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Abstract 

One possible advantage a distributed system has over a centralized system is the ability 
to move objects from one node to another. For example, we may want to move an 
object if the node where it resides is overloaded. This thesis proposes to use a location 
service to aid in finding objects that move. The service is highly-available; it will tolerate 
system failures like node crashes and network partitions without shutting down 
completely. The service is also efficient, the response time of the service is reasonable, 
and it does not increase the number and sizes of messages excessively. 

We achieve high availability and efficiency by replicating the service state. The 
replication technique we have chosen is a new method, the multipart timestamp 
technique that is based on multipart timestamps and gossip messages. This technique 
provides us with higher availability and efficiency than traditional replication techniques 
without sacrificing consistency. We also extend this technique to allow reconfiguration. 
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Chapter One 

Introduction 

As the cost of computers decreases, finding ways to use multiple computers has been 

on the increase. One way to use multiple computers is to distribute parts of a 

computation over a system of nodes connected by a communications network. We call 

such a system a distributed system. A distributed system can offer several advantages 

over a traditional, centralized system. One possible advantage is the ability to move the 

objects of a system from one node to another. We might want to move an object for 

various reasons. For example, we may be able to increase system efficiency. If the cost 

of sending a message to an object is proportional to the length of the path from the 

sender to the object, then if the object is moved "closer" to the processes that 

manipulate it frequently, we would expect greater efficiency. Another example is to 

redistribute the message traffic or load at a node by moving some of the objects from the 

heavily used node to a node with less traffic or load. A third example is to prevent major 

disruptions in access. If a node is going to be down for a significant amount of time, we 

may want to move the objects residing on that node to another node. Or it may be that 

the node simply cannot maintain the object any longer; this might happen if the node is 

going to be removed from the system, or reassigned to another task. 

Historically, objects were created, used, and destroyed at a single node. In such a 

scheme, the location of an object can be part of its name, so finding an object is simple; 

each node just "knows" how to determine where an object resides from its name. 

However, in a world where objects move, the problem of locating them becomes non­

trivial. We can no longer just embed an object's location in its name. Since an object 

may no longer be at the node where it was last accessed, we must have a way of finding 

out its new location. Various methods for locating objects have been proposed. 

Forwarding addresses [4] can be used to allow processes to find objects that have 

moved by following a chain of addresses to the current location. A search for an object 

can be done using a broadcast technique [7]. 

This thesis investigates the use of a location service to aid in finding objects that move. 

Abstractly, a location service maintains associations of object names to locations. It 

provides operations to read and update these associations. These operations are the 

only way to interact with the service. Entities that invoke the service's operations are 

called clients of the service. 
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We have two main goals for our location service. First, it should be highly-available. 

Our definition of availability of query operations (operations that request information from 

the service) is if an object resides at a node that is accessible to the entity trying to use 

it, then with high probability the entity should be able to locate that object. We define the 

availability of update operations (operations that change the service state) as the 

probability that an operation invocation will be completed in a short period of time. To 

achieve this goal, the service must tolerate system failures like node crashes and 

network partitions. By tolerate, we mean that the service should degrade gracefully in 

the presence of continuing failures. It may not be able to provide full service, but it 

should provide as much information as possible and not just shut down completely. 

The location service should also be efficient. Unfortunately, efficiency and availability 

are somewhat inversely related. Making the service highly-available may introduce 

inefficiencies. However, there are many techniques for achieving high availability. We 

want to choose one that does not severely affect the response time of the service, nor 

increase the number and sizes of messages excessively. 

Simple, centralized implementations of a location service are easily realized and are 

very efficient, but do not meet our availability requirements. If the node where the 

service resides goes down, the service would be inaccessible to the entire system. If 

this node is down long enough, it could cause the system to stop functioning. 

Replication is a standard technique for achieving both high availability and efficiency. 

Multiple copies of the service state are kept at different nodes. Replication increases 

availability; if one replica is temporarily inaccessible, work can continue using a different 

replica. Replication can enhance performance by permitting clients to use the most 

easily accessible replica, but it can also decrease performance if several replicas are 

needed to perform an operation. 

Once the data is replicated at several nodes, the information at different replicas may not 

be identical. This may occur if a node is down or inaccessible when an update is 

performed. When such inconsistencies happen, there must be some way to determine 

the correct response. One method is Gifford's majority voting algorithm [5]. In his 

scheme, the set of replicas visited by operations that read the service state must 

intersect with those that are visited by operations that modify the state. There is some 

flexibility in choosing the sets of replicas for each operation. For example, if the service 

state had three replicas, information could be written to three replicas and read from just 

one, or information could be written and read at two replicas. The first choice gives 

more availability and faster response time to read operations, while the availability of the 

write operation is poor, since all three replicas have to be accessible. The second 
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choice trades off the availability and efficiency of read operations with the availability of 

write operations. We would like to make both types of operations available and efficient. 

The replication technique we have chosen for our server is Liskov's multipart timestamp 

technique [1 OJ. This is a new replication method based on multipart timestamps and 

gossip messages. We chose the multipart timestamp technique because it affords us 

higher availability and greater efficiency than more traditional replication techniques. It 

allows us to do reads and updates at any one replica. 

The contributions of this thesis are: 

• a location service for Argus and a basis for object finding in general 

• a practical application of the multipart timestamp technique 

• extension of the multi part ti mestamp technique to allow reconfiguration of 
the service state 

In the remainder of this thesis, we present the design and implementation of a highly­

available, efficient location service for the Argus system. Chapter 2 gives the context for 

our work. It states our model of computation: the assumptions we make about system 

hardware and failures. It describes the features of the Argus system that are relevant to 

this thesis. Also, it discusses what it means to move objects in Argus and where the 

location service fits into the system. 

Chapter 3 lays out the basic design for the highly-available location service, ignoring 

implementation issues like transactions to simplify the presentation. We assume that all 

replacement transactions commit. This assumption is relaxed in Chapter 4, which 

discusses the interaction of the server with the transaction system. The changes to the 

replica state and operations to handle the issues raised by aborting transactions are 

presented as we describe an actual implementation of the service. Some alternate 

solutions are also discussed and compared with the implemented solution. 

As the configuration of a system changes, we may need to change the configuration of 

the location service as well. We would like to be able to change the number or locations 

of the replicas that make up the server. Chapter 5 discusses extensions to the multipart 

timestamp technique to allow reconfiguration. We also address the issue of clients 

finding the service after a reconfiguration. 

Chapter 6 presents our conclusions. We evaluate the multipart timestamp technique, 

compare the work in this thesis to some related work, and suggest some areas for future 
work. 
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Chapter Two 

Background 

In this chapter, we present background information to give a context for our work. First, 

we describe our model of computation: what our assumptions are and what our notion 

of failure is. Next, we describe the parts of the Argus system relevant to this thesis. 

Finally, we describe what it means to move objects in Argus and how the location 

service fits into the system. 

2.1 Model of computation 

Our model of computation makes the following assumptions about the system hardware 

and the effects of failures. A distributed system is a collection of physical nodes 

interconnected (only) by a communication network. These nodes may be in 

geographically distinct locations and may be administered by independent entities. A 

node may consist of one or more processors and any number of peripheral devices. We 

assume that processors are fail-stop [25]. Nodes can crash, but we assume that 

processors do not exhibit Byzantine behavior. 

The communication network may be of arbitrary topology, perhaps a combination of 

local area networks and long haul networks. Processes on different nodes can 

communicate only by passing messages over the network. We assume that in the 

absence of network failures, any node can communicate with any other node. Again, we 

assume that there are no Byzantine failures, but otherwise the network can behave 

arbitrarily badly. In particular, it can partition. It can lose, delay, duplicate, or garble 

messages. It can deliver messages out of order. We assume that we can detect 

garbled messages and throw them away, treating them as lost messages. We do not 

assume that we can distinguish between delays caused by a node failure, a network 
failure, or a heavily loaded system. 

2.2 Argus 

Argus is both a programming language and a run-time system. The Argus programming 

language is a high-level approach for writing distributed applications that need reliable, 

consistent storage, but do not have severe real-time constraints [19]. The language is 
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based on CLU [15] and is fully described in [16]. In particular, Argus retains all of the 

abstraction mechanisms of CLU [14) and adds several more. The main features of 

Argus that we are most interested in are the following: guardians and handlers, atomic 

actions and atomic objects, mutex objects, and some parts of the system 

implementation, namely handler names and guardian managers. 

2.2.1 Guardians and handlers 

The programming language Argus supports a module type called a guardian. A 

guardian is an abstraction of a processor and its state and resources. It may be thought 

of as a logical node of the system. A guardian encapsulates long-lived, resilient data 

and processes that manipulate this data. A guardian is created dynamically and resides 

wholly on one physical node. There may be more than one guardian at a physical node. 

Unlike regular objects, a guardian is an active entity; it has multiple internal processes. 

A guardian has zero or more background processes and a set of operations called 

handlers. Handlers may be thought of as procedure objects that reside at a guardian 

through which one can manipulate the guardian state and resources. Handlers are 

invoked as remote procedure calls, and their arguments and results are transmitted by 

value [9). The only way to use a guardian is to call one of its handlers. Each handler 

call is run as a separate process within the guardian. A handler call has "at-most-once" 

semantics. If the call returns, it has been done at most once. If the call does not return 
or fails, it has (effectively) not been done at all. 

Guardians are the unit of failure in Argus. They either function correctly (as 

programmed), or they fail completely. When a guardian fails, it is said to have crashed. 

The Argus system periodically tries to restart crashed guardians. When a guardian 

crashes, all of its processes die. A guardian may crash even if its node does not, but 

when a physical node crashes, all of its guardians crash as well. 

A guardian is implemented by a guardian definition. This definition includes one or more 

operations called creators (used to create new guardian instances), the names of the 

guardian's handlers, the declaration of the guardian's state, the background code, and 

the recover code. A guardian has two types of state: volatile state is cheap, fast, and 

does not survive crashes; stable state is expensive and slower. It is stored on stable 

storage devices so that information will not be lost with arbitrarily high probability [12) 

when a guardian crashes. A guardian's state is initialized as part of its creation. When a 

guardian is restarted after a crash, its stable state is restored automatically and the 

recover code (if any) is run to reinitialize its volatile state. The background code is 

executed as a separate process after the creation of the guardian is completed and after 
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every recovery from a crash. A guardian can be destroyed in only two ways. The 

guardian itself can execute a terminate statement, or it can be destroyed using a 

system program. 

2.2.2 Atomic actions and atomic objects 

Distributed computations in Argus are organized as atomic actions (or transactions). 

Transactions have two properties of interest. The first property is indivisibility. The 

execution of one transaction never appears to overlap or contain the execution of 

another transaction even if the'/ run concurrently. The second property is recoverability. 

Either all of the effects of a computation are visible (the transaction has committed) or 

none of the effects are visible (the transaction has aborted). When a guardian crashes, 

all uncommitted transactions are aborted. Argus also supports nested subactions as a 

method of concurrency control and isolation of failures [21]. In particular, an action 

invoking a handler creates a subaction to send the call (the call action) and a subaction 

at the remote site to do the call. This allows the program to abort a handler invocation 

by aborting the call action without aborting the invoking action or waiting for the remote 

action to terminate. 

Argus programs achieve atomicity through the sharing of atomic objects. Argus provides 

special built-in atomic objects as part of the language definition. These objects are 

synchronized by the system using strict two-phase read/write locking [2]. Recoverability 

is provided by keeping versions and a two-phase commit protocol [6]. A detailed 

description of the Argus recovery algorithm is given by Oki [23]. 

2.2.3 Mutex objects 

Argus also supports a built-in type generator called mutex. Mutex objects are not 

necessarily atomic objects, although they can be shared by transactions. A mutex 

object is a mutable container with a lock associated with it. Mutually exclusive access to 

the contained object is obtained using the seize statement that acquires1the mutex's lock 

in an exclusive mode. 

Mutex objects are used primarily to implement user-defined atomic types. User-defined 

atomic types are abstract atomic types implemented by the user, usually to gain 

concurrency not allowed by the built-in atomic types. Like built-in atomic types, user­

defined atomic types must provide indivisibility and recoverability mechanisms. 

Generally, a user-defined atomic type is implemented as a mutex surrounding a non­

atomic collection of atomic objects. (See Weihl and Liskov's paper [28] for the theory of 

atomic objects and example implementations.) 
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2.2.4 System implementation 

When guardians are created, they receive unique identifiers (guardian ids} that serve as 

their system names. A guardian id contains the id of the node at which the guardian was 

created. Handlers also receive identifiers (handler ids}. A handler id is unique with 

respect to its guardian. A handler name is a (guardian_id,handler_id) pair. 

Parts of the Argus run-time system are linked into every guardian when it is created. 

They support various aspects of the Argus programming model such as stable storage 

and transactions. Other parts of the run-time system are encapsulated in a 

distinguished guardian called the guardian manager. There is a guardian manager at 

every node of the system. The guardian manager is responsible for creating new 

guardians, restarting guardians after they crash, and managing resources used by 

guardians such as releasing stable storage when a guardian is destroyed. 

Currently, if a regular guardian does not know a handler's address when it makes a 

handler call, it generates a lookup request to the guardian manager at its node. The 

guardian manager can take apart the guardian id part of a handler name and "know" 

where that guardian (and hence the handler} is located. Currently, guardians do not 

move, so the guardian manager just returns the given handler name and the node 

embedded in the guardian id. 

2.3 Moving objects in Argus 

Object movement can be viewed in two ways. One view is that objects have unique 

proper names by which they will always be known. When an object moves, it keeps that 

name and is the same object as before. When it is destroyed, no other object can have 

its name. This scheme models the world of physical objects. When a physical object is 

moved, it retains its identity independent of location. 

The second view is that objects are replaced. That is, moving an object is really creating 

a new object in the new place, copying the state of the old object to the new object, and 

destroying the old object. The old name is now an alias for the new object. These two 

views are equivalent as far as finding objects is concerned. Either way, the client only 

has to have a name to find an object. However, the replacement view is more flexible. 

We can "split" objects. For example, suppose we have an object that has some number 

of operations. If we wanted to separate the operations into two groups, we could replace 

the single object with two new objects and alias the old operation names with the 
respective operations in the new objects. We can also "merge" objects by replacing two 

or more objects with a single object. Both splitting and merging objects can be 
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implemented completely within the run-time system, causing no changes in clients. On 

the other hand, to split or merge objects in the proper name view would require that 

clients be able to handle changes in names. 

For the Argus location service, we have chosen the replacement view because of its 

generality. The computational model of Argus allows (only} guardians and handlers to 

be replaced. All other objects are encapsulated by guardians so their movement is 

implied by the replacement of guardians. Handlers are organized by guardian, but may 

be moved in the sense that a single guardian's handlers can be bound to different 

replacement guardians' handlers. We assume that the effect of replacement is atomic. 

A guardian either moves completely or remains at the original node. A guardian cannot 

be "partially" moved. We also assume that replacements for a particular guardian are 

infrequent. 

We expect that there will be two types of replacement in Argus. The more common type 

will be straight re,location, where a guardian is replaced by an identical guardian 

(meaning it provides the same interface} at a different node. The other type is 

subsystem replacements that may involve replacing multiple guardians and binding their 

handlers in arbitrary combinations. A summary of the basic replacement method is the 

following 1: 

1. Start a transaction. 

2. Stop the activity at the old guardian(s}. 

3. Create the new guardian(s). 

4. Transfer the state from the old guardian(s} to the new guardian(s}. This 
allows the new guardian(s} to take up where the old one(s} left off. 

5. Bind the handlers of the old guardian(s} to those of the new guardians(s}. 

6. Destroy the old guardian(s). 

7. Commit the transaction 

If any of these steps fails, then the transaction aborts and the replacement fails. The old 

guardian(s} recover and resume as if they had crashed. If all of the steps succeed, the 

transaction commits, and the replacement takes over. 

When a guardian is replaced, calls to its handlers need to be routed to its new location. 

We want the run-time system to do this automatically to support the view that handler 

invocation is location-independent (13] so that application programmers will not need to 

1This method is due to Bloom's work on dynamic replacement [1]. 
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be concerned with location. We provide support for this view in the form of a location 

service. The location service records the handler bindings of step 5. A guardian would 

generate a lookup request to the location service to get the current binding of the 

handler if it does not know the handler's location. 

A simple implementation of the service might be to use a single guardian as the server 

with the service operations as handlers. However, this implementation is not resilient to 

failures. If the server crashes or gets partitioned from the rest of the system then the 

service is unavailable and the system stops. Therefore, we must replicate the service 

state to obtain high-availability. The rest of this thesis presents the design and 

construction of such a service. 
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Chapter Three 

A Highly-Available Location Service 

In the next three chapters, we present the design and implementation of a highly­

available location service for Argus. Our approach will be to present the basic structures 

and algorithms in this chapter, ignoring implementation issues like transactions and 

reconfiguration. Chapter 4 will describe an implementation in the Argus system that 

addresses the issue of transactions, the probk ms it causes, and the solutions to those 

problems. Reconfiguration is addressed in Chapter 5. 

For this chapter, we make the following assumptions: 
• all replacement transactions commit 

•the server has a fixed number of replicas in known locations 

As discussed in Chapter 2, both guardians and handlers move in Argus. However, the 

run-time system is really only interested in handler addresses. Moving a guardian also 

implies moving its handlers, so moving a guardian is an optimization for moving each of 

its handlers. 

Recall that a guardian id contains the id of the node at which the guardian was created. 

As a result, a handler's name is also its initial address. We write a handler address also 

as a (guardian_id, handler_id) pair. If a guardian does not know the location of a 

handler when a call is made, it generates a lookup request to the guardian manager at 

its node. Since guardians currently do not move, the returned address is the same as 

the sent one and a call is always made. If the call is to a non-existent guardian, the 

guardian manager at the called node generates a failure exception that is raised in the 

calling guardian. 

The location service will allow us to move guardians in Argus by keeping track of the 

new handler addresses. It will also allow us to originate the failure exception locally (via 

the server) for non-existent guardians instead of waiting until after the call is tried at the 

called node. 

This chapter begins with a presentation of Liskov's multipart timestamp technique, a 

replication technique for constructing highly-available services. In Section 3.2, we 

describe the state and operations of the location service and give an example of how the 
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service is used. In Section 3.3, we present an abstract implementation of a replica. 

Finally, in Section 3.4, we discuss how the clients use the location service in the Argus 

system. 

3.1 Multipart timestamp technique 

The multipart timestamp technique was developed as an optimization for the Argus 

orphan detection algorithm [26]. In the multipart timestamp technique, the data is 

replicated as in other methods, but updates and reads occur at any (one) replica. This 

increases the chance that the service will be available and is more efficient than trying to 

access multiple replicas. To keep the replicas up-to-date, information is propagated in 

the background as "gossip" messages. While the system is running smoothly, 

information propagates quickly. However, this is not always the case due to crashes 

and partitions. A replica may have out-of-date information when a client does a lookup. 

