|

R 2T PR Y

PROGRAM ANALYSIS BY DIGITAL COMPUTER

by

DANIEL UNDERWOOD WILDE

B.S.E.E., University of Illinois
1961

S.M,, Massachusetts Institute of Technology
1962

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1966

L]
Signature of Author, M ll- »Mb

Department of Electrical Engineering, May 13, 1966

Certified by

Thesis Supervisor

Accepted by
Chairman, Department Committee of Graduate Students

PROGRAM ANALYSIS BY DIGITAL COMPUTER

by
DANIEL UNDERWOOD WILDE

Submitted to the Department of Electrical Engineering on May 13, 1966
in partial fulfillment of the requirements for the degree of Doctor
of Philosophy.

ABSTRACT

A comparison of the properties of non-modifying and self-modifying
programs leads to the definition of independent and dependent instruc-
tions. Because non-modifying programs contain only independent instruc-
tions, such programs can be analyzed by a straight forward, two-step
analysis procedure. First, the program control flow is detected; second,
that control flow is used to determine the program data flow or data
processing. However, self-modifying programs can also contain dependent
instructions, and the program control flows and data flows exhibit
cyclic interaction. This cyclic interaction suggests the use of an
iterative or a relaxation analysis technique. The initial step in the
relaxation procedure determines a first approximation to control flow;
the second step then finds a first approximation to data flow. These
two stéps are repeated until a steady-state condition is reached.

Algorithms for implementing the first iteration are presented. These
algorithms are capable of analyzing programs which modify their control
and processing instructions during the course of execution. In addition,
data structures are described which permit the construction of functional
expressions for the data flow or information processing. Finally, actual
output flowcharts of self-modifying programs are displayed.

Thesis Supervisor: Herbert M. Teager
Title: Associate Professor of Electrical Engineering

ii

ACKNOWLEDGEMENT

The author would like to express his deepest appreciation to
Professor Herbert M., Teager who not only served as thesis supervisor,
but also was a source of inspiration, a friend, and a confidant,

Thanks are also due the thesis readers, Professors Donald C. Carroll
and Thomas G. Stockham, for their constructive criticism and evaluation
of the thesis research,

The author would also like to thank his friends and associates at
Project MAC for their interest and comments during many discussions on
the thesis subject. Particular thanks go to A, Scherr, R. Thurber,
and O, Wright. In addition the author would like to thank the adminis-
tration and staff of Project MAC for the support and use of the time-
shared system.

Finally, the author would like to express his heartfelt thanks to
his parents for their continuing support; and to his wife, Marylin, for

her unending confidence and encouragement.

iii

TABLE OF CONTENTS

SUMMARY. « © &« & ¢ o o o o o o o s o o o s o s o «
INTRODUCTION. + &4 & & & & o s o 5 o o o « o o o o

2.1 Motivatiom « o v« + + ¢ 4 4 e 4 4 bt e 0 s e
2.2 History. « ¢ v ¢ ¢ ¢ o ¢ ¢ o o o o o o o o o

2.3 Purpose and Scope of This Thesis

A DISCUSSION OF THE ANALYSIS OF SELF-MODIFYING PROGRAMS.

3.1 The General Analysis Problem . + + « « + + .
3.2 The General Analysis Procedure
3.3 The Relaxation Solution Problems . « « « . .
3.4 Dependent Instructions . + « « o ¢ o o o o o
THE ANALYSIS SOLUTION. « « « « & o o s o o o o o &
4.1 The Solution Philosophy. « « « &« « + &« o . .
4.2 The First Tteration. . . « v v ¢ ¢« o o« « « &
4.3 The Control Flow Solutions . « « « « « - . .
4.4 The Data Flow Solutions. « « « o« o o o o o o
AUTOMATIC PROGRAM ANALYSIS EXAMPLES. . « . + + « &
5.1 The Flowchart FormatsS. . + « « o « « o o o

5.2 Flowcharts Containing Dependent Instructions

5.3 Flowcharts Containing Other Analysis Problems.

CONCLUSIONS. « ¢ 4 o« & o o o « « o o o s o o o s

iv

12
14
14
16
17
25
30
31
31
37
60
86
87
92
106

115

CHAPTER 1

SUMMARY

This chapter outlines the organization of this thesis,

The second chapter is an introduction to automatic program analysis
by digital computer. Automatic program analysis is defined as the
construction of a flowchart from an original source program without human
assistance. Development of such an analysis capability is motivated
by its possible use as a documentation and debugging tool. The history
of automatic program analysis is presented. The purposes, objectives,
scope, and restrictions of the thesis are stated.

The third ghapter presents the major problems of analyzing programs
which modify themselves. A comparison of the properties of non-
modifying and self-modifyingz programs leads to a statement of the
general analysis problem and a general analysis procedure.

The fourth chapter discusses the major techniques used in the
general analysis procedure. The solution philosophy required for a
successful analysis is stated. The general organization of the analysis
system is outlined. Finally, a more detailed description of the indivi-
dual analysis techniques is given.

The fifth chapter displays the results of applying the existing
analysis system to example programs. The layout and symbols of the output
flowcharts are explained. Automatically produced flowcharts of programs

containing particular analysis problems are presented.

The sixth chapter summarizes and evaluates the specific results
shown in the earlier chapters and discusses reasonable extensions
of these results,

The first appendix contains the general flowcharts of the analysis
system subroutines. The second appendix displays output flowcharts

produced by applying the analysis system to some of its own subroutines.

CHAPTER 2

INTRODUCTION

This chapter is an introduction to automatic program analysis.
First, the general problem of such analysis is presented, and includes
a discussion of what automatic program analysis involves and why it is
useful. Finally, the purpose, objectives, scope, and restrictions of

this thesis are given.

2.1 MOTIVATION

In the early days of computer dévelopment, a detailed step-by-step
machine-language program, i.e. numerical code, had to be written before
a computer could be used to solve any problem. Because writing each
new program in machine-language required excessive coding and debugging
time, special programming aids were devised. Today, all machines have
assemblers that permit the programmer to use symbolic operation codes
and symbolic addresses. In addition, debugging packages and memory-
dump routines help the program tester reduce debugging and testing .time.
Finally, general-purpose languages, such as FORTRAN and MAD, enable in-
experienced programmers to write programs without worrying about machine-
language errors.

All of these programming aids are designed to help the progfammer

write a new routine, but are of restricted use in understanding or

modifying an existing program even by its original author. 1In such a
situation there is no substitute for adequate, clear, and pedagogically
meaningful documentation of the intent and details of the programming
algorithms. 1In the absence of such information, a user would struggle
through the code to convert the existing program back into a block
diagram or a flowchart. After the flowchart was reconstructed, the
programmer could begin to understand both the function and algorithms
of the routine as the sum of its parts. During such a reconstruction,
a human programmer performs many tasks which could be automated; and
thus, major portions of such automatic analysis could be performed by
the computer.

Automatic program analysis can clearly be applied to any aspect of
producing pedagogically meaningful program documentation. For our pur-
poses, we shall consider the construction of an accurate and concise
flowchart from an original assembly-language source program without
human assistance to represent a useful form of such information. This
flowcharting procedure must produce the flowchart "boxes" with their
sequential processes, and all such procedures must be interconnected.
The flowchart boxes and interconnections represent the control flow of
the program, i.e. the program instruction execution sequence. The
functional relationships inside the flowchart boxes express the data
flow of the program, i.e. the program information processing. Flowcharts
are generally accepted as the sine qua non of documentation procedures.

The major difficulties in machine generated flowcharts (over and above

the sheer difficulty of the problem) are no different from those en~
countered in hand generated ones. The more compact, concise, and
meaningful the document, the greater the departure from machine and
processing detail; and thus the more reasoning and abstraction required
of the "analyst" and less of the user. Results of this automatic
analysis even in a somewhat detailed form would be useful either as a
debugging tool or as a documentation tool.

As a debugging tool, the analysis program could analyze and display
all possible execution paths, not just those that might be executed
during the testing session, At the same time, the analysis program
could call attention to any obvious program inconsistencies, before the
debugging and testing sessions began.

As a documentation tool, the analysis program could automatically
provide final flowcharts for program documentation, This would allow
the programmer to spend more of his time generating program code and
less time documenting code. If flowcharts were prepared automatically,
it would be easy to have an up-to-date version immediately after code
corrections or additions were made. Also, a current flowchart would
help reduce coding interruptions due to programming staff changes. 1f
the results of automatic analysis were presented in a standardized
mathematical form, it should be possible for a non-programmer with a
general mathematical background to understand the algorithm and comprehend
its implications. Finally, automatic program analysis should increase

the human capability for understanding large programmed systems, by

raising the level at which the human being assumes an analytic role.

Besides the direct use of program analysis for debugging and docu-
mentation, there are problems which can build on the results of such
analysis. The solution of these problems requires an understanding of
the interaction between programming languages and the execution of their
generated machine code, Examples of three such problems are given, and
the following discussion includes a statement of the problem and justi-
fication for its solution.

The development of large, interactive digital systems has made the
estimation of program execution time less reliable (13). In a time-
sharing system the operations manager cannot predict the throughput of
his system, just as in a large military command-and-control system the
commander cannot ascertain the information input conditions which will
saturate his facility. A better understanding of the relationship between
a programmed system and its machine execution requires a knowledge of
execution times and storage requirements as a function of the program,
With such data, a system analyst can decide what improvements need to be
made and what improvements can be made.

Today, it is still accepted that programs which are to be used re-
peatedly should be written in machine-language, while those used just
now and then could be written in a general-purpose compiler language.
Thus, it is possible to pay for higher programming costs with the
savings from machine-time expenses. However, this balance can shift

because of a shortage of assembly-language programmers. Since there has

o s g ity

always been a shortage of capable programmers, why not develop an
automatic machine-code-optimization procedure that could be used either
during or after the compilatieP of a program (10). Thus, relatively
efficient machine code could be generated by relatively inexperienced
programmers.

The last example concerns the reprogramming effort required by a
change of machines. At presént, this usually means converting to a new
language. However, future system managers will be concerned not only
with changes in machine language, but also c#anges in machine structure
(e.g., from single processing to multiprocessing). If the switch is to
be worthwhile, a manager must take advantage of the new structure, and
he is faced with an inevitable reprogramming task.

Also, the system manager would like to have his users or customers
take advantage of his new facilities. However, at the same time he must
not increase a user's cost per unit of processing. The answer to this
problem is to provide an automatic reprogramming system which can convert .
* from one language to another and still increase efficiency by taking
advantage of all the new features which prompted the machine change (9).

Although hopefully a clear case has been made for the desirability
of machine program analysis, its feasability, practical utility, and
difficulty of realization are far from clear. Utility assessment must
await availability, and the problem is far from trivial. In fact it is
the impossibility of finding a complete, closed form solution to the

problem of program analysis (a known consequence of Turing machine theory)

that has in part impeded the needed theoretical interest in the problem,
Such applied work as has been noted in the literature is scattered and

is far short of the requirements for even a rudimentary flowcharter.

2.2 HISTORY

The purpose of this section is to review the literature that has
appeared in the area of program analysis. The review is intended to
show what has been done so that the context of this thesis may be seen.
This presentation is divided into four parts: Directed-Graph Theory as
Applied to Program Analysis; Program Analysis of Compiler-Language Source
Programs; Program Analysis of Machine-Language Source Programs; and the
Presentation of Program Analysis Results via Flowcharts. The work which
we will describe is generally much too restrictive to be useful for the

patterns of assembly-language coding which are generally utilized.

2.2.1 Directed-Graph Theory

A digital computer program can be represented by a directed-graph
model; if all control paths are known ab initio. Nodes of the graph
represent blocks of code, and branches of the graph represent control
paths. With such a model, results of classical directed-graph theory
can be applied to the program analysis problem, in the sense of pre-

dicting connectivity between arbitrary nodes.

R, T. Prosser (11), in work done in 1959, describes the analysis of
‘directed graphs by the use of boolean matrices. Two boolean matrices
are associated with each graph: the first is called the comnectivity
matrix, and contains the topological structure of the diagram; the second
is called the precedence matrix, and contains the precedence relations
of the graph.

The connectivity matrix is an n by n boolean matrix, A = (aij),
where n is the number of program blocks and aij =] if program block j
is just preceded by program block i. The precedence matrix is ann by n
boolean matrix, Bm = (bij)’ which is derived from the gonnectivity matrix
by performing elementary matrix computations on A exactly m times. De-
pending on the operations used, bij = 1 can indicate that it is possible
to proceed from block i to block j in either.exactly m steps or at most
m steps.

C. V. Ramamoorthy (12), in work done in 1965, uses the connectivity
. matrix and precedence matrices to determine the structural characteristics
of the program represented by the boolean matrices. He presents algorithms
for detecting blocks which cannot be reached from the starting block;
for finding which blocks are included in at least one loop; for par-
titioning a graph into its unconnected subgraphs; and for determining
the entry and exit blocks. Obviously, these determinations are of only
incidental interest in understanding a procedure or deriving its flow=-

chart, For a general review of graph theory, see C. Berge (1).

2,2,2 Program Analysis of Compiler-Language Source Programs

L. Krider (8), in work done in 1964, describes an algebraic repre-
sentation of the control flow of a computer program and presents an algo-
rithm for manipulating such a representation into a form which could be
used to draw a flowchart. The algorithm works on the assumption that
the principal information about program flow is contained in its loop
structure., The algorithm also requires that all possible destinations
of all transfer instructions must be known in advance. Thus, this pro-
cedure can only be used on algebraic source-language programs. Such a
"pattern of code" is far more restrictive than is utilized in assembly-

language programming.

2,2,3 Program Analysis of Machine-Language Source Programs
L. M. Haibt (3), in work done in 1959, describes a program, the

FLOWCHARTER, which automatically produces flowcharts of programs whose
instructions are fixed and not modified or calculated during execution.
The output of the FLOWCHARTER is a set of flowcharts showing various levels
of detail, where each part of a chart is shown in more detail on a succeed-
ing chart. The FLOWCHARTER is divided into four main parts: preprocessing,
flow analysis, computation summary, and output,

The preprocessors transform input source language instructions into
an internal language. This permits the FLOWCHARTER to handle different

source languages by simply using the proper preprocessor. The flow

10

EE RS T el e e e Rl

analysis program determines what information goes on each flowchart
level. This routine first determines individual blocks and then groups
the smaller blocks together into larger blocks. The computation summary
program determines, for each block, which cells are used in input/out-
put, wiich cells are used in calculations, and which cells are cal-
culated. No functional relationships are derived; only the variable
names are listed. The output program prints the various flowcharts.

H. M. Teager, in an unpublished work, developed a cross-referencing
program. The input of the program is a 709 FAP source-language program,
while the output is a program listing plus cross-reference information.
For each instruction location, the cross-reference information indicates
the location of all instructions in the program that might effect the
given instruction. For example, if an instruction changes or uses the
contents of a cell, all locations which similarly‘modify or use that
cell are listed beside the given instruction. Although helpful, sometimes

’

the sheer volume of output makes the information useless.

2.2.4 Presentation of Program Analysis Results

G. Hain and K. Hain (4) have developed a program which will draw
flowcharts. The blocks of the chart are positioned so that logically-
close blocks are physically close, and there is a minimum number of
connecting-line crossings. Likewise, W. Sutherland, in an unpublished
work, used the SKETCHPAD program developed by I. Sutherland (15), to

display flowcharts. 1In both of these works, output presentation was

11

the major concern, and the necessary machine analysis was assumed to

have been derived by other means.

2.3 PURPOSE AND SCOPE OF THIS THESIS

This paper has two purposes. The first is to present algorithms
for analyzing programs which modify their control and processing in-
structions in the course of execution, Examples of such self-modi-
fication are computed changes in operation code or operand address of
instructions. The second purpose of this paper is to present data
structures which will permit a functional expression of program data
or information processing. These algorithms and data structures were
utilized in a program analysis system which produced data and control
flowcharts from assembly-language code. Even though the procedures and
data structures were developed for a specific computer and its assembly-
language, the results are of general theoretic and practical interest.
The machine incorporates all of the most sophisticated operations of
any existing machine short of a true multiprocessor, and thus, there
are no major "surprises” to be expected from minor perturbations in the
coﬁmon structure of forthcoming machines in the near future, whether
more Or less powerful.

The analysis and display procedures are general in scope; the con~
cepts apply to all machines and all programs., For purposes of experimen-

tation, the analysis and display algorithms were written for the IBM

12

7094 single-address machine (5) and the FAP assembler language (6).
Input to the analysis program is the BCD listing produced by the FAP
assembler. Output from the analysis program is a flowchart, where
block interconnections show the program control flow and symbolic
functional expressions inside the blocks show the program data or
information flow., In addition, pertinent cross-reference information is
given beside each block. This information permits a human user to
begin analyzing the program at a more sophisticated level if the auto-
matic procedures break down., Sufficient routines have been written

to validate the proposed analysis algorithms and evaluate the results

of the analysis programs.

13

—-

Chapter 3

A DISCUSSION OF THE ANALYSIS OF SELF-MODIFYING PROGRAMS

The purpose of this chapter is to introduce the major problems of
automatic analysis of self-modifying programs. First, a comparison of
the properties of non-modifying and self-modifying programs with respect
to data and control flow leads to a statement of the general analysis
problem. Second, the general solution procedure of successive approx-
imations utilized to solve this problem is outlined. Third, the problems
introduced by the solution procedure are discussed. Finally, examples
of self-modifying programs further illustrate the analysis problems.

In the description to follow, moderate familfarity with assembly-language
programming and the specific mnemonics and conventions of IBM's FAP will

be assumed (5 and 6).

3.1 THE GENERAL ANALYSIS PROBLEM

Before the general analysis problem is stated, it would be good to
review the special case of programs which do not modify themselves.
This review describes the special property of non-modifying programs
which permits a straight-forward, direct analysis procedure.

If a program is non-modifying, the set of all possible’ outcomes

for each instruction is a function of the instruction itself and'is

14

independent of all other program instructions. For example, an absolute
transfer instruction, TRA Y, is an independent instruction because all

of its outcomes are determined by the instruction itself. On the other
hand, a tagged transfer instruction, TRA Y, 1, is a dependent instruction
because its outcomes are a function of the contents of the index register
and thus the instructions and data which affected it. There is a wide
class of such dependent instructions which must be treated in the general
case.

The independence property of non-modifying programs permits a
straight-forward, two-step analysis procedure. First, the program con-
trol flow is determined by finding the outcome sets of all the transfer
or control instructions. These results are used to draw the flowchart
box outlines and interconnections. Second, the program data flow is
determined by finding the outcome sets of all the information processing
instructions. These results are then processed as a function of the
control flow to produce the symbolic functional expressions for inside
the flowchart boxes. In summary, the independence property permits a
two-step analysis procedure because the control flow can be found with-
out regard to the data flow.

However, if a program is self-modifying, the above two-step analysis
procedure cannot be used because it assumes instruction independence.

If a program contains dependent instructions, such as a tagged transfer
instruction, the control and data flows are a function of each other.
The outcome set of a tagged transfer is a function of the index register

loading instruction, but the set of index loading instructions can be a

15

function of the outcomes of the tagged transfer instruction itself,
Because of this control flow - data flow interaction, a new analysis
procedure is needed for self-modifying programs. To be feasible, such
a procedure must perforce fall short of a complete dynamic analysis of
the program's execution, and instead consider just a few static itera-

tions.

3.2 THE GENERAL ANALYSIS PROCEDURE

If the control flow and data flow of a self-modifying program are
to be determined, a procedure must be found for handling the control
flow - data flow interaction cycle. This cyclic behavior of self-
modifying programs suggests the use of an iterative or a relaxation
solution technique.

Since data flow is always a function of confrol flow, the initial
step in the relaxation solution procedure should determine a first
approximation to the control flow. The second step would then determine
a first approximation to the data flow as a function of control flow.
The first two steps would be repeated until all the outcomes of all the
dependent instructions have been found and the analysis results have
reached a steady-state condition. Only then can the control flow results
be used to construct the flowchart box outlines and interconnections,
and the data flow results to produce the symbolic functional expressions

for inside the flowchart boxes.

16

3.3 THE RELAXATION SOLUTION PROBLEMS

The relaxation solution procedure is the iterative application of
the two-step analysis process for non-modifying programs. Because of
the control flow - data flow interaction cycle of self-modifying pro-
grams, both steps must be modified. The purpose of this section is to
review the problems solved by the two-step procedure and to show how this

process must be modified to solve the relaxation problems.

3.3.1 Control Flow Modifications

Control flow represents the program instruction execution sequence
and is used to construct the flowchart box outlines and interconnections.
This execution sequence can be modeled by a directed graph where nodes
represent flowchart boxes and directed branches represent box inter-
connections. More specifically, let each node of the control graph re-
present a program block. Let a block be defined as a sequential set of
instructions between a transfer entry point and the next transfer entry
or exit point. Thus, a block is completely processed once its first
member instruction is executed. Therefore, a directed graph whose
nodes represent program blocks displays only execution sequence infor-
mation. The major control flow graph construction problems are breaking
the program into blocks and then interconnecting those blocks in proper
sequence. Now, the differences between finding the control graph of a

non-modifying program and of a self-modifying program are discussed.

