MAC-TR-42

DESIGN AND IMPLEMENTATION
OF A

TABLE-DRIVEN COMPILER SYSTEM

Chung L. Liu
Gabriel D. Chang

Richard E. Marks

July 1967

Project MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

This empty page was substituted for a
blank page in the original document.

ABSTRACT

Our goal is to provide users of the table-driven compiler system with an environment
within which they can freely design and produce their compilers. The primary design cri-
terion is generality so that the users can define a large class of input languages oriented to-
ward any kind of problem-solving purposes, and can also define a large class of object
programs to be executed on different computer systems. Therefore, in our system we do
not limit the users to specific ways of doing syntactic analysis, or doing storage allocation,
or producing binary programs of a specific format for a particular computer system. What
we provide are mechanisms that are general enough for whichever way a user desires to
build his compiler.

The table-driven compiler system consists of a base program and two fixed higher-
level languages — the Table Declaration and Manipulation Language and the Macro Inter-
pretation Language — together with the corresponding translators which generate the control
tables according to the user’s specification. A third higher-level language — the Syntax
Defining Language — and its corresponding translator are also needed. However, their defi-
nitions are left to the users for the reason of providing them with greater flexibility in
specifying the method of syntactic analysis. The base program is controlled by the control
tables to perform the task of translating source programs into object machine codes, It is
a general program which is independent of the particular source language being translated
as well as the method of translation. The control tables contain an encodement of the
syntax of the source language, an encodement of the method of translation and an encode-
ment of the characteristics of the target machine.

In our design, we emphasize the segmentation of the system so that the functions
of each section will be clearly defined and be brought out in evidence. The communication
problem between the segments is not a difficult one to handle as illustrated in our design.
It should also be pointed out that for the generality and flexibility we try to attain, less
consideration is placed on efficiency.

This empty page was substituted for a
blank page in the original document.

Section

ABSTRACT

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS
LIST OF TABLES

I

I

I

v

INTRODUCTION AND OVERVIEW

GENERAL ORGANIZATION

2.1 Introduction

2.2 The Syntactic Analyzer

2.3 The Table Processor

2.4 The Assembler

THE SYNTACTIC ANALYZER

3.1 Introduction

3.2 Organization of Data Tables

3.2.1 Referencing the Information Tables
3.22 STAB — The Analyzer’s Data Table

33 Routine LEXICAL
34 Routine TEST
3.5 Routine ACTION
3.6 Related Information
3.6.1 The Analyzer as a Subroutine
3.6.2 Recursive Calls
3.6.3 Control Table References
3.6.4 BCD Data
3.6.5 ACTION Operations
THE TABLE PROCESSOR
4.1 Introduction
4.2 Information Tables and Main Directory
4.3 Fixed Pointer Table
4.4 Table Manipulation Table
4.5 Operation of the Table Processor

Page

1ii
vii
viii

AN W W

10
10
11
13
17
19
21
21
21
22
22
23

25
25
28
30
30

vi TABLE OF CONTENTS (continued)

Section Page

V THE ASSEMBLER

5.1 Introduction 33
5.2 Macro List 33
53 Temporary Storage Pool 33
54 Use of Machine Registers 36 -
5.5 Macro Interpretation Table 36
5.6 Operation of the Assembler 36

VI THE CONTROL LANGUAGES

6.1 Introduction 43

6.2 An Example Syntax Defining Language 43
6.2.1 Lexical Declarations 43

6.2.2 Test Declarations 44

6.2.3 Stack Declarations . 45

6.2.4 ATAB Statements 46

6.2.5 TTAB Statements 48

6.3 Table Declaration and Manipulation Language 50
6.3.1 Table Declaration Statements 50

6.3.2 Table Manipulation Statements 51

6.4 Macro Interpretation Language 55

VII CONCLUSION 61
BIBLIOGRAPHY 63
APPENDICES 65
A Description of STAB, LTAB, TTAB, and ATAB Fields 67

B List of ACTION Operations 69

C Error Comments 71

D BNF Specification of Terminal Symbols and Basic Syntactic Types 73

E Flowcharts for the Assembler 75

F Sample Source Language and Control Language Compilation Statements 81

vi

Figure

2-2
2-3

3-1
3-2
3-3

4-1
4-2
43
4-4

5-1
E-1

E-2
E-3

LIST OF ILLUSTRATIONS

Organization of the Base Program
Tabular Control of the Base Program
The Bootstrap Operation

The Syntactic Analyzer
Array vs. Pushdown (Stack Implementation)
Character Testing Sequence for Routine LEXICAL

Example of an Information Table LITTAB used to Store Literals
Example Block in the Main Directory for Figure 4-1 Literal Table
Linkage Between an Information Table and the Fixed Pointer Table
Example of the Merge Operation

Format of a Macro with Three Arguments
Use of a Temporary Storage Pool

Overall Flowchart for the Assembler
Flowchart for Routine GENPRO
Flowchart for Routine GEN

Flowchart for CONVER and CONVGN

vii

Page

10
12
14

26
27
28
29

34
35

76
77
78
79

viii LIST OF TABLES

Table Page
3-1 Interface Routines Between Syntactic Analyzer and Table Processor H
3-2 Fields for Entries in LTAB Control Table 15
33 Fields for Entries in TTAB Control Table 17
34 Fields for Entries in ATAB Control Table 19
4-1 Fields for Entries in Table Manipulation Table 31
5-1 Entries and Fields for Macro Interpretation Table 37
5-2 Operands and Comparands for Macro Interpretation Table 39

6-1 Markstran Macro Definitions 47

viii

SECTION I

INTRODUCTION AND OVERVIEW

The application of digital computers to diverse fields has prompted the design of many
problem-oriented programming languages. Although developing a compiler for a special pur-
pose language is no longer a mysterious task, it is still, in most cases, a tedious task that may
consume many man-years. The purpose of developing a table-driven compiler system is to
allow a language designer to produce and modify a compiler for his special language at a re-
duction of the time currently required. This facility provides a simulation environment for
testing new syntactic constructions and new translation techniques for the source language,
and lends itself to the more rapid development of new programming languages, especially in
a time-sharing environment.

The notion of a “table-driven compiler” is an extension of the notion of a “syntax-
directed compiler” first studied by E. Irons. The difference between a conventional (i.e.,
not syntax-directed or table-driven compiler) and a syntax-directed compiler is that in a con-
ventional compiler the syntax of the source language is buried in the coding of the compiler
itself; the slightest deviation from the original syntax requires tampering with the original
coding of the compiler - often, a hopeless task. In a syntax-directed compiler, the encoding
of the syntax of the source language is kept in tables separated from the remainder of the
compiler. The tables control the recognition of strings in the source language and may be
readily changed so that the same processing program may handle source languages of
differing syntax.

The idea of using replaceable tables to specify the syntax of a source language to a com-
piler is extended in this report. In addition to tabular control of syntactic analysis, the sys-
tem presented here allows the compiler designer to construct tables controlling the allocation
of storage space, the method of translation, and the assembly of binary machine code. To
design a compiler for a new source language, the designer need only specify these tables. To
modify a compiler, he need only change the appropriate entries in the existing tables.

The design philosophy of our “Table-driven Compiler System” is not to provide the
user with an all-inclusive set of compiling facilities, but rather to provide him with an
environment within which he can freely design and produce his own compiler. We wish to
allow as large a class of problem-oriented input languages and object (i.e. machine) languages
as possible. We try not to limit the compiler designer to specific methods for syntactic
analysis or storage allocation or to specific binary machine codes.

This empty page was substituted for a
blank page in the original document.

SECTION 11

GENERAL ORGANIZATION

2.1 INTRODUCTION

The table-driven compiler system described here consists of a) a base program and b) a
set of control tables for controlling the operation of the base program. The control tables,
in turn, are specified by statements in the corresponding control languages. The base pro-
gram, when supplied with a set of control tables, first translates source programs into an
equivalent set of “‘macro” instructions and then generates the binary machine code for the
macro instructions. When interpreted by their bootstrap translators, statements in the con-
trol languages are encoded into the control tables needed by the base program to govern the
method of syntactic analysis, the allocation of storage space, and the translation of the
“macro” instructions.

To provide the base program with a complete set of control tables, the designer must
prepare sets of statements in three control languages. In the first of these languages, the
“Syntax Defining Language”, the designer specifies the control tables for syntactic analysis.
Both the Syntax Defining Language and its bootstrap translator must be prepared by the
designer. It is expected that eventually two or three syntax defining languages and their
bootstrap translators will be held within the system for a general use. In the second of
these languages, the “Table Declaration and Manipulation Language”, the designer specifies
the control tables for allocation of storage space. In the third of these languages, the “Macro
Interpretation Language”, the designer specifies the control tables for the method of trans-
lation of the equivalent “macro” instructions generated by the base program from the source
language program. The latter two languages and their bootstrap translators are provided in
the system.

As shown in Figure 2-1, the base program can be divided into three parts: the Syntac-
tic Analyzer, the Table Processor, and the Assembler. Each part is controlled by one or more
control tables, as shown in Figure 2-2.

2.2 THE SYNTACTIC ANALYZER

The Syntactic Analyzer scans programs written in the source language, recognizes syn-
tactic types, and generates a set of equivalent macro instructions that will later be interpreted
by the assembler. The Syntactic Analyzer also transmits storage allocation information to
the Table Processor. The Syntactic Analyzer is controlled by three tables: the Lexical Table,
the Test Table, and the Action Table. (See Figure 2-2.) The Lexical Table and the Test

4 SECTION II

Source Program

Base Program
I"— - -/

I
, Syntactic l
Analyzer
. '
|
I Table I
I Processor
| Nt |
| I
| Assembler l
I I

Object
Program

Figure 2-1. Organization of the Base Program

Table control the recognition of syntactic types. The Action Table controls the generation
of macros and the passage of related information to the Table Processor.

2.3 THE TABLE PROCESSOR

The Table Processor is divided into two parts. The first part accepts an item of informa-
tion (e.g., a variable name) from the Syntactic Analyzer, enters it into the appropriate in-
formation table (e.g., a symbol table), and returns a pointer to the item (e.g., the pointer
to the corresponding entry in the symbol table). The second part, called after the Syn-
tactic Analyzer has completed its analysis, sorts and merges the information tables and
assigns addresses to the symbols and literals within the tables. The Table Processor is con-
trolled by two tables: the Main Directory, and the Table Manipulation Table. The Main
Directory contains the format specification of the information tables, i.e., the maximum
number of entries in each information table, the number of fields in each entry, the packing
mask and shift for each field, and a sorting indicator designating whether the table should

GENERAL ORGANIZATION

Source Program

Base Program

Lexical Table (LTAB) ,\{ — — — _____l
~

~al

Test Table (TTAB) v——-'— _——

Syntactic I
Analyzer

Action Table (ATAB) L~

Table Manipulation Table N |
\\ |
I Table I Macro List
Main Directory — I—-D Processor I
” | |
Information Tables /T I |
| I
| |
| | '
I
| | !
Y |
Macro Interpretation _L d-l R
— — Assembler

Table ‘1_ ——
| .

L I Machine Code

Table

Object Program

Conventions: —= Solid lines indicate program flow

[~ - — —= Dotted lines away from tables designate control tables
used by the base program

[[__J<a—— —— Dotted lines into tables designate control tables formed

by the base program

These conventions will apply to all figures in the text

Figure 2-2. Tabular Control of the Base Program

6 SECTION 11

be kept sorted. The Table Manipulation Table designates how the information tables are to
be processed after they have been constructed during the syntactic analysis.

2.4 THE ASSEMBLER

The Assembler interprets the list of macro instructions generated by the syntactic
analyzer and produces the corresponding machine code. The Assembler is controlled by two
tables: the Macro Interpretation Table and the Machine Code Table. The Macro Interpreta-
tion Table specifies how each macro is to be translated. The Machine Code Table gives the
binary code for each machine instruction. The Assembler frequently calls the Table Processor
to extract information collected in the information tables.

To design a compiler for a particular source language, the designer must specify a set of
control tables for the source language. (See Figure 2-3.) Using the Syntax Defining Lan-
guage, he must specify the rules for recognizing source language constructions and the
macros to be generated upon the recognition of these constructions. This information must
be assimilated by a bootstrap translator and stored in the Lexical Table, Test Table and
Action Table. Using the Table Declaration and Manipulation Language, he must declare all
information tables to be used by the base program and the way these tables are to be sorted
or merged. This information must be assimilated by a second bootstrap translator and
stored in the Main Directory and the Table Manipulation Table. Using the Macro Interpret-
ation Language he must specify the machine code translation of the macros generated by the
Syntactic Analyzer. This information must be processed by a third bootstrap translator and
stored in the Macro Interpretation Table. (An extended example of the use of the control
languages is given in Section VI.) The designer must also supply a Machine Code Table and
a number of parameters to the compiler system, such as the length of certain temporary
storage blocks, the number of machine registers in the computer in which the object pro-
gram will run, and the identification bits for each instruction.

GENERAL ORGANIZATION

Syntax
Defining
Statements

—

Bootstrap
Translator

Table Declaration
and Manipulation

Bootstrap
Translator

Statements

Macro

Interpretation -~

Statements

Bootstrap
Translator

Lexical Table.

N Base Program

N

Test Table

N
IR

\
\

Syntactic
Analyzer

A
/

Y Action Table

Main Directory

———-————\v_

Table

Table Manipulation Table

Macro Interpretation
Table

Figure 2-3. The Bootstrap Operation

Processor

Assembler

This empty page was substituted for a
blank page in the original document.

SECTION III

THE SYNTACTIC ANALYZER

3.1 INTRODUCTION

The purpose of the Syntactic Analyzer is to operate on the source language input
strings and produce a list of equivalent macro instructions. The analyzer consists of three
routines, called LEXICAL, TEST, and ACTION. These routines have control tables, re-
spectively called LTAB, TTAB, and ATAB. Another table, STAB (pronounced S-TAB),
is used to store the results of partial analysis. Figure 3-1 shows the organization of the

analyzer.

Routine LEXICAL, as controlled by LTAB, performs the lexical analysis on the basic
syntactic types of the input string. When a basic syntactic type is recognized (a variable
name or literal), LEXICAL passes this information (via routine ACTION) to the Table
Processor for entry into an information table. The Table Processor returns a pointer to
the newly formed entry *. This pointer will be stored in the table STAB and control will
be given to routine TEST.

Routine TEST, as controlled by TTAB, performs the comparisons between the basic
syntactic types associated with the STAB pointers and an encodement of the syntax which
is stored in the table TTAB. When a successful sequence of tests are performed (when a
designated syntactic pattern is found) control is given to routine ACTION.

Routine ACTION, as controlled by ATAB, produces the desired set of macro instruc-
tions for the portion of the input string matched by routine TEST. By manipulating the
pointers tested by routine TEST, ACTION also alters the STAB table and performs book-
keeping operations upon the fields of the pointers. For example, when an identifier is used,
ACTION calls the table processor to check its tables of used identifiers for consistency with
current usage (e.g., to prevent the usage of a label as an indexed array name).

The fields for the control table entries are given in Appendix A and will be discussed

in the following sections.

*In general, the pointer returned by the Table Processor does not point directly to the entry created for
the new item. Instead, the pointer points to an entry in the Main Pointer Table which, in turn, contains
the direct pointer to the item. The additional level of indirectness allows the information table entries to
be reordered without requiring that all references to the item be updated; only the pointer in the Main
Pointer Table need be updated. For ease of reading, when an Information Table Pointer is mentioned, we
will not explicitly state this additional level of indirectness.

10 SECTION II1

Source Program

Syntactic Arlal_yzgr_ . _l_ e o o e
r ! B
I
LTAB ——|—— —* LEXICAL — 77
I i |
i ! '
| {
TTAB = —|——— TEST *— —|—| — STAB

T T

ATAB [== — — —] ACTION -— — — —

Table Processor Assembler

Figure 3-1. The Syntactic Analyzer

3.2 ORGANIZATION OF DATA TABLES

Before discussing the control tables LTAB, TTAB, and ATAB for the Syntactic Anal-
yzer, we will discuss the two major tables affected by the Syntactic Analyzer: the informa-
tion tables within the Table Processor, and the internal table STAB containing numeric values
and pointers to the information tables.

3.2.1 Referencing the Information Tables

The information tables of the Table Processor are used for storing quantities such as
variable names and terminal symbols. The Table Processor and its information tables are
external to the Syntactic Analyzer. Within the analyzer an entry in an information table is
referenced by the entry points issued by the Table Processor. Within the Table Processor
there are two values associated with the entry pointer: a table number and an entry num-
ber. The table number identifies the information table that the entry is in; the entry
number identifies the location of the entry within the table. The table number also gives
the location within the Table Processor of the packing information describing the location of
each field within an entry. A field is the smallest quantity of information considered as an
entity. The size of a field may range from one bit to several computer words. When referenc-
ing a field, both an entry pointer and a field number must be given. The field number identifies

THE SYNTACTIC ANALYZER 11

which field in the entry is referenced. Table 3-1 lists the Table Processor interface routines
called by the analyzer to store and retrieve information to and from the information tables.