This is not a problem if the client does not need to know the most up-to-date information, 

but just something that is "recent enough." The technique is suitable for services where 

clients do not need to know the most up-to-date information. To improve its utility, the 

technique gives clients a way of specifying how recent the information must be. 

The information in the service can be considered as a set of states in which each state 

represents the effects of some number of update operations. A state S1 is more recent 

than a state S2 if every update represented in S2 is also represented in S 1• The service 

associates a timestamp with a particular state of the information. The timestamps are 

partially ordered and must meet one invariant: later timestamps are associated with 

more recent states. Each replica maintains a current state and its timestamp. 

There are two types of operations in a service. Update operations change the service 

state and increment the timestamp. They return the new timestamp to clients, thus 

identifying a state in which the update operation has taken effect. Query operations read 

the service state. They take a timestamp argument; the service guarantees that the 

answer will come from a state with a timestamp at least as late as the argument 

timestamp. Thus, if a client needs an answer that reflects a particular update, it can 

send as a query argument a timestamp known to be greater than or equal to the 

timestamp returned by that update and be sure that the answer it gets is recent enough. 

If the argument timestamp of a query is less than or equal to the timestamp at the 

replica, the replica can answer the query immediately. Otherwise, the replica has to wait 

until it has more recent information. Although a client might ask for a "future" state, in 

practice, clients will only ask for states that exist, so a replica only has to wait until the 

information needed is propagated to it from the other replicas. 
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It is necessary that each replica be able to generate a new timestamp independently or 

else we would be dependent on a timestamp service having the same problems we are 

trying to solve and will not have gained anything. The notion of the multipart timestamp 

(henceforth, just timestamp) is introduced as a solution. The timestamp is a sequence 

(t1,t2' ... ,tk) where t; is the local time (either logical or real) at replica i and k is the total 

number of replicas in the server. Each part can be incremented independently of any 
other part, and the ith replica increments the timestamp by advancing only the time in the 

11h part. Since each replica advances only its own part, the timestamps produced by 

different replicas are unique and can be generated independently. Among the 

operations provided by timestamps are the following: 

merge = proc (ts1 ,ts2:timestamp) returns (timestamp) 

% Returns a timestamp ts' where ts'[i] = max(ts1 [i],ts2[i]), for i = 1, ... ,k. 
% (ts[i] refers to tsi) 

equal = proc (ts1 ,ts2:timestamp) returns (bool) 

% If ts1 [i] = ts2[i], for i = 1, ... ,k, then returns true else returns false. 

It= proc {ts1 ,ts2:timestamp) returns (bool} 

% If ts1 [i] ~ ts2[i], for i = 1, ... ,k, and 3 j, such that ts1 [j] < ts2[j], 
% then returns true else returns false. 

If timestamp S is not less than or equal to T and Tis not less than or equal to S, then S 

and Tare incomparable. 

Information is propagated in the background in the form of "gossip" messages. The 

gossip scheme is based on those used in solutions to the dictionary problem posed by 

Fischer and Michael [3, 29]. Replicas keep a list {the send_gossip list) of update 

operations that have occurred at that replica and their timestamps and the update 

operations they receive from the gossip of other replicas. Periodically, a replica sends 

its send_gossip list and its current timestamp to all other replicas in the service. 

When a replica receives a gossip message, it compares the timestamp of the message 

and its timestamp. If the message's timestamp is less than or equal to the replica's 

timestamp, the message is discarded. Otherwise, each entry in the gossip list is read, 

and it is determined whether the replica has heard of that operation. If the entry's 

timestamp is less than the replica's timestamp, the entry is ignored; otherwise, the entry 

is processed in the same manner as if that update had been invoked at that replica, 

except that the replica's timestamp is not incremented. When all of the entries in the 
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gossip message have been processed, the message's timestamp is merged into the 

replica's timestamp. 

An important practical consideration for the multipart timestamp technique is how to 

remove obsolete information from a replica state. For example, the send_gossip list will 

grow without bound if we do not remove any entries. However, we cannot remove an 

entry from the list at just any time. We have to wait until all of the other replicas know 

about the operation in question. We do this by keeping a table (the gossip_table) of the 

timestamps the other replicas send with their gossip messages. If the sent timestamp is 

greater than the timestamp of an entry in the send_gossip list, then the sending replica 

has heard about that update operation. When all of the timestamps in the gossip_table 

are greater than or equal to the entry's timestamp, all of the replicas have heard about 

the update operation, and the replica can remove that entry from its send_gossip list. 

Other forms of garbage collection in the replica state will also be necessary. However, 

the structures in question are specific to the type of service and information provided, so 

we will defer discussion of these forms until we present the abstract implementation of 

the location service. 

A client uses the service by sending an appropriate message to a replica. The replica 

responds with a reply message. If the response is slow, the client may send the 

message to a different replica, or it might send messages to more than one replica in 

parallel. As stated before, we make no assumptions about the delivery of messages. 

To make things more efficient, a client can maintain a local cache of the information and 

timestamps it obtains from the service, and thus avoid some making queries. 

3.2 Operations of the location service 

In this section, we describe the operations of the location service. First, we present the 

specifications of the location service. We model the service as an abstract data type, 

giving its representation and operations. Then we use an example to illustrate the uses 

of the service operations and the different types of replacements that might happen in 

the Argus system. 

3.2.1 Specifications 

The location service provides four operations: enter_guardians, delete_guardian, rebind, 

and lookup. Enter_guardians is called by the guardian manager to enter one or more 

guardian ids at the server; this operation is intended to be used by the guardian 
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manager to "pre-enter" guardian ids so that entering a guardian id will not have to be 

done during the actual creation of a guardian. Creation is a fairly slow process, and 

entering a guardian's id during its creation would make it even slower since the guardian 
manager would have to wait for the return of the enter_guardians operation before 

allowing the creator operation to return. The operation allows several guardian ids to be 

entered at once to reduce the number of interactions with the location service. 

Delete_guardian is called by the guardian manager to delete a guardian id from the 

server. It is called when a guardian manager destroys a guardian independent of a 

replacement. Rebind is called by the replacement system to rebind handlers moved in a 

replacement transaction and to delete the guardian ids of the replaced guardians. 

Finally, lookup is called by the run-time system to find the address of a handler. 

The remainder of this section gives a precise specification of these operations. The 

specification is given in terms of an abstract model [17] of the location service, which is 

viewed as consisting of the following components: 

ts 

hmap 

gmap 

entered 

deleted 

A timestamp identifying the current state of the service. 

A record of handler bindings. This is a mapping of handler 
addresses to handler addresses. A handler h1 is bound to h2 when 
we want the handler calls to h1 to be routed to h2. 

A record of guardian bindings. This is a mapping of guardian ids to 
guardian ids. A guardian g1 is bound to g2 when we want all of the 
handlers in g1 to be bound to the corresponding handlers in g2, 
except those already bound in hmap. 

The set of all guardian ids that have ever been entered. 

The set of all guardian ids that have ever been deleted. 

A third set, the exists set, is the difference between the entered and deleted sets. 

Before we begin the discussion of the service operations, we define some terminology. 

A guardian id exists at the server if it is in the exists set. A guardian id is deleted at the 

server if it is on the deleted set. The left component of a binding is its source. The right 

component of a binding is its target. We also speak of a guardian id as being a source 

or a target if it appears in the source or the target of a binding, respectively. 

The enter_guardians operation has the following interface: 

enter_guardians = proc (gset:SetOfGids) returns (timestamp) 

The operation takes a set of guardian ids as an argument. The service adds the 

guardian ids to the entered set, increments its timestamp, and writes both to stable 

storage. Then it returns its timestamp as a result. We require the system to generate 

unique ids for guardians and not to reuse them. In particular, we require that a guardian 

id not be entered at the service after being deleted from the service. 
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The delete_guardian operation has the following interface: 

delete_guardian = proc (g:guardian_id) returns (timestamp) 

It takes a guardian id as an argument. The service adds the guardian id to the deleted 

set, increments its timestamp, and writes both to stable storage. Then it returns its 

timestamp as a result. 

The rebind operation has the following interface: 

rebind = proc (gm:MapOfGids, hm:MapOfHandlers, t:timestamp) 
returns (timestamp) 

It takes a guardian id map, a handler address map, and a timestamp as arguments. 

(The reason for the timestamp argument will be explained later.) The guardian id map is 

a set of bindings of guardian ids to guardian ids. The handler address map is a set of 

bindings of individual handler addresses to handler addresses. The service adds the 

bindings in gm to gmap, adds the bindings in hm to hmap, adds the source guardian ids 

to the deleted set, increments its timestamp, and writes these structures to stable 

storage. Then it returns its timestamp as a result. The returned timestamp is 

guaranteed to be greater than or equal to the argument timestamp. 

We can view the information in exists, hmap and gmap as a directed graph where the 

vertices are handler addresses and the edges are the handler address bindings. The 

edges are directed from the source to the target of a binding. Guardian ids are 

conceptually expanded to their corresponding handlers, and guardian id bindings are 

conceptually expanded to their corresponding handler address bindings for this graph. If 

there is both a guardian id binding and handler address binding for a particular handler, 

the handler address binding prevails. Figure 3-1 shows the graph of a particular state of 

the service. In this example, guardians G and H each have three handlers, guardians F 

and K have two handlers, and guardians L and M have one handler. 

The information has the following representation invariant: 
1. The graph has no cycles. 

2. Only one edge may emanate from a vertex. 

The information must meet this invariant because the lookup procedure traverses this 

graph to answer queries about the service state. The first part guarantees termination 

for the lookup procedure. The second part guarantees a deterministic choice. 

We rely on the replacement system to obey certain conditions needed to maintain the 

representation invariant of the binding information. These conditions insure that the 

inputs to the rebind operation are well-formed. We state these conditions here: 
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State of the service: 

gmap: G --> H 
L --> M 

hmap: H,hl --> K,hl 
H,h2 --> K,h2 
H,h3 --> L,hl 

exists: {F, K,M} 

Graph of the information: 

(F, hl) 

(!'' h2) 

(G, hl) ----> (H, hl) ----> (K, hl) 

(G, h2) ----> (H, h2) ----> (K, h2) 

(G, h3) ----> (H, h3) ----> (L, hl) ----> (M, hl) 

Figure 3-1: A service state represented as a graph 

1. The source and target guardian ids of bindings in gm and hm exist. 
(Recall that gm is the guardian id map argument to the rebind operation 
and hm is the handler address map argument.) This prevents possible 
bindings that would create loops in the graph. 

2. A guardian id is not both a source and a target in gm or hm. This prevents 
explicit loops in the inputs to rebind. 

3. A source of a binding in gm is not bound to two different targets in gm, and 
a source of a binding in hm is not bound to two different targets in hm. 
This is a uniqueness condition on the information in the inputs to rebind to 
prevent more than one edge emanating from a vertex in the graph. 

4. The source of a binding in gm or hm is not already the source of a binding 
in gmap or hmap, respectively. This is a uniqueness condition on the 
relation between the inputs in rebind and the service state to prevent more 
than one edge emanating from a vertex in the graph. 

Recall that our idea of replacement is that we create the replacement guardians, bind 

the handlers of the old guardians to them, and then destroy the old guardians. 

Therefore, these conditions can be met easily. 
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The rebind operation needs a timestamp argument because the lookup algorithm will not 

work if a replica knows about a rebind but not the enter of the target guardian id(s). The 

lookup would incorrectly state that the handler had been destroyed in such a case. We 

solve this problem by having the replacement system send a timestamp that is at least 

as late as the merge of the timestamps returned by the enter_guardians operations for 

all of the target guardian id(s) as an argument. Since the returned timestamp is 

guaranteed to be greater than or equal to the argument timestamp, it is the timestamp of 

a state that contains information about both the enter(s) and the rebind. 

The guardian id map is a compact way of indicating that all of a guardian's handlers 

have been bound one-to-one to its replacement guardian, except for the ones already 

bound in hm. We could have simplified matters by having only handler address 

bindings, but we expect guardian for guardian replacement to be more common than 

replacements needing to bind arbitrary handlers. Guardian id binding also allows us to 

replace a guardian without having to know the exact number of handlers that it has. 

The lookup operation has the following interface: 

lookup= proc (h:handler_address, t:timestamp) 
returns (handler_address, timestamp) signals (handler_destroyed) 

It takes a handler address and a timestamp as arguments. If the handler address 

argument is bound in the abstract state, it returns a handler address and its current 

timestamp as results; otherwise, it signals handler_destroyed. The returned timestamp 

is guaranteed to be greater than or equal to the argument timestamp. A handler address 

is bound in the abstract state if: 

• there is a path of length zero or more emanating from the vertex labeled 
with the handler address argument in the graph of binding information and 

• the guardian id at the end of the path is in the exists set. 

Lookup is a query, so a replica can reply to a lookup only if its timestamp is greater than 

or equal to the argument timestamp. 

3.2.2 An example 

To make our discussion more concrete, we present an example of how the location 

service would be used and what information it keeps. Figure 3-2 goes through this 

example pictorially. To simplify the presentation we will assume that all of the updates 

and lookups occur at one replica so that we can ignore the gossip. 

Before we begin the example, we define some more terminology. A guardian is created 

when the creator call returns to the creating transaction. A created guardian is assigned 
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(1) . !' and G are created: 

!' G 

hl hl 
h2 h2 
h3 h3 

(2). After destroying !' and moving G: 

gmap: <empty> 
hmap: <empty> 
exists: {!',G,H,K,L,M,N} 

G ----->H gmap: G --> H 
hmap: <empty> 

hl hl 
h2 h2 
h3 h3 

(3). After "splitting" H: 

G ----->H K 

hl hl ----->hl 
h2 h2 ----->h2 
h3 h3 

I L 

I 
---->hl 

(4). After moving L: 

G ----->H 

hl 
h2 
h3 

hl ----->hl 
h2 ----->h2 
h3 

L ------>M 
---->hl hl 

(5) . After "merging" K and M: 

G ----->H N 

hl hl ----->hl --------------->hl 
h2 h2 ----->h2 --------------->h2 
h3 h3 ----->h3 

L ------>M I 
I 

---->hl hl 

exists: {H,K,L,M,N} 

gmap: G --> H 
hmap: H,hl --> K,hl 

H,h2 --> K,h2 
H,h3 --> L,hl 

exists: {K,L,M,N} 

gmap: G --> H 
L --> M 

hmap: H,hl --> K,hl 
H,h2 --> K,h2 
H,h3 --> L,hl 

exists: {K,M,N} 

gmap: G --> H 
L --> M 

hmap: H,hl --> K,hl 
H,h2 --> K,h2 
H,h3 --> L,hl 
K,hl --> N,hl 
K,h2 --> N,h2 
M,hl --> N,h3 

exists: {N} 

Figure 3-2: An example of using the location service 
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a guardian id that exists by the guardian manager. A guardian is destroyed when the 

destroying transaction commits. A destroyed guardian's id is deleted from the service by 

the guardian manager. 

We begin the example by invoking: 

enter_guardians ({F,G,H,K,L,M,N}) 

This enters the guardian ids F, G, H, K, L, M, and N into the exists set. Next, we create 

two guardians that are given guardian ids F and G; each has three handlers. Step (1) 

shows the replica state after the ids are entered and guardians F and G are created. 

Both maps are empty and there are seven guardian ids in the exists set. 

Continuing the example, we destroy guardian F, resulting in the call: 

delete_guardian (F) 

Next, we move G. We do this by creating a guardian, also with three handlers, that is 

given the guardian id H. We bind G to H by invoking: 

rebind ({(G,H)},{ },ts) 

The resulting state is shown in step (2). F and G have been destroyed. There is an 

entry in gmap, and F and G are no longer in the exists set. A lookup of (F,h1) would 

result in a handler_destroyed exception because there are no bindings for F in either 

map and F is not in the exists set. A lookup of (G,h1) would first find a path from G 

ending at H. Since H is in the exists set, the operation would return (H,h1 ). 

In step (3), we "split" H. We do this by creating guardian K with two handlers: h1, h2; and 

guardian L with one handler, h1. We bind H's handlers by invoking: 

rebind ({ },{((H,h1 ),(K,h1 )),((H,h2),(K,h2)),((H,h3),(L,h1 ))},ts) 

Then H is destroyed. Now when a lookup operation of (G,h1) is done, the service 

follows the path in gmap to H and then sees that (H,h1) has been bound to (K,h1) in 

hmap, which is the end of the path. K is in the exists set, so it returns (K,h1 ). When a 

lookup of (G,h3) is done, the service gets to H again, but sees that (H,h3) is bound to 

(L,h1 ), so (L,h1) is returned. 

Next, we move L. We create guardian M with one handler, h1 .. We invoke: 

rebind ({(L,M)},{ },ts) 

Then L is destroyed. Step (4) shows the state after this is done. A lookup of (G,h1) still 

returns (K,h1) (K is still in the exists set), but now a lookup of (G,h3) returns (M,h1 ), 

since L is bound to M in gmap and M is in the exists set. 

Finally, we "merge" K and M together. We create guardian N with three handlers: h1, 

h2, h3. We invoke: 
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rebind ({ },{ ((K,h1 ),(N,h1 )),((K,h2),(N,h2)),((M,h1 ),(N,h3))},ts) 

Then Kand Mare destroyed. This final state is shown in step (5). A lookup of (G,h1) 

returns (N,h1), and a lookup of (G,h3) returns (N,h3). 

3.3 Abstract implementation 

In this section, we present an abstract implementation of our location service. It is 

abstract in the sense that we only deal with abstract data types and operations. We 

ignore issues like transactions and reconfiguration. We deal with these issues in later 

chapters. For the first four parts of this section, we also assume that replicas do not 

crash. The last part of this section discusses how to deal with replica crashes through 

the use of stable storage. 

We assume that replica processes access data structures one at a time. That is, each 

of the processes runs in a critical section. This is easy to implement in Argus using the 

mutex construct. 

3.3.1 Data structures 

A replica is implemented by a guardian. We begin by describing the state of a replica. 

The state of the replica has many components. We will use the following notation to 

describe the types of the various components: 

{item_type} denotes a set of items of type item_type 

(item1, item2) denotes an ordered pair where the first component is of type 
item 1 , and the second component is of type item2. 

key ~data denotes a function mapping items of type key to items of type 
data. An individual (key, data) pair is referred to as an 
association. 

