then a is not in D.STATE(g), so assume there is no such b in D.PEND(g).

Then by Lemma 11 3 event h s.t. h = g or h -+ g and node(h) = node(g) and processing of h removed b

from D.PEND(p1(h)) or from M.PEND(h). If h = g, we are done, so consider h -+ g. When h was

processed, the following were true:

b.TIME + 8 < D.CLOCK(h), and
V nodes p (D.TS(f) :S D.OTHERS(h)(p))

Since node(h) = node(g) and h -+ g, there is a sequence

h = hl -+l ... -+l hk = g

s.t. node(h) = node(h), i = 1, ... , k. By the induction assumption, a ~ D.STATE(h) for i = 1, ... , k - 1.

Therefore, if a is in D.STATE(g), it must have been added by processing of g. If op(g) = RecEnter and

M.UID(g) = a.UID, g will have no effect because D.CLOCK(g) > D.CLOCK(h) and therefore the message

is late. (Note that here we rely on clients to obey the CLIENT_ CONSTRAINT and on server clocks to

obey the CLOCK_ CONSTRAINT.) If op(g) = RecGossip, there are two possibilities depending on

whether the send of the gossip message, i.e., event pr(g), happens before or after the event h' s.t. node(h')

= node(pr(g)) and D.TS(h') = D.OTHERS(h)(node(h')). If pr(g) happens after h' then M.TS(g) ~

D.TS(f) and a~ M.STATE(g) by the induction assumption. Otherwise, processing of g will have no effect

because M.TS(g) :S D.OTHERS(h)(M.NODE(g)) :S D.TS(h) :S D.TS(g). D

Theorem 13: INVARIANT _MP holds for all executions of system MP.

1.3 Client Interface

Now we can talk about the correctness of the service from the point of view of the client. The client

receives timestamps as results of updates, but is able to observe the state only by executing the refresh

queries. Therefore, the correctness condition is expressed in terms of what can be observed by queries.

For a query operation q, let q.TS be the argument timestamp, and q.STATE and q.NEWTS be the state

and timestamp returned to the client. For enter operation u, let u.A be the association sent to the

service, u.UID be the UID in the association, and u.TS be the timestamp returned to the client in the case

where u returns. Similarly, for delete operation u, let u.UID be the UID sent to the service, and u.TS be

the returned timestamp in the case where u returns. For enter and delete operations u we use the

notation u.TIME to denote the time of the local clock at the client node making the call when u is called.

29

The client specification is:

SPEC CLIENT

l. Let u be a delete operation that returns timestamp u.TS . Then for any query q s.t.
q.NEWTS ~ u.TS, --, 3 association a E q.STATE and a.UID = u.UID.

2. Let u be an update operation that returns timestamp u.TS. Then for any query q s.t.
q.NEWTS ~ u.TS, u.A !Bin q.STATE or 3 a delete operation u' s.t. u.UID = u'.UID.

3. Let q be a query operation that returns. Then q.TS :S q.NEWTS. Furthermore,
if a is an association E q.STATE, then 3 enter operation u s.t. u.A = a.

We rely on clients to satisfy the client constraint restated here in terms of the client interface:

CLIENT CONSTRAINT EXTERNAL

Let u be a delete operation. Then for all enter operations u'
u'.UID = u.UID =} u'.TIME :S u.TIME

Before we can show that this specification is satisfied, we need to discuss how servers process query

messages, and also how calls are processed at the client. We assume a simplified model of server

operation in which delivery of a query message is delayed until the timestamp of the message (i.e., the

argument timestamp) is less than or equal to the timestamp of the server. To process the query, the

server returns its current state and timestamp.

When a client calls an update operation, this can result in zero or more update events occurring in the

service. Note that we do not distinguish here between different calls of update operations with the same

arguments. For every call of an enter operation u,

Events(u) = { e I e EE and op(e) = RecEnter and --,late(e) and e.A = u.A }.

