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Abstract 

Two paradigms are dominant in software development, the data paradigm and the process 
paradigm. Our contention is that relying exclusively on either is counter-productive. 

In the data paradigm, a system is specified as operations acting on states. The pro­
cess paradigm focuses on sequences of events. By analyzing two specifications for the 
same system, one in each paradigm, we show that the prime concerns of the approaches 
based on the data and process paradigms are state and sequencing respectively. Without 
explicit data, a system cannot take advantage of representation independence, a prereq­
uisite of modularity; without sequencing notions, the components of a system cannot be 
connected in an abstract fashion. Fortunately, the qualities of the two paradigms are 
complementary, suggesting an approach that combines the two. 

We present a framework in which data and process specifications are combined for­
mally. A series of small examples shows how data and process specifications can be 
combined to build systems. We define formally what it means for an implementation to 
satisfy a specification, and we show a CLU implementation of one of our examples. Finally 
we outline a prescriptive notion of implementation in which the specification dictates the 
internal structure of the implementation. 
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Chapter 1 

Introduction 

Since the term 'software engineering' was coined in 1969, a multitude of languages, tools 
and techniques have been developed. Assessing different approaches is difficult; they 
address themselves to different stages in software development, and to different appli­
cations. We believe, however, that, whatever the approach, formal specifications are 
essential to systematic development of software. They avoid many of the pitfalls of nat­
ural language specifications, such as ambiguity and imprecision [Meyer 85]. Proofs of 
program correctness are only viable when the specifications are formal [Jones 85]. Some 
formal specifications are amenable to automatic consistency checks [Guttag 80], and the 
operational approaches [Zave 84], which advocate deriving programs mechanically by 
transformation, depend on them. 

Paradoxically, the approaches based on formal specifications tend to be particularly 
hard to analyse. We suggest two reasons for this. First, the abstract mathematical 
nature of formal specification languages makes them suitable for a wide variety of appli­
cations, and their inventors are often reluctant to associate more specialized techniques 
with their languages. Secondly, stating the informal assumptions behind a specification 
language may be seen as undermining its objective, formal interpretation. We view this 
as detrimental to the progress of software development. The techniques accompanying 
formal specifications are not incidental; a specification language that lacks the backing 
of a firm technique is of little use. Method is crucial to software development, and we 
should not be inhibited from discussing it just because we cannot phrase our discussion 
in formal terms. 

Some early approaches to software development divided programs into two parts, 
the data structures and the algorithms that manipulated them1

. The advent of data 
abstraction refined the notion of data, separating the representation of data from its 
behaviour. Data was no longer viewed as passive; we began to define a data object in 
terms of the behaviour of the operations it offered, instead of the set of concrete values 
it could assume. This insight blurred the distinction between data and process, and it 
became fashionable to think of a system's data as central, and the process aspects as 
subsidiary [Liskov 86]. (The object-oriented approach [Booch 86] is perhaps the most 

1 For example, programs written in COBOL have a 'data division' in which the data structures are 
defined, and a 'procedure division' for the code itself. Wirth's book on program design is entitled 
Algorithms + Data Structures = Programs [Wirth 76]. 

1 



2 CHAPTER 1. INTRODUCTION 

extreme example of this view.) The process aspect has taken longer to mature. A 
corresponding insight has relegated data to an inferior position: the most abstract view 
of a system's behaviour considers only the sequences of events it engages in, and data is 
unnecessary. (This view is well represented by CSP [Hoare 85]). 

The field has thus split into two schools: the data school, which advocates the primacy 
of data abstractions, and the process school which takes the opposite view. Examples of 
approaches in the data school are Larch [Guttag 85b], VDM [Jones 86] and Z [Hayes 86]; 
approaches of the process school include JSD [Jackson 83], PAISLey [Zave 82] and CSP 
[Hoare 85]. 

No practical approach can rely purely on data or process notions. We find that each 
approach adopts some elements from the competing school. However, the approaches 
are marred by their biases. The data approaches do not handle concurrency well, and 
they offer only crude composition mechanisms for constructing systems. The lack of data 
abstraction in the process approaches creates complexity and inflexibility to changes in 
data representation. 

We contend that each school has much to offer, and that an effective approach to 
software development must contain ingredients from both schools, data and process, in 
a reasonable balance. This thesis has two goals: to demonstrate that an approach that 
combines data and process notions is feasible, and to clarify the differences between the 
schools, in the hope that this will lead to a better appreciation of the strengths and 
weaknesses of existing approaches. 

Because we believe that the nature of the specifications used characterizes an ap­
proach, the thesis focuses on specification issues. We do not, however, consider how our 
specifications would be constructed methodically, nor do we give a practical scheme for 
implementation. These questions must be left to future research. 

In Chapter 2, we consider data and process as paradigms for specification, basing our 
discussion on a small example. We give two specifications of a banking system, one in 
the process paradigm, the other in the data paradigm. We point out which aspects are 
treated well by each paradigm, and we discuss some of the common assumptions that 
advocates of the two paradigms make about their use and interpretation. By considering 
some simple elaborations of the system's requirements, we show that each paradigm 
handles some changes well and others badly. 

Chapter 3 is the core of the thesis. We show a natural division of a specification into 
two parts, a process part and a data part. The meaning of the combined specification is 
given by a trace semantics in which each part denotes an 'object' that resembles a CSP 
process. The objects are composed with a parallel connective similar to that of CSP. The 
rest of the chapter gives some small examples that suggest how the approach may be 
used to structure systems. 

Chapter 4 takes one of the specifications from Chapter 3, in a slightly elaborated form, 
and gives an implementation in CLU [Liskov 81]. We discuss briefly what issues would 
arise in developing an implementation technique that would be general and practical. 

Chapter 5 surveys related work briefly and proposes some directions for future work. 
We outline a prescriptive notion of satisfaction, in which the specification dictates the 
structure, as well as the behaviour, of the implementation. We also explain why an earlier 
attempt of ours to combine data and process failed. 



Chapter 2 

Data & Process Paradigms 

2.1 The Nature of the Difference 

The distinction between the process and data paradigms is not a formal one; the ap­
proaches that typify the two paradigms define the notions of data and process in subtly 
different ways. Thus, for VDM, a data type is given by domain equations on predefined 
types, but for Larch, a data type is a based on an algebraically defined 'sort'. A CSP 

process (in its simplest incarnation) is an alphabet and a trace set, but a JSD process is 
a regular grammar of messages on a stream. 

Most approaches incorporate both paradigms to some degree. A common assumption 
of data approaches, for example, is that operations are never called when their pre­
conditions are false, and this sequencing constraint lends a process flavour to a data 
specification. Similarly, Hoare, in his exposition of CSP, presents examples in which the 
process names are indexed by the values of common types (integers, sets and sequences). 
In all existing approaches, though, one paradigm dominates, and the other is subsidiary. 

The process and data paradigms are equally expressive in the formal sense - their 
languages are rich enough to encode all Turing machines. Our concerns are not mathe­
matical but methodological. We do not judge an approach to specification by the richness 
of the mathematical structures it embodies. Instead, we care whether the approach helps 
us develop correct and flexible systems with confidence and efficiency. These are elusive 
goals, and there is little agreement about how they may be accomplished. However, we 
shall argue that each paradigm is only suitable for developing some aspects of a system, 
and has damaging consequences when applied elsewhere. Fortunately, the qualities of 
the paradigms are complementary, suggesting that a combination would be desirable. 
In Chapter 3 we define a language that divides a specification into two parts, data and 
process, and we give a framework in which to combine them. 

2.2 Analysis 

Our analysis of the two paradigms is based on a simple example. We describe a tiny 
banking system informally, and we then construct two formal specifications, one in each 
paradigm. The languages we use for the two specifications have been chosen to make the 

3 



4 CHAPTER 2. DATA & PROCESS PARADIGMS 

presentation straightforward. The data specification is in the style of VDM [Jones 86], 
and the process specification is in CSP [Hoare 85]1. 

2.2.1 A Banking Example 

The bank administers accounts for its customers. An account is opened with an initial 
deposit. Thereafter, the customer may withdraw from the account any amount not 
greater than the balance, deposit funds in the account and enquire about the balance of 
the account. An account may be closed at any time. After it has been closed, no more 
transactions are permitted. 

We can view the history of the banking system as a sequence of events. The behaviour 
of the system is given by the set of all possible histories. Each history, or trace, describes 
what happened in the system up to some moment, and is thus finite. However, there 
may be no bound on the length of the traces; if the banking system runs for ever, the 
trace set will be infinite. Here are some of the traces: 

<> 
<open-#1-$100, close-#1> 
<open-#1-$100, payin-#1-$50, open-#2-$10, bal-#1-$150> 
<open-#1-$50, open-#2-$70, close-#1, wdraw-#2-$50> 

The first trace is empty; any system can do nothing. In the traces that follow, each event 
is a single banking transaction. Each event name has one or more parts. The first part 
is the kind of transaction: an opening, a closing, a withdrawal, a deposit or a balance 
enquiry. The second part indicates the account that is the subject of the transaction, so 
close-#1 is the closing of account number 1. Some events have a third part too, denoting 
an amount associated with the transaction. Thus payin-#1-$50 is a deposit of $50 to 
account number 1. The second and third components of event names are attributes that 
qualify the transaction name: they are not to be thought of as arguments of functions 
or procedures. Also there is no expression of causality; although the customer probably 
chooses how much to deposit, and the system generates the balance report, the traces do 
not make this distinction. The trace 

<close-#1-$100> 

is not a trace of the banking system because an account cannot be closed if it has not 
been opened, and 

<open-#1-$100, payin-#1-$50, bal-#1-$200> 

cannot occur because the balance reported is not correct. 
We now look at two ways of specifying the banking system formally. 

1 We chose the model-oriented style of VDM for the data specification rather than the two-tiered 
approach of Larch to make the example as small and self-contained as possible. The CSP specifications 
omit process alphabets because of the complication of channel events. 
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2.2.2 The Data Specification 

We start by specifying the state of the system, and we choose a mapping from account 
identifiers to account balances, initially empty: 

State is ACCS: AccID 1-t Dollars initially {} 

We assume that the types Acc!D and Dollars are defined, and that Dollars includes only 
non-negative sums (so overdrafts are never allowed). The map is a set of pairs, so that, 
if, for example, we represented both Acc!D and Dollars as natural numbers, 

ACCS = { 1 1-t 50, 5 1-t 18} 

would denote the state of the system in which there are two accounts with account 
identifiers 1 and 5, and balances of $50 and $18 respectively. The balance of account 1 
would then be given by 

ACCS (1) = 50 

The domain of the mapping would be 

dom (ACCS) = {1, 5} 

The balance of an account whose identifier is not in the domain is not defined, so 

ACCS (3) 

has no meaning in this case. 
Now we define the operations one by one. The open operation takes an account 

identifier and an initial deposit as arguments, and adds a new pair to the mapping. The 
operation is not defined if an account with that identifier already exists. The EB operator 
adds a new pair to the mapping, overriding any existing pair with the same first element. 

open (n: AccID, d: Dollars) 
requires n rf. dom (ACCS) 
ensures ACCS' = ACCS EB {n 1-t d} 

The close operation takes only the account identifier, and removes the corresponding 
account from the mapping. If an account with that identifier does not already exist, the 
effect of the operation's execution is not defined. 

close (n: Num) 
requires n E dom (ACCS) 
ensures ACCS' = ACCS 8 n 

The payin operation increments the balance related to a given account identifier, by 
replacing the pair mapping the account identifier to the old balance with a pair mapping 
it to the new balance. 
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payin (n: AccID, d: Dollars) 
requires n E dam (ACCS) 
ensures ACCS' = ACCS EB {n rt (ACCS (n) + d)} 

The wdraw operation decrements the balance, and is undefined when the account does 
not exist or when the amount withdrawn exceeds the balance. 

wdraw (n: AccID, d: Dollars) 
requires n E dam (ACCS) & d :::; ACCS (n) 
ensures ACCS' = ACCS EB {n rt (ACCS (n) - d)} 

The bal operation returns the balance and leaves the mapping unchanged 

bal (n: Num) d: Dollars 
requires n E dam (ACCS) 
ensures d = ACCS (n) & ACCS' = ACCS 

This is the only operation that has an output - the syntax of the operation's signature 
distinguishes the input variables (inside the brackets) from the output variables (outside 
the brackets). For convenience, we shall call both input and output variables arguments. 

Commentary 

1. State The state of the banking system is central to the specification. By presenting 
it first, we were able to define each operation in terms of its effect on the state. 
This gives modularity; each operation can be understood alone, without reference 
to other operations. 

In this trivial example, the state has only a single component. Generally, the 
state has many components, and the operations are organized according to which 
component they access. These sets of operations are called types. It is also common 
for an operation to be implemented with more primitive operations, so a system 
may be structured as a hierarchy of types. For example, the types Dollars and 
Acc!D would be specified as types used by the specification above. 

Note that the state is abstract. We have not said how it is represented. We could 
implement the mapping ACCS as a list or a hash table, for example, so long as the 
implementation type satisfies the properties of the abstract type. The types Acc!D 
and Dollar have not been defined. However, we are assuming that we can add and 
subtract Dollars, and that we can test equality of values of Acc!D. 

2. Sequencing The specification does not constrain the order in which the operations 
may occur. Any operation may occur, with any arguments, at any time. This does 
not seem to coincide with our trace specification above, which asserts that an 
account cannot be closed before it is opened. However, the requires clauses do 
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restrict the order of executions in which the effect of each operation is defined. It 
is common to assume that the operations will only be used when they are defined, 
and so there is at least an implicit sequencing 2

. 

Nevertheless, even if we make this assumption, the sequencing constraints are ob­
scure. We can only tell that an account must be opened before it is closed by 
analyzing the requires and effect clauses of all the operations - and yet this is an 
important feature of the system. Sequencing constraints relate operations, and are 
not well expressed as local properties of operations. 

3. The Nature of an Event The data paradigm views an event as an execution of 
an operation with zero or more arguments. An operation is invoked by one object 
on another, so that the object providing the operation cannot influence when it 
is executed. The arguments are divided into inputs and outputs; input values are 
chosen externally, and output values are chosen internally. The notion of control 
flow is rigid, and it matches that of most imperative programming languages. 

2.2.3 The Process Specification 

The first step in building a process specification is to identify the most fundamental 
event ordering in the system. Here, it is the ordering of events in a single account. So 
we specify an account process, ACC, by the equations3 

ACC =open? d-+ ACCd 
ACCb = payin? p -+ ACCb+p 

I wdraw? w -+ ACCb-w 
I bal! b-+ ACCb 
I close -+ STOP 

(d > 0, p > 0, 0 < w:::; b) 

The words in upper case are names of processes, and those in lower case are names of 
events, channels and variables. The arrow is the 'prefix' operator: the process expression 

e-+ p 

denotes the process that first engages in the event e and then behaves like the process P. 
STOP is the process that cannot engage in any event. The vertical bar indicates choice; 
after an open event, the process may engage in a payin, a wdraw, a bal or a close. 

The question marks denote inputs, and the exclamation marks outputs. The mark is 
preceded by a channel name, and followed by the message. So bal!lOO denotes the output 

2 Another interpretation is that an error must be signalled when an operation is invoked with a false 
requires clause (see, for example, [Cohen 86]). 

3 Strictly, we should specify the alphabets of our processes. We have chosen not to, since in all 
our examples the alphabet does not include events not in the process equations. Also, the presence of 
communication events makes denoting the alphabet tedious. 
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of 100 on channel bal. The channel events are no different from the other events. CSP 

views the channel name and the transmitted value as two parts of the name of a single 
event. A process selects an output value for a channel by offering only one event for that 
channel; on input the process offers a choice of events, one for each value it is willing to 
receive on the channel. So here, payi n? p denotes a whole set of events, one event for 
each value of p. (The range of values the variables may take is given beneath the process 
equations.) 

The equations may be thought of as a schema for a much larger set of equations in 
which no free variables (such as p) occur: there would be one instance of the second 
equation for each value of the balance b, and each branch of the choice prefixed by an 
input would be split into many branches, one for each possible value of the variable 
associated with the channel name. 

We can deduce from ACC's specification the set of traces that it may engage in. The 
set includes, for example, 

<open.10, close> 
<open.100, wdraw. 75, payin.20> 
<open.20, payin.100, bal.120, close> 

The banking system consists of many such accounts, so we label the process ACC 
with the account identifier. Let us assume that the account identifiers are just integers. 
Then the process for the account whose number is 253 is written 

253:ACC 

and it behaves just like ACC, but when ACC would have engaged in some event e, 
253:ACC engages in 253.e. So the traces of 253:ACC, corresponding to the traces of 
ACC above, are 

<253.open.10, 253.close> 
<253.open.100, 253.wdraw.75, 253.payin.20> 
<253.open.20, 253.payin.100, 253.bal.120, 253.close> 

The system is the parallel combination of the account processes. If there are n 
accounts, we would write 

BANK = lksn i:ACC 

The parallel combinator enforces synchronization on shared events, but otherwise allows 
the processes to run independently. Since none of the account processes share any events, 
there is no synchronization, and the executions of the processes are interleaved arbitrarily. 