Gmap is the map of guardian id to guardian id bindings. Its type is: 

MapOfGids = guardian_id ~ guardian_id; 

Hmap is the map of handler address to handler address bindings. A handler address is 

a (guardian_id, handler_id) pair. The type of hmap is: 

MapOfHandlers = (guardian_id, handler_id) ~ (guardian_id, handler_id); 

Exists is a set of guardian ids. It is the set of currently existing guardians; it is the same 

as the exists set described in Section 3.2. Its type is: 

SetOfGids = { guardian_id }; 
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Deleted is a set of (guardian_id, timestamp) pairs. It is a partial set of the guardian ids 

that have been deleted along with the timestamp of the delete_guardian or rebind 

operation associated with the delete event. Its type is: 

SetOfDeletedGids = { (guardian_id, timestamp) }; 

Send_gossip is a set of (timestamp, update_record) pairs. It is a partial set of the 

update operations reflected in the replica's current state along with the timestamp of the 

operation. Its type is: 

SetOfUpdate_records = { (timestamp,update_record)} 

An update_record represents an update operation. Its type is a discriminated union: 

update_record = oneof [enter : SetOfGids, 
rebind : rebind_entry, 
delete : guardian_id] 

rebind_entry = struct[gm:MapOfGids, hm:MapOfHandlers] 

The field components of the arms of the update record are the arguments to the 

operation represented. 

Gossip_table associates timestamps to replicas and is an array of timestamps. Ts is the 

current timestamp of the replica. My_index is the index of the replica in ts and 

gossip_table. My__parl is the value of the replica's part in ts (that is, ts[my_index]). 

Figure 3-3 summarizes the state of a replica. We will use the notation 

variable.component_name to refer to the various components of any record-like type. 

The components of the server state will be referred to by S.component_name. 

gmap 
hmap 
exists 
deleted 
send _gossip 
gossip_table 
ts 
my_index 
my_part 

: MapOfGids; 
: MapOfHandlers; 
: SetOfGids; 
: SetOfDeletedGids; 
: SetOfUpdate_records; 
: array[timestamp]; 
: timestamp; 
: int; 
: int; 

Figure 3-3: State of a service replica 
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3.3.2 Operations 

For the discussion of the server operations, we define the following procedures on maps: 

key_is_in = proc {m:map, k:key) returns {bool) 

% Returns true if there is data associated with k in m; 
% otherwise returns false. 

fetch_data = proc {m:map, k:key) returns {data) 

% Requires that k be associated with some data in m. 
% Returns the data associated with k in m. 

add_association = proc {m:map, a:assoc) 

% Adds a to m. It overwrites any previous association to a.key in m. 

remove_association = proc {m:map, k:key) 

% Removes the association (k, ?) from m if there is one. 

We also define the procedure: 

waiLuntil = proc {condition:bool) 

% The process executing this procedure waits for the condition to be 
% true before proceeding. 

Recall that a client can call the same operation with the same arguments at multiple 

replicas (if the initial call is too slow to respond or they were done concurrently). This 

can lead to duplicate operation messages. A duplicate enter_guardians message may 

cause problems if it is "late", causing a replica to reenter a guardian id after it has been 

deleted. We implement the enter:__guardians operation without checks for duplicate 

messages, because the concrete implementation in the next chapter prevents duplicate 

operations. However, some of the alternative solutions proposed in the next chapter do 

not prevent duplicate operations. For implementations of these solutions, we would first 

check if a guardian id is in the deleted set before putting it in the exists set. Duplicate 

delete_guardian and rebind messages cause no harm because the reintroduction of the 

information they carry only causes extra work for the garbage collection procedures 

{although we would probably want to check for them in a real implementation to avoid 

wasted effort). 
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The service operations are implemented in the following manner: 

enter_guardians = proc (gset:SetOfGids) returns (timestamp) 

S.my _part := S.my _part + 1 ; 
S.ts[S.my_index] := S.my__part; % advance my part in ts as well 
S.exists := S.exists u gset 
S.send_gossip := S.send_gossip u {(S.ts,make_enter(gset))}; 
S.gossip_table(S.my_index] := S.ts 
return (S.ts); 

end enter_guardian 

delete_guardian = proc (g:guardian_id) returns (timestamp) 

S.my__part := S.my__part + 1; 
S.ts[S.my_index] := S.my__part; 
$.exists := S.exists - {g}; 
$.deleted :=$.deleted u {(g,S.ts)}; 
S.send_gossip := S.send_gossip u {(S.ts,make_delete(g))}; 
S.gossip_table[S.my_index] := S.ts 
return (S.ts); 

end delete_guardian 

rebind= proc (gm:MapOfGids,hm:MapOfHandlers,t:timestamp) returns (timestamp) 

% "?" matches any 

wait_until (S.ts ~ t) 
sources : SetOfGids := {g I 3 (g, ?) E gm v 3 ((g, ?),(?, ?)) E hm} 

S.my__part := S.my__part + 1; 
S.ts[S.my_index] := S.my__part; 
$.exists := S.exists - sources; 
for g E sources do $.deleted := $.deleted u {(g,S.ts)} end; 
for g_assoc E gm do add_association (S.gmap, g_assoc) end; 
for h_assoc E hm do add_association (S.hmap, h_assoc) end; 
S.send_gossip := S.send_gossip u {(S.ts,make_rebind( 

make_rebind_entry (gm,hm)))}; 
S.gossip_table[S.my_index] := S.ts; 
return (S.ts); 

end rebind 
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lookup= proc (g:guardian_id,h:handler_id,t:timestamp) 
returns (guardian_id, handler_id, timestamp) 
signals (handler_ destroyed) 

wait_until (S.ts ~ t) 
while true do 

if key_is_in (S.hmap, (g,h))then 
(g,h) := fetch_data (S.hmap,(g,h)); 

elseif key_is_in (S.gmap, g) then 
g := fetch_data (S.gmap, g); 

elseif g E $.exists then 
return (g,h,S.ts); 

else 
signal (handler_destroyed); 

end; 
end; %while 

end lookup 

Guaranteeing that a replica will have a timestamp greater than or equal to an argument 

timestamp means that a replica may have to wait to do an operation if its timestamp is 

not large enough. This is not a problem for lookups since they do not tie up replicas. 

However, rebinds tie up replicas, so we do not want to have them wait long. Since 

typically guardian ids are pre-entered long before they are used, we expect that all 

replicas will know about the enters and have timestamps that are large enough by the 

time a rebind operation is invoked, so there will be no wait. An alternate strategy would 

have been to make the rebind operation responsible for adding the target guardian id(s) 

to the exists set as well. Then the operation would not need a timestamp argument. 

However, we would still have to have the enter_guardians operation to pre-enter 

guardian ids for normal guardian creation. 

Recall that we assume that the replacement system follows the well-formedness 

conditions for the inputs to the rebind operation. We did not explicitly check for these 

conditions here, but in a real implementation, it would be a good idea to do so, to guard 

against replacement system failures. 

3.3.3 Gossip 

A replica periodically sends a gossip message to all other replicas. How often a replica 

sends gossip depends on two factors: how often and for how long we expect a replica to 

crash, and how expensive it is to send messages. If we expect that replicas will crash 

often or for long periods of time, we would want to gossip as soon as possible after the 

replica performs an update. This is because if a replica goes down before getting a 

chance to gossip, all queries that need to have that update will be delayed until the 
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replica comes back up. This implies smaller messages being sent often. On the other 

hand, if we expect that replicas will not crash often or for very long, we can accumulate 

update operations and send them in one bunch. The messages are larger, but are sent 

less often. We think the latter will be the case most of the time. 

A gossip message M has components gossip_list, which is the send_gossip list of the 

sending replica, ts, the current timestamp of the sending replica, and index, the index of 

the sending replica in the gossip table. Upon receiving a gossip message, the receiving 

replica invokes the following procedure: 

gossip_processing = proc () 

S.gossip_table[M.index] :=merge (S.gossip_table[M.index], M.ts) 
if M.ts ~ S.ts then return end; 
for u E M.gossip_list do 

if u.ts -~ S.ts then 
tagcase u.rec of 

enter (gset:SetOfGids) : 
$.exists := S.exists u gset -

{g I g E gset A 3 d E S.deleted s.t. g = d.guardian_id}; 
% some of the guardian ids may have already been deleted 

delete (g:guardian_id) : 
S.exists := S.exists - {g}; 
S.deleted :=$.deleted u {(g,u.ts)}; 

rebind (r:rebind_entry) : 
sources : SetOfGids := {g I 3 {g, ?) E r.gm v 3 ((g, ?),(?, ?)) E r.hm} 
$.exists := S.exists - sources; 
for g E sources do S.deleted := S.deleted u {(g,u.ts)} end; 
for g_assoc E r.gm do add_association (S.gmap, g_assoc) end; 
for h_assoc E r.hm do add_association (S.hmap, h_assoc) end; 

end; % tagcase 
S.send_gossip := S.send_gossip u {u}; 
end;% if 

end; % for 
S.ts := merge (S.ts, M.ts) 
S.gossip_table[S.my_index) := S.ts 

end gossip_processing 

In this gossip scheme, a replica sends its entire send_gossip list to all other replicas 

regardless of what the gossip_table says the other replicas already know. The garbage 

collection algorithm removes an entry only when a replica knows that it is known by all 

replicas. If a replica that does not know (or that the sender thinks does not know) about 

an entry goes down or is partitioned from the sender for a long period of time, that entry 

may be sent many times to other replicas that already know about it. An approach for 

reducing the sizes of gossip messages is to not send an entry to replicas that know 

about it already. This would reduce the size of gossip messages and the amount of 
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busy processing at the receiving replica, but it does so at the expense of space or 

computational time at the sending replica. A replica would either keep separate 

send_gossip lists for each replica, or it would generate a new list for each replica every 

time it gossips. 

3.3.4 Garbage collection 

Garbage collection of the send_gossip list is straightforward. It is implemented by the 

following procedure: 

gossip_cleanup = proc () 

for u E S.send_gossip do 
if Vi, S.gossip_table[i] ~ u.ts 

then S.send_gossip := S.send_gossip - {u} end; 
end;% for 

end gossip_cleanup 

Garbage collection also needs to be done on the deleted set. Like the case of the 

send_gossip list, the entries in the deleted set need to be kept until all the other replicas 

know about the delete. This is because a gossip message containing the 

enter_guardians operation for a deleted guardian id might arrive after the delete 

operation for that id. If a replica waits until all the replicas know about the delete, then it 

knows that all future gossip will either contain the delete operation or no information for 

that guardian id. {This is because of our requirement that guardian ids not be entered 

after they are deleted.) 

There is a second problem with garbage collecting the deleted set. If there can be 

duplicate enter_guardians messages (from unsuccessful calls), one may arrive after an 

entry in the deleted set has been garbage collected. We can handle this problem by 

making assumptions about our communications network. We assume that the clocks at 

all nodes are approximately synchronized with maximum skew of E (11, 20], and we 

impose an upper bound 8 on message delay. Messages are marked with the real time 

at the sending node. At the receiving replica, messages that are marked as more than E 

+ 8 older than the local time are discarded. (That is, we pretend such a message never 

arrived.) It is not difficult to choose reasonable values of E and 8 -- each can be quite 

large -- so this scheme is practical. To handle late enter_guardians messages that are 

not discarded but arrive after the delete_guardian message, we retain information about 

deletes at least E + 8 more than the time in the delete_guardian message. The deleted 

set becomes a set of (guardian_id, timestamp, time) triples and entries can be garbage 

collected only if both the timestamp condition and the time condition are met. 
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Again, we will not give an implementation that takes the late enter_guardians messages 

into consideration because the concrete implementation described in the next chapter 

eliminates this problem in a different manner. Hence, the algorithm for garbage 

collecting the deleted set is the same as for the send_gossip list: 

deleted_cleanup = proc () 

ford E S.deleted do 
if 'r/ i, S.gossip_table[i] ~ d.ts 

then S.deleted := S.deleted - {d} end; 
end;% for 

end deleted_cleanup 

Garbage collection for gmap and hmap is trickier since the paths run through both maps. 

We will call a path that ends with a guardian id in the exists set an active path. 

Conversely, a path that ends with a guardian id not in the exists set is an inactive path. 

We cannot remove a binding if it is part of an active path. But instead of checking 

whether a binding is part of an active path, we can instead just check if a given binding is 

- the last binding of an inactive path and remove it if it is. Eventually, all of the bindings in 

an inactive path are garbage collected since the guardian ids of interior vertices of a path 

are not in the exists set. (This is because the the rebind operation deletes the source 

guardian ids.) The following code implements garbage collection for gmap and hmap: 

map_cleanup = proc () 

for (g1 ,g2) E S.gmap do 
if g2 e: S.exists then 

if not key_is_in (S.gmap,g2) /\not key_is_in (S.hmap,(g2, ?)) 
then remove_association (S.gmap, g1) end; 

end; 
end;% tor 

for((g1,h1),(g2,h2)) E S.hmap do 
if g2 e: S.exists then 

if not key_is_in (S.gmap,g2) /\not key_is_in (S.hmap,(g2,h2)) 
then remove_association (S.hmap,(g1 ,h1)) end; 

end; 
end;% for 

end map_cleanup 

3.3.5 Replica recovery 

Throughout our discussion, we have been assuming that replicas do not crash to 

simplify the presentation. Of course, this is unreasonable. When replicas crash, we 

must concern ourselves with potential information loss. A replica must retain all of the 

information it has stated that it has in the presence of crashes. In this section, we 

discuss replica recovery and prevention of information loss. 
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As explained in Chapter 2, guardians can have a stable state that is stored on stable 

storage. We can use stable storage to prevent information loss since once information 

is written to stable storage, it will not be lost with arbitrarily high probability [12]. 

However, stable storage is slow and expensive; any change made to an object causes 

the entire object to be rewritten at the commit of the transaction that changed it. We 

might like to minimize the amount of information kept on stable storage. At the very 

least, we must keep the replica timestamp and the value of its part on stable storage. A 

replica keeps the value of its part on stable storage to be able to generate new 

timestamps after a crash. The replica timestamp needs to be stable so that the replica 

knows what information it has gossiped to other replicas. Since the garbage collection 

algorithm for the send_gossip list and the deleted set rely on replicas not losing 

information after they say they have the information, a replica would have to write out its 

timestamp each time it sends gossip. 

The rest of the information need not be kept on stable storage provided that the 

probability of a replica being able to gossip the information before it crashes is high 

enough. For example, we might gossip to other replicas and wait for acknowledgments 

before returning to the client. When a replica recovers from a crash, it must ask another 

replica for a state. Note that this implies that replicas provide a get_state operation. 

This scheme is complicated. If the transaction aborts, we must be able to undo changes 

at replicas that received the gossip. We lose availability and efficiency because the 

update operation must wait for these acknowledgments. Crash recovery is slow since a 

replica cannot recover without communicating with other replicas. There is also the 

possibility of the only replica in a partition crashing and not being able to communicate 

with another replica for a long period of time, effectively stopping the system in that 

partition. 

It is not clear that these complications are worth the trouble of avoiding storing 

information on stable storage. Although stable storage is slow and expensive, its cost is 

not that great. It can be argued that the writing of the replica state happens for 

transactions that do not need to be particularly fast. Enter_guardians operations are 

done infrequently, and a guardian manager would call this operation before it had 

assigned all of the guardian ids from the previous enter_guardians operation. The 

delete_guardian operation can be called any time after the destroying transaction 

commits. Rebind operations are run as part of replacement transactions, and these 

transactions do not have to be particularly fast since they are rare. It is also very 

important that the service does not lose information. Therefore, we will keep the entire 

replica state on stable storage. 
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The simplest scheme is to put the replica state as described on stable storage and 

rewrite it each time it is modified. Recovery would consist of reinitializing the volatile 

variables of the replica guardian. If we want to reduce the amount of information written 

to stable storage at the commit of an update transaction, we can use the approach 

presented by Weihl and Liskov [28] for the amap type. The idea is to keep recent 

changes in a log, which is written out after every update. Periodically, when the log 

becomes large enough, the replica writes out the replica state with the changes from the 

log and empties the log to reduce the cost of recovery. In addition, the data can be 

partitioned into several sets so that only part of the state must be written for any given 

operation. 

3.4 Clients of the location service 

There are three types of clients of the location service in Argus. They are the guardian 

manager, the replacement system, and regular guardians. This section explains how 

these clients interact with the service, and what information each client must keep. 

3.4.1 Guardian manager 

The guardian manager keeps a stable timestamp reflecting all its interactions with the 

location service. Whenever a guardian manager receives a new timestamp, it merges 

the new timestamp with its timestamp and writes the result to stable storage. 

Periodically, the guardian manager enters a set of guardian ids at the server with the 

enter_guardians operation. This set of entered guardian ids is kept on stable storage. 

When a guardian is created, it is assigned an unused id from this set. Then the id and 

the guardian manager's timestamp are given to the created guardian. The id and the 

guardian manager's timestamp are recorded with the other stable information that the 

guardian manager keeps about its guardians when the creating transaction commits. 

If a transaction that creates a guardian aborts, the new guardian is destroyed. (This 

includes replacement transactions.) In this case, the guardian manager at the created 

guardian's node must inform the server of the destruction by calling the delete_guardian 

operation. 

There is a possible problem if the guardian manager crashes before a transaction 

creating a guardian commits. Such a crash would cause the transaction to abort, 

destroying the created guardian. The guardian manager will delete the guardian's id 

from the service when it recovers, but it needs to determine which id it should delete. 
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We can handle this in several ways. One is to have the guardian manager delete all ids 

except the ones belonging to guardians that are currently residing at the node. If we are 

concerned with throwing away large numbers of unused guardian ids (if the guardian 

manager enters hundreds of guardian ids at a time), then the guardian manager can 

keep the last guardian id it assigned on stable storage and only delete the guardian ids 

that do not belong to current guardians and are less than the saved id. However, this 

solution is undesirable because it would cause a wait for the write to stable storage 

during the creation process. A compromise between the two would be to have the 

guardian manager periodically write out a "high water" mark to stable storage indicating 

that all of the ids above the mark have not been assigned. Then when the guardian 

manager recovers from a crash, it deletes the ids below the mark that do not belong to 

current guardians. This may delete some unused guardian ids, but will not delete all of 

them. 

After a guardian is destroyed, the guardian manager calls delete_guardian with the 

destroyed guardian's id as the argument. When a replacement is done, the guardian 

manager is asked to destroy the replaced guardians and is given the timestamp of the 

rebind operation by the replacement system. 

When a handler call arrives at a node, the Argus system routes it to the proper guardian. 

If the called guardian is non-existent, the guardian manager returns its timestamp in a 

signal to the calling guardian that indicates that the handler no longer exists. This 

timestamp is guaranteed to be at least as late as the rebinding (or destruction) of that 
handler. 

