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ABSTRACT

This thesis describes a model diagnostic problem and a computer
program designed to deal with this problem. The model diagnostic
problem is an abstract problem, A major contention of this thesis,
however, is that this problem gsubsumes the principal features of a
number of ostensibly different real diagnostic problems including
certain problems of medical diagnosis and the diagnosis of machine
failures, A second major contention of this thesis is that strate-
gies for the solution of the model diagnostic problem can be formu-
lated in terms sufficiently explicit to permit their incorporation
in a computer program,

The model diagnostic problem assumes that the system being di-
agnosed (e,g. a person, or machine) is in one of a finite number of
known states, Tests can be performed at some cost to discover attrib-
utes of the system, for example signs or symptoms in medical diagno-
sis, The current state of the system is to be deduced from the ob-
served attributes and past experience with similar systems, In the
model, this experience is represented principally in terms of proba-
bilities (e.g. the conditional probability of a certain attribute
given the system state),

The statement of the model diagnostic problem requires that the
diagnostician also account for the cost of various misdiagnoses, In
particular for each pair of states i and j, the cost of misdiagnosing
state j as state i, 1;;, is given, Thus the diagnostician must bal-
ance the cost of perfoifming additional tests against the expected
reduction in the cost of misdiagnosis, This requirement suggests the
value of sequential diagnosis,
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A computer program was developed to solve the model diagnostic
problem, It consists of 1) an inference function which is based on
a Bayesian analysis of attributes and includes a flexible way of
dealing with non-independent attributes, 2) a pattern-sorting function
which allows the program to detect irrelevant attributes and patterns
of attributes corresponding to two different system states, and 3)
a test selection function which employs various heuristics to select
good tests for the user of the program to perform on the system under
consideration, The diagnostic program is specialized for a particular
problem by providing it with the appropriate experience, The pro-
gram is embedded in an environment (set of programs) which facili-
tates the study of various diagnostic strategies,

The diagnostic program was implemented on the time-sharing
system at Project MAC, It was applied to two medical problems, the
diagnosis of congenital heart disease, and the diagnosis of primary
bone tumors. The results obtained here suggest 1) that a computer
program can be of considerable value as a diagnostic tool, and 2)
that it is quite advantageous for such a program to perform sequential
diagnosis as it interacts with the user,

Thesis Supervisor: Joseph Weizenbaum
Title: Associate Professor of Electrical Engineering
and Political Science
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Chapter 1

DIAGNOSTIC PROBLEMS AND PROCESSES

There are many problem areas in which attention is focused
on some system, In these areas, the principal problem is to ascer-
tain the current state of the given system, In general terms such
a problem is a diagnostic problem. The problem-solver or diagnosti-
cian is equipped for his task with information distilled from past
experience with such systems, and he attempts to couple this gen-
eral knowledge with specific observations or tests of the given
system in such a way that he can deduce the identity of the current
state, The extent of the general knowledge, its organizationm,
and the particular manner in which it is brought to bear om the di-
agnostic problem, the diagnostic process, may vary considerably
among different problem areas, but the gemeral nature of the prob-
lem persists,

Thus the medical diagnostician deals with the problem of dis-
covering the "state" of the patient. Through training and experi-
ence,vthe physician has learned the sign and symptom patterns asso-
ciated with possible diseases from which the patient can suffer., One
problem is the effective utilization of this experience which is
framed in terms of the abstraction of the disease and the reality of

the individual patient. An additional complication arises from the



fact that different diseases may result in similar signs and symp-
toms, The physician exploits his general knowledge or experience

in the selection of a sequence of tests to apply to the patient.

The results of these tests provide him with information from which
he constructs a more complete picture of the health of the patient,
These tests may include simple questions as in the history-taking

or complicated medical procedures such as in an exploratory opera-
tion, Since tests may exact a high cost (in terms of risk to the pa-
tient, patient discomfort, the time of skilled persons, money, etc.),
it is the additional task of the diagnostician to properly balance
this cost against the potential usefulness of the test results, For
these and other reasons, medical diagnosis is often a complex and
difficult intellectual problem,

A second example of a diagnostic problem ts that of debugging
computer programs. A program containing one or more errors can be
thought of as a system for which it is desired to determine the state,
The state in this case is characterized by the particular combination
of errors, The programmer brings his past experience with a variety
of programs to bear on this diagnostic problem. By controlling the
inputs to the program, applying traces, or altering instruction se-
quences, or employing a post mortem, he can perform a range of tests
on the program, The results of these tests may suggest new tests as
well as providing the programmer with new insight into the problem

currently confronting him, Like medical diagnosis, program debugging



is often a difficult task, requiring considerable judgment both in
the selection of tests and the interpretation of results,

The research reported here is concerned with a particular diag-
nostic problem and a diagnostic process for solving that problem, It
has several aims, The first is to formulate the model of the diagnos-
tic problem in such a way that the definition subsumes the principal
features of problems in a number of ostensibly different problem
areas, For example, the definition might apply both to medical diag-
nosis and to program debugging, although it might not be the particu-
lar definition employed by diagnosticians in the respective areas,
That such a model can be formulated is the major contention of this
thesis., The second aim is to develop and investigate strategies for
the solution of this model diagnostic problem, Because they are to
be stated in terms of an abstract problem, such strategies will be
independent of any real diagnostic problem. These diagnostic pro-
cedures then are to be embodied in a computer program, This step
serves two purposes, First, the program provides an explicit state-
ment of the diagnostic strategies, and thus facilitates the testing
of these strategies on particular problems, Second, if the strate-
gies in the program prove effective in practical applications, the
program could be of considerable value in computer-aided diagnosis,
In the event that this approach were successful, the resulting pro-
gram may be useful in a number of distinct diagnostic problems, since

the methods it employed would be problem-independent, The second



major contention of this thesis is that given a model for the diag-
nostic problem, effective strategies for the solution of the problem
can be formulated in terms appropriate for their implementation in a
program,

Such a program for diagnosis could be embedded in an environment
(other programs) which would permit two different uses of the program,
First, the program could be applied to actual diagnostic problems so
that its effectiveness could be determined, Second, the environment
could permit the study of a variety of artificial problems, each
designed to test a particular aspect of program performance, The first
type of application might be termed "open diagnosis'; and the second,
"closed diagnosis," Closed diagnosis may facilitate the development
of improved diagnostic strategies,

In order for a diagnostic problem to exist, one must have at
least some knowledge of the nature of the system being considered.
Further the various states of the system must manifest themselves

through certain observable attributes.1 It should also be possible

to apply tests to the system at some cost to obtain more attributes,
Finally, the general knowledge of the system must include some com-
prehension of the relationships among signs, states, and tests. The
prerequisites are satisfied by the two examples of diagnostic prob-

lems presented above, 1In fact, in simplest terms, this is the basis

lThe term attribute is used in this thesis to denote any observable
manifestation of system state which is employed in the deductive phase
of diagnosis, For example, it includes both signs and symptoms in
medicine,



for the diagnostic problem studied in this work,

A Brief Outline of a Diagnostic Process

The basic outline of a diagnostic process is as follows, Be-
cause the observation of certain initial attributes suggest a diag-
nostic problem in some system, the diagnostician wishes to ascertain
the current state of the system. He selects a test (based on some
criterion) and applies it to the system, The application of the test
yields to update his current view of the problem, He then applies
another test and obtains more attributes., This process continues un-
til the diagnostician makes a decision about the current state, Now
this is a most sketchy outline of the diagnostic process, There can
be a great deal of sophisticated information processing during each
iteration of the process. The point is that test selection and in-
ference are the two principal features of diagnosis as performed in
a number of distinct areas, The outline above seems equally appli-
cable to medical diagnosis, qualitative chemical analysis, and the
problem of diagnosing a malfunctioning automobile, At this level, then,
the diagnostic processes in these and other areas exhibit considerable
similarity, Inference and test selection appear to be the keys to
diagnostic strategies of some generality. If it could be demon-
strated that these features of the process necessarily differ funda-
mentally from area to area, than there would be little hope for the
formulation of general diagnostic strategies, In fact, as will be

shown in this work, there is reason to believe quite the contrary,



It appears that, for a number of areas, problem-independent diagnostic
strategies can be developed, Note that the strategies employed by
experts in different fields may be quite dissimilar, there is no re-
quirement that the strategies developed here resemble theirs, The
criterion by which strategies will be judged is how effective they
are in particular applications, not how closely they approximate those
currently used by human experts,

The diagnostic process then merits careful study for several
reasons, First, as indicated above, variations of this problem arise
in many different éontexts and so the problem is bf general interest,
Second, the nature of the diagnostic problem is such that it often
requires a great deal of intellectual effort to solve it, and any
means of improving the problem-solving process will be of consider-
able value, Finally, the general form of the problem suggests the
value of a man-machine partnership in the problem-solving process,
Before such a partnership can be established, however, the diagnostic
process must be carefully explored in order to determine respective

parts to be played by man and machine,

Some Further Comments on the Difficulties of Diagnosis

Diagnostic problems on the whole are difficult ones, particularly
for non-experts, Moreover, a great many diagnostic problems consti-
tute considerable challenges to the skill of even the most expert
diagnostician, Several factors contribute to the complexity of the

diagnostic problem, First, an expert diagnostician must be aware of



a large number of relationships among system states and attributes,
As evidence of this, consider the considerable training required to
develop the skills of a medical diagnostician, Observation of many
different attributes may be required to identify a particular state,
and a given attribute may suggest many possible states, These facts
coupled with the often large number of states and attributes require
the diagnostician to master considerable amounts of information,

Often the relationships mentioned above are known only in proba-
bilistic terms. 1In such a case, the task of the diagnostician is
complicated by the need for some form of probability analysis, a
task which generally proves quite difficult for human beings, The
accurate assessment of probabilities for a large number of possible
states given observed attributes requires extensive training and ex-
perience,

Another factor complicating the task of the diagnostician is
the difficulty of establishing and maintaining an appropriate struc=
‘ture for all the information relevant to the diagnostic area. Much
of the usefulness of that information in the diagnostic process ac-
crues from its organization. A major portion of the expert's skill
is derived from his ability to associate particular attributes or at-
tribute patterns with possible system states and subsequent testing
strategies, Again extensive experience and training are required to
organize the relevant information into a useful associative structure,

Unfortunately such a structure is not easily maintained, Associations



which are seldom used may be effectively lost to the diagnostician,
As a result, his field of competence tends to become narrow, This
tendency is accelerated when the diagnostician must devote considerable
effort to the mastering of a continual stream of newly-relevant in-
i formation,
A computer program to provide general diagnostic assistance to
\h_//,f“fis user would help circumvent some of these difficulties, One of
the significant advantages to be gained from the use of a computer
is the sheer bulk of information which it can maintain. A diagnos-
tic program would be able to deal with extremely large information
structures, Since the program would be independent of the content
of the information structure which it employed, that content could
be continually updated without affecting the operation of the pro-
gram (although better information should result in better program
performance).

The amount of logical and probabilistic inference with which
the program could cope would exceed that comprehensible to a human
being, This capability would permit the more extensive exploration
of possible testing strategies, Because the program could consider
more possible diagnoses than a human 5eing, it would provide a strong
safeguard that a particular state is not overlooked in the diagnosis.
Finally, a diagnostic program which was "table-driven' would be of
all the more value because of its potential applicability to a

variety of problems, -



Note that diagnostic strategies suited for a computer are not
necessarily suited for a human diagnostician, While human diagnos-
ticians possess many special skills and hence serve as good sources
of information about diagnosis, the purpose of this research does
not restrict the set of possible strategies to those employed by
humans., The goal is to develop strategies which enable the pecu-
liar capabilities of the computer to be exploited, Additional in-
sight into the nature of the human diagnostic process and the dis-
covery of ways to improve it would be a valuable, but derivative

result of this research.

A Preface to the Material Which Follows

This thesis describes a computer program for diagnosis and
presents the results of some experiments performed with this pro-
gram. The design of the program was strongly influenced by the model
diagnostic problem chosen for this research, Although later chapters
contain detailed discussions of this problem, a brief summary of its
principal characteristics is presented here to provide some perspec-
tive on the problem,

The statement of the diagnostic problem considered here assumes
that the system is in one of a finite number of states, The object
of the diagnosis is to identify the current state of the system, Ex~
perience with similar systems is assumed to be available, This ex-

perience is in the form of probabilities for the various states and
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probabilities of attributes given state., Test costs are constant
and known. Furthermore the application of a test does not change
the state of the system, Tests are also assumed to be accurate,
Finally, it is assumed that the decision loss for each possible mis-
diagnosis is given in the same units as test costs, This work,
then, is concerned with the development of strategies to solve
diagnostic problems which can be stated in keeping with these as-
sumptions,

Chapter 2 examines some of the research reported in the lit-
erature which has direct relevance to this work,

Chapter 3 presents two views of a diagnostic problem, In the
first view, diagnosis is considered as a problem in pattern recog-
nition, The implications and limitations of this view are examined,
Then the problem of diagnosis is formulated as a sequential decision
problem. This formulation underscores the computational problems
associated with the determination of optimal testing strategies.
Finally, a discussion of heuristic considerations in test selection
is presented,

A system for the study of computer-aided diagnosis is des-
cribed in detail in Chapter 4, This system includes both a diag-
nostic program and a variety of programs which provide an environ-
ment within which different diagnostic strategies can be studied.

The next three chapters are devoted to experiments performed

with the diagnostic system, Chapter 5 discusses the use of the sys-
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tem in the diagnosis of primary bone tumors; and Chapter 6, an ap-
plication of the system to the diagnosis of congenital heart disease,
A number of other experiments with the system are discussed in
Chapter 7. Chapter 8 presents a discussion of the results of the

research and delineates some areas for further investigation.



Chapter 2

LITERATURE SURVEY

A Diagnostic Programs

In recent years, there has been an increasing amount of work
done on various aspects of diagnosis, Some of this work has been
aimed at the development of computer programs to perform particular
diagnostic tasks, Other work has been more oriented toward the
study of human diagnosticians and the strategies they employ. A
brief survey of this work is presented in this chapter. Examples
of computer programs for diagnosis are discussed, Of particular
interest are the diagnostic strategies and models employed by such
programs. Finally, some broad views of diagnosis and its attendant
difficulties are considered,

By far the greatest concentration of research in computer-
alded diagnosis has been focused in the area of medical diagnosis,

A number of programs have been written which are capable of perform-
ing diagnosis in particular medical areas, These programs, as a

rule employ a Bayesian analysis of attributes based on a disease-
attribute probability matrix for the given set of diseases considered,
That is the programs compute the probability of disease D given

the set of attributes A as follows

P(D) P(A/D)

=ZP(D) P(A/D)
D

P(D/A)

12
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where P(D) is the a priori probability of D,

P(A/D) is the conditional probability of A given D,
The use of a disease-attribute model and Bayesian inference was ad-
vocated by a number of researchers as early as 1959 (R1, R2, R3, R4,).
While other means of inferring diseases from their attributgs were
suggested at this time (R5, R6), the Bayesian approach has proved
the most widely used, 1In certain areas the use of analog computers
has been explored, but this work will not be reviewed here,

In recent years, computer programs incorporating the Bayesian
model have been developed for problems of heart disease (R7, R8),
Thyroid disease (R9), epigastric pain (R10), Cushing's syndrome (R11)
and others, Some of these programs have enjoyed striking success in
attaining levels of performance comparable to that of the expert hu-
man diagnosticians. For example, a Bayesian analysis of 268 cases of
patients with one of three thyroid problems yielded the accepted diag-
nosis in 96% of the cases, (R9). In a similar analysis of acquired
valvular heart disease patients, a computer program correctly identi-
fied 967 of the problems, (R7). In both cases this level of per=-
formance compares favorably with that attained by experienced diag-
nosticians,

In order to provide a more detailed view of the use of Bayesian
analysis in computer-aided diagnosis, two studies will be reviewed
here, The first is the diagnosis of congenital heart disease; and
the second, the diagnosis of thyroid function,

In a series of papers (R12, R13, R14), Warner, Toronto, and
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Veasy have reported on the development and use of a computer program
for the diagnosis of congenital heart disease, This program employs
fifty-seven possible attributes to classify patients into thirty-five
different disease classes, The basic strategy employed by the pro-
gram is the use of Bayes' rule to obtain the posterior conditional
probabilities for the different diseases given a particular set of
attributes, The neéessary a priori disease probabilities and condi-
tional probabilities of attributes given disease were derived from
statistical studies of a large humber of known congenital heart di-
sease patients, In certain instances, the statistical information so
obtained was deemed inadequate and the probabilities involved were
estimated from 1) the available literature and 2) consideration of
the pathologic physiology of the disease, The program takes into
account the significance of attributes which are absent as well as
those which are present, Thus, the absence of cyanosis is significant
in the diagnosis, The program is also designed to account for cer-
tain mutually exclusive sets of attributes, For instance, if one
of a set of mutually exclusive attributes is present, it would be in-
correct to consider the absence of the other attributes in the set
as additional information in the diagnosis,

The program is gpsed in the following way. For each patient ex-
amined, the examining physician determines the presence of absence
of the required attributes, When the examination has been completed,

the information obtained is punched on cards-and fed to the computer
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in the field, Furthermore, the accuracy of the computer

diagnosis is still improving with refinements in the data

matrix, (R-12)

Overall and Williams (R-9) developed a computer program for the
diagnosis of thyroid function, The object was to classify patients
into one of four classes: 1) no thyroid disease, 2) hypothyroidism,
3) enthyroidism or 4) hyperthyroidism. By analyzing 879 cases, the
authors obtained a disease-probability matrix which included 21 in-
dices of thyroid function. Although over 800 cases were involved in
the analysis, not all of the 21 measures were available for each
case, Relative frequencies of each attribute were based on the num-
ber of cases in which the necessary data were available, Independence
of attributes was assumed, although the authors note that this assump-
tion is suspect,

In an extensive series of tests, the program performed extremely
well, According to the authors

+ + » computer diagnoses agreed with the clinical diagnoses

in over 96% of the cases in which anything like complete

data were available, (R-9)

Both of these examples of computer-aided diagnoses lend credence to
the belief that Bayesian attribute-disease models of diagnosis may
prove extremely useful in a whole range of medical applications.

As noted earlier, not all applications of mathematical methods
to medical diagnosis have been founded on Bayesian inference, An
interesting example of a different view of the problem involves
considering a point in an n -~ dimensional space (where n is the

number of attributes). From past experience with diseases, one can



consider each disease as representable by a class of points in the
space, The diagnosis of the current disease is derived from a
consideration of the '"closeness" of the corresponding point to the
classes for each of the known diseases respectivelyn1 In a recent
paper (R-7), Lerner discusses the use of such an approach in the
recognition of handwritten letters and the detection of oil-bearing
strata in petroleum geology. In the latter problem (another type

of diagnostic problem), he reports that a program based on this
method far surpassed the performance of the most experienced experts,
He then advocates the application of this method to problems of
medical diagnosis and asserts that the possibilities of this approach
“"considerably exceed those of doctors-diagnosticians,"

While this method differs markedly from that employed in the
two medical applications above, it shares with them a very important
limitation, In Chapter 1 it was suggested that the diagnostician
performs two major tasks in his problem-solving, The first task is
the interpretation of attributes manifested by the system being diag-
nosed, An equally important task is the selection of an appropriate
testing strategy. All of the programs above map a set of attributes
into a diagnosis in one stage, There is no test selection function
performed in any of these programs., As a result, all the data which
are to be employed by the program must be collected before the pro-

gram is invoked, There is no opportunity for selective testing based

17

Irhis approach will be examined in more detail in Section A of
Chapter 3, )
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on an analysis of an incomplete set of attributes, Thus, it may
happen that the cost of determining a number of attributes (for ex-
ample, by taking an X-ray) is incurred unnecessarily, While this
may not be a major problem in the particular areas discussed above,
it is easy to think of situations in which this approach would be
highly undesirable, Consider, for example, the computer-aided diag-
nosis of diseases from a group which exhibit clusters of relatively
disjoint attribute patterns, The approach outlined above required
the determination of a full set of attributes to be made available
to the program, Since only a small subset of the set of all attri-
butes is necessary for a diagnosis, many attributes are unnecessary
in any particular application, If the cost of obtaining these un-
necessary attributes is high, then the diagnostic procedure will be
less than satisfactory. This is because the quality of diagnosis
should reflect its cost as well as its accuracy. As Lusted has ob-
served (R-17),

A great many medical diagnostic tests have been developed to

supplement the patient information obtained from history

and physical examination, These tests vary greatly in the

amount of discomfort to the patient, complexity, and cost,

It is obvious that diagnostic tests should be kept to a

minimum,

It seems that a more satisfactory solution is to permit the
diagnostic program to operate sequentially, choosing tests for the
user to run based on a continually updated view of the problem,

The program could engage in a dialogue with the user '‘as it performs

both the inference and test selection functions of diagnosis, The
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testing strategy evolved by the program should reflect the informa-
tion derived from the attributes observed to date, past experience
with similar systems, the cost of tests, and the relative seriousness
of various disease states, Part of the research reported in this
thesis is aimed at developing a program which satisfies these require=
ments,

Less has been done with computer-aided diagnosis in other areas,
One problem which has received attention, however, is the diagnosis
of faults in a computer, Although the problems here are not well
understood at present, recent research (R-18) shows considerable
promise, Significant results pertaining to the selection of an op-
timal set of diagnostic tests have been obtained (R-19), but they are

restricted to the case of a single fault.

B, Perspectives on Diagnosis

One of the chief motivations for this research is belief that
a computer is potentially a very useful tool to be employed in di-
agnostic problems, The need for such a tool becomes apparent when
the difficulty of particular diagnostic problems is considered,

A considerable portion of the effort expended in implementing
computer programs is devoted to program debugging. As programming
applications become increasingly sophisticated, the complexity of
the associated problems of debugging increases at an equally rapid
rate, The tremendous effort required to debug a large operating

system is a testament to the magnitude of the diagnostic problem in-
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involved, This is so even though many of the programmers involved
in such an effort are experts,

The non-expert who ventures into the world of programming
also faces many diagnostic problems, Often the magnitude of these
problems relative to his limited programming skill and experience
is such as to prevent him from effectively using the computer in
his particular research, In both these cases, there is a need for
an improved diagnostic facility, Research into the potential use-
fulness of diagnostic computer programs seems especially appropri-
ate in this context,

Much the same situation exists in medicine, although here
there exists more explicit evidence of difficulty of problems in
medical diagnosis and the need for new aids in the problem-solving
process, Physicians receive extensive training in their profession,
‘and they devote considerable efforts to the development of their
diagnostic acumen, For all their training, however, the difficulties
of the diagnostic problems confronting them have resulted in a sur-
prisingly low level of performance, In a recent research report of
the United States Public Health Service entitled "Completeness and
Reliability of Diagnosis in Therapeutic Practice,' the author con-
cludes from an extensive study

On the basis of available evidence, I estimate if we re-

gard all diagnosable diseases at a given time that are con-

sidered of significance for current health as 1, the num~

ber of therapeutically determined diseases constitute

numerically 0,4, Of this 0.4 nearly half are conditions
diagnosed incorrectly, This suggests that correctly
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Chapter 3

TWO VIEWS OF DIAGNOSIS

This chapter concerns the theoretical framework for the
study of computer-aided diagnosis, Here the nature of the diag-
nostic problem is examined and the model for the problem is de-
veloped, Two views of diagnosis are considered, The first view
is that of diagnosis as a pattern recognition problem, This con-
sideration brings into focus those features of the diagnosis which
distingﬁish it from the '"classical" pattern recognition problem,
The second view involves analyzing diagnosis as a problem in sequen=-
tial decision-making, The problems arising from this formulation
are explained and various means of circumventing these problems
are discussed, The view of diagnosis as sequential decision-
making is the one taken for this research and so this discussion
leads directly to the specification of a computer program for per-
forming general diagnosis,

In the following chapter, a discussion of a program to perform
general diagnosis is presented within the framework of the program
actually implemented as part of this research, Each of the major
logical functions of the program is discussed in turn with the em-
phasis on the way in which these functions match the requirements
of a diagnostic process, In a very real sense, the program can be

taken as a statement of an overall diagnostic strategy for computer-
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aided diagnosis,

A. DIAGNOSIS AS A PROBLEM IN PATTERN RECOGNITION

Consideration of the diagnostic problem as a pattern recog-
nition focuses attention on some of the more significant aspects
of the problem, Also it is quite natural to conceive of diagnosis
as a pattern recognition problem, The observable attributes associ-
ated with the system of interest in a diagnostic problem do consti-
tute a pattern which is the direct evidence upon which a classifi-
cation decision is based, Thus a medical diagnostician confronted
with an ailing paitent employs his observations of the patient's
symptoms and signs in conjunction with his experience and training
to deduce the nature of the patient's problem, While there are
many features which are shared by the diagnostic problem and a wide
variety of particular pattern recognition problems, there are addi-
tional constraints on the former which add to its complexity, The
purpose here is to explore both the similarities and differences
between the diagnostic problem and the "classical" pattern recog-
nition problem,

The classical pattern recognition problem is fundamentally one
of recognizing class membership and establishing decision criteria

for measuring membership in each class, Given a set of pattern

classes the problem is to assign a new pattern to one of the classes,

For example in the recognition of handwriting, knowledge of the gen-

eral properties of individual letters is utilized in the determina-
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tion of the identity of that segment of handwriting which is cur-
rently of interest, The individual pattern classes may be known
in a variety of ways ranging from a set of representative patterns
to a functional characterization of the probabilistic process by
which patterns of the class are generated, In general, a pattern is
comprised of a set of features; each feature being represented by
some numerical value, In the handwriting recognition problem, an
unknown letter could be represented by numerical values for such fea-
tures as the height, number of loops and the number of intersections
the letter makes with certain reference lines, Such a representa-
tion leads quite naturally to the representation of a pattern as an
n - dimensional vector where n is the number of features which are
taken to be relevant to the classification problem,

Hence, each pattern class can be conceived of as a set of
points in an n - dimensional space, Similarly, any pattern which
is to be classified can be represented as a point in the space
(provided, of course, the same set of features obtains), The problem
of classifying a new pattern sample involves determining the 'close-
ness" of the sample to each of the respective classes, For instance,
we may decide a certain letter is an '"e" because it more closely re-
sembles representatives of the class of known "e's" than representa-
tives of other classes of letters., In the n - dimensional space,
this corresponds to measuring the distance (in some abstract sense)

between the point denoting the new pattern and those representative of
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the various classes, The problem of establishing criteria upon which
the "resemblance'" of a particular letter to the class of letters
known to be "e's" is but one instance of the general problem of de-
ciding exactly how the '"'closeness of a sample to various classes is
to be established., For a given application, the determination of an
appropriate metric is a fundamental problem of pattern recognition,
Consider the schematic of a pattern recognition problem pre-
sented in Figure 1. Here two pattern classes are of interest,
classes A and B, In this case, there are two features in the pat-
terns and an orthogonal coordinate system corresponding to these fea-
tures is shown, Notice that in this simple example all members of
class A are '"closer" to all other members of class A than to any
member of class B and vice versa, Unfortunately, this condition
does not hold in general, The more common case is to have "close" o¥
intersecting pattern classes, Members of a class can be closer to

members of another class than to certain other members of the same

LUK iy ) }

class, For example, some handwritten '"e's" look very much like "i's
and vice versa, A schematic of intersecting pattern classes is pre-
sented in Figure 2, The problem of recognizing the pattern x in
these figures involves establishing a metric which can be employed to
decide whether x is "closer" to the class A or the class B (or in
some cases deciding that x is a member of neither A nor B), The

actual decision regarding the identity of X can be based on the cost

of misclassification as well as the chosen metric,
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Figure 2 |

Intersecting Pattern Classes
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When the pattern classes are inherentiy close or intersecting
in the space, recognition is more difficult, In some cases matters
can be improved by devising class separating transformations. Such
a transformation has the property that the classes resulting from
the application of the transformation to the original classes are
more separated from one another in the transform space, Figure 3
represents the effect of a class~separating transformation on classes
A and B, The particular transformation will depend on both the
characteristics of the classes to be transformed and the constraints
placed upon the transformation, Suffice it to say here that trans-
formations of this type can be derived by solving constrained op-
timization problems, Given such a transformation, the pattern to
be recognized is first transforﬁed and then its ''distance" from
each of the transformed classes is measured, It is this distance
in the transform space which is incorporated in the classification
decision rule,

The problem of diagnosis has much in common with the pattern
recognition problem discussed above., The pattern classes in the
pattern recognition problem correspond to the system states in the
diagnostic problem, and there is a similar analogy between particular
patterns and sets of attributes, The object of diagnosis is to class-
ify a set of attributes as being a manifestation of a particular sys-
tem state, Again, the notions of an n - dimensional space and vector
representations of attribute sets is suggested, There is an important

difference between diagnosis and the pattern recognition method out-
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lined above, 1In the latter, it was assumed that a pattern to be
recognized is given as a point in the sample space, This implies

a complete specification of the corresponding vector, In the usual
diagnostic problem, the pattern of attributes is incompletely speci-
fied, There exist means for obtaining the values of unspecfied com-
ponents of this vector (tests which can be run, etc.), but in general
there is a cost associated with the use of these means, These costs
make it advantageous to analyze the diagnostic problem sequentially
and to make decisions based on an incompletely specified attribute
vector.l Doctors, for example, make diagnostic decisions without
performing all possible tests on the patient,

Thus, in the diagnostic problem, one is concerned throughout
with subspaces of the sample space, Thé dimensionality of the sub-
space which contains the pattern vector is reduced by obtaining pre-
viously unspecified values for certain pattern features, In general,
each value so obtained reduces the dimensionality of the subspace in
which the point corresponding to the fully specified attribute set
must lie, Because of the costs assogiated with the tests for particu-
lar attributes, a good diagnostic scheme must include some means for

assessing the expected value of a test in determining the class to

1Note that this distinction between pattern recognition techniques
and diagnostic techniques is not a necessary one, Certain pattern
recognition schemes have employed sequential methods while most medi-
cal diagnosis programs have avoided sequential analysis entirely. The
distinction, however, does have appreciable generality,



which the attribute vector belongs, While the sequential nature of
the diagnostic process complicates its realization, it also offers

a potential advantage of the pattern recognition scheme described
above, Although an attribute vector may be incompletely specified,
the subspace corresponding to it may include only one class, In
such a case it may be possible to make the classification decision
at that point without investigating the remaining attributes, This
reduction in the amount of the processing required for a classifica-
tion decision is especially significant when many of the system
states are represented by disjoint subspaces in the n - dimensional
sample space, This reduction can be obtained only if the diagnostic
scheme incorporates some stopping rule for the attribute sampling
(or testing) process,

So while the pattern recognition problem and the diagnostic
problem have a number of features in common, there are significant
differences between the strategies indicated for their solution, The
former problem concerns the classification of a fully-specified
vector into one of a number of known classes, The latter problem
is equally one of classification, but the initial specification of
the vector is generally incomplete. Part of the problem is to as-
certain which tests to run (at some cost) to obtain a more complete
specification of the vector, Decisions based on an incompletely
specified vector are the rule rather than the exception. Note,

however, that there may well be inherently close or intersecting

31



32

classes in the diagnostic problem as in the pattern recognition
problem,

One aspect of the pattern recognition problem which was not
discussed above was that of choosing the coordinate system for the
sample space, This has a direct and significant analogy in diagnosis,
In the discussion of pattern recognition, it was assumed that the
pattern features were given, The efficiency and the accuracy of
the recognition scheme often can be improved by the selection of a
new coordinate system (set of features). The problem of establish-

ing the coordinate system is often termed the pattern detection

problem,

Thus, for example, in Figure 1 the dotted coordinates are in
a sense more efficient, for they permit the characterization of
classes A and B solely in terms of one coordinate, Again general
mathematical techniques are known for establishing ''good" coordi-
nate systems for a number of problem types,

Clearly, a similar situation obtains in diagnostic problems,
Generally speaking, the attributes considered in diagnostic problems
are chosen without any particular regard for the efficient separation
of pattern classes, It is apparent, however, that there is potential
value in conducting such an analysis for a given problem area, In
certain areas, especially in a medical diagnosis, there has been an
increasing awareness of the importance of the proper choice of pattern

features; a number of articles on the 'taxonomy of disease'
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have appeared in the literature.1 While this problem is an extremely
interesting one, it is beyond the scope of this thesis, Here the
pattern features of attributes for any particular area are taken as
given,