Table 3-1. Interface Routines Between Syntactic
Analyzer and Table Processor

Routine Function and Calling Parameters

INVAL: puts data in tables of the Table Processor.
INVAL (value, entry pointer, field number)

OUTVAL.: fetches data out of tables of the Table Processor.
OUTVAL (value, entry pointer, field number)

TABNO: gets table number corresponding to a given entry pointer.
TABNO (entry pointer, table number)

INCRM: gets entry pointer for a new zero entry within given table.
INCRM (entry pointer, table number)

SENTER: (search and enter) searches a given field within all entries
of a given table for a given value. If the value is found,
SENTER returns the negative of the entry reference num-
ber. If the value is not found, SENTER forms a new entry
which has the given value in the given field and returns

the pointer to the new entry.

SENTER (value, table number, field number, entry pointer)

3.2.2 STAB — The Analyzer’s Data Table

The STAB table is constructed by the analyzer to store the results of partially analyzed
strings. Entries within the STAB may contain two types of fields, numeric values and
pointers. The pointers point to entries in the information tables or to other STAB entries.
The pointers serve as a common representation for the diverse elements to which they
point. An entry in STAB consists of six fields:

NAME Likely bits Use

PINTP 2 bits 0 - PPTR is the entry number of another STAB entry
1 - PPTR is a numeric value - PPTRS is its sign
2 - PPTR is a pointer to an entry in an information table

PPTR 15 bits R

PPTRS 1 bit _—

PADD 15 bits arbitrary additional information
PFLGS 1 bit flag for arbitrary use

PFLGF 1 bit flag for arbitrary use

12 SECTION Il

The last three ficlds may be used by the compiler designer as will be shown in the example
of Section IV. The number of binary bits associated with each field is given only to aid the
reader is visualizing the size of a field and is not fixed.

The entries in STAB may be organized by the designer into blocks of pushdowns and
arrays. Whether an entry in STAB is referenced as a pushdown entry or an indexed member
of an array is determined by the way in which the ATAB and TTAB tables control the
accessing of entries. Pushdowns and arrays have similar implementations. For example,
consider the lists of entries A and B whose base addresses relative to the origin of STAB are
X and Y, i.e., we define loc A(0) = X and loc B(0) = Y. (See Figure 3-2.)

A(5) PAL X+5 B(5) —_ Y+5
Al4) L X+4 B(4) — Y +4
A(3) P X+3 B(3) Q Y+3
Al(2) cD X+2 B(2) FOX Y +2
A1) AX X+1 B(1) G Y+1
A{0) —_— X B(0} 3 Y

A(-1) 5 X-1 B(-1) 5 Y-1

(a) Anarray A of length 5 {b) A pushdown stack B of maximum

length 5 and of present length 3.

Figure 3-2. Array vs. Pushdown Stack Implementation

If the list A is declared as an array then A(-1), i.e., STAB (X-1), contains the maximum size
of the array. If the list B is declared as a pushdown, then B(-1) contains the maximum size
of the stack and B(0) contains the current number of entries. When an entry is inserted into
the pushdown, B(-1) is incremented and the new entry is placed inY + B(0). When an entry
is removed from the pushdown, B(0) is decremented.

A pushdown stack may be referenced like an array, i.e., without invoking the pushdown
mechanism to “manipulate’” the most recently inserted entry. For example, to fetch the
most recently inserted entry in the list B of Figure 3-2(b) without decrementing the push-
down counter, the reference B(B(0)), rather than the reference STACK (B) *, can be used.

* Stack is a pseudo-function that “pops up” the most recently inserted entry.

THE SYNTACTIC ANALYZER 13

3.3 ROUTINE LEXICAL

Routine LEXICAL recognizes basic syntactic types. These include key words (GOTO,
IF, THEN), terminal symbols (+,-,*), identifiers (ALPHA, B, C), and literals (2,3.14). Each
block of LTAB entries governs the recognition for one basic syntactic type. LEXICAL is
called with a pointer to a sequence of ATAB entries; each ATAB entry contains a pointer to
a block of LTAB entries and a pointer to an information table and field number to be used
by the table processor if an acceptable syntactic type is found.

LEXICAL performs the analysis designated by each LTAB entry within the block.
LEXICAL uses the information table and field number to place an entry in the information
table. If the analysis designated by the block succeeds, the LEXICAL truth value is set to
TRUE: the pointer to the information table entry is placed on top of a system stack called
PSTK; and control is returned to ACTION. If the analysis designated by the block fails,
LEXICAL automatically performs the lexical analysis designated by the block of LTAB
entries pointed to by the next ATAB entry. If the block of analysis pointed to by the last
ATAB entry fails, the LEXICAL truth value is set to FALSE and control is returned to
ACTION.

The LTAB entries specify one of three mechanisms for handling a string that is recog-
nized as a basic syntactic type: a) the string is to be inserted into an information table
(a literal or identifier), b) a search is to be made to match the string with an existing entry in
the information tables (key words), or ¢) no action is to be taken, the information table
entry number has already been coded into the LTAB entry (a terminal symbol). In any
case, LEXICAL returns a truth value indicating whether an acceptable information table
entry exists and a pointer is given to the entry.

Besides LTAB there are two important tables used by LEXICAL: CLIST and CPLIST.
Table CLIST, which is part of STAB, is used to store the BCD characters of the input string -
one BCD character per CLIST entry. The CLIST entries are periodically shifted or deleted
to accommodate new characters. Table CPLIST contains the “property” bits associated
with each of the sixty-four possible BCD characters. The interpretation of the bits is
defined by the control tables. For example, the characters O to 9 are likely to have a prop-
erty bit for “‘number” set, while the characters 0 to 7 are also likely to have a property bit
for “octal number” set, and the character O of the special property bit for *‘zero value” set
(the latter for use in eliminating leading zeros in literals). A maximum of 15 property bits
can be defined. The testing for the occurrence of a certain class of character, i.e., a char-

acter with a certain “property”, is basic to lexical analysis.

The system variable BLPROP is used to store the property bits for ignorable characters
(blanks). LEXICAL uses BLPROP to scan the characters in the input string until a charac-
ter that does not have the properties of BLPROP is found, and only the characters that do
not have the properties of BLPROP are added to CLIST. This technique provides a quick,
non-interpretive scan of ignorable characters.

14 SECTION 111

LEXICAL forms temporary BCD strings which are used by the search routine in calls
to the Table Processor. As each character is analyzed, LTAB indicates whether this char-
acter should be added to the BCD strings. When the lexical analysis designated by a block
of entries is finished, the newly formed BCD string will contain a copy of the accepted
string or its compressed equivalent (the string “3.000” is usually compressed to ““37).

The basic testing sequence for lexical analysis is outlined in Figure 3-3. The fields
within an LTAB entry and their interpretation in controlling lexical analysis are given
in Table 3-2.

i

Get next character

from input string

Perform tests on characters as indicated by
current LTAB entry: add character to BCD string

and advance input string pointer if necessary

Use next ATAB line for new
series of tests; back up No Were tests
input string pointer to successful
point to first unrecognized ?
character.
Yes
Form pointer to recognized Yes Was last character No
string; return control to ACTION analyzed a terminal character?

l

Figure 3-3. Character Testing Sequence for Routine LEXICAL
Example:

To illustrate the LTAB-LEXICAL operation, consider the following Backus-Naur Form
specification* for the syntactic type “literal’:

digit =01112131415t6171819
integer = [{digit]y
literal = (integerXblank) | (integer).(blank)

(integerXblank) |(integer). (integer)Xblank)
The table CPLIST might be initialized as:

CPLIST (0) = 1 CPLIST (33)**
CPLIST (1) = 1 CPLIST (60)***

The LTAB entries for this syntactic type might be as follows (continued top of p.16):

)
&

4

*In addition to the notation used in pure Backus-Naur form, we use the brackets []]1:2 to designate
any number from k, through k, occurrences of the enclosed expression. !
**33 is the octal equivalent for the BCD character .
***60 is the octal equivalent for the BCD character blank

THE SYNTACTIC ANALYZER

Table 3-2. Fields for Entries in LTAB Control Table

15

(4) If testis FALSE

LFBCD, LFADVN,
LFDONE, LFALSE

No. of
Field Bits Interpretation
(1) Get character
LCHGXB 1 0 - use input string character previously tested
1 - examine LPOS and LPLMN to get new char-
acter from input string
LPOS 5 relative location in CLIST of characters to be tested
LPLMN 1 0 - set X = XC + LPOS (see legend at bottom of
table for definition of XC}
1 - set X = XC-LPOS
(2) Perform Test
LTEST 15 character (LWHAT = 1) or property bits (LWHAT = 2}
to be tested for
LWHAT 2 0 - no test, assume test is TRUE
1 - testif "CLISTL(X) = LTEST"”
2 - test if “CPLIST (CLIST(X)) .A. LTEST # 0",
(3} 1f testis TRUE
LTBCD 2 0 - take no action
1 - add CLIST (X) to BCD string
2 - excise BCD string
LADVN 6 relative location in CLIST of latest characters
recognized (LTADVN = 2}
LTADVN 2 0 - take no action
1-setXC=X
2 - set XC=XC+ LADVN
3 - set XC=SXC
LTDONE 15 0 - perform new test from entry LTDONE

of LTAB

—_
'

string, and start next ATAB test

2 . terminal character found; LTAB (AFALSE) is
the table name; LARG (AFALSE) is the field

number for the entry

3 - terminal character found; set pointer
to LTDONE

similar set of fields for FALSE test result. (The
field LADVN is not duplicated.)

ATAB test failed; reset XC to SXC, excise BCD

System variables used by LEXICAL:

XC - Location in CLIST of last characters analyzed
LXC - Location in CLIST of last character input to CLIST
SXC - Location in CLIST of first character that has not been identified

16

SECTION I11

Entry Interpretation

LTAB (20)

LGHGXC = 1, LPOS = 0, LPLMN = 0, Use current character;

LTEST = 1, LWHAT = 2, Test if character has property bit for “digit set”,
i.e., test if character is a digit

LTBCO = 1, LTDONE = 22, LTRUE = 0, if TRUE, add character to BCD string and test
LTAB (22)

LFDONE = 24, LFALSE = 0. if FALSE, test LTAB (24).

LTAB (22)

LCHGXC = 1, LPOS = 1, LPLMN = 0, Use next character;

LTEST = 1, LWHAT = 2, test if character is a digit;

LTBCO = 1, LTADVN = 1, LTDONE = 22, if TRUE, add character to BCD string and repeat

LTRUE = 0, test for next character;

LFDONE = 24, LFALSE = 0. if FALSE, test LTAB (24).

LTAB (24)

LCHGXC = 0, Use previous characters;

LTEST = 33, LWHAT = 1, test if character isa .";

LTBCD = 1, LTADVN = 1, LTDONE = 28, if TRUE, add character to BCD string and test

LTRUE = 0 LTAB (28);

LFDONE = 26, LFALSE = 0. if FALSE, test LTAB (26).

LTAB (26)

LCHGXC = 0, Use previous character;

LTEST = 2, LWHAT = 2, test if character is a blank;

LTBCD = 0, LTADVN = 1, LTRUE = 2, if TRUE, search for literal in table processor;

LFALSE = 1. if FALSE, reset BCD string and try next
ATAB test.

LTAB (28}

LCHGXC = 0, LPOS = 1, LPLMN = 0, Use next character;

LTEST = 1, LWHAT = 2, test if character is a digit;

LTBCD = 1, LTADVN = 1, LTDONE = 28, if TRUE, add character to BCD string and repeat

LTRUE =0 test for next character;

LFDONE = 26, LFALSE = 0. if FALSE, test LTAB (26).

LTAB (30)

LCHGXC = 0, Use previous character;

LTEST = 33, LWHAT = 1, test if character isa "."’;

LTBCD = 1, LTDONE = 28, if TRUE, test LTAB (28);

LFALSE = 1. if FALSE, report ATAB test failed.

THE SYNTACTIC ANALYZER 17

3.4 ROUTINE TEST

Routine TEST is called by routine ACTION to make a series of tests on the entries
in STAB in order to identify patterns of basic syntactic types. 1f a series of tests is suc-
cessful, control is returned to routine ACTION.

TEST performs the tests designated by a sequence of TTAB entries. The fields for a
TTAB entry are given in Table 3-3. The tests allowed in TEST are rather simple; if a more
complex test is needed, a special call can be made to ACTION. The special call initiates a
routine that operates more slowly than TEST but has a general arithmetic testing facility.
The pointer that is accessed during the scan of the first part of the TTAB entry is given as
an argument to ACTION; the result of the call is a truth value, which, upon return from
ACTION, is used in the same manner as a truth value computed internally within TEST.
Ultimately TEST must return control to ACTION.

Table 3-3. Fields for Entries in TTAB Control Table

Field No. of Bits Interpretation

(1) Get entry number of an
STAB entry (all entry
numbers refer to STAB)

TLOC 15 entry number

TSTPT 2 1 - TLOC is entry number of a stack base (as
noted previously, STAB may be organized
in blocks of stacks or arrays)

2 - TLOC is entry number of a value
3 - TLOC is entry number of a pointer
TPOS 15

TPLMN 1 if TSTPT =1:

0 - TPOS is added to stack base

1 - TPOS is subtracted from current
stack limit

if RSTPT = 2:
0 - TPOS is added to value pointed to
1 - TPOS is subtracted from value pointed to

{2) Check for indirect ref.
(if TSTP = 3)

TINDR 1 1 - if the pointer in STAB points to another
pointer (PINTP = 0), use that pointer

18

SECTION 111

Table 3-3. Fields for Entries in TTAB Control Table (Cont.)

Field

No. of Bits

Interpretation

(5)

(6)

TTABLE
TTBTST

TWHAT

TSFLD
TFLDTS

on the field
TTEST
TMNPRP

If test is TRUE
TTDONE
TTRUE

If test is FALSE

TFDONE
TFALSE

(3) Extract proper field from entry

15
1

15

(4) Perform the following test

15
1

15

15

entry number of last entry to be checked
O - ignore TTABLE, check only one entry
1 - test all entries up to TTABLE

0 - no test; assume test is TRUE

1 - acomplex test is indicated; pass control
to ACTION for test and return to (5) below.
(ACTION returns a truth value)

2 - get PPTR field of STAB entry
3 - get PADD field of STAB entry
4 - get PFLGS field of STAB entry
5 - get PFLGP field of STAB entry
field number

O - ignore TSFLD

1 - get field TSFLD from table processor using
value gotten above as entry number

value to be matched
0 - testif ““field= TTEST"”
1 - test if “field .A. TTEST =0"

entry number
0 - perform another test from TTAB(TTDONE)

1 - go to ACTION and perform operations
specified by ATAB (TTDONE) and the
succeeding entries.

entry number
0 - perform another test from TTAB (TFDONE)

1 - go to ACTION and perform operations
specified by ATAB (TFDONE) and the
succeeding entries

THE SYNTACTIC ANALYZER 19

3.5 ROUTINE ACTION

After TEST finds a particular syntactic pattern in the input string, routine ACTION
generates the equivalent set of macro instructions and performs bookkeeping operations.
When ACTION completes its processing, control is returned to TEST for more pattern
testing.

There are two modes in which the controlling ATAB entries may be interpreted. In
the normal mode the entries call for access to the information table fields. Operations such
as printing or transfers of control, however, use literal arguments so frequently that it would
be unduly time-consuming to use the field accessing routines of the Table Processor. For
these operations a special mode of interpretation exists in which the required fields are taken
directly from ATRUE and AFALSE fields of the ATAB entry. These latter two fields over-
lay the fields interpreted in the normal mode.

There are two system pushdown stacks used by routine ACTION: VSTK, a pushdown
for values, and PSTK, a pushdown for pointers. They are used for the storage of temporary

results. The fields within an ATAB entry and their interpretation are given in Table 3-4.

Table 3-4. Fields for Entries in ATAB Control Table

Field No. of Bits Interpretation

(1)} Initialize value of dummy variable NUMBER

APTR 15

ANUM 2 0 - Let NUMBER = value on top of VSTR
1 - Let NUMBER = APTR
2 - Let NUMBER = STAB(APTR)

ASTK 3 0 - Let NUMBER = STAB (NUMBER

(AVLPTR below must = 1.)
1 - NUMBER is base of pushdown

2 - NUMBER is base of pushdown; process next
ATAB entry (ASTK of next entry must =3
or4.)

3 - NUMBER is location relative to base of stack
previously used

4 - NUMBER is location relative to current
limit of stack previously used

5 - let PPTR = NUMBER, PINTP = 1. (for
fetching only)

20

SECTION 111

Table 3-4. Fields for Entries in ATAB Control Table (Cont.)