3.4.2 Replacement system 

Replacements are done by a (logically) separate replacement system, envisioned to be 

along the lines of the one proposed by Bloom [1]. The replacement system keeps track 

of the creation, bindings, and destruction of guardians involved in a replacement. After 

the replacement guardians have been created, it calls the rebind operation to bind the 

handlers of the replaced guardian(s) to the handlers of the replacement guardian(s) in 

the server. The replacement system sends the timestamp returned by the the rebind 

operation and the set of guardians to be destroyed to the guardian managers of the 

source guardians. 
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3.4.3 Regular guardians 

Regular guardians may interact with the location service whenever they make a handler 

call. Each guardian keeps a stable timestamp that is written to stable storage whenever 

a transaction commits. Initially, this is its creation timestamp (the timestamp given to it 

by its guardian manager when it was created). Guardians also keep a cache of lookup 

results. When a guardian makes a handler call, it looks for the address in its cache first. 

There are four possibilities: 
1. The cache has an entry for the handler address. The call is made, and it is 

successful. (The cache was up-to-date.) 

2. The cache has an entry for the handler address. The call is made, but is 
not successful. The timestamp returned by guardian manager at the 
called node is merged into the guardian's timestamp, and a lookup request 
with the new timestamp is made to the location server. 

3. The cache does not have an entry. A lookup request is made with the 
guardian's timestamp to the location server. 

4. The cache has an entry, but there is no response from the called guardian 
due to a crash or a partition. In this case, it is possible that the called 
guardian may have moved, so it may be worthwhile for the calling guardian 
to do a lookup request with its own timestamp to the server. However, we 
do not guarantee any useful information since the calling guardian's 
timestamp has not changed and may not be late enough. 

For possibilities 2, 3 and 4, the lookup request may return a new address, which is then 

stored in the cache and used to make another call, or it may signal that the handler has 

been destroyed. For possibility 4, it may also return the same address. 

When a lookup is done, we must pass a timestamp at least a large as the 

enter_guardians timestamp for that guardian id to the location service. We ensure this in 

the following ways: 
1. Guardians send their timestamps in all the messages they send. 

2. When a message is received, the message's timestamp is merged into the 
receiver's timestamp. 

3. When a transaction commits, a guardian's timestamp is written to stable 
storage as part of the information stored by the commit protocol. 

These steps ensure that if a guardian id is sent in a message, so is a timestamp greater 

than or equal to its enter timestamp, so when a lookup occurs, the replica will have (or 

wait for) the correct information. 

A frequent pattern of use in Argus is for the transaction that creates a guardian to then 

call one of its handlers. The current scheme would require a lookup for this handler's 
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address even though it cannot have moved. A guardian can avoid this lookup by making 

use of the fact that host names are embedded in guardian ids. It can use a handler 

name like a cache. If the real cache is empty, the guardian can automatically try at the 

address the handler name represents. This approach will cause an extra exchange of 

messages when accessing a moved guardian for the first time after a cache reset (for 

example, after a crash}, but if most guardians do not move, it will speed up lookups in 

general. 

3.4.4 Discussion 

The current Argus implementation has a two-level view of handler mapping. Regular 

guardians maintain a cache that maps handler addresses to handler addresses. 

Invalidating cache entries is done automatically through the use of a system error code. 

When a cache entry is missing or invalidated, the guardian makes a lookup request to 

the guardian manager. (As noted in Chapter 2, the guardian manager can "take apart" 

the guardian id part of the handler address and "knows" where the host is.) This 

structure was chosen for modularity so that when the location server was implemented, 

it could be integrated with fewer changes to the run-time system. It was also done so 

there could be another cache of information at the guardian manager that might reduce 

the number of lookups to the server. It is not clear whether a reduction will occur, 

however. If different guardians rarely invoke common handlers, then the lookup 

requests will be faster if the guardian does them directly, since it is unlikely that the 

guardian manager's cache will be any more up-to-date. 

A better caching strategy might be to have the guardian manager cache information 

about rebinds. When a handler call to a non-existent handler is received, the guardian 

manager returns information in its cache along with its timestamp. The meaning of this 

would be: "the guardian has been replaced; here is where the guardian went when it 

happened." This information would be regarded as a hint by the calling guardian, which 

can decide to use it or generate a new lookup request. Since the information is only a 

hint, it does not have to be stable and will be lost if the guardian manager crashes. The 

big savings would be if guardians do not move often or very fast. Then the information 

would most likely be correct when a handler call arrives. 

Since the mechanism was already in place, we attempted to integrate the location server 

into the current system with as few changes to the run-time system as possible. We 

continue to have regular guardians send lookup requests to the guardian manager. The 

guardian manager now does a lookup query to the server instead of taking apart the 

guardian id and relays any handfer_destroyed signals. Otherwise, the interaction is as 

described. We will ignore caches for the rest of the thesis. 
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The replicated nature of calls to the server is hidden in the server cluster. It provides 

the interface presented. It is used by the guardian manager and the replacement 

system. The server cluster manages the policy for calling the various server replicas, 

such as whether to call many replicas concurrently or when to timeout an operation. 

3.5Summary 

In this chapter, we presented the design of a highly-available location service for Argus. 

We described our choice of replication technique, Liskov's multipart timestamp 

technique. The operations of the location service were defined, and we gave an 

example of how the service is used. An abstract implementation was presented for the 

basic structures and algorithms. We ended the chapter with a discussion of the 

integration of the location service into the Argus system. 

An implementation goal for the location service is that clients be able to make progress 

as they use the service. If a client does a lookup on a handler name after getting a 

non-existent handler exception, then it should get a later address than the one it has for 

that handler name or a handler_destroyed exception from the service. This happens in 

our system because guardians and guardian managers keep track of the events they 

have seen (by merging the timestamps of these events). Since the non-existent handler 

exception returns a timestamp at least as late as the rebind or destruction of that 

handler, a client can ask for an answer to come from a state that reflects the rebind or 

destruction of the handler. Thus, the client will make progress in finding out the location 

or destruction of a handler. Even if the answer to the next lookup request is not the 

latest address and the call signals another non-existent handler exception, the returned 

timestamp from this exception is guaranteed to be large enough to allow the client to find 

out the next step. 

We made some assumptions to simplify the presentation in this chapter. We have not 

talked about the interaction of the location server with the transaction system. This issue 

is addressed in the next chapter. We also assumed a fixed configuration for the server. 
Chapter 5 looks at reconfiguring the server state. 
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Chapter Four 

Implementing the Location Service in Argus 

In this chapter, we relax one of the assumptions made in Chapter 3. We allow the 

possibility of replacement transactions aborting and running concurrently at the same 

replica. Aborted transactions and concurrency add complexity to our location service. 

Since our implementation calls the rebind operation as part of a replacement transaction, 

this leads to problems for our server. Consider the following scenario (shown pictorially 

in Figure4-1): 

We have a service with three replicas, although for simplicity we will assume that all 

operations occur at replica 1. The current state at each of the replicas is the same and 

the current timestamp is (1, 1, 1 ). Guardian ids A, B, C, and D have been entered, and 

guardians A and C have been created. Part (1) of the figure shows this initial state at 

replica 1. 

A replacement transaction P moves A. It creates guardian B and invokes: 

rebind ({(A,B)}, { }, (1,0,0)) 

The new state of replica 1 is shown in part (2) of the figure. The operation returns the 

timestamp (2, 1, 1 ). 

A guardian K does a lookup of (A,h1) with timestamp (0,0,0) and receives (B,h1,(2,1, 1 )). 

Now suppose P aborts. This means that A did not really move. The state shown in part 

(2) is not correct, and guardian K got the wrong answer. We have to be able to undo the 

effects of P, and should not give out information about changes made by uncommitted 

transactions. So in this case, when K does the lookup the service should answer with 

(A,h1 ,(1,1,1)) and when Paborts, the state of replica 1 will return to part (1). 

Now suppose instead that P is still in progress (neither aborted nor committed, we 

indicate this in the figure by a "*"), and a replacement transaction Q moves C. It creates 

guardian D and invokes: 

rebind ({ (C, D)}, { }, (1 ,0,0)) 

The operation returns timestamp (3, 1, 1 ). Then transaction Q commits, so its changes 

are allowed to be given out. Part (3) shows this situation. 
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(1). Initial situation: 

A c 

hl hl 

(2) . After B is rebound: 

A -----> B c 

hl hl hl 

(3) . After C is rebound: 

A -----> B C -----> D 

hl hl hl hl 

gmap: <empty> 
hmap: <empty> 
exists: {A,B,C,D} 
ts: <1,1,1> 

gmap: A --> B 
hmap: <empty> 
exists: {B,C,D} 
ts: <2,1,1> 

gmap: A --> B* 
C --> D 

hmap: <empty> 
exists: {B,D} 
ts: <3,1,1> 

Figure 4-1: Transaction scenario 

A guardian G with timestamp (0,0, 1) wants to call the first handler of C, so it invokes: 

lookup (C,h1,(0,0,1 )) 

This returns (D,h1,(3,1, 1 )) and G's timestamp becomes (3, 1, 1 ). Later, G wants to call 

the first handler of A, so it invokes: 

lookup (A,h1,(3,1,1)) 

This call should be answered since the replica's timestamp is equal to the argument 

timestamp, but it cannot be answered. Since P is still in progress, its changes are not 

available. We cannot answer the request with (A,h1,(1,1, 1 )) because if transaction P 

commits, the information would come from a state that is not late enough. We cannot 

answer (B,h1,(3,1, 1 )) because if P aborts, it would be incorrect. 

The problem is that the scenario violates the invariant that larger timestamps are 

associated with more recent states. Since state changes happen at the commits of 
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transactions and the timestamps generated at a single replica are comparable, update 

operations done at the same replica should be assigned timestamps in the order they 

commit. That is, the state reflecting Q's change should have an earlier timestamp than 

the state reflecting P's change. Then a transaction that finds out about Q 's change will 

still get a timestamp less than the state reflecting P's change. 

There are several ways to solve these problems. In this chapter, we present a complete 

implementation of one of the solutions called the serial solution. Then we consider some 

alternative solutions and how they address various issues. Finally, we state our 

conclusions about the serial solution and compare it to the alternative solutions. 

4.1 Serial solution 

To know when a transaction's changes must be undone due to an abort, the server must 

interact with or be part of the transaction system. The most straightforward way for the 

server to find out the outcome of a transaction is through the use of atomic objects. In 

our implementation, we make the service state atomic to provide the synchronization 

and recoverability needed to handle aborted transactions. 

However, making the entire service state atomic is overkill. Since an update operation 

acquires a write lock on the state, it would exclude any other operation from accessing 

the state. The lock could be held for a potentially long time since it is not released until 

the update transaction commits. This could delay other operations from accessing the 

state. In particular, it would delay lookup operations. This would be undesirable 

because lookups are expected to be done frequently. In addition, modifications to the 

replica state done by other "operations" (that is, gossip processing and garbage 
collection) never need to be undone, so making the entire state atomic would add 

unnecessary complexity and overhead to these operations. Our implementation 

separates these concerns by having update operations write an update record to an 

atomic log. After the update transaction commits, a background process reads the 

update record from the log and does the actual changes to the replica state. This way, 

other operations can read and change the replica state while an update operation is in 

progress. 

Thus, we allow updates to run concurrently with other operations. However, concurrent 

updates are still a problem. They can still commit "out of order." One way to solve this 

problem is to restrict updates to preclude the problem. In the serial solution, we do this 

by making updates serial at each replica. That is, we allow only one update operation to 

run at a replica at any given time until it commits or aborts. This means that operations 
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occurring at the same replica will always commit in the "correct" order since the earlier 

operation must commit before the later one starts. 

Now we continue our implementation from Chapter 3, adding the components and code 

necessary to handle transactions. First, we describe the new data structures in the 

replica state. Then we discuss the changes in replica processing. 

4.1.1 Data structures 

We add the following data structures to the state: 

ln_progress is an atomic log. The log entries are (timestamp,update_record) pairs. The 

log supports the following operations: 

add_entry = proc (l:log, e:log_entry) 

% Adds e to the end of I. 

remove_entry = proc (l:log) returns (log_entry) 

% If the log is not empty, it removes the first entry from I and returns it. 

empty = proc (l:log) returns (bool) 

% Returns true if the log is empty; false if it is not. 

The log is implemented by a user-defined atomic type with similar semantics to the semi­

queue type described by Weihl and Liskov [28]. This type was chosen to allow 

processing of committed updates to be done concurrently while another update is in 

progress. We can add entries to the log at any time. We can remove any entry from the 

log as long as the transaction that added it has committed. Aborted transactions result 

in log entries that are ignored by the remove_entry procedure. The use of a built-in 

atomic type would have caused remove_entry operations and add_entry operations to 

conflict since both modify the state of the log. 

Lock is the replica lock used to restrict updates to be serial. It is implemented by an 

atomic_record of one null object. We chose the atomic_record data type because it 

supports a test_and_write operation that allows us to test whether a process can get a 

write lock and obtain the lock (if possible) in one indivisible step. A write lock blocks out 

attempts by other transactions to obtain the lock and is also held until the transaction 

finishes. 

Figure 4-2 shows the state of an implemented replica. 
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gmap 
hmap 
exists 
deleted 
send_gossip 
gossip_table 
ts 
my_index 
my_part 
in_progress 
lock 

: MapOfGids; 
: MapOfHandlers; 
: SetOfGids; 
: SetOfDeletedGids; 
: SetOfUpdate_records; 
: array[timestamp]; 
: timestamp; 
: int; 
: int; 
: LogOfUpdate_records; 
: LockType 

Figure 4-2: State of an implemented service replica 

4.1.2 Replica processing 

The only type of processing that changes from the previous chapter is update 

processing. Gossip processing and garbage collection are exactly the same as 

described. Lookups are the same except that we decided to signal unavailable ("replica 

out-of-date"} if the replica state is not recent enough instead of waiting. This way the 

client will know right away instead of possibly timing out waiting for the answer. 

We implement the update operations as handler calls to take advantage of the 

transaction mechanism already in place. Recall that an action invoking a handler call 

creates a subaction for the call (the call action} and the actual invocation at the remote 

node runs as a subaction of the call action, so the invoking action will correctly inherit 

any locks the handler call obtains. In addition, implementing update operations as 

handler calls has the advantage of eliminating duplicate messages because we can 

abort the unsuccessful calls to replicas by aborting the call actions. This makes the 

remote action of an invocation an orphan (an action whose results are not wanted}, so 

the orphan detection algorithm will take care of discarding any messages to it. This also 

works in the case of a crash and subsequent recovery, since the crash of the calling 

guardian's node will abort any outstanding handler call, making the corresponding 

remote action an orphan as well. 

The handler operations of the replica guardian are called by the clients. A handler 

operation tries to get the replica lock by invoking the test_and_write operation on it. If it 

does not get the lock, the operation signals unavailable ("replica in use"}, and the client 
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must try somewhere else or again later. When an operation obtains the replica lock, it 

creates an update record and puts it into the in_progress log with the returned 

timestamp. We create the returned timestamp by incrementing my_part and storing it 

into a copy of the current timestamp. 

For the rebind operation, we also made the decision to signal unavailable ("replica out­

of-date") in the case that the replica's state is not recent enough instead of waiting. 

Since the rebind operation locks the replica, waiting could possibly tie up the client for a 

long period of time and could prevent another client from making use of the replica. The 

operation handlers are implemented as follows: 

enter_guardians = proc (gset:SetOfGids) returns (timestamp) 
signals (unavailable (string)) 

if test_and_write (S.locl<) then 
S.my_part := S.my_part + 1; 
op_ts : timestamp := S.ts; 
op_ts[S.my_index] := S.my_part; 
add_entry (S.in_progress, (op_ts, make_enter(gset))); 
return (op_ts); 

else 
signal unavailable ("replica in use"); 

end;% if 

end enter_guardian 

delete_guardian = proc (g:guardian_id) returns (timestamp) signals (unavailable (string)) 

if test_and_write (S.locl<) then 
S.my _part := S.my _part + 1 ; 
op_ts : timestamp := S.ts; 
op_ts[S.my_index] := S.my_part; 
add_entry (S.in_progress, (op_ts, make_delete (g))); 
return (op_ts); 

else 
signal unavailable ("replica in use"); 

end; 

end delete_guardian 

45 

I 



rebind = proc (gm:MapOfGids,hm:MapOfHids,t:timestamp) returns (timestamp) 
signals (unavailable (string)) 

if S.ts -~ t then signal unavailable ("replica not up-to-date") end; 

if test_and_write (S.lock) then 
S.my__part := S.my__part + 1; 
op_ts : timestamp := S.ts; 
op_ts[S.my_index] := S.my__part; 
add_entry (S.in__progress, (op_ts, make_rebind ( 

make_rebind_entry (gm,hm)))); 
return (op_ts); 

else 
signal unavailable ("replica in use"); 

end;% if 

end rebind 

After the update transaction has committed, the log entry is available to the rest of the 

replica guardian and is processed by a background process. The background process 

removes entries and does the operations in the same manner as gossip processing 

except that it does not have to check the timestamp of the entry and runs in a 

transaction. (This is so we do not lose the information if an entry is removed but not 

processed when a replica crashes.) Doing the actual work after a transaction commits 

does mean that there is a delay from the time an operation's transaction commits to the 

time the operation actually takes effect, but this delay should be small if we run the 

background process frequently. If a lookup or rebind operation should happen to arrive 

at the replica where the update was done but not processed and depends on it, the 

replica would answer as if it had not heard about the update yet. 

4.2 Alternate solutions 

In this section, we consider some alternate solutions to the serial solution. The 

difference between the solutions is in when and how the update information is 

processed. There are basically two kinds of solutions: those that invoke server 

operations before the commit of the calling transaction (pre-commit solutions), and those 

that invoke operations after the commit of the calling transaction (post-commit solutions). 

The commit point of the transaction is the point at which it can no longer be aborted. 

Argus uses a standard two-phase commit protocol [6]. Each transaction has a set of 

guardians that are participants in the transaction. One is distinguished as the 

coordinator. The protocol has two phases: the prepare phase and the commit phase. 
The protocol for a committing transaction is as follows: 
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• Prepare phase: 
1. The coordinator begins by sending prepare messages to all the 

participants. 

2. When a participant receives a prepare message, it writes out the 
new versions of changed objects to stable storage, and writes a 
prepare record to stable storage. Then it sends back a prepared 
message to the coordinator. 

• Commit phase: 
1. When the coordinator has received a prepared message from all of 

its participants, it writes a commit record to stable storage. Then it 
send commit messages to the participants. 

2. When a participant receives a commit message, it installs any new 
versions as the current versions, and writes out a committed record 
to stable storage. Then it sends back a committed n;iessage to the 
coordinator. 

3. When the coordinator has received a committed message from all of 
its participants, it writes a done record to stable storage. 

The commit point of a transaction is when the coordinator writes the commit record for 

that transaction to stable storage. After this point a transaction cannot be aborted. 

For each of the solutions, we will first present the solution, sketch an implementation, 

and then evaluate the costs and problems of the solution. We will evaluate the costs of 

the different solutions using the following criteria: 

•The amount of extra storage needed. 

•The amount of extra computation. 

•Ease of programming the solution. Related to this is the compatibility of the 
solution with the current run-time system. This includes the extent of 
changes to the existing run-time system. 