Similarly, for delete operation u,

Events(u) = { e / e EE and op(e) = RecDelete and --,late(e) and e.UID = u.UID }.

We make the following assumptions about correct client interface behavior:

Al. V events e EE s.t. op(e) = RecEnter or op(e) = RecDelete and --,late(e),
3 an update u s.t. e E Events(u).

A2. V update operations u that return, 3 e E Events(u) s.t. e.TS :S u.TS.

A3. V queries q that return, 3 send event e EE s.t. D.STATE(e) = q.STATE
and D.TS(e) = q.NEWTS.

We also assume that server clocks satisfy the CLOCK CONSTRAINT. Note that the

CLIENT_ CONSTRAINT follows from CLIENT_ CONSTRAINT _EXTERNAL and assumption Al.

The first case of the client specification is proved as follows. By assumption A2, associated with the

30

delete u there is a delete event e s.t. M.UID(e) = u.UID and D.TS(e) :::; u.TS and -,late(e). By invariant

14, 3 no association a s.t. a.UID = M.UID(e) and a E D.STATE(e). By 14 we also know that any state

with a larger timestamp than D.TS(e) will not contain a. By assumption A3, 3 no such association in the

state q.STATE returned by the query.

The second case of client specification is similar. By assumption A2, associated with the enter u there is

an enter event f s.t. f E Events(u) and D.TS(f) :::; u.TS and -,late(f). By invariants 12 and 13 and

assumption Al, either u.A !sin q.STATE or it was deleted by delete event e E Events(u') where u' is a

delete operation s.t. u'.UID = u.UID.

The third part of the client specification is proved as follows. By A3 we know there is an event e

corresponding to the query q s.t. D.TS(e) = q.NEWTS and D.STATE(e) = q.STATE. Since a query is

not processed until the replica's timestamp is large enough, we know that D.TS(e) 2: q.TS. Now let a

!sin q.STATE. Then a !sin D.STATE(e). This means there is ab E D.STATE(e) s.t. b.UID = a.UID

and b.CC 2: a.CC. Then by invariant 11 and assumption Al, there exists an update operation u s.t. u.A

=b.

This completes the proof that the client specification SPEC_ CLIENT is satisfied by the system MP,

assuming CLIENT_ CONSTRAINT _EXTERNAL, CLOCK_ CONSTRAINT, and assumptions Al to

A3.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1 a. REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl!3UTION I AVAILABILITY OF REPORT

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE Approved for public release; distribution

is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR-409 N00014-83-K-0125

6a NAME OF PERFORMING ORGANIZA TIOf11 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Laboratory for Computer (If applicable)
Office of lfaval Research/Department of Navy

Science

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

Sa. NAME OF FUNDING I SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA/DOD

Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

A TECHNIQUE FOR CONSTRUCTING HIGHLY-AVAILABLE SERVICES

12. PERSONAL AUTHOR(S)
Ladin, Rivka; Liskov, Barbara; Shrira, Liuba

13a. TYPE OF REPORT I13b TIME COVERED 114. DATE OF REPORT (Year, Month, Day) Ts PAGE COUNT
Technical FROM TO February 1988 30

16. SUPPLEMENTARY NOTATION

17 COSA Tl CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP distributed systems, algorithms, reliablity, availability,

data replication

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This paper describes a general method for constructing a highly-available service

for use in a distributed system, It gives a specific implementation of the method and

proves the implementation correct. The service consists of replicas that reside at

several different locations in a network. It presents its clients with a consistent

view of its state, but the view may contain old information. Clients can indicate how

recent the information must be. The method can be used in applications satisfying

certain semantic constraints. For applications that can use it, the method performs

better than other replication techniques.
-

20 DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

Q UNCLASSIFIED/UNLIMITED D SAME AS RPT. D DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I 22c. OFFICE SYMBOL

Jud_y_ Little Publications Coordinator (617) 253-5894

DD FORM 1473, B4 MAR 83 APR ed1t1on may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other ed1t1ons are obsolete

Unclassified