This discussion provided only a brief overview of pattern recog-
nition and its relation to diagnosis, The particular type of pattern
recognition which constitutes diagnosis will be explored in con-

siderable detail in other sections of this work,

B. DIAGNOSIS AS A SEQUENTIAL DECISION PROBLEM

In this section, the problem of diagnosis is formulated in
terms of statistical decision theory. This formulation is in very
general terms, but it suggests a number of the factors which compli-
cate particular diagnoses, >In many areas of diagmnosis, attention is
focused on a system, In medicine the system is a human being; in
program debugging, a computer program, The object of the diagnostic
problem is to determine the state of the system (e,g, the disease in
the person or the error in the computer program), This state is one
of a finite but perhaps quite large number of possible states, In-
formation about the state of the system can be obtained by performing

a variety of tests on the system , Information obtained from testing

lIn recent years, there has been much medical work directed
at developing specific tests for diseases, Thus a particular at-
tribute (test result) may indicate exactly one disease,



-

34

coupled with experience with other diagnostic problems is employed
by the diagnostician in his attempt to deduce the state of the sys-
tem, In this work, the goal of diagnosis is taken to be the deter-
mination of the state of the system of interest, It is assumed that
knowledge of the system state will greatly facilitate further (non-
diagnostic) action, For example, the identification of the state
of a patient as "tuberculosis' may lead directly to a course of
treatment, The system under consideration here is a finite state
machine, The diagnostician knows about all the states of the machine
in the sense that he has available probability distributions which
characterize the response of the machine to certain tests given the
machine state, In particular, this information relates attributes,
the results of the tests, to particular system states.1 At the
outset of the problem, the machine is in a particular, but unknown
state and the task of the diagnostician is to employ the available
tests to obtain information about the identity of that state, Tests
are assumed to be free from error and it is further assumed that they
do not alter the state of the system,

Associated with each test is a cost of applying it to the system
(called the testing loss) and thus it is advantageous to make a de-
cision about the state of the system based on a limited number of

tests, On the other hand there is a decision loss assoclated with an

lan attribute is binary-valued, That is, each attribute is
either present or absent, A test is used to determine the presence
or absence of some number (perhaps greater than one) of attributes,
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incorrect decision., The loss resulting from each particular decision
about the unknown state as a function of the actual state is given

by a loss function for the problem, For example, the loss resulting
from the decision that a tumor is benign when it is in fact malignant
is very costly and a diagnostic procedure for tumors should take
cognizance of this fact, In general, the possibility of loss for

an incorrect decision indicates the value of extensive testing prior
to any decision, The problem is to balance the testing loss and the

decision loss in a sequential decision function for the problem,

This function would specify a diagnostic procedure such that the
total expected loss of the final decision is minimized, The follow-
ing is a formal statement of this problem,
1. The states of the Machine M are Mj, j=1,n,
and the current state is denoted by Mu, It is assumed
that M, does not change during the course of the
diagnosis.
2., 77-= (Trl, - - -Trn) is a vector of a priori probabili-
ties for M,. That is T(i = PO, = M)
and ¢ denotes experience,
3, T = {tl, - - - trs is the set of available tests,
4, (ti)q is a vector of length q with each t;eéT, It repre-
th

sents a series of tests with test t; being run at the i==

stage,
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10,

11,

12,

iSl, -- SP; is the finite set of possible attributes
for M and the set T,
(Si)q is a vector of length q with each S;eS. It denotes a
sequential set of attributes,
dy 1s a terminal decision and d. €D, where D, is the finite
set of all possible termimal decisions.
C((ti)qJ (Si)q) is the testing loss for a sequence of tests
(ti)q resulting in the attribute sequence (Si)q followed by
terminal decision at stage q+1,
P((Si)q/Mj) is the conditional mass function for (Si)q
given Mj.
P((ti)q,dt/(si)q) = conditional mass function for the testing
sequence (ti)q followed by terminal decision d; given the
attribute sequence (Si)q
E(Tr,dt) is the decision loss function.
Q(d/(ti)q’(si)q) is the sequential decision function to be

determined,

Let EICH“,G) = the average decision loss

fz(n-,e) = the average testing loss,

then the problem is to determine 6 such that

L (IT,8) + Ly(T,6)

is a minimum,

Ly (

Mz

o}
: -ZlTTd %L(ﬂ"dt)g(dt/(si)q,(ti)q) - PO gM P
q q 1= q t

1]
[



Ly( 1,9) = Z_O tz jZI'Trjg_ P((t1)q,dc/ (1)) - G5 g, (£ PPU(S /M)
B q - q

where Tq is the set of all (ti)q

and Sq is the set of all (Si)q

The great difficulty with this problem is not conceptual but com-
putational. For finite sets of attributes and decisions, the optimal
solution can be obtained in principle by laying out a decision tree.
Such a tree includes by two types of nodes--decision nodes and '"nature's
nodes." Nodes of the former type are characterized by 1) a current
view of the diagnostic problem as embodied in the probability dis-
tribution over the states of the system, (This distribution accounts
for both the attributes observed to date and the a priori likelihood
of system states in a manner to be made explicit later in this thesis.),
and 2) a branch emanating from the node for each alternative available
to the decision-maker at the node, In the context of diagnosis, then,
there is at each decision node one branch for each possible test which
can be run and one branch corresponding to a terminal decision. Once
an alternative branch away from a decision node has been chosen by
the decision a particular one of nature's nodes is encountered,

Such a node represents the possible outcomes of the decision cor-
responding to the branch which leads to the node. Each of these "out-
come branches" leads to a new decision node, A portion of such a

decision tree is shown in Figure 4. The node A is a decision node
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Figure 4

Section of a Decision Tree



which is characterized by the prior probability distribution and his-
tory embodied in the path to the node, There is a branch from this
node for every relevant test (given the history and TT) as well as a
branch corresponding to a terminal decision. If a particular test is
chosen, say test T; in the diagram, a new node (here node B) is ‘ob-
tained. This node is one of the 'mature's nodes" mentioned above.
There is a branch from this node for each possible test outcome given
T; and given the state of the diagnosis at B, the conditional proba-
bility for each attribute branch can be computed.

If it is assumed that the total number of potentially useful
test sequences is finite then the entire tree for the diagnosis can
be specified. By folding back this tree in terms of expected loss,
one can obtain an optimal decision for every decision node on the
tree, This problem is amenable to techniques such as dynamic pro-
gramming. There is little conceptual difficulty in solving the
problem,

The difficulty is the exponential growth of the number of de-
cision nodes with the number of signs and tests, Since diagnostic
problems involving large numbers of possible attributes are common,
it is expected that the problems of searching large decision trees
contribute a large part of the complexity of specific diagnostic
problems. One of the major concerns of this research is with the
development of effective heuristics for this tree searching problem,

While such heuristics produce sub-optimal solutions, it is possible
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that the reduction in the size of the search space may more than
offset this disadvantage.

As an indication of the potential size of such a problem, con-
sider the diagnosis of a ten-state, twenty-attribute system. Such
a case might arise when one was attempting to employ twenty attrib-
utes to classify a person into one of ten disease groups., Assuming
that there is a test for the presence or absence of each attribute
and that each test is run but once, the number of decision nodes in
the decision tree for the problem can be expressed as

_ _2kq!
(n-k)!

Where Nj = the number of decision nodes

k

]

the depth of the tree

It

n = the number of tests,
For this example, n is 10, and the number of decision nodes in a
tree of depth k is given by

2k10?

N, = < 10, |
105k (10-K) 7

Table 1 gives values of 1pN for selected values of k. Notice the
extremely rapid increase of jgNy with k, Also, at any given decision
node at depth k it is necessary to compare (n-k+l) decisions (one for
each of fhe n-k remaining tests and one for the possible terminal

decision), Although in many cases such an attribute set is highly



redundant, it is often possible that a depth of 5 may be required
for an optimal decision. In such a case there are still almost a
million decision nodes, Even in the simple case of a specific test
for each state, there are n! different decision nodes, where n is
the number of states., Again the growth of the decision tree with

n is enormous.

Table 1

Growth of Search with Depth

k=0 1085 = 1
1 20
3 5,760
5 967,680

While there are certain factors in particular diagnostic
areas which allow the decision tree to be considerably reduced in
size, the determination of an optimal testing strategy reamins com-~
putationally infeasible for the most part. The value of good

heuristics is apparent from considerations such as the above,
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C. HEURISTIC CONSIDERATIONS IN TEST SELECTION

As previously noted, the problem of obtaining an optimal test-
ing strategy for a particular diagnostic area generally will be
computationally infeasible, Many diagnostic areas are character-
ized by overlapping attribute patterns for different states and highly
redundant attribute patterns, however, and there is strong motivation
for developing ''good'" diagnostic strategies, Unnecessary or re-
dundant tests may exact a high cost which could be avoided by a more
efficient testing strategy. In certain areas of medicine, tests
are quite costly and may cause the patient considerable discomfort,
If such tests contribute little additional information to the
diagnosis, it is especially important that these tests not be em-
ployed, A second difficulty is that a poor sequence of tests may
generate results which, being ummecessary for a diagnosis, simply
tend to obscure the truly relevant attributes, One approach to
this problem was mentioned earlier, This approach consists essen-
tially of sharpening the taxonomy of the problem states, While
success here can substantially reduce the redundancy in attribute
patterng, it will not necessarily make the determination of an op-
timal testing strategy computationally feasible, While the possi-
bilities of this approach are extremely interesting, they will not
be considered here, For the purposes of this work, it is assumed
that in any diagnostic area, the attributes for states are given,
No attempt is made to improve on the efficiency of the given attrib-

utes with regard to the characterization of the states,
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A second approach to the problem of test selection is to de-
velop heuristics for the selection process. Such heuristics would
employ only limited segments of the decision tree in evaluating
the potential efficacy of relevant tests, The general nature of
the diagnostic problem is such as to offer two distinct means of
controlling the growth of the number of decision nodes considered,
The size of the decision tree (the number of decision nodes) de-
pends on the number of tests considered at any decision node, and
the depth of the analysis of that tree, By restricting either of
these quantities, the diagnostician can limit the growth of the
tree, In this discussion, heuristics which limit the number of

branches from a decision node will be called breadth-limiting;

and those which limit look-ahead, depth-limiting. In what follows,
the set of relevant tests for a particular decision node will be
taken to mean all those tests which can result in a sign which is
manifested by at least one state with a non-zero probability in
the prior for the node., The set of relevant tests is a subset of
the set of all tests,

Breadth-limiting heuristics are easily formulated, Perhaps
the simplest is to limit the number of branches from a decision
node to some fixed number, If this number is less than the number
of possible test branches for a given node, then a decision rule
for selecting (or rejecting) branches must be established, In terms

of the diagnostic problem, this means selecting a subset of the
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relevant tests for consideration given a prior distribution for
the unknown state,

Heuristics which limit the number of branches from a decision
node to a certain fixed number have several shortcomings, Principal
among these is the problem of the selection decision rule, If
certain tests are to be selected over other tests, then some measure
of test effectiveness should be employed, That is, one test is
chosen over another because by some standards the former is more
promising, The difficulty with this is that almost any reasonable
measure of expected test effectiveness requires information obtained
from a look-ahead in the decision tree. To assess the potential
value of a particular test, one needs to consider the likelihood
of various test results and the value of these results in improving
the current view of the diagnostic problem, If this look-ahead is
performed, the purpose of the heuristic is defeated, A breadth-
limiting heuristic is intended to select a subset of relevant tests
without employing a look-ahead procedure, Then this subset is
subjected to further analysis,

Since a breadth-limiting heuristic probably should not employ
a look-ahead to abtain information, the only information upon which
it should make its decisions is that contained in the current prior

distribution and the test cost data.1 Thus one possiblé breadth-

1This may be overly restrictive, since one can imagine breadth-
limiting heuristics which employ a priori probabilities, Such heuris-
tics are not in general very sophisticated, and are not considered here



45

limiting heuristic is '"At any decision node comsider at most 5 tests
in order of increasing cost," This heuristic obviously ignores all
the information embodied in the current prior distribution, and so
while it limits the breadth of the decision tree, it does not appear
to be a particularly good heuristic,

An alternative breadth-limiting heuristic employs the current
prior distribution to generate the subset of relevant tests which are
to be considered, For each state there are a number of relevant
tests, These tests may produce an attribute which is significant in
the diagnosis of the state, Consider, for example, a problem in
medical diagnosis in which one of the diseases which currently is
being considered as the explanation of the patient's problem is
tuberculosis, Since a chest X-ray is a useful test in the diagnosis
of this disease, it would be considered a relevant test, On the
other hand, the absence of any attributes associated with an in-
jured ankle would exclude an ¥-ray of the ankle from the set of rele-
vant tests at this stage in the diagnosis, The union of the sets of
tests relevant to currently possible states is the set of all rele-
vant tests. By limiting the number of states considered, one can
limit the number of branches at the decision node. A heuristic of
this type is ''Create the total set of relevant tests from the sets
of relevant tests for the three most probable states (based on the
current prior)." 1In the above example, if tuberculosis were cur-

rently the most probable disease, the diagnostician might choose to
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consider only those tests which are relevant to tuberculosis and
ignore all others, Note that such a heuristic is only potentially
breadth-limiting, There is no guarantee that any test branches are
excluded in this way since the same set of tests may be relevant to
all states currently being considered, Also the actual number of
branches from a given decision node is not specified and generally
will vary from node to node,

Such an heuristic has intuitive appeal, however, because it
prunes branches corresponding to tests for attributes specific to
improbable states, If an attribute for an improbable state is also
manifested by a state which is currently quite likely, however, then
the appropriate test will be included in the set of those considered,
The weakness of this heuristic lies in its semsitivity to the current
probability distribution on the states of the system, This distribu-~
tion can undergo radical change upon the observation of one new
attribute, Thus, states which were previously unlikely can become
very probable as a result of one new observation, This phenomenon
cannot be accounted for by breadth-limiting heuristics based on the
current prior distribution. In fact, no breadth-limiting heuristic
which does not employ look-ahead can completely account for this possi-
bility, A breadth-limiting heuristic of this type is applied at each
decision level, however, and in some sense it can "recover" from a
drastic change in the probability distribution, This capability is
derived from the consideration of the probability distribution at the

current decision node, Thus, when a state which was formerly improbable
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at one decision node becomes probable, it will automatically be in-
corporated in the test selection scheme at the next level. Unfor-
tunately, this state may not become very likely until a large number
of tests have been run, If it is the actual state, its probability
can remain low simply because the "wrong" tests are being run, Thus
a doctor may fail to obtain a chest X-ray of a patient because it seems
unlikely that the patient has tuberculosis, when this disease would
become very probable if only the X-ray were taken, This, of course,
is a general problem encountered with all test selection heuristics,
The evaluation of the heuristic involves a comparison of the
benefits of its tree-pruning power with the losses incurred from the
sub-optimal testing strategies it produces, In general, a heuristic
based on the current probability of various system states appears to
be the most promising form of a breadth-limiting heuristic, but its
actual value can be determined only in the context of a particular
diagnostic problem area, For example, in one area a breadth-limiting
heuristic which restricts the search to tests relevant to the n most
probable states may prove useful, In another area, tests relevant
to all states with current probability greater than some threshold
may be considered, Finally, in certain areas breadth-limiting heur-
istics may be of no value regardless of the particular specification,
One of the areas explored in this research is that of evaluating sev-
eral breadth-limiting heuristics in particular diagnostic problem
areas, In such an evaluation, the capability of closed diagnosis may

be particularly valuable,
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As noted in the beginning of this section, there are two gen-
eral types of heuristics which reduce the number of decision nodes
considered in test selection: breadth-limiting and depth-limiting,
As the name of the latter implies, such heuristics limit the extent
of the look-ahead in the decision process for test selection, As
with breath-limiting heuristics, there are several variations of
the depth-limiting heuristic to be considered.

Perhaps the most obvious form of the depth-limiting heuristic
is one which sets a fixed depth of search for all branches of the
tree, Thus given a particular decision node, the search would pro-
ceed down all branches from that node to a depth k, where k is a
fiixed number, The information derived from this search would then
be employed in a decision rule to determine the test to be run next.
The parameter k is a relative depth, that is at a decision node at
level p, the search is conducted to a depth of p+k before making
the decision for level p., An alternative depth-limiting heuristic
might employ a variable depth look-ahead, Such a heuristic might
attempt to explore more 'promising' branches to a greater depth than
less promising ones, The difficulty here is to decide which branches
are promising, It is, in fact, the general problem of heuristic
test selection all over again,

There are several problems to be resolved in the development of
any depth-limiting heuristic. First consider the effect on the de-

cision process of limiting the depth of search, If the depth is



limited to k, then the "terminal" nodes will be characterized by
probability distributions for the unknown state, (See Figure 4,)
Since, in general, there will be a number of states with non-zero
probability at any given terminal node, there must be some way of
assessing the value of being at the node, One of the major problems
in the development of depth-limiting heuristics then is the defini-
tion of measures of the desirability of nodes which do not represent
a certain diagnosis,

One way of establishing the value of a node is suggested by
the presence of a loss function. The value of the node can be ob-
tained by assuming a decision about the unknown state is to be made
there, Then the prior distribution for the node and the loss func-
tion can be employed to find the expected decision loss for the
node,1 From this loss the value of the node is derived, While
this measure seems to be a natural ome, it is not without its weak-
ness, The problem with the measure is that it is based on an
assumption which is generally untrue, In most cases, one will not
make terminal decisions at the nodes which are "terminal' for one
state in the look~-ahead., For example, if the search depth is
limited to 2, the value measure assumes that a terminal decision

will be made two tests from this point, Since the actual terminal

lon additional assumption should be noted here, This is the
assumption that given the prior distribution, the minimum expected
loss decision is made,
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decision may not be made until many tests have been run, this
measure distorts the value of tests considered for the current level,
The problem is that the values of the loss function at the decision
nodes of a given level may bear little relation to the values of

the best testing strategies which include these nodes, The poten-
tial effectiveness of this "loss function'" measure is difficult to
assess. The expectation is that it depends upon the particular
problem area in which the measure is employed,

A second problem with this heuristic is its potential sensi-
tivity to the actual loss function employed, If the heuristic is
very sensitive to the loss function then uncertainties as to the
true nature of this function may result in testing strategies which
are decidedly sub-optimal, The problems of accurately assessing
the loss function for a particular application will be discussed
later in this thesis,

The above discussion of breadth-limiting and depth-limiting
heuristics purposely considered the two independently in order to
make clear the considerations involved, The motivation for such
heuristics in test selection is the desirability of reducing the
number of decision nodes considered, Since the number of decision
nodes is dependent on both the breadth and depth of the search,
the heuristics employed in an actual problem will interact, Gen-
erally speaking, the depth of the search can be increased only at
the expense of the breadth, because there is a constraint on the

total number of nodes to be considered, The particular balance of
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these two heuristics may significantly affect the effectiveness of
the test selection process, An additional complication is introduced
by the possibility of changing this balance during the course of the
diagnosis when many states are possible, It may be desirable to
limit the depth and allow full breadth, This is particularly true
if the prior distribution is quite diffuse., As the diagnosis pro-
gresses and certain states are eliminated from further consideration
the breadth of the tree may be reduced and the depth of search may
be increased correspondingly, The relation between the depth and
the breadth of the search is an important matter for investigation
in the development of heuristic test selection schemes,

More of the practical considerations involved in developing
heuristics will be discussed in a later section describing the
heuristics employed by the diagnostic program and their relative

effectiveness,



Chapter 4

A DIAGNOSTIC SYSTEM

The considerations outlined in the previous chapter led to
the design and implementation of a diagnostic system, This system
is composed of three major parts, The first is a set of programs
which perform the actual diagnostic function, The second is a set
of programs which facilitate the study of a variety of diagnostic
problems and strategies, The third part of the system is the informa-
tion structure which contains all the relevant information which
these programs empléy in performing diagnosis for a given problem
area, While the content and, to some extent, the nature of the
information structure vary with the particular application, it is
convenient to consider this structure as a third general part of the
diagnostic system, These three aspects of the diagnostic system will
be discussed in detail in this chapter,

The diagnostic system is currently operating on the Project
MAC time-sharing system at the Massachusetts Institute of Technology.
The diagnostic system is designed to exploit the inter-active capabili-
ties of the time-sharing system, The programs of the diagnostic
system are written in MAD and FAP, They make very extensive use of
the SLIP-MAD system developed by Professor Joseph Weizenbaum of M,I,T,
The SLIP-MAD system (hereafter referred to as SLIP) is a set of 1list

processing functions embedded in the host language MAD, Because
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discussions of SLIP are available elsewhere (R-20), only a brief out-
line of the system is given here,

The basic data structure employed in the SLIP system is a SLIP
list. A SLIP list is a list composed of cells where a cell ig a pair
of adjacent words of storage, The first word of the pair is divided
into an identifier field, a link-left field and a link-right field,
Each cell in a SLIP list contains a forward (right) link and a backward
(left) link, SLIP lists are symmetric in the sense that lists have
no particular orientation, the top and bottom of a list are equally
accessible, The identifier is used to indicate the type of element
stored in the second word of the cell, This element is referred to
as the datum, An example of a simple SLIP list is given in Figure 5,
Notice that any cell may contain an actual datum rather than a symbolic
designation for the datum,

Every SLIP list contains a special cell known as the header
of the list, This cell contains the address of the first cell on
the list in its right-link field and the address of the last cell on
the list in its left-link field, Any storage location which contains
the address of a list header in both its address and decrement fields
is said to contain the name of that list. A SLIP list structure can
be defined as a SLIP list whose data terms may themselves be names
of SLIP lists.

There may be associated with any SLIP list a description list

or DLIST, If a SLIP list possesses a DLIST, the address of the header
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of the DLIST is contained in the left-link of the datum of the
header cell, The DLIST, which is itself a SLIP list, is used to
store data pairs, A variety of SLIP functions are available for
creating and accessing these pairs,

The SLIP library is a set of functions for manipulating SLIP
lists, Typical functions permit the reading or searching of lists,
additions to or deletions from lists, and the creation or erasure
of lists, SLIP maintains an available space list, and the system
includes an automatic garbage collection facility,

Because the SLIP library consists of compiled subroutines
which can be invoked from MAD or FAP programs, SLIP programs run
at object speed, The fact that SLIP is embedded in an algebraic
language, MAD, means the full arithmetic and logical capability
of the latter is available to the programmer in a list-processing
application, These two features make SLIP a convenient language to
use in the implementation and debugging of a large list-processing
application such as the diagnostic system developed in this research,
For this particular application, the need for both the flexibility
of list-processing and the algebraic power of MAD is well served by

the SLIP-MAD system,

A, THE INFORMATION STRUCTURE FOR THE DIAGNOSTIC SYSTEM
The manner in which the information relevant to a particular
diagnostic problem area is organized has a considerable effect on

the capabilities of the diagnostic program, The information contained
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in this structure for a particular application constitutes the Yex-
perience" which the diagnostic program brings to bear on problems,
This experience includes relationships between observable attributes and
states of the system to be diagnosed, For example, in an area .of
medical diagnosis, the information structure would contain the re-
lationships between signs and symptoms and the appropriate diseases,
Also included in the structure is information about the tests which
are relevant to the given diagnostic area and their associated costs,
Because of the probabilistic nature of many .of the attribute-state
relationships as well as other important relationmships, the informa=-
tion structure must maintain a large number of individual probabilities,
The general content of the information structure will be explained
below,

The large number of state, attributes, and tests encountered
in many diagnostic areas places a premium on efficient searching of
the information base during a diagnosis. The efficiency of seaxch
can be maintained at an acceptable level only through the proper organi-
zation of the relevant informatiom,

A number of questions were considered in the design of the
information structure currently employed by the diagnostic system,
One of the principal questions was that of what information should
be maintained in the structure. To a large extent, the particular
diagnostic problem under investigation here determined the answer to
this question, Since the model of diagnosis makes reference only to

states, attributes, tests and various probabilities, these factors
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constitute the basic information blocks in the structure, Another
question is how, given thé basic information blocks, these blocks
should be related in order to facilitate access by the diagnostic
program to the relationships which are significant in the deductive
process of diagnosis, For example, the following questions typify
the types of demands made on the structure,

* What are the symptoms of pneumonia?

* Which diseases exhibit a rash on the arms as an
attribute?

* What is the probability that a patient will have a
temperature greater than 103° given that he has
pneumonia?

The information structure described here was developed through
the consideration of a number of alternative forms, although there
obviously are other forms which might serve as well, To a certain
extent, the information structure reflects the use of the SLIP
system by the diagnostic program, For example, the information
structure is a SLIP list structure, While in certain instances
this results in inefficient utilization of main storage, this dis-
advantage was more than offset by the convenience of being able to
employ the full SLIP library in the development of the diagnostic
system,

A basic information block in the structure is either a state,
an attribute, or a test. Each of these basic blocks is represented

by a SLIP list in the information structure, In what follows these
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blocks will be referred to as state lists, attribute lists, or test

lists, A typical state list is depicted in Figure6; in this instance,
the state list corresponding to pneumonia in a medical diagnosis
problem, The list name of each attribute list relevant to pneumonia
appears on the state list for this disease, There are two data pairs
on the DLIST of each state list. The stored attributes are the a
priori probability of the state and the print name of the state, The
latter is the name by which the user of the program makes reference
to the state., In order to facilitate the retrieval of the state list
corresponding to a particular print name (as, for example, when the
user makes a request for information about the disease pneumonia),
all the state lists are grouped on a number of hash lists. Each hash

list is a sublist of a list calted the master state list, The re-

trieval of the state list corresponding to a particular print name is
effected as follows: First a SLIP function is used to map the given
print name onto the integers O to N-1, where N is the number of hash
lists on the master state list, If the integer K-1 results from this
mapping, the KD hash list is searched for a state list with the de-
sired print name, Since the same hashing function is employed in the
creation of the master state list, the appropriate list will be found
if one exists, Roughly speaking, this technique reduces the average
search time for such requests by a factor of 1/N as compared to a
search in the absence of hash lists,

An attribute list includes the list names of all the test lists

corresponding to tests which can result in the given attribute,
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The DLIST for an attribute list contains a data pair for the attrib-
ute print name in addition to a special data pair for a member list,
The member list for an attribute list is a standard SLIP list which
contains the list name of each state list on which the name of the
attribute list appears and the corresponding probability of the at-
tribute given the state, Continuing the example above, Figure 7 de-
picts the attribute list for the attribute "fever," As in the case
of the state lists, each attribute list is a sublist of a hash list,
and each of these hash lists, in turn, is a sublist of the master
attribute list,

A test list contains the cost of the test and a DLIST, The
DLIST contains the print name for the test and a member list for the
attribute lists which include this test, In Figure 8 a simple test
list is shown with a single cost (independent of state) and a deter-
ministic member list, This is the form of test list used in this
research although it would be relatively easy to make it more com-
plex., As above, each test list is a sublist of a hash list, which
is in turn a sublist of the master test list, A schematic of a por-
tion of the information structure is shown in Figure 9,

The presence of two-way links between attributes and states and
attributes and tests results in a highly associative information
structure, This associative property facilitates the accessing of
information pertinent to a diagnosis, Thus a search for attributes
given state and a search for states given attribute are equally effici-

ent, Similarly the accessing of possible attributes resulting from a
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particular test is made straightforward by the presence of the member
list,

One example of the importance of this associative aspect of the
information structure is its use by the diagnostic program in the
initial "pruning" of the space of possible diagnoses in response to
the observation of initial attributes, Generally, these initial
attributes are presented as the user's statement of the problem,

For the program to operate in a reasonably efficient manner, it must
use this initial statement of the problem to develop a drastically
reduced set of states for further consideration, This is directly
analogous to the "pruning" employed by a doctor when upon the observa-
tion of a few initial signs or symptoms, he reduces the list of di-
seases he considers as possible causes of the problem to a very small
number relative to the set of all diseases, The diagnostic program
would employ the member list for a given attribute list to rapidly
determine the set of all diseases which were known to exhibit the
corresponding attribute, While this reduction of the search space

is crucial to the success of the program, it must not be irreversible
if the program is not to be led astray by spurious information or
noise, Since it is unreasonable to expect that those who prepare the
information structure can anticipate all variations in attribute pat-
terns for a given state, it is expected that the program at times will
be confronted with problems involving attributes which are not rele-

vant to the principal problem, The strategies employed by the pro-
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gram and the nature of the information structure have a strong effect
on the program capability in such a problem environment,

The information structure currently employed by the diagnostic
program associates with each state only those attributes which are
relevant in the diagnosis of that state, Thus there would be no
association between the state "tuberculosis' and the attribute "sore
thumb' in the information structure for medicine.1 The advantage of
this is that the size of the information structure is limited, Thus
while there may be many attributes, only a subset is associated with
any state, As will be discussed later, this creates problems in
performing diagnosis in a noisy environment, Certain routines asso-
ciated with the diagnostic program are responsible for making de-
cisions about the significance of the attributes observed in a diag-
nosis, The function of these routines is also the subject of a
later section,

The discussion of the information structure to this point has
implied that the attributes for a given state are taken to be in-
dependent, Since in many cases the assumption of attribute independence
is not justified, it is necessary that inter-attribute dependencies
be representable in the structure, This capability is available in

The current program through the use of clustering routine, the

1Since the program does not determine what information is in-
cluded in the structure, the user can associate any attributes and
states, The point is that certain associations are not expected,



relation-definition routine, and the relation interpreter,

In order to provide a general capability for dealing with
inter-attribute dependencies, the diagnostic program must be able to
cope with a variety of relationships among attributes, The import-
ant relationships most likely vary from one diagnostic problem
area to another, It does not seem advisable to attempt to catalog
these relationships within the program itself, since it is extremely
difficult to predict just which relationships will be required. Also,
if the relationships are incorporated within the program itself, it
is Aifficult to introduce now ones as they become of interest in a
particular problem area,

What is required then is a flexible facility for the program
to accept new relationships and having so accepted a relationship,
to incorporate it correctly in the inference process of diagnosis,
In an attempt to provide this facility, the diagnostic program pro-
vides the user with the means to define a variety of relationships
among attributes., A relationship is defined by specifying as a
Boolean function the conditions under which the relationship is
true, This function is employed by the diagnostic program whenever
it is necessary to determine whether the relationship is satisfied
for a particular state,

Consider, for example, the case in which it is necessary to
account for the time of the appearance of certain attributes of a

particular disease, Imagine that for the disease in question the
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attribute "rash" appears two days after the appearance of "fever,"

Let the function BEFORE accept five arguments and be defined as

BEFORE (A1,A2,A3,A4,A5) =

(EQ (MINUS (CHAR Al A2) (CHAR A3 A4)) A5)

Here EQ, MINUS, and CHAR are system primitives (defined by the
diagnostic program), The function CHAR is used to retrieve charac-

teristics of attributes, For example, the value of

(CHAR TIME FEVER)

is the time at which the attribute fever was observed,

By specializing the function BEFORE as

BEFORE (TIME, RASH, TIME, FEVER, 2)

The relationship for the disease in question can be checked,

Such relationships are defined by the DEFINE subroutine which
the user can invoke as required, Relationships can also be built
into the information structure when it is first established if they
are known to be necessary, To define a relationship among the at-
tributes of a particular state, one uses the CLUSTER routine, This
routine re-organizes the state list for the state involved, producing

an attribute~cluster. Thus, for the example above, the reorganized

state list might look as that in Figure 6. As with individual at-
tributes, a conditional probability given state is associated with

each attr.ibute cluster,
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Any number of relationships can be defined for the structure
provided that they can be expressed in the prescribed manner, Com-
plex relationships can be specified by using functions of functions,
Note that attributes remain independent for any state unless a re=-
lationship involving them is defined for that particular state,
Thus, in one disease "fever" and 'rash" may be related in some way,
while in another they may be independent,

The diagnostic program employs an interpreter to determine the
truth of relationships during diagnosis, The interpreter permits
the correct incorporation of relationships in the diagnostic infer-
ence, The manner in which the interpreter is employed will be ex-

amined in detail later,

B, THE DIAGNOSTIC PROGRAM

The diagnostic program and its associated routines are the
heart of the system, These programs embody the various diagnostic
strategies employed by the system, When one uses the system in
the solution of a diagnostic problem, he interacts with the diag-
nostic program, This program provides the interface between the
user and the facilities of the system, There are three basic
functions performed by the diagnostic program, (Although, in fact,
each of these functions is delegated to a set of subroutines, it
is convenient to consider them as logical functions of the diagnos-
tic program,) In brief these three functions are:

4
1) The interpretation of the attributes of a particular

69



70

problem based on the information contained in the in-
formation structure, This function is called the

inference function.