• Other advantages and disadvantages. 

4.2.1 Pre-commit solutions 

Pre-commit solutions can be further divided into two types. An update operation can be 

called during the transaction or during the prepare phase of the commit protocol. The 

serial solution is a pre-commit solution of the first type. In this section, we present two 

other pre-commit solutions. The first one is an extension of the serial solution to allow 

concurrent updates. The second one is a solution of the second type. The update 

operations are called by the coordinator as part of the prepare phase of the commit 
protocol. 
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4.2.1.1 Local multipart time solution 

As discussed earlier, concurrent updates cause a problem because smaller timestamps 

can be assigned to operations that commit after operations with larger timestamps. The 

serial solution deals with this by only running one update at a time. Another way of 

dealing with the problem is to generate incomparable timestamps at a single replica. 

Then it would not matter in which order the operations committed. A way of doing this is 

to make the logical time at a replica also be multipart. For example, the time at a replica 

could proceed: 1 :1, 1:01,1 :001, 1 :0001, 2:1, 2:01, 3:1, 4:1, 4:01, etc. The meaning of 

these times is that the operations associated with times of 2:1 and 2:01 are strictly later 

than those operations with times beginning with 1, strictly earlier than the operations 

associated with times beginning with 3 or more, and concurrent with each other. 

The clock at a replica produces time of the form n:p1 ··Pi• where n is an integer and p1 to 

Pi-1 are O and Pi is 1. The clock is incremented in the following manner. Suppose the 

clock currently reads n:p1 ··Pi· If there is an update operation already in progress then 

the next time is n:p1 ··PiPi+1' where p1 to Pi are 0 and Pi+1 is 1. If there is no update 
operation in progress then the next time is (n+ 1 ):1. For example, if the clock read 3:001 

when an update operation is invoked, then if another update operation is already in 

progress, the next time is 3:0001. If there is no other update operation in progress, the 

next time is 4:1. 

We have to be able to compare and merge multipart times. We compare two multipart 

times as follows: n:p1 ··Pi is less than m:r1 .. ri if n < m or if n = m and Pk ~ rk, k = 1 to 

max(i,j) and at least one Pk is strictly less than rk. (If i-:;:. j, then the shorter time is padded 

with zeroes.) If neither time is less than the other, then they are incomparable. We 

merge two multipart times, n:p1 ··Pi and m:r1 .. ri, as follows. If they are comparable, the 

merge is the greater of the two, for example, merge(1 :1, 2:001) = 2:001. If they are 

incomparable, then the merge is n:q1 .. qk, where qk = max(pk,rk), k = 1 to max(i,j). For 
example, merge(2:01,2:00001) = 2:01001. 

This solution has extra computational overhead to determine the next timestamp and 

storage overhead for (physically) larger timestamps. Otherwise, it would be 

implemented in the same manner as the serial solution. We would get rid of the replica 

lock; the in_progress log already supports concurrent updates. The major programming 

effort would be in the implementation of the logical clock. 

This solution suffers from potentially unbounded values if we get particularly bad 

executions where many operations overlap. To make this solution practical, we would 

have to assume that the system is loaded such that we will not get too many concurrent 
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operations, or set a bound on the number of concurrent operations allowed. Note that a 

bound of one would make this solution exactly the same as the serial solution. 

4.2.1.2 Prepare-phase solution 

We can wait until the prepare-phase of the updating transaction to call the server 

operations. In this scheme, we have the coordinator of the transaction calling the 

appropriate operation at the same time as sending the prepare messages. The replica 

itself would be implemented as in the serial solution except that when an operation is 

invoked, the replica treats it as an operation invocation and prepare message combined. 

That is, the replica writes the new versions to stable storage directly. Then the called 

replica becomes a participant in the commit phase of the protocol. The coordinator 

sends back the returned timestamp to its participants as part of the commit message. 

The information the coordinator needs to be able to call the appropriate operation can be 

piggybacked with the system messages supporting transactions, such as handler reply 

messages. The coordinator would need storage to keep track of the operation that 

needed to be called, and then actually calling it. This would require reprogramming the 
commit protocol. 

This solution holds the replica lock only during the commit protocol. This is an 

advantage if transactions are long, and many other transactions want to use the service. 

It also lessens the likelihood that a transaction will abort solely because of a server 

crash. 

4.2.2 Post-commit solutions 

Invoking update operations after a transaction has committed is a natural choice. The 

events that cause changes to the server have completed and will not be undone. This 

eliminates the need for atomic state and eliminates the concurrent update problem since 

the changes will not be undone. We can run the operations and assign the timestamps 

at the same time. Another advantage is that the server would not be called if the update 

transaction aborted. 

The price for making the replica implementation easier is added time and complexity for 

the system. Since the commit point of a transaction is after the prepare phase is 

completely over, we have to wait to call the service operation at least until then, and then 

wait for the service operation to return before passing on the result of the operation to 

the participants of the transaction. We also have to check for duplicate messages since 

there would be no way to discard them automatically. 
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Post-commit solutions can also be divided into two types: those that call update 

operations during the commit phase of the commit protocol and those that call 
operations after the protocol has run. This section presents one of each type. The first 

has the operations called by the coordinator as part of the commit phase. The second 

has the operations called by the system after the replacement transaction has 

completed. 

4.2.2.1 Commit-phase solution 

A straightforward commit-phase solution would be to have the operations called by the 

coordinator after the commit record has been written but before sending out commit 
messages. The participants can tell the coordinator what needs to be done by 

piggybacking this information onto the prepared messages. The coordinator would send 

the returned timestamp to the participants with the commit messages. 

Like the prepare-phase solution, the coordinator would need storage to keep track of 

what operation needs to be called. In addition, the coordinator would have to keep this 

information on stable storage in case it crashes after writing the commit record but 

before calling the server operations. This solution also would entail reprogramming the 

commit protocol. 

The time cost of this solution comes in the form of a third phase waiting for the service 

operations to return, making the commit protocol longer. This solution delays the 

commit of the transaction at the participants, because the coordinator cannot send the 

commit messages until after the update operation returns. 

4.2.2.2 Non-transaction solution 

We could simply wait until after the replacement or destroying transaction has completed 
to notify the server. This solution would operate in the same manner as the second 

caching strategy described in Section 3.4.1 at the guardian manager. The guardian 

managers at the affected nodes would have to keep information about the rebinding. If a 

guardian manager receives a call to a non-existent guardian, it would first look in its own 

state for the information and return it as part of the raised exception. If the server has 

not been notified, the guardian manager would raise a different exception than one that 

would be used after the server has been notified. This is because there would be no 

timestamp to return since the operation has not been done yet. Regular guardians 

would have to be changed to accommodate this new exception, but otherwise, would 

work the same way. 
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The difference between the caching strategy in Section 3.4.1 and this solution is that the 

information must be kept on stable storage until the server is notified. This is needed in 

case the replacement system is slow in notifying the server, so that calls to rebound 

guardians are properly handled if the guardian manager crashes and recovers before 

the replacement system notifies the guardian manager that the service has been told. 

After the server is notified, the information can be moved into the volatile cache or 

forgotten, whichever is the usual case. 

4.3 Conclusions 

4.3.1 Evaluation of serial solution 

The serial solution means there is always one more participant in the commit protocol for 

a replacement transaction. The main advantage of the serial solution is that it is 

straightforward to program. It takes advantage of the existing transaction system, and 

integration into the current system is fairly simple. 

The serial solution is affected by the "window of vulnerability" problem of the commit 

protocol. If the coordinator of a transaction crashes after writing out the commit record 

but before sending out committed messages, the replica will be unavailable for future 

update operations for the duration of the crash since it will not be able to find out the 

outcome of the transaction, and the unfinished transaction will still be holding the replica 

lock. However, lookups can still proceed and gossip can still be received and 

processed, so the situation is better than if the entire replica had crashed. A replica can 

also be tied up for long periods of time if a transaction is long or slow. This also 

increases the chance that a transaction may have to abort solely because of a replica 

crash. Concurrency for updates is limited to the number of replicas in the server, but this 

may be enough. 

4.3.2 Comparison to alternative solutions 

If we were building the Argus run-time system from the beginning, we might be inclined 

to choose the prepare-phase solution since the server really is part of the commit 

procedure. The prepare-phase solution does not slow down the protocol since the 

participants write new versions of stable data to stable storage at the prepare phase 

anyway. It would also lessen the probability that a transaction would abort solely 

because a server replica crashed. But given that Argus already exists, and the commit 

protocol is complex, the prepare-phase solution is not particularly attractive because it 

would require many changes to the current Argus commit protocol. 
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The multipart local time solution is conceptually the same as the serial solution. The 

logical clock is more complex than the simple counter of the serial solution. This size of 

the multipart times can become very large if many operations overlap. If we assume that 

operations do not overlap much, it is not clear that the multipart local time solution is 

much better than the serial solution given the added complexity. 

The commit-phase solution seems to be rather worthless. Although it allows us to 

simplify the replica, it would really slow down the commit protocol, since it would wait for 

all of the prepared messages to arrive at the coordinator, and then for the service 

operations to return, before sending back the commit messages. The advantages from 

the commit-phase solution are also present in the non-transaction solution, whose 

disadvantages are not as severe. 

In retrospect, the non-transaction solution might have been a better choice than the 

serial solution. The guardian manager shoulders more of the responsibility for keeping 

track of the information needed, but the guardian manager should cache some of the 

information anyway for efficiency reasons. This solution is better than the commit phase 

solution because it does not slow down the commit protocol. The non-transaction 

solution is also in keeping with the idea of lazy propagation of information found in most 

of the Argus system. 
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Chapter Five 

Reconfiguration of the Server State 

A configuration of the location server consists of the names and locations of the replicas 

that make up the server. The previous two chapters assumed that the server had a fixed 

configuration. The server was created once, and the replicas remained where they were 

created. In this chapter, we explore the possibility of reconfiguring the server. That is, 

we would like to be able to change the number or locations of the replicas that make up 

the server. We might want to move individual replicas for the same reasons as allowing 

objects to move, for example, because a node crashes too often or will be inaccessible 

for a long period of time. In addition, we would like to be able to scale the service to 

meet the requirements of availability and efficiency if the system changes in size. For 

example, if the system doubled in size, we might want to double the number of replicas 

in the server to keep the average number of queries and updates per replica roughly the 

same. On the other hand, if the system shrank by half, we might want to remove half of 

the replicas to avoid underutilizing resources. 

Reconfiguration is done in a transaction. Either the change is completed, or the old 

configuration remains valid. We call a replica in the new configuration a current replica, 

and we call a replica that was in the old configuration, but not in the new one, an 

obsolete replica. The service provides three new operations to support reconfiguration: 

a get_state operation to obtain the state of a replica, a create_with_state operation that 

creates a new replica with the state given to it as an argument, and a 

change_ configuration operation to install a new configuration at the called replica. 

A simple scheme to do reconfiguration is as follows: 
1. Start a transaction. 

2. Read the states of all the replicas in the old configuration. 

3. Construct the complete current state of the service. 

4. Create any new replicas with the complete current state as an argument 
and construct the new configuration. 

5. Invoke the change_configuration operation at the current replicas with the 
new configuration as an argument. 

6. Destroy the obsolete replicas. 

7. Commit the transaction. 
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Update processing must stop during the reconfiguration transaction in order to get a 

complete current state. This scheme is precise; each configuration has a definite 

beginning state and ending state. A current replica always starts out with all of the 
information from the previous configuration. 

However, this scheme has some disadvantages. It stops the service for the duration of 

the reconfiguration, but since reconfiguration is expected to be rare, we might be able to 

tolerate such a disruption of service. A greater disadvantage is that it requires all of the 

server replicas to be up and able to communicate with the reconfiguration program. 

Reconfiguration would not be possible if some of the replicas were crashed or if the 

network partitioned with replicas on both sides. We would like to be able to reconfigure 

the service without having to access all of the replicas in the old configuration. 

Once we allow reconfiguration involving less than all of the affected replicas, we must 

decide on how many replicas actually must be involved. All of the newly-created 

replicas are included since this is when they come into existence. A majority of the 

replicas in the old configuration can be required if synchronization of reconfiguration 

transactions is a problem. Requiring a majority of the old replicas would prevent 

concurrent reconfiguration transactions. On the other hand, if reconfiguration is rare, 

and usually done after careful consideration by a system administrator, we could just 

assume that the system administrator will insure that reconfiguration transactions are 

synchronized properly. We will assume that this is the case. Then it is possible to not 

involve any of the replicas in the old configuration, depending on how we gossip the 
news of the reconfiguration. 

In this chapter, we describe a scheme that requires at least one replica from the old 

configuration to participate in the reconfiguration transaction. The first two sections of 

this chapter present our reconfiguration scheme. Section 5.1 describes the extensions 

needed to support our reconfiguration scheme, and Section 5.2 presents the abstract 

implementation of the basic scheme. Section 5.3 briefly sketches an optimization for the 

basic scheme. In Section 5.4, we address the question of how clients find the service 

after the reconfiguration is done. We outline and compare several schemes for finding 

the location service. 

5.1 Extensions to support reconfiguration 

Basically, the steps in the reconfiguration transaction are the same as were shown 

above. However, instead of reading the states of all the replicas in the old configuration, 

we only have to read one (although we might want to read as many as possible and 
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merge the states we receive). We call this replica the participant replica. We create any 

new replicas with the state from the participant replica and construct the new 
configuration. Then we invoke the change_configuration operation at all newly-created 

replicas and the participant replica. 

Replicas not participating in the reconfiguration transaction hear about the 

reconfiguration through gossip. The change_configuration operation is treated like any 

other update operation, and an update record with a change entry is added to the 

send_gossip list for it. When a non-participant replica encounters an update record for a 

configuration change, it reconfigures itself appropriately. 

It is important to note that since we do not construct a complete current state, the state 

of the service stored at the current replicas may not have all of the information entered 

prior to the reconfiguration transaction. This means that an obsolete replica must 

continue to exist after it finds out about the reconfiguration and must send gossip to the 

current replicas in order to propagate any missing information that it holds. 

Thus a reconfiguration is not complete until all of the replicas in the old configuration 

know about it and all of the information from the old configuration has propagated to the 

new configuration. While this propagation of information is taking place, the service is in 

a hybrid state between configurations. Our problem is determining how replicas must 

behave during this period. 

In this section, we consider how to support this reconfiguration scheme. There are four 

issues to discuss: 
1. How to identify replicas. 

2. How to relate the states (and timestamps) from different configurations. 

3. How to propagate information from the old configuration to the new 
configuration and how to determine that all of the information has 
propagated. 

4. How to determine when an obsolete replica can be destroyed. 

In the rest of this section, we state how we will identify replicas. Then we explain the 

use of version numbers to distinguish states from different configurations. Third, we 

address the problems in gossip processing in the hybrid state. Finally, we deal with 

returning to normal processing and destroying obsolete replicas. 
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5.1.1 Identifying replicas 

With a fixed configuration, there is a one-to-one correspondence between a replica and 

its index into the configuration. We can ignore the actual names of the replica 

guardians, since it is sufficient to know just the index of a particular replica. In effect, a 

replica's index can be used as its id since they are unique. Now that we can change the 
configuration of the service, this is no longer the case. The index of a replica into a 

configuration and the replica at a particular index may change after a reconfiguration, so 

we need another way of uniquely identifying replicas. Since a replica is also a guardian, 

it has a unique guardian id assigned to it by the Argus system. We will use this id as the 

replica id. A configuration is an array of replica ids. The index of a replica into a 

configuration can be determined by matching the replica's id with the replica ids in the 

configuration. However, it is still convenient to retain the index of a replica as part of its 

state. 

5.1.2 Version numbers 

The second problem is how to relate states from different configurations. We would like 

a state from a later configuration to have a larger timestamp than a state from an earlier 

configuration. But a timestamp from a later configuration may have a different number of 

parts than a timestamp from an earlier configuration. And even if timestamps from 

different configurations have the same number of parts, their meanings are different 

since they refer to a different set of replicas. We must be able to distinguish between 

timestamps from different configurations and have some way of comparing and merging 

them. 

We solve this problem by numbering the successive configurations of the service in 

increasing order. We call this number a version_number and prefix it to all the 

timestamps sent out by the replica. In other words, the timestamps in the server are 

now (version_number, timestamp) pairs. Timestamps with higher version numbers are 

later than all timestamps with lower version numbers. We redefine the timestamp 

operations on these new timestamps as follows: 
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new_merge = proc (ts1 ,ts2:new_timestamp) returns (new_timestamp) 

if ts 1. version = ts2. version 
then return ((ts1 .version.merge (ts1 .timestamp,ts2.timestamp))) end; 

if ts 1. version > ts2. version 
then return (ts1) 
else return (ts2) end; 

end new_merge 

new_equal = proc (ts1 ,ts2:new_timestamp) returns (bool) 

if ts1 .version_number = ts2.version_number 
then return (ts1 .timestamp = ts2.timestamp) 
else return (false) end; 

end new_equal 

new_lt = proc (ts1 ,ts2:new_timestamp) returns (bool) 

if ts1.version_number = ts2.version_number 
then return (ts1 .timestamp < ts2.timestamp) end; 

if ts1 .version_number < ts2.version_number 
then return (true) 
else return (false) end; 

end new_lt 

For the rest of this chapter, "timestamp" refers to this new type of timestamp. We will 

call timestamps with the same version number as the current configuration current 

timestamps. Timestamps with version numbers less than the version number of the 

current configuration are old timestamps. 

5.1.3 Gossip processing in the hybrid state 

In this section, we describe how gossip processing is done in the hybrid state. Recall 

that we make the simplifying assumption that all gossip from the old configuration has 

propagated to the new configuration before the next reconfiguration transaction is 

begun. This is a reasonable assumption since we expect reconfigurations to be done 

infrequently. In addition, we will also assume that the update entries of gossip from the 

old configuration are garbage collected from a replica's send_gossip list before the next 

reconfiguration transaction is begun. 

To support reconfiguration, a replica can have one of five statuses. We represent a 

replica's current status by the state component, status. Status is a variant (a mutable 

discriminated union); its type is: 
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status_type =variant [normal 
obsolete 
current 
new 
no_gossip 

: null, 
: array[bool], 
: current_status, 
: null, 
: null] 

current_status = record [old_con 
old_ts 
acknowledge 
received 

: configuration, 
: timestamp, 
: array[bool], 
: array[bool]] 

If there is no reconfiguration going on, a replica has a status of normal. Normal status is 

the usual status of a server replica. It means that the replica is current and all 

information from any previous configuration has propagated to it. 