Commentary 

1. State There is no mention of state in the specification. The process equations can 
be given an operational semantics in which the process names denote states, and 
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e ---+ P denotes a state transition on event e4
. But Hoare prefers to avoid this, 

and is careful to read e ---+ P as 'e then P ', the process that engages in the event 
e and then behaves like P. This is significant, for state is not a central concept in 
the process paradigm. As a result, expressing the balance of an account is tricky. 
The indexing of process names is an ad hoc technique that Hoare does not define 
rigorously in his book on CSP [Hoare 85]. His examples of indexing are restricted 
to simple types (such as integers and sets) and it is not clear how the technique 
can be generalized. Furthermore, considering the index to be part of the process 
name has unintuitive consequences. Two account processes with the same account 
number but different balances are, in the formalism, no more similar than accounts 
with different account numbers. There is a similar problem in the treatment of 
events discussed below. 

2. Sequencing Instead of emphasising state, like the data specification, the process 
specification emphasizes the sequencing of events. It is quite clear from the speci­
fication, for example, that an open must be the first event of an account. However, 
the indexing of process names does obscure the sequencing a little. As in the data 
specification, to establish that a sequence in which a withdrawal leaves the balance 
negative is illegal, we would have to analyze the values of the indices. We can think 
of the sequencing in two parts: a gross ordering of events ('open, transactions, 
close') and further constraints to do with the balance part of the state. The merit 
of the process specification is that it separates these constraints: we can recover 
the gross ordering by deleting the indices. 

The process specification uses explicit concurrency to combine the partial orderings 
on the events of each account. The data specification, on the other hand, was silent 
on the subject of concurrency. 

3. The Nature of an Event The event names are not decomposed into operations 
and arguments. The account number and transaction amount are just parts of 
the name; they only qualify the kind of event in a syntactic sense. There is also 
no semantic distinction between input events and output events. The '?' and '!' 
suffices are not part of the event name, but are syntactic sugar for more complex 
process expressions. The expression c?x---+ P(x), eg, is short for the choice 

where x 1 , x2, ... , Xn are the possible values of x. 

A process is either willing or unwilling to engage in an event. There is no sense 
in which one process chooses one part of the event name, and a different process 
chooses another. Despite its elegance, this notion of communication is often quite 
unintuitive. The process formalism is powerful enough to describe more elabo­
rate forms of communication (using the deterministic and non-deterministic choice 

4 More accurately, each process expression denotes a state. The transition relation is built by induction 
on the syntactic structure of the process expression, using a deductive system in the sense of logic. This 
semantics is due to Plotkin, and is well explained in [Olderog 86]. 
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operators explicitly), but communication is such a central issue that it should be 
treated explicitly in the semantics. 

The view of an event as something that processes participate in, with no notion 
of the event being caused or chosen by one process and suffered by another, has 
some advantages. We do not yet know who initiates a balance enquiry: perhaps 
the account process initiates the event itself following a deposit or withdrawal. The 
operation structure of the data specification is thus an implementation bias that 
the process specification avoids. 

2.2.4 Elaborating The Specifications 

We have discussed briefly some of the differences between the two specifications, and 
criticized some of their features. These features may seem insignificant, but their reper­
cussions are enormous in larger specifications. In this section, we shall look at some 
reasonable elaborations of the banking system, and show how each elaboration is much 
better accommodated by one of the two specifications. The evidence we give for the 
relative merits of the paradigms is scant. We hope, though, that the reader will have 
seen similar cases in real projects, and that these examples will provide a new way of 
viewing problems that are already familiar. 

State 

Suppose the bank charges a fee of $1 for every withdrawal of over $1000. We can amend 
the data specification by elaborating the post-condition of the wdraw operation5 : 

wdraw (n: AccID, d: Dollars) 
requires n E dom (ACCS) and newbal ~ 0 
ensures ACCS' = ACCS 8 n U {n f---* newbal} 
where newbal = ACCS (n) - d - fee 

fee = if d > 1000 then 1 else 0 

Modifying the process specification would be harder. It is not clear that the indexing 
mechanism could bear the description of the occasional fee; perhaps we should separate 
the wdraw events into those that incur a fee and those that do not (which would be 
untidy). The concept of an operation works well in this case: it allows us to divide the 
occurrences of wdraw cleanly into two sets that modify the state differently. This example 
demonstrates that the notion of state may well be fundamental to the system, and that 
a system built on the process paradigm may suffer from the omission of an explicit state. 

The data specification gives the global state of the system. Sometimes this is handy. 
Some functions are much easier to express in terms of a global state. Suppose the bank 
manager wants to audit the total funds of the bank. We could add an operation audit 
that sums the total of the balances of all the accounts6 : 

5The scope of the 'where' clause extends over both requires and ensures 
6 An omitted requires clause is interpreted as 'true'. 
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audit () tot: Dollars 
ensures tot = .EiEdom(ACCS) ACCS (i) 

The process specification would require a new process. Each process might need a new 
event to report the balance to the auditing process (if, for example, the bank charged a 
fee for balance enquiries by customers). We might want to say that the balances of the 
individual accounts could be obtained in any order, and although this could be expressed 
using non-deterministic choice, it would be cumbersome. 

The data paradigm allows us to state invariants on the global state. For example, we 
could assert that the ratio of deposits to loans for the whole bank exceeds a minimum legal 
requirement, without specifying how that ratio is maintained. In the process paradigm we 
could add a process to maintain the ratio, but it would suffer from the same awkwardness 
as the auditing process above. 

The notion of explicit global state has disadvantages too. There is no reason that 
different accounts should not be accessed concurrently, and yet, if the global state (ACCS) 
is encapsulated in the implementation (as the specification seems to suggest it should 
be), accessing different accounts at once will lead to contention. This problem arises 
in the 'data modelling' approach to development, which prescribes the design of a data 
model (often as a database schema) as the first step. The developer must then consider 
'consistency constraints' that ensure that the data model is kept in a meaningful state. 
This may be a self-inflicted problem; complex constraints are often the result of simple 
process orderings. 

Sequencing 

Perhaps the banking system always reports an account balance after a deposit or a 
withdrawal. This change in the event sequence is simple for the process specification; we 
just insert some bal events: 

ACC = open?a-+ ACCa 
ACCb = payin? p-+ bal!(b+p)-+ ACCb+p 

I wdraw? w -+ bal!(b-w) -+ ACCb-w 
I bal! b -+ ACCb 
I close -+ STOP 

(d>O,p>O,O<w~b) 

The data specification's implicit notion of sequencing breaks down here. Even if we added 
a flag to the state that made every operation except bal undefined after a wdraw or a 
payin, the specification would be stilted. The control structure imposed by operations is 
also an obstacle here; it is no longer clear who performs the bal operation. 
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Abstraction of Sequencing 

Suppose the banking system is to be modified to allow more than one account per cus­
tomer. Each customer has two accounts, a checking account and a savings account. The 
checking account is opened with an initial deposit of $100 or more. Whenever its bal­
ance drops below $100, $500 is transferred automatically from the companion savings 
account. Assuming a balance enquiry follows each transaction (as above), we could label 
the savings account of a customer with s and the checking account with c, and add the 
process7 

CUST = c.bal?a---+ s.wdrawl500---+ c.payinl500 ---+ CUST (a< 100) 

Each customer has a customer number, i say, and accounts labelled i.s (savings) and i.c 
(checking). The new system is given by 

BANK = lli~n i:(CUST II s:ACC II c:ACC) 

This change is hard for the data specification. Although the state could be extended 
to describe customers, this sort of interaction is messy to specify. There is no operation 
that could accommodate this feature. Suppose, for example, that we chose to modify 
the withdraw operation of the checking account, so that when a withdrawal is made 
that leaves the balance below $100, an operation is invoked for the transfer. This would 
only postpone the problem until the bank manager decides that balance enquiries should 
incur a fee (and may thus move the balance below the limit). The data specification is 
ill-suited to properties that do not belong to single operations. 

We can interpret this problem as a more general criticism of the data approach: a 
lack of abstraction of scheduling constraints. There is no explicit concurrency, and data 
objects may only interact by invoking each other's operations. This usually confines a 
system developed in the data paradigm to a hierarchical structure, which is frequently 
over-restrictive. In particular, there is no way to express cooperation - every activity 
must be executed by some object on another.8 

This has one of two consequences in the design of large systems. In order not to 
overspecify the scheduling, a designer may leave the modules of a system unconnected 
(perhaps just specifying which 'uses' which) even at a late stage in design, when their 
interaction should be understood. Alternatively, the scheduling may come hand-in-hand 
with the module design (as in the 'top-down' approach). Low-level (and premature) 
scheduling concerns then dominate the earliest design decisions, and the specification 
structure is twisted to fit the control structures of the implementation. Jackson has 
argued, moreover, that top-down design is methodologically unsound [Jackson 76]. The 
availability of information, and the risk and cost of error, should determine the order 
in which design decisions are made. A mistake in choosing the scheduling of the largest 
components of the system is expensive, and yet the top-down approach advocates making 

7 Note that if there are insufficient funds in the savings account, the transfer cannot be made, and 
the system would deadlock. Of course, this would be undesirable in a real system. 

8 The message-passing paradigm of object-oriented approaches is more powerful, but suffers from lack 
of abstraction: we do not want to embed scheduling decisions within the definitions of methods. 
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that decision when the information it depends on (namely, what is being scheduled) is 
not available. 

Abstraction of State 

There is a corresponding lack of abstraction in the process paradigm: we cannot define 
abstract states. Although the notion of state can be avoided completely, we have seen that 
it is useful - for example, in describing the balance of an account. Even if we succeed 
(by indexing of process names, for instance) in incorporating a notion of state, it is 
likely to be crude. The account processes are indexed by integers; the data specification 
allowed us to omit the detail of how account identifiers are represented. Suppose for 
example, we wanted to distinguish domestic accounts from foreign accounts by their 
account identifiers. We could specify an operation that decided whether an account 
was foreign or domestic without specifying how account identifiers are represented. The 
process paradigm would force us to make a premature decision, choosing perhaps to 
assign odd numbers to foreign accounts and even numbers to domestic accounts. 

In large systems, this has two bad effects. It biases the specification, introducing into 
an abstract design detailed algorithms for manipulating data structures. Secondly, it 
does not enforce the encapsulation of data types; the result is code that is unmaintainable 
because users of data types may rely on quirks of their representation. 

2.2.5 Conclusions 

We examined some features of the two paradigms, and showed that each paradigm is only 
well-suited to describing some aspects of a system. We have argued that the deficiencies 
of the paradigms may lead to unmaintainable systems. These deficiencies are not just 
linguistic, but are often due to the way the paradigms are used. For example, while 
it is clear that the separation of operations and their arguments is basic to the data 
paradigm, the fact that the notion of an operation leads to a hierarchical structure (and 
thus perhaps over-restrictive scheduling) can only be deduced from an understanding of 
how a data specification is commonly used and interpreted. 

The data paradigm is based on the notion of state, while the process paradigm is 
based on sequencing. Both are useful notions that are likely to arise in any system. 
Without explicit state, a system cannot take advantage of representation independence, 
a vital tool for reducing complexity, and without sequencing notions, the modules of a 
system cannot be connected in an abstract fashion. 

2.3 Our Approach 

We advocate using both paradigms together. In the next chapter, we present a model 
in which the data and process aspects of a system are specified as separate objects. Our 
primitive event is a pair of an operation and an argument, but objects interact by a 
CSP-like parallel combinator. Data objects are denoted in a syntax that makes state 
explicit; the process syntax uses regular expressions to describe sequencing constraints. 
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Chapter 3 

The Model 

In this chapter, we present a simple example of a specification in two parts, data and 
process. We give a semantics that translates each part into an object; the objects are then 
combined according to simple set-theoretic rules. The section on building systems shows, 
by several small examples, how the technique may be extended to larger collections of 
objects. 

There is no semantic distinction between process objects and data objects. A single 
semantic domain provides a common framework in which to combine parts of a specifica­
tion written in two distinct notations. The combination of two objects is itself an object. 
The whole system is thus thought of as an object, but we will not want to classify it as 
a data or a process object. Indeed, our contention that both paradigms are needed rests 
on the assumption that it will be hard to describe a system as a single data or process 
object. 

We do not expect our specifications to be efficiently executable, and thus we do 
not advocate our specification language for implementations. However, we assume that 
any implementation language can be given a semantics in terms of our object model. 
Therefore, following our discussion of the model, we define a satisfaction ordering on 
objects, which provides the foundation for future work on implementation. 

3.1 A Ticket Machine 

We start by considering an informal specification of a simple ticket machine to motivate 
a more formal specification that follows. We give an informal, operational interpretation 
to the formal specification, and then present a formal model in terms of traces. 

3.1.1 Informal Description 

As part of an effort to make travel more convenient, the London Underground provides 
ticket-dispensing machines at most stations. Here is an informal account, typically in­
complete and ambiguous, of the behaviour of a ticket machine: 

The machine serves customers one by one. The customer selects a fare; the 
'insert coins' light flashes; the customer inserts one or more coins; the ticket 
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is delivered; and, sometimes, one or more coins are returned in change. 

Two fares are available, 60p and 80p. The machine accepts lOp, 20p, 50p and 
£1 coins. The ticket is not delivered until at least the required fare has been 
inserted. If more is inserted, change is returned in an arbitrary sequence of 
lOp and 20p coins. 

The machine engages in a sequence of events, for example, selection of an 80p fare, 
flashing the insert light, insertion of a £1 coin, delivery of an 80p ticket, return of 20p 
in change. Each event has two components, an operation, for example 'deliver a ticket', 
and an argument, '80p'. 

Notice that the description is in two parts. Each constrains the ordering of events in 
some way. The first part gives a gross ordering: a cycle of a selection, a flash of the light, 
coin insertions, a ticket delivery and return of change. The second part adds a constraint 
for the events of each operation - for example, that ticket delivery cannot occur until the 
fare has been inserted, and that the fares available are 60p and 80p. 

3.1.2 Formal Specification 

This leads us to a formal specification in two parts, which denote a process object and 
a data object, shown in Figure 3.1. Later, we shall show that the ticket machine can 
be thought of as a single object, composed of these two component objects. Start by 
looking at the specification of the process object, ™v· The operations are given with 
their argument types (that is, all the possible values of their arguments). This tells us 
what the possible events are. The light operation has only one event, and so only a 
single argument. The timetable is a regular expression1 denoting a language of operation 
sentences. Any sequence that is a prefix (proper of improper) of a sequence in the 
language is a possible operation sequence of ™v· Some examples are 

'select, light' 
'select, light, incoin, deliver' 
'select, light, incoin, incoin, deliver, select' 

The specification of the data object, TMd, resembles a model-oriented specification 
of an abstract data type. First a mutable state is defined: here, it has two components, 
the balance in favour of the customer (BAL), and the selected fare (FARE). Then the 
operations are defined one by one. Each has a signature giving its argument type. The 
context clause denotes the set of states in which the operation may occur. Note that it 
differs from the requires clause of the data specification in Chapter 2. First, it is a firing 
condition and not a 'precondition': the operation cannot occur if it is false. Secondly, the 
condition depends only on the state, and not the argument of the operation. The effect 
clause relates the state after execution of the operation (primed) to the state before and 
to the argument. So, for example, incoin can occur when the balance is less than the fare, 

1Regular expressions are explained in [Hopcroft 86]. e* means a sequence of zero or more e's; e+ 
means a sequence of one or more e's, and e D f (used later) means e or f. Appendix C contains 
a glossary of symbols and terms. The use of regular expressions here is not significant; many other 
formalisms could be used. 



3.1. A TICKET MACHINE 

Operations are 
select?: {60,80} 
light: {flash} 
incoin?: {10,20,50,100} 
deliver?: {60,80} 
outcoin?: {10,20} 

Timetable is (select? light incoin?+ deliver? outcoin?*)* 

State is 
BAL: {10,20,30, ... ,150} initially 0 
FARE: {60,80} initially 60 

Operations are 

select? £: {60,80} 
context BAL = 0 
effect FARE' = f 

incoin? c: {10,20,50,100} 
context BAL < FARE 
effect BAL' = BAL + c 

deliver! f: {60,80} 
context BAL ~ FARE 
effect BAL'= BAL - FARE and f =FARE 

outcoin! c: {10,20} 
context BAL > 0 
effect BAL' = BAL - c and c :::; BAL 

Figure 3.1: A formal specification of the ticket machine 
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and its effect is to increase the balance by the amount inserted. When state components 
are omitted from the context, they may take any value (so select can occur whatever the 
value of FARE), and when they are omitted from the effect, they are unaltered (so select 
does not alter the value of BAL). Note that more than one post-state/output argument 
pair may satisfy the effect clause of an output operation: the effect of outcoin allows coins 
to be returned in any sequence of lOp and 20p pieces that reduces the balance to zero. 

The operations of an object are partitioned into input operations, marked'?', output 
operations, marked'!', and internal operations, which are unmarked2

• Internal operations 
are unique to an object, and occur under its control. The process object has an internal 
operation light that it performs autonomously following select. The input and output 
operations comprise the external operations, and occur only with the participation of 
other objects. Argument values are selected by output operations. An operation may be 
an input of one object and an output of another (eg. deliver) or an input of both objects 
( eg. in coin), but may not be an output of more than one object. For this reason, deliver 
is an input of the process object - it is the data object that selects the argument value. 