2) The selection of tests for the user to apply to the
system being diagnosed in order to obtain further
clues as to the system state, This is the test se-
lection function,

3) The analysis of the attributes of a problem to de-

termine whether there are irrelevant attributes

present or to detect attribute patterns from more

than one system state occurring simultaneously,

This is the pattern-sorting function,
The design of the diagnostic program permits the alteration or
replacement of any of these three functions independently of any of
the others, This flexibility is important, because these functions
are fundamental to this scheme for diagnosis, and it is necessary
to study different versions of the functions. The possibility of
changing individual functions without changing the remainder of the
program greatly facilitates this study.

Before the diagnostic program can be used in a particular
problem area, an information structure for that area must be es-
tablished, This requires that a disk file containing all the rele-
vant information be created, The disk file can be created using

the standard input and editing facilities of the time-sharing. The
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formatting of the file, although specified, is quite simple, and if
the necessary information is available, the only difficulty in
creating the file is dealing with the large amount of information
which may be required, The information in the file consists of state-
attribute relationships and test cost data. An example of a portion
of such an input file is shown in Appendix 1, A system program
processes the input file and from it constructs the information.
structure for the problem area,

A second file containing the loss structure for the problem
area is required by the diagnostic program, At present this loss
structure is always a matrix, Any element of this matrix, 1ij’ is
the estimate of the loss for diagnosing st;te j as state i, The
exact manner in which this information is employed will be made
clear below,

As a preface to the discussion of the logical functions of
the diagnostic program, consider this example of a particular
application of the program., Suppose the program currently is set
up to diagnose a certain group of diseases, This means that the
appropriate information structure and loss structure have been es-
tablished. A user wishing to invoke the assistance of the program
does so by providing an initial problem statement, This statement
is essentially a list of the attributes which have been observed.
Assume for the example that this list is

* temperature of 102°
* severe coughing

* gore right ankle
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As indicated in Figurell, the program first invokes the pattern
sorting function for the current attributes., In this case, the
pattern sorting function hypothesizes that the attribute '"sore right
ankle" is not relevant to the principal medical problem of the patient,
and so removes it from the list of attributes for later investigation,
After the attributes have been processed by the pattern sorting func-
tion, the set of all diseases which exhibit the relevant attributes
is obtained and a probability distribution for diseases given these
attributes and the "experience in the information structure is
created, The creation of this probability distribution is the task
of the inference function, This distribution results from a considera-
tion of both the current attributes and the knowledge of the various
diseases, It is the current view of the diagnostic problem assumed
by the program,

Now the program invokes the test selection function, The
object of this function is to select a good test for the user to
apply to the patient in order to gain more information, In selecting
this test, the test selection function considers the current proba-
bilities of the various diseases, the cost of each test, and the
usefulness of the results expected from the test, The user is in-
formed of the test which has been selected, The test may be as
simple as asking the patient questions about his recent exposure to
other sick persons, or it may be more involved, for example, a chest

X-ray, In any event, when the user has obtained the results of the
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test, he reports them to the program. These test results are new
attributes and the program again enters the loop shown in Figure 11,
This dialogue with the user continues until a diagnosis has been ob-
tained, A more detailed trace of a session with the diagnostic
program is presented in Appendix 2, This brief example provides an
overview of the operation of the diagnostic program, In what follows,
each of the primary functions of the program will he discussed in

detail,

1. THE PATTERN-SORTING FUNCTION

As explained in an earlier sectiom, only those attributes sig-
nificant to the diagnosis of a particular state are associated with
that state in the information structure, Thus the attribute "sore
ankle" would not be associated with the disease tuberculosis in the
information structure; this means that the name of the attribute list
for the attribute '"sore ankle" does not appear on the state list for
the disease 'tuberculosis", éimilarly the member list of the attrib-
ute list for "sore ankle" contains no entry for the state list of
tuberculosis, If the name of a state list does not appear on the
member list of a given attribute list, then the conditional probability
of the attribute given the state is taken ta be zero by the program,
As will be discussed in the following section, the particular method
of deduction employed by the program (Bayes' rule) results in a zero

pdsterior probability for the state given the attribute, For instance,
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if in the course of a diagnosis in which tuberculosis was considered
a possible cause of the attributes the attribute '"sore ankle' were
observed, the updated probability of tuberculosis would be zero,
Since the program removes from current consideration any state with
zero probability, this approach makes maximum use of each attribute
to reduce the set of possible diagnoses,

The problem encountered here is that while "sore ankle" is
not an attribute of tuberculosis, one certainly can have tuberculosis
and a sore ankle, This is but one example of the more general prob-

lem of irrelevant or noise attributes., Unless special precautions

are taken, such attributes can eliminate the actual state from con-
sideration when processed by the inference function., A number of
solutions to this problem are possible,

One approach is to associate every attribute with every state,
employing £ probabilities whenever an attribute is not considered
relevant to the diagnosis of a particular state.1 As long as € 1is
greater than zero, no state will be eliminated from consideration in
the manner described above, The difficulty is that this method pre-
vents the drastic reduction in the set of possible diagnoses which
is necessary for efficient operation of the program, A second ap-

proach is to employ the & probabilities as above, but to eliminate
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1This probability might be taken to be the unconditional proba-
bility of the attribute, Since this probability may be quite small,
the problem discussed here could still be encountered,
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from further consideration those states whose posterior probability
falls below a fixed threshold., This method is unsatisfactory be-
cause the posterior probabilities for the various states can undergo
radical change as additional attributes are observed and employed
by the inference function, Thus, there is no guarantee that a state
with a very low probability in the early stages of the diagnosis will
remain improbable with the observation of new attributes, This
problem can be even more severe if the noise attributes are the first
observed, In either event, the actual state may be removed from fur-
ther consideration by this method, Another approach is to decide
whether an attribute is relevant to the diagnosis or merely noise
before it is processed by the inference routines, This is a very
difficult task to accomplish given the particular model employed in
diagnosis by the program, The model of the system being diagnosed
consists principally of state-attribute relationships without any
information about causal connections, Thus, the only way to evalu-
ate the relevance of an attribute to the diagnosis is to consider
some measure of its probability given the diagnosis to date, Since
almost every measure of this kind depends on the current prior dis-
tribution, which, in turn, depends on the observed attributes assumed
to be relevant, a cyclical argument results.

A second problem arises when attributes characteristic of two or
more distinct states are observed, as in the case of an individual

with more than one disease, This is more than a problem of simple
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noise since the program must detect two or more patterns, Again
the methods mentioned above are inadequate to cope with this problem,

The solution to this problem which has been incorporated in
the diagnostic program involves processing a number of attribute
patterns in parallel during a diagnosis, A pattern is a subset of the
set of observed attributes which has the following two properties:

1) At least one state in the information structure exhibits all the
attributes in the pattern with a non-zero probability and 2) The
pattern is not a subset of any other pattern, If the set of observed
attributes contained a number of the attributes of tuberculosis and
the attribute sore ankle, one pattern would be the set of tuberculosis
attributes, A second pattern would be obtained by choosing a disease
for which sore ankle is an attribute and taking the intersection of
the set of attributes for that disease and the set of observed at-
tributes, Perhaps the set of attributes obtained in this way, using
a second disease on the member list of "sore ankle," might be dif-
ferent from both those previously obtained, If so, this set is still
another pattern,

Throughout the course of a diagnosis, a pattern stack is main-
tained by the pattern-sorting function, A schematic of the pattern
stack is presented in Figure 12, Each pattern is represented by a
sublist of the pattern stack, and associated with each pattern is
the probability distribution for the states of the system given the

attributes of the pattern,
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Whenever a new attribute is obtained in a diagnosis, it is
processed against every pattern in the pattern stack. The new at-
tribute is used to update a pattern if it is relevant to at least
one state in the probability distribution for the pattern, After
this updating, the attribute is added to the pattern., If no state
in the probability distribution of a pattern is known to exhibit the
new attribute, no changes are made to either the pattern or the dis-
tribution, The actual manner in which distributions are updated to
account for new attributes 1s discussed in detail in the next sec-
tion on the inference function.

When the new attribute has been processed against all patterns,
a routine called PATFRM is invoked to form new patterns if possible.
PATFRM retrieves the member 1list of the attribute list corresponding
to the new attribute. For each state on the member list, the set of
probability distributions in the pattern stack is searched. If the
state is found in this set, the pattern for the state is already in
the pattern stack. If the state is not found, the intersection of
the set of attributes denoted by the appropriate state list and the
set of observed attributes is a new pattern, This pattern and the
corresponding distribution for the states is added to the pattern
stack, While it is conceivable that this procedure could generate
many patterns for a given information structure and attribute se-
quence, this is not a serious problem, First in most areas the num-

ber of distinct patterns which can be formed by this procedure for a
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given attribute set is quite limited, because states exist in
groups which have overlapping attribute patterns. Secondly, the
number of patterns considered can be limited by considering only
those patterns with a probability greater than some threshold.

This procedure also includes a provision for removing patterns
from the stack, If the inference function determines that the
probability of a particular pattern is zero, the pattern and its
associated distribution is eliminated from the pattern stack. The
contents of the pattern stack, them, can be quite dynamic during
the course of a diagnosis as new attributes trigger the addition
and deletion of patterns,

As an illustration of this aspect of the pattern sorting
function, consider the following example. At a given stage in a
diagnosis of a medical problem, three attributes have been observed.
These attributes are A, B and C. Also assume that of the diseases
represented in the information structure, none exhibits all three
of these attributes, A number of diseases exhibit A and B as at-
tributes, however, and so this is a pattern, The point here is that
while a disease which exhibits A and B can occur with C also present,
C is not considered relevant to the diagnosis of any of these
diseases. For the diseases for which C is a relevant attribute
A is also relevant. For this situation the pattern stack can be
represented as in Figure 13A. Here the symbol J[ denotes the dis-

tribution list for a pattern,
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Now when the new attribute D is observed, it is processed
through the pattern stack. Assuming that the new attribute is rele-
vant to some of the states in distribution 7r1, this distribution is
updated by the inference function to produce 7[1 and the attribute D
is added to the pattern, Attribute D is not relevant to the second
pattern in the stack, and so this pattern and its associated dis-
tribution remain unchanged. Finally, the routine PATFRM is invoked
to search for new patterns, Assume that no new patterns are formed,
Thus, at the end of this phase in the processing of the new gttrib-
ute, the pattern stack appears as in Figure 13B.,

Now in the event that there is more than one pattern in the
stack, the diagnostic program must make a decision as to which
pattern to diagnose, Thus, the program must generate a hypothesis
about the significance of the various patterns in the stack., For
example, if one pattern corresponds to a majority of the attributes
of tuberculosis, and the other to a single attribute "sore ankle,"
it is extremely important for the program to give priority to the
former pattern. The problem is to establish pattern selection rules
which will make the '"correct' decision in such a case,

One consideration which is relevant to the selection of a pat-
tern is the seriousness of the states suggested by the‘pattern. For
this reason, an attribute quite specific to a very serious disease
will strongly influence the course of a medical diagnosis,

In order to account for the relative seriousness of different
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and.Trj = a priori probability of state j.

Values of 8 decrease with increasing seriousness of states. This

can be seen in the following simple example,

LOSS
— T 2 0
1. Benign tumor 0.7 0 1,000,000 300,000
2, Malignant tumor 0.3 100 0 70

While other more sophisticated measures of seriousness can be de-
veloped, this simple one was deemed suitable for the purposes of
this research.

Once the seriousness of the various states has been estab-
lished, the problem of pattern selection can be solved in a quite
reasonable way through the use of the Bayesian model. For each
pattern, a conditional distribution on states can be obtained by
the inference function. For each pattern, the distribution is con-
ditioned on the attributes of that pattern alone--all other patterns

are ignored, Thus for the kth pattern

k  WEESi--Smd Mi,€ )
Ty = " 5(15,,--5,3/¢ )

Where Trg'is the conditional probability of the j-E-}l
state (Mj) given the pattern{Sik e . . Smki,

The seriousness measure for the k-t-t—1 pattern is given by

Y,

K

n k ~
= .lejgj

j=
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and the pattern selected is the one with minimum }4.

This measure has several desirable properties, Consider the
case of an attribute which is very specific to a serious disease,

If that attribute is observed, the conditional probability for the
serious disease given the pattern containing the attribute will be
close to one, Since the corresponding value of @ is small, the
value of ‘4 for the pattern will be small, Hence this pattern will
quite likely be selected. On the other hand, if the attribute is
not specific to the serious disease, the conditional probability
for the disease given the pattern will be less; and the resulting
value of Yq, greater,

The measure also favors a pattern which contains many attributes
provided that the pattern strongly indicated one or more serious
states, The posterior distribution does not have to be spiked, how-
ever, for a pattern to be chosen, For example a pattern which re-
sults in equal probabilities for six states may also be chosen if
the seriousness of the individual states so warrants, This measure
accounts for both the specificity of a pattern and the seriousness
of states associated with the pattern. In this respect, it seems to
be a good way to select patterns for investigation,

A routine called SELECT chooses the current pattern for the
diagnostic program, and this pattern may change from time to time
as additional information is gathered by the program. The current

pattern is the one employed by the test selection function for
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evaluating tests, Before egch use of the test selection function,
SELECT chooses the current pattern based on all information cur-
rently available,

A number of other processing routines affect the pattern stack
during the course of a diagnosis, Recall that whenever the pattern
sorting function produces more than one pattern in the stack, the
selection of a pattern for further diagnosis constitutes a hypothe-
sis about the significance of a group of attributes, If a consist-
ent diagnosis for the current pattern is obtained, then the hypothe-
sis is tentatively confirmed. If there are no other attributes to
account for then a consistent diagnoéis for all attributes has been
obtained, Otherwise the remaining patterns must be considered, It
is possible that a second pattern is being diagnosed, new attributes
may prove the hypothesis about the first pattern to be incorrect,

In this case, the attributes in this pattern can no longer be con-
sidered accounted for, These possibilities are dealt with in the
following way by the pattern sorting function, The program maintains
a list called the "unaccounted-for" list, and on it are all those
attributes which have yet to be attributed to a particular system
state., When the current pattern is "diagnosed" or assigned to ome
state, the attibutes in the pattern are removed from the unaccounted-
for 1list, and the pattern itself is marked. A marked pattern is ig-
nored in test evaluation, although it is updated with new attributes
whenever appropriate. When the current pattern has been marked, all

unmarked patterns are deleted from the stack, Then PATFRM is called
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for each attribute in the unaccounted-for 1list, Patterns are formed
using the unaccounted-for list as the total attribute set. If the
unaccounted~-for 1list is empty, a consistent diagnosis for all attrib-
utes has been obtained, Otherwise, the diagnosis continues on the new
patterns,

This means that attributes which are included in marked patterns
are not utilized in the formation of new patterns at this time. If,
for example, the total attribute set were (A, B, C, D) and (A, B, D)
had been tentatively diagnosed, the only unmarked pattern would be
(C). This is true even though there may be states which exhibit both
C and A, 1If, however, the test selection function chooses a test
which can detect A, A will be added to the unmarked pattern, This is
because the program always consults the history 6f the diagnosis be-
fore requesting the user to run a test. If on the other hand, the
program would normally account for C without employing knowledge of
A, it will do so,

If a new attribute causes the probability of a marked pattern to
become zero, a special recovery procedure is invoked, First, each
attribute of the marked pattern is transferred to the unaccounted-for

list, 1If one of these attributes is added to the list, it is also
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processed against all the other patterns in the stack. When the stack

has been updated with such an attribute, PATFRM is invoked to check

for new patterns based on this attribute. Finally, the marked pattern

is deleted from the pattern stack, and diagnosis continued,
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Thus, the contents of the pattern stack may be quite volatile
during a diagnosis, although cases of extreme volatility are not ex-
pected to occur very often, In any event, the use of the pattern
stack permits the program to deal with noise and multiple patterns
in a reasonably efficient manner, By allowing the user to inter-
act with the program during diagnosis, it is possible to employ his

judgment with regard to the merits of pursuing particular patterns,

2, THE INFERENCE FUNCTION

In general, the observation of a new attribute provides the
diagnostic program with additional information about the current
state of the system being diagnosed., Based on this observation, the
program may significantly alter its estimate of the likelihoods of
the various states., This section discusses in detail the manner in
which the program incorporates observations of attributes into its
current view of the diagnostic problem. The routines which process
new attributes for their effect on the current view of the problem
collectively are called the inference function,

The basic analysis of attributes and inference done by the diag-
nostic program is based on Bayes rule, Bayes rule can be stated as

follows

_ P(M, [ )IP(S M€ )
P(M, = t
atyfse, £) = 22 S

where P(Mj/Z) is the probability that the current state is My
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conditional on the total experience to date,

P(S¢/M5,E) is the probability that the system will exhibit

attribute S. given that it is in state Mj and the diagnos=-

tic experience i.

P(St/i) is the probability of the system exhibiting S..

unconditional on state,

P(Mj/St,z,) is the conditional probability that the state of

the system is Mj given & and the newly observed attribute S,
The quantity P(Mj/S:) is called the prior probability and P(Mj/St,QZ )
is called the posterior probability of the state M., The observa-
tion of the attribute S; increases the experience or information
available on which to make a decision about the unknown state. The
posterior probability is an adjustment of the prior probability to
account for the new information., After this adjustment has been made,
the posterior probability is the new prior probability when further
attributes are observed., Consider the following example of this
basic inferential process;

Suppose there are only two states relevant to the current diag-
nostic problem, M) and Mz, and three attributes Sj, S; and S3, The
a priori probabilities for the two states as well as the conditional
probabilities for the attributes given the states are presented in

Table 2,
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TABLE 2

EXAMPLE FOR BAYESIAN ANALYSIS

Conditional
Probability of Attribute/State
A priori
probability 5 Sy 54
M, 0.8 .1 A .1
M, 0.2 .7 .6 .9

The initial experience of the program, before any attributes have been
observed, is embodied in the a priori probabilities. Thus, the cur-
rent distribution on states is (0.8, 0.2)., Now assume that tests
employed in the diagnosis reveal the presence of attribute S5,. Ac-
cording to Bayes rule, the posterior distribution is (.82, .18).

That is

. (0,8) (0,8)
P4 [51,€) = 5870, 80)+(0 2y 0.7y = ©-82

(0,2)(¢0,7) = 0.18
(0.8)(0.8)+(0.2)(0.7)

P(Mz/sl,f )

Thus, the new attribute has little effect on the view of the problem
taken by the program, If two more tests yield the attribute S2 and

then the attribute S5, the corresponding distributions are:

P(M, [S,,S,,€) = 0.75 p(Mz/sl,sz,g) = 0.25
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tern and its distribution list are removed from the stack., While
Bayes rule is easily applied in principle, the inference function
must include special routines to insure that inter-attribute rela-
tionships and the "history'" of the diagnosis are correctly accounted
for in the probabilistic analysis.

The routine UPD which performs the updating of the pattern stack
based on the observation of a new attribute is to a large extent a
simple encoding of Bayes rule. The routine, however, does not ob-
tain the requisite conditional probabilities directly. Instead, it
calls PLJ to obtain the conditional probability of attribute '"j"
given state "i" and the history of the diagnosis to date. The reason
for this indirection in the accessing of probabilities is really a
pragmatic one, The insulation UPD from the probability-retrieving
process allows changes in this process to be made without affecting
the basic inference process,

As noted, the function of PIJ is to retrieve conditional proba-
bilities from the information structure, In the simplest case, this
involves retrieving a number directly from the information structure,
When the attribute of interest is involved in an attribute cluster for
the given state, the process of determining the conditional probability
is more involved.

The general form of an attribute cluster is either

a, (91 Rl)

or b. (91 R1 9 92 R2 . ..9 On Rn)
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where Rj is an inter-attribute relationship;

Qj is the conditional probability of Rj given the state

® 1is either "exclusive or" or "or."
Here Rj can be any inter-attribute relationships (including functions
of functions, etec.) as long as it does not include &. The reason for
this restriction is to eliminate ambiguity from the probability
assignments, In fact, the restriction does not limit the class of

logical relationships which can be defined, only the form which in-

dividual members may assume. Thus, for example, Ry might be the
cluster for the relationship
"Either A; precedes A) in time or A does not appear at all,"

In order to evaluate the conditional probability of an attribute
involved in an attribute cluster, PIJ must be able to evaluate the
truth of the relationships Ry. It does this by calling the routine
INTERP to determine the true value of each Rj. INTERP is an inter=-
preter, which retrieves the definitions of any functions involved in
Rj and applies these definitions to the appropriate arguments from
the attribute cluster, The interpreter employs a push-down stack and
recursive calls in the evaluation, All functions are reduced in this
way to their component primitive functions. Routines to evaluate the
primitive functions are built into the system,

The operation of the interpreter differs in certain aspects

from that of a normal interpreter of Boolean functions, because this

interpreter must deal with variables whose current value is unknown.
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For example, suppose the relationship under consideration for a par-
ticular state Mj is "Ay precedes Ay in time" with probability 0.5.
Assume A; has just been observed and the conditional probability of
Ay given the state is desired. If A, has not yet been observed,

the relationship is incomplete (or from a logical standpoint, unde-
fined). From a Bayesian point of view, however, the conditional
probability is well-defined; it can be obtained by assuming that A,
will in fact follow A; in time, This assumption results in a value

of 0.5 for the conditional probability of A; given M If Ay is ob-

j-
served later, then its conditional probability can be obtained in a
similar manner, but the prior observation of A must be taken into
account, This means that the desired probability of A, is conditional

on the state Mj and the previously observed A Hence the proper con-

1+
ditional probability is 1,0,

In general terms, the interpreter assumes the truth of any
relationship which is incomplete unless that relationship is demon-
strably false given the current information of the diagnosis, The
interpreter must also indicate whether any attributes involved in a
cluster have actually been observed. Given these modifications of the
interpreter function, the routine PIJ can deduce the proper conditional
probability for the given attribute-state pair. PILJ embodies a number
of logical tests on the truth of the Rj and the number of observed

attributes involved in each. For the types of relationships allowed

in the information structure, these quantities are sufficient to deter-
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the relevant attributes are first presented by the user. Through
the use of the interpreter, the diagnostic program is able to deal

with variety of relationships within a particular problem area.

3. THE TEST SELECTION FUNCTION

The value of heuristics for test selection in diagnostic prob-
lems has been underscored in previous sections, 1In this section, a
particular test selection program is discussed., This program (which
is, in fact, a number of subroutines) is the one employed in the diag-
nostic program, The nature of the program strategy and organization
is explained and some of its limitations are noted.

From the model of a diagnostic problem discussed in Chapter 3,
it will be recalled that one of the major tasks in diagnosis is the
selection of a good set of tests to apply to the system, The de-
termination of such a testing strategy involves a consideration of
both the costs of tests and the information which they are expected to
yield, Thus, any heuristic for the test selection process should re-
flect these considerations, Another consideration involves the amount
of computation involved in applying the heuristic in a particular
diagnosis, In order to facilitate the study of a class of such test
selection heuristics, the test selection function was designed to be
in large part independent of the particular heuristics employed. While
the class of heuristics permitted is not particularly large, it does

include heuristics which lead to markedly different test selection
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searched by the test selection function during a particular stage in
a diagnosis are searched to the same depth.1 The limitations arising
from this inflexibility will be discussed later.

The breadth of the search is controlled indirectly by the user
through the use of a threshold probability. At a given decision node,
only those tests which are relevant to a state with a probability
greater than the threshold are considered by the test selection func-
tion, For example, if the probability distribution at a given decision
node is (0.2, 0.3, 0.5) for states M;, M;, Mg and the threshold is 0,25,
only those tests relevant to states My and to My will be considered,
Those tests which are relevant to M; alone will be ignored, A test
is considered relevant to a particular state only if an attribute
which is associated with the appropriate state list in the information
structure is a possible result of the test given the probability dis-
tribution for the current decision node. Since the control of the
breadth of search is indirect, in general, the user cannot easily
predict the extent of the pruning of the decision tree which will
result, Some feeling for reduction in the search space can be gained
from experience with the program in a particular problem area. Note

that in the above example, if all the tests which are relevant to

An exception occurs when a particular node corresponds to a
certain diagnosis, The search of the branch containing this node
will terminate there,.
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state M; are also relevant to either M; or M,, then the threshold
probability will not result in any pruning of the decision tree,
The maximum search breadth is obtained with a threshold of zero,

Like the search depth parameter, the threshold parameter can
be set prior to each stage in the diagnosis, Also these two para-
meters can be varies independently of one another (subject only to
a practical constraint of available storage). This flexibility per-
mits the overall selection strategy to change during the course of
the diagnosis,

There are four routines in the test selection package, each
performing a distinct function in the tree search. The principal
routine is SEQDEC which serves as the main control for the process
of test selection. The diagnostic program communicates with the
test selection package through SEQDEC. It provides this routine
the name of the node in the decision tree which corresponds to the
current state of the diagnosis, SEQDEC then analyzes the tree to
the appropriate depth and breadth to obtain the testing decision,

Because the decision tree can require considerable storage
even for limited search depth and breadth, the tree is developed dy-
namically, That is, new levels are added only as they are needed,
and levels are erased when they have been analyzed, SEQDEC is called
with the name of a decision node as an argument, This decision node
is represented by an empty SLIP list which has on its DLIST a list
containing a probability distribution over system states, This dis-

tribution incorporates all the attributes which were observed on the



100

path from the beginning of the tree to the current node,

SEQDEC first determines the expected loss for an optimal decision
at this node, The manner in which this value is determined will be
explained below. If the level of the current node equals the re-
quired depth of search this expected loss is returned as the expected
loss for the node. If not, the current loss for this node is assigned
this value and if the level of the node is the topmost level of the
analysis, the terminal decision and its value are stored in a special
list. 1In any event an additional level must be "grown' on the tree,
First the routine RELTST is called by SEQDEC, RELTST determines the
set of tests which are relevant to the states whose probability at
the current node exceeds the threshold. Excluded from this set are
all those tests which have been actually run. These latter tests are
known to RELTST because whenever a test is selected by the diagnostic
program and run by the user, its name is placed on a list called
TSTRUN in common storage. RELTST stores the names of the relevant
tests on the current decision node list.

After RELTST has collected the set of relevant tests, SEQDEC
processes each of these tests in turn., SEQDEC begins reading the
list of tests. For each test, a routine called GROWl1 is invoked,
This routine determines all possible results of the given test and
their respective probabilities, For each result, the routine con-
structs a new decision node, First the current test is placed on the

top of TSTRUN to simulate the running of the test and then for each
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of the possible results of the test, SEQDEC calls itself recursively
to obtain the expected loss of the resulting decision node, When

this value has been obtained, it is weighted by the probability of

the given result and the product accumulated, The sum of the expected
loss for each result is combined with the cost of the test. The cur-
rent test is removed from TSTRUN and the portion of the decision tree
which has just been analyzed is erased, If the analysis is at the
topmost level the value of the test is saved. This means that the
expected losses for all alternatives at the current level are available.
In the event that the best alternative cannot be employed (e.g. a test
cannot be run for some reason), the next best alternative can be
chosen, 1In any case, the expected loss for this test is compared with
that of the best decision to date for the node. If it is less, the
current test becomes the best decision, The analysis then proceeds

to the next test alternative, When all alternatives have been evalu-
ated for the current decision node, SEQDEC returns the expected loss
of the best decision as determined by the analysis,

The determination of the optimal terminal decision as accomplished
by a routine called DLOSS. This routine employs the probability dis-
tribution, the decision node and the loss function to determine the
value of the minimum expected loss terminal decision for the node,

If 7Tj is the probability of the state Mj in the current distribu-
tion and lij is a typical element from the loss function matrix, DLOSS

selects state MK where
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and E is the expected loss of the optimal terminal decision for the
node, The state selected by DLOSS and the value T are returned to
SEQDEC.

By controlling the breadth and the depth of the search employed
by the test selection function, the user can generate a number of
different test selection heuristics. For example, he might use a
threshold close to zero and a depth of one early in a diagnosis
when many states are still possible, Because the probability dis-
tribution based on only a few attributes may be quite diffuse, a
low threshold is needed to insure that significant tests are not
overlooked. On the other hand, the potentially large number of de-
cision nodes requires a limited depth of search. As the diagnosis
progresses and a few states become relatively probable, the thres-
hold can be raised with less danger of missing significant tests.
With the higher threshold it may be possible to improve the evaluation
of tests by increasing the depth of the search.

The selection scheme above can be supplemented by the use of
two additional features of the program, First, the user can re-
strict the set of relevant tests to those associated with the best
terminal decision at a given node, In the case when the loss function
is a constant for all ordered pairs of states, this corresponds to

considering the tests which are relevant to the most probable state.
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Since the routine DLOSS can determine the best terminal decision at
a given decision, the appropriate state canbe made available to RELTST,
By considering only the tests relevant to this state, the user in
a sense in limiting the search to those tests which will tend to
prove or disprove the hypothesis that the given state is indeed the
best decision. In practice, the user obtains this option by setting
the threshold probability to a number greater than one.

In order to permit the user an even greater facility to test
hypotheses, the program permits him to request a search for tests
to prove or disprove the hypothesis that "the state of the system
is Mp." 1If the user chooses to test such a hypothesis, the test se-
lection function will alter its method of evaluating decision nodes.
All decision losses (1#j) are set temporarily to a certain very
high value. The routine DLOSS then considers only two states in its
evaluation of the loss for a given node, One state is M, and the
other is '"not My ." With these adjustments, the test selection func-
tion will rank tests according to their expected value in proving or
disproving the presence of state Mk'

A comparison of a number of particular selection heuristics

employed in this research will be presented later in the thesis.

C. THE GENERATOR PROGRAM
The diagnostic program discussed in the previous sections is a
major tool in this research. By exploiting the interactive capabili-

ties of the program, the user can employ it directly in the solution
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of actual diagnostic problems. Of equal importance, however, is the
availability of the program as a test vehicle for a variety of over-
all diagnostic strategies, By specifying the heuristics to be em-
ployed in the pattern sorting and test selection functions, one is

defining a diagnostic strategy. Since diagnostic problems tend to

be difficult and the program operation is quite complicated, it is
not an easy task to make generalizations about a given diagnostic
strategy. There are many important questions which can be asked about
a diagnostic strategy such as

* How is the performance of the program affected by noise signs?

* What is the effect of uncertainty in the probabilities on

the performance of the program?
* How do various changes in the relevant probability distribu-

tions affect program performance?

Questions such as these are difficult to answer based on experience with
only a few problem areas. If one is constrained to work with descrip-
tions of actual systems, it may be very difficult to establish the
conditions required for the test of a particular aspect of the pro-
gram. If, on the other hand, one can employ a wide variety of system
descriptions, the program can be exercised more thoroughly, One ap-
proach is to create an information structure with the desired proper-
ties and to test the diagnostic program with simulated problems from
this artificial problem area. Information gained from such studies of

diagnosis "in the abstract' may suggest improvements in the program.
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It may also provide a deeper insight into the problems involved in
solving real diagnostic problems, If such a simulation facility
were available, simulated cases generated from the structure for an
actual problem area could be utilized to conveniently investigate
aspects of diagnosis in that area,

The diagnostic system includes such a simulation facility in
the form of the generator program, This program is the third major
part of the diagnostic system, Like the diagnostic program, the
generator makes extensive use of the information structure, The
system for which problems are to be simulated is described in the
standard manner by the user, This description is converted to an
information structure which is available to both the diagnostic pro-
gram and the generator. The basic operation of the generator is as
follows. First, a state is chosen at random from the set of possible
states for the system in accordance with the a priori probability
distribution, Then a certain number of initial attributes (the
number being controlled by the user) are generated at random given
the description of the state in the information structure, The set
of initial attributes constitutes the problem presented to the diag-
nostic program, The latter is called to process these attributes, It
selects a test in the usual manner, Given the state and the test,
the generator selects a test result and conveys this response to
the diagnostic program, This interaction between the generator and

the diagnostic program continues until the latter arrives at a diagno-
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sis. This diagnosis then can be compared with the "known" state
used by the generator,

As an example of the operation of the generator, consider its
use in the following simplified problem, The generator is used
to simulate disease case histories for the disease-attribute proba-
bility matrix presented in Table III, The relevant tests are listed
to the right of the matrix, Assume that cases are to be drawn at
random from the strﬁcture and that one initial attribute is to be
presented to the diagnostic program.