When a replica hears about a reconfiguration (either through the change_configuration 

operation or through gossip) its status either changes to obsolete (if it an obsolete 

replica) or to current (if it is a current replica). The obsolete status means the replica has 

heard about the reconfiguration and is obsolete. A status of current means that the 

replica is current and there is a reconfiguration going on. When the reconfiguration 

finishes, replicas with current status change to normal status. Replicas with obsolete 

status are eventually destroyed. The meaning of the field components in the obsolete 

and current status cases will be explained later. 

A status of new means that the replica is a newly-created replica. A replica with new 

status will always change to current status when the change_configuration operation is 

invoked at it. The meaning of the no_gossip status will be explained later. 

To accomplish a reconfiguration, we must propagate the news about the reconfiguration 

to replicas that did not participate in the reconfiguration transaction. Current replicas will 

automatically find out through normal gossip since all replicas gossip to current replicas. 

Obsolete replicas that did not participate also need to be told. This is done by having 

replicas with current status gossip about the reconfiguration to obsolete replicas as well 

as current ones. 

In addition, we must make sure that all of the information from the old configuration 

propagates to the new configuration. As stated before, obsolete replicas may have 

information that has not propagated to the current replicas, so they must gossip to the 

replicas in the current configuration. Also, current replicas that were part of the old 

configuration may have information from the old configuration that other replicas have 

not heard. The timestamps associated with such information will be old. We call this 

information from a previous configuration "late" gossip. 
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From a replica's point of view, a reconfiguration is finished when it has received all of the 

information from the previous configuration. We use the field components in the current 

status case to keep track of the information needed to determine when this happens. 

The entire reconfiguration process is completed when all current replicas have received 

all of the information from the previous configuration. 

There are two problems for replicas with current status related to late gossip. The first is 

determining if the late gossip contains new information. We cannot use the normal 

gossip processing algorithm because the late entries will have old timestamps, while the 

replica's timestamp will be current. Since all old timestamps are less than current 

timestamps, gossip entries having old timestamps would be thrown away by the 

receiving replica even though they may contain information that the replica does not 

know about. 

We solve this problem by having replicas save information about the old configuration 

when they change to current status and using this information to determine whether late 

gossip entries contain new information. Specifically, we save the old configuration in the 

current status field component old_ con and the old timestamp in the current status field 

component old_ts. When a late gossip message is encountered, its timestamp is 

compared to old_ts. If it is less than or equal to old_ts, the message is discarded. If it is 

not less than or equal to old_ts, the entries are processed as usual using old_ts rather 

than ts to determine if the entry itself is new or old information. After the message has 

been processed its timestamp is merged into old_ts. 

Late gossip entries can also arrive in gossip messages with current timestamps. (For 

example, the sending replica heard the information before it heard about the 

reconfiguration.) Since a replica does not know if there are any late entries in the 

message, it must look at all the entries in gossip messages with current timestamps, 

even if the message timestamp is less than or equal to the replica's timestamp. When a 

late gossip entry is encountered, its timestamp is compared to o/d_ts. If it is less than or 

equal to o/d_ts, the entry is discarded. If it is not less than or equal to old_ts, the entry is 

processed as usual and its timestamp is merged into old_ts. Gossip entries with current 

ti me stamps are processed normally. 

The second problem is determining when a replica has received all of the information 

from the old configuration. We note that the change entry for the reconfiguration for a 

particular replica will follow all of the update entries of operations invoked before the 

reconfiguration in that replica's send_gossip list. If there is no garbage collection of the 

send_gossip list during the reconfiguration, then a replica knows it has received all of the 
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information about operations invoked at a replica during the previous configuration when 

it encounters the change entry for that replica. The send_gossip list of the original 

sending replica reflects this order and processing by other replicas will retain this order. 

We keep track of which replicas from the old configuration have gossiped a change entry 

in the current status field component received, a boolean array. The indices of received 

correspond to the indexes of the replicas in the old configuration. Initially, the entries are 

all false. Received[i] is set to true when the replica encounters a change entry from 

replica i of the old configuration. When a replica receives a change entry for all of the 

replicas in the old configuration (received[i] is true for all i}, it has heard all of the updates 

with old timestamps. 

The solution only works if we do not garbage collect the send_gossip list of the replicas 

in the old configuration after the reconfiguration starts, since otherwise the replicas not 

participating in the reconfiguration transaction can garbage collect information from their 

send_gossip lists before it is propagated to newly-created replicas. In particular, it is 

important not to garbage collect the information that was not known by the participant 

replica when its state was read. The new replicas created with that state will never find 

out the new information if it gets garbage collected. We ensure that such information is 

not garbage collected in the following way: 
1. The participant replica stops sending and receiving gossip and stops 

garbage collecting its send_gossip list when the get_state operation is 
executed. 

2. Replicas with obsolete or current status stop garbage collecting their 
send_gossip lists. 

3. When a replica with normal status receives a gossip message with a 
timestamp that has a version number greater than the replica's version 
number, it only processes a change entry (there must be one since this 
replica has not heard of the reconfiguration), leaving the gossip message 
on the message queue to be processed after the replica has reconfigured. 

These rules effectively stop garbage collecting at replicas other than the participant 

replica when the reconfiguration transaction begins. The non-participant replicas cannot 

remove information before they find out that the participant replica knows about the 

information. The participant replica resumes sending and receiving gossip after it 

reconfigures (this is why it is included in the reconfiguration transaction). The participant 

replica's gossip message will have a timestamp with a higher version number than 

replicas that have not reconfigured. If a recipient of this message has not already 

reconfigured, this timestamp will cause it to look for the change entry first and 

reconfigure, which stops the garbage collecting. If the recipient has already 
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reconfigured, then it has already stopped garbage collecting. We mark the participant 

replica by having the get_state operation change that replica's status to no_gossip. 

5.1.4 Returning to normal processing and destroying obsolete replicas 

A replica cannot garbage collect old information until all current replicas have heard its 

gossip. We can indicate the receipt of such information by having a current replica send 

an acknowledged gossip message to a replica when it encounters that replica's change 

entry. For a replica with current status, this means that it cannot return to normal status 

until it receives an acknowledgment from all of the other current replicas. For an 

obsolete replica, this means that it cannot be destroyed until it receives an 

acknowledgment from all of the current replicas. 

We keep track of the acknowledgments in the status field component acknowledge, an 

array of boolean values. Both the obsolete status and the current status have this field 

component. The entries of the array are initially set to false. When an acknowledge 

entry from replica i of the current configuration is received, acknowledge[i] is set to true. 

When an obsolete replica has heard acknowledgments from all current replicas 

(acknowledge[i] is true for all i), it can be destroyed. A current replica can return to 

normal status when it has heard gossip from all the replicas in the old configuration and 

it has heard acknowledgments from all current replicas. 

A replica must hear an acknowledgment from all current replicas directly before garbage 

collecting the old information because it cannot rely on a replica that has received its 

gossip to gossip the information to other replicas. This is because a replica may change 

to normal status upon the receipt of the gossip and garbage collect the late entries 

before sending the next round of gossip messages out. 

5.2 Abstract implementation 

In this section, we continue our abstract implementation of the service. We start from 

the abstract implementation of Chapter 3. We assume that all transactions commit and 

that the various processes in a replica run one at a time to completion. Recall that we 

also assume that all of the gossip from the old configuration has propagated to the new 

configuration before the next reconfiguration transaction is done. That is, all of the 

replicas in the current configuration have normal status when a reconfiguration is 

started. 

We begin our implementation with a description of the new data structures needed to 
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support reconfiguration. Then we give the code for the change_configuration operation 

and gossip processing. Finally, we discuss modifications to the service operations and 

garbage collection algorithms. 

5.2.1 Data structures 

Recall that timestamp refers to the new type of timestamps. Likewise, merge, equal, 

and It refer to the operations new_merge, new_equal, and new_lt, respectively. In 

addition to the status data structure introduced in Section 5.1.3, we add the following 

data structures to the state: 

My_id is the id of the replica. The id of a replica is assigned by the run-time system 

when a replica is created. It is available through a system primitive. 

CurrenLconfiguration is the configuration currently in use. A configuration is an array of 

replica ids that make up the server. They are ordered such that configuration[i] is the id 

of the ith replica of that configuration. 

The update_records have two additional arms: 

update_record = oneof [enter : SetOfGids, 
rebind : rebind_entry, 
delete : guardian_id, 
change : change_entry, 
ack : null] 

rebind_entry = struct[gm:MapOfGids, hm:MapOfHandlers] 
change_entry = struct[new_con:configuration, new_version:int, id:replica_id] 

The change arm represents a change_configuration operation. Besides the arguments 

to the change_configuration operation, the change entry also includes S.my_id of the 

replica that created the entry. The ack arm represents an acknowledgment from the 

sending replica. 

Figure 5-1 summarizes the new replica state. My_index is no longer a constant. It is the 

replica's index into the current configuration and may change when a reconfiguration is 
done. 

5.2.2 Changing configurations 

The reconfiguration transaction can be viewed as having two parts. The first part is 
preparatory: we read a state, create the new replicas, and construct the new 

configuration. In the second part, we do the actual reconfiguration by invoking the 

change_ configuration operation at the new replicas and the participant replica. 
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gmap 
hmap 
exists 
deleted 
send_gossip 
gossip_table 
ts 
my_index 
my_part 
status 
my_id 
current_ configuration 

: MapOfGids; 
: MapOfHandlers; 
: SetOfGids; 
: SetOfDeletedGids; 
: SetOfUpdate_records; 
: array[new_timestamp]; 
: new_timestamp; 
: int; 
: int; 
: status_type 
: replica_id; 
: configuration; 

Figure 5-1: State of a reconfigurable replica 

Obtaining a replica state is done by invoking the get_state operation. The get_state 

operation also causes the replica to stop sending gossip and garbage collecting oy 

changing the replica's status to no_gossip. It is implemented by: 

get_state = proc ()returns (MapOfGids,MapOfHandlers,SetOfGids,SetOfDeletedGids, 
timestamp,configuration) 

change_no_gossip(S.status,nil); % change status to no_gossip 
return (S.gmap,S.hmap,S.exists,S.deleted,S.ts,S.current_configuration); 

end get_state 

New replicas are created with the create_with_state operation. This operation takes the 

items returned by the get_state operation as arguments, creates a new server replica, 

and returns the newly-created replica's id. The new replica is created with a status of 

new and the arguments are used to initialize the corresponding parts of the new replica's 

state. My_id is set using a system primitive provided by the Argus run-time system. The 

rest of the replica state is left undefined. We can do this because a replica with the 

status of new will never be called by a client until after it has participated in the second 

part of the reconfiguration transaction, which will initialize the rest of the replica state. 

The operation is implemented by the following code: 
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create_with_state = proc (gmap:MapOfGids,hmap:MapOfHandlers,exists:SetOfGids, 
deleted :SetOfDeletedGids, ts :timestamp,con :configuration) 

returns (replica_id) 

S.status := make_new (nil); 
S.gmap := gmap; 
S.hmap := hmap; 
S.exists := exists; 
S.deleted := deleted; 
S.ts :=ts; 
S.current_configuration := con; 
% The id of a guardian is set by the run-time system when the guardian is 
% created; a system primitive returns the id of the invoker. 
S.my_id :=%system primitive 
return (S.my_id); 

end create_with_state 

Change_configuration changes the configuration of a replica and saves the appropriate 

information depending on whether the replica is current or obsolete. We assume that 

the new configuration has a version number greater than the current one. (In a real 

implementation, we would check this.) We implement the operation in the following 

manner: 

change_configuration = proc (new_configuration:configuration, new_version:int) 

num_old: int:= number of replicas in old configuration; 
num_new: int:= number of replicas in new configuration; 

acknowledge : array[bool]; 
for i := 1 to num_new do acknowledge[i] :=false end; 
if S.my_id E new_configuration 

then % a current replica 
received : array[bool]; 
for i := 1 to num_old do received[i] :=false end; 
if S.my_id E S.current_configuration 

% part of the old configuration, have heard everything from self 
then received[S.my_index] :=true end; 

S.my_index :=index of S.my_id in new_configuration; 
acknowledge[S.my _index] := true % have heard from self 
change_current(S.status,make_current_status(S.current_configuration, 

S. ts ,received,acknowledge)); 
S.ts := (new_version,(01, ... ,0num new»; 
S.ts[S.my_index] := 1; -
S.my_part := 1; 
for i := 1 to num_new do 

S.gossip_table[i] := (new_version,(01, ... ,0num_new» end; 
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else % an obsolete replica 
change_obsolete(S.status,acknowledge); % change status to obsolete 
S.my_part := S.my_part + 1; 
S.ts[S.my_index] := S.my_part; 

end;% if 
S.current_configuration := new_configuration; 
S.send_gossip := S.send_gossip u {(S.ts,make_change( 

make_change_entry(new_configuration,new_version,S.my_id)))}; 

end change_configuration 

5.2.3 Gossip processing 

As discussed earlier, all replicas send gossip to replicas in the current configuration. 

Replicas with current status also gossip to replicas in the old configuration that are 

obsolete. 

Recall that a gossip message M has components gossip_list, ts, and index. We now 

add a component id, the id of the sending replica. We implement the gossip processing 

with the following code: 

new_gossip_processing = proc () 

tagcase S.status of 
obsolete (acknowledge:array[bool]) : % obsolete replica 

for u e M.gossip_list do 
tagcase u.rec of 

ack: 
% This will be a single entry message. 
% Acks can only come from current replicas by assumption. 
acknowledge[M.index] := true; 

others: 
% Take M off the message queue; replica can ignore anything else; 
% this would a late gossip message. 
return; 

end;% tagcase 
end;% for 

current (c:current_status) : % current replica during reconfiguration 
if M.ts ~ c.old_ts then 

% Take M off the message queue. 
% It is possible for this message to have a change entry for an 
% obsolete replica whose ack was lost; if this is so, the ack 
% will be sent in the normal case when this message is sent again. 
return; 
end; 
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for u E M.gossip_list do 
tagcase u.rec of 

change (chg:change_entry) : 
if (u.ts.version_number < S.ts.version_number Au.ts-~ c.old_ts) v 

(u.ts.version_number = S.ts.version_number Au.ts-~ S.ts) then 
% haven't heard this one yet 
S.send_gossip := S.send_gossip u {u}; 
if chg.id E c.old_con then 

% not from a newly-created replica 
index : int := index of chg.id in c.old_con; 
c.received(index) := true 
end;% if 

if u.ts.version_number < S.ts.version_number 
% old timestamp, merge with old_ts 
then c.old_ts :=merge (c.old_ts, u.ts) end; 

end% if 
% always ack change entry 
send {(S.ts, make_ack(nil))} to chg.id; 

ack: 
c.acknowledge(M.index] :=true; 
return; % do not update gossip_table or replica timestamp 

others : 
if (u.ts.version_number < S.ts.version_number Au.ts-~ c.old_ts) v 

(u.ts.version_number = S.ts.version_number Au.ts -~ S.ts) then 
% haven't heard this one yet 
S.send_gossip := S.send_gossip u {u}; 
% Process entries the same as regular gossip processing. 
if u.ts.version_number < S.ts.version_number 

% old timestamp, merge with old_ts 
then c.old_ts :=merge (c.old_ts, u.ts) end; 

end;% tagcase 
end;% for 

if (M.id E S.current_configuration) A 
(M.ts.version_number = S.ts.version_number) then 

% update gossip_table and replica timestamp if from a 
% current replica that knows about the reconfiguration. 
S.gossip_table(M.index] := merge(S.gossip_table(M.index],M.ts); 
S.ts :=merge (S.ts, M.ts); 
end;% if 

normal : % current replica and no reconfiguration 
if M.ts.version_number > S.ts.version_number then 

% A reconfiguration has happened. Look for a change entry. 
for u E M.gossip_list do 

tagcase u.rec of 
change (chg : change_entry) : 

if chg.version > S.ts.version_number then 
change_ configuration (chg .new_ con.chg. new_ version) 
% Leave M on the message queue. 
return; 
end; 

others: % ignore the other entries 
end; % tagcase 

end;% for 
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elseif M.ts.version < S.ts.version then 
% A delayed gossip message. Receiving replica will have already 
% heard the updates in this message, but the sending replica 
% may not have heard an ack yet, so send one. 
send {(S.ts, make_ack(nil))} to M.id; 

else 
% Nothing unusual, process normally. Ack the change entries 
% (in case the previous acks got lost) and ignore the acks. 

end;% if 
no__gossip: % ignore gossip 
end; % tagcase 

end new_gossip_processing 

5.2.4 Other replica processing 

In operation processing, there is a possible problem with an operation getting a later 

timestamp than another operation that happened after it in real time. For example, 

suppose an enter__guardians operation happens at replica in the new configuration and 

gets a current timestamp, and then the delete_guardian operation for one of the 

guardian ids happens at a replica that has not heard about the reconfiguration yet and 

gets an old timestamp. The enter timestamp of that guardian id will be greater than the 

timestamp of its deletion. This might cause the garbage collection algorithm to remove 

the entry from its deleted set too soon, creating an inconsistent state. 

We solve this problem by having all service operations take an extra argument, the 

version number of configuration known to the client. There are three cases to consider: 

the client's version number is less than the replica's version number, the client's version 

number is equal to the replica's version number, and the client's version number is 

greater than the replica's version number. None of these cases apply to replicas with 

new status, since they will be changed to current status before any clients find out about 

them. 

If the version number argument is less than the version number of the replica, the caller 

has not heard about the reconfiguration, and the replica refuses to do the operation. 

The operation signals an exception and returns the new configuration and version 

number. This is done by all replicas regardless of status. 

A client's version number may be greater than the replica's version number if the client 

found out about the reconfiguration before the replica. This can cause the same 

problem for enters and deletes for a client that knows about the reconfiguration and does 

an enter getting a current timestamp, and then does a delete at a replica that does not 

know yet. The second replica would return an old timestamp. We handle this by having 
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a replica signal unavailable ("replica out-of-date"), if its version number is not large 

enough. Note that this situation is only possible in the case of a replica with normal 

status. Clients that know about the reconfiguration will not call obsolete replicas, and 

such a call to a replica with current status would contradict our assumption of non­

overlapping reconfigurations. 

If the version numbers are the same, then both the client and replica know about the 

reconfiguration, and the operation can proceed as described before. 