Field

No. of Bits

Interpretation

AVLPTR

AUSPTR

AFLD

AARG

AEOPN

(2} If NUMBER is a value, exit

1

2

15

6

0 - NUMBER is a value exit

1 - NUMBER is a pointer

0 -

1

-

D O s W N

(3) If NUMBER is a pointer, use the following fields

exit

use only the fields PINTP, PPTRS, PPTR
of the entry pointed to

- use only the field AFLD of the entry

pointed to

- use field number AARG from Table Processor.
Error if PINTP # 2

- error {use only when AUSPTR = 2)
- use PPTR, PPTRS
- use PINTP
- use PADD

- use PFLGS
- use PFLGF

- use table reference number of entry
pointed to. If PINTP # 2, use PINTP

field reference number (use only if AUSPTR = 3)

(4) Perform the ACTION operation indicated by AOPN

Number of ACTION operation to be performed

The use of these fields is illustrated by the following examples:

(1) Initializing Number

VSTKO*
APTR

It

425
233

1]

STAB(233) = 607

ANUM

0; NUMBER
1; NUMBER
2; NUMBER

*VSTKO designates the top element of VSTK, VSTKI1 the next to top element, etc.

425
233
607

THE SYNTACTIC ANALYZER 21

(2) Stack accessing (assume NUMBER is 233).

ASTK = 0: AVLPTR

AVLPTR

0; VSTKO 233
1; PSTKO STAB(233)

= 1: IfSTAB(233) < 0, error;
else fetch STAB (233+STAB(233)).

= 72- STKNUM 233. If ASTK (next line)# 3 or 4, error.

= 3. If STAB(STKNUM-1) < 233, error;
else fetch STAB(STKNUM+233).

= 4: If STAB(STKNUM) < 233, error;
else fetch STAB(STKNUM+STAB(STKNUM)O 233).

= 5: Fetch pointer with
PINTP = 1 and
PPTR =233.

A list of the ACTION operations designated by AOPN is given in Appendix B. A maximum
of sixty-four operations is allowed, although presently only forty-three have been imple-
mented. The compiler designer may add additional operations to this list.

3.6 RELATED INFORMATION

3.6.1 The Analyzer as a Subroutine

The entire analyzer may be treated as a subroutine. The calling sequence is the equiva-
lent of the MAD statement EXECUTE SYNTAX. (A, B). SYNTAX is the symbolic name
of the main entry point for the analyzer. The argument A is used to return the number
ERRFLG of an error (or zero if no error). Appendix C contains a table of error numbers,
the error comments that are printed if an error occurs, and the probable cause of errors.
The error exit may be used to detect source program errors or errors in the design of the
control tables. The argument B is used to indicate which of the control tables (LTAB,
TTAB, or ATAB) is to be overlaid with sections of other tables if the control tables over-
flow core space. This feature has not yet been implemented. The analyzer requires 6473,
or 3387, locations and uses 30010, or 12296, locations of common storage.

3.6.2 Recursive Calls

When a predicate call (i.e., a call which returns a truth value) from either TEST,
LEXICAL or ACTION is made to ACTION, the entry number (in TTAB, or ATAB) which
initiated the call is saved on top of the system stack DOSTK. DOSTK is used to keep track
of the level of recursive calls. Two flags (DOPRED and DOLEX) are set in the DOSTK
entry to designate the calling routine. When the RETURN operation is invoked, the flags
in the entry on top of DOSTK are examined to determine to which routine control should
be returned.

22 SECTION III

All communication between routines ACTION, TEST, and LEXICAL is done through
routine CONTRL. CONTRL keeps track of calling sequences and the save stack DOSTK.
Because of the complex recursion that may occur between calls, a return from a predicate
cannot be a simple function return. The common system variable CONFLG is used to indi-
cate the return sequence for calls to LEXICAL, TEST, and ACTION. The interpretation
of CONFLG is as follows:

ROUTINE Value of CONFLG MEANING
Exit from ACTION 0 exit from analyzer
1 call LEXICAL
2 call TEST
3 predicate return to TEST or LEXCAL
Entry into TEST or LEXCAL 0 normal entry
1 predicate return from ACTION
Exit from TEST or LEXCAL 0 done - return to ACTION
1 (special) predicate call to ACTION

3.6.3 Control Table References

An entry in the control tables may require more than one computer word. To allow
all fields of a given entry could be referenced with the same entry index, the macro names
LTABI, TTABI, TTAB2, TTAB3, and ATABI are defined. For example, TTABI(x) =
TTAB(x+1): the fields referenced by the name TTABI are equivalent to those referenced
by the name TTAB displaced by one computer word. (This technique has the disadvantage
that when indexing through the control tables, one must increment by something other
than unity.)

3.6.4 BCD Data

BCD strings (routine names and error comments) are handled in two ways. For BCD
strings stored in the Table Processor, the “value” of a BCD string is the address of the first
computer word in the string. The first six bits of the string are interpreted as an octal number
designating the total number of BCD characters in the string. For BCD strings stored in the
STAB of the Syntactic Analyzer, the “value” of a BCD string entry is the entry number of
that string in a block called BCDTAB. For a string of five or less characters, the entry num-
ber is prefixed by plus indicator and the first six bits of the string is an octal number (1 to 5)
giving the number of characters in the string. For strings of greater length, the entry number
is prefixed by a minus indicator; the decrement field of the entry contains the number of
BCD characters in the string and the address field points to the words containing the BCD
string. This method, rather than the one used in the Table Processor, is used to allow for
very long strings like those used for error comments.

THE SYNTACTIC ANALYZER 23

Before the bootstrap operation, BCDTAB contained the names for the system routines
and system error comments. After the bootstrap operation, it is expected that the BCD
strings for the designer’s error comments will be stored in BCDTAB.

3.6.5 ACTION Operations

a.) The PRINT Operation (AOPN = 28):

All output from the analyzer is handled by a single ACTION operation, PRINT. The
PRINT Operation is controlled by four system variables - PRNTVL, OUTLNT, PRNTMD
and PRNTSP. PRNTVL is the value to be added to the BCD output string. OUTLNT is
the maximum number of characters allowed per output line. If the BCD output string
being formed becomes greater in length than OUTLNT, the forming process is temporarily
halted, the current output string is pointed and expunged, and the forming process is
resumed. PRNTMD is an integer indicating the interpretation of PRNTVL:

PRNTMD INTERPRETATION
0 ignore PRNTVL; load blanks into output line
1 PRNTVL is a signed decimal number

PRNTVL is an unsigned octal number
PRNTVL is a binary number

PRNTVL is a Table Processor BCD string
PRNTVL is an internal (BCDTAB) string
ignore PRNTVL; print current output string

N e Y e 7 N

skip line

PRNTSP is the number of characters to use when printing PRNTVL. If the number of
characters required to print PRNTVL is less than PRNTSP, the value is printed left adjusted
with trailing blanks. If PRNTVL requires more characters than PRNTSP, only the leftmost
characters are printed. If PRNTSP is O, the given string will be printed with no blanks.

b.) The Operation NEWCHR (AOPN = 42):

The ACTION operation NEWCHR allows characters to be read from the input medium.
NEWCHR inserts the new characters into CLIST, eliminates fully analyzed characters, re-
arranges CLIST, and changes the values of SXC and LXC if necessary.

If the compiler is used in time-shared operation from a console, and a line consisting
of a single break character is read, NEWCHR will cause the word “INPUT” to be printed.
Thus if the user wants to know when the system requires input, he simply hits the break
character (the carriage return) and “INPUT” will be typed when input is needed. Two

24 SECTION III

successive break characters will cause an error exit from the analyzer. NEWCHR will not
put the break character in CLIST unless the system variable BRKCHR is non-zero.

¢.) MOVE Operation (AOPN = 29):

The formation of a macro is usually handled in one stack and later transferred to
another stack when completed. The MOVE operation is used to empty the elements for a
completed macro from one stack to a second stack. The operation begins by transferring
the first element entered into one stack onto the second stack and ends by transferring
the lust element of the first stack onto the top of the second stack. To distinguish the
name of a macro from its arguments, the leftmost bit of the first element transferred (the
name of the macro) is set to 1. The leftmost bit of the remaining elements transferred
(the arguments of the macro) is set to 0. Two system pointers, FMOVE and LMOVE, are
set by the MOVE operation. FMOVE points to the first element moved into the second
stack; LMOVE points to the last element moved onto the second stack. For example,
suppose that i) STACKQ is a stack on top of which the code number for the macro PLUS
and pointers to the elements “A” and “B”’ of the input string have been formed, and that
ii) the macros resulting from syntactic analysis are put in a stack STACKM. The call MOVE
(STACKM, STACKQ, STACKQO, STACKQ2) would load entries STACKQO through
STACKQ2 onto STACKM. ‘

d.) The ROUTINE Operation (AOPN = 35):

There may be many complex operations which a user would like to perform but cannot
do efficiently in the present system. The ROUTINE operation provides the facility for user
supplied external subroutines. These might include routines to evaluate mathematical func-
tions (log x) or routines to convert BCD strings into their intended values. (The BCD string
“147” may have to be converted into the integer representation of “147”.)

It is assumed that when the control tables are formed, the auxiliary routines may not
be available and hence their starting location in core not known. When the control tables
are formed, the table RTNTAB must be loaded with the BCDTAB entry numbers for the
entries containing the BCD names of the auxiliary routines. When starting execution, the
entry routine SYNTAX searches the MOVIE TABLE for these BCD names and replaces them
with their starting locations. If a subroutine given in RTNTAB is not found in the MOVIE
TABLE, a comment is printed and analysis proceeds. However, if a call is made to an un-
defined subroutine (one not found in the MOVIE TABLE) a system error results.

25

SECTION IV

THE TABLE PROCESSOR

4.1 INTRODUCTION

The Syntactic Analyzer encounters information that should be processed and made
available for later use by the Assembler. The Table Processor is designed for the collection of
this storage information (variable names, label names, array dimensions, and data type infor-
mation) and the allocation of storage space. It works with the Syntactic Analyzer to enter
the information into the information tables, and later processes these tables upon completion
of the syntactic analysis. The functions of the Table Processor include a) assigning core
locations to symbols, arrays, and literals and b) merging and sorting the information tables
so that the Assembler can quickly access the information in them. Unlike the generation of
macros, which can be carried out when certain complete syntactic units have been recognized,
the allocation of storage can be carried out only at the end of the syntactic analysis. (For
example, all source program variable names must be collected and they can be allocated stor-
age words and the referencing machine instructions assembled.)

4.2 INFORMATION TABLES AND MAIN DIRECTORY

The information tables are used to store variable names, label names, literals, integers,
character patterns, dimensional information, and other information that the Syntactic
Analyzer encounters in the source program. The names and formats for each information
table are declared using the Table Declaration and Manipulation Language. The format infor-
mation for each table is coded into a table called the Main Directory.

An information table hasasimple structure. At the base of the table, there is a book-
keeping word containing two pieces of information. The address part of the bookkeeping
word contains a pointer to the current top entry in the table; this pointer is used when
adding an entry to the table or sorting the table. The decrement part of the bookkeeping
word contains a pointer to the entry last processed. Figure 4-1 gives an example of an in-
formation table called LITTAB which might be used to store literals. The most recent entry
to the table occupies registers 34400-02. The pointer 34427 in the decrement of LITTAB(0)
is considered to have been set by the utility routine SEARCH when a match was found in
the entry in location 34427. This pointer may be so used to access other fields of the entry
without calling the routine SEARCH again.

The format description of each information table is kept in a table called the Main
Directory. The system uses the Main Directory to meaningfully access an information table
entry. Although an information table is referenced with its symbolic name by the designer,
it is referenced internally by the address of the first word of the block of words in the
Main Directory that contains its format information. The format of each information table

34300

34400
34401
34402
34403
34404
34405
34406
34407

34500

LITTAB

Identifier 3.14

Value in floating point

Address

Identifier 3.0
Ptr to Fixed Ptr Table
Identifier 3.0

Value in floating point

Address

Ptr to Fixed Ptr Table

34427 34400

SECTION IV

LITTAB(N)

LITTAB(N-1)

LITTAB(0)

Figure 4-1. Example of an Information Table LITTAB used to Store Literals

is declared using the Table Declaration and Manipulation Language. For each information

table the user must declare:

(1) the symbolic name

(2) the maximum number of entries

(3) the sorting option (whether the table should be kept sorted), the field on which
the sort is to be based, and the sorting scheme (the order of precedence)

(4) the number of fields in an entry and the packing information for each field (If
the designer does not specify how the fields should be packed, the bootstrap trans-
lator will specify it for the user.)

The bootstrap translator interprets the declarations, assigns storage space for the declared
tables, and inserts the format information into a block of words in the Main Directory.

The format of the blocks in the Main Directory is shown in Figure 4-2. The
first two words in each block contain miscellaneous information about the information table.
The decrement of the first (top) word gives the address of the last (bottom) word of the in-
formation table. The address of the first word gives the size of the information table. The

THE TABLE PROCESSOR 27

14000 34500 00200

14001 00003 0 _—

14002 0 00000 0 00000 format of field 1 {identifier)

14003 00001 00001

14004 0 00000 0 00000 format of field 2 {value}

14005 00001 00002

14006 0 00000 0 77777 format of field 3 (address of literal
14007 00000 00003 in object program)
14010 0 00000 0 77777 format of field 4 (ptr to Fixed Ptr Table)
14011 00000 00004

Figure 4-2. Example Block in the Main Directory for Figure 4-1 Literal Table.
All numbers given are in octal.

decrement of the second word gives the number of words occupied by one entry in the
information table. The tag of the second register specifies the sorting option for the table:

0 - the table is not to be sorted.
1- the table is to be sorted according to the standard BCD scheme.

m - the table is to be sorted according to the m-th sorting scheme (m = 2,3,4,5,6).
The address of the second word is the field based on which table is to be sorted.

Each following pair of words in the block gives the format of one of the fields in the
information table. The first word contains the mask for the field, i.e., a word containing I's
in the bits occupied by the field and 0’s elsewhere. A mask of all 0’s designates a field of one
or more whole registers. If the mask is non-zero, the decrement of the second word will con-
tain the number of bit positions to be right-shifted when the field is to be right-justified, and
the address of the second word will give the location in the entry of the word in which the
field is stored. If the mask is zero, the decrement of the second register will contain the
number of registers occupied by the field, and the address of the second register will gontain

28 SECTION 1V

the location in the entry of the first of the words occupied by this field. The last pair of words
always contains the information on the field for the pointer to the Fixed Pointer Table. (See
Section 4.3 for description of Fixed Pointer Table.)

As an example, a possible block in the Main Directory for the literal table LITTAB (see
Figure 4-1) is indicated in Figure 4-2. As mentioned earlier, tables are referenced internally
by the address of the first word assigned to its format information in the Main Directory; thus
LITTAB is referenced by the address /4000. The Main Directory and storage for the infor-
mation tables are set up by the bootstrap translator from the declaration statements in the
Table Declaration and Manipulation Language. These statements are explained in Section 6.3.

4.3 THE FIXED POINTER TABLE

Besides the information table fields that are declared using the Table Declaration and
Manipulation Language, there is an additional field that is provided by the system. This
field, known as the fixed pointer, contains a pointer to a corresponding entry in a table called
the Fixed Pointer Table. The Fixed Pointer Table entry (see Figure 4-3) occupies one word;
the address part contains a pointer back to the pointer in the information table and the
decrement part contains the internal name (the Main Directory address) of the information
table. The Fixed Pointer Table is used to keep track of the locations of all entries in all the
information tables when some of the entries are merged or sorted. Figure 4-3 shows an
example of the chaining between an entry in the literal table of Figure 4-1 and the Fixed
Pointer Table. Note that the literal table name given in the Fixed Pointer Table entry is
14000, the internal name for LITTAB. (See Figure 4-2.)

LITTAB

Fixed Pointer Table 34300

. 34400 3.14
. 34401
34402
16337 [| 14000 | | 34403 - 34403 15337
34404 3.0
. 34405
. 34406
) 34407 15352

39500 | | 47543 | | 47843

Figure 4-3. Linkage Between an Information Table and the Fixed Pointer Table

THE TABLE PROCESSOR 29

When an element is entered into an information table, the control routine will also fill
the fixed pointer field and the corresponding entry in the Fixed Pointer Table. The control
routine will return the location of the entry in the Fixed Pointer Table.

This location, rather than the location of the information table entry, is returned so that
references to the information table entry will not have to be updated if the entry in the in-
formation table entry is displaced during a sorting or merging of the tables.

Fach time an information table entry is displaced, the fixed pointer field of the entry is
traced back to the Fixed Pointer Table entry to update the reverse pointer. When two infor-
mation tables with matching entries are merged, (See Figure 4-4), both Fixed Pointer Table
entries to the matching entries must be updated to point to the single entry in the new merged
table. This is effected by setting a flag in one Fixed Pointer Table entry and setting its
address field to point to the second Fixed Pointer Table entry. The address field of the
second Fixed Pointer Table entry is set to point to the combined information table entry. The
fixed pointer field of the combined entry will be set to point to the second Fixed Pointer
Table entry.

[] L]
[] []
[] []
15201 l 10554 ll 24323 |-e 15201 11000 [1[15337
[] L]
L] ®
[J L]
15337 12000 | | 34402 T 15337 10 | | 40021 (%
* L]
[
L]
Tahle A Table B Table C
(primary table) {(secondary table) (merged table)
3.04
3.14
3.14 40021 | | 15337
34402] 15337
24323 [115201

Fixed Pointer Table

(a) Tables before merging

Fixed Pointer Table

(b) Tables after merging

Figure 4-4. Example of the Merge Operation

30 SECTION 1V

4.4 TABLE MANIPULATION TABLE

The Table Manipulation Table is used to control the processing of the information tables.
The table is set up by the bootstrap translator from statements given by the designer using the
Table Declaration and Manipulation Language.