17

The first control graph construction step is the detection of all
control or transfer instructions. Each of these instructions generates
a set of outcomes, i.e. entry and exit points., For non-modifying pro-
grams, all entry and exit points can be determined from the individual
control instructions. Figure 3.la shows examples of entry and exit
points generated by independent control instructions. However, in the
case of self-modifying programs, some entry and exit points cannot be
immediately determined because of dependent instructions. Figure 3.1b
shows an example of such a dependent instruction, the tagged transfer,
where the entry points cannot be determined from the transfer instruc-
tion itself. Therefore, the control graph construction procedure must

be modified to handle missing entry and exit points.

Figure 3.1 - Entry and Exit Points

TRA A » EXIT POINT TZE B EXIT POINT
- ENTRY POINT
A ENTRY POINT B ENTRY POINT

a. Entry and Exit Points Generated by Independent Instructions

A| TRAA, 1 EXIT POINT

ENTRY POINTS ?

b. Entry and Exit Points Generated by a Dependent Instruction

18

In the second construction step the entry and exit points are pro-
cessed to determine the program blocks. In the non-modifying case, the
application of the block definition is straight forward. 1In the self-
modifying case, some entry and exit points are initially missing. There-
fore modification to the block definition is required so that a first
approximation to the program blocks can be made.

The third construction step interconnects the blocks or nodes in
the proper execution sequence. In the case of non-modifying programs,
all interconnections can be made because all control instruction out- ’
comes are known and blocks are completely defined. In the case of self-
modifying programs, some block connections cannot be made because of in-
complete control instruction outcome sets. Therefore, the block inter-
connection procedure must be modified so that assuméd control graph
branches can be inserted at points where incomplete outcomés occur.

The final construction step places the control flow information
into some data structure. The control flow information of a non-
modifying program can be stored in a rigid data structure because its
information is completely known and is not changed by later analysis.
However, the data structure used to represent the self-modifying program
needs to be flexible because it contains information which might be up-

dated by later analysis results.

19

3.3.2 Data Flow Modifications

Data flow represents the data or information processing performed
by the program and is used to generate the functional expressions for
inside the flowchart boxes, This data processing can be modeled by a
directed graph where the nodes represent cell references or operators
and the directed branches represent the processing sequence. A cell
is either a memory location or a central processor register. An operator
is a machine operation, such as ADD or MULTIPLY.

The data flow graph removes the sequential constraint imposed by
the digital computer. This removal permits a better presentation of
the program's data processing algorithm by removing references to tem-
porary storage and displaying parallel processing paths. The data flow
is an implicit function of the control flow because control flow determines
the order of instruction execution and thus the arrangement of data flow
graph nodes and branches. Figure 3,2 shows a simplified program and its

data graph.

Figure 3.2 - A Data Flow Graph

AXT 10,1
CLA A
REPEAT ADD B,1
TIX REPEAT,1,1
STO c
a, The Program b. Its Data Flow Graph

20

The major data flow graph conmstruction problems are determining where
and how each cell is referenced and then interconnecting those references
in the proper sequence to form the data flow graph. Now, the differences
between finding the data flow graph of a non-modifying program and of a
self-modifying program are discussed.

The first data graph construction step is the detection of all in-
structions which change or use data or information. FEach of these instruc-
tions generates a set of outcomes, i.e. a set of references to various
cells. 1In the case of non-modifying programs, the reference outcomes of
each instruction can be found from the instruction itself. While in
the case of self-modifying programs, some outcomes may not initially
be known. For example, the cells referenced by the dependent instruction,
CLA **, cannot be determined until after the actual address of the in-
struction itself has been found. Thus, the reference detection procedure
must be modified to handle dependent data referencing instructions.

The second comstruction step determines the effect of each cell
reference. The reference effect can be found from the instruction itself.
Let a reference which changes tlie contents of a cell be known as an active
reference. Let a reference which only uses the contents of a cell be
known as a passive reference. For example, the CLA A instruction makes
a passive reference to A and then an active reference to the accumulator,
AC. The ADD B instruction first makes a passive reference to cells B

and AC and then makes an active reference to the AC,

21

The third construction step determines the processing sequence of
the data references. When a program makes a passive reference to a cell,
it obtains the contents placed there by that cell's latest executed
active reference. In a static analysis it is only possible to find all
possible latest active references for each passive reference; only a
dynamic or interpretive process can detect the single latest active

reference. The latest reference set for each passive reference can be

Figure 3.3 - Latest Reference Sets

¥ Y

-

3
©

3

<

é* ‘

£

O e T]--

! R 1

a, Dual Search Path b. Loop Search Path c. Parallel Search Path

22

found by searching back through the program as a function of the control
flow until all control paths are terminated by an active reference.
Figure 3.3 shows examples of latest reference sets, The dashed arrows
indicate latest references produced by passive reference - active ref-
erence matches. In the case of non-modifying programs, all data ref-
erences are known and control flow is completely determined. Such is
not the case for self-modifying programs. Since individual passive ref-
erences can be missing, not all the latest reference sets may be found.
Since individual active references can also be missing, latest reference
searches may be improperly terminated. Finally, since control flow paths‘
can be missing because they are functions of yet to be determined data
flow, latest reference searches may be incorrecf. Thus, the iatest ref-
erence searching procedure must be modified to handle dependent instructions.
The final construction step places the latest reference information
into a data structure which permits the generation of symbolic functional
expressions for inside the flowchart boxes. The data structure must
allow the analysis program to carry latest reference expressions forward
to each passive reference that needs them, The data structure must
also permit the analysis program to compress and simplify those func-
tional expressions. Figure 3.4 shows examples of functional expressions.
The second expression in each example is preferred. In the non-modifying
program, all control paths and data references are known. Therefore,

the latest reference structure can be rigid, and the functional

23

Figure 3.4 - Functional Expressions

l B Y

STO X
CLA A
ADD B
STO TEMP
ﬁ’ A CLA B
STO X
CLA TEMP
ADD C
D = TEMP + C
'STO D
D=A+B+C

| | ot s

STO Y

l

a. Removal of Temporary Stores b, Multiple Values

24

Y=X
Y=Aor3B

expressions are final. In the self-modifying program case, some
control paths and data references can be missing, The latest reference
data structure must be flexible because its information may be changed

in later iterations.

3.4 DEPENDENT INSTRUCTIONS

Because of the large number of machine instructions and assembly
pseudo-operations in the FAP assembly-language, it is necessary to limit
the number and format of dependent instructions which the automatic
analysis program will initially handle. The purpose of this section is

to list and describe these dependent instructions.

3.4.1 The Transfer Switch

The first example of a control flow - data flow interaction problem
is the transfer switch. A transfer switch occurs when a program changes
its exnecution path by replacing or modifying its own instructions.

Figure 3.5a shows one of the many forms of the transfer switch. In this
example, the transfer instruction at location A is picked up and stored
over an existing instruction at location B. When the program next
reaches location B, control will be switched to location C, The transfer
instruction at location A is dependent because its outcome is a function

of its storing instruction. In this example the control flow problem of

25

Figure 3.5 - Dependent Instructions

STO B

(Y]
s &

a. The Transfer Switch

A ClA C
STA B
B CLA **
2
c

)
A)

d. The Changed Address

TSX SUB,4

CALLING
SEQUENCE

LOCATIONS

b. The Subroutine Call

A CLA* B

)
-

b)Y

AN

e. The Indirect Address

26

Al TRAAL

¢c. The Calculated Transfer

A ClA B,1

B BSS 25

£. The Tagged Address

determining which location receives control from the switch interacts
with the data flow problems of detecting the switch and determining its

location.

3.4.2 The Subroutine Call and Return

The second example of control flow - data flow interaction is the
subroutine call and return. Figure 3.5b shows its general form. 1In
this example, the subroutine is called by the calling instruction, TSX.
The calling instruction is followed by a set of locations which form the
subroutine calling sequence., The calling sequence set may be empty.
The calling sequence is followed by a set of subroutine return locations,
i.e. locations to which the subroutine transfers control when it is
finished. Here too, the return set may be empty. The subroutine call
and return sequence are dependent because its outcomes are a function
of the subroutine itself. 1In this example the control flow problems of
determining the length of the calling sequence and the number of return
locations interact with the data flow problem of finding where and how.

the subroutine calculates its return,

3.4.3 The Calculated Transfer

The third example of a control flow - data flow interaction is the

calculated transfer instruction. A calculated transfer occurs when a

27

transfer instruction calculates its possible outcomes, i.e., the set of
locations to which it transfers control, Figure 3.5¢ shows one of the
forms of the calculated transfer, the tagged transfer. The tagged
transfer uses its address and tag to determine which location receives
control. Thus, the tagged transfer is a dependent instruction because

- its set of outcomes are a function of the index loading instruction.

In this example the control flow problem of finding the set of locations
which can receive control from the tagged transfer interacts with the

data flow problem of finding where and how the index register is loaded,

3.4,4 The Modified Instruction

The fourth example of a control flow - data flow interaction is the
modified instruction. A modified instruction occurs when a program
modifies or changes a portion of an existing instruction. Figure 3.5d
shows one of the many forms of the modified instruction, In this example
the address portion of the instruction at location B is changed by the
previous instruction. The instruction at location B is dependent because
its outcome is a function of its modifying instruction. In this example
the data flow problem of determining the new address portion of location B
interacts with the control flow problem of finding which locations change

the address portion of location B.

28

3.4.5 The Indirect Address

The fifth example of control flow - data flow interaction is the
indirect addressed instruction, Figure 3,5e shows one of the forms of
the indirect addressing. In this example the instruction at location A
uses the address portion of location B to determine which location it
references. The indirect address instruction at location A is dependent
because its outcomes are a function of the instruction which last changed
the address portion of location B. In this example the data flow problem
of determining the address portion of location B interacts with the

control flow problem of finding where that address was last changed.

3.4,.6 The Tagged Address

The last example of control flow - data flow interaction is the tagged
address instruction, A tagged address occurs when an instruction uses
an index register to calculate its effective address. Figure 3.5f shows
an example of a tagged address instruction. In this exampie the instruction
at location A uses index register one to calculate which location is
picked up from the table at location B. The tagged address instruction
is dependent because its outcome is a function of the index loading in-
struction. In this example the data flow problem of deciding which lo~
cation is picked out of the table interacts with the control flow problem

of determining where the index register was last loaded.

29

CHAPTER 4

THE ANALYSIS SOLUTION

In the previous chapter a comparison of the properties of non-
modifying and self-modifying programs led to the definition of
independent and dependent instructions. The dependent instructions of
self-modifying programs caused control flow - data flow interaction
requiring an iterative analysis procedure. The problems introduced
by iteratively applying the straight-forward, two-step analysis pro-
cedure for non-modifying programs were discussed.

This chapter presents the approximation pfocedures used by the
first iteration to bootstrap itself through the control flow - data
flow interaction cycle discussed in Chapter 3. First, the solution
philosophy required for a svccessful analysis is stated. Second, the
general organization of the first iteration is outlined. This outline
describes the data acquisition and data processing sequence and shows
the use of intermediate data flow analysis results to improve contro}
flow approximations and vice versa. Finally, a more detailed presente-
tion describes how the control and data flow steps handle the dependent

instructions listed in Chapter 3.

30

4.1 THE SOLUTION PHILOSOPHY

If an automatic program analysis system is to be successful, it
should be able to analyze long, core-length programs, such as assemblers
and compilers. When long programs are snalyzed, the analysis system
may generate intermediate data tables that are at least two or three
times as long as the original input program. Because it may not be
possible to retain all of the intermediate tables in core, these
results should be placed on external lists. Because of these large,
external data lists, the analysis procedure should wherever possible
consist of sorting, merging, and scanning. Any searching of these
1lists or other data structures should be avoided or delayed whenever
possible. If this date processing philosophy is fo be successful,
a set of temporary result lists and a processing sequence must be

developed,

4.2 THE FIRST ITERATION

Because the first iteration uses intermediate data flow analysis
results to improve its control flow approximations and vice versa, a
general outline of the first iteration organization would be helpful
before the detailed dependent instruction solutions are discussed.
The first iteration is divided into four parts: Data Gathering, Data
Processing, Data Reduction, and Function Generation and Output. The
organization and informatibn processing are also graphically displayed

in Figure 4.1 and Figure 4.2,

31

Figure 4.1 - The First Iteration Organization

Phase 1 - Data Generation

Start Reading Assembly Tape

Read Next Instruction

”" "
End Identify Instruction Opcode —€
/
"Transfer" 'Storage" "Data" "Reference"
Make Transfer Make Storage Make Data Make Reference
List Entries List Entries List Entries List Entries

Phase 2 - Data Processing

Approximate Subroutine Returns
Find Portion Changed
Find Constants and Results
Find Modified Instructions

Find Transfer Switches

Phase 3 - Data Reduction

Break Program Into Blocks
Approximate Missing Branches

Find Latest References

Phase 4 - Function Generation

Construct Functional Expressions

\l

Print OQutput

32

Figure 4.2 - The First Iteration Information Processing

Phase 1 - Data Generation

Input Program

/N

Transfer Storage Data Reference
Lists Lists Lists Lists

Phase 2 - Data Processing

Add Subroutine Add Portion Used
Entry and Exit
Points *

Flag Constants
and Results

Y
Correct for
Transfer Switches

Flag Modified
Instructions

Phase 3 - Data Reduction

Y

Control Tables Reference Tables

Add Approximated

Links
Add Latest Reference
Tables
Phase 4 ~ Functi§n Generation Construct Functional
Expressions
Output

33

4.2.1 Data Gathering

The first phase transforms the input program from a set of assembly-
language instructions into a set of temporary data lists, The input
program is scanned one line at a time. First, the line is decoded
and interrogated for such information as octal instruction, its
assigned memory location, BCD instruction operation code, and absence
or presence of a tag or indirect address. The assigned memory location
and octal instruction were produced by the FAP assembler. They are
used by the analysis program as bookkeeping aids for generating list
or table entries, e.g., the assigned memory location is used in each
table entry so that later analysis phases can determine which
instruction originally generated the entry. The BCD operation code

"interpreta-

is used to decode the instruction because it permits some
tion" of programmer intent, e.g. data and storage pseudo-operations
can be distinguished from executable instructions., Tagged and indirectly
addressed instructions are detected so that special analysis procedures
can be initiated,.

Second, entries are added to the various data lists according to the
BCD operation code. For transfer instructions, entries are added to
the various Transfer Lists, e.g. the Entry and Exit Point Lists. For
referencing instructions, entries are added to the Active and Passive
Reference Lists, For data generation pseudo-operations, entries are

added to the Data List. For storage generation pseudo-operations,

entries are added to the Storage List, etc. Each list entry uses

{nformation decoded from the original instruction, e.g. if the instruction
is tagged or indirectly addressed, special flags are set in its entries

so as to alert later analysis phases.

4,2,2 Data Processing

The second phase determines program properties by using data
processing techniques on the temporary data lists. In general, the
lists are sorted to place them in proper order and then sequentially
scanned to detect program properties.

First, general program properties are detected. Transfer Lists
are sorted and scanned to determine first approximations to subroutine
return points. These new entry and exit points are added to the Entry
and Exit Point Lists. The Reference Lists are sorted and scanned to
detect which portions of each cell are actively referenced; which cells
are only passively referenced, i.e. constants; and which cells are only
actively referenced, i.e. results,

Second, special program properties are determined. Modified
instructions are detected by comparing each Active Reference List
entry with those on the Data and Storage Lists. If a proper match is
not found, the actively referenced location is flagged as a possible
modified instruction. Possible transfer switch locations are found
by comparing each entry on the Passive Reference List against all

entries on the Exit Point List. A match indicates a passive reference

35

to a location which contains a known transfer instruction. The matching
Exit Point entry and the Reference Lists are then used to find a first
approximation to the outcomes of the transfer switch. The new outcomes

are added to the Entry and Exit Point Lists,

4.2.3 Data Reduction

The third phase transforms the processed temporary data lists into
more convenient data structures. Generally, this involves sorting the
lists into proper order and then placing each list entry into a new
data structure by either scanning or searching the list.

First, the Transfer Lists which contain sorted entry and exit
point information are transformed into Control Tables which represent
the approximated control flow graph. The Entry and Exit Point Lists
are used to break the program into blocks and to interconnect those
blocks. This topological information is then represented in the Control
Tables. Finally, the Control Tables are interrogated to detect unreachable
blocks and to approximate and to insert missing control branches.

Second, the Reference Lists are resorted and transformed into
Reference Tables by associating each Active and Passive Referénce List
entry with the block in which it occurs. Next, the "latest reference
set' for each passive reference is found by searching the Control and
Reference Tables. Finally, the latest reference information is placed

into a suitable data structure.

36

4.2.4 Function Generation and Output

The fourth phase transforms the Latest Reference Tables into
functional expressions and places those expressions in a suitable data

structure for final output.

4.3 THE CONTROL FLOW SOLUTIONS

This section presents the solution techniques used to solve the
control flow problems discussed in Chapter 3. First, the control flow
graph structure is presented so that the end result is known in advance.
This discussion includes the desired structure properties and a structure
which incorporates those properties. Second, the solution techniques
used to bootstrap through the dependent instruction interaction cycle
are presented. These techniques include detecting the entry and exit

points, determining the program blocks, and interconnecting the blocks,

4.3.1 The Control Graph Data Structure

The data structure which contains the control flow information must
have two characteristics. First, the structure must permit forward and
backward movement in the control flow graph. Forward, because the program
| is executed in that direction; backward, because the latest reference
search is easier to program for that direction. Second, the structure

must permit expansion and contraction of the control flow graph. Expansion,

37

because later analysis iterations may detect new blocks; contraction,

because those same iterations may wish to rejoin blocks.

A modification of Ross's plex (14) produces a data structure which

incorporates the proper characteristics.

The complete structure will be

teferred to as the Control Tables and is composed of three separate

tables:

the Topology Table, the To Table, and the From Table. Figure 4.3

shows the general component of each of these three tables.

Figure 4.3 - The Control Tables

I —3 START END -
TO ___J/’-)- TO
T0 # | porNTER - #
FROM
FROM # POINTER —
b. To Table ¢. From Table

a. Topology Table

38

FROM

The Topology Table serves as.the "card catalogue” for analysis
results. When the snalysis program needs information about a given
block, it can be found through the Topology Table once the Block Number,
I, is known. The Topolbgy Table entries are numbered sequentially with
the starting program block coming first, the second block second, etc. A
Topology Table entry is composed of seven sequential words. The first
word contains the STARTing and ENDing location of the particular block.
The second word is the "catalogue card" for the blocks which can be
reached from the particular block. The left half contains the count
of those blocks, and the right half points into the To Table where the
Block Numbers of those reachable blocks are stored. The third word is
the "catalogue card" for the blocks which can pass control to this
particular block and is constructed similarly to the second word. The
fourth through seventh words are reserved for data flow information and
will be discussed in a later section.

The To Table contains a variable length entry containing the Block
Number of each block reachable from the given block. Likewise, the
From Table contains a variable length entry containing the Block Number

of each block which can pass control to the given block.

4.3.2 Detecting the Entry and Exit Points

During the Data Gathering Phase, entries are added to the temporary

Transfer Lists whenever a transfer or control type instruction is found.

39

If the data structure of these lists is to conform with the general
solution philosophy discussed earlier, the structure must permit
individual entries to be added as required but yet allow all entries
to be processed as a group.

These characteristics can be incorporated into two lists, the
Entry Point List and the Exit Point List. The Entry Point List contains
the entry point entries, and the Exit Point List contains the exit
point entries. The format of the list entries is shown in Figure 4.4,
The "f" portion of each entry retains information about the function
or purpose of the transfer instruction which generated the entry,
e.g. remembers that the instruction was an absolute transfer, a subroutine
call, or a tagged transfer, The "Entry Point" portion of each entry
contains the core location of the entry point. The "Exit Point" portion

of each entry contains the core location of the exit point.

Figure 4.4 - The Entry and Exit Point List Formats

£ ENTRY EXIT £ EXIT ENTRY
POINT POINT POINT POINT
a. Entry Point List b. Exit Point List

40

Generating the Entry and Exit Point List entries involves detecting
all control instructions and determining their outcome sets. The outcome
of an independent control instruction can be determined from the
instruction itself. Figures 4.5 and 4.6 show examples of list entries
generated by independent instructions during the Data Gathering Phase.
Note that, except in special cases which are discussed later, Entry and
Exit Point List entries are made in pairs. This procedure facilitates
breaking the program into blocks. However, there is a small but impor-
tant percentage of control instructions which are dependent and whose
outcome sets cannot be determined by the Data Gathering Phase., Now,
three such dependent instructions are discussed to indicate how their

Entry and Exit Point List entries are generated.