The meaning of the combined specification is obtained as follows. The history of the 
ticket machine up to some moment is given by the sequence of events, or trace, that 
it has engaged in. Its overall behaviour is described by the set of all possible traces. 
Each object is interpreted as a set of traces, and the traces of the combination are all 
those satisfying both objects. A trace satisfies an object if the subtrace consisting of 
events whose operations belong to the object is a trace of the object. In Section 3.3 we 
present this formally in a trace semantics that abstracts from the concerns of how such a 
specification would be executed. However, to motivate the more abstract approach, we 
start by discussing our operational model. 

3.2 The Operational Model 

Recall that the operations of an object are divided into external operations, namely 
the inputs and outputs, and internal operations. Internal operations are executed by an 
object autonomously, and without the participation of other objects. External operations 
may be shared, and their execution is synchronized between objects. 

3.2.1 Communication 

The execution of operations is governed by the same rule as the CSP parallel combinator. 
Suppose we have two objects, P and Q. Operations that they share require simultaneous 
participation of both P and Q. However, operations belonging to P but not to Q are of 
no concern to Q, which cannot control them or even notice them. Such operations may 
occur independently of Q whenever P engages in them. Similarly, operations of Q not 
belonging to P may occur without P's participation. 

2The notation is taken from CSP, but is used differently. In our model, the marks are used simply to 
identify input and output operations. In CSP, they are used as a syntactic sugar in the process syntax, 
and a channel (operation) may be used for input at one point in the process execution, and output at 
another. 



3.2. THE OPERATIONAL MODEL 19 

A system consisting of several objects may itself be regarded as an object. We can 
think of an object in a system as interacting with an environment object representing 
the rest of the system. At some moment, an object offers a set of external operations, 
or options. The environment offers an option set too. Any external operation that is 
in both option sets may occur. (The execution of internal operations of an object is 
independent of the environment, and is discussed in 3.2.2.) When an external operation 
occurs for an object, it is either an input or an output. If it is an output, the object 
selects an argument value, and delivers that value to the environment. If it is an input, it 
receives a value from the environment 3 Whatever the value of the argument, the object 
cannot refuse it. This is fundamental to our model. Operations are chosen by negotiation 
between objects, but arguments are selected by one object alone. 

Here is an example. Suppose the ticket machine has just engaged in an incoin op­
eration. According to the process object, either incoin or deliver may happen next: the 
option set is {incoin, deliver}. The option set of the data object may be {incoin} or 
{deliver}, depending on whether the money that has been inserted exceeds the fare due. 
In the former case, {incoin} is the intersection of the option sets, and thus the ticket 
machine is prepared only to receive further coins from its customer. In the latter case, 
the intersection is {deliver}, and it may deliver the ticket. The deliver operation is an 
output of TMd and an input of TMP, and so TMd selects the argument value. 

The combination of the two component objects of the ticket machine is itself an 
object. The interaction between the ticket machine and the customer follows the same 
pattern. If the customer is prepared to do an incoin, and the machine is willing too, then 
the operation can occur. It is an output for the customer and an input for the ticket 
machine, so the customer chooses the argument (that is, a coin), and passes it to the 
ticket machine (by placing the coin in the slot). 

3.2.2 Internal Operations 

In simple cases, the operations an object can perform next are all either external opera­
tions or internal operations. If they are all external, the environment can influence the 
choice of next operation; if they are all internal, the object selects one autonomously and 
performs it. Sometimes, there will be both internal and external operations that can oc­
cur. In that case, which happens next is not determined. (We can think of it depending 
on the relative timing of the object and its environment. If the environment presents one 
of the external operations 'before' the object has performed an internal operation, then 
the external operation will occur). 

A comparison with CSP may be helpful. The internal operations correspond to hidden 
events in CSP. The process 

P = (ni xi ----t Pf) D ( D j Yj ----t PF)\ {xi} 

offers a set of external events Y1 on its first step. However, it can perform any of the 
hidden events x;, and whether one of the external events occurs depends on when the 

3 If there is no corresponding output operation (which would not be the case in practice), the value 
is chosen non-deterministically. 
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event was offered by the environment. If a hidden event occurred first, an external event 
Yk can only then occur if it is an external event of Pf. The difference between our model 
and CSP is that our internal operations appear in the traces, but hidden events in CSP 

do not. 

3.2.3 Crash Events 

The reader may be disturbed that, since all the arguments of an allowed input operation 
must be acceptable, the implementer of a data object has no freedom in dealing with 
exceptional argument values. However, this is not the case: the effects relation may 
be partial. When an operation occurs with an argument for which no next state exists 
satisfying the effects relation, the object crashes. Crashing is described by a special 
internal operation(*). No events can follow a crash, so if an object crashes, it brings the 
whole system down. 

Later, when we view the object as a specification (in Section 3.5), we shall allow an 
implementation to behave as it pleases when the specification crashes. Of course, if we do 
not know how an implementation is going to behave, it might as well crash. The notion 
of crashing is useful when we compare two specifications: one that behaves sensibly when 
the other crashes is preferable. The inclusion of crashing in the model does not imply 
that we want it to be present in the systems we specify. To the contrary, we need the 
notion of crashing in our model so that we can show, within our formalism, that it does 
not happen! 

3.2.4 Separation of Operation & Argument 

There are two reasons that we favour the distinction between operations and arguments. 
We think of communication as the passing of information in some direction, but we want 
to retain the expressive power of a communication that can be refused. The separation of 
operation from argument permits both goals to be achieved. Secondly, we are suspicious 
of primitives (as in CSP) that allow a receiver to decline a communication on account of 
its argument. The argument is the content of the communication; it seems to make no 
sense to talk of a communication being refused after it has already happened. 

One might argue that excluding arguments from contexts limits the expressive power 
of the model. This is partly true. Suppose we were specifying a bank account, with a 
withdraw operation that takes as an argument the amount requested. We cannot say 
that the withdraw event does not occur if the amount requested is greater than the 
account balance. Instead, we would use two operations, withdraw-req? and withdraw­
grant!. Whether or not the second occurs depends on the state of the account alone, 
which has been extended to include the amount requested by the previous operation. 4 

4Alternatively, we could provide an operation name for each amount requested, eg. withdrawlO. CSP 

deals with arguments in this way. We contend that the separation of operation from argument is a vital 
semantic issue, not captured by a syntactic sugaring. 
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3.3 The Trace Model 

We now give a trace-based semantics for objects. So far, we have presented a syntax for 
data objects, and a syntax for process objects, and have mentioned composing a process 
object and a data object. There are semantic objects which have no representation as 
data or process objects; a system is thought of as a single semantic object denoted by a 
set of combined syntactic specifications. 

First we define semantic objects and their combination. Then we give the meaning 
function informally, explaining how the semantic objects corresponding to the syntactic 
data and process objects are obtained. Because of some intricacies that arise for the 
data object, we treat its semantics formally. Finally, we define a satisfaction ordering on 
semantic objects, the first step towards implementation. 

The semantic model is an extension of the basic ( ie., no hiding, refusals or divergences) 
CSP trace model . It differs from CSP in three ways. First, the separation of operation 
and argument is embedded semantically in our model, but is treated as a syntactic issue 
in CSP. Secondly, our model has internal events, which, like the hidden events of CSP, are 
selected unilaterally by an object and executed autonomously, but, unlike hidden events, 
appear in traces. Thirdly, we have a notion of crash events: if a crash occurs in an object, 
the whole system is disabled. Combined with our definition of satisfaction (which allows 
an implementation to behave as it pleases instead of crashing), this gives us a crude, 
but adequate, expression of chaotic behaviour without the complication of refusals and 
divergences. Non-determinism in the choice of operation is limited to internal operations, 
but we can simulate non-determinism in external operations. 

The reader should be aware that we are not proposing this model as a competing 
theory of concurrency and communication. It is a simple, workable model that can be 
used to give meaning to our specifications. 

3.3.1 Definition of an Object 

A semantic object is a 5-tuple 

(OP, A, OUT, INT, T) 

where the components are: 

• A set of operation names 0 P. 

• An argument mapping A. A (op) is the set of argument values associated with the 
operation op. 

• A set of output operations OUT~ OP. 

• A set of internal operations INT~ OP, disjoint from the output operations. 

• A trace set T. A trace is a finite sequence of events; an event is a pair of an 
operation and an argument. 
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We define the external operations to be those that are not internal, and the input 
operations to be the external operations that are not outputs 

EXT = OP - INT = IN U OUT 

Operations With Only One Event 

Sometimes an operation has only one event. Then its argument type contains only one 
value, and since the value is immaterial, we write the single event as just the operation 
name. In the specification of the ticket machine (Figure 3.1) we gave the light operation 
the argument flash to avoid confusion. By this convention, we would write both the 
operation and its event as light. (Also, in the specifications that follow, we shall omit the 
argument types of operations with only a single event.) 

Internal Operations 

An object may have an internal operation signifying a catastrophe that leaves the object 
disabled. This operation has a single event, crash, written *· Since objects never share 
internal operations, we sometimes want to indicate that it is the crash of object X, and 
we then write *x· 

Trace Set Properties 

The trace set satisfies five properties: 

1. Contains Empty Trace Any object can do nothing, so the empty trace is a 
member of T. 

<>ET 

2. Prefix Closed A prefix of a history must also be a history 

s·tET :::;. sET 

where s · t is the concatenation of traces s and t. 

3. Events Well-Typed The set of events the object can engage in, its legal events, 
are given by 

E(OP,A):::: {op.a : op E OP/\ a E A(op)} 

Every trace must be a sequence of legal events. Denoting by E* the set of all finite 
sequences whose elements are members of the set E, 

T ~ E(OP,A)* 

4. Input Arguments Enabled If an input operation can occur, then it can occur 
with any argument of the right type 

Vt,op,a.(opEIN /\ t<op.a>ET) :::;. ({op}xA(op)) C T//t 

where T //t is the set of events that may follow t in T 5 

5 Let <e> denote the trace consisting of the single event e. Then T //t = { e t<e> E T}. 
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5. Crash Fatal Nothing can follow a crash event 

Vt: T. T//t< * > = 0 

Thus, if a crash event occurs in a trace, it must be the last event. It is useful to define 
the legal traces of operation set OP and argument mapping A, LT{OP)A}, to be the set 
of traces whose events are well-typed and in which crash is fatal. 

3.3.2 Combining Objects 

Compatible Objects 

Suppose we have some set of objects {X;}. We shall denote the component C of X; by 
C;, so, for example, OPk is the operation set of the k-th object. 

The objects are compatible when 

1. Internal operations are not shared 

2. No operation is an output of two objects 

OUT; n OUTi = 0, if i #- j 

3. If op is an output of X; and an input of Xj, the argument type of op in X; is a 
subset of the argument type of op in Xj 

An object is not compatible with itself. If it were, two instances of the same object 
could choose different output arguments or internal operations. For simplicity, our model 
requires that only one object select the output argument of an operation, and that internal 
operations may be executed autonomously. 

Semantics of Combination 

We now give a combination rule for objects. Intuitively, the combination is a parallel 
composition similar to that of CSP. However, instead of synchronizing on shared events, 
objects synchronize on shared operations. Compatibility guarantees that any argument 
selected by the output operation of one object will be acceptable to the corresponding 
input operation of the other object. 
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If the objects {Xi} are not compatible, then their combination is not defined. If they 
are compatible, the combination is given by 

(OP, A, OUT,INT, T) 

where 

• An operation of an object is an operation of the combination: 

OP=:: Ui OPi 

• The argument type of each operation is the intersection of the types in the compo­
nent objects: 

A( op) = ni: opEOP; Ai( op) 

• If an operation is an output for one object, it is an output of the combination: 

OUT= Ui OUTi 

• If an operation is internal to an object, it is internal to the combination: 

INT=:: Ui INTi 

• A trace is a trace of the combination if it is a legal trace, and if the subtrace that 
each object Xi participates in, t loP;, is a trace of that object 

T =:: {t E LT( OP, A) : Vi . t loP;E Ti} 

t Is is the subtrace oft restricted to the events whose operations are in the set S. 

Note (from the definition of the legal traces) that if a crash event is in a trace, it must 
be the last event. So, if one object crashes, the combination rule dictates that the 
combination crashes. 

Denoting Combinations: Meshing and Linking 

When two objects are combined, they are synchronized on common operations. If they 
share some operations, we say that they are linked by those operations; if they share 
none, we say they are meshed. It is useful to write the combinator in two different ways. 
When X and Y are linked, the combination is written 

and when they are meshed, the combination is written 

X0Y 

The combinator (however it is written) is associative and commutative. 
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3.4 The Trace Semantics 

We now consider the trace semantics of the ticket machine specification of Figure 3.1. 
Each part of the specification denotes an object. The partitions of the operation set are 
obtained by examining the markings of the operations: the outputs are all those marked 
'!', and the internal operations are unmarked. The declarations of the operations and 
their argument types give the legal events the object can engage in. 

3.4.1 Traces of the Process Object 

The traces of the process object are all the legal traces whose operations are in the order 
given by the timetable (including the empty trace), e.g., 

<> 
<select.60> 
<select.60, light, incoin.10, deliver.SO> 
<select.60, light, incoin.20, deliver.60, outcoin.20> 
<select.SO, light, incoin.100, deliver.60, select.SO> 

The process object is ignorant of argument values. Although the gross ordering of opera­
tions make sense, the process object allows more change to be returned than was inserted, 
and does not necessarily deliver a ticket of the fare requested. 

3.4.2 Traces of the Data Object 

The traces of the data object are obtained inductively. The first operation may be any 
whose context is true of the initial state. If that operation is an output, then its argument 
may be any that satisfies the effect clause (for some post state). If the operation is an 
input, then any argument of the type is allowed. So we obtain a set of events that can 
occur on the first step, and for each event, a new state6

. We thus build the trace set by 
a breadth-first search of the event tree. These are some traces of TMd 

<> 
<select.60> 
<select.60, select.SO> 
<select.SO, deliver.SO> 
<select.60, incoin.100, outcoin.20> 

Unlike the traces of the process object, these are financially sound, and the fare of a 
delivered ticket is always that of the last request. However, the data object does not 
respect the gross ordering of operations, eg, change may be returned before a ticket is 
delivered. 

6There must be exactly one such state. Section 3.4.5 explains this in more detail. 
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3.4.3 The Traces of the Combination 

The combination of TMP and TMd is a linking, because they share operations. The ticket 
machine composed of the two objects is written 

Here are some of its traces: 

<> 
<select.60> 
<select.60, light, incoin.50> 
<select.60, light, incoin.20, incoin.50, deliver.60, outcoin.10> 
<select.60, light, incoin.10, incoin.50, deliver.60, select> 

Consider the fourth trace. We can easily check that it is a trace of the combination. The 
events are well-typed, crash is fatal (since there is no crash event in it), and so it is a 
legal trace. All its operations are operations of the process object, so the process object 
must engage in every event. So we check that it is a trace of the process object, which it 
is, since the order of operations is consistent with the timetable. The data object does 
not have the light operation, so we remove it, and check that the remaining subtrace 

<select.60, incoin.20, incoin.50, deliver.60, outcoin.10> 

is a trace of the data object, which indeed it is. 

3.4.4 Crashes 

There is a complication in generating the trace set of a data object. We stipulated that 
having chosen an input operation we can give it any well-typed argument, and calculate 
the new state of the object. There may be arguments for which no next state exists 
(satisfying the effect clause). We call these bad arguments, and the input is a bad input. 
Having appended a bad input to a trace, we include the trace obtained by appending the 
crash event*, and extend it no further. The set of internal operations is also augmented 
with the crash operation. 

Consider ™d· It has been designed so that when an input operation occurs any 
argument value is acceptable. But suppose we had omitted the context clause of incoin 
(an omitted context being taken as true for all states), writing instead: 

incoin? c: {10,20,50,100} 
effect BAL' = BAL + c 

Now suppose BAL = 100, and incoin.100 occurs. There is no value of BAL' that can 
satisfy the effect clause. The trace set would then allow only* as the next event, and no 
subsequent events. So, a trace of TMd would be 

<select.60, incoin.100, incoin.100, *> 
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and after this trace the object is dead, unable to engage in any event. This is bad: a 
system should never crash. The designer of the system must ensure that crashes are 
not possible - the model provides the notion of crashing precisely so that one can show 
that it never happens. However, it may be possible to design a component of the system 
so that it is much more efficient if it may do as it pleases on some 'bad' inputs. The 
designer would then specify that the component crashes when those inputs occur, but 
would take care to ensure that they never could. The satisfaction ordering we define later 
(in Section 3.5) allows an implementation to do anything when the specification says it 
may crash. The implementer of the component is thus given the freedom to treat the 
bad inputs in the most convenient way. 

3.4.5 The Semantics of Data Specifications 

In this section we formalize the derivation of semantic objects from syntactic data 
specifications 7 . We are not concerned with concrete syntax, and we assume that we 
have already extracted some auxiliary semantic entities. 