The entries in the Table Manipulation Table are grouped into blocks. Each block specifies
a set of operations to be performed on one or more tables. The fields within a Table Manipula-
tion Table entry and their interpretation are given in Table 4-1. Example statements in the
Table Declaration and Manipulation Language are given with each example entry; these state-
ments are explained in Section VL.

4.5 OPERATION OF THE TABLE PROCESSOR

When control is passed to the Table Processor upon completion of syntactic analysis,
the Table Processor operates in the following manner. The entries in the Table Manipulation
Table are scanned and the first block of entries is found. The routine PROCESS is then called
to process the block of entries. Routine PROCESS scans each entry in the block, identifies
the function that each represents, and calls the associated utility routines (SORT, INSERT).
Since the utility routines are written in MAD, the call to a utility routine is processed through
a FAP subroutine that converts the control table information into the appropriate parameters
and generates the suitable calling sequence. After processing each entry in the block, routine
PROCESS returns control to the main portion of the Table Processor for further action until
all blocks of entries are processed.

31

THE TABLE PROCESSOR

{1°2) HOd {1°0) HOYV3S

(08V) LSNIVOV (1°0-3719V 1) 1S3L

(€£°0) OLNI{Z'9-318v1) LY3SNI

{1'1),v-378V1 1H0S

9-37avL '8-3718vL 'V-378VL SS3D0Yd

00££L =2-318vL EZybl =8-378VL 00991 = ¥-378VL :$3sSaIppe 3lqey Aio1dang uew BuIm0)j0) 3yt awnssy

*AJ010841(] UIBW Y1 LI S3ssalppe BuIPU0dsAI0D 3yl 01 43434 SASSAIPPE 3)Gel 1Y .

‘0437 01 135 8 1M 11 aSIM
53410 ! | 0] 135 3Q 1M J0IRINUINIOE 3Y} 'PUNOY

s yorew e 1 ‘b ajger jo Anue quannourupay [zoczt] Jooest]]eooss

[upey] Joaigei] |

104 payoees ase d 3jqe) JO W PjaY j0 sadumsut Iy [Z0991[0] 00991 [5] 90055

‘buins

a7g e 10 1abajul ue ‘a|qersea e ‘pjayy Jayloue

st Aujuenb 1533 3yl J3y1aym uo buipuadap ¢ Jo
‘€'Z'L = U "0 01135 3Q ||!M 31 ISIMIBYIO | 0 335 3q
[11m J03eINWIND2E 3y} '8Nl §1 1531 §| (DAY buiis

QD8 2y1) Aluenb 1sa1 ay1 01 fenba y paisar st [£2zz 1z 000000]0] 50055

(0-318v1 o piey say) dajqes o wpidd [z02Z1L[v] 00441]v] v00SS

? piay _o _n 31qe1 m_ 0-S HOHV3S
Aliuenb 1531 (¥ 40°€Z'L =u)
w Ew:—:_a aqel| b u-y 1831

‘b ajqe1 ol pauIasUl aq |pm d dges Jo
0} Buipu0dsaliod Al3ua mMau e ‘punocy Jou
st yotew e 4| {v-378VL 40 £ P13Y) baqey

upl

JO U P31} JO SBOUBLINDD0 jje Isurebe paynew ﬂwoww—_ _ooww— £00SS

fupay] Joage] |

aq o1 st (§-379v 1 40 Z P13} 0 31qel jo w praty Tuvi_o_mmvﬁ _o_uoomm

{pasn ag o1 51 awayass funuos gog

piepuels 8y ‘| 3wayas builios sayroads | = u
"£0991 Pue Z0gg| SU0iIe20| $81dN200 -3 18V L
4O PIaly 35414 @y} JO UOHIEINHIDBAS Jewoy Ayl
‘A10123)i(Q We Ayl u|) ‘paseq aq 03 si 110S 3y
Yd1ym uodn pay Y1 ! (00GGL) W PIdY paLIos

aq 01 aiges au3 st (v-318v 1 4000991 dojaeL [2099t] 1009911} 10085

_E u_m_»_o_n w.nmu_w_ 0-9 1Y 3SNI
(gt =u)
[wpen]u]dama] 1] u-y 1408

¥00)q 3yl 10§ 31qey Asewiad ayy st
(v-378V1 40 00091) d 3(qel :%201q UOHIENTIUEW

alqes aup ur paom 1sey au st (££05) 1901 [009st]ofecoss]1]oooss

IEEERNEIN 0t

20718 NI238

Juoneiaidiaiy)| Anug adwex3

1ewo§ Anug Anua papoous uonessdp
Ul pIOM ISIlY
jo ber-xiyaig

ajqe], uonemdiuep djqe] ul sSLuF 103 SPIALY “1-p dqel

SECTION 1V

32

(E/1" HY'Z/' HP
‘L/OIV-378vL ANIYd

S22 +v=v

S={g'7)

Z-(Z'2) X3aNI

$2-c$

(abenbue uonendiuely pue uonesedeq
a1qe | ur Juawaels buipuodsaiio))

1oy

456a1ut 12120 L) palLLd aq 01 S| Ssaippe Ayl Ag
Pajeubisap piay ayl 1eyy sa1e21PUI (() JO} J€300)
9p "Bunzs ay) ut saveseYD JO JaquInU 3yl
sanib ssaippe ay ‘Jewsoy 1abalu) fewnsap uy
paiulid aq o1 s1 piom Buimol|oy ays Jey sejed
-IPul (1 404 |€100) OE "Jeunio} DG ul pajund
8q 01 st ssaJppe 3y AQ paleubisap pialy ayy
$91801pUL (D) 404 €30) £Z “d ajqe) wouy pajulid
8Q 03 Sp|3Ly a1 JO 18ULIOY Ay Ayidads 15014 AY)
daje spiom u By ‘SPiaY 31Ge) UONeWIoU| JO
Bunuud ayy A19ads 03 pasn st Anua 1utig ayl

(*103€|NWNDOR 3Y3 OIUL AN|eA 3y} S1IISUY

PUE UONDNIISUN XS 1 343 MOjaq uanib pjayy

343 Jo anjea pjay ayy 186 sUNNOI SIYL ZEEOG
1e Busuuibag aunno. e 01 |je3 e s uonsNisUL
XS13yl) "suonaniisus suiyoew se palaidisiuy
8Je ISiy 31 1834€ SPIOM U 3Y] ‘3jqelIeA B JO
anjea ay1 13s 01 Pasn st ANUB dNAWIYILY oY)

‘Brqeea

€ 40 “13691u] UE 'PJay €SI PIOM PUOIS 3L

u1 Ayguenb aya 1eq) saydads £ 6 ‘') = u pIom
PuUOD3s 3y} Ag pa3iytoads Axnuenb ayy oy [enba 1as
S (8-378V.1 0 PIRY PJE 343) d 3jqed Jo u pjary

‘PIOM PU02as 3yl Ul (Z-) sabarur ayy
Aq paluawaidul st (3-378Y], 4O Z P31} PIOM 1eay
341 U1 Pa1y193s (g = u 10} 3|qeLten 10) piay ay

“IX3U paujwie

-Xa 81 ($00GG) Z 201 Ul Anua ay) ‘Q e suiRyuod
JO1B|MUNDDE BY) §| “IX8U paulwexa §) 3jqe | uone|
-ndively ajqe] ayl Jo (G10GG) | 20] U1 Anud ayy
‘8UO € SUIBJUOT JOYRINWINDDE Y] }) °(| = U} Jaysues
Pauoiupuod B 104 "3§20|q uonendiuepy 3jqe

341 Ul {($00GS) Z 20) U1 ARUR 3y uNwexa 0} apew
1 43jsuen € ‘(0 = U) J2JSuBJ} PAUOINPUODUN Ue JO4

uonelaidiaiug

3 [8¥] ecoss
0000 __09090909] 2£055
£ Jog] 1e0ss
Z 9v] ocoss
0000 09090909 12055
3 0£] 92055
T £z} szoss
¢ |¢JoogoL [i]veoss

VETT Tiore
L CR— L

1av9z 01S]| €205
10¥92 agv|Zzoss

VIX| L 205
€1£0Z AdN10Z05S

POLLL| |OOLLL | LLOSS
ZEE0SIP| XSL |9Loss
90000} £] —— |Z]S1058

R
(9021 2 o001 ¢ oss

[[¥]zioss
[v00c1 [efooszi 2] 1ioss

[vooss[1]s105g] z] oioss

Anu3 ajdwexy

PIOM 2

piom puz

PIOM 15|

MACETZIN

UORONIISUY au

.
.
.
uonINAsu| puz
UONIORASUI I5]

v l—1t

ERZ DEEEDG

YRl

TR
[oy e [Toame]

2201 JuTi %ot]z]

lewio 4 Anuy

(‘3u0)) 31qe] uonendruely S|qeL Ul SALUT 10§ SPIAL *[-p AQEL

L-1 INIdd
Lt JIL3WHLIHY
(g40°Z7'1 =v)
u-g AINIWNDISSY
(10)
(g10z=v)
u-z X3anNi
{L400=u)
u-z HIASNVHL
Aslua papoous
Ul piom sy vonesadp

0 bey-xiga1g

33

SECTION V

THE ASSEMBLER

5.1 INTRODUCTION

The Assembler accepts the list of macros generated by the Syntactic Analyzer and uses
the information tables furnished by the Table Processor to generate binary machine code from
the list of macros. The Assembler is controlled by the Macro Interpretation Table. This table
contains information regarding the interpretation of the macros. The Assembler also uses
another table, the Machine Code Table, which contains the binary representation of the

machine instructions.

5.2 MACRO LIST
A macro generated by the Syntactic Analyzer contains the following information:

1. The macro name, which is the address in the Macro Interpretation Table of the
block of words specifying the interpretation of the macro;

2. A count, specifying the number of times the result of the macro is referenced by
other macros;

3. A list of arguments, each of which is one of the three types:
type O - the fixed pointer to an information table entry,
type 1 - a pointer to another macro,

type 2 - a fifteen bit number..

Type 0 arguments are used to reference values obtained during syntactic analysis. Type 1
arguments are used to reference results of other macros. Type 2 arguments designate fixed

values.

The format of a macro is shown in Figure 5-1. The prefix 4 in the first word of the figure
designates the first of a block of words representing a macra; the decrement and address of the
first word contain the macro name and count. The second word is a word reserved to store the
value of the macro after is is processed by the assembler. The remaining words in the block
contain the arguments of the macro; the prefix of these words contains the type number.

5.3 TEMPORARY STORAGE POOL

When algebraic or boolean expressions are evaluated, it is often necessary to store tem-
porary results. The temporary storage words needed by the object program are drawn from a
common pool of words. The compiler keeps track of the number and location of these tem-

porary storage words.

34 SECTION V

macro
4 name count Macro name and count
word reserved for value of macro
0 pointer argument 1
2 value argument 2
0 pointer argument 3

Figure 5-1. Format of a Macro with Three Arguments

We distinguish between two kinds of temporary storage. One kind is used only by the
machine instructions corresponding to a single macro. The temporary storage words used by
these instructions should be returned to the common temporary storage pool after the instruc-
tions are executed. The other kind is used to store the result of the set of machine instructions
of a macro so that the result can be referenced by the machine instructions of other macros.
These temporary storages should be returned to the pool when there is no further reference
to these results.

For each temporary storage word used by a macro, a word is reserved in the Macro
Interpretation Table fora pointer to the temporary storage word. Since there is no way of
knowing the length of a program or the maximum number of registers needed from the tem-
porary storage pool until the entire object program has been generated, locations of the words
to be used as temporary storage cannot be assigned until all machine instructions are generated.
During the course of compilation, the instructions which address a word from the temporary
storage pool will use the address of the temporary storage word relative to the beginning of
the temporary storage pool. The temporary storage words are thus addressed as 00000,
00001, 00002, etc., when they are assigned. In order to identify these temporary addresses
later, an ““identification bit” is attached to each address. After all macros are processed, the
“program break” (the location of the first word in the temporary storage pool) is added to
addresses containing an identification bit.

The temporary storage pool is organized as a chained list whose size is initialized by the
user. The initial organization of a temporary storage list is shown in Figure 5-2(a). Here the
decrement of each word contains the pointer to the next available location and the address
of each word gives the location of the word relative to the origin of the temporary storage
list. The temporary storage control routine of the compiler maintains a pointer to the first
available word in the temporary storage list. When a new temporary storage word is re-
quested, the control routine allocates the word pointed to by the pointer, updates its pointer

THE ASSEMBLER 35

Control Routine Ptr Control Routine Ptr Control Routine Ptr
50330 50331 0 50330 00000 0 50330 50334 0
50331 50332 1 50331 00000 1 50331 00000 1
50332 50333 2 50332 00000 2 50332 50330 2
50333 50334 3 50333 00000 3 50333 00000 3
50334 50335 4 50334 50335 4 50334 50335 4
50335 50336 5 50335 50336 5 50335 50336 5
50336 . 6 50336 6 50336 6

(a) (b) (c)
Initial Configuration Configuration after Configuration after
first 4 words have locations 50330 and
been allocated 50332 are returned

in order to pool

Figure 5-2. Use of a Temporary Storage Pool

to point to the next available word in the list, and sets the decrement of the allocated word

to zero. Figure 5-2(b) shows how the example list appears after the first four words have been
allocated. When a temporary storage word is released, the control routine sets the decrement
of the released word equal to the control routine pointer and updates the control routine
pointer to point to the word just released. Figure 5-2(c¢) shows the organization of the ex-
ample list after the words in locations 50330 and 50332 have returned to the pool, in that
order.

If the count (number of references to the macro) is greater than zero, the result of the
macro is stored in a temporary storage word and the address of the temporary storage word
is stored in the address portion of the second register of the block of words representing the
macro. When this result is accessed by another macro, the count is decremented by one.
This count is tested every time it is reduced, and if the count becomes zero, the temporary
storage word will be returned to the pool and the address of the second word in the macro

will be set to zero.

36 SECTION V

5.4 USE OF MACHINE REGISTERS

The execution of a machine instruction usually involves the use of machine registers,
such as the accumulator, the multiplier-quotient register, or an index register. By keeping
track of the contents of these registers, the assembler can generate more efficient binary code.
For example, if the value of a variable is in the accumulator, there is no need to reload the
variable from core storage. To keep track of the contents of the machine registers a word for
each machine register is reserved in a list called the Register Association List. If the execution
of a macro leaves the result of the macro in a machine register, a two-way pointer will be set
up between the Register Association List and the macro block. The word corresponding to
the machine register in the Register Association List will contain a pointer to the second word
in the macro block, and the decrement of the second word in the¢ macro block will contain
a pointer back to the word in the Register Association List. The pointers are used to deter-
mine the location of the result when the result is referenced by another macro. When the
machine register is used by another computation, the two-way pointer will be erased.

To use this feature, it is necessary to declare the machine registers that each macro uses.
The Register List statement of the Macro Interpretation Language (see Section 6.4) is used
for this purpose.

5.5 MACRO INTERPRETATION TABLE

The Macro Interpretation Table is used to specify the interpretation of the macros. Each
macro is defined by a block of entries in the Macro Interpretation Table. There are several
types of macro interpretation entries. These entries and their fields are given in Table 5-1.

The example operands and comparands given in Table 5-1 are of a limited type. In
general, operands and comparands may be of a more varied form. Table 5-2 gives a list of the
possible types of operand. The binary operators +, -, *, .A. and .X. and unary operators .L.
and .R. designate the operations of addition, subtraction, multiplication, logical “‘and”, logical
“exclusive OR”, logical ““left shift”, and logical “‘right shift” respectively. These operators
may be used to combine the constituents of an or-segment. (The logical “or” operator is not
defined since all or segments are eventually combined in a logical “or’.)