Figure 4.5 - The Entry and Exit Point Entries of an Absolute Transfer

EXIT
Al TRAB —> poINT ‘ \
£, B, A £, A, B
B —_ L &—— ENTRY
POINT
a. The Program b. The Entry List c. The Exit List

41

Figure 4.6 - The Entry and Exit Point Entries of a Conditional Transfer

EXIT
A TZE B — POINT i ’
— —~— ggg’,; £, A+, A £, A, AHl
£, B, A f, A, B
ENTRY } I
B “— pornt
a. The Program b. The Entry List c¢. The Exit List

The first example of a dependent control instruction is the Transfer
Switch, Figure 4.7a shows how a Transfer Switch might occur in a program.
During the Data Generation Phase, Entry and Exit Point List entries are
made for the TRA C instruction, and Active and Passive Reference List
entries are made for the CLA A and STO B instructions, During the Data
Processing Phase, the analysis program detects a passive reference to a
location containing a transfer instruction. In this case the Passive
Reference List contains a passive reference to location A generated by
the CLA A instruction, and the Exit Point List contains an entry at
location A generated by the TRA C instruction. Thus, the Data Prbcessing

Phase knows that the CLA A instruction fills the accumulator with an

42

Figure 4.7 - The Transfer Switch

EXIT

g POINT

ENTRY
Al POINT

—)

W

TRA C

¢~ ENTRY
POINT

he
-

)

EXIT
POINT

a. The Program

b S R

£, C, A £, A, C
£, B+l, B £, B, B+l
£, C,B £, B, C
b. The Entry List c¢. The Exit List

Figure 4.8 - Transfer Switch with Passive-Active Reference Separation

CLA Y
TRA B

5 EXIT POINT

STO 2

CIA X

STO C

€~ ENTRY POINT

-» EXIT POINT

11

[3Y

TRA M

o~

s

~»EXIT POINT

TRA N

-»EXIT POINT

& ENTRY POINT (from somewhere else

in the program)

instruction that passes control to location C, It also knows that the
instruction is at location A and the "f" portion of its Exit Point List
entry indicates an absolute transfer, TRA. The Data Processing Phase
determines where the accumulator stores the transfer instruction by
noting that the "next" passive reference to the AC after the active
reference to the AC generated by the CLA A instruction is the STO B
instruction. Therefore, since the STO B instruction actively references
location B, the transfer instruction is stored into B. Because control
can be split two ways at location B, two entry point - exit point pairs
are added to the end of the lists as shown in Figures 4.7b and 4.7c. The
"f" portions of these new entries indicate generation by a Transfer Switch.
Note that care must be taken to determine whether or not the passive
reference which picks up the transfer is separated from the active
reference which stores the transfer by either an entry or exit point.

If the references are separated, the '"correct" active reference cannot

be found until after the‘first approximation to the control flow has been
determined, i.e.,during the second iteration. Figure 4.8 shows such a
case. The TRA N instruction is stored into location C, not Z. Finally,
the Data Procéssing Phase must determine whether the transfer instruction
which causes the switch can be executed in its original location. This
is done by seeing if there is a data or storage pseudo-operation on the
Data or Storage Lists in a location "just above' the location of the
transfer instruction., If there is, the Entry and Exit Point List entries

originally generated by the transfer are removed because the transfer

44

instruction "appears' to be included in a "data area" and is "probably"
not executed in its original location,

The second example of a dependent control instruction is the
Subroutine Call and Return. Figure 4.9a shows how a subroutine call can
occur in a program. Subroutine return points must be found so that the
proper Entry and Exit Point List entries are made and the program can
later be broken into the correct blocks. For analysis purposes, there
are two types of subroutines. The first type is the external subroutine
which is assembled separately from its calling program and need not be
available for analysis. An external subroutine can be detected by a
call which transfers control to a location in the Transfer Vector,

i.e. a location before the first executable instruction. The external
subroutine return information must be supplied as input information
along with the original input program. This information is processed
during the Data Gathering Phase and is used to generate Entry and Exit
Point List entries.

The second type of subroutine is the internal subroutine. It is
assembled along with its calling program and is available for analysis.
During the Data Gathering Phase, a Subroutine Return List containing
internal subroutine calls aﬂd probable §ubroutine returns is constructed.
A subroutine is usually called in the FAP lénguage by a TSX instruction.
A subroutine usually returns via a tagged, absolute transfer, such as a
TRA "small constant", 4. When a TSX inétruction is found, a call entry

is added to the end of the Return List; when a probable subroutine return

45

Figure 4.9 - The Subroutine Call and Return

A TSK SUB, 4 el £, SUB, A £, A, SUB
CALLING 2 f, B, A f£,A, B
SEQUENCE £, B-:l, A £, A, B+l
» .
[4
B <~ ENTRY f, B+n, A £, A, Btn
+ POINTS ’
s+ FOR
%~ RETURNS
a. The Program b. The Entry List c¢. The Exit List
Figure 4.10 - The Subroutine Return List
A TSX SUB1,4
B TSX SUB2,4
SUB1, A SUBL, A
SUB2, B X, 1
SUB1 ‘ X 1 SUB2, B
Y
J, ’L , 1 , 1
y T z, 2 z, 2
X TRA 1,4
SUB2
ff ~
TRA 1,4
z TRA 2,4
a, The Program b. The Return List c¢. The Sorted

Return List

46

instruction is found, a return entry is added to the end of the Return
List. Figure 4.10a shows an example of a program; Figure 4.10b shows its
Subroutine Return List; and Figurek4.10c shows its sorted Return List.
Note that in the sorted list, the returns for each subroutine are grouped
together under its entry point or starting_location. This technique
assumes that all instructions of each subroutine are sequentially
grouped together, e.g. SUBl and SUB2 do not have any common instructions
in Figure 4.10a. If subroutines do have common instructions, this
approximation procedure produces invalid return points which must be
corrected after the first approximation to control flow has been
determined, i.e. in a later iteration., Figures 4,9b and 4.9¢ show how
the entry point and exit point entries are added to the end of the lists
for each subroutine call.

The third example of & dependent instruction is the calculated
transfer, Figure 4.11 shows how one form of the calculated transfer,
the tagged transfer, might occur in a program. Note that the tagged
transfer in Figure 4.11 has a symbolic or relocatable address and is
"probably" not a subroutine return. During the Data Generation Phase,
only the location of the Exit Point is known, i.e. the locdtion of the
tagged transfer instruction, Therefore, only a single Exit Point List
entry can be made and is shown in Figure 4.11lc. Its "f" portion shows a
tagged transfer, and {ts "Entry Point" portion is flagged as unknowﬁ.
The problem of the missing entry points is passed on to later analysis

phases.

47

Figure 4.11 - The Calculated Transfer

EXIT
A TRA A, 1 > DoINT £, A,

non

a. The Program b. The Entry List c. The Exit List

4.3.3 Determining the Program Blocks

After the Data Generation and Data Processing Phases detect the
control instructions and generate the Transfer List entries, the Data
Reduction Phase uses the lists to determine the program blocks., First,
the lists must be ordered. The Entry Point List is sorted on its
"Entry Point" column; the Exit Point List is sorted on its "Exit Point"
column., Second, the program is broken into blocks by sequentially
scanning the two lists and recognizing the various entry and exit point

patterns.

48

There are four different types of blocks which produce four

different Entry and Exit Point patterns. These are:

1. Blocks with both entry and exit points,
2, Blocks with only exit points,
3. Blocks with only entry points, and

4. Blocks with neither entry points nor exit points.

The patterns are recognized by detecting the occurrence of certain
mathematical relationships between the "Entry Point" portion of the
sorted Entry Point List entries and the "Exit Point" portion of the
sorted Exit Point List entries. Each list has its own pointer which
specifies the current entry on the list, e.g. the Entry Point List
Pointer specifies the Current Entry Point. The term, Next Entry Point,
refers to the next different entry after the current entry. Since both
lists have been sorted, it is always true that the Next Entry Point be
greater than the Current Entry Point. Likewise, the next Exit Point
must be greater than the Current Exit Point, As the respective entries
are processed, the pointers are moved down the lists, The recognition
process is recursive, and the recognition expressions stated below
assume that all entries and exits for the previous block have been

processed.

49

1. The current block has both entries and exits:
Current Entry = Previous Exit + "1"
Current Entry £ Current Exit

Current Exit < Next entry

2. The current block has only exits:
Current Entry # Previous Exit + "1"

Current Entry » Current Exit

3. The current block has only entries:
Current Entry = Previous Exit + "1"

Current Exit > Next Entry

4, The current block has neither entries nor exits:
Current Entry ¥ Previous Exit + "1"

Current Entry £ Current Exit

Figure 4.12a shows a-flowchart outline which contains a block with
both entries and exits. Block Q can be reached from location b and
transfers control to locations 1 and y. Block Q starts at location j
and ends at location k. Figures 4.12b and 4.12c shows the Sorted Entry
and Exit Lists. If Block P has already been formed, then the arrows on
the two sorted lists point to the current list entries. Block Q has
both entries and exits because the list entries satisfy the first set
of relationships shown ﬁbove, if.e. j=41+1, <k, and k < 1. The

START of Block Q is j, and the END is k. Figures 4.12c, d, and e show

50

Figure 4.12 - A Block with both Entry Point and Exit Point Entries

b 6— a
i P > x ‘ l
‘ f, h, & £, 1, x
3 <=1 —>f, 5, b £, k, 1 <€—
k Q —tpm y £,1, k £, k, y
f, m, 2z
~ l
1 |
m R e 2
a. The Program b. Sorted Entry List c., Sorted Exit List
b 1 r‘—"‘ £ x
1 ~— r-)J £ 1
1 = f y
1~ 1~ ~ ri-' f z
3 k
™
2 .-——-—-J
1 -
] - % £ a
.
1 m £ b
1 o-_-—-*"——_-J 4_———’—_,——”,————""-—‘“""" f k
1 o~
£ -~ ¥
|
d. The Topology Table e. The To Table f. The From Table

the Control Tables for Block Q, Since there are two Exit List entries
with an "Exit Point" portion of k, there are two To Table entries,

1 and y. Since there is only one Entry List entry with an "Entry
Point" portion of j, there is only one From Table entry, b. In this
example and those to follow, the entries in the To and From Tables are
core locations, not Block Numbers. The core locations are replaced by
Block Numbers after the program has been broken into blocks.

Figure 4.13a shows a flowchart outline which contains a block with
only exits. Block Q only exits to location y. (The entry at i + 1 can
be missing because of a calculated transfer not generating its entry
point entries during the Data Generation Phase.) Block Q starts at
location i + 1 and ends at location j. Figures 4.13b and 4.13c show
the Sorted Entry and Exit Lists, If Block P has already been formed,
then the arrows on the two sorted lists point to the current list entries.
Block Q has only exits because the list entries satisfy the second set
of relationships shown above, i.e. k # i + 1 and k > j. The START of Block Q
is i + 1, and the END is j. Figures 4.13c, d, and e show the Control
Tables for Block Q. Since there is one Exit List entry with an "Exit
Point'" portion of j, there is one To Table entry, y. Since there are
no Entry List entries with an "Entry Point" portion of i + 1, there are
no From Table entries for Block Q.

Figure 4,14a shows a flowchart outline which contains a block with
only Entry List entries, Block Q receives control from location i, but

transfers control directly to the next sequential block. Figures 4.14b

52

Figure 4.13 - A Block with only Exit Point Entries

h t— 2
P > x ‘ i
{41 fs h, a f, i, X
Q —*fp ks b f, j, Yy <—-
J > ¥ ‘ £, 1, 2
k $— b
1 R > 2
a. The Program b, Sorted Entry List c. Sorted Exit List
h i f——)- £ x
1 ~— r—a— £ v
1 o———\ £ z
w -
i+l b} \\\
1 ~—
0 0
';5 Fﬂ.‘ [~
k 1 > £ a
I - ..——_J/—_*- £ b
1 [
3 £ L
d. Topology Table e. To Table £, From Table

53

and 4.l4c show the Sorted Entry and Exit Lists, If Block P has already
been formed, then the arrows on the two lists point to the current list
entries, Block Q has only entries because the list entries satisfy the
third set of relationships shown above, i.e. j =1 + 1 and 1> k. The
START of Block Q if j, and the END is k - 1. Figures 4,14c, d, and e
show the Control Tables for Block Q. Since Block Q exits directly to
the next block, an exit is inserted from location k - 1 to location k.
Thus Block Q has one To Table entry, k. Note that Block R has two From
Table entries, b and k - 1, Since there is one Entry List entry with
an "Entry Portion" of j, there is one From Table entry, 1i.

Figure 4.15a shows a flowchart outline which contains a block with
neither entry not exit points. Figures 4.15b and 4.15¢ show the Sorted
Entry and Exit Lists, If Block P has already been formed, then the
arrows on the two lists point to the current list entries. Block Q has
neither entries nor exits because the list entries satisfy the fourth
set of relationships shown above, i.e. j # i + 1 and j < k. The START
of Block Q is i + 1, the END is j - 1. There are no To or Ffoﬁ Table

entries.

4.3.4 Interconnecting the Blocks

In the previous section, techniques for breaking the program into
blocks and constructing the Control Tables were described. Now, these

tables must be checked to insure that the blocks have been properly

54

Figure 4.14 - A Block with only Entry Point Entries

h p— &
i F —>x
i {
Y f’ 1, j
j f’ h’ a f, 1, x
Q —>»f, §, 1 £, 1, m €—
k t—b :» : ‘1> : :11’ y
1 R a ? t’ ? 2
I |
m
n s]

a. The Program b, Sorted Entry List c. Sorted Exit List

N o
I R L
o] +h
(73 o

[. =
‘v,r'I
=
Y 11
™] m] Fh
B I« iI=x

:

—1

.
145

%
1

1 . y
S
1
A o~ A=
T T T

2 L)
2 .
- o :éﬁ f 8
m n f i
I

d. Topology Table e. To Table f. From Table

"

Figure 4.15 - A Block with neither Entry Point nor Exit Point Entries

€ a
i P —> X ‘ i
141 f, h, a £, 1, x
Q —>»f, j, b £, k, ¥ -€——
a S |
] &b
Kk R
a., The Program b, Sorted Entry List c. Sorted Exit List
h i _J_’ £ x
1 & (—). £ y
1 .
] - T
i+l j-1
0 0
0 0
5?’ o s £ a
b k £ b
1 —t
1 [
:'Tﬁ o o
!
d, Topology Table e. To Table f. From Table

and totally interconnected so that all program blocks are used in the
analysis. The purpose of this section is to discuss techniques for
testing block interconnections, detecting isolated or improperly
connected blocks, and correcting improper block connections.

The program being analyzed must be assumed to be a '"well connected"
program where each program block can be reached from at least one of the
program starting blocks. (A subroutine can have any number of starting
blocks or entry points.,) If a block cannot be reached from a starting
block, there must be some reason for its isolation, Detecting isolated
blocks first requires constructing a list of blocks which can be
reached from one of the starting blocks and then determining which
blocks are missing from this reachable block list,

As each isolated block is detected, the reason for its isolation
must be determined; and its Control Table entries corrected. If the
block should be isolated, its Topology Table entry is flagged as such.
However, if the block should not be isolated, the proper assumed
connection branches must be inserted into the Control Tables to make the
isolated block reachable from its true predecessor blocks. After the
Control Tables have been corrected for the isolated block, a new list
of reachable blocks is constructed; and the detection procedure is
repeated. This detection and correction procedure is repeated until
all blocks are either reachable or flagged as truly isolated. Because
of the generality of assembly-language programming, there are many
different reasons for isolated blocks. It is at this point that

individual algorithms must be developed for each class of reasons.

57

Probably the most common reason why a block should be isolated
is that it contains data or storage pseudo-operations and is not meant
to be executed. (Of course, there will always be the programmer who,
for reasons known only to himself, uses data or storage pseudo-operations
to generate executable code.) Figure 4,16a shows the structure of a
program containing such a block. If this type of block is found missing
from the reachable block list, its reason for being isolated can be
verified as follows. First, the Data and Storage Lists are scanned to
see if they contain at least one entry whose program location places it
within the isolated block. Second, the Control Table entry of the block
preceding the isolated block is checked to see if it is terminated by
a single absolute transfer. If both conditions are satisfied, the block
is truly isolated; and a data or storage flag is set in its Topology
Table entry.

Another common reason why a block should be isolated is that it
contains a subroutine calling sequence. Figure 4.16b shows the structure
of a program containing such a block. If this type of block is found
missing from the reachable block list, the To Table entry of the prece-

- ding block must show that it is terminated by a subroutine call., Because
of the generality of assembly-language programming, & calling sequence
can contain any type of instruction or pseudo-operation. At this stage
of analysis, the isolated block can only be flagged as an assumed
calling sequence. In a later iteration after the subroutine return

approximations have been verified, the interaction between subroutine

58

Figure 4.16 - Isolated Blocks

EXIT ABSOLUTE
TRA SKIP > DOINT > IRANSFER
A oCT 1 ISOLATED BLOCK
CONTAINS DATA OR
B DEC 100 STORAGE
TABLE BSS 20
ENTRY e
SKIP <_POINT
a. The Data or Storage Block
TSX SUB,& |y EXIT |5~ SUBROUTINE CALL
) POINT
PZE COUNT
PZE TABLE CALLING SEQUENCE ?
ENTRY
?
& BOINT ¢~ SUBROUTINE RETURN ?

b. The Calling Sequence Block

TABLE TRA TABLE,1 P —>*TAGGED TRANSFER
7 ¢
TRA A \
[
TRA B ! —>-DISPATCH TABLE
TRA C \
Sy
’
)
. '-">“

c. The Dispatch Table

[4

59

calling sequences and subroutine returns can be used to verify the
flagging of blocks as calling sequences.

One common use of the calculated transfer is in a dispatch table,
A dispatch table is a sequential set of blocks where the first block is
terminated by a tagged transfer and the other blocks are terminated by
an absolute transfer. The contents of the index register of the tagged
transfer are used to determine which dispatch table block receives
control from the tagged transfer block. Figure 4.16c shows a program
containing a dispatch table, When the program is broken apart, the
blocks in the dispatch table are formed as a function of exit points
alone, because the entry points of the tagged transfer are missing.
Thus, no connections are made between the tagged transfer block and the
dispatch blocks. When a reachable block list is constructed, the dispatch
blocks and those connected to them are missing., Therefore, assumed
branches must be inserted into the Control Tables to interconnect the
tagged transfer block and the dispatch blocks as shown by the dashed
arrows in Figure 4.16c. These assumed branches permit the analysis
program to reach the blocks which are connected to the dispatch blocks.
In a later iteration after the set of possible index register values

has been determined, the assumed branches can be verified,

4,4 THE DATA FLOW SOLUTIONS
This section presents the solution techniques used to solve the

data flow problems discussed in Chapter 3. First, the data flow graph

60

data structure is presented so that the end résult is known in advance.
This discussion includes the desired structure properties and a structure
which incorporates those properties. Second, the solution techniques
used to bootstrap through the dependent instruction interaction cycle

are presented, These techniques include generating the active and
passive references, finding the latest reference sets, saving the

latest reference information, and constructing the functional expressions.

4,4,1 The Data Graph Data Structure

The data structure which contains the data flow information must
have three characteristics. First, the data flow information should
be incorporated into the control flow structure so that the latest
reference searches can be easily performed. Second, the structure should
permit the Active and Passi’e Reference List entries to be associated
with the block in which they occur in order to facilitate the latest
reference searches, Third, the structure should retain the latest
reference information in such a way as to provide for passing the func-
tional expressions generated by each active reference on to those passive
references which will need the expressioms.

The first two desired characteristics can be accomplished by
enlarging the Topology Table entry for each block to include "catalogue
cards" for data flow information. Figure 4.17 shows the enlarged

Topology Table block entry. The construction and interpretation of the

61

Figure 4.17 - The Enlarged Topology Table

START END -—
TO 0
- #
T0 # POINTER
FROM —
T)
FROM # POINTER
ACTIVE To Table
)
ACTIVE # POINTER
PASSIVE
PASSIVE # POINTER """‘1
LATEST
LATEST # POINTER)
USER —
USER # POINTER B L—-—-—-———)— F;OM
Topology Table -
From Table
. 4 }rw{
ETC.
ACTIVE
#

Active Table

62

new table words are the same as before, i.e. the left side gives the
table entry count, and the right side points to those entries in the
given table., The third characteristic can be fulfilled by properly
constructing the four new tables, i.e. the Active, Passive, Latest,
and User Tables. The format and construction of these tables will

be introduced as they are needed.

4.4,2 Generating the Active and Passive References

The purpose of the Reference List entries is to tell the later
analysis phases what and where information is changed, used or needed.
The Data Generation and the Data Processing Phases construct the
individual active and passive reference entries. The Data Reduction
Phase uses the active references to find the latest reference sets for
each passive reference. The Functional Generation Phase uses the latest
references to construct the functional expressions for inside the
flowchart boxes; If this processing chain is to be successful, the
initfal Reference Lists must be properly constructed.

During the Data Gathering Phase, entries are added to the
temporary Reference Lists whenever an instruction which changes or uses
information is found., If the data structure of these lists is to
conform with the general solution philosophy discussed earlier, the
structure must permit individual entries to be added as required but

yet allow all entries to be processed as a group.

63

These characteristics can be incorporated into two lists, the
Active Reference List and the Passive Reference List. The Active
Reference List contains the active reference entries, and the Passive
Reference List contains the passive reference entries. The format of
the list entries is shown in Figure 4.18. The "f" portion of each
entry retains information about the function or purpose of the instruction
which generated the reference entry, e.g. remembers that the instruction
was a plain STA instruction which changes only the address portion of
the "Cell Changed"; was a CLA instruction with a symbolic operand address
of **; or was a tagged STO instruction. The "Cell Changed" portion of
an active reference entry is the cell number of the cell changed by the
active reference. (For bookkeeping purposes, the central processor
registers are also assigned cell numbers.) The "Cell Used" portion of
a passive reference entry is the cell number of the cell used by the
passive reference. The "Instruction Cell" portion of both entry types
is the cell number of the cell which contains the instruction which
generated the entries.