We start with a set of operations OP = {op;} partitioned into inputs IN, outputs 
OUT and internal operations INT, a set of states ~' and an initial state O"o E ~- Each 
operation op; has a set of arguments A;, a context that is a predicate on states 

context; : ~ ---t Bool 

and an effect that is a predicate on (pre-state, argument, post-state) triples 

effect; : ~ x A x ~ ---t Bool 

Restrictions 

We impose two requirements on data specifications8 . When an output operation can 
occur, that is, the context is true of some pre-state, there must be at least one output 
argument/post-state pair satisfying the effect: 

Vop;: OUT,O": ~. context;(O") =} 3a: A, 0"1
: ~. effect;(O",a,0"1

) 

We cannot allow there to be two post-states satisfying the effect for the same pre­
state/ argument pair, for otherwise, the object may refuse an operation when, according 
to the trace set, it is a legitimate extension to the trace9 : 

Vop; : OP, O" : ~ . context;( O") =} 

•3a: A;, 0"1,0"11
: ~. effect;(O",a,O"') /\ effect;(O",a,0"11

) /\ 0"1 f. 0"11 

7 For process specifications, the informal description should suffice. 
8 Both of these requirements are over-restrictive, since there may be pre-states of an operation that 

could never occur. Modularity, however, dictates that we judge the operations independently of one 
another. 

9This constraint is very strong; it could be discarded if our model handled full non-determinism. See 
Section 5.3.1. 
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Deriving Traces 

The second restriction guarantees that each trace has at most one associated state. This 
allows us to define a function Q from traces to states, with a special element broken 
appended: 

Q: T---+ ~ U {broken} 

Informally, Q(t) is the state of the data object after it has engaged in the trace t. The 
traces of the data object, T, and the function Q are derived by a simultaneous induction: 

1. The empty trace <>is a trace of the data object; its state is the initial state 

Q(<>) = ao 

2. If tis a trace whose state satisfies the context of some operation opi, and (a, a) is 
an argument/post-state pair satisfying the effect of opi, then we can obtain a new 
trace by appending opi.a to t 

t ET, contexti(Q(t)), a E Ai, effect;(Q(t),a,a) 

t · <opi.a> ET, Q(t · <opi.a>) =a 

3. If t is a trace whose state satisfies the context of some input operation opi, and a 
is an argument for which there is no post state satisfying the effect then we can 
append opi.a to t, but the data object is broken thereafter 

t ET, contexti(Q(t)), opi E IN, a EA, •:la:~. effecti(Q(t),a,a) 

t · <opi.a> ET, Q(t · <opi.a>) = broken 

4. When the data object is broken, it crashes 

t ET, Q(t) = broken 

t·<*>ET 

The traces are exactly the traces that can be derived with these rules. 
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3.5 Satisfaction 

In this section we examine what it means for an implementation to satisfy a specification. 
Demonstrating that an implementation obeys the constraints of a specification has two 
parts: translating the behaviour and structure10 of the implementation into the language 
of the specification, and verifying that the constraints are indeed obeyed. For the ticket 
machine, the former must necessarily be informal: insertion of a coin, for example, maps 
to incoin. But for a program, a formal construction is in order. To show that an array, 
for example, faithfully models an abstract set, we would give an abstraction function 
that maps each array to a set. When the programming paradigm does not match that 
of the specification, providing such a mapping can be hard. The implementer of a CSP 

specification who chooses to program in Pascal rather than in Occam faces a host of 
extra problems. We shall not, therefore, discuss this mapping here- it would amount to 
giving a semantics of a programming language in our object model. 

3.5.1 The Satisfaction Ordering 

We shall address the question of satisfaction, therefore, m its most fundamental form: 
when does an object X satisfy an object Y? 

Clearly an object satisfies itself, so the satisfaction relation is reflexive. Stepwise 
development requires it to be transitive, and the distinction between a specification and 
an implementation suggests it should be anti-symmetric too. Satisfaction is thus a partial 
ordering, and when X satisfies Y, we write 

3.5.2 Satisfaction Properties 

Basic Properties 

The most basic property a specification demands of an implementation is safety: whatever 
the implementation does, the specification could do. For example, an implementation of 
the ticket machine may not deliver a ticket if payment has not been made: the trace 

<deliver.60> 

is not a trace of TM. However, in one case we allow the behaviour of an implementation to 
differ from that of its specification. If the specification object crashes, the implementation 
object may do anything. So our first criterion for satisfaction, X ~ Y, is that any trace 
in Tx that does not have a proper prefix r that can be followed by a crash in Ty must be 
a trace of Ty. Thus 

10We discuss in Section 5.1.1 why a specification should impose structural as well as behavioural 
constraints. 
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where T /t is the set of operations that may follow trace t in trace set T 11
. The crash 

event here is any object's crash event; we can think of* as a wildcard matching any crash 
event. We shall refer to this condition as the trace subset law. 

A more subtle safety property is that an object must not have too few external 
operations. Suppose an object has an operation op, but it appears in no trace. Then, 
according to the specification, the object will prevent that operation from occurring in 
a combination. So op must be an operation of the implementation too. Conversely, 
an operation not present in the operation set of the specification must be omitted from 
the implementation too, for otherwise the implementation will block that operation, and 
may thus fail to allow some legal behaviour. This is our first liveness property. Safety 
properties dictate what an implementation must not do; liveness properties dictate what 
they must do. The combination of the safety and liveness properties for operations thus 
require that the sets match 

OPx = OPy 

A safe implementation must not make an input operation an output; a live implementa­
tion must not make an output an input. So outputs in the specification must be outputs 
in the implementation 

OUTx = OUTy 

Similarly, the internal operations of X must be the internal operations of Y 

INTX = INTy 

Remember that our internal operations are visible: they occur in the object's traces. 
Because they are visible, we do not even allow renaming. A ticket machine that followed 
incoin with ringbell instead of light would not satisfy the specification. Internal operations 
introduce the notion of autonomy, not hiding, into our model. 

If the specification is compatible with some object, the implementation must be too. 
This leads us to the constraint on Ax. Input argument types may be widened, and output 
argument types may be narrowed: so the argument mapping of the implementation must 
satisfy 

Vo p : IN . Ax (op) 2 Ay (op) 

Vop: OUT. Ax( op)~ Ay(op) 

Since the traces of X must be legal sequences, input operations must accept all well-typed 
arguments. So the first constraint on Ax affects Tx: whenever an input operation can 
occur in X, it accepts at least the arguments it would have accepted in Y. 

Trace Liveness Properties 

The trace subset law ensures that the traces of the implementation are safe. They must 
also be live. If the specification offers a choice of external operations after some trace, 
then, if that trace is a trace of the implementation, the implementation must offer at 
least as much choice 

11T/t ={op 3a. t<op.a> ET}. Recall that T//t is the set of events following tin T. 
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The internal operations of an object are selected autonomously by the object. Since the 
environment cannot influence the choice, it is non-deterministic, and thus the implemen­
tation may offer only a subset of the internal operations. However, if the specification 
offers some operations, the implementation must offer at least one of them 

Summary of Satisfaction Properties 

There are thus two freedoms an implementation can exploit. It may reduce the internal 
choices of output argument and internal operations. When the specification crashes, the 
implementation may stop, or continue to work, behaving in any way. 

3.5.3 Compositionality of Satisfaction 

It is very important that the notion of satisfaction be context independent; an implemen­
tation of an object must be valid irrespective of the environment in which it is placed. 
Then we can build the system object by object, knowing that if each individual implemen­
tation object satisfies its specification, then their combination satisfies the specification 
of the system. 

A satisfaction ordering with this property is said to be compositional. Formally, the 
ordering ~ is compositional if 

X ~ Y ==;. C[X] ~ C[Y] 

for any context C and any objects X and Y. Since we have only introduced one compo­
sition operator (and since combination is commutative and satisfaction is transitive), it 
suffices to show that for all X, Y and Z 

X ~ Y ==;. X.Z ~ Y.Z 

where'.' denotes 0 or 8 (depending on the choice of X, Y and Z). 
Consider first the cases in which the objects are deterministic (no internal operations, 

and at most one output argument for a given trace and appended operation). Then sat­
isfaction requires the objects to be identical in everything but their argument mappings, 
and since subset and superset are preserved by set intersection, satisfaction is preserved. 
Internal operations are not a complication, since each internal operation can belong to at 
most one object. The only subtlety is that reducing the choice of output argument might 
introduce deadlock. By the definition of an object, when an input operation can occur it 
can occur with all its arguments. Since satisfaction requires each input operation of an 
implementation to have at least the argument set of the specification, reducing the choice 
of output arguments for some trace and appended operation cannot introduce deadlock. 
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3.5.4 Examples 

Reducing Output Argument Choice 

An implementation of the ticket machine TM may order the coins it returns in change 
as it pleases, since the choice of output arguments is internal. So an implementation of 
TMd, TM~ say, may define outcoin as 

outcoin! c: {10,20} 
context BAL > 0 
effect BAL' = BAL - c and c _:::; BAL and BAL 2: 20 =? c = 20 

and would satisfy the specification: TM~ ~ TMd. In a sequence of change, this imple­
mentation always delivers 20p coins first, and then, if necessary, a lOp coin. 

Reducing Operation Choice 

Internal operations are chosen non-deterministically. The non-determinism may be re­
solved when the system is built (by the implementer) or when it runs (by a hidden 
mechanism). Suppose we had specified the ticket machine process as 

TM/ ::= Operations are 
select?: {60,80} 
green, red 
incoin?: {10,20,50,100} 
deliver?: {60,80} 
outcoin?: {10,20} 

Tirnetable is (select? (green incoin?+ deliver? outcoin?*) D red)* 

We have replaced the internal operation light with two internal operations, green and 
red (we have omitted their argument types since each operation has only one event). 
The new machine can decide arbitrarily to refuse to supply tickets. When the user has 
selected the fare, either the green light comes on, indicating that the machine will supply 
the ticket, or the red light comes in, in which case the only operation the machine will 
allow next is another fare selection. 

Non-determinism in specifications never requires the implementation to behave un­
predictably. It is usually a choice offered to the implementer, who will take advantage 
of the freedom, often to increase efficiency. This specification allows the machine to run 
out of tickets (and be refilled); the mechanism by which it is emptied and replenished is 
not modelled. 

One reasonable implementation would be to ensure that the machine is refilled before 
it runs out, so that the machine will always supply tickets: 

TM/' = Operations are 
select?: { 60,80} 
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green, red 
incoin?: {10,20,50,100} 
deliver?: {60,80} 
outcoin?: {10,20} 

Timetable is (select? green incoin?+ deliver? outcoin?*)* 

33 

Because choice of internal operation may be reduced, TM~ ~ TM~. Another legal (but 
unreasonable) implementation would be to flash the red light every time, never selling 
any tickets. 

Surviving Instead of Crashing 

A data object for calculating harmonic means provides three operations: clear? signals 
the start of a new sample, enter? records a value, and mean! delivers the mean of the 
last sample. 

MEAN ~ State is 
T: Real initially 0 
N: Nat initially 0 

Operations are 
clear? 

effect N' = 0 and T' = 0 

enter? e: Nat 
effect T' = T + 1/e and N' = N + 1 

mean! m: Real 
context N -:f. 0 
effect m = N /T 

The state component N keeps a count of the sample size, and T is the cumulative sum of 
the reciprocals of the values entered in the latest sample. The mean cannot be requested 
unless the sample contains at least one value. 

Consider what happens if enter.O occurs. Then there is no value of T' satisfying the 
effect condition, since 1/0 is undefined. The trace set of MEAN will thus contain, for 
example, 

<clear, enter.O, *> 

Note that we cannot prevent enter.O happening by amending the context of enter. Once 
an argument has been passed, the operation has occurred. On the other hand, the context 
of mean 'protects' its effect clause by preventing the operation occurring when its state, 
before execution of the operation, is inappropriate. 
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A better specification would prescribe that, instead of crashing, the object give a 
mean of zero if zero is entered in the sample: 

MEAN' = State is 
T: Real initially 0 
N: Nat initially 0 
Z: Bool initially false 

Operations are 
clear? 

effect N' = 0 and T' = 0 and not Z' 

enter? e: Nat 
effect N' = N + 1 and 

if e = 0 then Z' and T' = T 
else T' = T + 1 / e and Z' = Z 

mean! m: Real 
context N -=f. 0 
effect if Z then m = 0 else m = N /T 

The state component Z records whether a value of zero was entered in the last sample. 
The trace set of MEAN' then contains, for example, 

<clear, enter.O, mean.0> 

and because an implementation may behave in any way after a trace that ended in crash 
for the specification, MEAN' ~ MEAN. 
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3.6 Building Systems 

Now that we have presented our semantic model, we can demonstrate its use in some 
more elaborate examples. We start by showing how a process object can be combined 
with more than one data object, and then consider combinations with more than one 
process. The use of data objects as 'channels' is illustrated. We also introduce two new 
operators that are useful in building systems: enclosure and renaming. 

3.6.1 More Than One Data Object 

Suppose we wanted to add an internal operation refresh to the ticket machine that updates 
a display (not specified) showing the total number of tickets sold of each fare. Then we 
could specify a data object that keeps separate counts of the number of 60p tickets sold 
(C60) and the number of 80p tickets sold (C80)12

: 

CT =:: State is 
C60: Nat initially 0 
C80: Nat initially 0 

Operations are 
refresh. c: Nat-pair 

effect c = (C60,C80) 

deliver? f: {60,80} 
effect 

f = 60 =* C60' = C60 + 1 
f = 80 =* C80' = C80 + 1 

The new system is given by the combination 

Note that TM13 and CT are linked only by the deliver operation, and that CT does not 
constrain its occurrence. CT does not affect the orderings of the operations in TM. The 
refresh operation is performed autonomously by CT at unspecified times. 

Fairness 

This specification does not guarantee that the display of tickets sold is up to date all 
the time. If refresh never occurs, the display is never updated. However, it does ensure 
that it is up-to-date just after the display has been refreshed (by execution of a refresh 
operation). How often refresh occurs is not specified. Our model does not provide any 
way of saying it occurs 'often enough'. Introducing such notions of fairness into the 

12 Recall that state components omitted from the effect are unaltered. 
13 Recall that TM= ™r 0 TMa. 
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model would complicate the treatment of non-determinism, compromising the simplicity 
of our model. We believe that, for the sort of systems we are specifying, the standard 
elaboration of the trace model for fairness, namely considering infinite as well as finite 
traces, would be inadequate. The station manager does not want to know that the 
ticket machine will eventually update its display. Sometimes the fairness property will 
be definable only in terms of notions outside the model: for example, that the display is 
updated as soon as electrical connection permits. Otherwise it will be more appropriate 
to formulate it as a straightforward safety property. For example, we might provide a 
clock process with an event end-of-day, and require that a refresh event occur at least 
once between each pair of end-of-day events. 

3.6.2 Making Output Operations Internal 

Suppose we wanted to specify that the display is updated after every ticket delivery. 
Then we might amend the process object to offer refresh after deliver 

Operations are 
select?: {60,80} 
light 
incoin?: {10,20,50,100} 
deliver?: {60,80} 
outcoin?: {10,20} 
refresh 

Timetable is (select? light incoin?+ deliver? refresh outcoin?*)* 

This object is not compatible with CT, though: they share the internal operation refresh. 
We want refresh to be an external operation of the individual objects, but an internal 
operation of their combination (since refresh is executed autonomously by the machine 
as a whole). 

So we make refresh an input operation of TMP, and an output of CT. Then we enclose 
the operation refresh, rendering it internal. The new ticket machine is denoted 

O{refresh} (TMP 8 TMd 8 CT) 

Definition of Enclosure 

Given a semantic object X, its enclosure around a set of output operations C <;;;; OUT x 
is given by 

OcX::::::: (OPx,Ax, OUTx - C,INTX u C,Tx) 

The operations that are converted must be outputs, for otherwise there will be internal 
operations for which no object selects the argument. 
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3.6.3 More Than One Process Object 

Perhaps the ticket machine contains a clock, which we represent as a process 

CLK = Operations are tick! tock! 

Timetable is (tick! tock!)* 

We can use the clock to time the updates of the display, by adding another process that 
is willing to do refresh once in every five clock periods 

DISP = Operations are 
tick? 
refresh?: Nat-pair 

Timetable is (tick? tick? tick? tick? tick? refresh?)* 

Combining the clock, the display process, the counter and the basic machine of Figure 3.1, 
we obtain 

OTM = ((CLK 8 DISP) 0 (TMp 8 TMd)) 8 CT 

Recall that we write 8 when objects share operations, and 0 when they do not. Ar­
ranging the combination like this highlights the interactions or linkings, between objects. 
The use of 0 shows that the basic ticket machine TM is not linked directly to CLK or 
DISP. They are loosely synchronized by the counter CT, which mediates between them. 
The fewer links there are between objects, the easier the combination is to understand -
we therefore arrange the expression so that as many of the operators are 0 as possible. 

The system is depicted in Figure 3.2. Data objects are drawn as circles, and process 
objects as boxes. Linking operations are represented by lines between the linked objects; 
an arrow indicates that the operation is an output for the object at its tail. We can 
always tell from the diagram whether two objects interact directly - we just see if there 
is a line joining them. More care needs to be taken when we write combinations as 
expressions. The expression 

OTM = ((CLK 8 DISP) 8 (CT 8 TMd)) 8 TMP 

denotes the same system as the one above, but we cannot infer from it that neither TMP 
nor TMd are directly linked to CLK or DISP. 

The operations refresh, tick and tock are internal to the system, and so we enclose 
them obtaining 

CTM = O{refresh,tick,tock} OTM 
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3.6.4 Data Objects As Channels 

We can think of the counter as a channel along which information passes. The deliver 
operation is like a write, and the refresh is like a read. 