The generator first selects the disease, It does this by creat-
ing a list of all possible diseases and cummulative probabilities,

For this example, the list would be
(p1 0,3 D2 1.0)

Each cummulative probability is the sum of the a priori probabili-
ties of the diseases preceding it in the list, Then a random number
between zero and one is generated, The list of diseases and cummula-
tive probabilities, called the generation list, is searched for a
disease with the property that the probability preceding it is less
than and the probability following is greater than the given random
number., This disease satisfying this condition is chosen for this
case, Thus, if the random number generated in the example were 0.41,
the disease selected would be D2, Assuming the disease D2 has been

chosen, the generator now selects the initial attributes which define
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TABLE 3

Disease Description for Generator Example

a priori P(Attribute/Disease)
Disease Probability Al A2 A3 AL A5 A6
D1l 0.3 0.3 0.7 0.5 1.0 0.5 0.5
D2 0.7 0.8 0.2 0.3 0.2 0,6 0.4
Test Attributes
T1 Al, A2
T2 A3
T3 AL

T4 A5, A6



108

with the appropriate probabilities and returns it to the diagnostic
program, This iterative process continues until the diagnostic pro-
gram has completed the diagnosis.

In this example, only one attribute was generated for each test.
There are tests, however, from which several attributes can be ob-
tained. Such tests are marked in the information structure, and the
generator will generate a set of test results for these tests,

The diagnostic system will record an extensive history of each
diagnosis or selected aspects of that history on a history file if
requested to do so by the user, A schematic of the relationships
among the three major parts of the diagnostic system is presented
in Figure 14. In the remainder of this section, certain features of
the generator-diagnostic program interaction will be discussed in
detail,

The subroutine GETSYM is the principal link between the genera-
tor and the diagnostic program, It is this routine which is called
by the diagnostic program whenever the latter requires a test to be
run, If the diagnostic program is being controlled by the user from
the console, then GETSYM retrieves the test results from him, If
the generator is in control, a routine called GENSYM is invoked to
generate an appropriate response to the chosen test, The diagnostic
program itself is independent of the source of responses to tests,
GENSYM is also used by the generator to select the initial attributes
of a problem., All system output (such as requests for test results,

distributions, etc.) is processed by a special output package. This
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Schematic of Diagnostic System
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another advantage is that many cases can be simulated in a rea-

sonable amount of time,






The second problem encountered in the diagnosis of bone
tumors 1s the large number of potentially useful attributes which
can be extracted from a radiograph., Generally speaking, there are
four direct kinds of information which are obtained from a radio-
graph of a bone tumor (R-20)
1) Destruction of bone
2) Proliferation of bone
3) Mineralization of tumor matrix
4) Location, size, and shape of tumor,
Each of these general classes of information is broken down into
a number of more specific attributes, The result is the large num-
ber of attributes mentioned above, Hence, the diagnostician is con-
fronted with a considerable amount of data which he may employ in
classifying a particular tumor,
The particular study discussed here involved the diagnosis
of actual cases of bone tumors, each of which was classified into
one of nine histological types, These types are listed in Table 4,
The evidence employed in the diagnoses consisted of fifty-three
attributes obtained principally from radiographs, (The age of the
patient was the only non-radiologic attribute considered.) The
attributes are listed in Table 5 along with their abbreviations
used in discussions of particular diagnoses.
The case histories and the disease-attribute probability matrix

used in this study were obtained from Dr. G. S. Lodwick of the
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University of Missouri, Dr, Lodwick and his associates developed

the matrix as a result of many years experience with cases of bome
tumors. Thus, the matrix represents the distillation of extensive
diagnostic experience with the problem, It reflects both the stat-
istical experience and understanding of the disease processes in-
volved of the workers who created it, The papers cited above sum-
marize their work and are recommended to any reader who is interested
in a more authoritative view of the problem than the competence of

this author permits him to present.

B. Experiments in Bone Tumor Diagnosis

The diagnostic system was used to study various aspects of
bone tumor diagnoses. The disease-attribute probability matrix pro-
vided by Dr, Lodwick was used as the basis for an information struc-
ture for the system. A state was defined for each of the nine types
of bone tumor, A set of thirty-two tests were defined, Some of
these tests such as that of determining the age of the patient can '
result in one of a number of attributes, In the case of the age
test, the possible attributes are: 1) age 0 to 9 years, 2) age 10
to 19 years, 3) age 20 to 29 years, 4) age 30 to 39 years, and
5) age 40 years and over. Other tests are specific for one attrib-
ute, such as the test of checking for geographic destruction of
bone. The set of tests and the respective attributes which may re-

sult is presented in Table 6. Throughout the remainder of this



TABLE 4

HISTOLOGICAL TYPES FOR BONE TUMOR DIAGNOSIS

Type Abbreviation
1. Chrondoblastoma CB
2, Chrondosarcoma GS
3. Ewing's Sarcoma ES
4, Fibrosarcoma ¥s
5. Giant Cell Tumor GC
6. Osteosarcoma 0s
7. Parosteal Sarcoma PS
8. Reticulum Cell Sarcoma RC
9., Chrondomyzoid Fibroma CF

_Relative
Incidence

0.05
0.17
0.15
0.10
0.15
0.25
0.05
0.05
0.03

1.00

Note: This formulation assumes that each patient has one and

only one of the given diseases.
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TABLE 5

ATTRIBUTES FOR BONE TUMOR DIAGNOSIS

Attribute Meaning
502 Age 00-09 years
S03 Age 10-19 years
S04 Age 20-29 years
S05 Age 30-39 years
506 Age 40 years and over
S07 Tumor Size 01-30 Millimeters
S08 Tumor Size 31-60 Millimeters
S09 Tumor Size 61-90 Millimeters
510 Tumor Size 91 MM and over
S11 Shape-Round (L LT 1,5 X W)
S$12 Shape-Elongated (L GE 1.5 X W)
S13 Location-Central
S14 Location-~Eccentric
S15 Location-Cortex/Parosteal
516 Long Bone
S17 Flat Bone
S18 Small Bone
519 Sacrum and Pelvis
S20 Any Bone-Epiphysis
521 Any Bone-Growth Plate
522 Tubular Bone-Articular Cortex
S23 Tubular Bone-Metaphysis
524 Tubular Bone-Shaft
S27 Matrix-Radiolucent
528 Matrix-Floccules
S29 Matrix-Solid
530 Matrix-Lumpt
S31 Matrix-Clouds
$32 Destruction-Geographic

S33

Destruction-Motheaten

Attribute Meaning
834 Destruction-Permeated
S35 Margin-Regular
536 Margin-Lubulated
S37 Margin-Ragged
S38 Margin-Indistinct
539 Transition Sharp or Smudged
S40 Invasive Zone
S41 Special Sign-Fracture
S42 Special Sign-Displacement
S43 Proliferation-Sclerotic Rim
S44  Prolif.-Multiple Small Foci
545 Proliferation-Endostosis
546 Periosteal-Hyperostosis
S47 Periosteal-Buttress
S48 Periosteal-Trabeculae (Septae)
S49 Cortex Expanded
S50 No Codman's Triangle
$51 One Codman's Triangle
552 Two or More Codman's Triangles
553 No periostosis
S$54 Laminated Periostosis
8§55 Amorphous Periostosis
856 No Spiculation
$57 Sunburst Spiculation
$58 Hair-om-end Spiculation
S59 Velvet Spiculation
S60 Periosteal Response-Delicate
561 Periosteal Response-Coarse



TABLE 6

TESTS FOR BONE TUMOR DIAGNOSIS

Test

TEST2

TEST7

TEST11
TEST13
TEST16
TEST20
TEST21
. TEST22
. TEST23
10, TEST24
11, TEST27
12, TEST28
13. TEST29
14, TEST20
15, TEST31
16, TEST32
17, TEST33
18. TEST34
19, TEST35
20, TEST39
21, TEST41
22, TEST43
23, TEST44
24, TEST45
25, TEST46
26, TEST47
27. TEST48
28, TEST49
29, TEST50
30, TEST53
31, TEST56
32, TEST60

OO0 ~IOY L P

Note: The symbol "N" denotes a '"mormal' attribute.
that a test may fail to reveal any of the other attrib-
Thus, for TEST41, the possible results are

utes listed,

502,
s07,
s11
13
S16
$20
s21
s22
$23
$24,
$27,
$28,
§29,
$30,
s3I,
832,
533,
S34,
$35,
S39,
sa1,
43,
Stk
s45,
S46,
847,
S48,
S49,
$50,
$53,
$56,
$60,

2
2
2
2
3
2
3

Possible Results

S03, S04, S05, S06

s08,
S12

S14,
17,

ZZZZZzRZE 2R ZR 2

S61

$09, S10

S15
18, S19

$37, $38
N
N

§52
$55
$58, S59

841 or 542 or neither S41 nor $47 (N).
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chapter, the abbreviations for diseases and attributes presented

in Table 5 and Table 6 will be used, In the initial set of ex-
periments, all tests were assigned unit cost and the cost of all
misdiagnoses (e.g. deciding the tumor is CS when it is really GC)
was assumed to be 100,000. This number is quite arbitrary, and is
used simply to make the decision losses much greater than the test-

ing losses,

Experiment 1. Diagnosis Based on All Attributes

Each of the twelve case histories was presented to the diag-
nostic program by inputting all the attributes for the case., The
diagnostic program processed the attributes through the inference
function and obtained a posterior distribution for the type of
tumor. The results of this experiment are presented in Table 7 along
with the diagnosis of a pathologist provided with each case history.
The latter is traditionally accepted as the definitive diagnosis

in cases of this type.

Experiment 2. Sequential Diagnoses--Actual Case Histories

The second experiment exercised the sequential capabilities
of the diagnostic program. Again, all diseases were taken to be
equally serious (1ij = 100,000, i # i) and all tests were assigned
unit cost. The same twelve cases were analyzed by the program,
For each case, the program was presented with a set of initial at-

tributes., This set was obtained by collecting the results of the
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TABLE 7

Diagnoses Based on all Available

Attributes for Actual Bone Tumor Case Histories

Case Posterior Distribution* Pathology

1 ) CB 0,12 GC
GC 0,87

2 0s 0.65 0S
cs 0,35

3 CB 1,00 CB

4 cs 0.99 cs

5 0s 1.00 0s

6 ES .33 RC
RC .67

7 cs 0,78 cs
FS 0,22

8 ES 0.04 ES
ES 0,02
RC 0.94

9 ES 1.00 ES

10 cs 1,00 _ CB

11 GC 0.65 ‘ GC
CF 0.35 :

12 PS 0.99 PS

% Only types with posterior probability greater than or equal to
0.01 are shown in the tables in this chapter,



120

first ten tests listed in Table 6 from the case histories, Thus each
diagnostic problem was defined by approximately ten attributes, (In
certain cases this number was smaller, because some tests are not
relevant to specific bones,)

After processing the initial attributes, for the case, the pro-
gram employed the test selection function to select a test to be run,
The results of the test selected were determined by consulting the
given case history. The attribute or attributes resulting from this
test were given to the program and the inference-test selection cycle
repeated, Throughout this experiment the test selection function
searched the decision tree to a depth of one and limited the breadth
of search to those tests relevant to the most likely disease type.

For each case, this sequential diagnosis was continued until
the diagnostic program terminated the process. This termination
occurred when the program determined the expected reduction in loss
for the best test at the current decision node was less than the
cost of the test.

An example of a sequential diagnosis is presented in Table 8 and
the results of the experiment are summarized in Table 9,

The results of Experiment 2 underscore the potential advantage
of sequential analysis of attributes in diagnosis, Since all diseases
were taken to be equally serious for this experiment, the program
found the best terminal decision to be the most probable disease, Since
these same conditions held in Experiment 1, it is easy to make compari-

sons between the results of the two experiments.



TEST29

TEST50

TEST56

TABLE 8

Sequential Diagnosis--An Example

(Actual Case History 12)

Resulting Attributes Posterior Distribution
S05, 510, S12, 815 CS 0,42
S16, NOT 520, NOT S21 ES 0.13
NOT S22, 523, 824 FS 0.10
PS 0.31
RC 0.02
529 ¢S 0,06
FS 0.02
0os 0.01
PS 0.91
S50 cS 0.06
FS 0.01
PS 0.92
S$56 cs 0.05
FS 0.02
PS 0.93
Terminal decision -- PS

Pathology report =-- PS
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TABLE 9
Sequential Diagnosis of Bone Tumor Cases
Summary of Results for Actual Case Histories
Number of Digtribution at Distribution
Case and Tests Selected Point of Terminal When all Attrib-
Pathology by Program Decision utes Considered
1. (GC) 9 CB 0,21 CB 0.12
GC 0.78 GC 0.87
2, (0S) 12 cs 0.79 CcS 0.65
0s 0.21 0s 0.35
3, (cB) 0 CB 1.00 CB 1.00
4, (CS) 4 cs 0,80 cs 0.99
ES 0.08
FS 0.08
0s 0.04
5. (0S) 4 cs 0,03 0s 1.00
ES 0.02
0s 0.94
RC 0.03
6. (RC) 13 ES 0.30 ES 0.33
FS 0.01 RC 0.67
~ RC 0.68
7. (CS) 4 cs 0,74 cs 0.78
FS 0,26 FS 0,22
8. (ES) 11 ES 0.05 ES 0.04
FS 0.07 FS 0.02
RC 0,87 RC 0.94
9, (ES) 5 cs 0.02 ES 1.00
ES 0.88
0s 0,05
RC 0.05
10, (CB) 3 CB 0.96 CB 1.00
CF 0.04
11, (GC) 5 cs 0,10 GC 0,65
ES 0,01 CF 0.35
GC 0.81

CF 0.08
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12, (BS) 3 Cs 0.05 PS 0.99
FS 0.02
PS 0.93

Average number of initial attributes 9,4
Average number of test by program 7.1
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With regard to "accuracy," it can be seen that the lists of
terminal decisions from the two experiments are identical and these
decisions are the same as those of the pathologist in ten of the
twelve cases. The major difference between the two sets of results
is the average number of tests performed per diagnosis. In the first
case this average is 30, (The average is less than 32 because some
test results were not available or were not relevant for a given
case and the test was not counted.) Sequential analysis of the given
cases required an average of 16.7 tests per case. This average in-
cludes 9.4 tests on the average to obtain the initial attributes,
Thus, by employing sequential analysis, the program in each case
obtained the same diagnostic decision as it obtained using all attrib-
utes, but with only slightly more than half as many tests.

The nature of diagnosis of bone tumors makes this saving seem
immaterial, That is, almost all attributes are obtained from a
radiograph, and once the radiograph has been obtained, the marginal
cost of the tests considered here is essentially zero., One can
easily imagine a situation, however, in which tests are completely
independent of one another. In such a situation, the savings from
sequential diagnosis might be quite significant. The fact that the
performance of a diagnostician should be assessed in terms of both
accuracy and cost favors the sequential mode of operation for the
program, The question of how to assess the performance of a diag-

nostician will be considered at greater length later,



Another difference between the results of the two experiments
is found in the posterior distributions at the points of a terminal
decision. The average value of the maximum l1ikelihood probability
for the terminal decisions can be taken as an indication of the
equivocation or uncertainty in the average decision. For Experi-
ment 1 this value is 0.85 while for Experiment 2, it is 0.80.
Therefore, the sequential diagnoses terminate on slightly less

‘"certain” decisions.

Experiment 3. Sequential Analysis--Simulated Case Histories

Table 10 presents the results of the sequential diagnoses of
ten simulated case histories. The generator function was used to
develop the cases and the diagnostic program employed as usual,
Again, all diseases were taken to be equally serious and all tests
were assigned uﬂit cost,

Again, the marked advantage of sequential diagnosis is evi-
dent, The average number of tests required for diagnosis was 17.0.
Based on a maximum likelihood terminal decision, the diagnostic pro-
grams terminal decision was correct in nine of ten cases,

On the average, the diagnostic program was more certain of its
terminal decisions than in the previous experiments (average proba-

bility of terminal decision = 90,5).
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TABLE 10
Sequential Diagnosis of Simulated Case Histories
Distribution at
Histological Number of Ini- Number of Tests Point of Terminal
Type tial Attributes Selected by Program Decision
1. FS 14 9 CS 0,26
FS 0.73
2, Es 7 9 ES 0,88
0s 0.01
RC 0,11
3. 0s 11 0 0s 1.00
4, GC 5 11 Cs 0.01
GC 0.79
CF 0.20
5. ES 12 6 cs 0.01
ES 0.94
0s 0.04
6. RC 5 8 Cs 0.05
FS 0.78
RC 0.16
7. CB 11 8 CB 0,93
GC 0.02
CF 0.05
8. 0s 11 8 0s 0,98
cs 0,02
9. FS 5 12 cs 0.11
Fs 0.88
10. GC 10 8 CB 0.04
Fs 0.01
GC 0,94
CF 0.01
Average number of Average number of
initial attributes tests by program

9.1 7.9



Chapter 6

DIAGNUSXS OF CONGENITAL HEART DISEASE

A, The Nature of the Diagnostic Problem

A prolonged study of a group of thirty-four types of congeni-
tal heart disease has been conducted by Warner and his associates
(RIZ, R13, R14). As a result of this study, they developed a
disease-attribute probability matrix for thirty-five types (includ-
ing "normal") and fifty-seven attributes, The attributes can be
grouped into four main categories: murmurs, electrocardiogram find-
ings, X-ray findings, and other symptoms and physical signs. The
problem of diagnosing heart éisease cages based on this matrix is
more difficult than the bone tumor problem discussed in Chapter 5.
One reason for the increased difficulty is simply the increased
number of diseases. Also certain groups of diseases have quite
similar attribute probabilities in the matrix,

As noted in Chapter 2, Warner developed a computer program to
perform diagnosis of congenital heart disease patients based on a
Bayesian analysis of their signs and symptoms, His program employs
the matrix mentioned above, but in addition it must account for cer-
tain dependencies (such as mutual exclusion of signs or symptoms),
From the performance measures presented in Chapter 2, it can be
seen that Warner's program performs at the level of an experienced

physician,
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The experiments discussed here involved the use of the disease-
attribute probability matrix prepared by Warner in the diagnosis of
congenital heart disease, As before, the matrix was the basis for
each of the disease types and the appropriate attribute lists created.
Twenty-eight tests were also defined for the problem. Dr. Warner
provided nine case histories, each with the correct diagnosis and
the diagnosis obtained by his program. In this instance, the cor-
rect diagnoses were determined by follow-up studies such as heart
catheterization or autopsy.

Table 11 presents the names of the thirty-five states of the
information structure used in these experiments and the names of
the corresponding diseases, Table 12 lists the attributes of the

problem; and Table 13 the tests,

B, Experiments in Congenital Heart Disease Diagnosis

Experiment 4, Diagnosis Based on All Attributes

The first experiment tested the diagnostic capability of the
program given all the known attributes for each of the actual case
histories provided by Dr. Warner. The results of this experiment
are summarized in Table 14, 1In each instance, the diagnostic pro-
gram duplicated the results obtained by Warner's program for the
given case history. (That is, both programs arrived at the same

posterior probability distribution given all attributes.)



States

DO1
D02
DO3
DO4

DO5
D06

DO7

DO8

DO9
D10

D11
Di2
D13
D14
D15

Dlé
D17

TABLE

11

Heart Disease Types

Diseases

Normal

Atrial septal defect

Atrial septal defect with
pulmonary stenosis

Atrial septal defect with
pulmonary hypertension
Atrio-ventricular communis
Partial anomalous pulmonary
venous connection

Total anomalous pulmonary
venous connection

Tricuspid atresia

(without transposition)
Ebstein's anomaly

Ventricular septal defect with
valvular pulmonary stenosis
Ventricular septal defect with
infundibular pulmonary stenosis
Pulmonary stenosis, valvular,
gradient = 40 mm. Hg.
Pulmonary stenosis, infundibu-
lar, gradient == 40 mm. Hg.
Pulmonary atresia

Peripheral pulmonary stenosis
Pulmonary hypertension

Aortic pulmonary window

States

D18
D19
D20
D21
D22

D23
D24

D25
D26
D27
D28
D29
D30
D31
D32
D33
D34

D35

Diseases

Patent ductus arteriosus
Pulmonary arterio-venous Fistula
Congenital metral disease
Primary myocardial disease
Anomalous origin or coronary
artery

Congenital aortic disease
Ventricular septal defect with
pulmonary flow *= 1.4 systemic
flow

Coarctation of aorta

Truncus arteriosus
Transposition

Rypertrophic subaortic stenosis
Absent aortic arch

Ventricular septal defect with
pulmonary flow > 1.4 systemic
flow

Ventricular septal defect with
pulmonary hypertension

Patent ductus arteriosus with
pulmonary hypertension
Tricuspid atresia with
transplantation

Pulmonary stenosis gradient

=2 40 mm, Gh,

Ruptured sinus Valsalva
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Sign

501
802
S03
S04
S05

506
S07
508
S09
510
511
512
S13
514
S1i5
516
S17
518
) 519
520
S21
822
523
524
§25
827
528

e e e g e AR < e
R -

TABLE 12

Attributes for Congenital Heart Disease

Meaning

Age, less than 1 year
Age, 1 year to 20 years
Age, 20 or more years
Cyanosis, mild
Cyanosis, severe (with
tlubbing
Cyanosis intermittent
Cyanosis differential
Squatting
Apex systolic
Apex systolic, holo
Apex systolic, mid
Apex diastolic
Apex diastolic, early
Apex diastolic, late
L 4th systolic
4th gystolig, holo
4th syatolic, mid
4th continuous
4th diastolic
4th diastolic, holo
diastolic, early
2nd systolic
2nd systolic, holo
2nd systolic, mid
2nd continuous
2nd systolic
2nd diastolic

[l el ol ol ol ol ol ol ol ol o
0~
[nd
=2

Sign

529
$30
§31
S35
S36
537
538
S40

S41
S42
S43

S44
S45

546
847
548
S49
550
§51
§52
§53
S54
§55
556
8§57

Meaning

Post systolic

Post continuous

Murmur louder than gr 3/6 (10 mm)
Accentuated P,

Diminished P2

Fixed split Py

Femoral pulse less than brachial
Atrial fibrillation or broad
notched P wave

Axis, right (more than 110%)
Axis, left (less than 0°®)

R wave greater than 1.2 mv in
lead Vq

rR' or qR in lead Vj

R wave greater than 2.5 mv in
lead V6

T wave inversion in lead Vg
Rib notching

Peripheral vessels increased
Peripheral vessels decreased
Hilar vessels increased

Hilar vessels decreased

Main pulmonary artery large
Main pulmonary artery not seen
Aorta large

Aorta small

Cardiomegaly

Snowman
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TEST1

TEST4

TEST8

TEST9

TEST10
TEST12
TEST13
TEST15
TEST16
TEST19
TEST20
TEST22
TEST23
TEST27
TEST28
TEST29
TEST31
TEST35

. TEST37

TEST38
TEST40
TEST41
TEST43
TEST44
TEST45
TEST46
TEST47
TEST48
TESTS50
TEST52
TEST54
TESTS56
TEST57
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TABLE 13

Tests for Heart Disease Diagnosis

Possible Results

02,
S04, SOS,
$08, N
09, N
§10, S11,
N
S14
N
516, S17,

3

§55,

$03
806, S07, N

s18, N

§25, N

R
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TABLE 14

e e

e

Diagnoses Based on All Available Attributes
for Actual Heart Disease Case Histories

E

Posterior Distribution*

DO3
NORMAL
D34

DO5
D02
D31
D04

D32

D20
D28
NORMAL
D24
D34
D11

D08
D33

D32
D29

D31
D30
DO5
DO2
D32

D30
DO2

D31
D27
D26

0.91
0.04
0.03

0.84
0.09
0.03
0,03

Definitive Diagnosis

D09

D04

D02

NORMAL

D33

D32

D31

D30

D27

* Only diseases with probability greater than or equal to 0.01

are shown,



133

Experiment 5. Sequential Diagnosis of Heart Disease Cases

The actual heart disease cases were also diagnosed by the pro-
gram using the sequential mode of operation. 1In each case, the
initial attributes presented to the program were the results from
a set of seven tests relating to physical signs. The diseases
were assumed to be equally serious (1ij = 100,000, i # j) and all
tests were assigned unit cost, The search depth in the test se-
lection function was one in each case.

A summary of the results of this experiment is presented in
Table 15. Again, the advantage of sequential diagnosis is appar-
ent, The program required an average of 5.8 tests to obtain a
diagnosis compared to the thirty-three tests required to determine
all attributes, This small number of tests is interesting. Re-
call the sequential diagnosis of the bone tumor cases required an
average of 6,7 tests per case, although the problem involves only
one quarter as many states as the heart disease problem, Several
reasons might be advanced to account for this. First, the tests
associated with heart disease may include a number which have little
value in differentiating groups of diseases, Thus, in a given
problem, the test selection function may choose a terminal decision
after relatively few tests have been run., A second reason may be
the relevance of more inter-attribute relationships in the heart
disease problem, Such relationships may be quite useful in diagno-
sis

, but the testing sequences for them are not examined since the
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TABLE 15

D e 53 =

Sequential Diagnosis of Actual Heart Disease Cases

Case and Number of Distribution Distribution
Definitive Tests Selected at Terminal Based on all
Diagnosis by Program Decision Attributes

1. DO9 10 NORMAL 0.04 NORMAL 0.04

D02 0.06 D03 0.91
D03 0.69 D34 0,03
D11 0,02
D18 0,05
D26 0,03
D34 0,03
2, DO4 4 D02 0.08 Do2 0,09
Do4 0.17 D04 0,03
DO5 0,62 Dos 0.83
D31 0.10 D31 0,03
3. DO2 1 D27 0.03 D32 1,00
D32 0,96
4, NORMAL 10 NORMAL 0,07 NORMAL 0.22
D10 0.03 D28 0.38
D11 0.07 D24 0,04
D12 0.02 D20 0.41
D20 0.67 D34 0,02
D24 0,01 D11 0.0l
D28 0.10
5, D33 3 Do8 0.92 DO8 0.94
D33 0,01 D33 0,05
6, D32 0 D32 0,98 D32 0,98
D29 0.01 D29 0,02
7. D31 10 DO4 0.01 D31 0.47
DO5 0.09 D30 0,37
D31 0.86 DOS 0,08
D32 0.02 D32 0,02
8, D30 8 D02 0,03 D30 0.87
D05 0,02 D02 0,12
D20 0,01
D30 0.89



9, D27

6 D11
D19
D24
D26
D31
D33

Average number of initial attributes
Average number of tests by program =

0.02
0.01
0.06
0.06
0.77
0.03

D31 0.70
D27 0.20
D26 0,10

=7
5.8
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depth of the tree search is limited to one level, Unfortunately, an
increase in the depth of search leads to prohibitive amounts of com-
putation in the heart disease problem. A deeper search may be possi-
ble if more powerful breadth-limiting heuristics are developed.

On the whole, the performance of the program with sequential
diagnosis is comparable to that when all attributes are available,
The one apparent exception to this involves case 9, Here the se-
quential diagnosis failed to assign a probability of greater than
0.01 to disease D27, The seriousness of this failure depends on
medical considerations which are not discussed here. The general
problem of measuring diagnostic performance, however, will be dis-

cussed in Chapter 8,



Chapter 7

FURTHER EXPERIMENTS WITH THE DIAGNOSTIC SYSTEM

In order to explore the potential value of the diagnostic
system as a tool for the study of a variety of diagnostic problems
and strategies, some further experiments were performed. The re-

sults of these experiments are reported in this chapter.

Experiment 6. The Effect of a Very Serious State

In the experiments discussed in Chapters 5 and 6, it was
assumed that the loss for misdiagnosis was the same for all pairs
of diseases., For each experiment, the elements of the loss func-
tion matrix were taken to be 0 for 1l;; and 100,000 for lijJ 1#3.
For this reason, the diagnostic program always selected the most
likely disease as its terminal decision. One can easily imagine
situations, however, in which the assumption of a constant loss for
misdiagnosis independent of the actual disease is unrealistic., For

example, it may be far more serious to diagnose pneumonia as a com-

mon cold than vice versa, Since the diagnostic program incorporates

such considerations in its rules for selecting a terminal decision,
changes in the loss function matrix can result in pronounced

changes in its decisions,
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This effect was observed in two different situations, 1In
the first, the loss function matrix is presented in Table 16, Note
that it is very costly to miss the dilagnosis of CB, The misdiag-
nosis of either CS or ES as a disease other than one of these two
or CB is quite serious, but it is not particularly serious to diag-
nose CS as ES or CB or ES as CS or CB, Failure to diagnose one of
the remaining diseases results in a loss which is independent of
the diagnosis made,.

The generator was used to generate seven case histories of
bone tumor cases. Each case was diagnosed by the diagnostic pro-
gram in the light of the new loss function. The results of this
experiment are summarized in Table 17, From this table, it can
be seen thd#t the new loss function affects only one decision, that
of case 3, In this case, the diagnostic program selected CB as
the terminal decision in spite of the fact that GC (the actual di-
sease) was more than three times as probable, The loss for diag-
nosing CB as GC is 1,000 times that of diagnosing GC as CB, however,
and this fact dominates the decision of the program, The relative
seriousness of CB does not affect the diagnoses of the remaining
cases because the observed attributes excluded CB as a possibility
in each case.

The effect of a serious disease on diagnosis can be made even
more pronounced if the serious disease is not easily distinguished

from other less serious ones, For example, the disease CS often



Diagnosis
CB
Cs
ES
FS
GC
0s
Ps
RC

CF

Loss Function Matrix for Bone Tumor Diagnosis

CB

100

100

100

100

100

100

100

100

10

10

10

10

10

10

TABLE 16

(in thousands)

ES

10

10

10

10

10

10

Actual Disease

FS

GC

1

0s

1

PS

RC

139
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TABLE 17

Sequential Diagnosis of Cases for Loss
Function of Table 16

Number of Distribution

Case and Number of Ini- Tests Selected at Terminal
Disease tial Attributes by Program Decision
1. (PS) 15 1 PS* 1,00
2. (GC) 8 7 GC* 0,90
FS 0.09
cs 0,01
3. (GeC) 9 3 CB* 0,24
GC 0,76
4. (ES) 10 0 ES* 0,99
RC 0.01
5. (ES) 8 2 ES* (0,96
cs 0.02
6. (0S) 13 0 0s* 1,00
7. (GC) 8 12 GC* (0.89
FS 0.09
csS 0,02

* Terminal decision by program.
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appears in a terminal distribution when the actual disease is another,
This means that CS has not been excluded as a possible diagnosis when
a terminal decision is made, By making CS very serious relative to
the other diseases, the decisions of the program can be strongly in-
fluenced.