Generating the Active and Passive Reference List entries involves
detecting all referencing instructions and determining their outcome
sets. The outcome of an independent reference instruction can be
determined from the instruction itself. Figures 4.19 and 4.20 show
examples of list entries generated by independent instructions during the
Data Gathering Phase. The number of entries made for each instruction

is a function of its operation code. As in the case of control

64

Figure 4.18 - The Active and Passive Reference List Formats

£ CELL INSTRUCTION £ CELL INSTRUCTION
CHANGED CELL USED CELL
a. The Active Reference List b. The Passive Reference List

instructions, there is a small but important percentage of referencing
instructions which are dependent and whose outcome sets cannot be determined
by the Data Gathering Phase. Now, three such dependent instructions are
discussed to indicate how their Active and Passive Reference List entries
are generated. This discussion shows how special Reference List entries
are used to initiate special procedures to handle dependent instructions.
The first example of a dependent reference instruction is the
changed address instruction. Figure 4.2la shows how a changed address
instruction might occur in a program., Since the Data Generation Phase
has no way of knowing in advance that the instruction at location B is
modified, the Data Generation Phase generates the normal Reference List
entries for that instruction as shown in Figures 4.21b and 4.21c. The
latter figure shows a passive reference with an unknown '"Cell Used"
portion because of the double asterisk in the instruction at location B,

During the Data Processing Phase, the active reference to the instruction

65

Figure 4.19 - The Reference List Fntries of the CLA Instruction

B CLA A £, AC, B £, A, B

a. The Program b. The Active ¢. The Passive
Reference List Reference List

Figure 4, 20 - The Reference List Entries of the ORA Imstruction

B ORA A f, AC, B f, AC, B
1 f, A, B
a. The Program b. The Active c. The Passive
Reference List Reference List

66

Figure 4.21 - The Reference List Entries for a Changed Address Instruction

A
B
C
a
Figure 4.22
B
A

a,

CLA C

STA B

CLA *¥

N
A\Y

. The Program

-~ The Reference List Entries

CLA™ A

L) W

1 &Y

The Program

67

f, AC, A f, C, A
f, B ,A+1 f, AC, A+ 1
f, AC, B £, "7, B
b. The Active c¢. The Passive
Reference List Reference List

for an Indirectly Addressed Instruction

£, AC, B £, A, B
b. The Active c¢. The Passive
Reference List Reference List

at location B by the STA instruction is detected. Thus, the analysis
program must find the functional expression for the '"Cell Used" by
location B before it can find the functional expression for the information
processing performed by that instruction. This order of functional
determination can be initiated by setting a special flag in the "f"
portion of the passive reference entries for the modified or changed
instruction., Therefore, the latest reference searching procedure can
detect the changed instruction flag and can initiate the proper search
procedure,

The second example of a dependent reference instruction is the
indirectly addressed instruction. Figure 4.22a shows how an indirectly
addressed instruction might occur in a program. Because the indirect
address asterisk can be detected while the instruction line is being
decoded, the Data Generation Phase knows it has an indirectly addressed
instruction and can generate the proper Reference List entries. For
such an instruction, the analysis program must first find the functional
expression for the address portion of the cell specified by the operand
address of the instruction before it can determine the functional
expression for the information processing performed by the instruction.
In Figure 4.22a at location B, the address portion of cell A must be
found before the contents of the AC can be determined. This order of
functional generation can be initiated by constructing a passive reference
entry whose "f" portion indicates an indirect instruction. Therefore,
the latest reference searching procedure can detect the indirect flag

and initiate the proper search procedure.

68

Figure 4.23 - The Reference List Entries for a Tagged Instruction

B l CLA A,1 f, AC, B f, A, B
a. The Program b. The Active c. The Passive
Reference List Reference List

The third example of a dependent reference instruction is the tagged
instruction. Figure 4.23a shows how a tagged address instruction might
occur in a program. Again, because the presence of a tag can be detected
while the instruction line is being decoded, the Data Generation Phase
knows it has a tagged instruction and can generate the proper Reference
List entries. For such an instruction, the analysis program must first
find the functional expression for the index register specified by the
tag before it can determine the functional expression for the information
processing of the tagged instruction. In Figure 4.23a at location B, the
contents of the index register must be found before the contents of the
AC can be determined. This order of functional generation can be initiated
by constructing a passive reference entry whose "f'" portion indicates a.
tagged instruction and an index number. Therefore, the latest reference
searching procedure can detect the tag flag and initiate the proper

search procedure.

69

2 SR et R

4.4.3 Finding the Latest Reference Sets

In the previous section the motivation and technique for constructing
the necessary Reference List entries were described, The function of
these entries is to insure that the analysis program can decide the
sequence in which it needs to determine the information processing of
the program. The purpose of this section is to explain how the analysis
program decides which latest reference searches are required and how
the program performs those searches,

After all the Reference List entries have been made by the Data
Gathering and Data Processing Phases, the Data Reduction Phase associates
each Reference List entry with the program block in which the reference
occurs. First, the Reference Lists are sorted on their "Instruction
Cell" portion to place them in the same sequence as the Topology Table.
Second, the Active and Passive Reference Lists are scanned, and their
entries placed into the Active and Passive Reference Tables. Figure 4.24a
shows an example program block and its instructions. Figures 4.24b and
4.24c show the Sorted Active and Sorted Passive Reference Lists for the
example block. Figure 4.24d shows how the entries of those two lists
would be placed in the Reference Table.

The latest réference searching procedure must find all the latest
references for each Passive Reference Table entry. The search procedure
should be performed iteratively but yet be able to decide the search
sequence and handle any program topology, such as loops or parallel paths.

The search sequence for each passive reference is dictated by the special

70

" Figure 4.24 - Topology Table

10
11
12
13
14

START, END

FROM

ACTIVE

PASSIVE

LATEST

USER

d. The Tables

TZE 20
CLA 100
ADD 101
STO 102
TZE 30

a. The Program

\

£, AC, 10
£, AC, 11
£, 102, 12

|

with Active and Passive Entries

, 100, 10
, 101, 11
AC, 11
, AC, 12
, AC, 13

:

M th Fh rh Fh
-

b. Sorted Active List «¢. Sorted Passive List

From Table

10 13 f 14
2 r-— £ 30
1 o—-—--\> To Tablg
3 -
5 g > £, 100, 10
£, 101, 11
£, AC, 11
£, AC, 12
Topology Table
£, AC, 13

Passive Table

71

» £, AC, 10

£, AC, 11

£, 102, 12

Active Table

flags set in the "f" portion of the passive reference entry. The search
procedure involves searching back from each passive reference entry on
all control paths until each path is terminated by a matching active
reference entry; the initial passive reference entry; or a previously
searched block. A matching active reference is an active reference
whose '"Cell Changed" portion matches the "Cell Used' portion of the
initial passive reference. The "f" portion of each passive reference
entry states which cell bits are used by the passive reference; the "f"
portion of each active reference entry states which cell bits are
changed by the active reference. Thué, the latest reference searching
procedure is capable of detecting partial bit matches and can continue
searching along a path until all "Cell Used" bits have been matched by
""Cell Changed" bits.

If the "f" portion of the passive reference indicates a changed
address, the latest references for the changed address must first be
determined. If the first search finds only one latest reference and
determines that the latest reference stores a constant into the changed
address, a second search can be performed to find the latest references
for the cell specified by the previously determined constaht. Figure 4.25a
shows an example of a first search resulting in a constant. The first
latest reference search on the changed address instruction at location Y
indicates its true "Cell Used" is location Z. The second latest reference
search can be performed as if location Y was a CLA Z instruction. On

the other hand, if the first changed address search finds one or more

72

variable expressions for the changed address, no accurate second search

can be performed during the first iteration, Figure 4.25b shows an.
example of a first search resulting in a variable. The first latest
reference search on location Y indicates that the address portion of Y
comes from the address portion of X. However, the address portion of X
is a variable because of the STA X instruction. Therefore, no second
search can be performed during the first iteration. Only an approximate
expression of the form, AC = C(alx); can be produced as output for
location Y after the first iteration, In Iverson Notation (7), a/X
indicates the address portion of location X; and C(x) means ''the contents

of location x".

Figure 4.25 - Programs with Changed Addresses

STA X
ClA X ClA X
STA Y STA Y
Y CLA *% Y CLA *%
) o =3 ~
x | rzEz X PZE
a, A Constant b, A Variable
Changed Address Changed Address

73

If the "f" portion of the passive reference indicates an indirect
address, the address portion of the cell specified By the address of the
indirect instruction must first be determined. If the first search
finds only one latest reference to that cell and determines that the
latest reference stores a constant into that cell, a second search can
be performed to find the latest references for the cell specified by the
previously determined constant., Figure 4.26a shows an example of a first
search resulting in a constant. The first latest reference search on the
address portion of X indicates that it is a constant, Z. The second
latest reference search is performed as if locatipn Y was a ClA 2
instruction. On the other hand, if the first search determines that one
or more variable expressions are stored into the address portion of the
location specified by the indirect instruction, no accurate second
search can be performed during the first iteration, Figure 4.26b shows
an example of a first search resulting in a variable, The first latest
reference search on location Y indicates that the address portion of X
comes from the address portion of W. Thus the address portion of X is
a variable because of the STA X instruction. Therefore, no second search
can be performed during the first iteration. Only an approximate
expression of the form, AC = C(a/W), can be produced as output for
location Y after the first iteration,

If the "f" portion of the passive reference indicates a tagged
reference, latest reference searches are performed on both the "Cell

Used" and the index register of the tagged instruction. The first search

74

Figure 4.26 -~ Programs with Indirect Addresses

CLA W
STA X
Y CLA* X
Y CLA* X
¥ ¥ e~ =L:
X PZE Z X PZE
a,. A Constant b. A Variable
Indirect Address Indirect Address

determines the latest references for the '"Cell Used", i.e. which instructions
could have last made entries into rhe table headed by the ''Cell Used"
location. The second search determines the latest references for the
index register used by the tagged instruction, i.e., which instructions
last modified the index register, Two searches are performed because
there is little chance that the index register is a constant and that
the exact "Cell Used" can be determined by the first iteration.
Finally, if the "f" portion of the passive reference entry does
not contain any special latest reference search flags, the latest
reference search is performed directly on the "Cell Used" portion of

the passive reference.

75

4.4.4 Saving the Latest Reference Information

After the latest reference set of a passive reference has been
determined, the latest reference information must be saved in a data
structure which permits the generation of function expressions for each
instruction and the transmission of those expressions to other instructions.
The purpose of this section is to discuss temporary list structures for
latest reference information and the final Latest Reference Tables
which fulfill the above requirements.

If the data structure of the temporary Latest Reference Lists is to
conform with the general solution philosophy discussed earlier, the
structure must permit individual entries to be added as required but
yet allow all entries to be processed as a group. These characteristics
can be incorporated into two lists, the Latest Reference List and the
User List. The Latest Reference List contains latest reference entries
which remember the locations of all latest references for each passive
reference. The User Reference List contains user entries which remember
the locations of the passive references which will require the functional
expressions produced by each active reference. The format of the list
entries is shown in Figure 4.27,

The Latest Reference List entries are divided into three parts. The
first portion is the "Latest Reference Cell" and is the "Instruction
Cell" of the Active Reference Table entry which produced the match during
the latest reference search. The second portion is the "Cell Used" and

is the same '"Cell Used" as in the passive entry which initiated the latest

76

Figure 4.27 - The Latest Reference and User List Formats

LATEST REFERENCE CELL USED _ PASSIVE
CELL INSTRUCTION CELL

a. The Latest Reference List

LATEST REFERENCE CELL CHANGED ACTIVE
POINTER INSTRUCTION CELL

b. The User List

reference search, The third portion is the "Instruction Cell" of the
passive entry and is used to identify which Latest Reference List entries
are associated with each Passive Reference Table entry.

The User List entries are also divided into three parts. The first
portioﬁ is the "Latest Reference Pointer" and points to the location
which contains its Latest Reference mate, - The second portion is
the "Cell Changed" of the Active Reference Table entry which produced

the match, The third portion is the "Instruction Cell” of that Active

77

Reference Table entry and is used to identify which User List entries
are associated with each Active Reference Table entry.

As each latest reference search match is found, one entry is added
to the Latest Reference List and the User List, The absence of Latest
Reference List entries for a passive reference indicates no latest
references were found, Figure 4.28 shows the Latest Reference List
and User List entries that would result for a program where a functional
expression is needed by two instructions elsewhere in the program. The
functional expression generated by location 11 is needed at locations 20
and 30. At location 20 there is a passive reference to location B
which has one latest reference at location 11. Thus, a single latest
reference entry is added to the Latest Reference List showing the latest
reference information, and one user entry is added to the User List.
Likewise, at location 30 there is a passive reference to location B
which has one latest reference at location 11.

The temporary lists are transformed into the final Latest Reference
Table and the User Table by associating each list entry with the program
block in which it occurs. The Latest Reference List is sorted on its
"Passive Instruction Cell" portion while the User List is sorted on its
"Active Instruction Cell" portion. The resulting list entries are
associated with the blocks in which they occur by scanning the ordered
lists and constructing the "Latest" and "User'" entries in the Topology
Table. TFigure 4.29 shows the resulting tables for the example shown

in Figure 4.28,

78

Figure 4,28 - A Program where Symbolic Results are needed at Two Later Points

in the Program

l

10 ClA A £, AC, 10
11| swos £, B, 1
19 —
4

20 ClA B £, AC, 20
29
B
30 CIA B f, AC, 30
39

2. The Program b. Active

Table

79

£,

i

A,

10

£, AC, 11

f,

¢. Passive
Table

20

30

10, AC, 11-s——o, AC, 10

11,

11,

d., Latest

B, 20 ~¢——9,

List

B, 11

User
List

Figure 4.29 - The Final Data Flow Tables

START, END

TO

FROM

ACTIVE
PASSIVE
LATEST
USER
START, END
TO

FROM

ACTIVE

PASSIVE

LATEST
USER
START, END
TO

FROM
ACTIVE
PASSIVE

LATEST

USER

51
XC

)
133

%
ALY

£, B, 30

Passive Table

10 19
>| £, AC, 10
£, B, 11
v '$ ‘;1
-— »el £, AC, 20
- ;1': =5
S —>{ £, AC, 30
20 29
Active Table
30 39
> 10, AC, 11-€
[~ ﬁ'ﬁ
Pos— >4 11, B, 2 <
— = 7
11, B, 20p<

Topology Table

Latest Table

80

User Table

In summary, each Latest Reference Table entry points from a passive
reference back to an active reference which is a member of the passive
reference's latest reference set. Each User Table entry points from
an active reference forward to a passive reference which will need the

functional expression generated by the active reference.

4.,4,5 Constructing the Functional Expressions

A functional expression is generated for each active reference entry.
The instruction operation code retained in the "f" portion of the active
reference entry dictates its functional expression format. As the
construction of a new expression begins, the expression format is found
by extracting the instruction operation code from the active reference
"f" portion and using the code as a table lookup pointer for the Format
Table, The Format Table entry for each instruction indicates the
functional expression format for each of the active references of the
instruction. The table entry includes the number of entries to be
expected in the Active and Passive Reference Tables and the operator
symbols to be used in constructing the functional expressions. Whenever
possible, a latest reference expression already generated for a previous
active reference is substituted for each passive reference in the new
active reference expression. Now, functional expression construction
is discussed in detail using the program in Figures 4.28 and 4.29 as

an example. TFirst, the discussion will explain how the functional

81

expressions, AC = A and B = A, are constructed for locations 10 and 11,
Second, the discussion will outline how the expression, B = A, is
transmitted from location 11 to locations 20 and 30.

The Active Reference Table entry for location 10 in Figure 4.29 is
"f£,AC,10" where "f" indicates a CLA instruction, The Format Table entry

for a CLA instruction indicates an expression format of:
“CELL CHANGED" = "LATEST EXPRESSION" (or "CELL USED" if no latest expression)

The Passive Reference Table entry for the CLA instruction is found by
finding a matching "Instruction Cell” value of 10. In this case the
passive entry is "f£,A,10". The Latest Reference Table entries for this
passive reference are found by matching the two right-hand portions of
each entry. In this case, there are no latest reference entries for
location 10. Thus, the functional expression for location 10 i{s AC = A,
The new functional expression is held forvfinal output processing
by adding it to the functional Output List. Figure 4.30 outlines the
data structure of the Output List., The final output processing will need
to sequence the functional expression strings according to instruction
location. To facilitate this resequencing, a message pointer is constructed
and added to the Message Pointer List. The left half of each Message
Pointer List entry indicates the instruction location to which its
expression applies, and the right side points to the expression itself.

Thus, the Output List expressions are ordered by sorting the single

82

Figure 4.30 - The Functional Expressions on the Output List

10 s > 10 3
AC
3
A
a., Message Pointer List b. Output List

entry Message Pointer List instead of the variable length entry Output
List,

Once the functional expression is constructed, the User Table must
be checked to see if any instructions further on in the program need this
expression. The user entry for the active reference entry is found by
matching the two right-hand portions of each entry. In this case
there is one user entry, "Pointer,AC,10". This user entry states
that the latest reference entry at the end of the pointer wants to know
_the just derived expression for the AC. The analysis program follows
the pointer to its Latest Reference Table entry mate, '"10,AC,11". Once
the entry is found, its '"Latest Reference Cell" portion is replaced by
1a pointer to the just constructed functional expression on the Output

List. Also, the latest reference entry is flagged as having an expression

83

pointer. Now, the latest reference entry at location 11 knows where the
functional expression for the AC can be found, i.e. the functional
expression has been transmitted from location 10 to location 11.

The active entry for location 11 in Figure 4.29 is "f£,B,11" where
ngr indicates a STO instruction, The Format Table entry for the STO

instruction indicates an expression format of:

"CELL CHANGED" = "LATEST EXPRESSION" (or "CELL USED" if no latest expression)

The Passive Reference Table entry for the STO instruction is "f,AC,11".
One matching latest reference entry, "Expression Pointer ,AC,11" is found.
This is the latest reference entry that was found by following the pointer
of the previous user entry. The functional expression for location 11
is constructed by first adding the "Cell Changed" to the Output List.
In this case, the "Cell Changed" is B. Next, the symbolic equal sign
is added to the Output List. Finally, the expression pointer of the
latest reference entry is followed to its functional expression, AC = A.
The expression is scanned until the equal sign is found, and the
remaining entries after the equal sign are copied onto the Output List.
Thus, the expression, B = A, is generated for location 11.

Finally, two identical user entries (Pointer,B,11 and Pointer,B,11)
are found for location 11 in Figure 4.29. Each of the entry pointers
is followed to its latest reference mate. Each "Latest Reference Cell"

portion is replaced by a pointer to the just derived functional expression,

84

B = A, on the Output List; and the latest reference entry is flagged
as having an expression pointer. Thus, when locations 20 and 30 are

reached, the functional expression for location B is available,

85

CHAPTER 5

AUTOMATIC PROGRAM ANALYSIS EXAMPLES

In the previous chapter the approximation procedures used by the
first iteration to bootstrap itself through the control flow - data
flow interaction cycle were shown. This outline described the data
acquisition and data processing sequence and showed the use of inter-
mediate data flow analysis results to improve control flow approximations
and vice versa. 1In addition, a detailed presentation described how the
control and data flow steps handled the dependent instructionms.

This chapter diSplays the results of applying the existing automatic
analysis system to example programs. First, the layout and symbols of
the output flowcharts are explained. Second, flowcharts of programs
containing dependent instructions are described. Third, flowcharts of
programs containing other analysis problems are presented. All output
examples were automatically produced on-1line by an IBM 1052 printer
keyboard connected to the Project MAC IBM 7094 time-shared computer (2).
Because the IBM 1052 printer does not normally contain the complete
Iverson Notation character set (7), character substitutions have been

made.

86

5.1 THE FLOWCHART FORMATS

The analysis program should display its results in a form suitable
for human use. Because the flowchart has become a standard vehicle for
program documentation, it i{s also used here. Currently, the analysis
system has two levels of flowchart detail: the Topological Flowchart
and the Detailed Flowchart, The Topological Flowchart presents the
control flow of a program by displaying its block execution sequence.

The Detailed Flowchart exhibits both control and data flowsvby displaying
the block execution sequence, the functional expressions, and

pertinent cross reference information. One example of each flowchart
type is discussed in detail so that only the highlights of later

examples need to be explained.

5.1.1 The Topological Flowchart

Figure 5.1 exhibits an example of a Topological Flowchart. The
program always starts at Block 1. The asterisks represent the instruc~
tions contained within a block, The number at the upper left of each
block is its Block Number. The dots represent control flow paths.

The block inputs always enter at the top of the block; the outputs
alwa&s exit at the bottom. No attempt has been made to minimize line
crossings by rearranging blocks. Now, the interpretation of the flowchart

symbols of Figure 5.1 is given,

Block 1 is the starting block and exits to either Block 2 or Block 4,

87

Figure 5.1 - A Topological Flowchart

10

11

*

* ok O % e

*
*
*
*
*(,
*
*
),

* * F *

* 8 6 5 % 8 4 8 4 8 4 6 B 8 P e B ¢ G s 4 60 e 4t s et s

LR T T R S I I I T A R N A N R A R A B R AR A R L I A I O

88

lEL

IR

Block 2 can be reached from Block 1 and has an "E4'" exit. The "E"
designates an exit to an external subroutine; the "4'" indicates

that the external subroutine returns control to Block 4.