These tests would be implemented for all service operations in the following manner: 

new_operation = proc ( ... ,v:version_number) 
returns ( ... ,timestamp) 
signals ( ... ,new_ configuration (configuration, int)) 

tagcase S.status of 
obsolete: 

signal new_configuration(S.current_configuration,S.ts.version_number); 
current: 

if v < S.ts.version_number then % client has old configuration 
signal new_configuration(S.current_configuration,S.ts.version_number) end; 

normal: 
if v < S.ts.version_number then % client has old configuration 

signal new_configuration(S.current_configuration,S.ts.version_number) end; 
if v > S.ts.version_number then % replica has old configuration 

signal unavailable ("replica not up-to-date") end; 
no_gossip: 

if v < S.ts.version_number then % client has old configuration 
signal new_ configuration ($.current_ configuration ,S. ts. version_ number) end; 

end;% tagcase 

% Do the operation. Returns S.ts. 

end new_ operation 

However, this is not enough for the rebind and lookup operations at replicas with current 

status. These operations rely on information in states with timestamps less than the 

argument timestamp to be present. This implies that a call with a current timestamp 

argument may rely on information from the old configuration. Since we do not know 

what the information is or which state it comes from, we must refuse the operation and 

signal unavailable ("replica out-of-date"). A replica can do rebinds and answer queries if 

the timestamp argument is old and the replica's old timestamp is large enough. (The 

timestamp argument of rebind and lookup operations may be an old one even if the 

client has heard about the reconfiguration and has the current configuration and version 

number.) 
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The rebind and lookup operations need the following additional tests in the current status 

case: 

if t.version_number = S.ts.version_number % not all of the old gossip in yet 
then signal unavailable ("replica not up-to-date") end; 

if old_ts -~ t % definitely do not have the old gossip needed 
then signal unavailable ("replica not up-to-date") end; 

As stated before, garbage collection of the send_gossip list is not done in a replica with 

no_gossip, current or obsolete status to make sure that all of the information from the old 

configuration propagates to the new configuration. Garbage collection of the deleted set 

cannot be done in replicas with current status for similar reasons. The current 

timestamps in the gossip table may cause entries with old timestamps to be removed 

from the deleted set too soon, causing an inconsistent state. Both of these procedures 

would test the status of the replica before proceeding. Garbage collection of the maps is 

unaffected by the reconfiguration scheme. 

5.2.5 Returning to normal processing and destroying obsolete replicas 

When a reconfiguration is finished, two things must happen. First, the current replicas 

must return to normal status. Second, obsolete replicas must be destroyed. 

Reconfiguration_completed is invoked periodically by replicas with current status to 

check whether the replica can return to normal status. It sets S.status to normal when 

all the elements of received and acknowledge are true. It is implemented by the 

following procedure: 

reconfiguration_completed = proc () 

tagcase S.status of 
current (c:current_status) : 

if V i, c.received[i] =true "V j, c.acknowledgeLJ] =true 
then change_normal (S.status, nil) end; % change status to normal 

others : return; 
end;% tagcase 

end reconfiguration_ completed 

Destroy_obsolete is invoked periodically by replicas with obsolete status to check 

whether the replica can be destroyed. When an acknowledgment gossip message has 
been received from all current replicas, the replica is destroyed by invoking the 

terminate statement. It is implemented by the following procedure: 
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destroy_obsolete = proc ( ) 

tagcase S.status of 
obsolete (acknowledge:array(bool]) : 

if V i, acknowledge[i] = true then terminate end; 
others : return; 
end; % tagcase 

end destroy_obsolete 

5.3 An optimization 

In this section, we briefly sketch an extension to our basic reconfiguration scheme. It is 

an optimization for the case where the replicas of the new configuration are a subset of 

the old configuration. We call this a "benevolent" reconfiguration. Besides being a more 

efficient reconfiguration procedure, this extension also gives us a way of dealing with 

frequent or long-term node or network faults affecting service replicas. 

Suppose that a service replica resides at a node that continually crashes or gets 

partitioned from the rest of the service replicas often. We would like to replace this 

replica with one on a more reliable node. We can run our basic reconfiguration scheme 

and eventually it will be done, but communicating with the obsolete replica may be 

intermittent causing it to continue to accept update operations (if the change entry does 

not arrive} or preventing the current replicas from changing to normal status (if the 

obsolete replica's gossip does not arrive}. This may continue for a long period of time. 

Since most lookups have to wait for normal status, this could keep the service from 

answering lookups, effectively stopping the system. 

A way to avoid this situation is to do a "benevolent" reconfiguration first. The basic idea 

in a benevolent reconfiguration is that if the new configuration is a subset of the old 

configuration, we can continue using the same version number and the same number of 

timestamp parts. This is because, in effect, we are keeping the same configuration, but 

some of the replicas are permanently unavailable. Operations at the current replicas 

can continue normally, so there is no disruption of service. Eventually, the obsolete 

replicas find out about the reconfiguration and stop accepting updates. When all of the 

current replicas receive a change entry for the reconfiguration from all of the obsolete 

replicas, the reconfiguration is done. 

Returning to the scenario posed, we would first do a benevolent reconfiguration to take 

the troublesome replica out of the configuration. Then we would do a regular 

reconfiguration to add the replacement replica. The first reconfiguration does not disrupt 
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service, and the second reconfiguration should be "easier" since we got rid of the 

potentially troublesome replica. 

5.4 How clients find reconfigured services 

To keep track of the reconfigurable service, a guardian manager keeps a stable copy of 

the current configuration and version number in addition to its stable timestamp. As 

discussed earlier, the service operations take the version number as an argument. The 

following four situations are possible when a service operation is invoked: 
1. The guardian manager's version number is equal to the replica's version 

number. The operation returns as described previously. If it returns an 
unavailable signal, the guardian manager tries again later or at a different 
replica. 

2. The guardian manager's version number is less than the replica's version 
number. The replica signals that there is a new configuration. The 
guardian manager writes the new configuration and version number to 
stable storage and tries the call again (at a replica in the new 
configuration). 

3. The guardian manager's version number is greater than the replica's 
version number. The replica signals that its not up-to-date. The guardian 
tries again later or at a different replica. 

4. A signal comes back indicating that the replica is non-existent. The 
guardian manager knows that the configuration has changed. It can try to 
find out what the new configuration is by trying the other replicas in its 
configuration. However, it is possible that all of the replicas in the 
configuration the guardian manager knows about have been destroyed. 

Although it is likely that guardian managers are active enough to find out about 

reconfigurations as described, especially if there are common replicas in successive 

configurations, it is possible that a guardian manager will not find out about a new 

configuration before all of the replicas in the configuration it knows about are destroyed. 

This might happen if the node of a client is down or partitioned from the rest of the 

system for a long period of time and misses several reconfigurations. When such a 

situation happens, we need to have some way for clients to find the service. This 
section addresses this issue. 

We cannot use the replacement method supported by this thesis to reconfigure the 

location service. (Clearly, we cannot use the location service to find the location 

service.) Other methods for allowing clients to find services that have moved fall into 
four general categories: 

1. Notify a name service provided by the system. 
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2. Require a subset of replicas to be in every configuration. 

3. Have clients broadcast a request for the current configuration. 

4. Chain configuration information such that a client can follow the chain to 
the current configuration. 

Each method has its advantages and disadvantages. One thing we would like to 

consider is whether the method will perform well in the presence of failures. Making the 

service highly-available and reconfigurable would not matter much if clients could not 

find it. 

Notifying a name service just pushes reconfigurability to another service. We have the 

same problem if we want to reconfigure the name service. This solution also means that 

the ability of clients to find the location service depends on the availability of the name 

service. The system could have difficulty notifying the name service of the change in 

location service configuration, or the clients could have difficulty finding an available 

copy of the name service. 

Requiring a subset of replicas to be in every configuration is feasible. Typically, we 

expect that successive configurations will have many replicas in common as we add or 

remove replicas from the service. But if the system runs for a long time, we can imagine 

that eventually all of the replicas we started with will be removed. 

A real broadcast would be difficult and expensive in system with no broadcast primitives 

(like Argus). We can implement a "ask your neighbor" multicast like that proposed by 

Henderson [7]. A logical network system defining the concept of neighbors would have 

to be implemented on top of the Argus system. Such a scheme is still expensive, but if 

the protocol is not run often, the cost is amortized over the life of the system. 

Chaining configuration information was proposed by Herlihy for general quorum 

consensus [8]. The basic idea is that obsolete configurations have pointers to the next 

configuration. There is a path from any obsolete configuration to the current 

configuration, and the client can follow the path. The obsolete configurations stay in 

existence until all clients know about the next configuration on the chain. Chaining 

seems to be a natural extension of our reconfiguration method. Adapted for the 

multipart timestamp technique, chaining would only mean keeping obsolete replicas 

around until all clients know about the next configuration. An obsolete replica already 

contains a pointer to the new configuration, and a client already gets the next 

configuration if it invokes an operation at an obsolete replica. The major problem with 

this scheme is that obsolete replicas take up resources and might be around for a long 
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time. In addition, it is not easy to determine when all possible clients have heard about 

the next reconfiguration. Herlihy proposes a reference counting scheme to garbage 

collect the old configurations that we can also adapt to allow us to determine when an 

obsolete replica can be destroyed, but it is fairly complex. 

Either broadcasting or chaining would be suitable for our purposes. Using a name 

service solves our immediate problem, but not the problem of finding reconfigurable 

services in general. The fixed subset solution places a constraint on system 

development: certain nodes must always exist. It may not be possible to meet such a 

constraint in the long run. Nodes get old and can become non-functional despite our 

best efforts. 

If reconfiguration is rare and successive configurations usually have many replicas in 

common, it would be very unlikely that a client would miss enough reconfigurations to 

not know a replica that knows the current configuration. In this case, the amortized cost 

of broadcasting would be sufficiently low to be practical. In the same situation, chaining 

is expensive since we have to keep all obsolete replicas around even if only one client 

has not heard about the new configuration, and even if some of the replicas it knows 

about do know about the current configuration. 

On the other hand, if reconfiguration is frequent and successive configurations have few 

replicas in common, it is more likely that a client could miss enough reconfigurations to 

not know a replica that knows the current configuration. Then the cost of broadcasting 

may become unreasonable as more clients must broadcast to find the service. In this 
case, chaining may be the better solution. 
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Chapter Six 

Conclusions 

This thesis described the design and construction of a location service to aid in finding 

objects that move in a distributed system. Recall that object movement can be viewed in 

two ways. In the "proper name" view, objects are denoted by unique identifiers that they 

keep as they move from node to node. The other view is that moving an object is 

replacing it with another object. That is, when we move an object we create a new 

replacement object, transfer the state of the old object to the replacement object, and 

then destroy the old object. The name of the old object becomes an alias for the new 

object. We chose the "replacement view" of object movement for our service because it 

is more general than the proper name view. The replacement view allows us to "split" or 

"merge" objects without revealing the change to the entities that access those objects. 

The location service records the aliasing of the old name to the new object. We call this 
"binding" the old name. 

Our goals for the service were to make it highly-available and efficient. In particular, if 

the node at which an object resides is accessible then an entity wanting to access that 

object should be able to find it with high probability. We also had an implementation 

goal to insure that clients make progress as they make successive lookup requests of a 

particular handler name; if a client already knows that a certain address for a handler 

name is out-of-date, it should not receive that address as an answer to a lookup request 

of that handler name. To meet our goals, we needed to replicate the service state. 

Although there are many well-established replication techniques that would satisfy our 

needs, we chose to implement the service using a new replication technique, Liskov's 

multipart timestamp technique. This technique uses multipart timestamps and gossip 

messages to maintain a consistent state. One of the reasons for choosing this 

technique was to show that it was practical to use. An evaluation of the technique will be 

presented later. 

Each replica in the service was implemented as an Argus guardian. The thesis 

presented an abstract implementation of a replica, describing the data structures and 

processing algorithms of the service. The problem with concurrent updates transactions 

was solved by making the replica state atomic and running the update operations at a 

replica serially. The update operations were implemented as handlers of the replica 

guardian to take advantage of the existing transaction system. Several other solutions 

74 



to the problem were also presented and compared to the implemented solution. Some 

of these solutions might have been chosen under different circumstances. 

In a long running system, the configuration of the system may change; therefore we 

might want to change the configuration of the location server as well by changing the 

number or location of its replicas. The thesis investigated extensions to the multipart 

timestamp technique to allow us to do reconfiguration. 

In summary, the contributions of this thesis were: 

• a location service for Argus and a basis for general object finding 

•a practical application of the multi part timestamp technique 

• extension of the technique to allow reconfiguration of the service state 

The rest of this chapter evaluates the multipart timestamp technique as a method for 

constructing highly-available services, discusses some work related to the thesis in the 

area of locating objects, and suggests some areas of future work. 

6.1 Evaluation of the multipart timestamp technique 

One of the reasons for choosing the multipart timestamp technique as the replication 

technique for the location service was to show that a practical application could be built 

using the technique. Several examples of services using the technique have been 

proposed (for example, orphan detection [1 OJ, garbage collection in a distributed 

heap [18], and deleting old versions in a hybrid concurrency control scheme [27]}, but 

none have been implemented. 

The information kept by these servers can be characterized by the following properties: 
1 . Updates are idempotent. This means that it does not matter how many 

times an operation is executed because the effect is the same as if it was 
only executed once. 

2. Updates do not need to be totally ordered. The technique has no way of 
ordering parallel updates that happen at different replicas. To do so would 
result in the loss of the advantages this technique has over traditional 
replication techniques. 

3. Queries identify the updates whose effects should be reflected in the query 
result. This gives a replica a local way of determining whether it has the 
needed information. 

4. The information states can be merged in a well-defined manner. 

The location service operations for the most part fit these properties. The only problem 
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was with enter_guardians and rebind operations involving the same guardian or handler. 

The lookup algorithm requires that the state it reads from contain the enters for the 

target guardian ids of any rebinds, since otherwise it would give the wrong information. 

(Recall that a guardian id is a target if it appears in the right component of a binding.) 

We satisfied this requirement by sending a timestamp known to be at least as late as the 

merge of the enter_guardians operation timestamps of the target guardian ids as an 

argument to the rebind operation and requiring that the returned timestamp to be at least 

as late. This causes the replica at which the rebind operation occurs to wait for the 

information about the enter_guardians operations before processing the rebind 

operation. A lookup at that particular replica will have the correct state to answer a 

request about that binding. This replica's gossip will reflect that state as well so all other 

replicas will know about the enters if they know about the rebind. 

In general, we would not want an update operation to have to wait for another update 

operation to take effect before it could be done. In the case of the rebind operation, 

however, we expect the enter_guardians operations to have been done far enough in 

the past to have propagated to all replicas in a normally running system. Thus the 

rebind operation should have to wait only when there are failures. An alternate strategy 

would be to do the rebind operation without waiting and delay the lookups until the 

condition is met. 

We can compare the performance of the multipart timestamp technique with other types 

of replication techniques. For example, a large number of replication techniques can be 

classified as voting techniques. Included in this class of techniques are the original 

weighted voting scheme by Gifford [5] and its generalizations such as general quorum 

consensus [8]. In the simple case of voting, the set of replicas visited by operations that 

read the service state must intersect with the set of replicas that are visited by 

operations that modify the service state. Voting is available in the presence of failures 

as long as a client can access the correct number of replicas. 

It should be noted that voting techniques can support consistency constraints that the 

multipart timestamp technique cannot. For example, voting techniques can be used for 

applications that require read operations to return the most recently written value. For 

the location service, it is not always necessary to have the most recent state to answer a 

particular lookup request since the most recent update to the state may not affect the 

answer. In addition, we only require that a client be able to make progress when it 

makes successive lookup requests of a particular handler name. The multipart 

timestamp technique satisfies this weaker requirement. 
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We prefer the multipart timestamp technique over voting techniques for several reasons. 

It is more efficient and available than voting techniques when the system is running 

normally. Since with voting techniques, the set of replicas accessed by update 

operations must intersect with the set of replicas accessed by query operations, the 

availability and efficiency of update operations are inversely proportional to the 

availability and efficiency of query operations. Voting techniques can make one kind of 

operation as available and efficient as the multipart timestamp technique, but not both 

kinds of operations. The multipart timestamp technique allows both lookups and 

updates to happen at just one replica. 

The multipart timestamp technique provides more availability than voting techniques in 

the presence of partitions. Enter_guardians and delete_guardian operations can 

proceed as long as one replica is accessible to the client. {Note that nothing less than 

one replica per node can prevent the situation of a client being isolated from all replicas.) 

Lookup requests may be delayed if the lookup requires information about an update that 

was processed on the other side of the partition. This might happen if the replica that 

processed the update was separated from the client and the other replicas after sending 

a response to the client, but before it communicated with other replicas. This situation is 

unlikely if gossip is frequent. If we need to make it even less likely, then we can gossip 

before the transaction commits. This causes some problems {such as, how to undo the 

operation if the transaction aborts) and lessens the availability of update operations 

{more replicas must be accessible in order to do the operations), so a choice must be 

made in trading off complexity and availability of updates versus the acceptable 

probability of being unable to process some lookup requests for some period. However, 

even if we do require more than one replica to know about an update before responding 

to the client, our update operations will be more available than those using voting 

techniques because we will not need as many replicas to participate in the operation. A 

rebind operation can also be delayed, but as argued before, it is likely that the 

enter_guardians operations that the rebind operation relies on will have propagated to all 

replicas. 

The multipart timestamp technique provides more availability than voting techniques in 

the presence of crashes. In voting techniques, operations become unavailable if too 

many replicas crash. In our service, the only time operations become unavailable is if all 

of the replicas in the server crash. We only have a problem if a particular replica 

crashes before it gossips an update that it has processed. We can make that possibility 

arbitrarily small by means of the same trade-offs as discussed for partitions. 

The multipart timestamp technique also scales up better than voting techniques. If we 
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add more replicas to a voting technique, then at least one kind of operation will be less 

available, since it will have to access more replicas to complete it. The multipart 

timestamp technique maintains the same availability for each operation, regardless of 

the number of replicas. 

We can also compare the multipart timestamp technique with techniques that guarantee 

weaker consistency constraints. The usual reason for having weaker constraints is to 

increase availability in the presence of failures. An example of a system using such a 

technique is LOCUS, the network operating system developed at UCLA [24]. LOCUS 

gives direct support for replicated files to increase availability. While the system is 

functioning normally, LOCUS maintains a consistent state among the copies of the file. 

However, during a network partition, it allows inconsistencies in file copies to develop. 

These inconsistencies are detected and reported when the network rejoins. Any 

resolution is done at the application level. 

To detect inconsistencies in file versions after a partition is repaired, LOCUS uses 

version vectors. A version vector is a mapping of a node to the number of times a file 

has been updated at that node. Incomparable version vectors indicate version conflicts 

in the various copies of the file. The version vectors are similar to the multipart 

timestamps that are used in the multipart timestamp technique. Multipart timestamps 

essentially also map a replica to the number of updates done to the service state at that 

replica. However, we use the multipart timestamp to prevent data inconsistencies, not 

just to detect them after the fact. We can do this because we know the meaning of the 

data in the service state and can merge the information. By contrast, arbitrary files do 

not have such a property. The multipart timestamp technique gives us nearly the same 

amount of availability as in LOCUS (there will be few situations when an operation 

cannot be done), without the complexity of fixing inconsistencies. 