This paradigm is suitable for describing many kinds of asynchronous communication. 
The two communicating objects, X and Y say, usually do not share any operations, so 
we mesh them and link the combination to a data object, D say, obtaining 

(X 0 Y) 8 D 

For example, FQ is a FIFO queue data object 

FQ := State is Q: Int-Queue initially newq 

Operations are 
enq? i: Int 

effect Q' = append(Q,i) 

deq! i: Int 
context -, empty(Q) 
effect Q' = rest ( Q) and i = first ( Q) 

Wis a data object that enqueues consecutive powers of 2 

vV := State is P: Int initially 1 
Operations are 

enq! p: Int 
effect p = P and P' = 2 * P 

R is a process that dequeues integers 

R = Operations are deq?: Int 
Timetable is deq?* 

The combination (W 0 R) 8 FQ denotes a system in which consecutive powers of 2 are 
enqueued and dequeued. The values are dequeued in the order they were enqueued in, 
and no value is dequeued before it is enqueued. Some traces of the combination are 

<> 
<enq.1, enq.2, deq.l> 
<enq.1, deq.1, enq.2, enq.4, enq.8, deq.2> 
<enq.1, enq.2, enq.4, enq.8, enq.16, enq.32> 
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Synchronizing Channels 

The degree of asynchrony the channel permits depends on the specification of the channel 
data object. If the data object is a FIFO queue, we get a standard asynchronous stream 
communication (as above). A bounded queue would synchronize the processes more 
tightly; a unary buffer would force reads and writes to alternate. 

Using Process Objects In Channels 

The unary buffer example raises an interesting question: where should we state the 
property that reads and writes must alternate? It can be placed in the data object, or 
in a separate process object. The data object would impose alternation implicitly in the 
context conditions. A state component would be declared with values full and empty; 
the context of the read would require the flag to be set to full, and the context of the 
write would require it to be empty; and the effect clauses of the write and read would 
assert values of full and empty after execution. The second approach would restrict the 
operation scheduling in a process timetable instead of using the flag: we would link the 
buffer data object to a process with timetable 

(write read)* 

The arrangement would be denoted 

(WRITER 0 READER) 8 (ALT 8 BUF) 

where BUF is the buffer data object and ALT is the process object forcing alternation 
of reads and writes. See Figure 3.3. 

It is not clear which approach is preferable here. We hope that, in general, scheduling 
constraints will be inherent in the state of the data object or quite unrelated to it, and it 
will then be clear where to place them. For example, the constraint that an empty stack 
may not be popped should be in the context of the pop operation; the constraint that 
a bank account should be opened before it is closed should be described in a timetable. 
Some examples, like this one, do not fall immediately into one category or the other, and 
the specifier may choose either. 
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CLK 

tick l8lect deliver 
iacai:a > ... • •MDin 

DISP 
clelhw 

Figure 3.2: Ticket machine with dilplay updated by dock 

WRJTER 

Figure 3.3: Using a process to enforce alternation of zeads and writes 
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3.6.5 Renaming 

Labelling 

Most stations provide more than one ticket machine. A pair of ticket machines standing 
side by side is given by the meshing 

2TM = left:TM 0 right:TM 

The ticket machines have been labelled. Labelling TM with 'left' prefixes its operation 
names and the events in its traces with 'left:'; wherever TM would have engaged in op.a, 
left:TM may engage in left:op.a. So a trace of 2TM is 

<right:select.80, right:light, left:select.60, right:incoin.20, left:light> 

Because the labels differ, the two machines have disjoint operation sets and there is no 
synchronization between them. 

Uses of Renaming 

Labelling is a simple case of renaming. We allow a more general form of renaming in 
which each operation is replaced by one or more 'pseudonyms'. There are four principal 
uses of renaming: 

1. Describing a group of similar objects by instantiating a generic object. Labelling is 
generally used for this, as in the pair of ticket machines above. The account objects 
of a banking system, for example, might be labelled with account numbers. 

2. Re-use of a general purpose object. Many objects recur in software designs, and it 
may be convenient to re-use an object that has been specified before, changing its 
operation names to suit the new context. For example, we might use a FIFO queue 
as a message stream, giving the operation names enq and deq new names writemsg 
and readmsg. 

3. Giving different local names to shared operations. We have seen how several objects 
may share operations. Often, extra clarity is gained by giving the shared operations 
different names in different objects. Consider, for example, linking a customer 
process to the ticket machine. In the customer process, the operation synchronizing 
with the deliver operation of the ticket machine might be called taketicket. To 
synchronize the two operations, we could rename taketicket to deliver, or vice-versa, 
or rename both operations to deliver-and-take, say. 

4. Addressing an operation with more than one name. A process object may want to 
use more than one name for a single operation of a data object it is linked to. 

An automatic teller machine (ATM), for example, modelled as a process object, 
may provide two operations for balance enquiries, dispbal for screen display and 
printbal for printed acknowledgment. An account data object may just provide an 
operation balance that we want to link to both operations. The account data object 
would be renamed, giving balance the pseudonyms dispbal and printbal. 
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Formal Definition of Renaming 

Let f be a surjection 14 that maps a set of operation names U to the set of operation 
names of object X 

f: U---* OP x 

We define Rename(!, X), the renaming of X with f, so that whenever X may engage 
in an operation op, Rename(!, X) may engage in any operation u such that f ( u) = op. 
These operations are pseudonyms of op under f. It follows that 

Rename(!, X) = (U, Ax of, {u EU : f(u) E OUTx}, 

{uEU: f(u)EINTx}, 

{ t E LT(U, Ax 0 J) : j*(t) E Tx) 

where the extension off to traces, f* is defined by 

f*(<>) = <> 
f*( <u.a>) = <f(u).a> 
f*(st) = f*(s)f*(t) 

Note that f maps new names to old names. 
The renaming must retain the meaning of the crash operation, so we require that, if 

* E 0 Px then * has only one pseudonym, *' say, 

J(u) = *x =} u = *1 

We can now define labelling. The labelled object l:X is the same as fz(X), where the 
domain of the renaming fz is the set whose elements are those of OPx prefixed with 'l:', 
the range is OP x' and 

fz(l: op)= op 

3.6.6 Examples 

Two examples of renaming follow. Each uses labelling to describe a group of similar 
objects (purpose 1 above). In addition, the first demonstrates the addressing of an oper­
ation with more than one name (purpose 4), and the second demonstrates synchronizing 
operations with distinct names (purpose 3). 

Bank 

A specification of a bank with one ATM and n customers, each with a single account, is 
shown in Figure 3.4. 

The account data objects are labelled with account numbers ranging over 1. .. n. The 
label of the incard operation identifies the account number (which is recorded on the 
card). The operation balance has two pseudonyms, dispbal and printbal. 

14 A surjection is a function that is onto its range: for each value in the range, there is a domain value 
that maps to it. 
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ATM -

ACC .::o. 

Operations are 
reqcash?: Dollars 
delivercash?: Dollars 
deposit?: Dollars 
dispbal?: Dollars 
printbal?: Dollars 
incard?, outcard! 

Timetable is 
( D i:Sn (i:incard? 

(i:deposit? 

State is 

D i:printbal? 
D i:dispbal? 
D (i:reqcash? i:delivercash?)) 

outcard!) )* 

BAL: Dollars initially 0 
C: Dollars initially 0 

Operations are 
balance! b: Dollars 

effect b = BAL 

deposit? d: Dollars 
effect BAL' = BAL + d 

reqcash? r: Dollars 
effect C' = min(r,BAL) 

delivercash! c: Dollars 
effect c = C and C' = 0 and BAL' = BAL - c 

BANK = ATM 8 ( 0i::;n i:ACC [dispbal, printbal for balance]) 

Figure 3.4: A banking system with one ATM and n accounts 

14 A surjection is a function that is onto its range: for each value in the range, there is a domain value 
that maps to it. 
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Instead of writing the renaming of dispbal and printbal as J(ACC) and defining f 
separately, we have written 

ACC [dispbal, printbal for balance] 

which is equivalent to J(ACC), where f maps dispbal and printbal to balance, and every 
other operation name of ACC to itself. Another notational convenience is the distributed 
use of 0 and 0. 

The number of accounts n is a constant; we cannot create objects dynamically. This 
is not a problem in practice - n is just a bound on the number of account objects in 
the system, and accounts exist before they are opened. 

Queue Merger 

We take the FIFO queue, FQ, given before, and define three instances by renaming: l:FQ, 
2:FQ and m:FQ. A merging process M dequeues values from l:FQ and 2:FQ 

M:= Operations are 
l:deq? Int 
2:deq? : Int 

Timetable is (l:deq 0 2:deq)* 

By renaming m:enq to l:deq and 2:deq, values are enqueued on m:FQ as they are dequeued 
from l:FQ and 2:FQ. The queue merger is given by 

MQ = <>{1:deq,2:deq} (M 8 (l:FQ 0 2:FQ) 8 FQM) 

where 

FQM = m:FQ [l:deq, 2:deq for m:enq] 

Having enclosed l:deq and 2:deq, the remaining external operations are l:enq, 2:enq and 
m:deq. MQ is a non-deterministic merge. The order of values enqueued on one of the 
queues is the order in which they will be dequeued, but the interleaving of the two streams 
is non-deterministic - there is no guarantee that a value enqueued with 1 :enq before a 
value is enqueued with 2:enq will be dequeued first. Not even fairness is guaranteed: a 
value enqueued with 1 :enq may never be dequeued. A sample trace of MQ is15 

<l:enq.3, l:deq.3, 2:enq.5, l:enq.7, l:deq.7, 2:deq.5, m:deq.3, m:deq.7> 

M is redundant, since its timetable does not restrict the ordering of operations at all. 
Its inclusion is justified on the grounds of maintainability. Suppose instead we wanted 
a deterministic merge that took elements from the two queues alternately, starting with 
l:FQ. The object combination would be the same, but we would change the timetable of 
M to 

Timetable is (l:deq 2:deq)* 

15It would be convenient to hide the internal operations here, but we have avoided hiding because it 
introduces more non-determinism than our model can handle. See Section 5.3.1. 
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Chapter 4 

A Case Study 

In this chapter, we specify and implement a small program. The example serves three 
purposes. First, it sheds light on the meaning of satisfaction, in particular by showing 
how operations can be implemented using procedures. Secondly, it may reinforce the 
reader's understanding of our (informal) operational semantics. Thirdly, it is a starting 
point for a wider discussion of implementation concerns. 

The specification is an elaboration of the ticket machine of Chapter 3. Two new 
features are added to the ticket machine: more realistic handling of change, and the 
reporting of ticket sales. We also take the opportunity to present a slightly more elaborate 
data specification. Previously, we assumed that the types and operators that we used 
(for example, integers with plus and minus, queues with dequeue, enqueue and size) are 
understood. If the state has a more complex type (say, binary tree or priority queue), 
this is no longer adequate. We show how this can be remedied by pre-defining the types 
and their operators in an accompanying algebraic specification. 

The implementation is entirely sequential - although we simulate concurrency - and 
is written in CL U. It gives a flavour of the (reasonably conventional) style of specification 
we have in mind. However, the style of implementation is not well developed, and much 
work remains to be done before we could advocate it as a practical technique. 

4.1 The Specification 

The specification we shall implement is shown in Figure 4.1. There are three objects: a 
ticket machine process TMP, a ticket machine data object TMd, and an auditing process 
AUDIT. The processes do not share operations, and both are connected to the data 
object: 

TM= (TMP 0 AUDIT) 8 TMd 

The ticket machine objects are almost identical to the first example of Chapter 3 
(Figure 3.1 ). We have added two simple features: 

1. Instead of an unbounded supply of change, the machine can only return coins that 
have previously been inserted. An out-of-change light warns the customers if there 
might not be enough change for the next transaction. 

47 
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2. The machine maintains a count of the number of tickets sold of each fare. The 
auditing process may examine the counts and reset them periodically. 

4.1.1 The Specification of TMd 

A new state component (COINS) records the number of coins available of each denom­
ination, which is modified by the incoin and outcoin operations. As before, we have not 
specified exactly how change is to be given: we just require that the coins returned have 
been previously inserted. The context of outcoin guarantees that it is only executed when 
a suitable coin is available. 

The state macros are just a syntactic mechanism to improve the clarity of the speci­
fication. They may contain no free variables aside from the state variables. 

The out-of-change light is not specified explicitly. We have added an operation, 
setlight, that switches the light on and off. It outputs a boolean value, true if there is not 
enough change, and false otherwise. The operation's context is the negation of outcoin 's 
context: when change is due, and the machine can deliver some of it, it may not perform 
setlight. The effect of setlight is non-deterministic. When the machine cannot guarantee 
that there will be enough change for the next transaction ( • guarantee-change), it must 
output 'true', switching the out-of-change light on. When there is an abundance of 
change (lots-of-change), it must output 'false', switching the light off. The implementer 
is thus free to choose the point at which the change level is deemed too low, so long as 
it falls between these bounds. 

We decided, arbitrarily, that there is 'lots of change' when there are 100 lOp pieces in 
the machine. The machine can guarantee delivering enough change for any transaction 
if, for any possible change amount, there is a selection from the coin supply whose total 
equals that amount. 

The state component TIX maintains the number of tickets sold of each fare. The new 
operation report outputs the counts of tickets sold of each fare. The operation can only 
be executed when at least 6 tickets have been sold since the last report, and its effect is 
to reset the counts to zero. (There are many more realistic ways to time the execution 
of report, but they would add nothing interesting here.) 

The type assignments and the coercion operator nat are explained in Section 4.1.4. 

4.1.2 The Specification of TMp 

The process specification differs from the example of Chapter 3 only in the addition of the 
new operation setlight. Note that, because of its placement, the context condition of the 
setlight data operation acts as a termination condition for the iteration of outcoin 1 . Thus, 
when change is due, but there is no suitable coin in the machine to deliver, execution of 
outcoin may be omitted. If the out-of-change light was off at the start of the transaction, 
it is guaranteed that whatever change is due will be delivered. 

1ThP t,Prminl'lt,inn rnnrlit,inn i<: rlPt,Prminj<;_tic in thi<: P.)<'.;l'lt;nnlP hPrl'ln<:P thP rnntPvJ<: nf n11frnin l'lnrl 

have previously been inserted. An out-of-change light warns the customers if there 
might not be enough change for the next transaction. 
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Operations are 
setlight?: Boal 
select?, deliver?: Fare 
in coin?, ou tcoin?: Coin 

Timetable is ( setlight? select? incoin ?+ deliver? out coin?*)* 

AUDIT :::::. Operations are report?: Fare-Mset 
Timetable is report?* 

TMd :::::. State is 
BAL: Nat initially O 
FARE: Fare initially 60 
COINS: Coin-Mset initially new 
TIX: Fare-Mset initially new 

State Macros are 
outcoin-poss = 3 c: Coin . count (COINS, c) > 0 & nat ( c) :S BAL 
guarantee-change = 
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V n:Nat. 3 cs: Coin-Mset. possChangeAmt (n) =>(total (cs)= n & (cs~ COINS)) 
lots-of-change = count (COINS, 10) > 100 

Operations are 
setlight! b: Boal 

context -, outcoin-poss 
effect (-, guarantee-change => b) & (lots-of-change => -, b) 

report! r: Fare-Mset 
context size (TIX) ~ 6 
effect r = TIX & TIX' = new 

select? f: Fare 
context BAL = 0 
effect FARE' = f 

incoin? c: Coin 
context BAL < nat (FARE) 
effect BAL'= BAL+ int (c) & COINS'= insert (COIN, c) 

deliver! f: Fare 
context BAL~ nat (FARE) 
effect BAL' = BAL - nat (FARE) & f = FARE & TIX' =insert (TIX, f) 

outcoin! c: Coin 
context outcoin-poss 
effect BAL'= BAL - nat (c) & nat (c) :S BAL & count (COINS, c) > O 

Figure 4.1: Specification of a ticket machine system 
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The light operation of the previous example (that indicated when the machine was 
ready to accept coins) has been omitted. 

4.1.3 The Specification of AUDIT 

The process AUDIT is trivial. It simply performs a sequence of report operations, their 
execution being constrained by the context of the report operation of TMd. In a more 
realistic specification, AUDIT might be linked to a message stream data object by an 
operation for sending a sales report. 

4.1.4 An Auxiliary Specification for TMd 

In the ticket machine specification of Chapter 3, we gave the types of the state components 
and operation arguments informally, and assumed the definition of their operators. For 
example, we wrote 

{10, 20, 50, 100} 

for the type of incoin's argument, and 

B' = B + c 

for its effect clause. We were relying on the intuition that the coin value type is an 
enumeration, and that coin values can be added to balances as if they were natural 
numbers. We now formalize this part of the specification. In the present example, 
we have defined the balance to be a natural, given the enumeration types names, and 
used the nat operator to coerce coin values into naturals. We have also included more 
complex types: the counts of coins and tickets are described using the multiset types 
Coin-Mset and Fare-Mset. (For simplicity, coins returned as change are now of the same 
denomination as inserted coins.) 

The definitions of these types and their operators are given in a separate, auxiliary 
specification. The specification is written in the Larch Shared Language [Guttag 85b]. 
It consists of a number of traits. For each data specification, there is a root trait with the 
same name that defines the types2 and operators it uses. Each root trait lies at the top 
of a hierarchy of traits, combined by textual inclusion. 