Block 3 is unreachable and has no exits. Because it follows an
external subroutine exit, it is probably a subroutine

calling sequence.

Block 4 can be reached from Block 1 and "E2". The "E" signifies
an entry from an external subroutine; the "2" denotes that
the external subroutine is called by Block 2. Block & has
an "I5" exit, The "I" specifies an exit to an internal
subroutine; the '5'" reveals that the internal subroutine

returns control to Block 5.

Block 5 can be reached by an "I4" entry which denotes a return
from an internal subroutine called at Block 4, Block 5
has a "NR" exit which indicates a non-returning external

subroutine call.
Block 6 can be reached by an "IE4" entry where the "IE" designates
an internal subroutine entry and the "4' reveals that the

subroutine is called by Block 4. Block 6 exits to Block 7.

Block 7 can be reached from itself or Block 6 and exits to Block 10

or to itself.
Block 10 can be reached from Block 7 and exits via an "IR". The
"IR" specifies an internal subroutine return, such as a

TRA 1,4.

Block 11 appears to be a data and storage area.

89

5.1.2 The Detailed Flowchart

Figure 5.2 shows an example of a Detailed Flowchart. The first
three lines and the last line on the flowchart page were produced by
the time-sharing monitor as it prepared the final analysis phase for
execution., The left side of the output exhibits the original symbolic
source instructions and their assigned core locations; the right side
displays the flowchart box outlines, interconnections, and functional
expressions. The Block Numbers are shown above each block. The
starting and ending core locations of each block are shown on the left
side of the block. The block inputs always enter at the top or upper
right of the block; the outputs always exit at the bottom or lower right.
The numbers to the right of the entering or exiting dots are Block Numbers
to which or from which control is transferred. The expressions inside
the flowchart boxes are the functional expressions. The expressions
outside the boxes are cross reference expressions preceded by the
location number of the instruction which generated the expression. Now,

the flowchart symbols of Figure 5.2 are explained.

Block 1 is the starting block and exits to either Block 2 or Block 3.
The first instruction of Block 1 is at location 1; the last
is at location 3. At location 1 the contents of location V
are placed into the accumulator. At location 2 the contents
of location V are moved to location W. The cross reference
expression at the right of location 2 states that the AC was
changed to the contents of V at location 1. The line for
location 3 is blank because of unprogrammed subroutines. (See

Appendix 1 for missing subroutine information.) If the

90

Figure 5.2 - A Detailed Flowchart

r run5 000000
W 1907.0
EXECUTION,

1
At hkhkhkkhkhhkhkhhkkkkkhkkkhkthk
1 * *
01 CLA v * AC=V *
02 STO W * W=V *
03 TZE Al * *
3 = *),..
kkkkhkhkhrhdk ok kb hdhhkdhhk
2
hkhkdkhkhkhhkdhhkdkkhkrdhthhrdkddhkh
L * *
oL CLA X * AC=1 *
05 STO Y * v=1 *
5 = *
kkkhkhkkhhrhkhdhkkkhhhhhhrdhn
3
khkkkkhhkkkdkhhkhrhhrhkkhhdk
& = *(...
06 A1 CLA W * AC=V *
07 STA ya * A/Z=A/V *
10 TSX SEXIT, U * *
10 = *)..,
kkkhkhhdhk ke hh ok rhhkkkkkh
L
kkhkrkkk Ak hdhkkhEthhhkhhdhok
11 » *
11V BSS 1 * *
12 v BSS 1 * *
13 X 0CT 1 * *
14 Y BSS 1 * *
15 7 BSS 1 * *
15 * %*
ok hkkkkhhkkkkdhkkk Ak kdhhk

R 4,750+3,000

91

A

A

C

C

programming was complete, the line would show V:0; and the
cross reference expression would state that the AC was V at

location 1.

Block 2 can be reached from Block 1 and exits directly to Block 3.
The first instruction of Block 2 is at location 4; the last
is at location 5. At location 4 the contents of X are placed
into the AC, Since the contents of X are constant, the
symbol X is replaced by its constant value, 1, in the func-
tional expression for location 4. At location 5 the constant,

1, is stored into location Y.

Block 3 can be reached from either Block 1 or Block 3 and has a
non-returning exit. The first instruction of Block 3 is
at location 6; the last is at location 10. At location 6,
the contents of location W, which are now the contents of
V, are placed into the AC. The cross reference expression
states that the contents of V were placed in W at locatiom 2.
At location 7 the address portion of Z is replaced by the

address portion of V.

Block &4 is unreachable. It begins at location 11 and ends at
location 15. Block 4 is empty because it contains data

and storage locations.

5.2 FLOWCHARTS CONTAINING DEPENDENT INSTRUCTIONS

The purpose of this section is to show examples of automatically
produced flowcharts for programs containing dependent instructions. The
example programs have been kept short so as to spotlight the individual

dependent instructions. Instead of being viewed as programs in themselves,

92

the examples might be thought of as being imbedded in larger programs,
Since both the Topological and Detailed Flowchart conventions have been
discussed, only the pertinent results are explained in the following

examples,

5.2.1 The Transfer Switch

Figure 5.3 shows the first example of a program containing a transfer
switch, At location 3 a passive reference is made to location 5 which
contains a transfer instruction, TRA END, At location 4 the transfer
switch is stored into location 3, i.e. Al. Thus, Block 1 is terminated
by a transfer switch, and control paths are generated from Block 1 to
Blocks 2 and 4, Note, the analysis program found that the transfer
instruction at location 5 can be executed in that location, Therefore,
Block 2 is terminated at location 5,

Figure 5.4 shows a second example of a program containing a transfer
switch, The analysis program found that the transfer instruction at
location 10 is not executed in its original core location, Thus,

location 10 is included in Block 3 as data.

5.2,2 The Subroutine Call and Return

Figure 5.5 shows an example of a program ¢ontaining subroutine calls
and returns. At location 4 the internal subroutine, "IN", is called.

The analysis program detects the internal subroutine entry point at

93

Figure 5.3 - A Transfer Switch Executed in its Original Location

r run5 000000

W 1423, 4
EXECUTION,
1
khkhhhkhkkhdkhkhhkkhkkkr bk ddhk
1 * *
01 CLA X * AC=1 *
02 STO Y * Y=1 * 1 AC=1
03 Al CAL A * AC=TRA END *
3 0« *)... b
[ZE RS EEE RS EEEEEEE LR RSN
2 .
kkkhkhkhhkk bkt kkkkhhkhdkd
L * *
04 SLV Al * Al1=TRA END * 3 AC=TRA FND
05 A TRA EMD * *
5 = *)... b
I TS
3
(2SS S AR A LSS SRS REEREEREESS]
&) * *
06 X oCcT 1 * *
07 Y BSS 1 * *
7 = *
kA I Ehkkdkrhh kb khhh ek
L
Ak kkkkkkkkkhkkhkkhhhhhhdk
10 = (... 1,2
10 EMD TSX SEXIT, 4 * *
10 = *)... NR

khkhkhkkkkhkkrkkhkhhdhkdkkkhhdk

R 5,283+2,833

94

Figure 5.4 - A Transfer Switch Not Executed in its Original Location
r run5 000000

W 1614.9
EXECUTION.
1
2222 R E X F RN Ry R R
1 +* *
01 CLA X * AC=1 *
02 STO Y * Y=1 * 1 AC=1
03 Al CAL A * AC=TRA EMD *
3 % *)... b
22 R R R R R R g R gy
2 .
khkkkhhhdkhhhh kA Ahk kK
4 * *
04 SLW Al * A1=TRA END * 3 AC=TRA END
05 TRA END * *
5 =* *),., b
AR RS A S RS SRS SR EREEEXEXERES.
3
khkkhhr Rk Rk khkhkkhkhhhhkhk st
6 * *
06 X OCT 1 * *
07 Y BSS 1 * *
10 A TRA END * *
10 =« *
I EE R AR SRR LS SR ERE SR EEXE R R
4
L E R LR R EE SRR E R AR EREESE R RS
11+ (... 1,2
11 END TSX SEXIT, b * *
11 = *)... NP

IZE R R R EAEE SRR RS RS R RERS]

R L,483+3,15¢0

95

r run5 000000

W 1607.0
EXECUTION,
02 CLA
03 STA
ok TSX
05 X PZE
06 TSX
07 CLA
10 STO
11 TSX
12 IN CLA
13 STO
14 TRA
15 A OCT
16 B BSS

Figure 5.5 - Subroutine Calls and Returns

- >

$EXTERN, b

$EXIT, &

N @ >

11

12

1%

15

16

1
[X2 222X 3 222222 XXX X 3
* *
* AC=1 *
* A/X=A/1 *
* *
* *)...
[IXTIE2EIZEIEZZEZIRZE A K2 2 0 X 3

2
(XXX 222222 X2 22222 X2l
* *
* *
* *

khkhkhkhhkhkhkhkhk kb hkdhhhrd

Sk hhhhkhhhhdhhhkhhdhdhk
* *(..l
* *
* t)...

(222X A XXX LR R R 222l

L
khkhkkhkhkkhkkhkkhhkkkthhhhhik
* *(c-c
* AC=1 *
* B=1 *
* *
* *)...
AR ERAR I AR R KRR AR RA RN

5
I'TXZIT RIS SIS X2 L 2 8 X 2R J
* *(-.o
* AC=1 *
* B=1 *
* *
* *)...
ehkkkhhhhkkkdkr kbt tdhtthd

6
[TXXXEEIETERTES R RS EE 2 L)
* *
* *
* *
* *

hhhkhkhkdkhhkhhhhkhkhrhhhhhddd

96

2 AC=1
13

11
EY

E3
7 AC=1
NR

1E1
12 AC=1
IR

location 12 and the return at location 14, Because the subroutine returns
via a TRA 2,4, location 5 is assumed to be a single instruction calling

sequence. External subroutines are called at locations 6 and 11.

5.2.3 The Calculated Transfer

Figure 5.6a shows the Detailed Flowchart of a program containing a
tagged transfer instruction. The analysis program assumes that Blocks 2
and 3 can be reached from Block 1. The "L4" and "L5" entries to Block 1
indicate that they close control loops from Blocks 4 and 5. Likewise,
the "L1" exits from Blocks 4 and 5 specify loops back to Block 1.

Figure 5.6b shows the Topology Flowchart for the same program.

5.2.4 The Changed Address

Figure 5.7 shows the first example of a program containing a changed
address instruction. At location 1 the address portion of W, the constant 7,
is stored into the address portion of location 2. When the instruction
at location 2 is executed, it is a CLA 7. Therefore, the contents of
location 7 or Z are placed into the AC at location 2, This address
change can be traced during the first iteration because a single constant
was used as the new address for the changed address instruction.

Figure 5.8 shows the second example of a program containing a changed
address. The address portion of location Y is used as the new address

at location 4, In this case location Y appears to be a variable during

97

W 1730.8

EXECUTION,
00 A1 LXA
01 TRA
02 TRA
03 TRA
oL B CLA
05 STO
06 TRA
07 C CLA
10 STO
11 TRA
12 A OCT
13 D 0CT
14 E 0CT
15 F BSS

» >
LY
d i

>Tnm 1o

=N

11

12

15

s T i B D s

Figure 5.6a - A Calculated Transfer
r run5 000000

1
L 24X X2 X2XTXZZYET Y Y X3
* ‘(0‘.
* 1X1=A/1 *
* *
* *)...
L 122222222222 X222 22X X0 X)
L)
L]
L]
2 .
RERRRRARA R AN AR A AR A&
* *
* *
* *)..Q

RRAERERRN RS R AR R SRRk R

3
(222222 222222222 X 22222 X 2}
* *(-o.
* *
* *)ooo

thdhbhkhhtdbd btk hdtdn

4
ERRRRRR RN AR A RN ERAR AR RN NL
* *('..
® AC=1 *
* F=1 *
® *
* *)o-o
RERARRRR RN A RR NN AR RR

AR ERRRRRR A RN AR R A S
* *‘-o-
* AC=2 *
* F=? *
* *
* *).l!
2 T R T Y T

6

2 A AL AR RS ASR 2R X 2E]
*
*
*
*
*
*
*

*
*
*
&
*
*
*

L322 A2 2 X R R R Y]

98

L4,LSs

4 AC=1
t1

7 AC=2
L1

Figure 5.6b - The

.
.
.
-
.
.
-
.
.
-« e e e
. .
. 0
e .
- .
-
- .
- -
. .

Topology Flowchart of the Program in

1
e dx (L

*
*
N G
6
*
*
*
*

99

« e 0 0 s o 0

Figure 5.6a

r run5 000000

Figure 5.7 - A Changed Address Using @ Single Constant

Wo1741.5

EXECUTION,
00 Al CLA
01 STA
02 X CLA
03 STO
04 TRA
05 W PZE
06 Y BSS
07 Z 0CT

R 3,583+3.L00

v

* %

Al

ot

1
TR 2R 22 EEEREEREEEE SRS B IS
* (...
* AC=7 *
* A/X=A/T *
* AC=7 *
* Y=7 *
* *
* *).o..
I R AR AR X EEEEEE R SRS LS R]

2

IR AR AR E R E R R R R E LR AN
* *
* *
* *
* *
* *
* *

khkkkhkhhkkhkhdkdhrhohddkrk

io00

L1

0 AC=7

1 A/X=A]T
2 AC=7

L1

Figure 5.8 - A Changed Address Using & Single Variable

r run5 000000

W 12801.0
EXECUTION,
1
hkkkhkkhkkrkkkhk ok ok kk ko k
o0 = *(,.. L1
00 Al CLA X * AC=10 *
01 STA Y * A/Y=A/10 * 6 AC=10
02 CLA Y * AC=A/10 * 1 A/Y=A/10
03 STA B * A/B=A/A/1D * 2 AC=A/10
o4 B CLA * % * AC=C(A/A/10) * 3 A/RsA/A/10
05 STO C * C=AC * L AC=C(A/A/10)
06 TRA Al * *
6 =* *)... L1
khkkkkFhkhkhkkkhk bk ok k ok k%
2
I R R R R R R R R R X X
7 * *
07 C BSS 1 * *
10 b OCT 1 * *
11 X PZE D * *
12 Y PZIF 0 * *
12 = *
kkkkdkdkkkkk kA d ok hhkkkk

R 4.200+2,783

101

the first iteration because of the STA Y instruction at location 1.
Because the analysis program believes that the new address of location 4
is also a variable, the functional expression for that location states
that the AC contains the contents of the location whose address is 10 or
D. (In Iverson Notation, A/A/10 = A/10.)

Figure 5.9 shows a third example of a program containing a changed
address. The instruction at location 5 can have its address changed
from either location 1 or location 4. The cross reference expressions
at location 5 show the two possible values for its new address. If
location 1 changes the address, it becomes location 10 or D. If location 4
changes the address, it becomes location 12 or E. Because the address
of location 5 can be changed from two possible locations, its func-
tional expression states that the contents of an undetermined location

are placed into the AC,

5.2,5 The Indirect Address

Figure 5.10 shows the first example of a program'containing an
indirectly addressed instruction. The analysis program detects that
the address portion of location A is a constant and that location 0
actually is a CIA C instruction. Therefore, location 1 loads the contents
of location C into the AC, During the first iteration, the Data Gathering
Phase had no reason to generate a passive reference to location C. Thus,
the analysis program does not yet know that location C is the constant, 1.

Figure 5.11 shows a second example of a program containing an

102

Figure 5.9 - A Changed Address Using Two or More Expressions
r run5 000000 000000

W 1809.3
EXECUTION, 1
RERRRARAR AR RN AN AR AR A AR
0 * *(nno
00 A1l CLA X * AC=10 *
01 STA B * A/B=A/10 *
02 TNZ B * *
2 = *)...
(222222 R Y Ty e Y Y T
2 .
RAERRRRANR R IR AR R RN R RN N
3 = *
03 CLA Y * AC=12 *
oL STA B * A/B=A/12 *
L = *
[T I T T Y R e
3 .
[22 T R T T 2y
5 * «(...
05 B CLA * * AC=C(»*) *
* *
06 STO Y4 * Z=C(e*) *
07 TRA Al »* *
7 * _*)00.
RARENR R AN RARA NS AR R AANE R
L
KRR RRR AR AR AT RARRARRA®
10 » *
10 D ocT 1 * *
11 X PZE D * *
12 E OCT 2 * *
13 Y PZE 3 * *
14 Z BSS 1 * *
14 *
ARRERRAARRRRNR R ARR R R RN

R 5.,566+3,783

103

L3
0 AC=10
3

3 AC=12

1

1 A/B=A/10
b A/B=A/12
S AC=C(#+)

L1

Figure 5.10 - An Indirect Address Using a Constant

r run5 000000
W 2053.7
EXECUTION,

00
02

03
ou
05

Al

B

CLAx
STO
TRA

PZE
BSS
OCT

R 3,933+2.950

> >

== O

1

(SR EREEERREEEER SR & & EEEESES

O

*

* =C *
* =C *
* *
*

*

I EEEE R R ERE R RS EEER S SRS NS

2

[XS EEEEEREEE R R E SR RS R & RS
* *
* *
* *
* *
* *
* *

khkkkhkhrkhkhhkkhhhhkkokddtid

104

(.,

*)..

0 AC=C

L1

Figure 5.11 - An Indirect Address Using a Single Variable

r run5 000000

W 1816.8
EXECUTION,
1
thkkhk kA XA Rk rh kA kb h ok
0 + *(... L1
00 Al CLA D * AC=6 *
01 STA E * A/E=A/G * 6 AC=6
02 CLA=* E * AC=A/B%* * 1 A/JE=A/6
03 STO B * B=A/6* * 2 AC=A/6=
o4 TRA Al * *
L = *)... L1
khkkkkkkhhhhkhkhkhkdhhohhkss
2
Kk kXK Tk kkkkhhkhkhkkhkhhd
5 * *
05 B BSS 1 * *
06 ¢ OCT 1 * *
07 D PZE c * *
10 € PZE 0 * *
10 » *
khkhkhkhhkhkhkrkkhkhkrkkrhhbhhkhik

R 3.433+42.550

105

indirectly addressed instruction. In this case the indirectly addressed
location, E, is a variable during the first iteration because of the

STA E instruction at location 1., Thus, the functional expression for
location 2 states that the AC is loaded indirectly from a location whose
address is 6 or C, Once again, the analysis program does not yet know
that location C is a constant.

Figure 5.12 shows a third example of a program containing an
indirectly addressed instruction, At location 5 the cross reference
expressions state that the address portion of the indirectly addressed
location, X, can be either 11 or 13. Because the indirectly addressed
location can have more than one expression, the functional expression

states that the AC is loaded indirectly from X.

5.2,6 The Tagged Address

Figure 5.13 shows an example of a program containing tagged
instructions., At location 3 a tagged passive reference is made to location V
using index register one. This is stated by the functional expression,
AC = V(1). The cross reference expression at location 3 states that

index register one was loaded with a constant, 1, at location 2.

5.3 FLOWCHARTS CONTAINING OTHER ANALYSIS PROBLEMS
The purpose of this section is to show examples of automatically
produced flowcharts for programs containing general analysis problems

which should be handled by any analysis system,

106

r run5 000000

Pigure 5,12 ~ An Indirect Address Using Two or More Expressions

W 1717.6
EXECUTION,
00 A1 CLA
01 STA
02 TNZ
03 CLA
04 STA
05 A2 CLA+
06 STO
07 TRA
10 B BSS
11 ¢ ocCT
12 D PZE
13 E O0CT
14 F PZE
15 X PZE

R 4. .483+3,.466

b

QMO s

10

15

1
(i 2222222222222 22X 2 2}
* *(...
* AC=11 *
* A/X=A/11 *
* *
* *)QO.
(223 2222222223222 22222 2
L]
»
L]
2 .
LAS 2222222222222 22X 20 2 3
. *
* AC=13 *
* A/X=A/13 *
® *

(2222222822222 2222 X2 X]
L]
.

3 .
(2222322222222 222222 2y
* .(coo
* AC=X» .
* *
* B=Xe *
* *
* ‘)o.o
BREARRR AR AR A AR AR AR RS

[

LA 2222222222222 222222 2}]
®
*
L 4
*
*
*
*
*
*

]
®
*
*
*
*
-
*
*

ARERARAEENEERRRCRNR S ER

107

L3
0 AC=11
3

3 AC=13

1

1 A/X=A/11
b A/X=A/13
5 AC=X*

L1

Figure 5.13 -~ A Tagged Instruction

r run5 000000

W 1856.0
EXECUTION.
1
X EEEEEEEEEREEEEE R R R E NS X
0 = (... L1
00 Al CLA T * AC=1 *
01 STA u * A/U=A/1 * 0 AC=1
02 LXA u,1 s IX1=A/A/1 * 1 A/U=A/1
03 CLA v,1 * AC=V(1) * 2 1X1=A/A/1
0L STO W * W=V (1) * 3 AC=V(1)
05 LXA X,2 * 1X2=A/3 *
06 CLA Y,?2 * AC=Y(2) * 5 1X2=A/3
07 STO 4 * 7=Y(2) * 6 AC=Y(2)
10 TRA Al * *
10« #)... L1
[2Z2EXZXESEAEEEER SR SRS KRB LS
2
S EXEXEEE R EEEEEEER E R E & X
11+ *
11 T OCT 1 * *
12 U BSS 1 * *
13 v 0CT 2 * *
14 W BSS 1 * *
15 X 0CT 3 * *
16 Y OCT 4 x *
17 Z BSS 1 * *
17+ *
[ZEEEEEEEE LR RS S SRR R EE SRR

R 3.550+2,400

108

5.3.1 The Program Loop

Figure 5.14 shows an example of a program containing a loop. A
passive reference is made to location A at location 2. The cross
reference expressions indicate that A has two possible values. The
first, A = 1, is generated by location 1; the second, A = 2, is generated
by location 5. Note that the analysis program detects the second
expression even though location 5 is ahead of and in a loop with loca-
tion 2. Because of the difficulty in displaying the expression, AC =1
or 2, the symbol A is retained in the functional expression for loca-

tion 2.