The loss function matrix presented in Table 18 represents just
this situation. A series of simulated cases was diagnosed by the pro-
gram using this loss function, The results of this experiment are
sumnarized in Table 19, Here the seriousness of CS dominates all
decisions, and the terminal decision is CS in all cases. Note also
that the terminal decision is made after relatively few tests have
been run and while the posterior distribution is relatively diffuse.
The predominance of terminal decisions for disease CS is a result
of the seriousress of that disease., The decrease in the number of
tests per case and the diffuse terminal distributions reflect the
difficulty finding a single test which promises to significantly al-
ter the expected loss, Since the diagnostic program employed a one
level look ahead in searching the decision tree for these cases, it
did not consider possible sequences of several tests to resolve this
problem, This point will be discussed in more detail later in the
thesis,

The above example is but one in which the loss function has a
significant effect on the terminal decisions made by the diagnostic
program. Because the test selection strategy also accounts for the
is affected by changes in the matrix. There-

loss function, it, too

> 2
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Diagnosis
CB
cs
ES
FsS
GC
0s
Ps
RC

CF

TABLE 18

Loss Function Matrix for Bone Tumor Diagnosis
(in thousands)

CB

100

100

100

100

100

100

100

100

CS

ES

Actual Disease

FS

1

GC

1

0s

1

PS

RC

CF
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fore, an important facility in the study of diagnostic strategies

for a particular application is the ability to assess the sensitivity
of these strategies to the loss function. Although the current
version of the diagnostic system restricts the loss function to a
matrix form, it is still possible to employ wide ranges of the

values of the matrix elements in a given application study. This
facility coupled with the capabilities of the generator makes it
possible to study the performance of different versions of the diag-

nostic program with a variety of matrix loss function.

Experiment 8. Studies of a Test-Selection Heuristic

The experiments discussed in Chapters 5 and 6 indicate the value
of sequential diagnosis in reducing the number of tests required for
a diagnosis. Therefore, it is worth some effort to improve the opera-
tion of the test-selection function.

One problem which can arise in the use of the test-selection
function of the current system is the appreciable amounts of com-
putation required to evaluate all the relevant tests at a given de-
cision node. It would be quite desirable to reduce the amount of
computation devoted to test selection provided that the diagnostic
capability of the program were not impaired. As an example of the
amount of computation involved in test selection, consider the fol-
lowing. In the diagnosis of congenital heart disease, there can be
as many as thirty-five states with non-zero probabilities in the

current distribution, If there are twenty relevant tests at a given
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decision node, each with two possible results, a one-level evaluation
of these tests could require the creation of forty distributions,
each requiring the computation of thirty-five updated probabilities,
This is a significant amount of processing for a highly interactive
program, and the example cited does not represent a particularly
large set of alternatives, Since the test-selection function may be
performed many times during a diagnosis, there is a good reason to
reduce the time required to perform it., An obvious approach is to
improve the efficiency of the code for the function. While this
would no doubt lead to improvements, it was not attempted. Atten-
tion was focused on attempting to reduce the number of tests con-
sidered, rather than reducing the time devoted to the evaluation

of an individual test,

This approach was motivated by the results of the experiments
with sequential diagnosis. There it was observed that relatively
few tests were required for diagnosis by the program. The particu-
lar set of tests employed for a given diagnosis is determined dynam-
ically by the program, and varies from one diagnosis to another, If
one could guess which tests would be relevant to a particular diag-
nosis, the total number of tests considered could be reduced signifi-
cantly. A guess about the relevance of certain tests must not be
irreversible, however, because the value of some tests will become
apparent only after other tests have been run,

At any stage in a diagnosis, the current distribution provides
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the most logical basis for a hypothesis about the future relevance
of particular tests. One heuristic which incorporates this view is
the one which restricts the set of tests considered to those which
are relevant to the state which is the best terminal decision at the
current node. This heuristic favors those tests which tend to con-
firm or disprove the current "best guess" about the problem. It
also had the property of reversibility mentioned above, When the
terminal decision changes, the set of relevant tests changes corres-
pondingly.

This heuristic was employed in a number of experiments with
both congenital heart disease problems and bone tumor problems. In
the cases studied it resulted in the same number of tests selected
as the standard function which employs no such heuristic. This
heuristic does reduce the average number of decision nodes considered
per diagnosis, This reduction is not great, however, because in both
problem areas the diseases share many attributes in common, and hence
many relevant tests. Thus, at any decision node, almost almost all
the tests are relevant to the state determined to be the best terminal
decision,.

A second heuristic which offered a potentially greater reduction
in the number of decision nodes considered per diagnosis was also
considered. This heuristic employs the current distribution to “guess"
which tests will not be useful in the remainder of the diagnosis,

Tests which are thought to have little value are temporarily removed
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from consideration, At a later point in the diagnosis these tests
may be released for further consideration,

The actual operation of this heuristic is as follows, At a
given decision node, the set of relevant tests is evaluated by the
test selection function, Then the set of "tests is partitioned into
two disjoint subsets, In the first are all those tests with the
property that the sum of the cost of the test plus the expected loss
of a terminal decision after the test has been run exceeds the ex-
pected loss of the current terminal decision., These tests are said
to be dominated. The second set consists of all the remaining un-
dominated tests., The heuristic hypothesizes that the tests in the
dominated set will remain dominated for the remainder of the diag-
nosis. This set of tests is placed on the top of a push-down stack.
At each decision node the push-down stack is examined prior to evalu-
ating each test, 1If the test is found in the stack it is not con-
sldered at the decision node,

In general, then, each iteration of the test selection function
produces a new set of dominated tests which are pushed onto the stack,
This means the set of relevant tests is generally decreased at each
stage of the diagnosis, Whenever there are no undominated tests at a
given decision node (i.e, whenever the terminal decision is selected),
the program releases the set of dominated tests (if one exists) on
the bottom of the stack, This corresponds to re-evaluating those

tests which were tentatively discarded earliest in the diagnosis,
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The reason for this choice is that it is desirable to reconsider
tests which were dominated when the distribution was quite different
from the present one, If the distribution has changed little, tests
which were formerly dominated are apt to be currently dominated, Ac-
tually, there is no guarantee that this method will produce the de-
sired effect, It is used primarily as an example of a possible ap-
proach, and additional discussion will be devoted to the subject below,

The 'dominated-test'" heuristic was tested in the sequential
diagnosis of both the heart cases and bone tumor cases, The nine
heart disease cases and the twelve bone tumor cases were used as the
testing sample, The same initial attributes for a given case were
given to both the "dominated-test' heuristic and the standard ver-
sion of the diagnostic program., The number of tests by the program,
the number of decision nodes considered during diagnosis, and the
distribution at the terminal decision were all recorded. These re-
sults are summarized in Tables 20 through 23. A number of these
results have an interesting interpretation.

In both the heart disease cases and the bone tumor cases, the
dominated-test heuristic results in a substantial reduction in the
average number of decision nodes considered per diagnosis. In the
heart disease problem, this heuristic results in a larger average
number of tests performed per diagnosis. In situations when the cost
of an average test exceeds the value of the computation saved, this
is an undesirable effect. The reason for this reduction in diag-

nostic efficiency can be seen from the following interpretation of



TABLE 20

Sequential Diagnosis of Heart Disease Cases--
Standard Test Selection Function

Case and

Initial

Number of

Number of

Decision

Distribution

Tests Selected

Diagnosis

Attributes

by Program

Nodes

at Terminal

Considered

Decision

1,

DO9

DO4

DO2

NORMAL

D33

D32

D31

7

10

10

10

541

287

133

523

248

66

513

NORMAL
DO3
D34
D02
D18
D26

D02
DO4
DO5
D31
D27
D32

NORMAL
F10
D11
D12
D20
D24
D28

DO8
D33

D32
D29

D05
D31
D32

0.04
0.69
0.03
0.06
0.05
0.03
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8. D30

9. D27

7 8 457 D02
DO5
D20
D30

7 6 379 D11
D19
D24
D26
D31
D33

Average number of tests by program = 5.8
Average number of decision nodes considered = 350



TABLE 21

Sequential Diagnosis of Heart Disease Cases
Dominated Test Heuristic

Number
of Tests Number of
Case and Initial Selected Decision Nodes

Distribution
" at_ Terminal

Diagnosis Attributes by Program Considered

1, DO9 7 11 283

3. D02 7 1 66

4. NORMAL 7 16 345

5, D33 7 3 176

6, D32 7 0 66

7. D31 7 11 269

. Decision

NORMAL
DO3
DOS5
DO2
D11
D18
D26
D34

DO2
DO4
DO5
D31

D27
D32

NORMAL
D11
D15
D20
D28

DO8
D33

D32
D29

D30
D31
D32

0.04
0.70
0.01
0.06

[f- =]
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oNOOWw
NN O

151



152

8. D30 7 10 301 DO2
D04
DOS
D18
D20
D30
D31
D32

9, D27 7 6 216 D11
D31
D24
D26
D33

Average number of tests by program = 7
Average number of decision nodes considered = 208
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TABLE 22

Sequential Diagnosis of Bone Tumor Cases
Standard Test Selection Function

Number of Number of
Case and Initial Tests Decision Distribution
Pathology Attributes Selected by Nodes at Terminal

Program Considered Decision

1. (GC) 7 9 269 GC 0.78
CB 0,21

2. (0S) 10 12 425 0s 0.35
CS 0.65

3, (CB) 9 0 0 CB 1.00
4, (CS) 70 4 223 cs 0.99
5. (0S) 10 4 194 0S 1.00
6, (RC) 10 13 406 RC 0.68
ES 0.30

FS 0.01

7. (CS) 8 4 228 cs 0.78
FS 0.22

8. (ES) 8 11 475 ES 0.05
FS 0.07

RC 0.87

9. (ES) 6 5 278 ES 0.88
RC 0.05

0S 0.05

¢S 0.02

10. (CB) 10 3 109 CB 0.96
CF 0.04

11. (GC) 10 5 169 GC 0.81
cs 0.10

CF 0.08

ES 0,01

12, (PS) 10 3 142 PS 0.93
FS 0.02

cS 0.05

Average number of tests by program = 7.1
Average number of decision nodes considered = 243
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TABLE 23

Sequential Diagnosis of Bone Tumor Cases
Dominated Test Heuristic

Number
of tests Number of Digtribution

Case and Initial Selected Decision Nodes at Terminal
Diagnosis Attributes by Program Considered Decision
1. (GC 7 7 151 CB 0.73
GC 0.26

2, (0S) 10 17 211 cS 0.66
0s 0.34

3. (CB) 9 0 0 CB 1,00
4, (CS) 10 5 148 cs 0.82
ES 0.09

FS 0,05

0S 0.05

5. (08) 10 3 139 0s 0,92
ES 0,02

cs 0.03

RC 0.03

6. (RC) 10 14 218 RC 0,70
ES 0.29

7. (CS) 8 4 180 cs 0.74
FS 0.26

8. (ES) 8 15 294 RC 0.90
FS 0,05

ES 0.03

9, (ES) 6 5 137 ES 0.87
cs 0.03

FS 0.01

0Ss 0.04

RC 0,04

10, (CB) 10 3 97 CB 0.96

CF 0.04



11,

12,

(GS)

(PS)

10 5 119 GC
Ccs
ES
CF

10 3 106 PS
cs

FS

Average number of tests by program = 6.6
Average number of decision nodes considered = 150

0.81
0.10
0.01
0.08

0,92
0.05
0.02
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the heuristic,

This heuristic simulates to a certain extent the diagnostic
strategy of one who seizes upon an initial view of the problem and
later yields that view with considerable reluctance, Thus, the
program makes a guess as to which tests will prove important at an
early stage in the diagnosis, and thereafter restricts its attention
to those tests as long as some appear to be useful, The difficulty
is that the view on which the guess was made may not be an accurate
one., Although the tests being considered may be of some value,
there may be other tests, temporarily disregarded, which may be of
greater value. Unfortunately, the heuristic is not sufficiently
sensitive to changes in the current distribution, and it may cause
relatively unfruitful paths to be pursued to an unnecessary extent,
When it eventually abandons such a path and re-evaluates the formerly
dominated tests, it may already have incurred unnecessary testing
costs. The heuristic exhibits a "single-mindedness™” which results
in less than satisfactory performance,

In the bone tumor cases, this heuristic reduced both the
average number of decision nodes considered and the average number
of tests run., Here its failing is a loss of accuracy. This effect
is extremely interesting. Apparently in its pursuit of an informa-
tive series of tests, the program succeeds in obscuring much of the
information implicit in the initial attributes. As a result, when

the undominated tests are finally released for consideration, the
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current distribution is sufficiently altered that the program does
not find additional tests worthwhile, This effect may be the cause
of the results for case 1, Here the dominated test heuristic se-
lected fewer tests in arriving at a less satisfactory diagnosis than
the standard test selection function.

While the heuristic in question has some shortcomings, it does
indicate a certain amount of promise. What it seems to lack is an
awareness of changes in the current distribution which should cause
certain dominated tests to be released for consideration, One possi-
ble solution is to save the current distribution with a set of
dominated tests. This would allow the program to compare the pres-
ent distribution with one in the stack to determine whether the view
of the problem has changed sufficiently to warrant the release of
the tests. This comparison could also account for the relative
seriousness of states in deciding whether a given change were sig-
nificant.

This example is but ome of a number of heuristics which can be
studied in the diagnostic system, Because very large decision trees
may be encountered in future applications, a variety of tree-pruning

heuristics should be studied.

Experiment 9. Exercise of the Pattern-Sorting Capability
A small example was constructed with which the pattern-sorting
capability could be tested. This example consisted of six states

and fifteen attributes, The matrix for the example is presented in
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Table 24, The states in this example can be partitioned into two
sets which have the property that certain attributes are specific
to the states in a group and other attributes are shared by the two
groups, The generator was employed to simulate case histories with
noise attributes. That is, a case history for a state in the first
group included ome or more attributes selected from those specific
to the states in the second group.

Consider the following diagnostic problem with the loss func-
tion as specified in Table 25, The initial attributes are S10, S12,
513 and SO4. These attributes cannot be attributed to a single state,
and so the pattern-sorting function produces more than one pattern.
In this case the patterns formed are (SO04) and (S10, S12, S13), For
each of these patterns the distribution over states is obtained as-

suming that the given pattern is the only one, These distributions

are:

1) (S04): DONE  0.24 2) (S10,S12,S13): DFOUR 0.42
DTWO  0.11 DFIVE 0,02
DTHREE 0.65 DSIX 0.57

Based on these distributions, the pattern-sorting function selects

the current pattern. Here the choice is pattern 1 although it con-
tains only one attribute, From the loss function matrix, it can be
seen that state DONE is very serious, Since state DONE can exhibit
S04, the posterior probability of DONE given S04 is non-zero (0.24),

By considering both posterior probabilities and losses, the pattern-
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DONE

DTWO

DTHREE

DFOUR

DFIVE

DSIX

TABLE 25

Loss Function Matrix for Six State Problem
(in thousands)

DONE DTWO DTHREE DFOUR DFIVE DSIX
0 1 1 1 1 1
100 0 1 1 1 1
100 1 0 1 1 1
100 1 1 0 1 1
100 1 1 1 0 1
100 1 1 1 1 0
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sorting function selects pattern 1 as the more serious, and hence

it becomes the current pattern, Tests are selected relative to this
pattern, but any new attributes are processed through the entire pat-
tern stack as discussed in Chapter 4. In this particular example, the

program continued diagnosis until the following situation was obtained:

1. (802, SO4, NOT SO06, SO7, NOT SO8, NOT S09)

DONE 0.92
DTHREE 0.08

2. (810, s12, S13, S02)
DFOUR 0.62
DFIVE 0.01
DSIX 0.37

The program then tentatively attributed pattern 1 to state DONE,
This left S10, S12, and S13 unaccounted for. At this point, the
user terminated the diagnosis. Had he wished, he could have pursued
the investigation, the original pattern was shown to be invalid, the
attributes in it would be returned to the unaccounted-for set and
the pattern would be removed from the stack.

A variety of such experiments were run with the pattern-sorting
function and the results indicated that the particular scheme embodied
in the function exhibits the desired properties., This function needs
to be studied more extensively, however, especially in more complicated
situations, Although this area was somewhat slighted in this research
the environment provided by the diagnostic system should be a good

one in which to pursue such a study.



Chapter 8

DISCUSSION OF THE RESEARCH

The research discussed in the preceding chapters suggests
a number of questions and issues which merit additional comment,
In this chapter an attempt is made to draw together a number of
results and to consider their potential generality. Also of interest
here are some of the possible extensions of this research which aim
at developing a more sophisticated system for the study and perform-
ance of diagnosis.

One of the more obvious questions involves the evaluation of
the performance of the current diagnostic program. This question
is important for two reasons. First, one of the principal hypothe-
ses considered in this research was that in a variety of problem
areas, a computer program could prove a competent or superior diag-
nostician., The current program has been applied to a number of
cases, simulated and actual, of bone tumor and congenital heart di-
sease, Hence a reasonable question is how well did it perform. A
second reason for establishing a meaningful performance measure 1is
so that it can be used in studies of various diagnostic strategies,
If one test selection heuristic is to be judged superior to another,
the judgment must be based on a measure of performance, and that

measure should reflect diagnostic capability, So there is a very

162
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real need for a good measure of diagnostic performance.
Unfortunately, while the need for a performance measure is clear,
the precise nature of such a measure is open to a number of ques-
tions. Perhaps the best way to approach the problem is to catalog
those qualities for which a diagnosis is generally judged to be a
good one. The most obvious of these qualities is the accuracy of the
diagnosis. The object of diagnosis as stated in the beginning of
this thesis is to ascertain the state of a system, All other things
being equal, the more accurate the determination of the state of the
system, the better the diagnosis, By itself, however, this quality
has relatively little meaning. One desires to know the state of a
system in a diagnostic problem because this knowledge is an input to
a subsequent decision (e.g. the decision about a treatment plan for
a medical problem), Accuracy is not sought for its own sake, but
rather for its improvement of decisions which result from the diagno-
sis, 1If these latter decisions are independent of any particular al-
ternative in a group of diagnostic decisions, then there is no bene-
fit to be accrued from distinguishing one of this group from another.
From the point of view of further decisions, the states corresponding
to these decision alternatives constitute an equivalence class, If
a doctor knows that a patient has one of three viruses, all of which
would be treated in the same manner, there may be no value attempt-

'

ing to deduce the "actual' virus,

If one were interested in accuracy as the chief quality of good
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diagnosis, he could contend that in the above example, the doctor
was accurate in diagnosing the problem as one of three viruses and
that this can be thought of in identifying the state of the patient,
A simple extension of this example makes this objection less forceful;
however, Suppose that each of the three viruses are treated in a
different manner and that there is a loss of diagnosing any one as
another, but in each case this loss is less than the testing loss
required to distinguish one from another, Again the identification
of the goal of diagnosis as accuracy seems incomplete. The point is
that accuracy is sought only to an extent commensurate with the ex-
pected consequences of a diagnostic decision about the system and
the expected cost of obtaining greater accuracy.

This view of the diagnostic process has been the basis for this
research, From the point of view of the diagnostician, the goal
of diagnosis is to minimize the sum of the testing loss and the ex-
pected decision loss. Conceivably a diagnostician could correctly
ascertain the state of a system at such a testing cost that his diag-
nosis would be judged inferior.

While it is appropriaté for a diagnostician to consider expected
loss for misdiagnosis as a factor in determining the course of a
diagnosis this quantity is not necessarily relevant to the judgment
of his diagnostic performance. The principal reason for this is that
the expected loss depends on the probability distribution over states

which is held by the diagnostician at the time of a terminal decision,
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Since the diagnostician chooses tests, this distribution reflects

his testing strategy as well as the actual problem., Basing a per-
formance measure on expected loss ignores the relative merits of dif-
ferent testing strategies, It is as though a doctor were to be given
a high performance rating simply because he believed very strongly
that he had discovered the patient's problem., This strong belief may
well be founded on incomplete or irrelevant information.

A more satisfactory way of assessing diagnostic performance is

to simply add the testing loss to the actual decision loss. That

is, judge the act rather than the intent, Ideally, one could deter-
mine the actual decision loss by comparing the actual state of the
system (when it becomes known) with the diagnostic decision and
determining the loss attributable solely to the difference between
the two., By this standard, a diagnostician who consistently mini-
mized the sum of testing and decision losses would be judged to be

superior. Some of the problems inherent in this measure are rather
obvious. First, the actual state of the system may never be known
with certainty, A patient who is diagnosed and treated may never
return for further examination, and hence a serious misdiagnosis may
never be uncovered, A second problem is the difficulty in appor-
tioning the decision loss to various diagnostic decisions, Also,
the loss itself may be very difficult to ascertain, Nonetheless,
this measure does seem to subsume the desired properties, and al-
though it may be difficult to apply, it does seem to be a standard

to be sought,
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Another consideration in evaluating diagnostic decisions couched
in terms of probabilities is the interpretation of probability dis-
tributions. For example, what are the implications of a diagnosis
of (0.75, 0,25) for the states S1 and S2 for a performance measure?
To a large extent, it depends on the actions which are taken based
on this diagnosis. Suppose the actual state is 82, How does this
affect the evaluation of this diagnosis? If only a single action
can be taken on this diagnosis and it is based on the belief that the
state is S1, the problem is even more difficult. The influence of
such a distribution on a human decision maker may be quite subtle.

If individuals react differently to such distributions, the problems
will be compounded.

Finally, some effort should be made to normalize performance
measures., Certain problems may be inherently more difficult to
diagnose than others, For this reason, it is important to obtain
an understanding of the limitations placed upon even the most expert
diagnostician by the very nature of the problem before him.

The evaluation of the performance of the diagnostic program
in the particular problem areas of bone tumors and congenital heart
disease is made more difficult by the lack of well-defined loss
structure for these problems, This precludes the use of the total
loss measure discussed above. An alternative approach is to compare
the program performance with standards based on the performance of ex-
perienced doctors, Even this approach is somewhat indirect in this

case. Since no studies of doctor performance with the particular
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case histories used were performed, no immediate comparisons based
solely on the results of this research are possible. Some indica-

tion of program performance, however, can be obtained in the follow-
ing way., The problems of bone tumor diagnosis and heart disease
diagnosis have been studied extensively by Lodwick and Warner res-
pectively. Both develsped computer programs to perform diagnosis

and have compared the performance of these programs with that of ex-
perienced physicians. These comparisons suggested that the programs
performed diagnosis of a quality comparable to that of an experienced
physician when all attributes were presented to both physician and
program, The fact that the current diagnostic program duplicates

the results of these programs on the cases studied suggests that the
current program would fare equally well in a comparison with physicians.
In the absence of a performance measure, this is the strongest state- ‘
ment which the experimental evidence will support.

If one tentatively accepts this suggestion, then a second sig-
nificant conclusion can be derived from the results of these experi-
ments, The diagnostic program was able to solve problems in two
different areas of medical diagnosis. These areas differ in both
the number of diseases and the complexity of inter-attribute rela-
tionships which are considered, The latter aspect is particularly
important because it was handled without changing the program. Since
the experiments involved only two problem areas and both were medical,

the applicability of the program for a wide class of problems has
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not been established, Its success in the two areas mentioned,
however, strengthens the belief that it does have wider applica-
bility,

The fact that the program is independent of the content of
the information structure might be of significant value in the use
of the program with hierarchical structures, Consider, for example,
the problem of diagnosing a very large set of diseases. One possi-
bility would be to create a hierarchical structure in which many
sub-structures exist. The structures for bone tumors and congenital
heart disease might such sub-structures. At the higher levels,
the states would be classes of diseases, such as heart disease.

The goal of diagnosis at higher levels would be to determine the
proper class of disease., When this determination had been made, a
more detailed sub-structure for that disease class would be employed
for a "finer" diagnosis, The same diagnostic program could deal
with all sub-structures, This would be a great improvement over a
large set of programs, one for each sub-structure.

Again, considering the results of diagnosing actual case his-
tories, one can readily appreciate the advantage of sequential diag-
nosis, In the particular problems studied, the program was able to
arrive at a diagnosis with the use of relatively few tests. This
capability is very important since the testing cost for a diagnosis
may be a significant part of the total cost., Tests which are un-

necessary or uninformative may exact a high price, and an effort



should be made to restrict the tests run to those essential to the
diagnosis, The sequential test selection facility permits the pro-
gram to dynamically assess the potential usefulness of each possible
test. This results in efficient testing strategies, an important
component of good diagnosis.

In a problem area in which the tests relevant to different
groups of states are relatively disjoint, the value of sequential
testing should be even greater, Once the appropriate group of states
has been established, the tests considered can be restricted to the
set of tests associated with that group. In the absence of a sequen-
tial testing capability, it may be necessary té perform all tests to
obtain information which could have been obtained from a few, The
striking reduction in the number of tests required for diagnosis of
bone tumors and congenital heart disease effected by sequential testi
strongly suggests the potential value of this approach in other diag-
nostic problems,

The existence of a diagnostic system rather than just a diagnos-
tic program has proved quite important in this research, Many of
the strategies which were considered are quite complicated, and it is
difficult to predict a priori the manner in which they will perform,
The generator has been very useful in testing these strategies under
a variety of problem conditions, Also of use has been the facility
for selectively monitoring particular diagnostic functions such as

pattern-sorting and test selection by collecting detailed data on
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their operations,

One virtue of the inclusion of a generator in the diagnostic
system is that it makes it possible to study the performance of the
diagnostic program in problems derived from a wide range of informa-
tion structures, The simulation capability frees the researcher
from dependence on actual case histories, Thus he can create struc-
tures and simulated cases specifically designed to test some aspect
of the diagnostic program, The use of the simulation facility with
an information structure corresponding to an actual diagnostic
problem may also be very useful in the study of that particular
problem,

Complementing this capability is that of operating the diagnos-
tic program in an interactive mode, Thus a user can employ the pro-
gram in actual diagnostic problems, This 'open end" of the system
permits the independent testing of strategies developed through re-
search, as well as making the diagnostic program a practical aid to
problem solving., The experience gained in this research indicated
the value of such a system which permits the study of both actual
and artificial diagnostic problems, It seems that this type of
system would prove must useful in further development of sophisti-
cated strategies for computer-aided diagnosis,

Finally, the modularity of the system is very important. Om
the one hand, the insulation of the system functions from one another
permits one to study a wide variety of diagnostic strategies since

the functions can be changed independently of one another. Also as
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better versions of these functions are developed, they can be incor-
porated into the system without restructuring it. In this sense, the
performance of the system can be improved as additional experience
with it is obtained.

The experience obtained with the diagnostic system has pointed
to a number of areas for further research. A number of these areas
are discussed here, Some pertain to specific improvements in the
diagnostic capabilities of the program, while others have more gen-
eral ramifications.

In Chapter 7, certain experiments to study the effect of the loss
function on diagnosis were discussed, While these experiments are by
no means exhaustive, they do indicate the strong effect the loss
function can exert on diagnoses obtained by the program. Two major
questions need to be investigated in this regard. The first is how
such a loss function can be developed for a particular problem area,and
the second is in what ways is diagnosis sensitive to the actual values
of a loss function,

The first question is a very difficult one to answer, Assuming
for the moment that the matrix form of the loss function is retained,
the problem is to determine the '"seriousness' of each possible mis-
diagnosis in some appropriate units, For example, in the context of
medical diagnosis, one must answer questions such as "How serious is
the diagnosis of pneumonia as influenza and vice versa?" This answer

must be in such terms as to permit the comparison of a wide variety
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of misdiagnoses in an orderly manner. If one considers the extreme
range of consequences resulting from misdiagnoses in medicine, he
can appreciate the magnitude of this task. As stated, the problem
required the establishment of a common scale for such extremes as
the failure to diagnose a simple cold and the failure to diagnose
cancer,

In many instances, the loss for a misdiagnosis depends on many
extraneous factors, such as whether a patient will return to the doc-
tor when his symptoms persist, The loss may also depend on decisions
made after the diagnosis which are difficult to predict, Compound-
ing the problem of the loss function is the need to convert the test-
ing loss to the same scale, In particular areas, one may be confronted
with further complications in this regard., For example, the question
of a loss function for medical diagnosis is also a question of whose
loss function should be employed. One could answer that the loss
function should be that of the patient., The loss function of the doc-
tor, and that of society, however, are also possible answers to this
question. If a diagnostic system were created for general use in
medical diagnosis, questions such as these would have to be considered,

Although the problems of determining the loss function for
an area as complex as medical diagnosis would be very great, they
may well prove worth the effort of solution. If the value of a pro-
gram for diagnosis in a given area can be clearly demonstrated to

be considerable, this would be strong motivation for work on an ap-
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propriate loss function. As currently conceived, such a diagnostic
program would make extensive use of losses in directing a diagnosis.
These losses should reflect the best understanding of the conse-
quences of possible decisions, In some areas, the development of a
loss function might be a valuable exercise independent of the im-
plémentation of a diagnostic program, In areas where sophisticated
diagnosis is currently being performed by human beings, a loss func-
tion is often implicit. The attempt to quantify this loss function
may reveal inconsistencies and reveal implicit losses of questionable
merit, To the extent that this situation obtains in a particular
area, there is additional motivation for research into this problem,

Such research would involve investigation of means of quantify-
ing and scaling diverse consequences as well as considerations of the
best form which the loss function should take. To a large extent, a
framework for these investigations has already been established. A
number of workers in the areas of statistical decision theory, game
theory, and economics (R21, R22) have considered many of the prob-
lems associated with the attempt to scale decision alternatives,
While this work is far from complete, it does provide a reasonable
basis for some of the initial studies., This whole area 1is rich with
problems of interest and importance,

Another important area for research is the development of a
diagnostic program which includes improved solutions to a number of

different problems, some of which are discussed here,
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As previously noted, the test selection function merits particu-
lar attention., This function serves a central purpose in the over-
all diagnostic strategy of the program, and as a result, significant
improvements in this area would directly promote the diagnostic capa-
bility of the program. More sophisticated test selection heuristics
are required if the program is to deal successfully with problems
involving large numbers of decision and testing alternatives. All
the test selection heuristics employed in this research is "fixed-
depth" in the sense that they explore all branches away from a given
decision node to a fixed depth in the decision tree. Most likely a
better test selection function would explore branches to varying
depth, pursuing further those branches which appeared more promis-
ing. The difficulty yet to be overcome in this regard is the es-
tablishment of some measure of 'promise' for branches in the decision
tree, This problem has been encountered in other applications of
heuristic programming, and it can be expected that significant re-
sults in the diagnostic problem would be of more general applica-
bility., Similarly, if powerful test selection heuristics can be
developed, they might be of considerable value in a variety of
sequential decision problems,

Another improvement to the diagnostic program would allow it
to take advantage of various relationships among tests. For example,
if one is going to perform a certain test, it may be advantageous

to perform another test as well because it is inexpensive when run
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in conjunction with the first test, The inclusion of more complete
information about tests in the information structure might allow

the program to exploit various inter-test relationships and to select
groups of tests to be run during diagnosis.

The pattern-sorting function needs to be bolstered by the addi-
tion of facilities for assessing the accuracy of the attributes
provided it by the user, Just as it is important to detect noise
attributes, it is equally important that the presence of false in-
formation be discovered, Undoubtedly only partial solutions to this
problem are possible, but additional capabilities of this kind,
even if somewhat limited, would be of considerable value in appli-
cations of the program to actual diagnostic problems. For example,
the program could include a means for incorporating estimates of
the reliability of tests into both the pattern-sorting and inference
functions,

A number of improvements can be made in the inference function
of the program. One of these is the incorporation of a learning
scheme within this function. Such a scheme would permit the pro-
gram to learn the a priori probabilities for the various states as
well as the conditional probabilities of attributes of given states.
Bayesian framework provides a convenient structure within which a
learning scheme can be developed., Learning of this type is especially
important if the relevant probabilities vary with the specific appli-

cation, For example, if the information structure for congenital
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heart disease were employed in a region of the country other than
that in which it was developed, the probabilities might require ad-
justment to reflect changes in the characteristics of the popula-
tion of potential patients, The program can obtain the information
required for such an adjustment from the actual diagnoses which it
performs on patients from the new population provided that other
means of obtaining diagnoses are available., Thus in certain appli-
cations, the diagnostic program may require a training period in
which it can alter the contents of the information structure to more
accurately reflect the relevant behavior of the given system, A
variety of learning schemes should be investigated to develop a
scheme which will be suited for this problem,

Some of the considerations involved in research of this kind
are apparent at the outset, If the probabilities of interest are
relatively stable, then a rather prolonged learning period may be
acceptable in the hope that these probabilities will be learned accu-
rately. On the other hand, if the probability structure of the
problem is relatively dynamic, then more rapid learning may be re-
quired, One difficulty with the latter situation is that rapid
learning implies a greater weighting of recent experiences and if the
environment is noisy, this may lead to poor probability estimates,
and hence to poor diagnosis, One possibility is to exploit the
ability of the human diagnostician to perceive patterns and trends

by allowing him to influence probability estimates dynamically, For
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instance, a doctor might be better able to detect the early stages
of an epidemic and hence adjust the a priori probability of the

prevalent disease to reflect its increased incidence.