The traits for TMd are shown in Figure 4.2. Consider the Coin-Mset trait first. 
The imports is a textual inclusion mechanism whose details need not concern us here; it 
brings in the axioms for the types Nat (natural numbers) and Coin. The type signatures of 
four operators are then given in the introduces section. (The first is a nullary operator, 
and may be thought of as a constant.) The equations following the asserts define the 
operators by relating them to each other. The first says that the new multiset has a size 
of zero. The second says that inserting an element increases the size by one. The third 

2 Guttag et al. talk of sorts, instead of types, in algebraic specifications, to distinguish them from 
their programming language counterparts. Since the types of our data specification correspond one-to­
one with the sorts of our algebraic specification, and we want to avoid extra terminology, we do not 
distinguish them here. 
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TMd: trait 
imports Coin-Mset, Fare-Mset, Coin, Fare 
introduces 

possChangeAmt: Nat --+ Bool 
asserts for all [ x: Nat] 

possChangeAmt (x) == 
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(x=lO) I (x=20) I (x=30) I (x=40) I (x=50) I (x=60) I (x=70) I (x=80) I (x=90) 

Coin-Mset: trait 
imports Natural, Coin 
introduces 

new: Coin-Mset 
insert: Coin-Mset, Coin --+ Nat 
size: Coin-Mset --+ Nat 
count: Coin-Mset, E--+ Nat 
total: Coin-Mset --+ Nat 
#~#: Coin-Mset, Coin-Mset --+ Bool 

asserts 
Coin-Mset generated by [new, insert] 
Coin-Mset partitioned by [count] 
for all [c, ci, c2 : Coin, m, m 1, m 2, m3: Coin-Mset] 

size (new) == 0 

Coin: trait 

size (insert (m, c)) ==size (m) + 1 
count (new, c) == 0 
count (insert (m, c1), c2) ==count (m, c2) +(if c1 = c2 then 1 else 0) 
total (new) == 0 
total (insert ( m, c1 )) = = total ( m) + nat ( c1 ) 

new~ m 

insert (m1, c) ~ m2 == m1 ~ m2 & count (m2, c) > count (m1, c) 

imports Natural 
introduces 

Coin enumeration of [lOp, 20p, 50p, £1] 
nat: Coin --+ Nat 

asserts 
nat (lOp) == 10 
nat (20p) == 20 
nat (50p) == 50 
nat (£1) == 100 

Figure 4.2: Auxiliary specifications for TMd 
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and fourth are the corresponding axioms for the count operator; the fourth tells us that 
inserting an element increments by one the count of the elements of that value. The 
remaining axioms define the total and ~ operators. 

The partitioned by indicates that count alone is enough to distinguish unequal 
terms of type Coin-Mset. The generated by adds an inductive rule of inference that 
can be used to prove properties that are true of all terms of type Coin-Mset; it says that 
each term that does not contain any variables of type Coin-Mset is equal to some term 
in which new and insert are the only operators with range Coin-Mset. 

The trait for Coin is simpler. The enumeration shorthand defines lOp, 20p, 50p 
and £1 as nullary operators that generate Coin. A coercion operator nat that converts 
denominations to natural numbers (equal to their value in pence) is defined. 

The types Fare-Mset and Fare have traits similar to Coin-Mset and Coin (but are not 
included here). Fare has only two, nullary operators, 60 and 80, for the two fare values. 
No other operators are needed (except equality, whose theory is automatically included) 
since we do no computation on fares. 3 

All these traits are brought together by textual inclusion in the root trait TMd. The 
operator possChangeAmt, which does not fit logically into the other traits, is defined here. 

The Auxiliary Specification's Contribution to the Semantics 

vVhen we gave the semantics of data specification in Section 3.4.5, we did not explain 
how we determine whether a context or effect holds. The auxiliary specification helps 
here. First, we interpret the auxiliary specification as a set of first-order formulae, called 
its theory. We then take the context or effect clause in question, and replace the unbound 
state variables by the algebraic terms denoting their current values and the argument 
variable, if any, by its value, obtaining a formula without free variables. If the formula 
is in the theory, the clause holds, and we apply the relevant inference rule. 

3 To simplify our presentation, we have not used the re-usable traits provided by the Larch Handbook 
[Gut tag 85a], nor taken advantage of Larch's inclusion and renaming mechanisms. In practice, the types 
Fare-Mset and Coin-Mset would be based on the generic type Multiset given in the handbook. 
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4.2 The Implementation 

We now describe a CL u [Liskov 81] implementation of the specification above. It is not 
a practical implementation. However, it is a starting point for our discussion of wider 
issues in implementation. Also, it may shed light on the meaning of satisfaction and of 
the operational semantics of the specification. 

The overall structure is as follows. Finite state machines (coded as circular data struc­
tures) represent the processes. The data object is coded as a cluster of procedures with a 
local, mutable state. There are two procedures for each operation of the specification: a 
procedure without side-effects that evaluates the context condition, and a procedure that 
models the execution of the operation itself. We simulate concurrent execution of the 
finite state machines by alternately giving each an opportunity to perform an operation. 
At each opportunity, we evaluate the context of each operation's data counterpart; if 
none of the contexts are true, no operation is performed, otherwise we perform the first 
operation whose context is evaluated as true. 

4.2.1 Implementing The Data Object 

CLU provides a program unit called a cluster especially for data abstractions, whose 
typing conventions prevent access to the representation of the data type from outside. 
We have implemented the data object as a cluster. The header of the cluster declares 
the procedures it exports: 

TMd = cluster is 
setlight_context, setlight_op, 
select_con text, select_op, 
incoin_con text, incoin_op, 
deliver_context, deliver_op, 
outcoin_context, outcoin_op, 
report_con text, reporLop 

The state of the data object is local to the cluster, and its type is the abstract type of 
the cluster. So we declare its representation to be the 'rep' type 

rep= record 
[BAL: int, 
FARE: Fare, 
ClO: int, 
C20: int, 
C50: int, 
ClOO: int, 
T60: int, 
TSO: int] 

and introduce the state as the own variable tm, with its initialization 

own tm:rep := rep$ 
{BAL: 0, FARE: 60, 
ClO: 0, C20: 0, C50: 0, ClOO: 0, 
T60: 0, TSO: O} 
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The four 'C' components of the record implement COIN; each keeps a count of the 
number of coins of a particular denomination4 • Likewise, the 'T' components implement 
TIX. 

We shall look at the implementation of one of the operations, outcoin. It is imple­
mented as two procedures. The first evaluates the context condition, and the second 
models the actual execution of the operation: 

outcoin_context = proc () returns (bool) 
return (tm.BAL 2: 10 & tm.ClO > 0 I 

tm.BAL 2: 20 & tm.C20 > 0 I 
tm.BAL 2: 50 & tm.C50 > 0 I 
tm.BAL 2: 100 & tm.ClOO > 0) 

end outcoin_context 

outcoin_op = proc () returns (Coin) 
c: int 
if tm.BAL 2: 100 & tm.ClOO > 0 then 

c := 100 
tm.ClOO := tm.ClOO - 1 

elseif tm.BAL 2: 50 & tm.C50 > 0 then 
c := 50 
tm.C50 := tm.C50 - 1 

elseif tm.BAL 2: 20 & tm.C20 > 0 then 
c := 20 
tm.C20 := tm.C20 - 1 

elseif tm.BAL 2: 10 & tm.ClO > 0 then 
c := 10 
tm.ClO := tm.ClO - 1 
end 

tm.BAL := tm.BAL - c 
return ( c) 
end outcoin_op 

Recall the specification of the operation (with the state macro expanded) 

outcoin! c: Coin 
context :l c . count (COINS, c) > 0 & nat (c) ::; B 
effect B' = B - nat ( c) & nat ( c) ::; B & count (COINS, c) > 0 

4 To show that this is a faithful representation of the abstract state component, we would provide a 
mapping (called an abstraction function) from the concrete values of the representation to the abstract 
values. The mapping must be a surjection; that is, there must be a concrete value corresponding to each 
abstract value. Some of the concrete values have no meaning as abstract values, so we restrict the domain 
of the abstraction function with a representation invariant. The subject of data abstraction is extensively 
treated in [Liskov 86). Chapter 4 in particular explains the relationship between an abstract type and 
its representation. In our example, the relationships are simpler than usual: there is an isomorphism 
between the members of the representation meeting the invariant and the abstract values. 
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The procedure outcoin_context is a straightforward implementation of the context con­
dition: it just evaluates the predicate for the four values c can take. An interesting 
question about modularity arises here. The process object TMP constrains the order 
of operations so that deliver always precedes outcoin, and consequently, the maximum 
amount due in change is 90p. We might be tempted, therefore, to omit the last term of 
the disjunction, since we know that it will never be true that tm.BAL 2: 100. This would 
be a mistake. The implementation of TMd must satisfy its specification, which allows 
orderings of operations forbidden by TMP. 

The procedure outcoin_op implements the effect clause of the operation. We have 
resolved the non-determinism of the specification; instead of returning any available coin 
that is worth less than the balance, we have chosen to return the largest. So change is 
always returned in as few coins as possible, with the larger denominations delivered first. 
Note that the output argument of the operation is the returned result of the procedure, 
and that the procedure modifies the state component tm.BAL. The state of the data 
object is hidden both by CL u's type-checking system, which prevents access to the rep 
of a cluster by external procedures, and by our keeping the state internal to the cluster 
- it does not appear as an argument or result of any of the cluster's procedures. 

4.2.2 Implementing The Process Objects 

We have implemented two abstract types, regular expressions and finite state machines, 
to make programming the process objects easy. The timetable of each process object is 
written directly in CLU code as a string, and is converted to a regular expression by the 
procedure re$parse. The assignment to TMp_re of type re is written 

TMp_re: re := re$parse ("(setlight select incoin+ deliver outcoin*)*") 

A procedure of the finite state machine cluster, fsm$re_to_fsm, converts the regular 
expression to a circular data structure representing a machine equivalent to the expres­
s10n: 

TMp_fsm: fsm := fsm$re_to_fsm (TMp_re) 

The process object AUDIT is coded as a finite state machine likewise. 

4.2.3 Fitting The Objects Together 

Having built the objects, we now need some mechanism to execute the system. The 
procedure try takes the name of a data object operation as its argument, and attempts 
to perform that operation. It first tests the context of the operation, and if it is true, it 
executes the operation. For example, the fragment dealing with outcoin is 

if TMd$outcoin_context () then 
c: Coin := TMd$outcoin_op () 
formatd_write ("Out pops coin ", int$unparse ( c)) 
signal executed end 
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The call to formatd_write has been inserted so we can trace the behaviour of the system; 
it displays the value of the returned coin on the screen. 

The procedure attempt_fsm...step takes a finite state machine as its argument, and tries 
each operation allowed as the next transition of the machine once, by calling try. If the 
context of the operation tried is true, try signals 'executed' and attempt_fsm...step returns. 
If the execution of no operation succeeds, attempt_fsm...step returns normally. 

attempt_fsm_step = proc (f: fsm) returns (fsm) 
for op: OpJiame in fsm$next_op (f) do 

try (op) 
except when executed: f:= fsm$step (f, op) break end 

end 
return (f) 
end attempt_fsm_step 

We simulate the parallel execution of the two processes by giving each alternately 
an opportunity to perform one operation, terminating when both machines have reached 
states from which there are no transitions: 

simulate_conc = proc (fl, f2: fsm) 
while '""fsm$empty (fl) I '""fsm$empty (f2) do 

if '""fsm$empty (fl) then 
fl := attempt_fsm_step (fl) 
end 

if '""fsm$empty (f2) then 
f2 := attempLfsm_.step (f2) 
end 

end 
end simulate_conc 

Interleaving the executions of the two processes relies on the assumption that they do 
not share operations. The ticket machine system is executed by the statement 

simulate_conc (TMp_fsm, AUDIT_fsm) 

The example was coded to interact with a keyboard and screen. We have not ex­
pressed these as objects, as that seemed an unnecessary complication here. Instead, the 
input arguments should be thought of as being chosen non-deterministically; the mech­
anism supplying the values (namely, keyboard interaction) is outside the scope of the 
specification. 

The entire code is given in Appendix A, and a transcript of a sample interaction in 
Appendix B. 
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4.3 Discussion 

The implementation scheme we have outlined above depends on many simplifying as­
sumptions. We now consider each assumption in turn, and suggest some of the compli­
cations that would arise if it were relaxed. 

4.3.1 Sharing of Operations 

We assumed that the process objects did not share operations. Had they done so, we 
would not have been able to execute the parallel combination by interleaving, since the 
objects would have had to synchronize on common operations. Furthermore, since we 
had only one data object, there was no question of operations belonging to more than 
one data object. These are not significant complications. We would elaborate the try 
procedure so that it tests the contexts of the common operation in all its data objects. 
Then, if all contexts are true, the operation is performed in each, with inputs and outputs 
matched appropriately. 

4.3.2 Scheduling 

By running the processes sequentially, we avoided a potential hazard. Between evaluation 
of an operation's context and its execution, the state of the data object might change. In 
a parallel execution, therefore, we would have to ensure that the testing of the context 
and the execution of the operation is a single, indivisible transaction. A lock would 
probably be the simplest way to achieve this. Before evaluating the context, a 'mutex' is 
seized, preventing access by another party. After the execution of the operation (or after 
the context test if it returned false), the mutex is released. If operations were shared 
between data objects, then all of the context tests and executions of a shared operation 
would have to occur within a transaction. 

It will often be useful to run concurrent processes sequentially, as we have done in 
our example. A practical implementation scheme would offer (and justify) one or more 
mechanisms for 'sequentializing' parallel combinations. Inversion in JSD [Jackson 83] is 
an example of such a mechanism, in which processes are run as coroutines, transferring 
control on message stream reads and writes. 

The scheduling will generally depend both on the hardware we have available and on 
fairness (see Section 3.6. l) and liveness constraints that have not been formally specified. 
A liveness criterion might require, for example, that the user of a terminal is never kept 
waiting for more than three seconds, or might limit average response time. Although 
fairness can often be formulated as a safety property, we might favour a simpler specifi­
cation, leaving fairness concerns to later in development. In the ticket machine system, 
for example, we assumed that report occurs 'often enough'. A correct (but unreason­
able) implementation of the ticket machine system above would never execute the report 
operation of AUDIT at all. There are many other schedulings that might have been 
acceptable. We could have a fixed interleaving of the two processes, attempting a report 
operation in AUDIT after every deliver operation of TMP, say, or we could use a clock to 
time the AUDIT process, attempting report once an hour, or once a day. 
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4.3.3 Renaming and Database Design 

Implementing the state of a data object as the local state of a cluster suffices here 
because we only have one data object. A real system is likely to have hundreds or even 
millions of data objects, most being instantiations, by renaming, of generic objects. A 
banking system, for example, could have an account data object for each bank account. 
Allocating the storage of the objects' states and building accessing mechanisms is the 
subject of database design. We have not addressed the question of how a database design 
would satisfy part of our specification, let alone how such a design would be arrived at. 

4.3.4 Conclusions 

Although our implementation is deficient in many respects, and the style is not well­
developed, we do believe that it is promising. It is encouraging that the implementation 
respects the modularity of the specification - the encapsulation of the operations of the 
data object in particular. We are also pleased with the direct execution of the process 
timetables. The separation of process and data clarifies many of the implementation 
issues we have raised. Scheduling issues can be considered for the process objects alone, 
taking advantage of their simple expression of the gross sequencing. Similarly, database 
design will be concerned mainly with the data objects. Not all the restrictions we have 
assumed are unrealistic; it may, for instance, be acceptable to forbid the sharing of 
operations between process objects, so that they communicate only via data objects. 



Chapter 5 

Discussion & Summary 

5 .1 Discussion 

5.1.1 Specifying The Structure of the Implementation 

We pointed out, in our treatment of satisfaction (in Section 3.5), that the satisfaction 
ordering on semantic objects is only the first step towards a practical implementation 
scheme. We have a much more restrictive notion of satisfaction in mind. 

A specification should impose more than behavioural constraints on an implementa­
tion. This is not a new suggestion: advocates of the data approach have always taken 
it for granted that the operations of an abstract data type are to be implemented as 
separate code fragments. The structure of a specification is not determined merely by 
how easy it is to understand; it must influence the structure of the implementation too. 

Modularity & Maintenance 

A software system should be modular. Division into modules does not, by itself, make a 
system modular. The system must maintain the division over time; it must be possible 
to accommodate changes within modules, so that their effect is localized. Thus, we can 
only judge whether a system is modular if we know what changes are likely to be made. 
A classic example is provided by the data approach. The representation of an abstract 
data type is likely to change, so we encapsulate it within a single module, hiding it from 
the rest of the system. 

In general, we need to study the subject matter of the system to know which modifi­
cations are most probable, and then we can design the system with those modifications 
in mind. Fortunately, it is rarely necessary to predict exactly which modifications will 
be demanded. The designer of a data abstraction knows that changes in representation 
are likely, but not which changes. The first stage in the JSD method [Jackson 83] is an 
explicit modelling of the subject matter of the system. Jackson contends that this makes 
the system more maintainable; the set of functions that may be added to the system is 
no longer unpredictable, but depends on the richness of the model. Good designers are 
aware of this principle (at least subconsciously): it is clear, for example, that a banking 
system must have a component representing an account, whether it is a database record, 
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a data abstraction, a process or whatever. Explicit modelling is also justified as a formal­
ization of the client's understanding of the problem domain upon which a more rigorous 
description of requirements may be based [Cameron 86]. 