5.3.2 Temporary Storage

Figure 5.15 shows a program which uses temporary storage. The
constant value of A is carried through the sequence of loads and stores
of the AC until location 12, where D = 1, Likewise, the constant value
of W is carried through loads and stores of the MQ until location 13,
where Z = 2. Thus, all references to temporary storage are eliminated

at locations 12 and 13.

5.3.3 Parallel Latest Reference Search Paths

Figure 5.16 shows a program which contains two parallel latest
reference search paths from a passive reference to an active reference.

At location 5 there is a passive reference to B, The latest reference

109

Figure 5.14 - A Program Loop
r run5 000000

W 1823.7
EXECUTION,
1
kkthkkkdkhkhdkhkhhhddhdkkhddh
0 * *
00 CLA X * AC=1 *
01 STO A * A=1 * 0 AC=1
1 * *
kkkrkhhkhhhhkhkk ko hhkkhhrhk
2 .
[EEE R R E XS SRR R RS RS RS RSN
2+ (... L2
02 Al CLA A * AC=A * 1 A=1
* * 5 A=2
03 STO B * B=A * 2 AC=A
o4 CLA Y * AC=2 *
05 STO A * A=2 * 4 AC=2
06 TRA Al * *
6 = *),.. L2
Ak kR kkkkhhhhhkh bk bk hkrkd
3
khkkhhhhhhhkdhhhhhhhhhhhk
7 * *
07 X OCT 1 * *
10 Y oCT 2 * *
11 A BSS 1 * *
12 B BSS 1 * *
12« *
kxkkkhhhkrkrhrhhhrhhhhdhk

R 4.,966+2.783

110

Figure 5.15 - The Elimination of Temporary Storage References

r run5 000000

W 1832.4
EXECUTION,
1
'SXTZ2X 222222222222 X2 2 X1
0 = (... L1
00 A1 CLA A * AC=] %
01 LpQ W * MQO=2 *

- 02 STO B * B=1 * 0 AC=1
03 sTQ X * X=2 * 1 MQ=2
oh CLA B * AC=] * 2 B=1
05 LDQ X * MO =2 * 3 X=2
06 STO c * C=1 * 4 AC=1
07 sSTQ Y * Y=2 * 5 MQ=2
10 CLA c * AC=1 * 6 C=1
11 LboQ Y * MQ=2 * 7 Y=2
12 STO D * D=1 * 10 AC=]
13 sTQ Z * 1=2 * 11 MQO=2
14 TRA Al * *

14 = *)... L1
RAERR KRR AR N AR AR R RN

2

Y 12222 22 2 2222 2 X T
15 =« *
15 A oCT) | * *
16 B PZE * *
17 C PZE * *
20D PZE * *
21 W ocT 2 * *
22 X PZE * *
23 Y PZE * *
24 Z PZE * *
24 = *
' 323222 2223222222222

R 4.633+3.u50

111

Figure 5.16 -~ Parallel Latest Reference Search Paths

r run5 000000
W 1840.3
EXECUTION,

00 A1 CLA A
01 STO B
02 TZE A2
03 CLA X
o4 STO Y
05 A2 CLA B
06 STO c
07 TRA Al
10 A PZE 0
11 8 BSS 1
12 C BSS 1
13 X 0CT 1
1 Y BSS 1

R 4.600+3,083

10

14

1
khkA A bR A AR A AR AR htrd
* *(.'.
* AC=0 *
* B=0 *
* *
t *)“'

(222 222222222222 2Rt R ddld

L]
.
.

2 L]
RRRERERR R AR KRR RRERRRALE
* *
* AC=1 *
* Y=1 *
* *

kkkhkhhhkhkhkhkhkrdbhkhkhkhkthkhhtn

-
L]
L]
3 .
A X222 22X 222X XX R XXX
* *(...
* AC=0 *
* C=0 *
* *
* *)uoo
(A2 AR 2R 2 RS 22X R AR 2R RS X XS

7

khhkhkhhhhhhhhhhhhhhkhhhddkk

* % % * % % ¥
* % % % # * %

(A2 AR A RSS2 RR S

112

L3
0 AC=0

3 AC=1

search discloses two paths from location 5 to the active reference to

B at location 1. The first path is from Block 3 through Block 2 to
Block 1; the second path is from Block 3 directly to Block 1. The cross
reference expression at location 5 states that B = 0., Thus, the func-

tional expression for location 5 is AC = 0,

5.3.4 Multiple Latest Reference Search Paths

Figure 5.17 shows a program which contains a passive reference with
multiple latest references, At location 5 there is a passive reference
to X. The cross reference expressions show two latest reference values.
The first is X = 1 generated by location 1 in Block 1; the second is
X = 2 generated by location 4 in Block 2, Because there are two latest
expressions for X at location 5, the symbol X is used in the functional

expression, AC = X,

113

Figure 5.17 - Multiple Latest Reference Sesrch Paths

r runS 000000

W 1847.4
EXECUTION,

00 Al CLA A
01 STO X
02 TZE A2
03 - CLA B
'L sTO- X
05 A2 CLA X
06 STO Y
07 TRA Al
10 A oOCT 1
11 8 OCT 2
12 X BSS 1
13 Y BSS 1

R 5.866+3,316

10

13

1
2222 Y Y X T R Y
* *(.'.
» AC=l *
* X=1 *
* *
’ ')...
22212 2 P I P P T R Y Y

2 .
(2222222222222 X222 222}]
* - *
* AC=2 .
* X=2 *
* *

RERRRRERANRENCERNART S RNR
.
.

3 .
2 I YT I T T YT T YT Y T
' *(..0
* AC=uX * :
1
» *
* YuX *
* *
‘ *)..Q
RRERA N R RN AR E RN RRRR RN

1

122 X2 SRR X222 XX 22222}

»

> % % % »

*
*
*
*
*
*
*

(22223222222 XXX2 22222 X

114

L3

o

AC=1

3 AC=2

X=1
X=2
-AC=X

VY £° bbb

CHAPTER 6

CONCLUS IONS

In the previous chapters some of the problems and solutions of
automatic program analysis were discussed. The initial problem that
the analysis system faced was the cyclic interaction of control flow
and data flow due to dependent instructions. This cyclic behavior
suggests an iterative procedure in which current results were used to
update and improve earlier approximations. The techniques and proce-
dures of the first iteration were presented, and actual flowcharts of
programs containing dependent instructions were displayed.

An analysis system should uncover what a program does and should
transmit it to the user in a comprehensible form. The purpose of
this chapter is to discuss the usefulness of the first iteration output
and to suggest paths that can be followed in the second iteration to

further improve the utility of these results.

6.1 THE USEFULNESS OF THE FIRST ITERATION OUTPUT

When a programmer begins to layout a program, he has a specific
job or function he wishes the machine to perform. For example, he
might wish to write a subroutine which calculates sine x. The programmer
knows that he must develop an algorithm for calculating sine x and

then convert his algorithm into machine code.

115

First, the programmer remembers from past experience that there

is an infinite series expansion for sine x of the form:

sinex = x = x3 + x5 - x7 + . e
37 51 77

Second, the programmer knows that he must truncate the infinite series
after the n-th term because his machine has limited speed and accuracy.

Therefore, he develops an approximate function of the form:

n . ,
sine x = Z’ -1t x2 i+l
(2i41)!

i=1 ¢

Third, the programmer might now decide to transform his truncated series
into a rational approxiﬁation or to reduce the series length by applying
Chabyshev economization.

Fourth, the programmer minimizes the number of instructions and
execution cycles by deriving an expression which can be imbedded in a
program loop. If the third step was omitted, the expression might be
of the form:

+ (DY 2 s

SUM, = SUM, 1
i(i-1) *

i i-1

Fifth, the programmer codes his algorithms using his own personal

coding conventions and programming tricks.

116

When a program analysis system is applied to the fimal program it
should reverse the programming process and uncover what the program does.
Because there are still unprogrammed subroutines in the functional expres-
sion generation program of the first iteration, the output flowcharts
for the above example cannot be shown. If all functional expression
generation subroutines were available, the first iteration should output
expressions at the level of the fourth step shown above, i.e. how a
program does what it does.

In general, the output results show that it is possible to
automate the initial stages of analyzing self-modifying programs. Such
stages involve scanning the input program, detecting connected pieces,
constructing elementary functional relationships, and pointing out
trouble areas. The feasibility even at this level is open to question
because the four analysis phases currently total some 11,000 instructionms,
pseudo~operations, and macros which assemble into nearly 100,000 memory
locations. The time-shared execution time averages about thirty seconds
for each of the short example programs shown in Chapter 5. (Because the
analysis system was developed and debugged on an experimental time-shared
system, the analysis program organization was dictated by the characteris-
tics of the time-sharing monitor, not execution time or memory length.
Thus, times and lengths are somewhat exaggerated.) It is hard to give
an objectivé evaluation as to the usefulness of the first iteration
output because the missing functional generation routines made it impos-

sible to ask a large sample of programmers to use the output in their

117

debugging or documentation tasks. It is true that the usefulness of these
output results would be improved if they were refined by a second

iteration.

6.2 THE PROBLEMS OF THE SECOND ITERATION

Throughout the first iteration, many approximations were made in
order to bootstrap through the control flow - datae flow interaction
cycle. The second iteration must check those approximations and update
them if necessary. The purpose of this section is to point out and
describe promising areas of further research vhiqh should improve
the results of the first iteration.

Probably the first area which should be explored is the utiliza-
tion of the functional expressions generated at the end of the first
iteration. This would involve the development of a functional expression
simplification and manipulation subroutine similar to the work being
done with the LISP programming language. Such a subroutine would be used
to remove the superfluous Iverson Notation symbols introduced by the
many program procedural and bookkeeping operations, e.g., A/A/1 = A/1 = 1.

A second promising area is‘the utilization of the input data of
the program being analyzed. This would require the development of a
descriptive language which would convey the meaning and scope of the
input data. Such additional information could be ﬁsed to reduce the

almost limitless possible program outcomes.

118

A third promising area is the development of a second iteration
which would interact on-line with a human analyzer. The first iteration
would handle the routine analysis functions and tell the second iteration
where help was needed. The second iteration would display its current
results and ask for help. After the human being decided how the situa-
tion should be handled, the second iteration would use the new directions

to update its current analysis results.

119

APPENDIX ONE

FLOWCHARTS OF THE ANALYSIS PROGRAM

The purpose of this appendix is to present the flowcharts of the
analysis program, The presentation is divided into four parts according
to the analysis phases as shown in Figure 4.1. Because of the size and
complexity of the analysis programs, only execution order and computation

summary are shown.

120

PHASE ONE

MAIN] is the main program of Phase One as shown in Figure 4.1.
MAIN1 reads the input program one line at a time, Since the FAP assembler
produces a variable format output tape, MAIN] must decide what type of
information is present on each line. Usually, MAINI will scan through
the page headings, comments, and blank lines until the Transfer Vector
is reached. Thereupon, the Transfer Vector entries are copied into the
Transfer Vector Table. When an instruction is found, control is trans-
ferred to OPCODE for operation code identification. After OPCODE has
identified the instruction and picked up its code word, RECODE recodes
the instruction lipe into various lists as a function of the code woxrd.

RECODE scans across the code word bit by bit. If a bit is set or
on, control is transferred to its particular subroutine. Bit 1 is vused
to find the first executable instrxuction. Bit 2 is used tc flag an
instruction which must be treated as an exception. Bit 3 signifies a
type 1 transfer, i.e. one which always transfers to the location specified
by its address, e.g. a TXI instruction. Bit 4 denotes a type 1 transfer
which can be tagged or Iindirectly addressed, e.g. a TRA instruction.

Bit 5 specifies a type 2 transfer, i.e. one which can transfer control
to either the address location or the next sequential location, 'e.g. a
TXH instruction. Bit 6 signifies a type 2 transfer which can be tagged
or indirectly addressed, e.g. a TZE instruction. Bit 7 shows a type 3

transfer, i.e. one which can transfer control to either of the next two

121

A s O e S e ek e]

sequential instructions, e.g. a ZET instruction. Bit 8 denotes a type 4
transfer, i.e. one which can transfer control to any of the next three
sequential instructions, e.g. a CAS instruction. Bit 9 is reserved for
the TSX instruction., Bits 10 and 11 are used by the XEC and various

I/¢ instructions. Bits 12 and 13 specify Storage and Data Pseudo Opera-
tions, such as BSS and OCT. Bits 14 through 19 are reserved for the
various referencing instructions. The Refer type transmits information
from one location to another, e.g. & CLA instruction. The Use type uses
the contents of one location to transform the contents of another loca~
tion, e.g. the ORA instruction. The Test type tests the contents of
various locations in order to make a transfer decision, e.g. the TZE
instruction. The Set type sets the contents of a location to a known
value, e.g. the STZ instruction. A Shift instruction shifts the bits

of some register, e.g. the ALS instruction. An Arithmetic type performs
numerical operations, e.g. the ADD instruction. Bits 27 to 36 contain

a compact Short Code used to recode the instruction's operation code.
The Short Codes are numbered consecutively and lend themselves to table

lookups.

122

Figure Al,1 - MAIN1

MAIN1

v

Get Input Program Name

¥

Read External TSX File

/

Next Line e Read Next Input Program Line &

{

Is Line a Page Heading?

*’ No
Is Line a Comment? Yes S

b

Is Line a "MACRO" Instruction?

Yes

Y

No

Yes

Set Macro Definition Flag

No Is Macro Definition Flag Set?

Yes

N
Is Line a Macro "END" Instruction? ° Spna

+ Yes

Reset Macro Definition Flag e

Convert Assigned Location from BCD to Binary

Y

Convert Numerical Instruction from BCD to Binary

4

123

No

No

No

No

!

Was BCD Operation Code Blank? No

Yes

Is Inside Transfer Vector Switch On?

Yes

Was BCD Location Blank?

? Yes

Reset Inside Transfer Vector Switch——3 Next Line

Make Transfer Vector Table Entry —e——=3me Next Line

Is Instruction Line the Transfer Vector Heading?___rf_o_____,';,H

+ Yes

Set Inside Transfer Vector Switch—w——aa Next Line

Construct BCD Operation Code wZ

'

If Indirect "*" Found, Set Indirect Flag

t

If Address has "¥¥', Set "¥*'" Flag

v

Identify BCD Opcode and Pickup Code Word (OPCODE)

+ Not

Make List Entries (RECODE)~— "END'"—3»= Next Line
? "END"

Process Internal TSX Returns

t

Read Next Line

Y

Ts Line the Last Line Used Statement?
|

Y Yes

Make Special Exit List Entry for Last Location

{

),.Read Next Line

Y

Is It Symbol Heading Line?

é Yes

Construct Symbol Table
|

Y

MATIN2

124

Figure Al.2 - OPCODE

OPCODE

{

Find Matching BCD Operatidn Code Entry

Pickup Code Word Entry

Transmit Code Word to RECODE e———3m. MATN1

The OPCODE Table Entry:

BCD Instruction Operation Code

Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit

W O~ W

o T o = T I
0 N W N O

19

. 27

Executable Instruction

Exception

Type 1 Transfer

Type 1 Tag Transfer

Type 2 Transfer

Type 2 Tag Transfer

Type 3 Transfer
Type 4 Transfer
TSX Transfer

XEC Instruction
1/6 Instruction

Storage Pseudo Operation

Data Pseudo Operation

Refer Type Reference

Use Type Reference

Test Type Reference

Set Type Reference
Shift Type Reference

Arithmetic Type

Reference

Bits 27 to 36 - A Compact Numerical Instruction Code
used to recode the Operation Code for
later table lookup identifications

125

36

Figure Al.3 - RECODE

RECODE
-(—-.E-Is Executable Instruction Bit Set (Bit 1)?
Yes
.<_Yi Is First Executable Instruction Flag Set?

4 v

Add Instruction Location to Starting Location List

i

Set First Executable Instruction Flag

No

ooy Is Exception Bit Set (Bit 2)?
Yes
Does Instruction Short Code Indicate an "END"? —YLS)-MAINI

Y M

Does Instruction Short Code Indicate an "ENTRY'-'—N2>- MATN1

§ ves

Add Entry Location to Starting Location List

Y

Set First Executable Instruction Flag

Y

Add Starting Location Entry to the Entry Point List —-MAIN1

Copy Binary Location and Binary Instruction Onto Binary File e

Is Type 1 Transfer Bit Set (Bit 3)? —!2;7- T1
No
. Yes
Is Type 1 Tag Transfer Bit Set (Bit 4)? wmmmd TITAG

*No

Is Type 2 Transfer Bit Set (Bit 5)?.2;. T2

Y [o]

126

Is

Is

Is

Is

1s

Is

Is

Is

Is

Is

Is

1s

Is

Is

l

Type 2 Tag Transfer Bit Set (Bit 6)? e ooy T2TAG

No
Type 3 Transfer Bit Set (Bit 7)? Y o55. T3

No

Type 4 Transfer Bit Set (Bit 8)?_Yi>.T4
No

TSX Transfer Bit Set (Bit 9)?. oos TSXTRN

-

XEC Bit Set (Bit 10)? ——SSye XEC (Not Programmed)
+ No
I/¢ Bit Set (Bit 11)? _E*I/ﬁ (Not Programmed)
No :
Storage Bit Set (Bit 12)7 —coy. STORAG
No '
Data Bit Set (Bit 13)? ...E,.DATGEN
No
Refer Type Reference Bit Set (Bit 14)?__Y_es_). REFER
No
Use Type Reference Bit Set (Bit 15)? _YE; USE
No
Test Type Reference Bit Set (Bit 16)? ——rS5 g TEST
No
Set Type Reference Bit Set (Bit 17)? _._‘.f.‘?f_,.sm
* No
Shift Type Reference Bit Set (Bit 18)? — ooy SHIFT
* No
Arithmetic Type Reference Bit Set (Bit 19)? _;i_e_;- ARITH
No
MAIN1

127

Figure Al.4 - Tl

Tl

1

Increment Entry Point List Counter

}

Make Single Entry Point List Entry

Increment Exit Point List Counter

)

Make Single Exit Point List Entry =—-3=~ RECODE

Figure Al.5 - T1TAG

T1TAG

Y

.(__F.g_ls the Type 1 Transfer Tagged?
Yes

Set Tagged Flag in "f"

.4_..._1.\19_ Is Transfer Address "Small Constant''?

v

Set Probable Subroutine Return Flag in "f"

{

Make TSX Return List Entry

Y

Is the Type 1 Transfer Indirectly Addressed?

No
Yes

Set Indirect Flag in "f"

f '

Are Either Tagged or Indirect Flags Set? emmp T1
Yes

Increment Exit Point List Counter

Make Single Exit Point List Entry Using Flagged "f'' <3=~RECODE

128

Figure Al1.6 - T2

T2

!

Increment Entry Point List Counter

Y

Make Double Entry Point List Entry

Y

Increment Exit Point List Counter

Y

Make Double Exit Point List Entry—3- RECODE

Figure Al.7 - T2TAG

T2TAG

Y

No Is the Type 2 Transfer Tagged?

Yes
Set Tagged Flag in "f"

Is the Type 2 Transfer Indirectly Addressed?

* Yes

Set Indirect Flag in "f"

{

Are Either Tagged or Indirect Flags Set

No

No)-TZ
Yes

Increment Exit Point List Counter

Make Single Exit Point Entry Using Flagged "f"

Y

Make Single Exit Point Entry With no Flag in "f"

Increment Entry Point List Counter

Make Single Entry Point Entry With no Flag in "f''——3m RECODE

129

Figure Al.8 -

Figure Al1.9 -

T3

T3

{

Increment Entry Point List Counter

\

Make Two Entry Point List Entries

Y

Increment Exit Point List Counter

{

Make Two Exit Point List Entries 3»- RECODE

T4

T4

Y

Increment Entry Point List Counter
Y

fake Three Entry Point List Entries

Y

Increment Exit Point List Counter

v

Make Three Exit Point List Entries >:s RECODE

130

Figure A1.10 - TSXTRN

TSXTRN

Y

N
° Does TSX Call External Subroutine?
+ Yes
Find Subroutine Name in Transfer Vector Table
Yes 4'

Does Subroutine Return?