Some Comments on the Diagnostic Model

When one devotes considerable attention to the problem of diag-
nosis, he may experience a tendency to generalize his definition of
the problem so as to encompass an increasingly wide circle of prob-
lems, The danger of this tendency is that it may result in the ex-
tensive discussion of diagnostic programs and systems of impressive
capabilities which are founded more on wishful thinking than on
practical experience. Because the appeal of such an intellectual ex-
ercise is strong, it is important to consider carefully the model of the
diagnostic problem being employed in order to obtain a realistic view
of both its potential and limitations., Some of the important charac-
teristics of the model employed in this research are investigated
here with this intention,

A diagnostic model based on attribute-state relationships has
understandable appeal. In many diagnostic problems the most visible
aspect of an expert's attack on a problem is his gathering of attrib-
utes on which to base his decision. In many instances he may appear
to relate these attributes directly to the possible states of the
system., When the difficulty of diagnostic problems in general is
considered, however, it seems unlikely that the human expert per-

forms only a simple association of attributes and states to arrive
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at a diagnosis, Diagnosis, as performed by humans, seems to be a
subtle and often complex process of association and deduction,

The model employed in this research, on the other hand, is
very explicit in the way in which it relates attributes and states,
Associations in the information structure are relatively direct,
and deduction is performed in a uniform manner for all problems.

In one sense, the model employed by the diagnostic program appears
quite rigid and simple, Even this brief comparison with human diag-
nosis suggests an important question, Can this relatively simple
model be sufficient for a diagnostic program to perform effectively?
A derivative of this question is the following. To what extent can
a program based on this model be successful in performing diagnosis
in a variety of problem areas? Although the evidence gathered from
this research is far from sufficient to allow definitive answers to
these questions, it does permit some insights into the problems to
which these questions are addressed.

The author believes that the basic functions developed in this
work reflect aspects of a diagnostic program which has both potential
generality and power, At present, the functions are quite crude in
their structure and capabilities, but the conception of diagnosis in
terms of these functions (or their more sophisticated successors) is
believed to be both a useful and viable one. One problem may be that
the current separation of functions is somewhat restrictive, but this
has the advantage of emphasizing the principal objectives and problems

of each. This emphasis is very important in the initial phases of
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research in this area, and the separation permits the study of differ-
ent versions of one function more or less independently of the others.

In broad outline, the model incorporates the principal features
of diagnosis as performed by human beings, The inference function
coupled with the information structure allows the consideration of
both past experience and current information in a particular diagnosis,
Bayesian inference provides an orderly way for balancing these two
elements in the deductive process. The test selection function pro-
vides the program with a rational means for choosing tests which
accounts both for their cost and their potential value in furthering
the diagnosis, Finally, the pattern-sorting function provides a
means for performing diagnosis in the presence of noise,

While it is unlikely that the human diagnostician employs this
particular division of the diagnostic function, the total capability
incorporated in the functions seems to approximate that required,

It is also important to note that there is no particular reason to
require a diagnostic program to simulate the processes employed by
humans, A more appropriate requirement is that a diagnostic pro-
gram should allow the exploitation of the comparative advantages of
a computer in order that the total diagnostic capability of a man-
machine partnership may exceed that attainable by either above.

For example, it has been noted that doctors do not organize
their diagnostic experience into large lists of symptoms and diseases,

but rather associate their experience with and through their under-
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standing of the human body and its processes. It would be extreme

to conclude from this that such an organization is a necessary one
for diagnosis, particularly if the diagnostician is a computer pro-
gram, The fact that a doctor does not order his ewperience primarily
in terms of attribute-disease lists may simply be evidence of the
difficulty he encounters in attempting to deal with and maintain
information of this form, A computer program would have less of a
problem in this regard, and, in fact, this may be a useful structure
to impose on the experience employed by a diagnostic program.

While in very general terms, the functions of the program corres-
pond to those apparently required for diagnosis, there remain cer-
tain questions about limitations arising from their current realiza-
tions, In a sense these are questions about the generality of the
model, Since the program was designed to solve the model diagnestic
problem, it is reasonable to expect that the generality of the pro-
gram will be determined by the extent to which real diagnostic prob-
lems can be described by the model, (Also, the appropriate statis-
tical data must be available,)

For example, a major difficulty in applying the program to pro-
gram debugging is developing a proper characterization of states,
One can see in theory how this can be accomplished, but a practical
solution would be extremely difficult. Also, an extremely useful

strategy in program debugging 1s changing the state of the program (by



changing instructions, etc.) Here tests may very well change the
state of the system, Because one can save a copy of the program,
one can also use destructive testing, While one could probably
change the model (and program) to reflect these possibilities, the
current model does not account for them, Hence, the use of the pro-
gram in this area is severely limited.

Also, there may be areas in which the diagnostic experience
may not fit the statistical model employed in this work, In these
areas, the inference function would have to be redone for non-Bayes-
ian inference,

On the other hand, there seem to be a number of real problems
which can be described by the model, including many machine failure
and medical diagnosis problems, While the evidence is limited, the
performance of the current diagnostic program in the areas of con-
genital heart disease and bone tumors should not be overlooked., At
the very least these results must be termed promising. The model on
which the program was based and the program itself were developed
independently of considerations of these particular diagnostic prob-
lems, and yet the program demonstrated potential value in both areas.
There seems reason to believe that other problems of medical diagno-
sis will also prove susceptible to such a program. The diagnostic
system permits the study of alternative strategies developed in the
light of such experiments, and this, too, should ease the problems

of increasing the extent of its capabilities.
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Some of the difficulty in applying the program to new areas
can be traced more directly to a lack of adequate data for an in-
formation structure than to an inherent intractability to this ap-
proach, If continued research yields further indications of the
value of a computer program for aiagnosis, it may well be worth the
considerable effort required to reformulate a number of diagnostic
problems in terms of this model or an extension of it, Certainly,

the results of this research do not preclude this possibility.
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Appendix 1

Sample of an Input File
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(STATE DO1 0.05 sSO1 0.01 802 0,10 . . . S17 0.90)

(CLUSTR DOl EXOR 0.05 S06 0.07 S07)

(ATTRIB (SO1 S02 S03) TESTl S04 TEST4 . . . (16 S17) TEST16)

(TESTS TEST1 10, . ., . TESTI6 15.)
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Appendix 2

Trace of a Session with the Diagnostic Program
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UV SO AL Lo

User responses = small letters
Program responses = capital letters

1.

2,

15,

16,

17,

18.

r system

RAME OF DIAGNOSTIC AREA PLEASE
bone tumors

NAME OF LOSS STRUCTURE FILE
bone losses

INFORMATION STRUCTURE ESTABLISHED
generate brief

YOU OR ME

me

HISTORY FILE

bone case

CODES

3222323

NEW CASE
WHAT ARE THE INITIAL ATTRIBUTES OF THE PROBLEM, Q.

s05 s07 sll si4 sl7 s20 not s21

CONDITIONAL PRIOR STATE PROB

CB 0.26
cs 0.09
GC 0,62
CF 0,02
TRACE 0,01

ANY IDEAS, Q. TYPE 'DONE' IF SATISFIED,

c,.r,



19.
20,
21,
22,

23,

24,
25,

26.

27.

28.

SET SEARCH DEPTH, THRESHOLD, AND HEURISTIC CONTROL
10,100

THE TEST SELECTED IS TEST43

s43

CONDITIONAL PRIOR STATE PROB
CB 0.55
CS 0.04
GC 0.37
CF 0.04

THE TEST SELECTED IS TEST50

s50
CONDITIONAL PRIOR STATE PROB
CB 0.21
GC 0.78
TRACE 0.01

GC TENTATIVE DIAGNOSIS FOR THIS PATTERN

CONSISTENT DTIAGNOSIS FOR ALL ATTRIBUTES

189
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Notes

A, Line 7 through line 14, The user sets controls for the run,
These controls include a history file and instructions as
to what information is to be collected in this file during

the run (line 13),
B. Line 15. These are the initial attributes of the problem,

C. Line 16, The inference function reports the current dis-

tribution,

D, Lines 17 and 18. The user is given the option of testing
his hypothesis about the problem. He declines this’option

(line 18).

E. Lines 19 and 20, Here the user sets the depth and threshold
for the test selection function. He also chooses the stan-

dard version of this function,

F, Lines 21 and 22, The program selects a test and the user

responds, This dialogue continues through line 25,

G. Line 27 and line 28, The program makes a terminal decision
for the pattern, This decision accounts for all attributes and

the case is completed,
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Listings of Diagnostic System
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COMMON  NAD
——————— PN BUFL, BUFZ,CBET+SIGNS 1 CPAT ALLRAT,CPRIOR — —— — — —— ——
1 +CTESToALLTST,DISEAS,STAND,FILEL,FILE2,
LST

3 JPATLSToSTRUCT, SYMCNT o SYMLST s UNACTOD» TSTRUNPATSTK
+ORSTCK s STACK,URUNC s ARGS »PREM,CONS T+ SPOINT

+CODE
5 JNPRINM,CELL
——————— _DIN-BUELIA32),BUF2(432),STACK (20} UFUNCL20),ARGS{1OD} —
1y PRIM(30),NPRIM{30),CONST{30),CELL{20)

NEWVAL « { SVALUESS,LIST.{9),LIST.ICELL(8)))
L3STAORETCK)
LISTL(TSTRUN)

LIST. (UNACTD)
LISTLIEND).
LIST.(STRUCT)

PRIM(2)=MINUS.
v s

PRIM(4)=DIVIDE.
S )=L

PRIM(8)=GE.
ARLNLBI=G
PRIN(10)=AND.

PRINC14)=ATTRID.
————— PRI B =ARES
V'S NPRIM=15,8PLUSS, SMINUSS,STIMESS,SDIVIDES,
+$68¢

2 $MOTS,SATTRIBS, SPRESS
——————— _PRINT-COMMNENMT_SNANE OF DIAGNOSTIC ‘AREA PLEASES  — ——— —— ———
RDLONL . ( TENP)
b 1
N2=POPTOP. {TENP)
e SEWURAMLNY
PRINT COMMENT SNAME OF LOSS STRUCTURE FILES
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N2=POPTOP. (TEMP)

PRINT COMMENT $INFORMATION STRUCTURE ESTABLISHED.$
FOP — — — — RDLONLATEMP — — ——— — —
CODE=POPTOP. ( TEMP)
—————— —WAR—CODE<E«$DEFINES —— ———— —— —— — — ————————— — o ——
LST=DEFINE. ( TEMP)
—— BR CODE~E~$GENERS$-OR—GODEESCENS
GENERS. { TENP)
———————— PRINT—COMMENT SRETURN -FROM GENERBS  ———— —— —— — ———— —
O'R CODE.E.$CLUSTRS

PRINT OCTAL RESULTS LST

B4}
L

MTLIST.ITEMP)

—-DIAG — -MAD—— ——— ——————— e
EXTERNAL FUNCTION (CONTRL)

F'T P,SELECT,FANS,FANS]
BAN—LEMREY

INSERT FILE COMMON
_ EQUEVALENGE 1Py P v LFANS ANS ), (FANSE ANS1)} —— — — — ~ o —— —

COUNT=0
MILES T CELL LM
LIST.(TEMP)
e — — —WAR- STANDwEv 1+ OR+ STAND o £+ 30 -QUTRUT - (STAND+ O+ BENK) — — — - — — — —-
R
—————— R GET—AND-PROGESS THE INITHAL- SYMPTOMS WHICH-DEFINE — ——— ———
R THE PROBLEM
W'R CBIT.Eely, P*T ILINE
7777777 VS H INE=SH/WHAT -ARE—THE- INITIAL—STGNS —OF THE-PROBLEM/#S - ——
W'R GETSYM.(TEMP).E.O, F'N
— e — — WMR-LEMPTYLATEMP)y F'N  — e — ——
MTLIST.(PATSTK)
——————————NFESFUNACTD)
MTLIST.( TSTRUN)
e MTLES T A SYMLS ) —
MYLIST.(TREE)
——————— VIS BLNK=S/yH/ — —NEW- GASE/v /88 —— ——— — —— — —— ——— - ————
R
———————RA—PROGESS—THESE—SYMPTONS TO FORM SYMRTON PATFERNSy————
R
£0OP - — WER-LEMPTY (FEMP )y T8 GETPAT ——— — —— — — ——— — —— — -~ —— —
SYMP=POPTOP. (TEMP)
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R HERE IS WHERE THE MOST SERIOUS PATTERN 1S

R RELATIVE TO THIS PATTERN.

A CRAT L0, INLERN)

V'S INIFRM=$7,H/THE CURRENT PATTERN 1S.../e$
VLS _CLL
PDOUNPL.(CPAT,PATLST)

______ OUTPUT(CPAT L CLING R
ODUMP1.{CPRIOR,CURLST)

______ OUTRUT (ALLPAT,0,OTFNTY
V'S OTFMTw$/,H/OTHER PATTERNS.../,8$

R HERE CHECK THE CURRENT STATE PRIOR FOR A SUCCESSFUL
—————— R-DIAGNOS IS OF THE CURRENT- PATTERN. ——— — — — — — ...

R
—————— RaLADROVLCURLST)
T 1P=ADVLER. (R, F)

O'R Pelee99
101
EfL
—————— —NANE=ITSYAL.{SPNAMES  CONT . {LNKL. (CONT . LLPNTR. (R} )#1})
OUTPUT. (STAND, 1 , ANSFRN,NANE}
—————— VIS _ANSFERM=SH/THE CURRENT- PATTERN IS ATIRIBUTED 104, .
1 Coe//e8 .
R!

R CHECK FOR MORE SYMPTOMS TO EXPLAIN.

succ GOTPAT.{(0)
—————— —WLR-CODE 6.0 1°0 GETRAY
OUTPUT . (STAND,0,0KVS)

VLS OKVS=SHLCONSISTENT DIAGNOSES FORALL SICNS.Las

IRALST.(TENP)

RRD CONT INUE
————  R'T COy WORD .
V'S C6=$CheS
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W'R_WORD.E.$SDONES
e — — OUTPUT A STANDy Oy UTERMF- — — ~ - —— ——— — —— ——— — ——— —
V'S UTERM=$H/USER TERMINATED DIAGNOSIS OF PATTERN/s$
FL0-SUEE

0O*'R WORD,E.SNOS.OR.WORD.E.$$
e - NSTATE=0
WORD=0

NSTATE=TRANS . (WORD, 1)

PRINT COMMENT $NOT RECOGNIZED. TRY AGAIN.S$

e AGARD o m ——— — e — e
E'L
________ .quffv__ff77A_____,_.,,_.._._._._._,_________________i._‘h_
R
A ASEQDECL IS THE FEST SELECTION-ROUTINE.
R

C e — — —PRENT-COMMENT—$SET—DERTH, THRESHOLD « AND -HEURESTIC -CONTROL$ —
W'R .NOT. LEMPTY.(RDLONL.{TENP))

e DEPTHePOPTORATEMR) — — — — ——— —
THRESH=POPTOP. ( TEMP)

—  — CONTRL=PORFOPLTENR)
ETL

BEEK — — — —NOBES®E — — - — —
STATE=NSTATE

——————— “WER-STANDwGE 2y QUTPUT 29 2y CFRM (DERTH, THRESHI——————— — ——
SEQDEC. { TREE, 0, STATE)

ITLY
ot

'ROR=SEQRODR. { ITSVAL . { SVALUESS , TREE) )
e STATESSEQERARDRy I} — —— — — — —
1P=SEQLR. (RDR, I}
WA WORDANE D —
W'R STATE.E.SDUMMYS

A \a 4

WORD=ITSVAL . { $PNAMES, STATE)

PRE=$S
E*L
e — —DUTPUT (ALLF ST 3y TRMDPRE MORO4P) — — — — o —
V'S TRMD=$H/ BEST TERMINAL DECISION AT THIS POINT IS /,C3+/
e 1yCo W/ W THEXPECTED LOSS /,FB.208

OUTPUT . LALLTST 0, THEAD)

rTXWPvy
——————ee——— A S FHEAD= S FESF——COST—EH 055 o4

TLOOP TEST=SEQLR.{RDR, 1)
—_— B I R
ANS=SEQLR. (RDRs 1)

e e ANS TS BBTHATFES T — — — — - —
NAME=ITSVAL « [ SPNAMES , TEST)

1.3
LA TLIN'SCG.3SvF5.leS'Faoz.‘
_——————— Yy --—————— - - _——— - — ———————— — — ——
E'L
e — QU TPUT A ALLTS T Lo SCORENDDES) - - — -+ - —— —————— — — — ——
V'S SCORE=$16,H, DECISION NODES CONSIDERED.n//"
8
R SELECT THE BEST TES"
e R o U
GETYSY 'R CO'{TRL G-O
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F3T :
AGAIN TOPT.ITEST,STATE)
CKS — — . MR STATE.NE.O — — —
LCOUNT=LCOUNT+LC

POPBOT.{CELL{1))
COUNT=COUNT L
MTLIST.(ITSVAL. ($VALUESS, TREE)) '
————————— 0 SRR —— —
E'L
DECIDE — — — — QUTRUT o (STANDyLsOF ¢ ITSVAL . (SANAMES , STATE}} — — —
V'S DF=$C6,H/ TENTATIVE DECISION FOR THIS PATTERN./e$
I8 SUCC
0'E
________ NENBOT(TESTLISTRUNY — ...
TTEST=ITSVAL. { SEXCLUSS,TEST)
————————— NR TVESToNE<Oy NEWBOT . (TTEST ISTRUN — —
E'L
R

R TEST HAS BEEN SELECTED. NOW RUN IT.

MTLIST.(TEMP)
______ MR CBIVoEeOo NEWIOP LTEST, TEMPY . .
OUTPUT.(CTEST, 1, TFRM, ITSVALL ( SPNAMES, TEST) )
CETSYR.LIENA)
W'R LEMPTY.(TEMP), T*0 AGAIN

NENBOT.(TEST, TSTRUN)
g't:ctg
W'R TEST.NE.O, NEWBOV.(TEST,TSTRUN)
______ _NWYR_ . NOT. LEMPIY.(TEMP), TO TRESY .
T*0 GETPAT
______ VIS CFRMmSHIDERTH=/, 12,H/ AND _THRESHR/ ,F&o20%
V'S TFRM=$H/THE TEST SELECTED 1S /,C6w$

N'R
—_———— _FAT RANNO,OLDR,P,RR,JESTR.
B'N DMARK,LEMPTY
—————— _INSERT-FILE COMMON— — -
EQUIVALENCE {IPR,PR)
e E1Q GENERS-
R
______ R_GENERS IS THE SIMULATOR FOR THE . ..
R DIAGNOSTIC SYSTEM.

LIST.{NORK)
MR mf' LX)
POPTOP. (X)
. . NORUNS=FASTS(CONTRL) —— — — — — o
T*O OKTOGO
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E'L
—————— -PRINT-COMMENT—$ 1M THE GENERATORs WHO—ES CONTROL v Qe$— —— — ———
R'T C6, ANS
R ANSINETIVOUS
CBIT=1
———————— -PRINT—COMMENT —$00- ¥OU —WESH-A-HISTORY 70 BE-KERT Qs — — — ——
R'T C6, ANS
———————— WRANSIESVESS —— ————— — ——— ————
T*0 GETFIL

OLE
o

€BIT=0
—————— —PRENT- COMMENT— SHOM—MANY- CASES —IN THIS RUNeQvs — —— —— —— ———
NORUNS=POPTOP . ( ROLONL . { WORK } )

RSTAT R*T C6, ANS
—————— MR ANS B —————
DMARK=08
DMARK=18
i+
W'R DISEAS.E.O
————————— ~PRENT-COMMENT—SNOF—RECOGNIZED .~ TRY AGAIN<S — — —— — — —— —
T0 RSTAT
_________ .E — —_— e —— o — e
IPR=ITSVAL.(SPROBS, DISEAS)
PRINT COMMENT $PLEASE SPECIFY (IN THE ORDER GIVEN) THES
—————— —PRENT- COMMENT— $FOLLOWING-CONTROL P ARAMETER S FOR -FHE RUNS— — — —
PRENT COMMENT $l. DEPTH OF THE TREE SEARCH.S$
—————— —PRINT- CONMENT- 62+ BREADTH- LINETENG PROBABILITY.S —

PRINT COMMENT $3. NO. OF INITIAL SIGNS PER CASE.S
3
PRINY COMMENT $5. HEURISTIC CONTROL FOR TEST SELECTION.S

~~~~~~ —DEPTH=POPTOPARDLONLAWORKI ) —— —— ——
THRESH=POPTOP . { MORK )
———— NINTS~POPTOPY LHBRKY
NOISE=POPTOP. (NORK )

@«
m
-
“«n
-
~
b
»
-
x
-
(]
[~
g
z
-f
-
=
»
x
m
X
=3
(%]
-y
[=]
bl
<
n
-
r
m
*
™ "

GEFHING——PLT—GBF—
V'S COF=$H/FOR EACH OF THE FOLLOWING, TYPE °"1* FOR A/,/.
—————— HH/CONSOLE -TRACE, 10 OTHERWESE /94— —— —— —— —— —— — — — — —
T'0 RDINF
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GETINF PRINT COMMENT $FOR EACH OF THE FOLLOWING, RESPONDS
fffffff PRENT_COMMENT $13 IF YOU WISN A CONSOLE TRACE.$ —
PRINT COMMENT $72¢ IF YOU WISH A HISTORY RECORD,$

RDINF PRINT COMMENT $1. CURRENT DISTRIBUTIONS

e _PRINT COMMENT_$2. CURRENT_ PATTERNS .
PRINT COMMENT $3. PATTERN STACKS

e — —PRINT-GCOMMEMT $4. TESTS AND VALUESS — —
PRINT COMMENT $S. TEST SELECTEDS

PRINT COMMENT $7. STANDARD INFORMATIONS
~~~~~~~ CRRIOR=POATOP. IROLONLAWORKI ) ———
CPAT=POPTOP. {WORK)
e ACLPATRPORTORL LMORKY — — — —
ALLTST=POPTOP. { HORK)
cz‘s:.m‘;o.l ‘Hoal )
SIGNS=POPTOP. (WORK )

0KT060 PRINT COMMENT $$
v — e AR FIAEL e NEw Oy DURITE w4 EILEL yHEAD 1CPRIORy CRAT S ALLPATy — — — — —
1 ALLTST,CTEST,SIGNS,STAND)
WR-CBIT .6l
T'0 DODIAG
e O'RDMARK
T'0 START
s -3 U
R
R
________ Y
LIST.(GENLST)
________ ROR=SEQRORLATOR (STRUCTI —
SLOOP HSHLST=SEQLR. (RDR, 1)
HMIR 1 “_l
R=SEQRDR . { HSHLST)
HLOOP _ _ _ MEXTeSEQLR.ARGE).
W'R F.E.l, T*0 SLOOP
_______ _IPR=ITSVAL.{SPROBS,NEXT) .
P=P+PR

T*0 HLOOP
e e B e
R
AAAAAA R WARM UP_ RANNOw — — oo
T*H RINy FOR J=1,1,J.6.20
R RANNGLX)
R
e~ —R-GONTROL LOOP FOR THE GENERAVOR. . _
R
STARF— — —_ToH GENDy FOR - J=lsled«G.NORUNS
OLOP=0.
—_—  PaT CONd
V'S COM=SH/CASE /,12s8

TESTP=RANNO. (X)
e — — — ROR=SEQROR-4GENLSTY - -
GLOOP DISEAS=SEQLR. {RDR, I)
NI 1.5.1
OUTPUT . LSTAND, 0,BUG)
B VIS BUGsSH/BUG IN GENLST/e$ . ...
CHNCOM. {0)
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(3
e IPR=SEQLReARBRyE— -~ -~ = o
MR OLDP.LE.TESTP.AND.TESTP.L-PR, T'0 GOTIT

FYW. 0
BtoP=PR

T'0 GLOOP
— JE— ELLffA.. —— = S e —_— e _—— -
R
_ R;i, - — - [ — —_— - = -
GDTIT OUTPUT. (STAND.3 HEADl.J.ITSVAL (SPNAHES,D[SEAS) PR—OLDP)
l‘llﬂl (1’ fal
DODIAG DXAG (CONTRL)
— = —— WREBITE b —— e — - e
PRINT COMMENT SANOTHER Q.$
e — R -CHy ANS —— ——— - - —
W'R ANS.E.SYESS, T'D DODIAG
FLo—FINE
ETL
GEND— —— - CONTINUE ——
QUTPUT.(STAND,O, TFRM)
——- — — JRALST<{GENLST})- - e — = - —
V'S TFRM=$//,H/RUN CUHPLETED /%3
F!H{ Kl‘l: l':'ll E{l
IRALST. (HURK)
—— - ——F'N ——— — e e S —— - e
R
77R S R — - - P S - J—
VtS 11=8]1%$
ul( I‘L ‘thl
V'S HEAD=$HISHITCHES FOR THIS RUN/,./,
. - THEPRIDR=y Iy 1Sy SHEPAT=y 1ok Sy PHALLPAT=, — —— —- -
2 I191S,THALLTST=,11,1S,6HCTEST=,11,15,6HSIGNS=,
e 311415 GHSTAND=y Hiyfe$ ——  — - ———— = ——— -
V'S HEADI:‘II H/...II.!!II'.I!I'I‘!I.Qlll'l.illll.l/'

LA MWICACE T nlt:lrr_’ J-£ &
v EASE S i3vH/BISE 15—/ E6v2H—t~
2 F3.2,2H)./=8
_— EJ* — ———— e — — — — [ _ —_— —_—— - S

GETSYM  MAD
e - — -EXTERNAL FUNCTION-LSTH — — — I
N'R
— FAY TESTPyPRPBLO,PNEN,PIIRANNG — - —— -0 — o e
INSERT FILE COMMON

AL N—FM NAMNFST
B N—LEMP Y NANTS TS

R
—— R THIS FUNCTEON HANDLES -ALL—THE SIGN RETRIEVAL — - -
R ACTIVITY FOR THE DISEASE GENERATOR AND THE
—R-DIAGNOSTIC PROGRAM. ~ —— - ——- —— —

"F
-

£10 CETCYM
TTOotTIyY™

RET=1
S LISTLIWORK) - —— ——— . e =
W'R CBIT.E.1
WIR SIGNSsGal—— : - S
DS=2

oL
o

m

DS=0

~
i
|
|
|
|
i
I
i
I

g
R
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R HERE THE USER IS IN CONTROL. SIMPLY RETRIEVE
77777 —RTHE NEXT -SYMPTOM FROM- HIM ( WITH TRANSLARION —
R AND CHECKING). RECORD SYMPTOM AS CALLED FORa
R’
OUTPUT.{DS,0,FIRST)
77777 ROLONLoAWORK)— — — .
LooP WYR JNOT. LEMPTY.(WORK)
———————— NAME=POPTORAWORK) — — — — —
W'R NAME.E.SNOT$.OR.NAME.E.SNOS
—_——  NL=POPTOR.{NORK)
W'R  NAMTST.(NL)

————— STRANSAO} —— —
0'E
7777777777 R=SEQROR.(NL)} .
sL NL=SEQLR. (RyF)
MYR E_NE.1
STRANS. (0}
. & I < OO
E'L
el ,ELL 7777777777777777777777777777777777777

INTERNAL FUNCTION (DM)

ELQO STRANS

WORD=TRANS . (NL,2}
e — — WIR_MWORD<E.Q, T'O ERRMRK ..
NEWTOP. (~WORD,LST)
—————— ~OUTPUT DS+ Lo NRMeNLY — — — —
F'N
[ -% ¥V
0'R NAME.E.SNORMALS
e — — — _R=SEQRDR.(POPTOP.IWORK)Y .
TUL NEXT=SEQLR. (R,F)
e WARFuNE bl —

OUTPUT. (DS, L, NT,NEXT)
VLS NExSM/NORMAL L, L6688
R1=SEQRDR. { ITSVAL. { SMEMBERS , TRANS . (NEXT¢3) 1}
m —SYMP=SEQLR.ARI,EL} — .
W'R Fl.E.l, T'0 TL
7777777777 _NEWTOP, (-SYMP,LSTY
T'0 TLL
Et
0'E
fffffffff — WORD=TRANS.(MAME,2) . .
W'R WORD.E.O, T'O ERRMRK
fffffffff - NEWTOP.(WORDpLSTY .
OUTPUT. (DS 1,PO0SsNAME)

T'0 LOOP

______ R-WHEN-THE CURRENT LIST IS EMPTY, INITIAL SYNPTONS —
R MUST BE GENERATED.
R

O'R CURLST.E.O

ffffffff - OUTPUT.{SIGNS,O,INIFRM)_ . . ___
MANY. (LIST.(TENP) ,DISEAS,1.0)
77777777 COUNTaRELTST.{WORK,TEMP) ..
IRALST. (TEMP)
R
R HERE THE INITIAL TESTS ARE CHOSEN AT RANDOM
o ——— R Y0 OBTAIN THE_INITIAL SYMPTOMS. e
R
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SWITCH=0
—————— TH-FOLOOPy —FOR-d=trlydeGaNINHS —— —— —— ————— ——— — ———
W*R COUNT.E.Op T'0 OUT
K G OUNTRANNG 41
K=0

W'R K.L.KTH, T+0 GETI
———— COUNTSGOUNT—L
NENTOP. (TEST,LST)

REMOVE. (LPNTR. (ROR} )
———————— WR—FOP S ey SHETCHE — ———
T6LOOP CONT INUE
T T
OUTPUT. (STAND,0,NOS)

F'N RET

ERRMRK—— — QUTPUT o { STANDy G ERR}- — — — — — — —— ——
T*0 LOOP

_____ +_____ g S

TEST=POPTOP.(LST)

SPTEST=18

TESTP=RANNO. (X)
$OLOw0=
R=SEQRDR. ( [TSVAL. ( SHEMBERS, TEST))

GLOOP — — — —NEXTRSEQLRvARyS) —
WOR S.E.1

GLOOP1 NEXT=SEQLR.{R+S)
— R SvEviy—FAN

NAME=ITSVAL . { SPNAMES,NEXT)

W'R LOC.E.Oy V'O GLOOP
77777777 PRePE A NEXFy EONTHLNKRS (EONFA LOEH $13)- — ———— — — —
PNEW=POLO+PR
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W'R POLD.L.TESTP.AND.TESTP.L.PNEW
————————— NAME=ITSVAL . {SPNAMES MEXT) — — — ——
OUTPUT. (SIGNS¢1,P0S,NAME)

NEWTORANEXT L ST
W'R SPTEST

F'N

Qg
POLD=PNEW

_______ V1S FIRST=$H/USER RESPONSE /.Cés$ .
V'S NOS=$H/INITIAL SIGNS ARE ALL 'NORMAL® SIGNS./e$

7777777 VLS _GRR=SH/SIGN- NOT RECOGNIZED. IGNORED./=$ _ . .
V'S INIFRM=$H/THE INITIAL SIGNS OF THE PROSLEM ARE/e$

. Yy
V'S POS=SH/OBSERVED SIGN */,C692H" .28

POUMP MAD

EQUIVALENCE (IWGT,WGT)

E*O OUMNPP.
——————— —WIR ALLPAT EOp F' N — — -
OUTPUT.{ALLPAT,0,BLANK)

W'R F.E.1
———————— —NIR COUNT.Eoly OUTRUT.(ALLRPAT,0,ONLY) .
ouTPUT. (ALLPAT.O-BLANK)

N'R NEXT.L.0, T°O LOOP

o WYR NEXTLE.CURLST.AND.CRAT.E.ALLRPAT,T'OL0O0R
IWGT=ITSVAL. (SWEIGHT$,NEXT)

fffffff _POUMPL.{ALLPAT,ITSVAL.{SSYMPSS,NEXTYY —
OUTPUT. ( ALLPAT, 1,CLINE,NGT)

'7‘5

T'0 LOOP

V'S ONLY=$H/CURRENY PATTERN IS THE ONLY ONE./=$
V1S CLINE=SHIPATTERN NEIGHT AL Fh. 288
E'N
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DUMPL
EXTERNAL —FUNCTION—MARKYEST)
N*R
FLT P, pTOT — - - - _— - —
EQUIVALENCE (IP,P)
INSERT FILE COMMON - - e o
E'0 PDUMPL.
WR—MARK+E~Oy—FIN
CNT=0
s R=SEQROR<{LST} e - - - -
LooP SYMP=SEQLR.(R,F)

WR FuE.l - —- -

W'R CNT.G.0¢ OUTPUT.{MARK,CNT,SYLIN,$ARRAYS)

OUTITPUT L MARK -O-RL-ANKI)
SUFPUTvMARKy Oy BLANK
FIN

I . . —_
W'R SYMP.L.O

CANT=CNT+1 — .