Specifying Internal Structure 

This view of maintenance emphasizes the structure of the specification more than tradi­
tional approaches. The specification aphorism 'describe what and not how' is commonly 
interpreted as a condemnation of specifications that constrain the internal structure of 
the specification. We believe that, to the contrary, if the structure of an implementation 
is not constrained by its specification, it is likely to be unmodifiable. 

We expect implementations of our specifications to respect most of their structure. 
Implementation will be concerned mainly with resource allocation: scheduling the avail­
able processors amongst the objects and designing data structures and algorithms to 
manipulate them efficiently. The implementation structure must correspond to the spec­
ification structure both in the division into objects, and in the internal structure of the 
objects. We do not think that it will be easy to formalize this notion of satisfaction, and 
it is likely to remain an informal appendage to the formal satisfaction notion for some 
time. 

Data Objects 

The implementation must enforce the encapsulation of the operations. Also, the state of 
the data object must be implemented. This is controversial; some advocates of the data 
approach insist that it is the behaviour of the operations only that matters, and that a 
specification that employs a state containing more information than strictly necessary 
is biased. This is a common complaint against model-oriented specifications: specifiers 
may over-constrain an implementation by demanding properties of the state that are 
inessential. Suppose, for example, that we based the specification of a set on a sequence. 
We specify an insert operation that inserts an element by appending it to the end of the 
sequence, a member operation that tests whether an element is in the sequence and a 
choose operation that removes an arbitrary element from the set. We might think that 
if we allowed any element of the sequence to be returned the specification would not be 
biased. It is true that we have not over-constrained the behaviour of the specification, 
since we cannot determine the order in which elements were inserted by using choose 
or member. However, we would have over-constrained the state. The usual notion of 
satisfaction is not applied to the behaviour of the operations in relation to one another, 
but to the state transformations of each operation. Since insert appended the new element 
to the end of the sequence, the implementation must order the elements too. Jones offers a 
criterion for implementation bias [Jones 86]: if two values of the state of the specification 
can be distinguished by the primitive operators of its type, but not by the operations of 
the specified type, then the specification is biased. 

The criticism brought against model-oriented specifications is less relevant to our 
specifications. A data specification's state is not merely a device to help describe its 
behaviour: it is usually embodies genuine state in the problem domain. We construct 
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the state from primitive types; these will not be biased since we can define them by their 
properties alone in an auxiliary specification (as shown in Section 4.1.4). We argued in 
Chapter 2 that data specifications are suitable only when the state is important. When 
the state is unimportant, we would expect to use a process object, and then, since the 
specification does not mention state, the question of bias does not arise. One purpose 
of a specification is precisely to bias the implementation; our method allows bias to be 
used where appropriate and avoided elsewhere. 

Behavioural implementations may be unmaintainable. Consider a pocket calculator 
offering statistical functions 1 . Suppose we specified a data object with operations enter, 
clear, mean and sd. We choose a multiset as the state; enter inserts elements into the 
multiset an clear empties it. mean and sd are defined according to their textbook defini­
tions: the mean is the sum of all the elements divided by the number of elements, and 
the standard deviation is the root of the sum of the squares of the deviations from the 
mean. Now notice that this specification is 'biased'. The mean and standard deviation 
functions can be defined if the state retains less information. All we need keep is the 
number of values entered, their sum and the sum of their squares. So we might implement 
the data object with this slimmer state, so that the implementation's behaviour, but not 
its structure, satisfied the specification. Suppose then that we wanted to add a median 
function to the calculator: we would have to elaborate the state. The multiset was not 
a technical device. We think of statistical samples as sequences of values whose order 
does not matter, and the implementation ignored this. Of course, one can still pick an 
inappropriate state: for some statistical applications the order of elements in the sample 
does matter. (Some pocket calculators interpret a sequence of elements entered in order 
as a set of pairs, providing the first element of each pair automatically by incrementing 
a counter.) 

Process Objects 

We also intend that the structure of the process specification be evident in the imple­
mentation. A reasonable elaboration of the process notation would allow the timetable 
to be expressed as a regular grammar rather than a regular expression. This allows us to 
introduce names for non-terminals that may be important in maintenance. For example, 
use of a workstation might be described by 

WKS =: Operations are 
user?: Name 
passwd?: Pass 
no?, yes?, logout? 

Timetable is SESSION* 
SESSION = BADSESSION 0 GOODSESSION 
GOODSESSION = GOODLOGIN logout? 
BADSESSION = BADLOGIN+ GOODLOGIN logout? 
BADLOGIN = ENTRY no? 

1 Example due to Carroll Morgan 
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GOODLOGIN = ENTRY yes? 
ENTRY= user? passwd? 

The specifier considered the distinction between 'bad sessions' and 'good sessions' signif­
icant, perhaps because users who failed once to gain entry should be considered suspect 
throughout their session. Consider a different specification 

WKS' :::=: Operations are 
user?: Name 
passwd?: Pass 
no?, yes?, logout? 

Timetable is SESSION* 
SESSION = BADLOGIN* GOODLOGIN logout? 
BADLOGIN = ENTRY no? 
GOODLOGIN = ENTRY yes? 
ENTRY= user? passwd? 

These specification describe the same semantic objects. The timetable grammars denote 
the same set of operation sentences. But the grammars are structured differently; the 
second makes no distinction between good and bad sessions. Suppose the system ad­
ministrator wants a report listing the start and end times of all sessions that began with 
an incorrect password entry. Two new operations are to be inserted: one at the start of 
such a session, and one at the end. It is clear where to put them in WKS - at the start 
and end of the BADSESSION component. But the operations cannot be placed in WKS' 
without restructuring. An implementation of WKS that did not respect the structure of 
the timetable would not bear this modification. 

This idea is familiar to compiler writers. A reference grammar defines the language 
recognized by the compiler, but a more elaborate grammar - the working grammar - is 
used during development of the compiler. The working grammar makes more distinctions 
than the reference grammar, making it easier to introduce static semantic checks and code 
generation. 

Specification of internal structure is common to the operational approaches. But 
there are some aspects of the implementation's structure that we must not constrain -
for example, the internal structure of the operations of a data object. Zave explains 
the distinction to be between 'problem-oriented' structure and 'implementation-oriented' 
structure [Zave 84]. 

Other Satisfaction Notions 

In some circumstances it may be desirable for an implementation not to satisfy the 
structural constraints of the specification. Sometimes, for example, maintenance is not 
a concern at all. Nobody would seriously suggest that an electronic calculator should 
be constructed with modification in mind. A disposable piece of software that is not to 
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be maintained might not have to satisfy structural constraints (but no real system will 
be disposable). Furthermore, most specifications have errors in them, so modifications 
may occur before the software is even complete. Implementers also make errors, and a 
well-structured implementation is much easier to work with. 

Implementations generated by mechanical transformations should also be less con­
strained. Structural constraints are justified by maintenance; if we never intend to main­
tain a document by hand, its structure does not matter. Programmers are careful to 
make their programs understandable, but a compiler generates code to run fast, not to 
be readable. So, if there are useful transformations that could be used in implementing 
our specifications, we would not expect them to satisfy the same criteria as a manual 
implementation technique. 

5.2 Related Work 

5.2.1 Data & Process 

We have not found any work that addresses the combination of data and process in a 
manner analagous to ours. Campbell & Habermann use regular expressions to specify 
the permissible operation sequences on a typed object, although their concern is limited 
to synchronization of access to shared resources [Campbell 74]. Bartussek & Parnas have 
developed a specification language in which separate axioms define the meaning of the 
operators and 'legal traces', the orders in which they may be invoked [Bartussek 77]. 

As we discussed in Chapter 2, most approaches to software development incorporate 
notions of both data and process, but invariably, one is dominant and the other insuffi­
ciently treated. Our experience has suggested that it may not be as easy as it seems to 
extend an existing approach. We started by trying to generalize the notion of indexing 
in CSP [Hoare 85]. An example from Hoare's book [Hoare 85] introduces the notion of 
indexing: 

An object starts on the ground, and may move up. At any time thereafter, 
it may move up or down, except that when on the ground it cannot move 
any further down. But when it is on the ground, it may move around. Let n 
range over the natural numbers {0,1,2, ... }. For each n, introduce the indexed 
name CTn to describe the behaviour of the object when it is n moves off the 
ground. Its initial behaviour is defined as 

CT a = (up -+ CT1 I around-+ CT 0) 

and the remaining infinite set of equations consists of 

CT n+l = (up -+ CTn+2 I down -+ CT n) 

where n ranges over the natural numbers 0,1,2, .... 

Later in the book a buffer is described by indexing the process name with the sequence 
of symbols 'stored'; the index no longer follows a simple progression as in a recurrence 
relation, but is manipulated by more general operators on sequences. 
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We considered extending this to indexing of process names with the values of abstract 
types, whose operators were specified by an accompanying 'data' specification. So, for 
example, the bank account of Section 2.2.3 became 

ACC = open? d-+ ACCinit(d) 
ACCA = payin? p --t ACCdeposit(A,p) 

I wdraw? W --t ACCwithdraw(A,w) 
I bal! balance(A) -+ ACCA 
I close -+ STOP 

where A has abstract type Account, with operators (that is, side-effect free functions) 
init, deposit, withdraw and balance (defined by a conventional algebraic specification in 
Larch [Guttag 85b]). 

This idea failed for two reasons: 

1. We often wanted to impose conditions on event occurrences that did not fit com­
fortably in the process equations. Suppose, for example, we wanted to disallow 
wdraw events when the balance is below zero. There is no natural place to write 
this condition in the process equation. We could place bounds on the distributed 
choice operator preceding wdraw; this only works here because wdraw only appears 
once in the process expression. The condition is associated with the set of wdraw 
events: it is a condition on an operation, and there are no operations here. 

2. We were unhappy interpreting the CSP equations as state machines. We wanted 
both to retain the trace semantics of CSP and at the same time to incorporate the 
notion of state transitions for the abstract state, but this was infeasible. 

We had characterized the paradigms wrongly, postulating that the process part was 
about scheduling, and the data part was about values and relationships between values. 
Our data specifications had no temporal aspects; they described spaces of immutable 
values that would be passed around within the process specification. We later abandoned 
that view. The essence of the data part is state and the partitioning of events into 
operations. Our data specifications do incorporate scheduling constraints, but only those 
related to the data state, applied homogeneously to all the events of an operation. 

5.2.2 Composing Descriptions 

In [Jackson 86], Jackson proposes that software creation be viewed as the production 
and manipulation of descriptions. In the same way that the mechanical engineer is not 
restricted to a single material -- a car cannot be made entirely out of steel, rubber or 
glass - so software developers should be able to combine different sorts of descriptions. 
Different languages are suitable to different aspects of a software system, and, rather 
than aspiring to languages of universal application, we should concentrate on combining 
existing languages. He argues that CSP's notion of parallel combination is more flexible 
than the 'whole-and-part' composition mechanism of procedure call. 
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Our work is an example of a composition of two specification languages, using a 
combinator akin to the CSP combinator. Zave has been working recently on combining 
implementation languages; an example in [Zave 88a] demonstrates the combination of 
CSP, Prolog and PAISLey in a telephone switching system. Her approach, called view 

composition, is described in [Zave 88b]. 
The Larch specification language [Guttag 85b] is a successful composition of two 

aspects of a data specification. Each specification is written in two tiers. The interface 
language tier describes procedures by means of predicates giving pre- and post-conditions. 
These predicates contain operators that are defined algebraically in the Shared Language 
tier. The two tiers make it possible to separate the definition of underlying mathematical 
abstractions from the description of language-dependent interface details, such as shared 
memory, side-effects and exception handling. There is one Larch interface language for 
each programming language. 

5.3 Further Work 

5.3.1 The Model 

Non-Determinism 

The treatment of non-determinism is deficient in our model. Consider first the notion 
of internal operations. Internal operations are used to give an object autonomy in the 
choice and execution of an operation. Unlike the hidden events of CSP, they do occur 
in traces. They are useful for describing mechanisms that are outside the scope of the 
specification. For example, the ticket machine may have a sensor that raises a signal 
when the ticket supply is low. We might represent the signalling by an internal operation 
in our specification, since, for the software, it occurs non-deterministically. Suppose 
however that we wanted to offer the implementer a choice of external operation at some 
point. This is not easily represented in our model. We can simulate a non-deterministic 
choice between the external operations by prefixing them with internal operations. For 
example, a ticket machine that may deliver pink or yellow tickets as it pleases may be 
specified as 

Operations are 
select?: {60,80} 
incoin?: {10,20,50,100} 
choose Y, chooseP 
delY?: {60,80} 
delP?: {60,80} 
outcoin?: {10,20} 

Timetable is (select? incoin?+ ( chooseP delP? D chooseY delY?) outcoin?*)* 

A trace of TMP is 
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<select.60, incoin.50, incoin.10, chooseP, delP.60> 

The chooseP operations is out of place, and we would rather it did not have to appear. 
Even worse, chooseP and chooseY must both be operations of the implementation object, 
so a ticket machine that only knew of yellow tickets would not be acceptable. 

A proper treatment of non-determinism requires the notion of refusals or ready sets 
[Brookes 84]. Instead of considering the set of operations that can occur after some trace, 
we would have to consider a set of sets of operations. In one formulation, each set of 
operations is a 'ready' set, and represents the set of operations offered by the object after 
a sequence of one or more internal choices. The liveness satisfaction criterion would then 
require that any ready set of the implementation is a superset of every ready set of the 
specification. 

Another deficiency of our model is the notion of crashing, which is extremely crude. 
Introducing full non-determinism would allow us to specify chaotic ( ie, unpredictable) 
behaviour, and we could dispense with crashing. 

Recall that our omission of full non-determinism from our model prevented us from 
allowing the context of a data operation to be non-deterministic. There are cases in 
which this would be desirable. Suppose our ticket machine sends a message to a central 
depot when the change supply is low. We might want to specify that it must be sent if 
the machine cannot guarantee change for the next transaction, but that it may be sent 
earlier, when the change level drops below some specified point. 

New Combinators 

It may be useful to add other combinators to the model. In describing shared resources 
an interleaving combinator is convenient. For example, we might have a message queue 
data object, written to by several distinct objects. We could give the writing operation 
of each of these a different name, and, by renaming (Section 3.6.5), make each of these a 
pseudonym of the write operation provided by the message queue. This is cumbersome, 
and it is also unfortunate that to add a new writing object we would have to amend 
the renaming since the shared resource must know the names of its clients. An inter­
leaving combinator would solve this problem. By interleaving the writing objects, and 
linking (Section 3.3.2) that combination to the shared queue, we could enforce synchro­
nization between each writer and the message queue while allowing the writers to run 
independently. 

A hiding operator might also be useful. Its absence was evident in the queue merger 
example of Section 3.6.6 when it would have been appropriate to hide the internal oper­
ations. We have avoided it because it introduces more non-determinism than our model 
can handle. Having included general non-determinism, it would be worth adding a hiding 
operator too. 

5.3.2 Specifications 

Our specification language is too primitive for practical use. A syntax should be devel­
oped that is both easy to read and suitable for machine manipulation. For editing system 
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specifications it would be useful to elaborate the combinator and enclosure notation to 
include various redundancy checks (as in the Larch Shared Language [Guttag 85b]): the 
specifier could record, for instance, which operations are intended to link two objects, 
and which operations remain external after enclosure. 

Process Objects 

As we mentioned above (Section 5.1.1), we expect the timetable of a process object to 
be expressed as a regular grammar rather than a regular expression: the naming of non­
terminals aids maintenance, as well as breaking the timetable into more comprehensible 
pieces. We might use a context-free grammar for its additional expressive power. 

Data Objects 

The notation for data objects could benefit from several elaborations. We gave an exam­
ple of a data specification that used operators and types defined in an auxiliary algebraic 
specification (Section 4.1.4) but we did not give an adequate syntax for incorporating 
the auxiliary specifications. Constructing the type of the state with domain equations 
from primitive types (as in VDM) may be useful too. A 'modifies at most' clause, as in 
the Larch CLU interface language, could be used to indicate which components of the 
state an operation may modify. The pre-condition of an input operation is only implicit 
in its effect clause; we could separate the effect clause into a pre-condition (on input 
arguments) and a post-condition. 

5.4 Summary 

To conclude, we give a brief summary of our work. We started by analyzing two spec­
ifications of the same system, one written in the data paradigm and one in the process 
paradigm. The data specification defined a state, and a set of operations that modified 
the state. The process specification constrained the sequencing of events. We considered 
some simple elaborations of the specification, and saw that each was easy to express in 
only one of the specifications. We postulated that state and sequencing are the essences 
of the data and process paradigms respectively, and we argued that omission of either 
of these aspects has dire consequences for system development. Without explicit data, 
a system cannot take advantage of representation independence, a vital tool for reduc­
ing complexity. Without sequencing notions, the components of a system cannot be 
connected in an abstract fashion. 

An informal specification of a ticket machine fell naturally into two parts. We pre­
sented a formal specification mirroring the two parts; the data part defined a state and 
operations on the state and the process part defined an explicit ordering on the oper­
ations. The data part restricted the order of operations, by giving a context for each 
operation. We gave a formal semantics of our specification in terms of traces. Each part 
of the specification denoted an obiect· the meanin!! of the comoosite soecification was 
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Our formal semantics can handle arbitrary combinations of objects. In a series of small 
examples, we showed how to combine several process and data objects. vVe added two 
new operators on objects, renaming and enclosure, that are useful in building systems. 