5.6 OPERATION OF THE ASSEMBLER

The first action the assembler takes is to initialize the temporary storage areas using the
subroutine INTEMP. (See Appendix E, Figure E-1.) The instruction counter is set equal to
the address of the first location not used for temporary storage. The macros are then pro-
cessed one at a time. The routine GETMAC is used to get the starting location of the block
of registers in the Macro Interpretation Table that describes how the macro should be inter-
preted. Next the arguments of the macro are tested. For a type 0 argument (a table entry
pointer), the pointer to the main pointer table will be replaced by the address of the entry in
an information table. The count of the macro is then tested. If temporary storage is needed,

37

THE ASSEMBLER

(AN3 "L- 0D 'G HH3 "L+ 09) 8=V dI

LYYl

£+ 09

(Jorejnwiwinode st (Y) LY 1Y

94 ‘GH ‘ed Y

£dW3l

(abenbue uonelasdiaiuy
0JoB U| UaWalels buipuodsalio))

jutod syl 03 passed sem

|0J3U0D JI pauUeds 3q 0} $3LIUa ay) Jo Buipooua
ue AQ Pamo||oy Si PJOM 1S5t} BY) [SSaIppe J1ayl
Ul %20|q AI1Ud [BUCIIIPUOD 3Y) JO PIOM 15B| BY)
01 Jajuiod e (Q PUR JUAWBLBP HBY) Ul SALIIUD
40 138 1X3u 3y} 0] 421uj0d B (€ UIRIuOI SALIIUD JO
$135 3S3YY U| PJOM 1541} 3Y] 'Pauiwiexa st Ajpan
-3adsas £20| JO ‘Z20] ‘1 20| W) Buiuubaqg sa1ua
10 13s ay1 uayy ‘{g) Zpueledwod uey) Jajesst

10 ‘01 |enba ‘ueyy ss9| i () | puesedwod y|

{1uawaad9p
0492-uou 8yl Aq AJjue Jagsuel) e woiy paysinb
-upsip st AJua Jots3 ayy :a10u) paruiid 8q 01
sl {£) 4 aY) Yum pajejoosse abessaw Jo1ia ay)

{1202S) LAnuL 01 passed s [013U0D BY]

1491 39 |im

Q192U 3Y1 JO 1 NSAJ AL YDIym uy 1aysiBas syt si Lu
!%00(q UOIILIBIAIBIU| 0IORY BY) Ul Pasn 513151531
auiyorWw 3yl aab © ¢ ‘zu ‘U TAIUa IXaU 3yl

U1 PJOM 1841} BY) JO ssaLppe 3yl s1 {$00ZS) LIPY

jood 3beiois Asesodwel ay) woly

ude) SpIom a3 01 suautod uleuod yarym
SpJOM SNONBIILUOD U 3YL JO 1SH) 3Y) JO UONIBIO)
ay1 sanib “yng 00| ‘0428w SIy1 AQ Pasn SPIOMm
abeiois Asesodway o U Jaquinu ayl 129ds 1|
*}001(040BL OB UL 1S11) 8Y) 3q ISNW Aua siy|

uonelardianug

] e— 1T
v | £e999
anafo 0[0] 1zozsg
1202G| [1202G] |ozozs .
z- 09 [$002S|0 zleiozs .
ERTELID ols Z]910z8 .
1zozs| |izozs] [siozs
1+ 09}22025]0 Z]v10zs
1zozs| [swozs] Jeroes
02025 ziozgs (€90
S10ZS 1o0zs [zdol
€102S 01025 190|
a1912Z49 £002S Zpuesedwod
v [zg9gslo] [1]900zs Lpuesedwod o} |1 01
[0 JoJ¢ TeJsooes [o Joju Jz | 0-z
[zzozs]olo Z]voozs [tAnue]ofo [z | 0-2
®
[]
] £002S .
S 20025 2u
€ [z]v00zsS]€] Lo0ZS v Jz]ieeje z€
[€ | [oeoes] Jooozs [T [unavoi] 1] 00
Az sjdwexy jewso4 Anug Anu3 papoduy

jo bej -x1ja14

a[qe [, uonelardiajuy o0IOB 10] SPAL] pue SANUY °[-S d[qeL

AvNOILIANOD

HOdY3

Y3IJSNVHL

1817 43151934

JOVHOLS AHVHO4WIL

adA} Anu3j

CTION V

SE

$$aJpPP 0187 pur
HURLIAIDAE 0197 P IOG BUIARY AQ S31100 JdjSurs |
I? 0113 ay) WOy paysinbunsip s Aduo

DUOPN PUT AY] 10Uy 0IDRW P I0) SaUa
UN [

M SLL SAPUILIAL AUD 00PN PUY Ay

spuesado buipanaa

pra aq ol

LIP30

11 AJ0ads 0y s3] ayy pue 19baiu
1}10ads (3 40 bey 2 'puriado ue se (J3ILNOYD

UO 1RX

UOIINLSLY 341)) sapnads ¢ Jo ssaippe
pue £ 4o Br1 e ajdwiexa 104 WOy xij-150d

UALTIAM S0P IS

) pue mtr::mﬁ_c Jioant

| 2312 SPIOAA

B

a3y awWbas 10 pase|aua ayy 10y plom

ags saab (£20¢G) LBaspu)

1Se1 aLl o uo

Uiy}

“uawibas

Anua aghuis e 10y stuawwbas 1o)

AU N A i 9.4} sa10ans spaom o

4
3 01P13UAT) Aty

Y BLIYORa APy HOM DU

HEOLNE NI

11819 1.1
HA1PIS DUIDUOHSA I

38

("1u0)) 9iqe] uoyryaadidgug

t o ;
z:2 [0
il
ole el
9¢028| L VL]
[
801w [£¢a9G] ¢ 1
[CRY ngm o] T/

Anu3g a

Le0Zh
9z02s
SZ0TS
v20cs

o [p[[e)ocos [0 [o5 [¢

U ?_cmuxmc_L !

Zhaspua —O% ﬁm

i ;metrm

-
.
3
L

4 Anug

0 ¢ OHIVW AN3T

Alua yxau

u baspua

| baspua
2400 7 FULVHINGD
amc.oﬁﬁ ..a)zﬁm

JO DR X134y

OXICIY 10} SPIOL{ PUE S3LNUY ' [-G J[qLL

39

THE ASSEMBLER

jood abe.iols Asesodwal ayy ul
L1 PIOM U1/ Y1 JO SJUBIUOD a3y} asn

aiqe L. apod auyoep ay}
80LW U) PIOM € JO SS3IPPE Y} §I /299G

13bayun ayy st anjea

s11 (43ba1u1) 'z adAy st quawnbie

3yl }i ‘o1oew snojaaad e 4o 1jnsal

ay1 sy anjea sy ‘| adAy sy yuawnbue

3yl J1 ‘o1 pauiod 3|qe ayy 4o

aweu ajqel ayl st anjea sit (sa1uiod)

‘0 @dA1 si Juawnbie ayl §j -osoew

£d a1 jo yuswnbue pig ayl asn

"Pan4iys 1ybL
3q 01 1 pjat} ay) sueaws (7 = Hel)
Anua J4dAl-S uy ‘paienjeAs buiaq

£'ZS oloew ay} jo uawnbae pig ayy

Aqg 01 palutod Aiua ajgel uon

A4 -BUWIOJUI 343 4O pJaly pUZ 8y asn

oL 01 48baiul [e100 ay) 10y j2190 S1 O}

Zl 21 19b31u jewsdsp ay) 10y 12120 SI |

YH4Y Aluenb ajqeisen e J0 u0I1ED0] 3L SI ZOEET

1uawaels abenbue uoneyaidialu) uonejasdiayu)|

0.DB Ui 22UBJ3Y3s BuIpUOdsal10)

Anu3 ajdwexy

piom papoaua
jo bej

a[qe], uoneyddiduy oney 1oy spuereduio) pue spuesddQ "7-S IGEL

IdAL-L

IdAL-N

3dAl-d

3dAL-S

10 IdALY

HIOJINI

379VIHVA @3HVv103a

adA | puesedp

SECTION V

M {Anus 3dAL-Y 10 3dALL
; € WoJ) AJlud JgA L-D e saysinb

-UIIsip Z ssaippe ayl :a1ou) J33unod
o) UOI1B20| UOI1ONIISUI JO SIUIILOD 3

€ 3dALD

AL 0438w a3y} 4o wawnbie pig 3yl asn l IdAL-AL

151y 4315168, asempaey ayy ui sa1s16as
| Zy PUZ 83U} JO SIUAIUOD 3y1. asn z ol] b JdALTH

{Anua 3dA LV Woiy
A1lua J4A1-Y ue saienuaIaIp
. € JO ssaippe ay}l :3jou) "osoew
1U344nJ 40 3 Nsaa jo jood abeiois

v Alesodway u) ssaippe aAle|as asn) € 3dAL-H

1uawalels abenbue uoneyaidiaiu) uolelaidiaiuy Anug sjdwexy pJOM papodua adA} puesadQ
oJ9e Ul 3dUa.aas BUIPUOdSaLI0] jobe)

("1u0)) ayqe], uonejaididyuf one 10 spueredwo) pue spuesddQ “7-S 3|qeL,

40

THE ASSEMBLER 41

the subroutine TEMPTK is called to assign a word of temporary storage to the macro and
TEMPTK will return the address of the released temporary storage word and this address will
be inserted into the second word of the block of words for the macro. The block of entries

in Macro Interpretation Table is then examined for the interpretation of the macro. The

first entry in the block (a Temporary Storage entry) specifies the maximum number and
starting location of the internal temporary storage words that the macro will use. The sub-
routine TEMPTK is called again, and the temporary storage words will be assigned accordingly.
Subroutine GENPRO is then called to process the macro.

At the end of the processing of a macro, all internal temporary words used by the macro
will be returned to the temporary storage pool and the Assembler will examine the next macro
in the list of macros. After all the macros are processed and the binary program generated, the
identification bits will be scanned and the corresponding addresses in the binary program will
be modified by adding the program break.

The subroutine GENPRO (See Appendix E, Figure E-2) processes the entries in the Macro
Interpretation Table. A pointer is kept in index register 7 pointing to the current entry.

Subroutine GEN is used to process a generate entry. (See Appendix E, Figure E-3.) The
or-segments in each generate statement are processed according to their operator-operand
pair. The operand in each pair is converted by the subroutine CONVCN. An indicator is set
to denote the type of the operand (an integer, a table-entry, a machine instruction code, a
temporary storage). The result of the execution of an or-segment is or-ed to the sense indi-
cators. At the end of the or-segment, the type of integer, as well as the number of bits to be
left shifted, are collected in a list called the relocation bit information list. This list is useful
in the generation of relocation bits. After the result of the last segment is or-ed to the sense
indicators, the values of the sense indicators, which constitute a binary word in the object
program, will be saved in the buffer pool that constitutes the object program. After a binary
word is generated, the subroutine RELCBT is called. This subroutine will examine the relo-
cation bit information list and generate the appropriate relocation bits.

The subroutine CONVER is called to get the value of a comparand when a conditional
statement is processed. There is no need to find out the type of a comparand. The sub-
routine CONVCN is called during the generation of identification bits if it is necessary to
determine the type of operand. When the operand has a 6 in the tag field (Si.j. type), a sub-
routine GET in the table processor is called to get its value and to determine the type of the
operand. When the operand has a 7 in the tag field (Ai.j. type), then in addition to the infor-
mation to be obtained from a S-type, the number of bits to be right-shifted to make it right-
justified is also needed. This is done by the same subroutine in the Table Processor. The
flow chart of the subroutines is shown in Appendix E, Figure E-4. When a register list entry
is encountered, the existing two way pointer for the specified registers are erased and a new
set of two-way pointers corresponding to the macro defined in the new entry is set. When a

42 SECTION V

conditional entry is encountered, the conditional level counter* is examined to determine the
level of conditional testing. The arguments in the first and second words are converted into
their respective values by the subroutine CONVER; the values of the arguments are compared
and the pointer (index register 7) is updated according to the result of comparision.

*The conditional level counter (in index register 5) is set to zero at the beginning of the interpretation of
of the macro, incremented by one each time a conditional entry is encountered, and decremented by one
each time an exit from a conditional entry is made.

43

SECTION VI

THE CONTROL LANGUAGES

6.1 INTRODUCTION

For the control tables to be properly filled, the designer must prepare statements in the
three control languages. The statements in these languages are interpreted by the bootstrap
translators and encoded into the control tables. (See Figure 2-3.) Two of the control
languages, the Table Declaration and Manipulation Language and the Macro Interpretation
Language, and their bootstrap translators are fixed within the system. The third control
language, the Syntax Defining Language, and its bootstrap translator must be prepared by
the designer.

The following sections describe the two fixed languages and present an example Syntax
Defining Language*. The BNF syntax of a sample source language and the statements
needed to completely design a compiler for the sample source language are given in Appen-
dix F.

6.2 AN EXAMPLE SYNTAX DEFINING LANGUAGE

In this section we present an example of a Syntax Defining Language, Markstran -
named after its designer R. E. Marks. Markstran resembles the language described in
reference 6 . The statements in Markstran define the method of syntactic analysis to be
used by the Syntactic Analyzer. We first present the syntax of Markstran, and then give
the Markstran program for syntactic analysis of the sample source language.

The Markstran language has five basic statement types, Lexical declarations, Test
declarations, Stack declarations, ATAB statements and TTAB statements. These statement
types are translated (by the Markstran bootstrap translator) into entries in the LTAB, TTAB,
STAB, and ATAB tables, respectively.

6.2.1 Lexical Declarations

Lexical declarations have the following form:

(Lexical declaration) : := (lexical block name) = (LEXICAL right part list)
{lexical block name} : := (dentifier)
(LEXICAL right part list) : := (lexical symbol) [/ dexical symbol} 15

/ [/ termination symboD]¥

* The example Syntax Defining Language and its bootstrap translator have been implemented and may be
used by the compiler designer.

44 SECTION VI

(lexical symbol) : := (bcd string) | (keyword)
{termination symbol} : := (bcd string} | keyword)
(keyword) : := ALPHABETIC | INTEGER | OINTEGER | BLANK IA*

A keyword is the symbolic name for a class of characters. Each character in a class will have
the bit representing its class set to 1 in the character’s entry in CPLIST. The keywords
ALPHABETIC, INTEGER, OINTEGER and BLANK represent strings of alphabetic charac-
ters, digits, octal digits, and blanks respectively. For example, the lexical declaration

LIT = INTEGER / .INTEGER / INTEGER. / INTEGERINTEGER // BLANK

defines the lexical block LIT, which will match decimal literals followed by a blank. The
declaration

TS = +/-/*///EQ/NE/GT/LT/LE/GE// BLANK

defines the lexical block TS which will match any of the terminal symbols +,-, ... ,GE
followed by a blank.

In the above examples TS and LIT must be declared as information tables.
MARKSTRAN assumes that there is only one table reference number for each Lexical
declaration and that each table referenced is declared in the Table Processor declarations.
Corresponding to each list of lexical or terminal symbols in a Lexical declaration, an infor-
mation table must be declared to contain the symbols.

The Lexical declarations are encoded into LTAB entries. An example encoding for
the lexical block for LIT is given in Section 3.3. There is no simple one-to-one mapping
between lexical declarations and entries in LTAB. However, for any given lexical declara-
tion, the mapping is unambiguous. Rapid lexical analysis is important; therefore, it is
usually desirable to hand code the lexical tables rather than to use the possibly less
optimum ones that could be encoded by the bootstrap translator.

6.2.2 Test Declarations

There are two kinds of Test declarations: the VALUE TEST declaration and the
PROPERTY TEST declaration.

(Test declaration) : := VALUE TEST (test primary) | PROPERTY TEST (test primary)
(test primary) : := {field name) = {TEST right part list)
(field name) : := (STAB pointer field name) (information table field name)

* “N” stands for the null character

THE CONTROL LANGUAGES 45

(STAB pointer field name) : := PFLGF | PFLES | PADD | PINTP | PPTRS | PPTR
(information table field name) : := (identifier)
(TEST right part list) : := [{test value} | {test value) ({test symbol list))] i
[(test value) | , (test value) ((test symbol listH 1%
(test value) : := {dentifier)
{test symbol list) : := (test symbol} [, (test symbol NS
{test symbol) : := (bcd string)

An information table field name must be the symbolic name of an information table field.
A test symbol must be the symbolic name for a symbol defined by a lexical declaration.

Example: Consider the declarations

VALUE TEST PFLGF = OFF, ON
VALUE TEST PADD = TERM, FACT, AEXP

The first declaration defines a test for one of the two values OFF or ON on the PFLGF
field of a pointer. The second declaration defines a test for one of the three values TERM,
FACT, AEXP on the PADD field of a pointer. Example: Within the analyzer a “property”
is represented by the occurrence of a single bit. For example, if 001, 002,, and 004,
represent three properties, the field with value 003, has two properties 001, and 002,.

A “property test” on a field is a check for the existence of one or more property bits in the
fiéld. If the Lexical declaration

TS = +/-/*///EO/NE/GT/LT/LE/GE//BLANK
has been made. The test declaration

PROPERTY TEST TPROP = ADDOP (+,-), MULOP(*,/), RELOP (EQ,NE,GT,LT,GE,LE)
will, a) assign the values 18, 28 and 48 to the symbolic names ADDOP, MULOQP, and RELOP
respectively, b) initialize the entries + and - of the TS table to the value 1, the entries * and
/ to 28, and EQ,...,LE to 48, and c¢) assign the value 78 to the symbolic name TPROP. The
tests ADDOP(P), RELOP(P), and TPROP(P), where P is a pointer to the EQ entry in the TS

information table, would have the values FALSE, TRUE, and TRUE respectively.

6.2.3 Stack Declarations

Stack declarations declare symbolic names and maximum sizes of the stacks,

(stack declaration) : := STACKS (stack list?
(stack list) : := (stack name) ({integer)) [, (stack name) ({integer)1 %
{stack name) : := (identifier)

The declared stacks are set up as blocks of STAB entries.

46 SECTION VI

Example: The declaration
STACKS STACKL(20)

defines a stack of maximum length 20, associates the symbolic name STACKL with the base
address of the stack, and initializes STACKL(-1) to 20.