STACK{CNT)=$NOT $

E1t
CNT=CNT+1
STACK{ENT}=I TSVAL + [ $PNAMES, SYMP}.V.$000,00%—
W'R CNT.G.17
OUTPUT . (MARKvENT ¢ S¥LEN) SARRAYS) - e
CNT=0

T*0 LOOP
R
R

- €0 DDUMPl. - -

W'R MARK.E.Oy F'N

PIGE

LoorPl1

R=SEQRDR.(LST}

CUTPUT < {MARK,0,DLINE} —

STATE=SEQLR.{R,F)

WiR F.E.l - —-
OUTPUT . (MARK,2,LINE,TRACE,1.~PT0OT)

BLUIPUT  (MARK . O-BL-ANKI)
BUTPU o L MARKY Oy BLANK
FIN

E'L

IP=SEQLR.{(R,F}

WIR PoLalaE—-2y T!0 LOOPL -
QUTPUT.{MARK,2,L INE, ITSVAL.{$SPNAMES,STATE),IP)

PTFOTF=PIOT P

PTOF=PTE+P
T*0 LOOP1

R

R
¥'S BLANK=$/+#%
V'S TRACE=$TRACES

MIC CVl INatI10CLg
¥ oINS 1 0G4y

V'S DLINE=$H/CONDITIONAL PRIOR STATE PROB/4/#$
V'S LINE=$205,C6,F4-253%
E'N

ouTPUT

MAD S : :
EXTERNAL FUNCTION {(MARK,NARGS,FMT,Al,A2,A3)
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N*'R
-—— - — INSERF FILE-COMMON- — — — — — —
E'0 OUTPUT.
—_—— IR AL ELSARRAY S Q- DOMAR————
STACK(1)=Al

00(3) CONT INUE
D02} —  WIR NARGS.E.O
DWRITE. (FILEL,FMT)

T'0 DO(MARK-2)
6S 5.0

P*T FMT

SELECT  MAD

— EXTERMAL_FUNCIION—(DUMMY.}
R

— e —R-THES- FUNCTION EXAMINES ALL THE PATTERNS IN THE —
R PATTERN STACK. IT RETURNS THE NAME DF THE PATTERN

77777 R WHICH-HAS MINIMUM EXRECTED LOSS AS *PATLST.,
R THE DISTRIBUTION CORRESPONDING TO THIS PATTERN BECOMES
R

INSERT FILE COMMON

______ _FAT WEIGHT.WGT,PSAVE _
€'0 SELECT.
PSAVME=D
FIRMUP. {PATSTK)

o RDR=SEQRORL(PATSTK) ... e R

SAVLST=CURLST

TLOOP NEXV=SEQUR.(RDRG I} ..
W'R I.E.l

R
R UPDATE THE TREE
e
MTLIST.(TREE)
e NEWVAL.{SVALUESS$,LIST.(9),TREE}

NEWVAL . (SPRIDRS,CURLST,TREE)
WIST.LCELLLL))

F'N PSAVE
N L ESG R
WGT=WEIGHT. (NEXT)
e — o — NEWVAL A SHEIGHTS WGT,NEXT) —
W'R NEXT.L.0, T*O TLOOP
WIR WGT .G RPSAVE
PSAVE=WGT
s~ CURLST=NEXT -~ - - R
PAFLST=ITSVAL.($SYMPSS$,NEXT)
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R THIS FUNCTION UPDATES THE UNACCOUNTED-

——————— R-FOR-LIST AFTER A SUCGESSFUL—DIAGNOSES OF A PATTERN. ———— ——-
R IT CONTROLS THE FORMATION OF NEW PATTERNS FROM THE

~~~~~~~ R- SYMPTOMS REMAINING -ON- FHE UNAETD tISTFe ——————————————-
R ero-cornat

CODE=1

LooP SYMP=SEQLR. (ROR, 1)
CHECK —— — —WAR—FsEuty FROPRUNE — —— o o e e
LOC=MEMBER. { SYMP, PATLST,0)

W'R SYMP.G.0, CODE=0

ffffffff ADDRLPNTRARDR )~ - — — ——
SYMP=SEQLR. [RDR¢ 1)
)

T*0 CHECK

LIST.(TEMP)
EOBRE ——— NULS TR SEQERuARBR g A+ — — - —vm e
W'R 1.E.l

O'R NULST.L.O

e NEWBOTu A NULS Ty FEMP
0'R NULST.E.CURLST

———————— NEWBOF oA —NULSF o TEMP ) — ~ - o e
E'L

RESTOR RDR=SEQRDR. (UNACTD)
——————— MEEISTa PATSER ) — — — —— — — — —
LooP2 SYMP=SEQLR. (RDR, 1}

INLSTR. { TEMP,PATSTK)
F'N
777777 ‘E_I_L,,,ff,,,, e - ——— e ———————
W'R SYMP.G.0s» PATFRM.(SYMP)
e TR ABBPE ——— — — —— — — e s

E'N
PAFRRM — MAB— - - — s s o e

EXTERNAL FUNCTION {(SYMP)
R

R THIS FUNCTION FORMS ALL THE DISTINCT PATTERNS
———————— R FOR-A—GEVEN SYMPTOM, LSYMP &y IT PROGESSES — ——— —— —— ~— — —-
R ALL PATTERNS SO FORMED AGAINST THE CURRENT
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R PATTERN STACK. IF THE PATTERN IS A NEW ONE, IT

——————— —R— 1S REFAINED. OTHERWISE IT-15 DISCARDEDB, -~ —— — - ———————
R
NLR-
B'N SUBSET

————— - _INSERT_FILE COMMON— - — o —— - —— —
F'T Py UPDL

HEHLST=ITSVAL (SHEHBERS'SYHP)

R PROCESS THE SYMPTOM PATTERN FOR EACH STATE ON THE
77777 R_MEMBER LIST OF 'SYMPL. _
R
e ROR=SEQROR.IMEMLST} S
Loop STATE=SEQLR. (RDR,I)
WiR _I_E I. [NV
R .
o __R CHECK_FOR THIS STATE IN THE CURRENT PATTERN-STACK. -
R IF IT IS THERE THEN ITS SYMPTOM PATTERN MUST ALSO
. _ _R BE-THERE, AND_IT SHOULD BE IGNORED. = ——— —— ——————. —
R
(:QID anD'll
W'R MEMBER.{STATE,PATSTK,1)}.NE.O, T*0 LOOP
R [
R STATE NOT FOUND IN PATTERN STACK. SYMPTOM PATTERN
777777 R FOR THLIS_STATE MAY BE A_NEW PATTERN. — - —— ———
R GET THE 'PARTIAL SYMPTOM PATTERN® FOR THIS

R (Tl‘l" rnu:u h AVT f‘llﬂDEMY (VMDT"\M i !(f

S ,74usecx.4mcwrsuxe,ust.uenpn — —

R IS THIS PARTIAL PATTERN A SUBSET OF AN EXISTING PATTERN.Q-
——  R=SEQRDR«4PATSTK} — — - —— —— - S — -
cLooP NEXT=SEQLR. (R, F)

MR FE NE. L

W'R SUBSET.(TEMP, ITSVAL. ($SYNPSS,NEXT))
e _JRALSTo{TEMR) e -
T*0 LOOP

R *TEMP' NOW CONTAINS THE PARTIAL SYMPTOM
. R PATTERN. CREATE THE STATE_PRIOR FOR THIS PATTERN. B
R AND ADD IT TO THE PATTERN STACK.
R
NULST=CONT . {NEWBOT.{LIST.{9),PATSTK)I+1)
. _NEWVAL.{$SYMPS$,TEMP,NULST) S SO
IRDR=SEQRDR (MEMLST)
INLOOP —— STATEl=SEQLR.{IROR, LI} - e
W'R [1.E.ls T°D PROC
c:g;_n !tnnn';!;
W*R MEMBER.(STATE1,PATSTK,1).NE.O, T'0 INLOGP
R MANY . (NULST,STATEL, ITSVAL+{$PROBS,STATEL}) e
T'0 INLOOP
R . R
R YNULST® NOW CONTAINS THE STATES AND A PRIORI
R PROBABILITIES FOR . THE PATTERN IN *TEMP?
R UPDATE THIS PRIOR BASED ON THE SYMPTOMS IN 'TEMP'.
R L .
PROC P=0.
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PROR=SEQRDR. {TEMP}

PLBOP ~ — — SYMPL=SEQER<APROR, PH—— —— ——— - -~ ——— o ———— ———
W'R PI.NE.1
UPDIw - S¥HPEYNUESTrNULES T
Tt0 PLOOP
N ,,7{J_L 777777 e ——— - -
IRALST. (TEMP)
- —— — 73008 e e ———
E'N
UPB-— MAB — = - - e m s e
EXTERNAL FUNCTION (SYMP)

R THIS FUNCTION SUPERVISES THE UPDATING

— — R OF—THE PATTERN STACK GIVEN THE-NEW tSYMPL ——— —————— —
R EACH OF THE STATE PRIOR LISTS IN THE STACK

—— 'R I15-UPDATED—(PROVEDED THAT THE ASYMPL }§ — — —— ————————
R RELEVANT TO SOME STATE IN THE LIST).

R TO ZERD, THE PATTERN IS DELETED FROM THE
777777 R PATTERAN STACKs — —— - —— — ——————
R
—— NIR, 777777777777 —— . PR — ——
B'N LEMPTY, RELEV
INSERT—FILE-GCOMMON
F'T P,UPDIL
——— —EW WP — -
NEWBOT . { SYMP,UNACTD)
~ = -ROR=SEQRBR={PATSTK)
LooP STLST=.ABS.SEQLR. (RDR,1)
EHEGK WAR v vl FLO—FENESH
R
~ R CHECK- THE RELEVANGE OF FHE SYMRTOM- TO-— - ——— - ——— -——— -
R THE PRIOR IN STLST.
i R——— e e
WYR .NOT. RELEV.{SYMP,STLST)
WiR SYMPB L .0y NENBOT ((vun_l‘r(un lCCVMD("STl ST))
T'0 LOOP
_ EIL ——— —— — - - e e e —— -
R
e — R THE SYMPTOM IS RELEVANT. USE 1770 —- S
R UPDATE THE PRIOR.
P=UPDL.{SYMP,STLST,STLST)
WOR-PsEsO e : s - =
W'R STLST.L.0, UNDQ.{STLST)
ADD=LPNTR< t RDRI—— S
STLST=SEQLR.{RDR, 1)
o SYMPSelTSVALSSYMPSE REMGVES AR ————————————————
pLOOP W'R LEMPTY.(SYMPS), T'0 CHECK
——— TSYMP=POPTOP. (SYMPS) — — - e
W'R TSYMP.G.O, PATFRM.{TSYNP)
Tio PLOOR - —— : R
0'€

Al {1 S$PROBS P STLST)
ALt IHERLESy Ty O

= ¥LY]
EWBOT.(SYMP, ITSVAL.{$SYMPS$,STLST))
‘0 LOOP - -

-z ¥

E*L
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—————— —R_HERE- THE SYMPTOM 1S PROCESSED BY_PATFRML
R TO SEE IF ANY NEW PATTERNS CAM B8E FORMED.
R

FINISH W'R SYMP.G.Oy PATFRM.{SYMNP)
B

—UPDL—MAD— — -
EXTERNAL FUNCTION (SYMP,LST1,LST2)

R THIS FUNCTION UPDATES THE STATE PRIOR

R SYMPTOM 'SYMP'. THE SIGN OF 'SYHP’ DENOTES

INSERT FILE COMMON
e FY P, RLJ,ERSI.PR,PROB
EQUIVALENCE { IPRDB,PROB)

E'0 UPD1.

WiR-LST1l . E.LST2

SAME=18

SAME=08

SN
LooP STATE=SEQLR.{RDR, 1)
CHECK . NeR I.E.)
W'R P.L.EPSIy F*N 0.

AGAIN IPROB=ADVLER. {RDR, )

________ MR LeEdyEMNP .
ADD=LPNTR. (RDR)
SUBST.{RRQBAR,ADD)

T*0 AGAIN

IPROB=SEQLR. (ROR, 1)
—————— L DC=MEMBER. {STATE, MEMLST, 0} — — —— .
W'R LOC.E.O

PRA=O.

O'E
E'L
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R CHECK FOR *ZERO® POSTERIOR FOR THIS

————— —R-STAFEs F ZERGy DELEFE 1T -FRON-FHE-LISTs — —— ——— ———————
R

AR PROB L EPS T T8 SERAP
P=P+PROB

ADD=LPNTR. (RDR)
—————— —ADDESENKE A CONT= 4ABBI - — — — —— e e
STATEsSEQLR.{RDR, I}

REMOVE. (ADD1)
—————————— 19— GHEGK

FeT P1,P2
EQUEVALENGE R IR R
E'0 PIJ.

R THIS FUNCTION DBTAINS THE PROBABILITY OF SYMPTOM

——————— R-LS¥MPL, LCLUSTRE IS EITHER FHIS PROBABILITY OR — ——
R THE NAME OF A CLUSTER WHICH CONTAINS *SYMP®.
!/

W'R NAMTST.ICLUSTR), F*N CLUSTR

Loorp NEXT=SEQLR.(RDR, 1)}

HeR I 3
W RTTEET Y

R

O'R NEXT.E.LPAREN
+6-+008
0'R NEXT.E.RPAREN

R END OF A TRIPLE, PROCESS OPERATOR AGAINST °*TEMP®

e e R e ——— — N —

1P12POPTOP. ( TEMP)
FIRST=RORTORATENR)
W'R LEMPTY.(OPSTCK)
,,,,,7,,,,,,7R,77,,7,7,,,,,, — [ -
R END OF THE EVALUATION
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e IRALSTLLTEMP)Y  — - —— e
IRALST. (OPSTCK)

FAN Pl
E'L

——— = 1P2=POPTOP.{TEMP) —_———— - ——— —_—————
SECOND=POPTOP.( TEMP)

- - — DPER=POPTOP.(OPSTCK) - —- E— e =

R

R PROCESS- - OPERATOR HERE

R
— WR OPER.Ev$OR$S— ——— - -—
W'R FIRST.E.1.OR.SECOND.E.1
. pl=PlsP2 e S

BMARK=1
OL'E

Pl=0.
S BMARK=0 — . - SR
E'L
. — . DYE R [ . [
BMARK=FIRST+SECOND
WIR BMARK . G-l

Pl=0.
_ . _BMARK=0 - IR N
D'E
o .P1=PL4P2 S B - N
E'L

EL1l

R
R- CHECK.-FOR. AN OPERATOR HERE e
R

O'R NEXT<E«$OR$OR.NEXT.E.SEXDRS [ .

NEWTOP. {NEXT,0PSTCK)
100 LOOP

R
R PROCESS- SUBCLUSTER HERE — L
R
-0'E - . S I
BMARK=INTERP. ({NEXT)
MIR SYMCNI.E.O

Pl=0.

BMARK=0 - -
D*R BMARK.E.O

Pl=0.
O'R MEMBER.{SYMP,NEXT,0).NE.O

WER - SYMCNT Eel

IP1=ITSVAL. {$PROBS ,NEXT)
0'E
Pl=1.
E'L
0'e

P1=0w
E'L
ETL --
MANY. (TEMP,P1, BMARK)
T'0 LOopP

V'S LPAREN=$($
VLS RPAREN=$)S

E'N
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FATERNAL CLHNCTIAN IS5 T - PRIAR IS TS
EXTERNAL —FUNCFHON—FES Ty PRIGRYES T
N'R
e —— —FAT £,UPDL e —— =

E'0 NSCOMP.
S . ReSEQRDR. ( ITSYAL.(SMEMBERSyFESTI} -~ -——— ——— -~ -—
LooP SYMP=SEQLR.{R,F)
———— WAR—FuNEvl
P=UPD1.(-SYMP,PRIOR,LST)

- AR -PuGs 0wy F1O LOOP- - e em e
E'tL

— NP - e e
E*N

DEFINE — MAD— — - S N B
EXTERNAL FUNCTION (TEMP)

NLR

B*N LEMPTY, OPER
—— — —INSERT FILE COMMON-— -- =  — —- ——— e
E'0 DEFINE.
e 45T=f - ——— R — e e
LIST.(RDRSTK)

NAME=POP TP FEML)
M BPFEPFEMP)

NUM=UFUNC (D)
e THH-LBOKy FOR J=ly2sJaGuNUM - -
W'R UFUNC{J).NE.NAME, T°0 LOOK
—— - W1R UFUNE{J4+1).NELO — =
PRINT COMMENT $RELATION ALREADY DEFINED. REPLACE-Q.$

ALY $CHR$ANS
S AN

W'R ANS.NE.SYES$, T'O DONE
- LST=L15T« (UFUNCEJ+1))—— - . ——— -
T*0 START
- ElL —— . - — - S - - —
LOOK CONT INUE

NUMH=NUMSZ

NS

UFUNC (NUM)=NANE
— —£ST=LIST. (UFUNCINUM*1)) C - S -
PRINT GCTAL RESULTS LST
. UFUNC{O)}=NUM — — -
START PCOUNT=0

AP ER=1R
OPrtR=15

ARGLST=POPTOP.(TEMP)
- ROR=#SEQRDR. (TEMP} : . -
LooP ELEM=SEQLR.{RDR,s 1}
= W'R JeEal - - - - I
PCOUNT=PCOUNT-1

WAR—L EMP Y RDASTK
" MNP RO TR

W'R PCOUNT.G.O

- PRINT COMMENT $NOT WELL FORMED. TRY AGAIN.$ -
UFUNC(J+1}=0

- £t
T*0 DONE
BLE

NEWBOT.($)8, LST)

RDR=POPTOP.{RDRSTK)

T*0 LOOP

3
12
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E'L
o DIR I.L.0 R o

W'R OPER
OPER=08

W'R ELEM.E.SQUOTES

e ELEM=SEQLR {RDRy I} — S

T*'0 CDEF
[ EAL

CODE=ARGTST.{0)
WiR CODE.NE.O, ELEM=CODE.V.S54K10

NEWBOT.{ELEM,LST)

OWYE . - —

CODE=ARGTST. {0}
W'R CODE.NE.O — : S

ELEM=CODE.V.54K10
MEWBOY . (ELEM,LST]

0'€
COEF- . . —  GNUM=GONST{0) -
CNUM=CNUM+1

CONST{CNUMI=ELEM . . . - —

CONST(OQ}=CNUM
NEWBOT . LCNUMLLST]

E'L
. . LEML . . o
0'E
e OPER=1B . N
NEWTOP. (RDRyRDRSTK)

nnn—c:gnnn {ELEM)

NEWBOT.($($,LST)

PCOUNT=PCOUNT+1 R [ [

E'L
e TYQL00P -

R
R

INTERNAL FUNCTION (DUMMY)

R- .

E*O ARGTST.

~ -ARDR=SEQRDR. (ARGLST) . N o
ACOUNT=1

ALQOP  ATEMP=SEQLR.{ARDR.AD)

W'R Al.E.1l, F'N O
-WOR ATEMP.E.ELEM, F'N ACOUNT
ACOUNT=ACOUNT+1
T*0 ALDOP
E*N
R

R
DONE IRALST.{RDRSTK)
F*N LST
E'N

CLUSTR MAD
EXTERNAL -FUNCTION (LST)
NfR
BIN LEMPTY

F*T P, PSAVE
EQUIVALENCE (1IP4+P}
E'0 CLUSTR.



LIST.(TEMP)
STATE=TRANS A POPFOPALST Yy 1} ———--
W'R STATE.E.O, T*0 ERR

NEWVAL . (SRELATS.‘CLUSTRS.NULST)
RDR=SEQRDR-{L.ST) - —— ——
NEWBOT. (LPAREN'NULST)

-SUB=0 —— - ———- e —
IP=SEQLR. (RDR, I}
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Wi f £ 3
T R—twtwt

NEWBOT. (RPAREN,NULST)

C o WYR-LEMPFY. (TEMP—- o ———

IRALST.{TEMP}
FIN-NUEST  —— —
E'L

ROR=ROPAFGR{FEMD

SUB=0

——O'R FxEab - ——— - —

W'R SUB.E.1
--DBL= CIP) - — - e
0'E

NEWFO PR {RORy-FEMA)

RDR=SEQRDR. (lPl
NEWBOT = tLPARENyNULSTH b
E'L
OR HP-E-s$ORSOR=IPsE« SEXORS— —
NEWBOT < (IPsNULST)
Fod

BLE
sUB=1
PSAVEsP —— — .

E'L

Tig-LogP ——— —_

R
R

INTERNAL FUNCTION (SLST)
€40 DOl —-

SUBLST=CONT. (NENBDT (LIST (9).NULST)01)

NEWVAL . { SPROBSPSAVE,SUBLST) -
NEWVAL.{ SRELATS,POPTOP.({SLST), SUBL

sT)

prLoop

nnen-scr_\nnnvg CLSY!
NEXT=SEQLR. (DRDR,DI)

WIR DIsEaly, FIN —
NEXT=TRANS.(NEXT,2)

W'R NEXTeE«Oy T'O ERR—— — -
LOC=MEMBER. (NEXT,STATE,0)

863

REM
REMBVEHEBED

LOC=MEMBER. (STATE,IFSVAL.(SHENBERS.NEXT).O)

ADD=LNKR- CCONTL{LOC) )
SUBST. (NULST,ADD)
NEWBOT{NEXT,SUBLST}
T*D DLOOP

Faay

ERR

T

R
R
PRINT COHHENT SERROR lN FDRHAT$

Fen-—1 —

V'S LPAREN=${($

VA5 RPAREN=$ S

E'N
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INTERP MAD

E'TEDMA] CIIMFT!QA’ lc

N'R

- INSERT_FILE COMMON_ — S
€'0 INTERP.
SYMCNT=0 — —  — —- B S
BASE=0

SPOINI=0

STACK{0}=0
. _ RDR=SEQRDR.(CLUSTR} — om0 - ————
Loop ELEM=SEQLR. (RDR, f)
S WOR [e€ed ——— — —— : - —
PUSH. { ITSVAL « { SRELATS$,CLUSTR) )

I‘QHE’CUAI {0)

W'R STACK(O).E.$#INCw$
_— . STACKAOI=1 — —— - - S —
0'R CODE.L.0.OR.STACK(0).E. SFALSES

e STACK{B)2O — — —— e -

E'L

£ STACKALOD)

0'E
— o PUSH.IELEM} - — - e -
T*0 LOOP

E'N

—EVAL— - MAD . - e
EXTERNAL FUNCTION (DUMNY)

NLR

INSERT FILE COMMON
E'0 EVAL. —— -
POP. (NAME)

R CHECK FOR PR[H[TIVE
R

T'H LOOK, FOR J=1,1,J.G.NPRIM(O)
. _W'R NAME.NE.NPRIM({J), T'0 LOOK- . SR R
CODE=PRIM{J).(0)
e _ _FSN-CODE— . __ e o [
LOOK CONTINUE
R

R USER DEFINED FUNCTION

R e T - .

T*H ULOOK, FOR J=1,2,J.G.UFUNC(0)

WIR UFUNC{J)NE.NAKE, -T'0 ULOOK - — . —
LST=UFUNC(J+1)

HNiR l_sr_s_n' L0 ERR

T*0 PROC
ULOOK - - CONTINUE e I B
ERR P*T ERRM, NAME
. V'S ERRM=${6,H/ NOT DEFINED./#3 R -
FON -1
Pnn}; nnn-c:t_\nnn {LST)

LooP NEXT=SEQLR.{RDR, 1}
e = MR le€al
POP. (NEXT)
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RETAC. (NEXT)
F'N STACK{O) -——— . ~
O'R NEXT.E.$($

PHCH- O

3
PUSHtO

NEWTOP. (SPOINT,0PSTCK)
- NEXT=SEQLR. (RDRI}~—- =
NEWTOP. {NEXT,0PSTCK)
O*'R NEXT.E+$)8 ———
NEXT=POPTOP.(OPSTCK)

WARNEXTF A+ 2T O E 54K 1O
N Bl 149

NEA A I Ot 34K

ARGF « {NEXT)
-—F+O-KEEP - — - -
E'L
-—- PUSH{ NEXT) . - -
KEEP SAVE DATA RDR, BASE

SAVE QETUIOM
S AV RETURN

BASE=POPTOP. (OPSTCK)
-~ CODE=EVAL.40) - e
RESTORE RETURN
s RESTORE- DATA- BASE, ROR -
W'R CODE.L.0.OR.CODE.E.$FALSES, F'N CODE

NEXFw AT IO E+ 54K 1O

Q
RN A AT 0w maar 24

ARGF. (NEXT)

o1
2’4

— - QVE -
PUSH. (CONST(NEXT))
- EIL - -

Y*0 LOOP

A B
=N

CONTRL MAD

N*'R

INSERT FILE COMMON
E*O RETAC.
STACK(BASE)=SPOT
SPOINT=BASE

1N

E'0 PUSH.
SPOINT=SPOINT+]
STACK{SPOINT)=SPOT
F'N

E'0 POP.

CPOTwl TACK
IOy TALK

+5P
SPOINT=SPOINT
F'N
E'N

APRIM MAD
EXTERNAL FUNCTION (DUMMY)
N'R

STATEMENT LABEL X

BEN-FIRST SELONDACH
B TRty ot

CONDyACHEGK BV
V'S NRMBIT=4000000000K
INSERT FILE COMMON

E*'O0 L.
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W'R ACHECK.{BSTORE)
BV=FTEMP2. L FTEMPL R ——

WIRACHECK. {BSTORE} -

BV=FTEMP2.LE.FTEMP]
O'E

.- E'0-EQ.

BV=TEMP2.LE.TEMP]
ElL_ . .
T*0 BSTORE

W'R ACHECK.{BSTORE)
BY=FTEMRL.E.FTEMP2

O*E
- BV=TEMP].E.TEMP2 ——
E'L

—— 710 BSTORE B S

E'0C GE.
WAR ACHECK .({B8STORE)

B YT

BV=FTEMP2.GE.FTEMP1
06 .
BY=TEMP2.GE.TEMP]

T'0 BSTORE
€0 G

8SIORE

W*R ACHECK.(BSTORE)
BV=FTENP2.G.FTEMP] -

O'E

- —BV=TEMP2.G.TEMP1

E*L

RETALC . {(BV])

F'N

e _E'0 PLUS. S s

W'R ACHECK.(BACK)
- — FTEMP1=FTEMP1+FTEMP2
O'E

TEMPLaTEMP1+IEMP2

gL
T10 BACK - .
E'0 MINUS.

W'R ACHECK.(BACK]} . _. . . [

FTEMP1=FTEMP2-FTEMP1

OLE
o

TEMPL=TEMP2~TEMP1

_EAL R

T'0 BACK

--E*D TIMES.

W'R ACHECK. (BACK)

ETEMNR lx‘TEHDl aFTEMP2

O'E
TEMPL=TEMPLTEMP2

E'L

T*0 BACK - -

E'0 DIVIDE.
WiR ACHECK.(BACK]

FTEMP1=FTEMP2/FTEMP]
0'e
TEMPLI=TEMP2/TEMP1
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R
~—-—— - INTERNAL FUNCTION (X} - -
E'0 ACHECK.
- POPLLTEMPL) - ‘e
POP. {TEMP2)
e WR FEMPLLE S S ENCS S DR TEMP R E b INC e
TEMPL=$#INCs$
- - BV=1B e
T'0 X
———— EIL
WIR TEMPL.A.NRMBIT.E.O

FIRST=08B
TR+ EH

0'E
- FIRST=18 —-
€L
—— WIR TEMP2.A.NRMBIT.E.O
SECOND=08B

gLE
A

SECOND=18B
— EIL P e — -
W'R FIRST.AND.SECOND
S FUN 1B
O'R FIRST.EQV.SECOND

FLN- 0B
0'R FIRST
FTEMP2TEMP2
O'E
N FTEMPL=TEMPL

LPRIM MAD
EXTERNAL FUNCTION {(DUMMY)
N*'R
INSERT FILE COMMON
B'N TEMPLl,TEMP2,BTEST,BV

340 - AND

W'R «NOTLBTEST.{0}, F'N -1
BV=TEMPLl.AND,TEMP2

T*0 STORE

£°'0 OR.

W*'R .NOT.BTEST.(O}, F'N -1

AV eFEMP - FEMPD

R
Oyer MY I ORI MY T

T*0 STORE

E'0 EQV.

W'R .NOT.BTEST.(0})y F'N -1
BY=TEMPl.EQY.TEMP2

T'0 STORE

£t NOT

0Nt

POP.{(TEMP1)
BV=.NOT.TEMPL
T*0 STORE
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STORE RETAC.(8V)
e FAND e
R
R
INTERNAL FUNCTION (X)
o EV0 BTESTe e —
T1=STACK (SPOINT)
e ¥ 2RSTACKASPOINT=L) - — o e —
W'R T1.E.0.O0R.T1.E.1
P08 l‘l’:”‘l )
D'R T1.E.$®INCs$
e POPMATEMRLI — e e
TEMP1=1B
QLE o -
F'N 08
St
NEXT W'R T2.E.0.0R.T2.E.1
- . PORPATEMP2) o
O'R T2.E.$*INCe$
. POP{TEMP2) . — — -
TEMP2=18
elﬂ
F'n 08
R EfL - - — e S S —
F*N 18
e EAN — e e
E'N

SYMATS. MAD. - - -co-moee oo e
EXTERNAL FUNCTION (DUMMY
NI1R
8N BY

_ ... . INSERT FILE COMMON-. e S

E*0 PRES.
POP.ITEMP) - . . : S _
LOC=MEMBER.{ TEMP, SYMLST, 0}
W'R LOC.E.O

RETAC. {MARK}

_0'E
BY=TEMP.G.0
SYMCNT=SYMCNT+L. - ST
RETAC.{BV)

il

E'N

V'S MARK=$eINCe$

R
R

E'0 ATTRIB.

l‘ﬂl’\‘-e

LIST.ILST)

- -POP.ISYNP) . . —

POP.{ATT)

MER SYMP L0 - R
CODE=$FALSES
VAL=SEALSES
T'0 RET

E'L

LOC=MEMBER. (SYMP,SYMLST,+0}
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 CHECKP-tsYmP) 7 B
- - F1Q INEOOGR- . . e
R
——————————%—“825—;“& annlALl DB(uLT OF A ggct IS
R PROCESSED.
R L i e
NCONP LIST.(SAVE)
——-  P=NSCOMP, (TEST,PRIORySAVE) - _ _ - S -
CHECKP . ( SNORMS$ )
JRALSTI (ALSTY
F'N RLST
R
——— ——- INTERNAL FUNCTION (MARK} ___ _ . ___ S
E'0 CHECKP.
IR R_G_O
LIST.(SCRAT}
— e —— MANY_(SCRAT, $PROBS,P, SPRIORS, SAVE . SRESULTS MARK)_ _ _ _ ___
NEWBOT.(LIST.(9),RLST)
— -~ - MAKEDL.{SCRAT,BOT.{RLSTI)} - .. ... ——
IRALST.(SCRAT)
£t
IRALST.(SAVE)
—— . FAN ; R _
E'N
T Y ,7 . I e
RELTST  MAD - - -
- —— — EXTERNAL FUNCTION (LST,PRIOR) .. _ S
N'R
— —  INSERT ELLE COMMON
B'N LEMPTY
- _STATEMENT LABEL SWITCH . __ _  _ S
F'T P,THRESH
e EQUIVALENCE (IP,R). e

R
—— R THIS EUNCTION DETERMINES ALL_ THE TESTS WHICH

R ARE RELEVANT TO THE CURRENT STATE LIST OF *PRIOR'.

—— -——— R TESTS WHICH HAVE ALREADY BEEN RUN ARE. IGNORED. . . . _ .
R

-~ __E'Q.RELTST. . _ _ __ e e
COUNT=0

]_!s‘l’ QHI\BCYU b1

W'R THRESH.G.1.

o — SWITCH=RET_ _ . S - S
STATE=0
S - DLOSS. (PRIOR, STATE) — B : e
T+0 DO1
gLE
SWITCH=LDOP
I E0nL I . o I I
SR=SEQRDR. (PRIOR)
LOOR- — — .  STATE=SEQLR.(SR,SI) ... _ . R - B
W'R SI.E.l
REL IRALS T I(RDRSIK)
F'N COUNT
o __ ErL - A R N

IP=SEQLR.(SR,SI)



W'R P.LE.THRESH, T°0 LOOP

BOL — — —— -SYReSEQRDR< (SFATE)—— —— — ——— —————— —————

INLOOP SYMP=SEQLR. {SYR,SY 1)

221

—WR- S EvE
WOR NOTLLEMPTY.(RDRSTK)

T*0 SWITCH

O°'R SYI.L.O

——— e — — P NLORP— — — — — ——————

O°'R ITSVAL.(SRELATS,SYMP).NE.O

SYR=SEQRDR. {SYMP)
TLO—INEOOP—

———————— FESFBOTvASYMR) — ——— — — ———— — ————————

W*R MEMBER. {TEST,CELL(1),1).NE.Oy T*'0 INLOOP

——————— WR_MENBER (TEST LS Ty 01 wNE-Oy -T20—FNLOBR- — — ——

W'R MEMBER.(TEST,TSTRUN;O).NE.O,» T*0 INLOOP

——  NENAOTATEE TS

COUNT=COUNT+1
———————— O INLOOR — — — — — —_ - ————
E'L
—————— N ————— — —
TOPT  MAD
——————— _EXTERNAL—FUNCTION- HATEST STATE) — — —— —— ———— —————————
N*R

—— BN LEMPTY.

INSERT FILE COMMON

—————— FAT LSAVEDEAVESLS ——— —— ———————— ——————

SWITCH=2

START— — — —R=SEQRDR+ {1 FSVAL+ (SVALUESS TREEN ) — — — ————— ———

RET=0

3

Bubt-Bub
Rt RYy"™r

ILSAVE=SEQLR. (R,F)

———— —DSAVERLSAVE - —— — ———— = — —————— — ————————

ADD=LPNTR. (R}

£OBP— — — — TESFRSEQRARyF)— — — ——— — ———— — ————— ————

W'R FoEely T*0 END(SWITCH)

H-5=5ERwtAvF)

M'R LS.G.DSAVE

LSAVE=LS

AY,EST YE(I
‘ol -y

ADD=LPNTR. (R)
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10 4008
ENO(1) W'R NOT. LEMPTY.{NOGOOD!}
—AETal

MEWTOP. {NOGOOD, CELL (1))

B'N LEMPTY,NANTST ;

E'0 SETUP.

—————— ~MANY A STRUCT o LISTASTLISTI o LISTSYNS) (L ISTLTESTSI)
NUN=ITSVAL . { SHSHNUMS , STRUCT)

—————— T Wl FORJunl g1y d e G2 R UM —_——— _
NEWBOT.{LIST.(9),STLIST)

NEWBOT.(LIST.(9),TESTS)
[ — CONTIMVE——— —
LIST.(TENP)
LOOP— ——— WIR DSKLST.{N1+H2,TEMR) . 5.SDONSS, 720 EMDO
WORD=POPTOP. (TENP)
—  MIR WORD.E.SSTATES
T°0 ST

STATE=LOOKUP. (NAME,1) y
______ NEMVAL.{SPAOBS ,PORTOP (TENR)STATE) — .
STLOOP W'R LEMPTY.(TENP), T'0 LOOP

—SYNP=PORTOP A TENR)-
IPROS=POPTOP. (TENP)

SYMP=LOOKUP. (SYNP, 2)
YAL«{
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NAME=TOP. (TENP)

—————— —FESToL BORUP A NFHTOP A FENPy 2 by H — — — — — — ————— —— —— ————

W'R NANTST.{NANE)}

23

NEWBOT. (SYWP, ITSVAL. ( SMENBERS, TEST))

NEMLST=ITSVAL . ( SMEMBERS,TEST)
'S

e A=SEMRADA-HNANE
RLOOP SYNP=SEQLR. (R, F)

—————— NEWBOT+TESTySYMP ) — — —— — — — ————

NEWBOT . (SYMP o MENLST)

TESTL W'R LENPTY.(TENP), T*O LOOP

E'L

—————— RSSEQROAANAME) — —— — —— — — — e —

TLOOP NEXT=SEQLR.(R,F)}

——————— WIR-Febrlr P B FESHE—— — ———— — ——— - ——— ——— —

NEWBOT.(COST,LOOKUP. (NEXT,3))

—  ¥9 WG0P
SPTST W'R LEMPTY.(TEMP), T*D LOOP

—————— _TESYLOOKUPAPOPTOPATENP 43 —— — — ——

MENVAL.(SSPTESTS,$YESS, TEST)

ENDD IRALST.(TENP)
FAN-

SYMPLL POPTOP.LTEMNP)
T'0 SYNPL

FESTLL —— —POPTOP(TEMP ) — —— ——— ——— — - —

POPTOP.(TEMP)

00-FESTE
FO-FESTE

EXL W'R LEMPTY.(TEMP), T°0 LOOP

—————— —T1aFRANS+ {POPTOP L FENP -y —— —— — — — — —— e ——

T2=TRANS . (POPTOP. (TENP ), 3)

——————— “NEWVAL = {SEXCLUSSy FE T2 — — —— ———————— ——— — ———— ———

NEWVAL . [ SEXCLUSS,T2,T1)

FLo—E-
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HLIST=0
ADD=LOCATES O}
W'R ADD.E.O

_______ NEWBOT . (LIST.(9)HLISTY
LST=B0T. (HLIST)

——————— LR LCODE.Guls NEWVAL - (SNEMBERSoLIST A9} ,LST) — —————
NEWYAL . { SPNAMES , WORD, LST)

F'N LST

F'N LOCATE. (0}
777777 —INTERNAL FUNCTION 4X)— —
E'0 LOCATE.
Hsu““-.l :su.' “uswuucvtfnnrr\
HLIST=NTHTOP. (NTHTOP . { STRUCT L CODE } g HASH. { WORD o HSHNUM) +1 )

LooP LST=SEQLR. (RDR, I}

—————— T S —
W'R ITSVAL.{$PNAMES,LST).E.NORD, F'N LST
I0 lﬂ.gn

INSECT  MAD
—————— EXTERNAL FUNCTION-(L1ol2b3)0 —
N'R

E'0 INSECT.
R

R THIS FUNCTION DETERMINES THE INTERSECTION

LIST.{RORSTK)
LOOR ELEM=SEQLR. (RDR, I}

WR I.€.1
ffffffff MYR LEMPTY. (RORSTK) . ..
IRALST. (RDRSTK)
777777777 AN
0'E
ROR=BRORIOR gnm:nr 3}
E'L
e QMR lekeO
0'R ITSVAL.(SRELATS,ELEM).NE.O
7777777777 NENTOP.{RDR,RDRSTK} — — —

RDR=SEQRDR. ( ELEM)
DLR HEMBER {-ABSELEM,L 2,0} HE.O
NEWBOT. (ELEM,L3)

,,,,,, BN S
T*0 LOCP

ffffff AN

MEMBER MAD 12/12/66 2321.6 92 00000
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CNR
E'O MEMBER.

FULY. WY
AU

RDR=LRDROV. (LST)
DESCND- —— - NAME=ADYSWR« {RDRy I} e
W'R I.E.1l, T'0 RETURN
7777777 ~“WAR LCNTRARDR}.L.LEVELy TAO-DESCND - ~——  —— —— ———~——-
COMPAR W'R NAME.E.GDAL, T'0 FOUND

NAME=ADVEWRRORY- 1

ViR HRDRY-H
W'R [.NE<l, T'O COMPAR
ASEEND- — — WR-LENTR. (RDRI=ExO¢ ¥4 RETURN—— - e -—
LVLRV1.{RDR)
- ADVANR&ARDRyE) — —— — - e —— e —
W'R I.E.1l, T'O0 ASCEND

L9 -DESCND
D

FOUND ADD=LSPNTR. (RDR)

REFURN- - IRARDRoARBR} ——— —— ———— = - e —
F'N ADD

R "’7775_‘" e o e ——— e —

UNDD  MAD
———————— EXTERNAL FUNCTION (LSF— —— — e o o
N'R

INSERF—F3t
NI ¢

E'0 UNDO.
o - RDR=SEQRDR.{ITSVAL~($SYMPS$,LSTI} — — ——— —— o ——
Loop SYMP=SEQLR.{RDR, 1)
- WAR T4Ealy FN—— —————— e —
RDR1=SEQRDR. (PATSTK)

fatat S 1 NEXT=SEQLR-{RORIvI1}
ACACAn NEATT2ERENR- 1D L4

WiR I1.E.l
- NEWBOT +{5YMP, UNACTD) — e -
T*a LoOP
QLR -MEMBER«{SYMP, ITSVAL« { SSYMPSS NEXT),0)oNELD - — —— — — ———
T'0 LOOP
ﬂlE
T'0 LOGPL
EIL _—— . U PO — S
E'N

E COMMON
t—CunMuN

DSKRDS  MAD 12/01/66 202422 - -Le4 80000 S e

EXTERNAL FUNCTION (FIRST,SECOND, LST)
--N*5 INTEGER - - - ———

INSERT FILE COMMON

BN INTH2E NAMECH O THER 2
E'C DSKLST.

- ¥1S MODE=l - .. — - e

T'0 START(MODE)

START(L) -~ -~HAME(OQ}=RIUST« FERST) R s
NAME (1)=RJUST. (SECOND}

MODE=2
STAR¥(2) BFREAD. (NAME(O) yNAME{ 1}y INT(O) wea 1, EOFJEOFCTyERR)——  ——
COUNT=LNKR. [ INT(O)}
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- BFREAD. (NAME{0) ;NAME{ 1), INT{COUNT) ... COUNT,EOF,EOFCT,ERR)
—————— TtH SWITCH, FOR 1=GCOUNTy~ly I oBeO0 — — —— —
SWITCH OTHER(COUNT-1)=INT(1)

— o OTHERZLI=COUNT
K=aVLIST.{OTHER,LST)

_______ WAR K E. SMOTYETS, V20O START(2} . .
F'N K

EOF — — BRCLOSANAME(O)sNAME{L).ERR}
MODE=1
ELN_SDONES

ERR PRINT COMMENT $GOOF ON READING FILES

——————— MODE=1— — _ — e

RELEV  MAD

______ _EXTERNAL_EUNCTION {SYMPLLSTY .
N'R
£00 RELEV
RDR=LRDROV. ( ITSVAL . { SMEMBERS, SYMP) }

LOOR —  _ _TEST=ADVALNR.(RODR. D} — . .
W'R I.E.l, F'N OB

______ MR MEMBER.ATEST,LST,0).NE.O, FON1B
T'0 LOOP
:I“

LAL-AZ)

N'R

______ _FLT PR,LOSS,NGT SAVE,FCONS WIOT.RL . . .
B'N LEMPTY

_______ _EQUIVALENCE [IPR, PRI, AINGT,WGT)
D'N PI(10),LOSS{100,AD)
NS ADa2,1,10

V'S SUBS=0,0,10+20,30,%0,50,60,70,80,90

RET=0
LISTBUEEERS.
DSKLST.(AL,A2, BUFFER)

ffffff _SIIE=PORTOP (BUFFER) .
DSKLST.(AlyA2,BUFFER)