6.2 Related work 

There have been several proposed methods of finding objects that move. In this 

section, we discuss three of these methods: forwarding addresses, searching, and 

establishing a rendezvous. We will call an entity that is trying to access an object a user 

of that object. 
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6.2.1 Forwarding addresses 

Fowler [4] proposes a method based on proper names and forwarding addresses. His 
model of computation is the same as ours, but his objects retain their identities when 

moved. In his scheme, an object is known by a proper name that always denotes that 

object. Basically, every time an object moves, it leaves a forwarding address at its 

former residence. When a user wants to access an object that has moved, this chain of 

forwarding addresses is followed from the last known address until the object is reached 

or it can be ascertained that the object has been destroyed. To make this scheme 

practical, three path compression algorithms are given to be applied to the chain of 

forwarding addresses. This solution is completely decentralized; no one entity knows 
where all of the objects are. 

Fowler's solution does not tolerate failures as well as our method. If there is a failure 

along an object's forwarding address chain, a user may not be able to find it. His 

solution to this problem is to relate directly the availability of his algorithm for finding a 

particular object to the availability of the object itself. The algorithm will guarantee to find 

an object in the presence of k failures only if the object itself can tolerate k failures. That 

is, it must be the case that k failures will not make all copies of an object inaccessible. 

This implies that there must be at least k+ 1 copies of the object in the system and that k 

failures cannot partition the network. The scheme is to allow each copy to move 

independently, so effectively there are k+ 1 separate forwarding address chains that can 

be followed. Since k failures cannot partition the network or break all of the forwarding 

address chains, the algorithm will find the object. Note that this scheme means that 

Fowler's algorithm is not fault-tolerant for non-replicated objects. Such an object would 

only have one forwarding address chain and any failure along that chain could lead to 

the situation where the non-replicated object is on a node accessible to the user, but the 

user cannot find the object. 

We believe that the availability of finding an object should not depend on an object's 

implementation. The applications programmer should not have to replicate an object 

just to accommodate being able to find the object after it moves. Our method does not 

rely on an object being replicated in order to provide availability of the service. The only 

time our method must delay a lookup request for a long period of time is if the 

information needed is currently inaccessible due to it being on a crashed node or on the 

other side of a partition from the user. As discussed before, we can make the probability 

of this happening arbitrarily small. 

Another advantage that our method has is that garbage collecting the information 

relating to destroyed objects is easier. In both schemes, information about an object 
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must be kept until the object is destroyed. However, in Fowler's scheme, the information 

may be present at many nodes (a long-lived, frequently moved object would be such a 

case). Because the information about an object is spread out in the system, garbage 
collection in the forwarding address scheme is slow. A node must wait until an access 

returns an exception for a non-existent object or it is told by another node that tried to 

access the object that it has been destroyed. If no user tries to access the object, a 

node may keep the information forever. (Actually, a node needs to keep forwarding 

address information only until all users of the object know about the new address, but 

knowing when this condition becomes true is a difficult task.) Garbage collection in 

Fowler's scheme could be done similarly to ours if the forwarding address entries also 

kept backward pointers to the previous forwarding address entry. Then when an object 

is destroyed the backward chain can be followed to notify the nodes where the object 

used to reside that it has been destroyed. Garbage collecting in our scheme is easier 

and more straightforward because of the centralization of the information. 

6.2.2 Searching 

Henderson [7] proposes finding objects by searching for them. Her model of 

computation is the same as ours, and her method tolerates the same types of failures. 

In her scheme, the information concerning object location is distributed across the 

system. Each node is required to have information about the objects that are resident at 

that node and may have information about objects at other nodes. The information 

about objects at other nodes is not guaranteed to be up-to-date. It only reflects the 

location of an object from some time in the past. If a user cannot find an object, it can 

ask a node to conduct a search for the object. The node receiving the request starts by 

asking its "neighbors," a set of nodes with which it can communicate. Two search 

methods are given. The first method is a centralized search in which the node first 

asked to conduct the search does all of the querying of other nodes until it finds the 

information it wants. The second method is a decentralized search in which each 

queried neighbor conducts a search of its neighborhood before replying. The centralized 

search is easier to control, but the decentralized search may be faster since 

neighborhood searches are conducted in parallel. 

The original intent of this work was to determine if the time for the search could be 

traded off against storage space requirements of standard replication of the service 

state. The conclusion of Henderson's thesis was that searching for objects still required 

nodes to remember fairly large amounts of information to prevent anomalies caused by 

race conditions. The information is needed to keep searches from doing redundant 

work, missing an object that has moved to a node that has already been searched, or 
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resurrecting deleted objects. Although the amount of information kept may not be as 

much as in a replicated state scheme, in a network of arbitrary topology the cost of the 

search outweighs any savings in storage space that there might be. 

Note that in Chapter 5 we concluded searching might be a feasible way of finding the 

location service itself after it has moved. It is still the case that searching is expensive 

(although we are keeping track of only one "object," the configuration of the service, so 

there is not that much information), but we expect that most clients will not need to 

actually do a search to find the service so the amortized cost is low. In other words, we 

would be using searching as a last effort when more reasonable strategies failed. 

6.2.3 Establishing a rendezvous 

Mullender and Vitanyi [22] propose to model object finding as a match-making service 

that matches an object with its users2. In this model, an object posts its location at some 

number of nodes and a user queries some number of nodes for that the object's 

location. When a user finds a node that knows the object's location, a rendezvous has 

been established. Strategies for posting and querying range from objects posting at only 

one node and users doing a complete search if not all objects post to the same node (or 

users querying the centralized server if all objects do post to the same node) to objects 

posting at all nodes and the users just waiting for the information to arrive. Various 

strategies for posting and searching are described in their paper [22]. In the "shotgun" 

scheme, an object posts its location at a random set of nodes, and a user queries a 

random set of nodes. The idea is to choose the sets such that there is a high enough 

probability that a rendezvous will be made. In the "hash" scheme, both sets consist of 

the same nodes and are determined by a hashing function on the object's name. 

It is not clear from their scheme what happens when an object wants to post at a node 

that is inaccessible to that object. For the shotgun scheme, it may not matter, and the 

object could just choose another node to post at until it posted at a pre-determined 

minimum number of nodes, but for the hash scheme, it is important that the information 

be posted at the particular node. If they expect to do a write-all update, then this 

scheme is clearly not as available as our method. The authors also do not address what 

happens if a user gets an out-of-date address. This could happen in the shotgun 

scheme since the nodes are chosen at random for both posting and querying. In the 

hash scheme, this could happen if they do not use a write-all update. In addition, they 

21n their system, the objects that move are processes called servers, and the entities that look for them 
are called clients of these processes. 
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do not discuss whether a user is guaranteed to make progress if it queries again after 

getting an out-of-date address. There is a trade-off between the efficiency and 

availability of lookups versus the efficiency and availability of updates in this scheme. 

Posting at more nodes would mean that updates are less efficient, but that lookups are 

more available and in the case of the shotgun scheme, more efficient since it is more 

likely that a rendezvous will be established earlier. Posting at fewer nodes has the 

opposite effect. 

The hash scheme is considered to be more efficient, but not as available as the shotgun 

scheme. The hash scheme is more efficient because the nodes to post and query are 

known ahead of time, so there is greater likelihood of establishing a rendezvous. 

However, this also means that if all of the specific nodes go down at the same time, 

there will be no way to locate the object in question. The authors also point out that the 

hash function would have to be reprogrammed in order to take any new nodes into 

consideration as rendezvous nodes if we want to keep the load approximately balanced. 

It should be noted that our method can be described by this model. In our method, all 

objects (eventually} "post" at a fixed set of nodes. This set is also known by all users 

and can be queried by them. In effect, this makes these nodes "rendezvous" servers. 

We pick a particular posting strategy that is described by the multipart timestamp 

technique. We also specify what happens when clients receive out-of-date addresses 

and guarantee progress toward finding the current address. 

6.3 Future work 

An immediate area of future research that suggests itself is being able to provide a 

binding mechanism for handlers of different types. For example, we might like to replace 

a handler with one that takes more or fewer arguments or one that has arguments of a 

different type. The interesting part of this problem would be how to keep the information 

that tells how to match the original arguments to the arguments of the actual call. That 

is, instead of just keeping the path to the current location, each edge can also have a 

transformation function that is applied to the arguments of the call to the previous 

address to give the arguments for the call to the next address on the chain. 

Another area of interest is to implement a server using the alternate strategy of delaying 

the answering of queries if the query needs to have certain types of information instead 

of delaying the update operations. This would probably not be a feasible idea for the 
location service since lookups are expected to be much more frequent than rebinds, but 

for services where the updates are expected to be more frequent, this might be a better 

way of solving ordering problems. 
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A third area of research is to find ways of reducing the size of the send_gossip list. For 

example, we could gossip only the update records of operations invoked at the particular 
replica. This would require changes in the gossip processing algorithm because the 

gossip messages no longer satisfy the prefix property that all operations included in the 

state associated with a sender's timestamp are included in its gossip or are known to 

have propagated to the receiver. We can no longer just merge the gossip message's 
timestamp into the replica's timestamp since the replica may not know all of the 

operations known by the sender. More importantly, if we do not send all known 

operations in gossip messages, our ability to process updates like the rebind operation 

that rely on the effects of other operations already being present is affected. The update 

record would have to record this dependency, and the gossip processor might have to 

wait for the needed operation(s} to arrive. 

Another area of interest is to extend the reconfiguration scheme to allow reconfigurations 

that overlap. By overlap, we do not mean that reconfiguration transactions run 

concurrently, but that a reconfiguration transaction will be allowed to proceed even if the 

previous reconfiguration has not finished (that is, all of the information from the first 

configuration has not necessarily propagated to the second configuration}. The difficult 

part of this extension is what to do if the change configuration information from the 

second transaction arrives at a non-participant replica before the change configuration 

information from first transaction. 

A final area of future work is optimizing the gossip sending algorithm. The described 

algorithm has a worst-case performance of sending O(n2) messages, where n is the 

number of replicas. For small n, this may be tolerable, but if we have a very large 

system, n may be fairly large as well. For large n, we might use a hierarchical scheme 

where replicas gossip to a small group of replicas and only a few replicas from each 

group gossip to other groups. Another way to reduce the number of messages sent is to 

have replicas send acknowledgments of receipt. 

83 



References 

[1] Bloom, T. 
Dynamic Module Replacement in a Distributed Programming System. 
Technical Report MIT/LCS/TR-303, MIT Laboratory for Computer Science, 

Cambridge, MA, March, 1983. 

[2] Eswaran, K., et al. 
The Notion of Consistency and Predicate Locks in a Database System. 
Communications of the ACM 19(11) :624-633, November, 1976. 

[3] Fischer, M. and Michael, A. 
Sacrificing Serializability to Attain High Availability of Data in an Unreliable 

Network. 
In Proceedings of the Symposium on Principles of Database Systems, Los 

Angeles, California. ACM, March, 1982. 

[4] Fowler, R. 
Decentralized Object Finding Using Forward Addresses. 
Technical Report 85-12-1, University of Washington, Department of Computer 

Science, Seattle, WA, December, 1985. 

[5] Gifford, D. 
Weighted Voting for Replicated Data. 
In Proceedings of the 7th Symposium on Operating System Principles, Pacific 

Grove, California. ACM, December, 1979. 

[6] Gray, J. 
Notes on Database Operating Systems. 
Lecture Notes in Computer Science. Vol. 60 : Operating Systems, An Advanced 

Course. 
Springer-Verlag, New York, 1978, pages 393-481. 

[7] Henderson, C. 
Locating Migratory Objects in an Internet. 
Master's thesis, Massachusetts Institute of Technology, Cambridge, MA, August, 

1982. 
Available as Computation Structures Group Memo 224, MIT Laboratory for 

Computer Science. 

[8] Herlihy, M. 
Replication Methods for Abstract Data Types. 
Technical Report MIT/LCS/TR-319, MIT Laboratory for Computer Science, 

Cambridge, MA, May, 1984. 

[9] Herlihy, M. and Liskov, B. 
A Value Transmission Method for Abstract Data Types. 
ACM Transactions on Programming Languages and Systems 4(4):527-551, 

October, 1982. 

84 



[10] Ladin, R., Liskov, B., and Shrira, L. 
A Technique for Constructing Highly-Available Distributed Services. 
MIT Laboratory for Computer Science, Cambridge, MA. 
June, 1987 
Submitted for publication. 

[11] Lamport, L. 
Time, Clocks, and the Ordering of Events in a Distributed System. 
Communications of the ACM 21 (7):558-565, July, 1978. 

[12] Lampson, Butler W. and Sturgis, Howard E. 
Atomic Transactions. 
Lecture Notes in Computer Science. Vol. 105 : Distributed Systems-­

Architecture and Implementation. 
Springer-Verlag, New York, 1981, pages 246-265. 
This is a revised version of Lampson and Sturgis's unpublished paper, "Crash 

Recovery in a Distributed Data Storage System". 

[13] Liskov, B. 
Overview of the Argus Language and System. 
Programming Methodology Group Memo 40, MIT Laboratory for Computer 

Science, Cambridge, MA. 
February, 1984 

[14] Liskov, B., et al. 
Abstraction Mechanisms in CLU. 
Communications of the ACM 20(8), August, 1977. 

[15] Liskov, B., et al. 
Lecture Notes in Computer Science. Vol. 114: CLU Reference Manual. 
Springer-Verlag, New York, 1981. 

[16] Liskov, B., eta!. 
Argus Reference Manual. 
Programming Methodology Group Memo 54, MIT Laboratory for Computer 

Science, Cambridge, MA. 
March, 1987 

[17] Liskov, B. and Guttag, J. 
Abstraction and Specification in Program Development. 
MIT Press, Cambridge, MA, 1986. 

[18] Liskov, B. and Ladin, R. 
Highly-Available Distributed Services and Fault Tolerant Distributed Garbage 

Collection. 
In Proceedings of the 5th Symposium on Principles of Distributed Computing, 

Calgary, Alberta, Canada. ACM, August, 1986. 

[19] Liskov, B. and Scheifler, R. 
Guardians and Actions: Linguistic Support for Robust, Distributed Programs. 
ACM Transactions on Programming Languages and Systems 5(3):381-404, July, 

1983. 

85 



[20] Marzullo, K. 
Loosely-coupled Distributed Services: a Distributed Time Service. 
PhD thesis, Stanford University, Stanford, CA, 1983. 

[21] Moss, J. 
Nested Transactions: An Approach to Reliable Distributed Computing. 
Technical Report MIT/LCS/TR-260, MIT Laboratory for Computer Science, 

Cambridge, MA, April, 1981. 

[22] Mullender, S. and Vitanyi, P. 
Distributed Match-Making for Processes in Computer Networks - Preliminary 

Version. 
In Proceedings of the 4th Symposium on Principles of Distributed Computing, 

Minaki, Ontario, Canada. ACM, August, 1985. 

[23] Oki, B. 
Reliable Object Storage to Support Atomic Actions. 
Technical Report MIT/LCS/TR-308, MIT Laboratory for Computer Science, 

Cambridge, MA, May, 1983. 

[24] Parker, Jr., D., et al. 
Detection of Mutual Inconsistency in Distributed Systems. 
IEEE Transactions on Software Engineering SE-9(3):240-247, May, 1983. 

[25] Schlichting, R. and Schneider, F. 
Fail-Stop Processors: An Approach to Designing Fault-Tolerant Computing 

Systems. 
ACM Transactions on Computer Systems 1 (3):222-238, August, 1983. 

[26] Walker, E. 
Orphan Detection in the Argus System. 
Technical Report MIT/LCS/TR-326, MIT Laboratory for Computer Science, 

Cambridge, MA, June, 1984. 

[27] Weihl, W. 
Distributed Version Management for Read-only Actions. 
IEEE Transactions on Software Engineering, Special Issue on Distributed 

Systems SE-13(1 ):55-64, January, 1987. 

[28] Weihl, W. and Liskov, B. 
Implementation of Resilient, Atomic Data Types. 
ACM Transactions on Programming Languages and Systems 7(2):244-269, 

April, 1985. 

[29] Wuu, G. and Bernstein, A. 
Efficient Solutions to the Replicated Log and Dictionary Problems. 
In Proceedings of the 3rd Symposium on Principles of Distributed Computing, 

Vancouver, British Columbia, Canada. ACM, August, 1984. 

86 



SECURITY CLASSIFICATION OF THIS PAGE 

REPORT DOCUMENTATION PAGE 
1a. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS 

Unclassified 
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl~UTION I AVAILABILITY OF REPORT 

distribution 
2b DECLASSIFICATION I DOWNGRADING SCHEDULE 

Approved for public release; 
is unlimited. 

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 
MIT /LCS/TR-410 N00014-83-K-0125 

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION 

MIT Laboratory for Computer (If applicable) Office of Naval Research/Dept. of Navy 

Science 
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 

545 Technology Square I Information Systems Program 
Cambridge, MA 02139 Arlington, VA 22217 

Ba. NAME OF FUNDING /SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 
ORGANIZATION (If applicable) 

DARPA/DOD 
Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS 

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT 

Arlington, VA 22209 ELEMENT NO. NO. NO. ACCESSION NO. 

11. TITLE (Include Security Classification) 

CONSTRUCTING A HIGHLY-AVAILABLE LOCATION SERVICE FOR A DISTRIBUTED ENVIRONMENT 

12. PERSONAL AUTHOR(S) 

Hwang Deborah JiJ:lli-HWa 
13a. TYPE OF REPORT T 3b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) ]15 PAGE COUNT 

Technical FROM TO 1988 January 86 

16. SUPPLEMENTARY NOTATION 

17. COSA Tl CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 

FIELD GROUP SUB-GROUP distributed systems, highly-available, location service, 

multipart timestamps, reconfiguration, replacement , 

re_E_lication 
19. ABSTRACT (Continue on reverse if necessary and identify by block number) 

One possible advantage a distributed system has over a centralized system is the 

ability to move objects from one no<le to another. For example, we may want to move an 

object if the node where it resides is overloaded. This thesis proposes to use a location 

service to aid in finding objects that move. The service is highly-available; it will 

tolerate system failures like node crashes and network partitions without shutting down 
service is completely. The service is also efficient; the response time of the reason-

able, and it does not increase the number and sizes of messages excessively. 
service state. The We achieve high availablity and efficiency by replicating the 

replication technique we have chosen is a new method, the multipart times tamp technique 

that is based on multipart timestamps and gossip messages. This technique provides us 

with higher availability and efficiency than traditional replication techniques without 
to allow reconfiguration. sacrificing consistency. We also extend this technique 

20 DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 

liJ UNCLASSIFIED/UNLIMITED D SAME AS RPT. D DTIC USERS Unclassified 
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL 

Judy Little, Publications Coordinator (617) 253-5894 

DD FORM 1473, 84 MAR 83 APR ed1t1on may be used until exhausted. 
All other editions are obsolete 

SECURITY CLASSIFICATION OF THIS PAGE 

6US. Go-nmont Printing Office: 11186-607-G47 

Unclassified 