6.2.4 ATAB Statements

The ATAB statements are used to specify the sequence of actions for syntactic
analysis

(ATAB statement) : := [(labeD $]} [command statement) | IF statement)
| {assignment statement)] : | (predicate definition)
(command statement) : := (command name) [({argument list))] §

(F statement) : := IF (boolean expression) THEN [(ATAB statement)] END|

IF (boolean expression) THEN [(unlabeled ATAB statement)]| ELSE

[(unlabeled ATAB statement)] END
(assignment statement) : := (identifier) = {value)
(predicate definition) : :== PREDICATE START ({predicate name) [(ATAB statement}] g
STOP
{command name) : := (basic ATAB-TTAB operation) | {(macro command name)
{argument list) : := (argument) [, argument)]
{argument) : := (labeD) | (value) | (bcd string) | (stack name)
{value) : := (integer) | {test value)
(predicate name) : := (identifier)

A command statement results in the formation of an ATAB entry. The basic ATAB
operations are given in Appendix B. In addition to the basic ATAB operations, several
special macro commands are defined within Markstran. A macro-command and its argu-
ments, like a FAP macro call, may be used in place of a sequence of commands. The
macro commands are given in Table 6-1. An IF statement results in the generation of
several ATAB entries. The first entry is a conditional transfer; the remaining entries are
those designated by the statements in the THEN-ELSE and ELSE-END blocks. An assign-
ment statement generates a STORE entry in the ATAB table. A predicate definition is
used to define names for predicate macro definitions of one argument. For example, the
definition

PREDICATE START EQ2
IF PREDVR EQ 2 THEN SETTRUE (1). RETURN. ELSE
SETTRUE (). RETURN.
STOP

defines the predicate EQ2. The system variable PREDVR is used in all macro definitions
and refers to the argument passed in the macro definition. The call EQ2(N) will result in

47

Zp00 — 1UAWILWIOD Pag 4O 20|
(Z00L)8VLS - DMOVLS 4o 8seq
(0001)8Y1S = WASHND $000j :pawinsse ase san(ea buimo|joy ay |

Jaruiod e Bunwioy
104 pasn ale snuicd e O spialy

SHlddpueldd dintdour [L |1 [ewnod] oy | — {nud) INIOd
DMIVYLS 40 doi ayr wody 0 L BRan u %
1UAWAIY Y3 U BYI SS300Y 4} 0 Gl c|Ljzool w 139 (Y) dO1MOV1S
OMIV LS 30
do3 uo sjulod ayl o pialy 4 ! g1 L1 c00l}9l (OMOV1SH avd 1Nnd
AGWd 343 Ul u anjeaay) adeid 0 0 0|0 L] M Gl u 139 (u) 138
0 0 0| 0|2 |co0oL]9l (0)OMIVLS 1Nnd
ONOVI1S woy 0 0 0jojt| v £ u - SNNIW
SlUaWda U dol dAOWIDY | 0 0 0j0]c¢|cooL|sl (0)OMOVLS 139 (u} 3S10X3
9 = 38v4v| — |82 (apow 1Nd1No; | Nidd
0 = 3Ndlv)
Juawinbie sy se G = 3siv4v] 8c fou apow! poa; LNfud
uanb buins poq aul 3uiig 0 00 0] 0|t]zvoo|si (bupns pagy 139 | (06Ul pogs) WWOD LNtdd
DMOV1S Jo 1 0 Ll— [L{ljcool]gl
dol uo joqwAs 1ndul 1Xau 1ng 0 L|— | 0]Ll]|000L |Gt WASHND 13D avon
c @© O ¥ «© =2
o e 2D - O R
Burues|y & 3 e 2 ANm % = Go11esado gy |y 1uaeAIND3 Juainbay auleu 010
>
<«

SALIIU3 gV 1V Popoou]

THE CONTROL LANGUAGES

SUONIULI3(] OB UBNSNIBW ~[-9 d[qeL

48 SECTION VI

the formation of the ATAB entries for the predicate defined above, where N will be used
in place of the identifier PREDVR.

6.2.5 TTAB Statements

The following two system variables are defined within Markstran:

STACKQ The symbolic name for the stack of pointers upon which syntactic
analysis is performed.

CURSYM The symbolic name for the location into which the result of lexical
analysis is put.

The occurrence of the special label INITIAL designates the first ATAB statement.

The TTAB statements are used to control routine TEST:

(TTAB statement)
{unlabeled TTAB statement)

[dabeD) $1, (unlabeled TTAB statement)
[[{test name} 1% [/ | // {test name) /// |
[[{test name} 1 // (test name) ///

The statements have the following meaning (ap, ..- a, and b are test names):

TTAB statement form Meaning

/ an...a, !/ ap, specifies a test on STACKQ(n), ..., a,, specifies
a test on STACKQ(0).

/bl b specifies a test on CURSYM

[ag..agll b/l ap, specifies a test on STACKQ(n), ... , a,, specifies a

test on STACKQ(0), and b specifies a test on CURSYM

Following each TTAB statement must be one or more ATAB statements. A test is
specified by giving the name of a defined table entry, the name of a table, or the name of a
value or property test. If the stack element being tested has all of the values and properties
associated with the given name, then that test is TRUE. If all the tests in a test sequence are
TRUE, the ATAB statements that follow are executed; if any test in the sequence is FALSE,
then the next test sequence is performed. There is a pseudo-test, named OTHERWISE,
which is always TRUE. When the name of a stack is mentioned in a statement, that stack
is to be used as a pushdown.

Example: Consider the statements:

X1$ //START/// LOAD. DO(SCAN). TEST(S1)
OTHERWISE ERR$ PRINT COMM(ILLEGAL PROGRAM).
ERROR EXIT.

Sis//...

THE CONTROL LANGUAGES

If CURSYM points to the symbol START, then a) the macro command load is executed,
b) control is passed to the statement labeled SCAN for performing more lexical analysis,
and c) if SCAN returns without error, control is passed to the TTAB statement labeled
S1. Otherwise, an error comment is printed and an error exit is taken.

Example: Assume that the TS and LIT declarations have been given as in the previous

examples and that:

ADDOP
MULOP
RELOP
OFF =
ON =

I
— O N

TS table reference number = 32000
TPROP field number = 270

+ reference number = 13000
Next ATAB entry to be checked = ATAB(40)
Current TTAB entry to be generated = TTAB(20)

CURSYM = STAB(1000)
STACKQ(0) = STAB(1002)

The following TTAB statements would cause the corresponding TTAB entries to be gen-

erated.
Part of statement

1+

// ADDOP /]

[1F]

[/l EQREL /[]

/ OFF [/

[ab//

Encoding for TTAB entry

TLOC = 1000, TSTPT = 3, TWHAT = 2, TTEST = 13000,
TMNPRP = 0, TTRUE = 1, TTDONE = 40, TFALSE = 0,
TFDONE = 21

TLOC = 1000, TSTPT = 3, TTABLE = 32000, TTBTEST = 1,
TWHAT = 2, TSFLD = 270, TFLDTS = 1, TTEST = 1,
TMNPRP = 1, TTDONE = 40, TTRUE = 2, TFDONE = 24,
TFALSE=0

TSTPT = 1, TLOC = 1002, TPLMN = 1, TPOS = 0,
TWHAT = 2, TMNPRP = 0, TTEST = 14677, TRUE = 1,
TTDONE = 236, TFALSE = 0, TFDONE = 26

TLOC = 1000, TSTPT = 3, TTABLE = 32764, TTBTST = 1,
TWHAT = 2, TSFLD = 271, TFLDTS = I, TTEST = |,
TMNPRP = 1, TTDONE = 236, TTRUE = 1, TFDONE = 27,
TFALSE=0

TLOC = 1002, TSTPT = 1, TPOS = 0, TPLMN = |, TWHAT =5,
TMNPRP = 0, TTEST = 0, TTRUE = 1, TTDONE = 236,
TFALSE = 0, TFDONE = 26

TLOC = 1002, TSTPT = 1, TPOS = |, TPLMN = 1, TWHAT = 2,
TFLDTS = 1, TSFLD = 0, TMNPRP = 0, TTEST = 4

-test for “a” assume TSFLD = 0-, TTRUE = 0, TTDONE = 26,
TFALSE = 0, TFDONE = 30

49

50 SECTION V1

TLOC = 1002, TSTPT = 1, TPOS = 0, TWHAT = 2, TFLDTS = 1,
TSFLD = 1, TMNPRP = 0, TTEST = 1, -test for “b” assume
TSFLD =1 -TTRUE = 1, TTDONE = 236, TFALSE =0,
TFDONE = 30

6.3 TABLE DECLARATION AND MANIPULATION LANGUAGE

The information tables formed during syntactic analysis must be defined using the
Table Declaration and Manipulation Language. The language consists of two classes of
statements, table declaration statements and table processing statements. The table decla-
rations allow the designer to specify the name, the maximum number of entries, the fields,
and the sorting option for each information table. The table processing statements allow the
designer to specify how the information tables are to be processed by the Table Processor
upon completion of the syntactic analysis.

6.3.1 Table Declaration Statements

There are two types of table declaration statements: type A, in which the bootstrap
translator assigns the packing of fields, and type B, in which thedesigner specifies the
packing of fields. These statements are of the form:

(table declaration) : := (type A declaration) | (type B declaration)

(type A declaration) : := (table nameXintegerXsorting optionXfield list)

{type B declaration) : := (table nameXintegerXsorting option)Xfield and packing list)
(sorting option) : := NO SORT | SORT | SORT ((integer) , (integer))

{field list) : := (integer) [, (integer) 1%

(field and packing list) : := (integer) ((integer), {integer)) [, <integer)

((integer) , (integer)) 1%

The integer following the table name gives the maximum number of entries in the table
named. The sorting option NO SORT designates a table not to be kept sorted during syn-
tactic analysis; the sorting option SORT designates a table to be kept alphabetically sorted
on the basis of the first (BCD) field in each entry; the sorting option SORT(integer,integer)
designates a table to be kept sorted, where the first integer gives the index of the field used
for sorting and the second integer identifies a designer-specified sorting scheme (see sorting
scheme statement below). Each integer in a field list designates the number of bits in a
field; the number of integers in the bit list is the number of fields in an entry. Each set of
three integers in a field packing list designates a field and the way it is to be packed; the
first integer is the number of bits in the field, the second is the index in the entry of the
word that the first bit is to occupy, and the third is the position of the first bit in the word.

In addition to the table declaration statement, an additional statement is used to
specify sorting schemes. This statement has the form:

(sorting scheme statement) : := (integer) [, {integer)]613

THE CONTROL LANGUAGES 51

The first integer identifies the sorting scheme to be defined; it must have a value between
two and six (the standard BCD sorting scheme is referred to as scheme one). The remaining
integers gives the indices of the fields upon which the sorting is to be based and the order
of precedence of the fields; the order of the integers is the order of precedence and each
integer must have a value between one and six.

6.3.2 Table Manipulation Statements

Table manipulation statements are used to specify the processing of tables upon com-
pletion of syntactic analysis. The table manipulation statements are grouped into blocks
of statements, each block specifying certain actions for each of the entries in an information
table. Each block of statements consists of a process statement, memory initialization
statements, and action statements:

(statement block) : := (process statement) [{memory initialization statement) 1%
[{action statement)] §
(process statement) : := PROCESS (table name) [, (table name) 15
(memory initialization statement) : :== MEMORY INITIALIZATION
(variable name) = (integer)

In the process statement for a statement block, the first table named is referred to as
the primary table in the block (table 0), and the remaining tables are referred to as the
secondary tables in the block (tables 1, 2, 3, etc.).

Example statements Encoded entries in table manipulation table *

PROCESS TABLE-A, TABLE-B, TABLEC 55000 [1 [55033 | 0 [16600 |

PROCESS LITTAB 65000 |1 | [o [14000 |

In the first process statement above, TABLE-A is declared as a primary table (table 0) and
tables TABLE-B and TABLE-C are declared as secondary tables (tables 1 and 2 respectively).

Memory initialization statements are used to initialize the values of variables. For
example, the statement

MEMORY INITIALIZATION RELOCA = 144

will reserve a word for RELOCA and initialize its contents to 144.

The action statements specify the processing to be performed on the tables named in
the process statement. Upon completion of syntactic analysis, each action statement will be
executed once for each entry in the primary table. An action statement can be one of the
following types:

* The encoded entries are explained in Section 4.4

52 SECTION V1

{action statement) : :=(sort statement) | {insert statements) | {test statement)
{search statement) | (transfer statement) | (index statement)
(assignment statement) | {arithmetic statement) | (print statement)

(sort statement) : := SORT ({table name) (¢integer) , {integer))

(insert statement) : := INSERT (field) INTO (field)

(test statement) : := TEST (field) AGAINST [(field | (variable) | (integer) | (bcd string)]%°
(search statement) : : = SEARCH (field) FOR (field)

(transfer statement) : := §$ (integer) $ | $ (integer) , (integer) $

{index statement) : := INDEX [(field) | {variable)]: (signed integer)

(assignment statement) : := (field) = [(field) | (variable) | (integer)]:
(arithmetic statement) : := (variable) = (arithmetic expression)

{print statement) : := PRINT (table name) ({format specification))
(format specification) : := (unit) [, (unit) |%

{unit) : := Of(integer) | C/(integer) | 1/(integer) | (integer) H/(bcd string)

Fields are specified by giving the table name and field number of the field referenced. Since
action statements are executed once for each entry in the specified table, no entry number
need be given. The table number implied by the location of the table name in a process
statement may be substituted for the table name. For example, with respect to the process
statement:

PROCESS TABLE-A, TABLE-B, TABLE-C

the field specification (TABLE-C, 2) refers to the second field of a TABLE-C entry, (1, 2)
refers to the second field of a TABLE-B entry, and (0, 3) refers to the third field of a
TABLE-A entry.

The sort statement spécifies the name, the sorting field and sorting option for the
table to be sorted.

Example statement Coded entry in Table Manipulation table

SORT TABLE-A (1, 1) 55001 |1 [16600 [1 | 16602 |

The name (here TABLE-A) gives the name of the table to be sorted. The first integer gives
the number (1) of the sorting scheme to be used. The second integer (1) gives the index of
the field on which the sort is to be based.

THE CONTROL LANGUAGES 53

The insert statement is used to insert an entry into another table.

Example statement Coded entry in Table Manipulation table
INSERT (TABLE-B,2) INTO (0,3) 55002 |6 | 14423 | O 14427
55003 16600 16606

The test statement is used to test whether a field matches another field, variable, integer,
or BCD string of six or less characters. If the match is successful, the accumulator will be

set to 1; otherwise it will be set to zero.

Example statements Coded entries in Table Manipulation table
TEST (TABLE-C,1) AGAINST (ABC) 55004 |4 | 17700 | 4| 17702
55005 000000 212223
TEST (1,1) AGAINST O 4 | 14423 | 3 14425
0

A search statement is used to search all instances of a field in one table for a match to
a field in the current entry in another table. If a match is found, the accumulator will be

set to 1; otherwise the accumulator will be set to zero.

Example statement Coded entry in Table Manipulation table
SEARCH (0,1) FOR (2,1) 55006 |5 16600 | 0 | 16602
55007 17700 17702

The transfer statement is used to make conditional and unconditional transfers to

other statements in the statement block.

Example statements Coded entries in Table Manipulation table
$3-28% 55010 |2 | 55015 | 1 | 55004
£33 2 0 | 55014
$-28 [2] [0 | 55004 |

In the first example a transfer to the third following statement is indicated. In the second
example a transfer to the second previous statement is indicated. In the third example, if
the accumulator contains a 1, a transfer to the third following statement is indicated, if
the accumulator contains a 0, a transfer to the second previous statement is indicated.

54 SECTION VI

The index statement increments the field or variable named by the value of the

integer.
Example statement Coded entry in Table Manipulation table
INDEX (2,2) -2 55011 2 17700 | 3 17704
55012 4 2

The assignment statement is used to fill a field of the current entry in a table

Example statements Coded entry in Table Manipulation table
(0.2) = (2.3 3 16600 1 16604
17700 17706
(2.3) = 5 55013 |3 17700 | 2 17706
55014 S
(LITTAB.3) = RELOCA 3 14000 | 3 14006
52321

In the first example, the second field of TABLE-A is filled with the third field of TABLE-C.
In the second example. the third field of TABLE-C is filled with **S. In the third example.
the third field of LITTAB is filled with the value of the variable RELOCA. Al variables

(except the reserved variables AO.A L. ... A9 used in the Table Processor for indexing) must

be declared by a Memory Initialization statement.

The arithmetic statement is used to set the value of 4 variable.

Example statement Coded entry in Table Manipulation table

A=A+ (2.2)*%5 50015 7 7 00006
55016 TSX 4 1 50332
55017 17700 17704
55020 MPY 20313
55021 XCA
55022 ADD 26401
55023 STO 26401

THE CONTROL LANGUAGES S5

Coded entry in control table

20313 | 5] 5

26401 | " 3] A

The Print statement is used to print the contents of an information table. Each unit
specifies a field or BCD string to be printed. The letters O, C, and I designate octal, BCD,
and integer fields; the integer following these letters is the field number of the field to be
printed. The letter “H/” designates the printing of a BCD string; the integer before the H is
the number of characters in the string.