We defined a satisfaction ordering on objects~ the first step towards an implemen­
tation technique. In a small case study, we presented a more elaborate form of the data 
specification that incorporated an algebraic specification. We implemented it in CL u, 
and discussed some of the issues that a practical implementation scheme would have 
to address. Finally, we outlined a prescriptive notion of implementation in which the 
specification imposes constraints on the structure of the implementation. 

The contributions of our work are two-fold. First, we hope that our analysis of the 
data and process approaches has clarified the differences between them, and will lead to 
a better appreciation of their strengths and weaknesses. Secondly, we have shown how 
to combine data and process in a software specification. 



Appendix A 

Ticket Machine Code 

Op__name = string 3 Global type definitions: CL Uhas no enumeration type, 
Coin = int %so Coin and Fare are defined as ints, which is unsafe, 
Fare = int 3 but adequate here. 

start_up = proc () 
%make a ticket machine process object 
TMp_re: re := re$parse ("(setlight select incoin+ deliver outcoin*)*") 
TMp_fsm: fsm := fsm$re_to_fsm (TMp_re) 

%make auditing process 
AUDIT _re: re := re$parse ("report") 
AUDIT_fsm: fsm := fsm$re_to_fsm (AUDIT_re) 

%simulate concurrent execution of ticket machine and auditor 
simulate_conc (TM p_fsm, AUD IT _fsm) 
end starLup 

simulate_conc = proc (fl: fsm, f2: fsm) 
while ""'fsm$empty (fl) I ""'fsm$empty (f2) do 

if ""'fsm$empty (fl) then 
fl := attempt_fsm_step (fl) 
end 

if ""'fsm$empty (f2) then 
f2 := attempt_fsm_step (f2) 
end 

end 
end simulate_conc 

attempt_fsm_step = proc (f: fsm) returns (fsm) 
for op: Op__name in fsm$nexLop (f) do 

try (op) except when executed: f:= fsm$step (f, op) break end 
end 

return (f) 
end attempt_fsm_step 
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try= proc (op: Op_name) signals (executed) 
if op = "setlight" then 

if TMd$setlight_context () then 
b: bool := TMd$setlight_op () 
if b then 

write ("Change available") 
else 

write ("Out of change") 
end 

signal executed 
end 

elseif op = "select" then 
if TMd$select_context () then 

f: Fare := int$parse (prompLread ("Select fare" )) 
TMd$select_op (f) 
signal executed 
end 

elseif op = "incoin" then 
if TMd$incoin_context () then 

c: Coin := int$parse (prompLread ("Insert coin ")) 
TMd$incoin_op ( c) 
signal executed 
end 

elseif op = "deliver" then 
if TMd$deliver_context () then 

f: Fare := TMd$deliver_op () 
formatd_write ("Out pops ticket of fare ", int$unparse (f)) 
signal executed 
end 

elseif op = "outcoin" then 
if TMd$outcoin_context () then 

c: Coin := TMd$outcoin_op () 
formatd_write ("Out pops coin ", int$unparse ( c)) 
signal executed 
end 

elseif op = "report" then 
if TMd$reporLcontext ()then 

cl, c2: int := TMd$reporLop () 
formatd_write ("Sales of 60p tickets ", int$unparse (cl)) 
formatd_write ("Sales of 80p tickets ", int$unparse ( c2)) 
signal executed 
end 

end 
end try 



TMd = cluster is 
3 Ticket Machine Data Object Cluster 

setligh Leon text, setligh Lop, 
selecLcontext, selecLop, 
incoin_con text, incoin_op, 
deli ver_con text, deli ver_op, 
outcoin_con text, ou tcoin_op, 
reporLcontext, reporLop 

rep= record 
[BAL: int, 
FARE: Fare, 
ClO: int, 
C20: int, 
C50: int, 
ClOO: int, 
T60: int, 
TSO: int] 

own tm: rep := rep$ 
{BAL: 0, FARE: 60, 
ClO: O, C20: O, C50: 0, ClOO: 0, 
T60: 0, TSO: O} 

reporLcontext = proc () returns (bool) 
return (tm.T60 + tm.TSO > 5) 
end reporLcontext 

reporLop = proc ()returns (int, int) 
sales_60: int := tm.T60 
sales_SO: int := tm.TSO 
tm.T60 := 0 
tm.TSO := 0 
return ( sales_60, sales_SO) 
end reporLop 

setlighLcontext = proc () returns (bool) 
return ("' outcoin_context ()) 
end setlighLcontext 

setlighLop = proc () returns (bool) 
return (tm.ClO ~ 9) 
end setlight_op 
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select_context = proc () returns (bool) 
return (true) 
end select_context 

select_op = proc (f: Fare) 
tm.FARE := f 
end select_op 

incoin_context = proc () returns (bool) 
return (tm.BAL < tm.FARE) 
end incoin_context 

incoin_op = proc ( c: Coin) 
tm.BAL := tm.BAL + c 
if c = 100 then 

tm.ClOO := tm.ClOO + 1 
elseif c = 50 then 

tm.C50 := tm.C50 + 1 
elseif c = 20 then 

tm.C20 := tm.C20 + 1 
elseif c = 10 then 

tm.ClO := tm.ClO + 1 
end 

end incoin_op 

deliver_context = proc () returns (bool) 
return (tm.BAL ~ tm.FARE) 
end deliver_context 

deliver_op = proc ()returns (Fare) 
if tm.FARE = 60 then 

tm.T60 := tm.T60 + 1 
elseif tm.FARE = 80 then 

tm.T80 := tm.T80 + 1 
end 

tm.BAL := tm.BAL - tm.FARE 
return (tm.FARE) 
end deliver_op 

outcoin_context = proc () returns (bool) 
return (tm.BAL ~ 10 & tm.ClO > 0 I 

tm.BAL ~ 20 & tm.C20 > 0 \ 
tm.BAL ~ 50 & tm.C50 > 0 \ 
tm.BAL ~ 100 & tm.ClOO > 0) 

end outcoin_context 
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outcoin_op = proc () returns (Coin) 
c: int 
if tm.BAL ~ 100 & tm.ClOO > 0 then 

c := 100 
tm.ClOO := tm.ClOO - 1 

elseif tm.BAL ~ 50 & tm.C50 > 0 then 
c := 50 
tm.C50 := tm.C50 - 1 

elseif tm.BAL ~ 20 & tm.C20 > 0 then 
c := 20 
tm.C20 := tm.C20 - 1 

elseif tm.BAL ~ 10 & tm.ClO > 0 then 
c := 10 
tm.ClO := tm.ClO - 1 
end 

tm.BAL := tm.BAL - c 
return ( c) 
end outcoin_op 

end TMd 

re = cluster is parse, mk_tml, mk_choice, mkjter, mk_seq, 
is_tml, is_seq, is...sel, isjtr, 
get_one, geLtwo, geLtml, get_body 

rep = oneof [tml: Op_name, 
seq: re_ pair, 
sel: re_pair, 
itr: re] 

re_pair = record [one: re, two: re] 

parse= proc (s: string) returns (cvt) 
%parses the strings, and calls the procedures 
3 mk_tml, mk_choice, mk_iter and mk_sel to construct 
3 a regular expression. 

mk_tml = proc (op: Op_name) returns (cvt) 
return (rep$make_tml (op)) 
end mk_tml 

mk_choice = proc ( r 1,r2: re) returns ( cvt) 
return (rep$make_sel (re_pair${one: rl, two: r2} )) 
end mk_choice 
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mkJter = proc (r: re) returns (cvt) 
return (rep$makejtr (r)) 
end mkJter 

mk_seq = proc (rl,r2: re) returns (cvt) 

APPENDIX A. TICKET MACHINE CODE 

return (rep$make..seq (re_pair${ one: rl, two: r2} )) 
end mk_seq 

is_tml = proc (r: cvt) returns (bool) 
return ( rep$is_tml ( r)) 
end is_tml 

is_seq = proc ( r: cvt) returns (bool) 
return ( rep$is_seq ( r)) 
end is_seq 

is_sel = proc (r: cvt) returns (bool) 
return (rep$is_sel (r)) 
end is_sel 

isJtr = proc (r: cvt) returns (bool) 
return ( rep$isJtr ( r)) 
end isJtr 

get_one = proc (r: cvt) returns (re) signals (not..seq_or_sel) 
%returns the first regular expression in a sequence or selection 
tagcase r 
tag sel (rp: re_pair): return (rp.one) 
tag seq (rp: re_pair): return (rp.one) 
others: signal not..seq_or_sel 
end 
end get_one 

get_two = proc (r: cvt) returns (re) signals (not..seq_or..sel) 
%returns the second regular expression in a sequence or selection 
tagcase r 
tag sel (rp: re_pair): return (rp.two) 
tag seq (rp: re_pair): return (rp.two) 
others: signal noLseq _or ..sel 
end 
end get_two 

get_body = proc (r: cvt) returns (re) signals (notJtr) 
%returns the regular expression that is the body of an iteration 
tagcase r 
tag itr (rl: re): return (rl) 
others: signal noLitr 



end 
end get_body 

get_tml = proc (r: cvt) returns (Op_name) signals (noLtml) 
% returns the op name in a regular expression that is a terminal 
tagcase r 
tag tml (op: Op_name): return (op) 
others: signal not_tml 
end 
end get_tml 

end re 

fsm = cluster is re_to_fsm, nexLop, step, empty 
rep = record [init : state, final: state] 
state = array [edge] 
edge = record [labelled: bool, label: Op_name, dest: fsm] 
%An fsm is a non-deterministic finite automaton, represented 
%in the standard fashion. The procedure step executes 
%the fsm by re-assigning the pointer to the initial state. 
%Note that since only one initial state is maintained, when 
% two edges leaving some state have the same label, only one of 
%the transitions is taken. Regular expressions with 'backtracking' 
%are thus not properly handled. 

% The destination of an edge is an fsm, since making it a state 
% would violate Clu 's rules for defining recursive types. 

nexLop = iter (f: cvt) yields (Op_name) 
%returns a list of the operations that can occur next 
%according to the fsm f. 
fore: edge in state$elements (f.init) do 

if e.labelled then yield (e.label) 
else 

for op: Op_name in next_op ( e.dest) do 
yield (op) 
end 

end 
end 

end nexLop 

step= proc (f: cvt, op: Op_rrnme) returns (fsm) signals (no_such_step) 
%returns the fsm obtained from f by performing the operation op 
fore: edge in state$elements (f.init) do 

if e.labelled then 
if e.label =op then return (e.dest) end 

else 
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return (step ( e.dest, op)) 
end 
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except when no_.such_step: continue end 
end 

signal no_.such_step 
end step 

empty= proc (f: cvt) returns (bool) 
return (state$empty(f.init)) 
end empty 

new = proc () returns ( cvt) 
%creates a new, empty finite state machine 
return (rep${init: state$[], final: state$[]}) 
end new 

re_to_fsm = proc ( r: re) returns ( cvt) 
%converts a regular expression into a finite state machine 
if re$is_tml ( r) then 

%regular expression is a terminal 
op: OpJtame := r.tml 
f: fsm := new() 
si: state := state$[edge$ {labelled: true, label: op, <lest: f}] 
return (rep${init: si, final: down (f).init}) 

elseif re$is_seq ( r) then 
% regular expression is a sequence 
fl: rep := down (re_to_fsm (r.one)) 
f2: rep := down ( re_to_fsm ( r. two)) 
%add an edge from the final state of fl to the 
%initial state of f2 
e: edge := edge$ {labelled: false, 

label: "", 
<lest: up (f2)} 

state$addh (fl.final, e) 
return (rep${init: fl.init, final: f2.final}) 

elseif re$is_sel (r) then 
% regular expression is a selection 
fl: rep := down (re_to_fsm (r.one)) 
f2: rep:= down (re_to_fsm (r.two)) 
%add a state with outgoing edges to the initial states of 
%fl and f2 
si: state := state$[edge$ {labelled: false, 

label: "", 
<lest: up (fl)}, 

edge$ {labelled: false, 
label: "", 



<lest: up (f2)}] 
%add an edge from the final states of fl and f2 to a 
%new dummy state 
f: fsm :=new() 
el: edge := edge$ {labelled: false, label: "", <lest: f} 
e2: edge := edge$ {labelled: false, label: "", <lest: f} 
state$addh (fl.final, el) 
state$addh (f2.final, e2) 
return ( rep${init: si, final: down (f).init}) 

elseif re$isJtr (r) then 
3 regular expression is an iteration 
f: rep := down (re_to_fsm (r.body)) 
%add a state with outgoing edges to the initial and final 
%states of the fsm representing r 
fb: rep := rep${init: f.final, final: f.final} 
si: state := state$[edge$ {labelled: false, 

label: "", 
<lest: up (f)}, 

edge$ {labelled: false, 
label: "", 
<lest: up(fb)}] 

%add an edge from the final state to the initial state 
e: edge := edge$ {labelled: false, 

label: "", 
<lest: up (f)} 

state$addh ( f.final, e) 
return (rep${init: si, final: f.final}) 

end 
end re_to_f sm 

end fsm 

write = proc ( s: string) 
outs: stream := stream$primary _output () 
stream$pu ts( outs, s) 
stream$putl( outs, "") 
end write 

formatd_write = proc (sl, s2: string) 
outs: stream := stream$primary _output () 
stream$puts(outs, sl) 
stream$putl( outs, s2) 
stream$putl( outs, "") 
end formatd_write 
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•irf: .... :• ....... d(iu) .....,.._.., .. ) 
ret-.(.uy) 
end~ 



Appendix B 

Transcript of Terminal Session 

A transcript of a terminal session running the ticket machine follows. The text has been 
doctored slightly to improve formatting, and comments (in italics) have been added. 

Script started on Fri Apr 29 11:35:50 1988 
% a.out 

Out of change Starts with no change 8 infinite ticket supply 

Select fare 60 

Insert coin 20 

Insert coin 10 

Insert coin 20 
Insert coin 10 

Out pops ticket of fare 60 

Out of change 

Select fare 80 

Insert coin 10 
Insert coin 10 

Insert coin 10 
Insert coin 10 

Insert coin 10 

Insert coin 10 

Insert coin 10 

Insert coin 10 

Out pops ticket of fare 80 

Change available 

Select fare 60 

Insert coin 50 

Insert coin 20 

Out pops ticket of fare 60 
Out pops coin 10 

1st customer inserts exact change 

... because there are fewer than nine 1 O's 

2nd customer inserts lots of 10 's 

Now machine has 'enough' change 

3rd customer receives change 
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Change available 

Select fare 60 

Insert coin 50 

Insert coin 100 

Out pops ticket of fare 60 

Out pops coin 50 

Out pops coin 20 
Out pops coin 20 

Change available 

Select fare 60 

Insert coin 50 

Insert coin 100 

Out pops ticket of fare 60 
Out pops coin 50 

Out pops coin 20 
Out pops coin 10 

Out pops coin 10 

Out of change 

Select fare 60 

Insert coin 50 

Insert coin 100 

Out pops ticket of fare 60 

Sales of 60p tickets 5 
Sales of 80p tickets 1 

Out pops coin 50 
Out pops coin 10 

Out pops coin 10 

Out pops coin 10 

Out pops coin 10 

Out of change 

Select fare 60 

Insert coin 50 
Insert coin 100 

Out pops ticket of fare 60 
Out pops coin 50 

Out pops coin 10 
Out pops coin 10 

Out pops coin 10 

APPENDIX B. TRANSCRIPT OF TERMINAL SESSION 

4th customer 

Larger denomination first 

5th customer 

Machine has run out of 20's 

Now there are fewer than nine 10's 

6th customer ignores warning, but gets change 

Auditing process reports ticket sales 

7th customer ignores warning &J loses 1 Op 



Outofc.hanae 

Select fM eo 
"""' .... 50 
Out ,. tidllt ...... 

"-ltript .... on Fri. a 11:11:12 ... 
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Appendix C 

Glossary 

Regular Expressions 

A sequence of zero or more E's. 
A sequence of one or more Es. 
Choice of E or F. 

Events and Traces 

op.a 

* 
<e,f> 
<> 
S·t 
to 

t' 
T/t 
T//t 
t lop 
Seq(OP1 A) 

Objects 

The event of operation op with argument a. 
The crash event or operation. 
The trace consisting of the events e and f 
The empty trace. 
The concatenation of trace s and trace t. 
Trace t without its last event; <>0 = <>. 
The last operation in trace t; <>' is not defined. 
The operations that may follow trace t in trace set T. 
The events that may follow trace t in trace set T. 
Trace t restricted to the events whose operations are in OP. 
The set of legal event sequences for an object with 
operations OP and argument map A. 

X.Y Combination of objects X and Y. 
X 8 Y Combination (linking); X and Y share operations. 
X 0 Y Combination (meshing); X and Y do not share operations. 
OcX Enclosure of object X around output operations C. 
J(X) Renaming of object X with operation mapping f 
i : X Object X labelled with i. 
X[a 1 b for c} Renaming of X; a and bare pseudonyms of c. 
X ~ Y Satisfaction: object X is as good as object Y. 
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