} o

Increment Exit Point List

Y

Make Exit Point List Entry Using Non-Returning '"f" —3= RECODE

> Increment Entry List Pointer

+

Make Entry List Point Entry Using External TSX "f"

Y

Increment Exit List Pointer
|

Y

Make Exit List Point Entry Using External TSX 'f''—=» RECODE

>~ Make TSX Return List Entry —3- RECODE

131

Figure Al.11 - DATGEN

DATGEN

f

Increment Data List Counter

{

Find Number of Locations Generated by the Data Pseudo Operation

f

Construct Data List Entry Showing First and Last Location

{

Make Data List Entry —p= RECODE

Figure Al1.12 - STORAG

STORAG

{

Increment Data List Counter

Y

Find Number of Locations Reserved by the Storage Pseudo Operation

\

Construct Storage List Entry Showing First and Last Location

y

Make Storage List Entry—p- RECODE

132

Figure Al1.13 ~ REFER

REFER

\

Use Instruction Short Code to get Reference Table Entry
-&iCan Instruction Have a Tagged Address?
Yes

fe—L2 15 Instruction Ta gged?

1
+ Yes

Set Tagged Flag in "f"

Save Index Number in "f"

t————2»- Can Instruction Have an Indirect Address? . >

+ Yes
No

Is Instruction Indirectly Addressed?

| ves

Set Indirect Flag in "f"

A 4

Use Reference Table Entry to Determine Construction of List Entries ¢
Construct the Active and Passive Reference List Entries
Increment the Active and Passive Reference List Counters

Add Entries to Active and Passive Reference Lis;'s-_—ap-RECODE

133

Figure Al.14 - USE

USE

Use Instruction Short Code to get Reference Table Entry

No Can Instruction Have a Tagged Address?
+ " Yes
No

hg———— 18 Instruction Tagged?
Yes
Set Tagged Flag in "f"

Save Index Number in "'f"

o3 Can Instruction Have an Indirect Address? 3

Yes

Is Instruction Indirectly Addressed? No

Y

Yes
Set Indirect Flag in "f"

Use Reference Table Entry to Determine Construction of List Entries ¢
Construct the Active and Passive Reference List Entries

Increment the Active and Passive Reference List Counters

Add Entries to Active and Passive Reference Lists——3- RECODE

134

Figure Al1.15 -~ TEST

TEST

f

Use Instruction Short Code to get Reference Table Entry

No
%——— Can Instruction Have a Tagged Address?

+ Yes
No .
|<4————-1s Instruction Tagged?

* Yes

Set Tagged Flag in "f£"

+ No

be——>=Can Instruction Have an Indirect Address? -
+ Yes
N
Is Instruction Indirectly Addressed? ° Sy

+ Yes

Set Indirect Flag in "f"

Use Reference Table Entry to Determine Construction of List Entries «¢

f

Construct the Passive Reference List Entries

Increment the Passive Reference List Counters

Add Entries to Passive Reference List ——3~ RECODE

135

Figure Al.16 - SET

SET

y

Use Instruction Short Code to get Reference Table Intry

N
-4—————2— Can Instruction Have a Tagged Address?
Yes
No .
l¢————— Is Instruction Tagged?
Yes
Set Tagged Flag in "t

f

Save Index Number in "f"

> Can Instruction Have an Indirect Address? No Somn
Yes

Is Instruction Indirectly Addressed? No D
Yes

Set Indirect Flag in "I"

\

Use Reference Table Entry to Determine Construction of List Entries =<

Construct the Active Reference List Entries
Increment the Active Reference List Counter

Add Entries to Active Reference List s RECODE

136

Figure A1.17 - SHIFT

SHIFT

{

Use Instruction Short Code to get Reference Table Entry

N
_4——2— Can Instruction Have a Tagged Address?
Yes
No .
lt——— Is Instruction Tagged?
Yes

Set Tagged Flag in "f"

Save Index Number in "f"

=3 Use Reference Table Entry to Determine Construction of List Entries
Construct the Active Reference and Passive Reference List Entries

Increment the Active Reference and Passive Reference List Counters

Add Entries to Active Reference and Passive Reference Lists 3w RECODE

137

Figure A1.18 - ARITH

ARITH

Use Instruction Short Code to get Reference Table Entry
-‘_.lg.. Can Instruction Have a Tagged Address?
Yes
No
. Is Instruction Tagged?
Yes

Set Tagged Flag in "f"

Save Index Nuwber in Mf"

No

ey Can Instruction Have an Indirect Address?

Yes

Is Instruction Indirectly Addressed? No

Yes
Set Indirect Flag in "f"

¥

Use Reference Table Entry to Determine Construction of List Entries ¢

Construct the Active Reference and Passive Reference List Entries

Increment the Active Reference and Passive Reference List Counters

Add Entries to Active Reference and Passive Reference Lists .- RECODE

138

PHASE TWO

MAIN2 is the main program of Phase Two as shown in Figure 4.1,
MAIN2 calls seven subroutines which perform the required Data Processing
functions. Because of programming considerations, the Data Reduction
function of breaking the program into blocks is performed at the end of
this phase. SET21 reads the various temporary data files into memory.
PART finds which portions of each cell are actively referenced. CONSAT
determines which passive reference entries reference constants and which
active reference entries reference results. GETCON finds the value of
each constant cell by scanning the Binary File. SWITCH detects any
transfer switches and corrects the Entry Point and Exit Point Lists,
CHANGE identifies and flags all modified instructions. TOPSET breaks

the program into blocks and constructs the Control Tables.

139

Figure A1.19 - MAINZ

MAIN2

\

Read Various Files into Memory (SET21)

{

Find Total Portion Changed (PART)

Find Constants and Results (CONSAT)

1

Get the Value of the Constant Locations (GETCON)

{

Find Changed Instructions (CBHANGE)

y

Find Transfer Switches (SWITCH)

{

Find Program Topology (TOPSET)

Y

MAIN3

140

Figure Al1,20 - SET21

SET21

}

Load the Entry Point File

Load the Exit Point File

}

Load the Active Reference File

Load the Passive Reference File

¥

Load the Data File

f

Load the Storage File ——3= MAIN2

Figure Al.21 - PART

PART
Sort Active Reference List on "Cell Changed"

Sort Passive Reference List on '""Cell Used"

. Not Found
L ————

3y Get Next New ''Cell Used" Portion on Active List MAIN2

Found
Find All Active List Entries with that 'Cell Used' Portion

"Or" the Portion Changed Codes of the "f" Portion of those Entries

Store Total Portion Changed Code in the "f" Portion of those Entries

s . . .
__zf_..Are There More Actives on Active Reference List?

b v

MAIN2

141

Figure Al

.22 -~ CONSAT

Active

CONSAT
. . . " " Not Found
——>= Find Active Reference with new '"Cell Changed" Portion m—————pn-
Found
" " Not Found
Find Passive Reference with new "Cell Used" Portion ———————d—
Found
Ye5 1s "Cell Changed" equal to "Cell Used"? =€—
No
YeS_ Is “Cell Changed" Greater Than "Cell Used"?
No
Set Result Flag in "f" Portion of Active Reference
Are There More Active Reference Entries? No Passive
Yes
Get Next Active Reference -
te——3= Set Constant Flag in "i" Portion of Passive Reference
Are There More Passive Reference Entries? No)- Active

Get

Active — Set

Passive w——3. Set

+ Yes

Next Passive Reference

Result Flag in "f" of Remaining Active Entries ——3= MAIN2

Constant Flag in "f" of Remaining Passive Entries wwym- MATIN2

142

Passive

Figure Al.23 - GETCON

GETCON

Load the Binary File

No

— . Are There More Constant Locations? >ee MAIN2
+ Yes
Get Next Constant Location
{
_Q____ﬁg_.ls It a New Constant Location?
+ Yes
——35 Are There More Binary Entries? 1%>.hmIN2

+ Yes

Get Next Binary Entry

f

Yes . . :
e Is Binary Location Less Than Constant Location?

No

Yes R . .
Le——— Is Binary Location Greater Than Constant Location?

| o

lee———— Make Constant Value File Entry

143

Figure Al.24 - SWITCH

SWITCH

r-----————>-- Are There More Constant Locations? _N°_>.MAIN2

+ Yes

Get Next Constant Location

o o]

g o Is It a New Constant Location?

Yes

> Are There More Data or Storage List Entries?

+ Yes

Get Next Data or Storage List Entry

N

o . .
Is Constant Location in Data or Storage Entry?

Yes

Not Found

e————— Find Referenced Exit Point List Entry &
Found

Find Where Transfer Switch is Stored

Add New Entry and Exit Point List Entries

u.(._._.Y_(ﬁ. Can Transfer Instruction Be Executed in Place?

+No

le—— Remove Its Entry and Exit Point List Entries

144

Figure Al1,25 - CHANGE

CHANGE

J
—————> Are There More Result Locations? i)—MAINZ
Yes
Get Next Result Location

o o

bt LS It & New Result Location?

\} Yes
No

—>— Are There More Data or Storage List Entries?

+ Yes

Get Next Data or Storage List Entry

{

Is Result Location in Data or Storage Entry Locations?

' Yes

No

——> Get Next Passive Reference Entry ==&

Does "Instruction Cell" equal Result Location?

Yes

bg¢eee—— Set Changed Flag in "f'" of Passive Reference

145

Figure Al1.26 - TOPSET

TOPSET

'

Sort Entry Point List on its "Entry Point" Portion

'

Sort Exit

'

= Can There

Point List on its "Exit Point" Portion

Be Another Block?-——Egah-MAINZ

pof COnstruct

Yes
Does This Block Have Both Entries and Exits? No
* Yes
ts—— Construct Topology, To, and From Entries
Does Thj; Block Have Only Exits? No
+ Yes
jote—mmew Cons truct Topology and To Entries
Does This Block Have Only Entries? No
+ Yes
Construct Topology and From Entries

To and From Entries to Next Block

This Block Has Neither Entries nor Exits

t¢—— Construct Topology Table Entry

146

PHASE THREE

MAIN3 is the main program of Phase Three as shown in Figure 4.1.
MAIN3 calls five subroutines which perform the required Data Reduction
functions. SET31 reads the Control Tables into memory and converts the
To and From Table contents from instruction locations to Block Numbers,
CONECT checks the block interconnections and makes the required correc-
tions. LOOP detects all program loops and flags both To and From Table
loop closing branches. SET32 loads the Active and Passive Reference
Lists into memory and constructs the active and passive entries in the
Topology Table. LATEST determines the latest reference sets for each
passive referenée and stores the latest reference information in the

Latest Reference and User lLists.

147

Figure Al1.27 - MAIN3

MAIN3

Read Control Tables into Memory (SET31)

Y

Check Block Interconnections (CONECT)

Flag Program Loops (LOOP)
Read Reference Lists into Memory (SET32)
Find the Latest Reference (LATEST)

v

MAING

148

Figure A1,28 - SET31

SET31
Load Topology Table into Memory
Load To Table into Memory

Sort To Table into Sequential Order

N

————>> Are There More To Table Entries?

+ Yes

Get Next To Table Entry

Y

—— Get Next Topology Entry "START'" Portion

No

Does To Table Entry Equal "START'?

Yes

Replace To Table Entry by Block Number of Topology Entry

Resort To Table into Original Order wg

\l,

Load From Table into Memory

Sort From Table into Sequential Order

+

149

| ;

e Are There More From Table Entries?
Yes

Get Next From Table Entry

=3 Get Next Topology Entry "END" Portion

No

Does From Table Entry Equal "END"?

Yes

Replace From Table Entry by Block Number of Topology Entry

Resort From Table into Original Order «&%

Load Starting Location List into Memory

\

Sort Starting Location List into Sequential Order

Y

N
e Are There More Starting Location List Entries? °

Yes

Get Next Starting Location List Entry

——3, Get Next Topology Entry "START" Portion

No

Does Starting Location List Entry Equal '"'START"?

~* Yes

Replace Starting Location List Entry by Block Number

Load Data and Storage Lists into Memory-—3»=MAIN3

150

Figure Al1.29 - CONECT

No Are There More Unused Reachable List Entries? egm——————
Yes
Get Next Reachable List Entry
——>= Does That Entry Have More To Table Entries? No —

Yes

—> Are There More Starting Blocks?

CONECT

No

Yes
Get Next Starting Block

Place Starting Block on Reachable List

Yes *
Get Next To Table Entry

1

fe—— Is That. To Table Entry Already on Reachable List?

No

R—— Place To Table Entry on Reachable List

-+ Sort Reachable List

Get First List Entry

Does Its "START" Equal First Instruction Location?__N_oa_Error

‘} Yes

151

3= Are There More Reachable List Entries?
* Yes

Yes . ;

b Is It Next Sequential Block?

No

No

Is Missing Block a Data or Storage Block?
Yes
L<—— Set Data or Storage Block Bit in Topology Entry

r———3- Find Out Why Block is Missing o<

Correct Control Table Entries -—3p~ CONECT

Get Last Reachable List Entry

Does Its "END'" Equal Last Instruction Location?_ze_sy MAINZ

No
No

Is Missing Block a Data or Storage Block?
Yes
Set Data or Storage Block Bit in Topology Entry——- MAIN3

152

Figure A1.30 - LOOP

LOOP

{

Construct A Reachable Block List
23~ Are There More Unused Reachable Block List Entries?_—lE%>.MAIN3
+ Yes

Get Next List Entry and Call It The Root Block

Place Root Block on Temporary List

No

Are There More Unused Temporary List Entries?.%

Yes

Get Next Temporary List Entry

No
r___3,-.Does That Temporary List Entry Have More To Table Entries?-————J
Yes
Get Next To Table Entry

+ Yes

Is That To Table Entry Equal to Root Block?

+No

€% _1s That To Table Entry Already on Temporary List?
No

Y

_é____Place To Table Entry on Temporary List

Set Loop Flag in "f" Portion of To Table Entry

Y

Find Corresponding From Table Entry

\

g~ Set Loop Flag in "f"" Portion of From Table Entry

153

Figure A1.31 - SET32

SET32

Load Active Reference List into Memory

{

Load Passive Reference List into Memory

- Get Next Block "START" and "'END"

{

N
>~ Are There More Active Reference List Entries? °

* Yes

Get Next Active Reference List Entry

Y

Does This Active Entry Occur Between "START" and "END"?

+ Yes

Add Active Entry to Active Table

|

t—— Increment The Block Active Table Entry Count

No

Store Active Table Count in This Block's Topology Entry g

!

Store Active Table Pointer in This Block's Topology Entry

Store Active Table Count in This Block's Topology Entry e— ——o
Store Active Table Pointer in This Block's Topology Entry

Repeat Above Process for Passive List

Load Constant Value List into Memory —$= MAIN3

154

Figure Al.32 - LATEST

LATEST
Construct a Reachable Block List
3 Are There More Reachable Block List Entries? -E%MAIN3

Yes
Get Next Reachable Block List Entry

-__Eg. Does Block Have More Passive Reference Table Entries? ~€—— More Passives
Yes

Get Next Passive Reference Entry for This Block

Is This Passive Reference Flagged as Constant?-?.e_sb More Passives
No

Is This Passive Reference Flagged as Changed? —!fip.Changed
No

Is This Passive Reference Flagged as Indirect? _¥£.s_).1ndirect
No

Find Latest References on '"Cell Used" (LOOK).._>. More Passives

Changed —$==Find Latest References on Changed Address (LOOK)

More Than One Latest Reference Found? —Yi-s-punore Passives
' No
Does Latest Reference Use a Constant?_}.{f.y. More Passives
, Yes
Reset "Cell Used" Portion of Passive Reference Entry to the Constant

155

4

Reset Changed Flag in "f' of Passive Reference Entry

Y

Find Latest Reference on New '"Cell Used" (LOOK)-—3— More Passives

No

Indirect —= Is Indircctly Addressed Location a Constant?
Yes

Get Constant Value

Reset '"Cell Used" Portion of Passive Reference Entry to the Constant

Y

Reset Portion Used in "' of Passive Reference Entry

{

Reset Indirect Flag in "f'" of Passive Reference Entry

Find Latest Reference on New "Cell Used" (LOOK) —3»=More Passives

Find Latest Refereuncecs on Indirectly Addressed Location (LOOK) -/

|

More Passives

156

LOOK

Does This Block Have More Active Reference Table Entries? No 3
Yes
Find Active Reference Just Ahead of Passive Reference Location — Not Found
Found
r_-_Yi Does "Cell Used" Equal "Cell Changed"?
No

No

Does This Block Have More Active Reference Entries?
Yes

Get Next Higher Active Reference Entry

l———3- Increment Latest and User List Counters
Add Latest and User Entries to Lists

Does Portion Used Equal Portion Changed'.'—Yf.s*. Return
No

Does Total Portion Changed Fqual Portion Changed? '_y_e;.,Return
No

Reset Portion Used by Removing Portion Changed

Y

Place Block on Temporary List weg
o Are There Unused Entries on Temporary Lié’t?—“?,. Return
Yes

Get Next Temporary List Block Entry

Yes

Get Next From Table Entry

f

157

—_i. Does Temporary List Block Entry Have More From Entries ?wg-—More Froms

/

Is It the Original Blockvof Current Passive Entry'!_Ye.s,_ Original

No
Is It Already on Temporary List?._.Y_“!).More Froms
No

r—-3= Does New Block Have Mote Active References? ﬁ’.‘i_.._

¥ 1o

Add New Block to Temporary List More Froms

Get Next Higher Active Reference Entry, e

| _No Does '"Cell Used" Equal "Cell Changed"?

Yes

Increment Latest and User List Counters

¥

Add Latest and User Entries to Lists

¥

Does Portion Used Equal Portion Changed?_.¥£8+.More Froms

No
Does Total Portion Changed Equal Portion Changed? .__‘_I_e_s_> More Froms
No

Reset Portion Used by Removing Portion Changed -

t

Add New Block to Temporary List ——m.More Froms

158

No

Original—>= Does Original Block Have More Active Reference Entries?

/ + Yes

Get Next Higher Active Reference Entry

{

Is It Below Original Passive Reference?___ggy_ More Froms

> More Froms

Yes

|« _Does "Cell Changed" Equal "Cell Used"?
Yes

Increment Latest and User List Counters

Y

Add Latest and User Entries to Lists

¢

Does Portion Used Equal Portion Changed?.-_zfip. More Froms

b

Does Total Portion Changed Equal Portion Changed?.__ZEi>_ More Froms
No

Reset Portion Used by Removing Portion Changed

PHASE FOUR

For programming purposes, Phase Four is divided into two parts.
MAIN4 is the main program of the first part of Phase Four. MAIN4
calls two subroutines which generate the functional expressions. SET41
reads the various lists and tables into memory and constructs the Latest
and User entries in the Topology Table. PERT first generates a reachable
block list and then constructs a functional expression for each active
reference. MAIN5 is the main program of the second part of Phase Four,
MAINS calls two subroutines which produce the detailed output flowchart.
SET51 reads the various lists into memory and sorts the Message Pointer
List into sequential order. OUTPUT uses the Topology Table and the

ordered Message Pointer List to produce the output flowchart.

160

Figure Al,33

Figure Al.34

- MAING

MATINS

{

Load The Required Tables (SET41)

1

Construct Functional Expression (PERT)

l

MATINS

- SET41

SET41

Y

Load Topology Table into Memory

Load To Table into Memory

\

Load From Table into Memory

\

Load Starting Block List into Memory

{

Load Active Reference Table into Memory

Y

Load Passive Reference Table into Memory

Load Latest Reference List into Memory

Y

Construct Latest Reference Table

Y

Load User List into Memory

Construct User Table w—dmw MATNS

161

REFER4
Get Active Symbol from Format Table Entry
Save on Output List

Get Next Active Reference Table Entry

Save Active Reference Information on Output List

¥

Save Equal Sign Symbol on Output List

No

Is "C(" Required?
Yes
Add "C(" Symbol to Output List

&%= Are There Any Latest Reference Entries for
Yes

Is There Only One Latest Reference Entry?
Yes

Get Latest Reference Entry

Is Expression Pointer Flag Set? No

Passive Reference? __N°_>.

No

b -
L g

Yes

Find Output Message
Find First Word After Equal Sign

——— Copy Remaining Words onto Output List

163

Save Passive Reference Information on Output List w3

Y

{

N
Is ")" Required? °

Yes

Add ")" to Output List

Construct Message Pointer List Entry —

Y

Process Latest Reference and User Entries (IAT and USER)

\

More Passives

LAT

/

——>» Are There More Latest Reference Entries for the Passive Reference?

¢ Yes

Is Expression Pointer Flag Set?

No

v USE

No

Yes

Find Output Message Location

L.

Construct Message Pointer List Entry

g—— Set Expression Not Found Flag in Latest Reference EntYy mg—mme—dI

USER

Y o

r______§. Are There More User Table Entries for the Active Reference? ——_p. More Passives

4! Yes

Get Next User Table Entry for the Active Reference

Find Its Latest Reference Pair

No ‘#

Is Expression Not Found Flag Set?

Yes

Reset Expression Not Found Flag

Y

Find Location of Current Active Reference Output List Entry

Construct Message Pointer List Entry

{

——3 Find Location of Current Active Reference Output List Entry

Y

' Store Expression Pointer in Latest Reference Entry

165

Figure A1.36 - MAINS

MAINS

{

Load The Required Tables (SET51)

Print Output Flowchart (OUTPUT)

Figure A1.37 - SETS1

SET51

Load Topology Table into Memory

{

Load To Table into Memory

Load From Table into Memory

1

Load Starting Block List into Memory

{

Load Message Pointer List into Memory

Y

Sort Message Pointer List into Sequential Order

{

Load Output Message File into Memory

)

Load Symbol Table into Memory

Y

Sort Symbol Table into Sequential Order

¥

Load Constant Value List into Memory

Y

Load Data List into Memory

\

Load Storage List into Memory .—s MAINS

166

Figure Al.38 - OUTPUT

OUTPUT

—p« Read Next Input Program Line

Find Its Location

No

Does Its Location Equal Location of First Instruction?