Example statement Coded entry in control table
PRINT TABLE-A (C/1,4H ,1/2,4H 1/3) 55024 [1 [14423 [7 | 7 |
55025 |23 | 1|
55026 (30 | 4 |
55027 | 60606060 0000 |
55030 [46] 2|
55031 (30 | 4 |
55032 | 60606060 0000 |
55033 |46 | 3 |

The example statement above will cause the printing of three fields in each TABLE-A entry.
The first field will be printed in BCD format, the second and third in integer format; the
fields will be separated by four blanks.

6.4 MACRO INTERPRETATION LANGUAGE

The Macro Interpretation Language is used to specify the interpretation of the macros.
Each macro is defined by a block of statements in the Macro Interpretation Language:

{macro interpretation program) : := [{macro interpretation block) 1%
(macro interpretation block) : := [{macro interpretation statement) 1%
{macro interpretation statement) : := (register list statement) i {temporary storage)

(define statement) | (transfer statement)
(error statement) | (end macro statement)
{conditional statement) | (generate statement)

56 SECTION VI

{register list statement) : : = RL (hardware register name) [, (hardware register name) |

{temporary storage) ::= TEMP (integer)

(define statement) : := (declared variable} = [(signed integer) | <hardware register name)]i
{transfer statement} : := GO (signed integer)

{error statement) : := ERR ({integer)

{end Macro statement) : := END

{conditional statement) ::= IF {comparand) = {comparand) ({unconditional statement list).

(unconditional statement list) . (unconditional statement list))

(generate statement) :: = GEN [({or segment)) |
{unconditional statement list) : : = (unconditional statement) [{(unconditional statement) |%
{unconditional statement) : := {register list statement) | {transfer statement) |

(error statement) | {end macro statement) | (generate statement)

(hardware register name)::= RO R1 | R2 |...| R10
{or segment) : : = {(operand) [{operator) {operand) | (shift operator) {integer)
{operand) : : = (declared variable) | {integer) | {octal integer) | Ainteger).

(integer) | S (integer).{integer) P (integer) |
M (integer) | T (integer) | R | C

{comparand) : : = {declared variable} | A (integer) .{integer) |
S{integen).(integer) | P (integer) |
RL ¢integer) | TY {integer)

{operator) ::= + |- | * | N. [.X.
(shift operator) : := L. | .R.

The temporary storage statement is used to specify the maximum number of temporary
storage words to be taken from the temporary storage pool for the macro. For example,

Example statement Encoding in Macro Interpretation Table
TEMP 3 52000 | [52030] |3 |(beginning of macro
block)

will reserve three temporary storage words for each occurrence of the defined macro.

THE CONTROL LANGUAGES 57

The Register List statement is used to identify the machine registers used by the macro.
The first register identified is taken to be the register in which the result of the macro will be
left. The keyword identifiers R1, R2, etc., are used to denote machine registers.

Example statement Encoding in Macro Interpretation Table
RL R3,R5,R6 52001 |3 | 52004 | 2 3
52002 5
52003 6

In the above example, registers R3, RS, and R6 will be used by the macro and the result
of the macro will be left in R3.

The define statement is used to give mnemonic names to integers or machine registers,

Example statement

BASIS = 32800 (a decimal integer)
END = 5570K4 (an octal integer)
AC = R1 (a machine register)

The transfer statement is used to pass control to another statement. For example,

Example statement Encoding in Macro Interpretation Table

GO -1 52004 |2 | | o] 52001 |

passes control to the preceding statement the statement and

GO +3 52004 {2 | | o] s2022 |

passes control to the third following statement.

The error statement is used to call an error printing routine which prints out the error
message associated with the given integer. For example,

Example statement Encoding in Macro Interpretation Table

ERR 7 52005 |2 | 7] o] 0 |

calls for a printing of the message associated with error number 7.

58 SECTION VI

The conditional statement is used to execute one of three unconditional statement

lists:
Example statement Encoding in Macro Interpretation Table

If A=B(GO+1. ERR 5, GO -2. END) 52006 | 1 0| 66637 | A
52007 64216 | B
52010 52013
52011 52015
52012 52020
52013 52015 52021
52014 | 2 52022 | GO1
52015 52020 52021
52016 | 2 5 0 | ERRS
52017 | 2 52004 | GO-2
52020 52021 52021
52021 | 2 0 0 | END

This example has the following meaning. If A is less than B, then go to the next statement;
if A is equal to B, then print error message 5 and go to the preceding statement; if A is
greater than B, then terminate the interpretation of the macro.

The generate statement is used to handle the generation of machine code. Each generate
statement generates one word of binary machine code. The binary code for each or-
segment within the generate statement is combined in a logical ““or” operation to form the
binary word for the statement. The formation of binary code for an or-segment depends on
the operators and operands given in the or-segment.

THE CONTROL LANGUAGES 59

Example statement Encoding in Macro Interpretation Table
GEN (M108) (C+2) 52022 |7 0| 52024
52023 2 1 56627 | loc of M108
52024 |7 1 | 52026
52025 3 2 C (instruction loc. counter)
52026 0 21 2
52027 §JACL encoding of +

The execution of the example generate statement results in the following sequence of

events:
1. The indicators will be set to 0.

2a. The machine code for the 108th entry in the Machine Code Table will be loaded
into the accumulator.

b. The accumulator will be OR’d to the indicators.

3a. The contents of the instruction location counter will be loaded into the accumu-
lator.

b. 2 will be added to the accumulator.
¢. The accumulator will be OR’d to the indicators.
The indicators will contain the generated binary machine word.

The End Macro statement is used to terminate the block of statements for a macro:

Example statement Encoding in Macro Interpretation Table

END 52030 [2] o]o] o]

This empty page was substituted for a
blank page in the original document.

61

SECTION V11

CONCLUSION

The emphasis in our design has been the segmentation of the system to show sepa-
rately the functions of each segment. Thus, the replacement or modification of a segment
is eased. We feel that the communication between the segments is not difficult in our system.
We have placed more emphasis on the generality and flexibility of our system than on its
efficiency. We feel that this is an unavoidable trade-off. For example, consider the general
structure of the information tables in the Table Processor. Because of the flexibility the
system provides for the user to have information tables of arbitrary formats, looking up all
the references in the Main Directory bec_:omes a necessary intermediate step in accessing the

information tables.

Besides providing the users with an environment in which they can write their own
compilers, it is hoped that the experience of designing such a system will lead to the further
understanding of the general theory of compiler structure and the general technique of com-
piler writing. The basic idea in designing such a system is to separate the common features
of most compilers from the peculiarities of each individual compiler. We also see the possi-
bility of using the system as a classroom instruction tool to demonstrate the functions of a
compiler and to provide the students with opportunities for designing segments of a compiler.

This empty page was substituted for a
blank page in the original document.

(98]

6.

63

BIBLIOGRAPHY

Irons, E.1.. The Structure and Use of the Syntax-Direcied Compiler, Annual Review

in Automatic Programming. Vol, 3, 1963

Irons. T U Svarax-Directed Compiler for Algol-60), Communications of the ACM,
Vol. 4. 1901

Cheatham. T.E_ Jr. and K. Sattlev. Svutax-Directed Compiling, Proceedings of the
AFIPS SJCC. Spartan Books, 1964

Warshall. S. and R.M. Shapiro. 4 General-Purpose Table-Driven Compiler, Proceedings
of the AFIPS SJCC. Spartan Books, 1964

Chang. G.D.. A Table-Driven Compiler Generator System. S.M. Thesis, Departiment
of Electrical Engineering, M.1.T.. June 1966

Marks. R.E.. A Table-Driven Syntactic Analyzer, S.M. Thesis, Departiment of Electrical

Lngineering, M.LT.. June 1966

This empty page was substituted for a
blank page in the original document.

APPENDICES

Desermption of STABCTTAB, T'TAB. and ATAB Ields

List of Action Operations

Frror Conmments

BNT Speaitication of Terminal Svmbols and Basic Svntactic Types
Flowcharts for the Assembler

Sample Source Lunguage and Control Fanguage Compilation Statenients

This empty page was substituted for a
blank page in the original document.

DESCRIPTION OF STAB, LTAB, TTAB, AND ATAB FIELDS

APPENDIX A

67

Field
Name Mnemonic

STARB fields

PFLGF p-flag-first
PFLGS p-flag-second
PADD p-additional
PINTP p-interpret
PPTRS p-pointer-sign
PPTR p-pointer

LTAB fields

LTABL L-table

LARG L-argument
LPLMN L-plus-or-minus
LCHGXC L-change-XC
LPOS L-position

LTEST L-test

LTBCD L-true-BCD
LFBCD L-false-BCD
LTADVN L-true-advance-XC
LFADVN L-false-advance-XC
LADVN L-advance
LWHAT L-what

LTRUE L-true

LTDONE L-true-done
LFALSE L-false

LFDONE L-false-done

TTAB fields

TSTPT T-test-pointer
TPLMN T-plus-or-minus
TLOC T-location
TWHAT T-what

TPOS T-position
TTBTST T-table-test
TINDR T-indirect

No. of

Bits

First
Bit

18
20
21

22
24
26
28
30

19

21

18
21

Last
Bit

17
19

35

17
35

21
23
25
27
29
35

18
20
35

17
20
35

Table

Reference

STAB
STAB
STAB
STAB
STAB
STAB

LTAB
LTAB
LTAB
LTAB
LTAB
LTAB
LTAB
LTAB
LTAB
LTAB
LTAB
LTAB1
LTAB1
LTAB1
LTAB1
LTAB1

TTAB
TTAB
TTAB
TTAB
TTAB
TTAB1
TTAB1

77777

77777

1K11
77777

77777
1K11
2K11

Shift

356
34
18
16
15

34 (2nd word)
32 (2nd word)
17 (2nd word)
15 (2nd word)

0 (2nd word)

34
33 (2nd word)
18
15

0
33 (2nd word)
34 (2nd word)

68 APPENDIX A
Field No. of First Last Table
Name Mnemonic Bits Bit Bit Reference Mask Shift
TTABLE T-table 15 3 17 TTAB1 77777 18
TFLDTS T-field-test 1 18 TTAB1 4K5 17 (2nd word)
TMNPRP T-number-or-property 1 19 - TTAB1 2K5 16 (2nd word)
TTEST T-test 15 21 35 TTAB1 77777 0
TTRUE T-true 1 1 - TTAB2 2K11 34 (2nd word)
TTDONE T-true-done 15 3 17 TTAB2 77777 18
TFALSE T-false 1 19 TTAB2 2K5 16 (2nd word)
TFDONE T-false-done 15 21 35 TTAB2 77777 0
TSFLD T-processor-field 15 21 35 TTAB3 77777 0]
ATAB fields
AOPN A-operation 6 0 5 ATAB 77 30
AVLPTR A-value-or-pointer 1 10 - ATAB 1 25
ANUM A-number 2 1" 12 ATAB 3 23
ASTK A-stack 3 13 15 ATAB 7 20
AUSPTR A-use-of-pointer 2 16 17 ATAB 3 18
AFLD A-field 3 18 20 ATAB 7 15
APTR A-point 15 21 35 ATAB 77777 0
AFALSE A-false 15 6 20 ATAB 77777 15
ATRUE A-true 15 21 35 ATAB 77777 0
AARG A-argument 15 21 35 ATAB1 77777 0 (2nd word)

APPENDIX B

LIST OF ACTION OPERATIONS

The following is a list of operations performed by routine ACTION. The operations

are grouped by function rather than by numeric order. No mention is made of removing
processed elements from the stack, although elements are removed when necessary. VSTKO
refers to the top element of VSTK, VSTK1 the next to the top element etc. Note the RE-

VERSE operation which is used to process sequences as C-(A*B-D) without temporary

storage or a complex analysis algorithm.

69

Value of AOPN Mnemonic

Arithmetic Operations

1 UNARY MINUS
2 PLUS
3 MINUS
4 TIMES
5 DIVIDE
6 REVERSE
30 LOGICAL AND
31 LOGICAL OR
33 ABS
34 SIGN
38 TALLY

Relational Operations

7 LESS THAN
GREATER THAN
9 EQUAL
10 NOT EQUAL
1 LESS OR EQUAL
12 GREATER OR EQUAL
13 EQUAL POINTER
14 NOT EQUAL POINTER

Control Operations

17 CONDITIONAL
TRANSFER

18 TRANSFER

19 COMPUTED
TRANSFER

Interpretation

-VSTKO

VSTK1 + VSTKO

VSTK1 - VSTKO

VSTK1 * VSTKO

VSTK1 / VSTKO (integer division)
interchange values of VSTK1 and VSTKO

bit by bit logical “and” of VSTK1 and VSTKO
bit by bit logical “or’ of VSTK1 and VSTKO
VSTKO

If VSTKO 0 then 1 else O

VSTKO +1

IF VSTK1 “relation” VSTKO
true TRUE = 1
else TRUE=0
{TRUE is the symbolic name of a system
variable)
IF PSTK1 “relation”” PSTKO
then TRUE = 1 else TRUE =0

IF TRUE # O the go to ATAB(ATRUE) else go to
ATAB{AFALSE)

go to ATAB(ATRUE)

go to ATAB(VSTKO)
(must use FETCH routine)

70

APPENDIX B

Value of AOPN

20
21
22
23
24
26
27

0]
36

15
16

28

29
32
35
37

39
40

41

25

42

43-63

Other Operations

Mnemonic

DO

COMPUTED DO
TEST
COMPUTED TEST
RETURN
LEXICAL

NEW TABLES

HALT
ERROR EXIT

GET
PUT

PRINT

MOVE

NOP
ROUTINE
NEW ENTRY

ZERO
ouTBCD

INBCD

SET TRUE

NEWCHR

no defined operation

Interpretation

save current ATAB line number and go to
ATAB(ATRUE)

same as DO but use VSTKO

go to TTAB(ATRUE)

same as TEST but use VSTKO

return to caller from predicate in TTAB or LTAB
or from DO in ATAB

see later explanation:

exit from analyzer giving a parameter which requests
that the analyzers tables be overlaid with new
tables. This is a machine extension operation.

normal exit from analyzer when done with analysis

prints error comment and exits analyzer

call interpretive fetch routine to load stack

call interpretive store routine to load storage
from stack

PRNTSP = ATRUE

PRNTMD = AFALSE

PRNTVL = VSTKO (if necessary)

see explanation in text, section 3.6.5

see explanation in text, section 3.6.5

dummy - no operation

see explanation in text, section 3,6.5

using subroutine call to table processor creates a
pointer to a new-blank - entry in the table pro-
cessor with table reference number ATRUE

creates new VSTK entry of 0

creates duplicate of table processor BCD string,
represented by VSTKO, and places it in the
analyzer’s BCOTAB - VSTKO is changed to
represent this duplicate string

creates duplicate of analyzer BCD string in the
table processor format - VSTKO represents
this new string

TRUE = VSTKO - used to set truth value before
predicate return TRUE = 0 is FALSE truth value

calls routine to read input string (this is also done
automatically by LEXICAL) See text, section
3.6.5

71

APPENDIX C

ERROR COMMENTS

The system table ERRTAB controls the printing of error comments. The entries in this
table are referenced by the system variable ERRFLG. The call ERRTABERRFLG) is in-
terpreted by the system as calling for a printing of an error comment in the following format:

ERROR FOUND IN ROUTINE routine-name
error-comment sub-error-code
ERROR EXIT

The “routine-name” is the name of the system routine in which the error was found
(ACTION or SYNTAX); the “‘error-comment” is the text comment describing the error;

the sub-error-code gives further details about the error.

The table on the following page lists the possible errors.