~~~~~~~ “TIH-LOOR, FOR-—JudodedoG.SIZE — — —
W'R LEMPTY.{BUFFER), T*0 ERL

—  NUM=RORTOR.ABUEEER)
NAME=TRANS . (POPTOP . [ BUFFER), 1)

______ MR MAME.E.Os T*O ERL _ _ . __

TLNUN )= PR
LOOP NEWVAL.( SINDEXS,NUM,NANME)

nA!-n

T'H LOOPl, FOR Jsl,1,J.G.SIZE
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WEIGHY- —MAD— . . . .. .
EXTERNAL FUNCTION (LST)

F*T WGT4ANS,PR
-E

ANS=0.
LEOA—— STALE=SEQLR-LR,EJ

LIST.(TENP)

R'T $C64$, ANS
—_———— WRAMS.E.$YQUS
CBIT=0

RDLONL . (TEMP)

THRESH=POPTOP. { TEMP)

———————— MNINITS=PORTOP.CYEMR)
NOISE=POPTOP.(TEMP)

———————— CONTRL=PORIOP.(JEMR)
PRINT COMMENT $CASESS

NUM=POPTOP. (TEMP)

PRINT COMMENT $HISTRY FILES

WYR .NOT.LEMPTY.(TEMP)

————— —FILEL=RIUST(ROPTOP.LTEMR))Y
FILE2=RJUST. (POPTOP. (TENP) )

~~~~~~ ASSIGN.(FILENBUFL.BUFDY ——
E'L.

———  PRINI-COMNENT $CODESS-
ROLONL . ( TEMP)

______ CPRIOR=POPTOP.LTEMPY —
CPAT=POPTOP. ( TENP)

—————— ALLPAT=PORTOP.(YENR) — —
ALLTST=POPTOP. (TEMP)

SIGNS=POPTOP.{TENP)
= ——— - STAND=PORTOR (TEMR} - _ .
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PRINT COMMENT S$DEPTH, THRESH,HEURISTIC CONTROLS
e ——  —— DEPTH=POPTOP. (RDLONL=(TEMP})———- —— ~—— ——-— — - —
THRESH=POPTOP. (TEMP)

CONT-RIL-abAPTRP L TFEMP)
CONTRTSTOrrorstyonry

E'L
e ——— IRALSTL{TEMP - - - e
F'N NUM

FIRMUP  MAD
e m e —— _EXTERNAL-FUNCTION {PATSTK) ———- R
N'R
BLN-—SUBSET
F'T PyPR
e - EQUIVALENCE (PRyIPR}—— - - —— - e T
E'O FIRMUP.

— e PEQe— e —— —— - R ——- G e
R=SEQRDR. (PATSTK)
PATR=R
toop NEXT=SEQLR. (R,F)
CHEEK— —  WRFeEaly FIN-P - e e T -
CURPAT=ITSVAL. ($SVHPS$.NEXT)
————— - — —RI=PATR ——— — - - e —— e
LooP1 CAND=SEQLR. {R1,11}
WiR—HEwt

IPR=ITSVAL . [ $PROBS,NEXT)
e - -— — e -
T*0 LOGP
—— 'R CANDLEsNEXT N - — R
T*0 LOOPL
— BA SUBSETHCURPATIISVAL A SSYMASS CANBH——————
ADD=LPNTR. (R)
- - - NEXT=SEQLR.{RsF) - - - -
REMOVE. (ADD)
—— FLO-CHECK — —— - e - e e
0'E
Y10 £00R1
E'L
- EIN —

SUBSET MAD 12726766 1718.4 44 00000

R EXTERNAL FUNCTION (L1, L2) - -
N*R
€0 SUBSET.
R=SEQRDR.(L})

P NEX TS EO4+R 4R}
L NEATESTUCRFIRY T 7

W'R FoE.l
- F'N 1B
D*'R MEMBER. (NEXT,L2,0).E.O
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EXTERNAL FUNCTION (SYMP,TEST)
,,,,,, NSR L
INSERT FILE COMMON

e~ _EY0-SYMSAV. -

W'R MEMBER.(SYMP,SYMLST,0).NE. Oy
LST)

FIN

UPD. (SYMP)

FON oo -
E*N
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COMMON  FAP

BUEL _ COMMON 433 — — —— — — e —
BUF2 COMMON 433

CBIT _ COMMON—1

SIGNS COMMON 1

CPAT —COMMBM b — o —
ALLPAT COMMON 1

CPRIOR COMMBN 1 — —— — — —
CTEST COMMON 1

ALLTST COMMON—1
DISEAS COMMON 1

STAND — COMMON-— 1 — — —
FILE1 COMMON 1

FILE2 _COMMON 1 — — —— — — —
DEPTH COMMON 1

THRESH COMMON—L
NINITS COMMON 1

NOLSE_ COMMOM — )} —— e
NODES COMMON 1

TREE COMMON 1

CURLSTCOMMON—1-
PATLST COMMON 1
STRUCT COMMON —1 — — —
SYMCNT COMMON 1
SYMLST COMMON- L — ——  —
UNACTD COMMON 1
FSTRUN-—COMMON 1
PATSTK COMMON 1
CODE.  COMMON— 1 — —
OPSTCK COMMON 1

UFUNC COMMON 21
ARGS_ COMMON 11
PRIM  COMMON 31

SPOINT COMMON 1
NPRIM_ COMMON 32— ——— —— —— —— —
CELL COMMON 21

PUSH MACRO ARGS

o _IRP_ __ARGS . e
™1 otlylel

e CLA——_MRGS e e e
STO STACK, 1
1RP

PUSH END

.- e — e — — = e e e e —_———_———— e ——— . ——

PopP MACRO ARGS
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ARGS

IRP
CLA STACK 1~ : - —m -
sTo ARGS

FHx vt

IRP

END

p
»
* LISF-READING MACROS HERE - — - s
»
[

EQRDR—MAGRE Av S
CLA= A GET LIST HEADER
- 570 -8B - STORE -IN-READERCELL T
SEQRDR END
s - . . N . - o _
SEQLR MACRO A,8,C
tAC Bv4 READER—LINK
CLA 1,4 GET DATUM FOR CELL
-—§T6 —A- - - ——— SAVE DATUM - -——
CLA 0+4 ADVANCE READER
-— 570 B —- —— = : - -
ANA =070000 SET FLAG
ARS 15
sus =1
——- 8T8 --—¢ - —- - — — m
SEQLR END
NYEST- —FAP - - - - - = -
ENTRY NAMTST
NAMTST SXA SV4yv & - - - - -
CLAw 1,4
—S¥8— CAND—
TSX $GETMEM, 4
— — FXH S - - - - -—
sTO LIMITY
—€LA  —GAND - - . —
ssp
e STA—— L INK—
ARS 18
CAS - LINK-— - - S
TRA NO
FRA—- “y2 —_— - -
TRA NO
— AN
CAS LIMIT
-—— FRA NO - --——
TRA s+l
— CLAe - LINK — -
STO HEAD
ANA 87806060
CAS =0200000
TRA -NO — -
TRA .2
TRA NO - - - - - - ——
CLA HEAD
ARS 18
CAS LIMIT
- TRA NO -= -
*+]

TRA
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STA s+l
- CLA—— w8 —— e —— e — —— — — [
ANA =07177T77
—— GAS——LINK—
TRA NO
e _TRA_—__  YES . U
NO CLA =1
—ee— — TRA— - 42— e e e — —
YES CLA =0
SV AXT an kb
TRA 2¢4
CAND - —P2E — — —— —— —— e
HEAD PLE
LINK . PZE — o
LIMIT PLE
END
SLF FAP

o DERTW-TO OBTAIN-THE BEST TEST [0 RUN. THE ROUTLNE
» *GROWL® IS USED TO GROW NEW BRANCHES ON THE TREE IF
& NECESSARYe — oo

»
& S
s STACK MANAGEMENT MACROS
PUSH MACRO- ARGS
IRP ARGS
777777 CIXL o eelelel
CLA ARGS
o STO —— _STACKedl e
IRP
PUSH  END
»
POP .. _MACRD . _ARGS - . — e —
IRP ARGS
o CLA__ _STACKel S ——
sTO ARGS
Iix 221e1,1
IRP
POP___END - e .
-
# LIST READING MACROS HERE - — — — — -~ ——— - —om e — e — — —
[
SEQRDR-MACRD Ay 8
CLA» A GET LIST HEADER
- _SYTO— - B — - . -._ STORE TN READER CELL- .. - S
SEQRDR END
* —— R e — e e — — — e
SEQLR MACRO AeB,yC
LAL 8ok READER L INK
CLA leé GET DATUM FOR CELL
o — STO A — - SAVE -DATUM ———— _—
CLA 0,4 ADVANCE READER
— - - $TO 8 : - e
ANA =0700000 SET FLAG
ARS 15
sus =1
. STO c - -
SEQLR END
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*
- —

ENTRY

SEQDEC

SEQDEC—SXA REFv1
SXA RET#1,2
SXA RET4+244- - — - [

s INDEX REGISTER 1 [S

THE POINTER TO THE TOP OF THE STACK

LXA ZERG,1 ——— - e - --
# INDEX REGISTER 2 IS THE LEVEL COUNTER FOR THE SEARCH
LXA ZERGy2
CLA® 1,4
-~ -§T@-  LIST e e

CLA® 3,4

~—SY0 - - STATE e —
CLA DEPTH
Su8 ONE
ALS 18
57D LTEST - - e e
TSX SITSVAL, 4
TXH - VALUEQ - VALUE-LIST FOR -TOP LEVEL — — — —— ——
TXH LIST

VAL IAE(

* THIS 1S THE MAIN SEARCH LGOPs - - o —

*

» FIRST -GE¥- THE DECISION LOSS DF THE CURRENT PRIBA —— —— — -

LOOP  CLA NODES COUNT DECISION NODES
ADD 1
STO NODES
TSk -~ STTSVALy4 GET-DISTRIBUTION FOR--FHLS NODE- -
TXH PRIOR
—FXH LIST — — . e
sTO PLIST SAVE NAME OF PRIOR LIST
Lk STATE
$TO DECIDE
NOFERM TSX $DLOSSy4 ——  DECISION LOSS FOR DISTRIBUFION — — — —— — — —
TXH PLIST
-~ ¥XH- - - —DECIDE - DECEDE NAME - — ———————
sT0 LSAVE
FXH- tF£51, 2,0
TSX SMANY , 4 SAVE DECISION VALUES IF AT LEVEL ZERD
TXH YALUES - R - R
TXH DECIDE
— EXH LSAVE e - -
LTEST TXL DOWN,y 2, ¢+ CHECK LEVEL AGAINST DEPTH

LR ]

RETLHN

LE.Y §
-

* HERE THE LEVEL IS LESS THAN THE REQUIRED DEPTH. -

EONT-IN 3
CONTINTZY L RTTURN

# THE TREE IS DEVELOPED TO THE NEXT LEVEL AND THE SEARCH

» CONTINUES.

*»

DO FS——SREL TS Ty GET RELEVANTTES TS FOR—FHEIS LEVEL—

TXH
TXH -

PROCESS THE
EACH BRANCH

LIST
PLIST i

BRANCHES AWAY FROM THE NODE DENOTED BY—WLIST's
CORRESPONDS TO A DIFFERNT TESTING ALTERNATIVE

LN B B A

SEQRDR

SEQLR

AF—FHE—NODE-OENOTED-RY
R TTHE—NOUT - OENOTHED-GF

24 ICTS
Ty

ESTABLISH READER-FOR LIST -
GET NEXT TEST

LISFyROR
TEST,ROR, I
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READ  CLA 1

o CAS——  OME —
TRA NOHEAD NOT A HEADER
I.A AAz
TRA NOHEAD

o TXH 8829200
TRA RET END

TRl —_CONTIN,;2,=1 — NOT THE END OF THE ANALYSIS —— —— —— ————

L ]

4 PROCESS A SINGLE TEST BRANCH HERE

»

NOMEAD—CLA — ——ZERQ— —
sT0 ELOSS EXPECTED LOSS FOR THIS TEST

o ¥SA— — —$GROWle& — — — 1GROML RESULT LEIST FOR THIS TEST —— — ————
TXH ROR
hdd'l ’. 1ST
sT0 RESLST NAME  OF RESULTS LIST

& SAVE VARIABLES HERE — — — — — o

PUSH {RDR ¢ LSAVE ,RESLST ,PLIST)
e ISX— — —SNEWYOPy4- — — PUT_THIS TEST ON-TEST STACK- — — ——————— ——

TXH TEST
—_— TXM— FSTRUN—
R ]
& PROCESS-ALL ROSSIBLE RESULYS FOR THE TEST CURRENTLY 8EING ——— — —— ——
* EVALUATED.
— e ———————— ————
SEQRDR RESLST,RDRL  READER FOR RESULTS LIST
L
CLA 1 CHECK FOR HEADER
e CAS — — ONE— —
TRA GOON
----- TRA —— —®82 . MEADER
TRA GOON
» ALL RESULTS FOR THIS TEST PROCESSED. RESTORE VARIABLES FOR TEST
o EVALUATION
*
e PDP . (PLISToRESLST,LSAVELRORL . _ .
TSX $POPTOP, 4 GET THE TEST NAME
IXH ISIRUN.
sTo TEST
e T$X__ _$BOTe4  GET-TEST-COST - . .
TXH TEST
e FAD—_ _ELDSS _COMBINE WITH ELOSS - _ . - ——
STO ELOSS
X CHECK 2¢O
TSX SMANY o & SAVE VALUES IF LEVEL IS ZERO
S IXM_ - VALUES - S R e
TXH TEST
S ¥XH- - ELOSS o - : e S —
CHECK CLA ELODSS
BEST T0 -DALE
TPL DEL NO
e CLA— ... ELOSS_— _ .___BEST SO FAR O
sTO LSAVE
DEL — - SEQLR— —TEST,RORy I — REMOVE THIS BRANCH e
LXD ROR, &
SXA ]'E_”'L
TSX SREMOVE, &
~TXH TENP. : e

TRA READ
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L 4

“# PROCESS—A-SENGLE TEST RESULT HERE - — ——— ———— —— —— ——— — ——
-

S AME VADTAnS O
TRV Y ARTARULT Y

GOON PUSH  (RDR1,ELOSS,LIST)
————— FHE--— —EOOPy 2yt — - — EYEEE — —

TSX SITSVAL,4
————— FXH— ——PROBQ —— -~ — GET PROBABILIFY—OF —THE-BRANEH —— — — — ————
TXH LIST

LDQ LSAVE EXPECTED LOSS

FAD ELOSS
————— STO-— ——BLOSS ——————— —— ———
TRA READ1

.
-
RET AT 58-o-3

ol \E3

TRA 1,4

PLIST

TEMP

LIST
ELOSS — - e g S
ONE ocrY 1

RESLSF

LSAVE

ZERO  BCT - — @ —— e e e e
PROB

PROBQ-— BEL - - 14PROB — — o — e e
STATE
DECHDE
VALUEQ BCI 1. VALUES
VALUES e

INSERT COMMON COMMON PACKAGE
- END LT I I — - e mm S

upPD1 FAP

. - el e e
& THIS FUNCTION UPDATES THE PRIOR DISTRIBUTION IN
# IS STORED IN *LST2e,

ENTRY uPD1



INSERT  MACROS
SUBST — MACRO - -READER,DATUM -
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LAC READER, 4
CLEA Ov4
ARS 18
PAC .. D48
CLA DATUM
$TO -- le& o

SUBST END

uep1 SXA RET. o b
CLA# 14

-——8T8 SYMp.. ... .
CLA® 244
— 870 LSH el
CLAe 3,4
STO £LS$T2
CAS LST1
- --TRA DIF R I _

TRA SAME

DIF s$TZ SWITCH
TRA 42

SAME STL SWITCH
CLA FLERO
STO P e e
TSX SITSVAL 4

cme TXH - _MENQ

TXH SYMP
S'l'ﬂ MEML Sl’

SEQRDR LST1,RDR
LODP. .. SEQLR_. - STATE.RDR,1 -

CHECK CLA 1
CAS — - _ONE -
TRA MORE
IRA 'Y W)
TRA MORE
CLA - — P — S
FSB FLERC

_ IPL . .. NOZERO

CLA P

RET AXT RET . 4
TRA P

= -
NOZERO SEQRDR LST2,RDR
AGAIN SEQLR STATELRDR,I

CLA 1
LAS ONE.
TRA 42
TRA RET-1
SEQLR PRyRDR, I
CLA PR
FDP P
$TQ PROB
SUBST RDR, PROB
TRA AGAIN

-

MORE SEQLR PROB,RDR, 1
TSX SMEMBER, 4
IXH STATE
TXH MEMLST
TXH 1ERO

TNZ ey
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CLA FZERD
570 PR : e -
TRA STEST
PAEL T
CLA 0,4
PAC . R — ——_—
cLA lo4
~—s¥0 PR =
TSX SPIS, 4
YY’J' Svl'ﬂ
TXH PR
(3 1:] PR - : e s --
STEST CLA SYMP
—— ¥ MULT s --
CLA =1.E0
F58 PR
SYO PR
MULT-- —£DQ— —- —PRBS - - -—
FHP PR
sT0 PROB- T - -
FSB FZERD
ToL 2s2
TRA SCRAP
AP —
FAD PROB
st P . -
ZET SWITCH
TaA +2
TRA DIFPRO
SUBST - RORyPROB — — — —— — —-
TRA Loop
. L
DIFPRO TSX SMANY , 4
FxM £5T2
TXH STATE
TXH PROB ——
TRA Loop
. ) .

TRA Laor
LAC RDRy 4 -
CLA Oy 4
— - -— — -ARS- 8- - - - - —
STA ADD
€tk ROR
ARS 18
STA ADD1 -—-
SEQLR STATE+RDR, I
FSX $REMOVEv 4 -
TXH ADD
F5X $REMOVEY 4
TXH ADD1
TRA CHECK
-
» -
FZERO OCTY 233000000000
BNE B86F 2
ZERD ocT 0o
SWiFEH ST ———— -

RDR



239

STATE

e

LST1

L 5"3

SYMP

MEMQ - -8C1 - L, ,MEMBER . ——————

ADD

ADDL e ———

P

/R

PROB

“EMLS -
END

MEMBER- - FAP—— . . e — e —— —
ENTRY MEMBER

— — __INSERT _MACRDS — — — — — — —— —— —— — — ———— —— — ———— — — —— —

MEMBER SXA RET 4
SXA RET&1.1
CLA» 1.4

-4  + N - o ¥
CLA= 2,4

- s s ——————
CLAs 304

—_—TNE—LEVELL
CLA LIST

—— 8T - NEX¢— e ——
Ts$X ONCE, 1

REFL — AXY — ow b e —
AXT en,l
IRA L'L

»

. e — — —

LEVEL]l SEQRDR LIST,RDR

LOOP _ SEQLR - NEXT.RDRyIL . - —
CLA 1
CAS ONE—
TRA GOON

e IRA-— BB e —
TRA GOON

e AAG
TRA RET

GOON—TSX——ONCE1
TRA Looe

* - —— — g —— EE——

L)

ONGE - — SEQRDR- - NEXT4R——— — — — — - - - e — e — —

OLOOP SEQLR CANDyR,F
ClA +
CAS ONE

——— —JRA—— - MORE- - U R
TRA -2

—— — —JRA—— —MORE—- — — -~ — — — e
ZAC
IRA 1 * 1

MORE CLA CAND

- - —CAS - GOAL - — —
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TRA a2

e TRA———BLOOP —— e
LAC Ro4 ‘
£tA Ove
ARS 18
e ANA— =PIV — R ——
TRA RET
- L
CAND
NEXF
RDR
_F _______________________________________________
R
F 7777777777777777777777777777777777777777777777777
GDAL
LIST
ONE ocT 1
_ — 7E~,‘B ___________________________________________
UN  FAP
c — ENFRY— —UPBE e
ENTRY  NSCOMP
~——— — INSERF - MAEROS — — — ——— —
SUBST MACRO  READER,DATUM
+AE READER Y4
cLa 0,4
*’7*—*‘%*’47“7 ey U S
PAC 0s4
i ——CtA— - DATUM e e ——————
$TO 14
ST——END
*
HCHECK- MACRG - —LABLyLAB2yFLAG —— — — —— — ——
cLA FLAG
,,,,,7777GA_S,_,__~BN,E7,>,*7 e
TRA LABL
Rk LAB2
TRA LABL
HOHECK END- — — — ——— — ——
-
+ SUPDLL-DOES-THE -STANDARD UPDATE-OF £5T1 INTQ 4S¥2 —
* WHEN A SYMPTOM IS THE *AGENT'.
uPDL  STI INDIC
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