Yes
More Blocks ~3=Are There More Topology Entries?._.E:;. Analysis Finished
Yes
Save Block Number in Block Number Line

Print Block Number Line
Print Top Asterisk Line

Save "START" in Starting Location Line

No

r——pe Does Block Have More From Entries?
Yes
Get Next From Table Entry
.;ZSi_ Does From Table Entry Equal Previous Block?

No

j N
Does From Table Entry Have Any Special Flags? °

Yes

Add Special Prefix Characters

L&—— Save From Entry in Starting Location Line —gmmem——

Print Starting Location Line g

167

i

pememeemempe Print BCD Source Instruction

-4-39- Does Message Pointer List Contain Functional Expression for Line?
Yes
Find Functional Expression on Output Message File

‘Convert Functional Expression into BCD Words

Print Functional Expression

feeds Does Message Pointer List Contain Cross Reference Expression for Line? No

Yes
Find Cross Reference Expression on Qutput Message File

Convert Cross Reference Expression into BCD Words

lie—— Print Cross Reference Expression

Read Next Input Program Line -

Find Its Location

Yes

Is It in Current Block?

}No

168

= Does Block Have More To Entries?

gfe—— Set Connect Switch

Yes

Get Next To Table Entry

Does To Table Entry Equal Next Block? — O

Yes

Iig Does To Table Entry Have any Special Flags?‘-q._

Yes

Add Special Prefix Characters

—-»= Save To Entry in Ending Location Line

A

Save "END" in Ending Location Line .-

¥

Print Ending Location Line

\

Print Bottom Asterisk Line

No

Is Connect Switch Set?

* Yes

Print Block Connecting Lines

Reset Connect Switch e, More Blocks

... Print Blank Lines ————eet. More Blocks

169

APPENDIX TWO

FLOWCHARTS OF ACTUAL PROGRAMS

One standard question has been, '"Can the Analysis Program analyze
itself?" The purposc of this appendix is to display flowcharts of
analysis subroutines produced automatically by the analysis program.

In general, the Topological Flowcharts are accurate, while the Detailed

Flowcharts are incomplete due to unprogrammed functional generation

subroutines.

170

Figure AZ.,1la shows the listing of a subroutine which converts
the binary number contained in the logical AC into a BCD number with
leading blanks. F¥Figure A2.1b displays the Topological Flowchart of

the conversion program while Figure A2.lc displays the Detailed Flowchart.

Figure A2.la - A Binary to BCD Conversion Subroutine

S?
S3
Sk

ENTRY

SYA
Xel
ROL

AYT
sTO
ZAC
161
TI'?Z
TIX
CAL
TPA
CAL
1.D0
ALS
LG

TIX

AYT
TPA

P7F
RCI
RO
FND

BCH

SUBRAUTINF TO CONVERT THE [OGICAL AC
TO A BED HUNRED EROM AN OCTAL MNUEPFP
VITH TFADTNR P,

SAVE THFE BETUPH ARNRFSS
LEFT JUSTIFY TUE FIVE DIRIT MUMAREP

THEPE CAN RE FIVUE NDIRITS

SAVE THE DERAIHNEDR OF TPE BpMRER
7 TUE AC

AFT THE MEYT DOTAL DIoLT

IF MON-7, APD DIATT TO FND OF A
PYPASS LTanfre 78

GFT A RCD 7FERQO

IMITIALLZE AC AS RLAMES

RFSTOCE L0 FOR FYDPST MON-7 DIGIT
pPrex P THRER 7 BITS

PLOK 0P MEXT DICHT

DECREASE DIGYT COUNT

RFSTORE RETUPN ANNPESS
PETUPRH

172

Figure A2.1b - The Topological Flowchart for Figure A2.1a

*
B &
. .
. 3 .
. *
. *
. *
. LD IR
. .
. b .
. *
. *
. *
. *)iien s
.
. 5
D 14
*
*
*
.
6 .
*oieeenn
* .
* .
L3 S

0

L S

L

e e

DI IR

et s e

We s s e e

e s s v oa e

N

.

Be s e st oe e

1R

02
n3
0L
ns

06
67

11

12

13
10

15

16

Figure A2.1c - The Detailed F]owchart1for Figure A2.1a

RCD SYA
ven
ROl
rYT

<1 °Tq
7AC
Lot
™Y

TIX

CAL
TPA

<2 CAL
§3 Lhn

£1,4,1

ﬂ

R
st

52

6

11

12

12

13

1h

16

LRI b R R R I R

*

*

*

*

>

A/YL=tYL

*
ES
*
*

I YE=A/T7T7E00L00NNE

*

LS R R R R A R R SR

2 .

Bk I SR I S S A S S

SHnarn

*(L..

*
*
*

*), ..

ER R SRR A SR EE IR R R S R

FhEthh TR dddhd s kb ddd vd

*
*

*)...

FAEF A A XTI R AN A E T XKL b F Y

b

.

PR A AR AR AR R EERE REEEE S

+
*
*
*

AC=RNGOCENANENAN

*
*
*

*) ...

LR R A SRR R R R SRR A

5

LR R A B R R T S

*
*
*
*
»

AC=ENGNENGNRNED
MO=tn

LR R R R R R R

174

*(.,.
*
*
*

X

1.3

6

SHn=tn

¢ .

LR R EEE LR LSRR EREE L SRS LS

17 =« *(,.. Lb
17 St ALS 3 * *
20 L.GY 3 * *
21 TIX sS4, 4,1 * *
21« *Y,.., LB
ERER B EEEE S X E I RS ER S S
7 .
B X EE AR R AR RS EE RS R LN EEE XS
22« (0. b
272 X4 AXT *x * [Xh=A/1YLD * 2 M/¥h=1YY
23 TPA 1,4 * *
23 =% *) .., IR
IEREE RS SR SRR R EEEEEEXE RS
10
EE R A R E R EREEEREEEESESEEESESS
25 * *
2L SM0 PZE 0 * *
25 7 BCI 1, 0 * *
26 B RCH 1, * *
26 * *
EEREEE R EERE S SRS KRR X EE RS

Figure 42.2a shows the listing of a program which sorts a table on
its address portion and then within the same address by tag. First,
the program interchanges the address and tag portions of each entry.

he program calls a binary sort routine, DSKT1E, to perform the

Second, t
sort. Third, the program returns the addresses and tags to theilr

original positions. Tigure A2.2b displays the Topolegical Flowchart

of the program,

176

ST T T T T R R IR

Figure A2.2a - An Address and Tag Sort Subroutine

EMTRY SPTTAG SUBROUTIMF TO SORT OM ADNRESS,
* THEN IMTEPMALLY ON TAG
*
SRTTAG SYA WX,
SXA JA¥2,2
SXA JIxu,n
*
CAL 1,0 GET ADDRFSS OF TOP ADDRESS
STA AL _
CAL 2,k GET ADDRESS OF COUNT ANDRESS
‘STA .AS
*
CAL* 1,4 GET TOP APDRESS
STA A
STA A2
STA JA3
STA JAB
STA A7
STA A8
CAL* 2, GET THE couMT
STA COUMT
PAX ,1
+*
Al CAL *x,1 GET MNEXT “WORD
' PAX ,? SAVE ANDPESS
LGR 18 SAVE TAG
PY.A)2 GFT ADDPFSS
LGL 3 PICKUP TAG
A2 STT 2%, SAVE LAST 18 RITS
A3 STA *x,1 :
TIX LA1,1,7 APE THERF MORF VOPNS
*®
TSYX $NSRT1R,4 SORT OM LAST 18 BITS
AL PZE * %
A5 PZE *#
L 7]
ZAC ZERD THE MN
XCL
LXA COUMT,1 GFT THE count
A6 CALL *%, 1 GFT MFXT WORD
ALS 15 ‘
A7 STT 2,1 SAVE QLD TAG
PDX)2
PXA ,?
.A8 STA *x,] SAVF QLD APDRESS
TIX JAG,1,2 ARE THERE MORE “ORPS
*
¥ AXT *x, 1
X2 AXT *r,?
Xy AXT 2%,
TRA 3,4
*
COUNT ~ PZF 0
EMD

177

Figure A2.2b - The Topological Flowchart for Figure A2.2a

10

PR

* X * *

t e 8 8 a e

“ s 08 e

--.-o---o.-tc--;--...--uc.-oo.-.-nou.-.a----

e 4 4 8 T &t e E e S E S e T E A2

« s s 5 4 5 Bt 8 T E A BT TS NN AT

178

ES

e 8 6 8 4 b 8 s e s e e

1P

Figure A2.3a shows the listing of the DSRT18 program which performs

a binary sort using only the right-hand eightecn bits. Tigure AZ,3b
displays the Topological Flowchart of the sort program. While the
DSRT18 subroutine was being analyzed, the CONECT subroutine found that
there was an instruction just above location SORT31 in DSRT18 which
could not be reached. This unreachable instruction turned out to be
extraneous and must have been inserted while the program was being
prepaved for input to the computer. After the extra instruction was

removed, the analysis program ran to completion.

179

Figure A2,3a - A Binary Sort Subroutine

T * %

SRT18

SORT1

SORT12

SORT11

SORT13
SORT3

ENTRY

SXA
SYXA
SXA
CLA*
sup
PAC
TXI
SXA
CLS*
TZFE
ADM#
StiB
PAC
SXA
AXT
LXA
CLA
PAX
CAL
TXI
SXD
TXH
Lht
TIF
TXI
LDQ
STI
STQ
LnQ
LD}
STO
STH
SXD
TXL
Lni
TIO
>
X1
TXI
TXI
PXA
STA

DSRT18 SUBROUTIME TO SORT A LIST OF MUMPEPS
THE SMALLEST MNUMBRER IS AT LOW OCTAL
THE €ALLING SEQUEMCE
TSX 4SORT1Z, B
PZF LOC OF HIGY OCTAL + 1 ADDRESS
PZE COUMT ADDRESS

1¥1,1 SAVE ty1

1¥2,2 SAVE X2
SRTH, &4 SAVE THE RFTURN ANDRESS
1, GFT HIGH OCTAL +1 ADDRESS
rAO2 FORM HIGH OCTAL APDRFSS

1 FORM 2'S COMP (HIGH OCTAL)

%+1,1,2 FORM 2'S COMP (WIRH OCTAL) + 1
SORTA,1 STORF IN SORTA

2,4 GET -COUNT

SRTM IF COUMT ZERD, RETURM

i,h FORM HIGH OCTAL +1 -COUNT

AD2 FORM HIGH OCTAL - COUNT

.2 FORM 2'S COMP (MIGH OCTAL-COUNMT)
SORTH, 2 STORE 1IN SORTR

12,1

SORTR, 4 IMITIALIZE SEPARATION ROUTINFSET IXk=TOP OF
SORTA+18,1

.7 SET 1X2=ROTTOM OF STBL

SORTBT+18,1 PICKUP RIT TO RF SORTED ONM
SORT11,2,-2

*+1,0 SCAM UP FOR ZFRO-RIT

SORT13,2,*x STOP AT TCOP OR OM [AST SORTED SYMROL
2,2

*+) TRA OM FIRST ZFRO RIT

*=~3,2,2

n,

0,4

2,2

1,t

3,2

3,2

1,4

*+1,2 SCAN DOME FOP OME~BIT

SORTL13, b, %% STOP AT ROTTOM NR ON LAST SORTED SYM
2,4

*+) TRA OM FIRST SYMBOL U/ PROPER RIT
*=3,4,-2

*+1 b4, -2

SORT12,2,2

*+1,2,2

0,2 .

SORTA+149,1 SAVE L0C, OF LAST SORTFD SYMROL

180

SORT32
SORT87

SORT31

SORTY

SORT?

SRTN
X1
1X2

SORT77
SORTB
SORTA

AQ2
SORTBT

CAS
TRA
TRA
THX
AXT
CLA
SuB
STA
CLA
STA
CAS
STA
TRA
TRA
CLA
TRA
SUB
STA
1hq
s$TQ
TLQ
TXH
Loq

$TQ

TLO
™I
SuB
STA
TLO
X!
AXT
AXT
AXT
TRA
PZE
PZE
nue
PZE
PZF
ocT
ocT
0CT
END

SORTR CAS W/ TnpP QR ¥/ PREVIOUS LOC.
SORT31 IF GPEATFR PICK UP EARLIER LOC,
SORTH IF EQUAL, SFE IF DONE

"SORT1,1,1 [F LESS, GO OM TO MEXY RiIT

1,1

SORTA+18

A02

SORTR

SORTA+17

SORTA+18.

SORTB

SORTR

SORT7

SORT87

SORTA+1R,1 IF R2 IS APOVF (SORTR),
SORT3 SET 1T TO ROTTOM OF BRLOCK

AQ2 :

SORTR BRING SORTBR UP TO RATE

SORTA+18,1 LOOK AT LAST LOC. EXCHANGED
SORTA+19,1 MOVE IT UP

SORT32 CAS VW/SORTB

SRTM, 1,17 ’ ,

SORTA+17,1 SEARCH RACK UP THROUGH THE TARLE
SORTA+18,1 ‘

x4+ CAS TO SORTP AGAIN

SORT7,1,1 GO ARDUND AGAIN

A02

SORTB UPDATE SORTP AGAIN

SORT1 GO BACK FOR ANCTHFR PASS
SORT7,1,1 INCREMENT I1X1 TO SEARCH TABLF
*x It

*x 1 RESTORFE IX1

**, D RFSTORF 1X2

3,k

1,19
2
L00000,200000,100000

40000,20000,10000,4000,2000,1000
400,200,100, 40,20,10,4,2,1

181

Figure A2.3L - The Topological Flowehnrt for Figure A2, 32

R S I

*

¥

*

. .

* .

* .

* .

* .

. .
L . .

- ¥ -

. * .

. . .

. . 5 .

. - * .

. - * .

. . * .

. . . .

. . & . .

® . - * .
. . . * .
. . . B .

- . . * *

. . . ¥* -

. . . ks L3
(%

L T T S .
.
. . . 10 . .
- . L] * .

.
. 3 * N .
3 . . * -
&
T ¢ .
. . .
. . 13 .
* . * El
2
. « B v
. . " .

L
© s e s s s s e e e o w e e s s e s s e e e e e e v e x e e . .
L T T T
Por s e v b e e s e e s s s e m e s e e e e e e e s e
- ~ —~ Re)
L T T T S N S U S 3 L * B e . * S 5]
—~ ~ ~ —~ — ~ —
.
NY- - = . v . <. ~ e — S .
— . . —i - — - — - — [! o- .
. B
.
. . B
. . . “
.
. - -
. - . .
.
L . T T T
. - - . . . B .
. - . .
. . . . - . . .
.
L S . . e e
.
.
.
.
e v s s e s e e e e e e e e 4 e e e e e e e e e .
. .
. .

—

23

S T T
. . . .
. . . -
. . . .
L R S T T T S
.
A T T T
. B . . B .
.
L T T L
- . . . B -
B -
. . - . . B
. . . - . .
.
- . - . . -
. . - . . -
.
— ~— ~ — ~
¥ ¥ ¥ & EE L 2 R T LI T TN S P EOY S
~— — ~ — — ~ ~ —
=3 . W, . woo. . r~ e . o~ - o . SR
o . o . . oy . . o M. . ~ . N . N .
. . . . “ . - . . .
. -
. -
. « . .
. . - . . -
. . N
. . B . . v - . . .
L T T S e, L T T T . .
.
L O 2 T -
. . . v . M
.
.
e o e s s 4 s 4 e s e s e e s e s e s e e - .
. . -
L T T
.

D L I B R SRR

e e s

. s aae

.

C e e a

IR

L0

L2

¥ ok A *

* X k.

L I

R I

* % A R

ok

e e

e s e

e e e

ve e e s e

10.

11.

AT i

BIBLIOGRAPHY

Berge, C., The Theory of Graphs and Its Application, Translated by
Alison Doig, John Wiley and Sons, New York, 1962.

The Compatible Time-Sharing System, A Programmer's Guide, M.I.T.
Press, Cambridge, Massachusetts, 1966.

Haibt, L, M., "A Program to Draw Multilevel Flow Charts," Proceedings
of the Western Joint Computer Conference, pp. 131-137, (1959).

Hain, G. and K, Hain, "Automatic Flow Chart Design," Proceedings of
the ACM 20th National Conference, pp. 513-521, (August 1965).

IBM 7094 Data Processing System Reference Manual, IBM Corporation,
Poughkeepsie, New York.

IBM 7090/7094 Programming Systems FORTRAN II Assembly Program (FAP)

Reference Manual, IBM Corporation, Poughkeepsie, New York,

Iverson, K. E., A Programming Language, John Wiley and Sonms, New York,
1962,

Krider, L., "A Flow Analysis Algorithm," Journal of the Asgociation
for Computing Machinery, Vol. 11, No. 4, pp. 429-436, (October 1964).

Needleman, M, R, and C. A, Irvine, Pathfinder, A Source Code Analysis
Program for the Multiprocessor Environment, Western Data Processing

Center, University of California, Los Angeles, California, (1966).

Nievergelt, J., "On the Automatic Simpliffcation of Computer Programs,"
Communications of the ACM, Vol. 8, No. 6, pp. 366-370, (June 1965).

Prosser, R. T., Applications of Boolean Matrices to Analysis of Flow
Diagrams, Technical Report No, 217, Lincoln Laboratory, Lexington,
Massachusetts, (January 1960).

186

12,

13.

140

15

Ramamoorthy, C. V., "Connectivity Consideration of Graphs Representing
Discrete Sequential Systems,"” IEEE Transactions on Electronic Computers,
Vol. EC-14, No. 5, pp. 724-727, (October 1965).

Rising, H. K., On an Automated Method of Symbolically Analyzing Times
of Computer Programs, Technical Report No. 154, MITRE Corporation,
Bedford, Massachusetts, (March 1966).

Ross, D. T., "A Generalized Technique for Symbol Manipulation and
Numerical Calculation," Communications of the ACM, Vol. 4, No. 3,
pp. 147-150, (March 1961).

Sutherland, I. E., Sketchpad: A Man-Machine Graphical Communication
System, Technical Report No. 296, Lincoln Laboratory, Lexington,
Massachusetts, (January 1963).

187

BIOGRAPHY

Daniel U, Wilde was born on December 27, 1937 in Wilmington,
Ohio. He attended high school at the Evanston Township High School, Evanston,
Illinois, from which he was graduated in June, 1956. He was an under-
graduate at the University of Illinois where he received the degree of
Bachelor of Science from the Department of Electrical Engineering in
February, 1961. Since then he has been a graduate student at the Massachu-
setts Institute of Technology where he received the degree of Master of
Science from the Department of Electrical Engineering in September, 1962.
Mr., Wilde is a member of Tau Beta Pi, Eta Kappa Nu, and Sigma Xi. Since
1962 he has been a member of the staff of the Electrical Engineering
Department, first as a teaching assistant and then as a research assistant
with Project MAC. Since 1964 he has been a Research Instructor of Medicine
at the Boston University Medical School., He is married to the former

Marylin R. Corbett of Billings, Montana.

188

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security clasaitication of title, body of abatract and indexing annotation must be entered when the overall raport ia classitied)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION
Massachusetts Institute of Technology UNCLASSIFIED
Project MAC 2b. GROUP
None

3. REPORTY TITLE

Program Analysis by Digital Computer

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

PhD. Thesis, Electrical Engineering, June 1966

8. AUTHOR(S) (Laat name, firat name, initial)

Wilde, Daniel U.

6. REFORT DATE 7a. TOTAL NO. OF PAGES |7b. NO. OF REFS

August 1967 192 15
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERIS)
b.gggﬁﬁﬁ.gg.Naval Research, Nonr-4102(01) MAC-TR-43 (THESIS)

NR 048-189

9. OTHER REPORT NO(S} (Any other numberas that may be

“ RR 003-09-01 assigned this report)
d

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Advanced Research Projects Agency
None 3D-200 Pentagon
Washington, D. C. 20301
13. ABSTRACT Comparing properties of non- and self-modifying programs leads to the

definition of independent and dependent instructions. Non-modifying programs contain
only independent instructions, and such programs can be analyzed by a straight-forward,
two-step analysis procedure. First, program control flow is detected; second, that
control flow is used to determine program data flow or data processing. However, self-
modifying programs can also contain dependent instructions, and then program control
flows and data flows exhibit cyclic interaction. This cyclic interaction suggests
using an iterative or relaxation analysis technique. 1Initially, the relaxation pro-
cedure determines a first approximation to control flow; the second step, to data flow.
These two steps are repeated until steady-state condition is reached.

Algorithms for implementing the first iteration are presented. These algorithms
are capable of analyzing programs which modify their control and processing instruct-
ions while executing. Also described are data structures which permit constructing
functional expressions for data flow or information processing. Finally, actual
output flowcharts of self-modifying programs are displayed.

14. KEY WORDS

Automatic flowcharting Multiple-access computers Real-time computers
Computers On-line computers Time-sharing
Machine~aided cognition Program analysis Time-shared computers

DD .23, 1473 (M.LT.) UNCLASSIFIED

Security Classification