APPENDIX C

72

: XVIWNLY
uey) 1a1e8)b xaput gy N1 Y asn 01 sidwane
uonesado INILNOY Uay) ‘ap03-101J3-GNS OU §)

10s5320.d 8iqe3 01 1ui0d 30U SI0P Pasn 1A}uIoyg

NOILDV woy
1xa uo Axdwa 10u N] Sd 40 NI SA 4843

MN1SA Wouj paaowal uaag sey anjeaA aseq YIeis ayy
Jalje SANUA UIBIUOD M 1 Sd PUE M 1SA Yiog

Buins
Induy uj S1910RIBYD HEAIG BANNDASUOD OM |

a1eaipaud
{eatxa) e Bunenjeas ajym pajjes sy jearxa

9 ueyy sa3eaib anjea aney
Anus gv1a04g .,amsod,, uy suq xis 1su4

£ = 1SV “63 *anjea pjay paunspun

DXS UBYl SS3] X8pUI 1S & Yum
JaoeiRYD € 153} 01 idwane JyIIXI

3oeys Axdwa ue wouy
40134 JO 0192 uew) $$3] X3PUl YIS JO asn

anjea ajgemo|[e "xew uey) s3)ealb sem
Y21YM OBIS B UI X8pu| Ue 0] apew aoualajay

aweu auyhoigns
01 Anjua gy 1 @09 40 18quinu 1o auou

Jaujod

Buuieyuod Anus gy s 30 saquinu Anug

(N1Sd 40 3s2q) $8 10 (M LSA J0 sseq) 99

auou

auou

auou

6uns jo ,anea,,
(8VINLHIE 10 (aVLIIIZ ‘(8viviL

{saiqe3 waysAs aie gogX pue oaV)
(Moy}ar0 GOEX)Y 10 ‘{MOIIBA0 Gy 1QD8)E
‘(MOI3IBA0 4DGYTIZ ‘(MOYIeA0 1§10

3uou

oe1s BuIpUa4O JO ssaippe aseg

>e3s 6ulpuayo Jo ssaappe aseg

INILNOYENS
G3INI43ANN OL 3ON3Y3ISIY

LINIWNOHYY
HILNIOd SS300V LONNVD

SYOVLS WILSAS
40 3SN LOFHHOONI

NOILIV 3AOW

40 3SN LO3HHOINI

1NdNI Q28 ON

31v31034d TvIIX3T TvO3T

ONIYLS @08 TvO3IT

1YWHO4 378vL TvD3ITT|

MOT4H3A0 378vL ad9

1831 IvdIX31 1vo3Il

MOTJHIANN ADVLS

MOTIHIAO MNOVLS

Zl

L

01

40442 JO asNed 3|qeqoiy

3p02-10443-gng

Palulld JUBWLWOY

DREL-L-E]
jo anjep

APPENDIX D

BNF SPECIFICATION OF TERMINAL SYMBOLS

(etter 1=
{digit) =
{octal digit) 1o =
{integer) 1=
{octal integer) o=
{symbol)

(signed integer)

(bcd string

(alphanumeric string)

{character)

(identifier
{defined name)}
{table name)

{variable name)

{arithmetic expression
{term)
{factor)

{(addition operator)

AND BASIC SYNTACTIC TYPES

AIBIC...1YIZ

ol112...1819
ol1i2...1617
[(digith}T

[¢octal digit)]F

+l-I*1/ichisi=1"
(integer) | + (integer) | - {integer)

[{characten)]T

[detter) | (digit)]F

Qetter) | (digit) | (symbol}

1= (letter) [detter) | (digit)]T
c:= [Qetten)]?
: 1= (identifier)
: = (identifien)

: = {term) [addition operator) {term}]T

1 1= (factor) [*{facton)]¥

: : = (variable) | {field) | {integer) | (arithmetic expression)

c = +|-

73

This empty page was substituted for a
blank page in the original document.

APPENDIX E

FLOWCHARTS FOR THE ASSEMBLER

The following four flowcharts are presented to show graphically how the assembler and

its various routines work together in the compiler system.

76

iLC
X1=0

1f C(0, 6) =0

L

& PPTEMP

X 6=—1st line of ML

205

X 6=-2nd line of ML

Digest Macro List Table
Convert Type O arguments
and Test Count to see if
a Temp. Storage is needed.

GENPRO
1 MACRO

-

Figure E-1. Overall Flowchart for the Assembler

APPENDIX E

FLOWCHARTS FOR THE ASSEMBLER 77

-(D)

Process Inf.
Temp Stor.
X5=-0
X7e-C(-1,6)

O

Last line of Macro
Return

ENO @ e @ @ REG

< A(REG}=A(AC)
;SE:’; D(REGWR)4)=--D(AC)
Return Return D{0,6)=-A(REG)
and BUFF1
X 7=DIAC)

[XT--A (ﬂl FM-A (3M D7+-A (4,7)J

NO @
Yes @
No
X5=-X5-1
AC=C(0.7)
Yes (BUFF-1,5y==AC
O(TXL)=~DIAC)
X7=-A (BUFF-1,5)? X po=X7-1
X5==X5 + 17

Figure E-2. Flowchart for Routine GENPRO

78 APPENDIX E

X3=-0

T(AC) =1 L GNFLAG=0

GNFLAG==Q

P(GEN + B)e-A
X7%-X7-1

X7 D (GEN + 8)

A==X7
AQCw-AC V Value

(BUFF6,3)e-AC
EXECUTE BUFF6,3
X3=-X3-1
X7Pa=X7-2

Figure E-3. Flowchart for Routine GEN

79

FLOWCHARTS FOR THE ASSEMBLER

NJDANOD PUE YTANQD ui}noy Ioj MBYoMol “p-F inB1y

¥eg
0 # -=DV148S 04~
0 4-=D141NI V{010 ov148Y
UoIVIv (L V)=V
~senie (9’010 {9'icovia
—=an|eA ~=INEA

CHONORORO

1398 X3L

- 3jiN3Qa1
-3neA

1398 XSL

20A1-d

)

UOBWIOHU}
11 UonEDIIUBP]

@

b

—=9v14IN
(Loyv.z
04 -+ 93QYVH ¢ i -+ 9Y14ON
0t = ¢ - €g-d-
o 914071 0 #-=0v148S H'orv.z SO 0 #=DT4INI
+ HMQUVHID LX- {, 2’010V +8V1VIWID —anien (£'0)D-=3n(eA
—=anjeA =anjep ~=aNEA ~sanjep
e} 8
° v ° =y ° ‘ °
adA) nJog . 2dALW adAL-) sabiawu|
be)
ues
H43ANQD
Q #~»ND Wolj

This empty page was substituted for a
blank page in the original document.

81

APPENDIX F

SAMPLE SOURCE LANGUAGE AND CONTROL LANGUAGE
COMPILATION STATEMENTS

F.1 BNF SYNTAX OF SAMPLE SOURCE LANGUAGE

{program) : := START [(statement)]3 STOP

[QabeD$]} [(assignment statement) |(transfer statement) |

(statement)
{conditional statement)]:

1]

(assignment statement) {dentifier) = (arithmetic expression)

{transfer statement) : : = GOTO {dentifier)

{conditional statement) : . = IF {arith. exp.) (rel. op.) (arith. exp.)
THEN [(statement)].

{arith. exp.) .+ = (factor)[{add. op.){facton)|¥

{factor) : : = {term) [{mult. op.) {term)|¥

({term) : : = (integen)| identifier)| (€ arith. exp.)

(identifier) : : = [{characters)]¥

(integer) = [(digit)]T

{character) c:= AIBIl...1Z

(digit) o= 0111...19

{rel. op.) ::= EQINE IGT ILT ILE I GE

{muit. op.) ce= x|/

(add. op.) cr= 4 =

F.2 THE OVERALL SYNTAX OF MARKSTRAN

MARKSTRAN START
{declaration statement block)

(Markstran program)

{syntactic analysis block}
MARKSTRAN STOP

LEXICAL DECLARE START
[(LEXICAL declaration)]5

STOP

TEST DECLARE START
{¢TEST declaration)]%

STOP

STACK DECLARE START
[(STACK declaration)]s

STOP

{declaration statement block} : :

82 APPENDIX F

(syntactic analysis block) : : = [(ATAB statement)]%° | (TTAB statement) [(ATAB statement)]%

F.3 THE MARKSTRAN PROGRAM FOR SYNTACTIC ANALYSIS OF THE SAMPLE
SOURCE LANGUAGE

MARKSTRAN START
LEXICAL DECLARE START
TS = +/-/*/—/ EQ/NE/ST/LT/LE/GE/ = [IF/THEN/./$/START/ STOP/GOTO/(/)//BLANK
IDEN = ALPHABETIC // BLANK
LIT = INTEGER/.INTEGER/INTEGER./INTEGER.INTEGER//BLANK
STOP
TEST DECLARE START
PROPERTY TEST TPROP = ADDOP(+,-), MULOP(*,-), RELOP(EO,NE,GT,LT,LE,GE)
VALUE TEST PADD = TERM, FACT, AEXP
STOP
STACK DECLARE START
STACKS STACKL(20), STACKM(2000)
STOP
PREDICATE START EQ2
IF PREOVR EQ-2 THEN SETTRLE(1). RETURN. ELSE SETTRUE(0)., RETURN.END
STOP
INITIALS DO(SCAN). TEST (X1)
SCANS IF LEXICAL (TS), LEXICAL(LIT), LEXICAL(IDEN)
THEN STORE(CURSYM). RETURN
ELSE PRINT COMM(ILLEGAL LEXICAL TEST). ERROR EXIT. END

X1$ /] START /// LOAD. DO(SCAN). TEST (S1)
OTHERWISE ERR$ PRINT COMM(ILLEGAL PROGRAM)
ERROR EXIT
S1$ /{TIF//| LOAD. DO(AE). TEST(FI1).

/I TO/// DO(SCAN). TEST(TOl).

// STOP /// TEST(X2).

/I IDENT /// LOAD. DO(SCAN). TEST(D1).
OTHERWISE TO(ERR),

SAMPLE LANGUAGE STATEMENTS 83

X28 /START//

OTHERWISE
ID1S //8//]

IDERR$

ID1AS

IM=11

OTHERWISE
TO1$ // IDENT///

OTHERWISE
IF1$ // RELOP///

OTHERWISE

PRINT COMM(SYNTACTIC ANALYSIS FINISHED).
EXCISE(1). HALT.
TO(ERR).
X = SUSE(STACKTOP(0)).
IF XEQO THEN
SUSE(STACKTOP(0))= 1.
SLABEL(STACKTOP(0))= 1.
TO(ID1A).
END
IF EQ2(X) THEN
PRINT COMM(ILLEGAL USE OF IDENT).
ERROR EXIT.
END
MOVE(STACKM,LABEL,STACKQ).
DO(SCAN). TEST(S1).
IF SUSE(STACKTOP(0)) EQ 1 THEN TO(IDERR). END
SUSE(STACKTOP(0)) = 2.
LOAD. ' DO(AE).
MOVE(STACKM,=,STACKTOP(2), STACKTOP(0)).
EXCISE(3). TEST(ENDI).
TO(ERR).
IF EQ2(SUSE(CURSYM)) THEN TO(IDERR). END
SUSE(CURSYM) = 1.
MOVE(STACKM,TO,CURSYM).
DO(SCAN). TEST(END1).
TO(ERR).
LOAD. DO(AE).
MOVE(STACKM,STACKTOP(1),STACKTOP(2),STACKTOP(0)).

STACKL = PPTR(LMOVE). EXCISE(3). TEST(IF2)
TO(ERR).

IF28 /IF// THEN///

OTHERWISE

DO(SCAN). TEST(S1).
TO(ERR).

84 APPENDIX F

ENDI1S //./// DO(SCAN). TEST(END?2).
OTHERWISE ~ PRINT COMM(ILLEGAL STATEMENT TERMINATION).
ERROR EXIT.

END2$ /IF //.//] PPTR(STAB(STACKL))=PPTR(LMOVE)+I.
EXCISE(1). DO(SCAN).
TEST(END2).
OTHERWISE TEST(SI).

AES$ DO(SCAN). TEST(AE!).
AELS$ //+/]/ DO(SCAN). TEST(AE1A).
/-1 STACKQ = UN-.

DO(SCAN). TEST(AE1A).
AE1AS //IDENT///

/INUM /// LOAD. SET(TERM).
DO(SCAN). TEST(AE2).

e LOAD. SCAN. TEST(AEI).
OTHERWISE TO(ERR).
AE2$ //MULOP/// LOAD. SCAN. TEST(AEIA).
AE2XS$ /TERM MULOP TERM//
MOVE(STACKM,STACKTOP(1),STACKTOP(2),STACKTOP(0)).
EXCISE(3). STACKQ = POINT(FMOVE).
SET(TERM); TEST(AE2X).
/ TERM // SET(FACT). TEST(AE3).
OTHERWISE TO(ERR).

AE3$ // ADDOP ///
LOAD. SCAN. TEST(AEILA).

AE3X$ /[FACT ADDOP FACT //
MOVE(STACKM,STACKTOP(1),STACKTOP(2),STACKTOP(0)).

EXCISE(3). STACKQ = POINT(FMOVE).
SET(FACT). TEST(AE3X).

// UN-FACT //
MOVE(STACKM=STACKTOP(1),STACKTOP(0)).

EXCISE(2). STACKQ =POINT(FMOVE).
SET(AEXP). TEST(AE4).

SAMPLE LANGUAGE STATEMENTS 85

AE30$ /FACT// SET(AEXP). TEST(AE4).
OTHERWISE TO(ERR).

AE4$ [(AEXP//) /]
PARENS STACKTOP(1) = STACKQ.
PARENIS SET(TERM). TEST(AE2).

/ (AEXP [/ PRINT COMM(MISSING RIGHT PARENTHESIS).

TO(PARENTI).

/ AEXP//)/// PRINT COMM(MISSING LEFT PARENTHESIS
TO(PARENT1).

| AEXP // RETURN.

OTHERWISE TO(ERR).

F.3 COMMENTS ON THE MARKSTRAN PROGRAM

It is assumed that SUSE and SLABEL have been declared in the Table Processor to be
symbolic names for fields of table IDENT. The values in these fields are interpreted in the
following way by the MARKSTRAN program:

SUSE field - O - ident not yet used
1 - used as label
2 - used as variable

SLABEL field - examined only if SUSE = 1
0 - location not yet defined
1 - location defined

Note that the result macro-strings are placed in STACKM.

If a pointer P points to another pointer (i.e., PINTP(P)= 0), the STAB(PPTR(P)) accesses
this pointer.

F.4 TABLE DECLARATION AND MANIPULATION STATEMENTS FOR
THE SAMPLE SOURCE LANGUAGE

LITTAB (100) NOSORT 36(1,0), 36(2,0), 15(3,21)
SYMTAB (200) SORT (1,1) 36,3,15,15,15
PROCESS LITTAB

MEMORY INITIALIZATION RELOCA = 144

86 APPENDIX F

(LITTAB, 3) = RELOCA
INDEX RELOCA 1
PROCESS SYMTAB
(SYMTAB, 5) = RELOCA
INDEX RELOCA 1

F.5 EXAMPLE MACRO INTERPRETATION STATEMENTS FOR THE SAMPLE
SOURCE LANGUAGE

Consider the sample source language statement:
IF X EQ 3.14 THEN GOTO AaLPHA

The macro instructions for this statement might be as fouows:

EQ (X,3.14)

TO (ALPHA)

TO (C+1)
Here EQ is a macro that causes a transfer of control to 1) the following macro if its
arguments are equal or 2) the second following macro if its arguments are not equal.

TO is a macro for unconditional transfer of control. The machine code for these macros
might be as follows:

CLA X

SUB 3.14 machine code for EQ (X 3.14)
TNZ *+2

TRA ALPHA machine code for TO (ALPHA)
TRA *+1 machine code for TO (next macro)

The macro interpretation statements for the macros EQ and TO might be as follows
(assume M101, M106, M94, and M32 designate the inachine code table entries for CLA,
SUB, TNZ, and TRA respectively):

TEMP 0 -no temporary storage is needed for EQ

RL 1 -result of macro is left in AC

GEN (M101) (ARG1) -generates code for CLAARGI1

GEN (M106) (ARG2) -generates code for SUBARG?2

GEN (M94) (C+2) -generates code for TNZ *+2; (C is the instruction
END location counter)

TEMP 0 -no temporary storage is needed for TO

GEN (M32) (ARG1) -generate code for TRA ARGI1

END

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classilication of title, body of absiract and indexing annotation must be entered when the overall report is classified)
1. OCRIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION
Massachusetts Institute of Technology UNCLASSIFIED
Project MAC 25. GROUP
None

. REPORTYT TITLE

Design and Implementation of a Table-Driven Compiler System

DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report, Electrical Engineering, September 1965 to April 1967

AUTHORIS} (Last name, first name, initial)

Liu, Chung L., Gabriel D, Chang, and Richard E. Marks

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b., NO. OF REFS
July 1967 90 6
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMEERIS)
Office of Naval Research, Nonr-4102(01)
b. PROJECT NO. MAC-TR-42
NR 048-189 9b. OTHER REPORT NO(S) (Any other numbers that may be
« assigned this report)
u RR 003-09-01

AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlirnited.

. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

None Advanced Research Projects Agency
3D-200 Pentagon
Washington, D. C. 20301

. ABSTRACT Our goal is to provide users of the table-driven compiler system with an environment within which they can

freely design and produce compilers. The primary design criterion is generality so that the users can define a large class of
input languages oriented toward any kind of problem-solving purposes, and can also define a large class of object programs

to be executed on different computer systems. Therefore, in our system we do not limit the users to specific ways of doing
syntactic analysis, or doing storage allocation, or producing binary programs of a specific format for a particular computer
system. What we provide are mechanisms that are general enough for whichever way a user desires to build his compiler. The
table-driven compiler system consists of a base program and two fixed higher-level languages -- the Table Declaration and
Manipulation Language and the Macro Interpretation Language -- together with corresponding translators to generate control
tables according to user specifications. A third higher-level language -- the Syntax Defining Language -- and its corresponding
translator are also needed. For the generality and flexibility we try to attain, less consideration is placed on efficiency.

. KEY WORDS

Compiler generators Multiple-access computers Syntax-directed compilers
Computer On-line computers Table-driven compilers
Machine-aided cognition Real-time computers Time-shared computers

DD .i%, 1473 (M.LT.) UNCLASSIFIED

Security Classification

