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ABSTRACT

A method is developed for digital simulation of linear time-
invariant dynamic systems with lumped parameters and time delays.
Ordinarily, such systems can be described by a 1inear matrix differential-
difference equation, which can be transformed to an infinite-dimensional
difference equation whose solution is obtained in a recursive way.

As the present method depends on the accuracy of evaluation of the
matrix exponential, a simple comnutationﬁ} procedure based on the
truncation of the infinite series for e is described.

In addition, an algorithm is given that ensures that the
transient state of an unforced linear time-invariant dynamic system with
zero time delay is calculated to a specified accuracy.

Several sample problems are included.
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CHAPTER 1

INTRODUCTION

1-1 Description of the problem

This report presents a method for the simulation of linear time-
invariant dynamic systems with lumped parameters and time delays.

In many industrial processes one often encounters a type of time
delay called "transportation lag'". This kind of delay is generated when
process materials move from one point in a process to another point
without any appreciable change taking place in the properties or
characteristics of the process materials, Such delays may be caused by the
flow of fluids through pipes, or by the motion of webs or filaments.
Systems such as distillation columns and long heat exchangers are
characterized by a multitude of small lags, which have an effect somewhat
gimilar to that of time delays. The effects are not identical; however,
some insight may be gained by using time delays models, The control of
composition in a chemical reactor has been selected as a typical problem
and this is depicted in section 5-2,

Models having delays often arise in the study of systems with a
mixture of lumped and distributed elements, An interesting form of
topological representation suitable for such systems has been invented by
Prof. Hs M, Paynter at M,I,T., and is called the bond graph, Rosenmberg (17)
and Auslander (l)* describe its use in modeling in some detail.

Many other physical systems, such as electrical, mechanical and

* Numbers in parenthesis refer to items in the bibliography.



hydraulic transmission lines, and certain types of structural problems,
are good examples of distributed systems which can be modeled using the
delay operator. These systems often are analyzed as two-port chains, and
usually the equations are slightly more involved than the type treated in
this report. It is suggested that the reader interested in these kind of
problems consult Koepcke (9) and Vaughn (20), as well as any standard text

treating transmission phenomena.
1-2 Formulation of the approach

As an extension to the use of ordinary differential equations
which arise when the future behavior of the system depends only upon its
present state and not upon its past history, many systems that include
time delays can be described by a linear matrix differential-difference

equation, That is, the system is described by

E(:‘T) »

o - ) i
X(t) = JA X(t-T)+ ID
1 1 3

s=13
where X and U are the state and input vectors, respectively and T, and T&

are some fixed delay times. A, are a set of n x n matrices, and Dj are a

1
set of n x r matrices. Techniques such as the direct method of lyapunov or
laplace transforms can be used i{n the analysis of the equation. However,
the use of these techniques frequently requires extensive computation, and
for that reason they are not practical for hand analysis. At this step,
designers and analysts are forced to rely on the digital computer as a
computing aid,

Because matrix manipulations are so convenient to implement on a

digital computer, many existing dynamic systems programs are based on a



matrix formulation of the problem, This convenience, together with the
inherent elegance of the matrix approach, is helping to promote its
acceptance among systems theorists.

This report analyzes systems governed by the following differential-
difference equation, for which it is desired to have a time sampled version

of the state response:

i{_(:) = A X(t) +B X(t -T) + Dlg(t) + ng(c -1
where

T = time delay.

X(t) = (n x 1) vector, It is called the state vector,

u(t) = (r x 1) vector. It is the forcing signal or
input vector, and it is assumed to be constant
between samples.

A, B = (n x n) constant coefficient matrices,

Diy D, = (n x r) constant driving matrices.

Koepcke (9) shows that the equivalent difference equation is (see

section 3-1)

Xe+1) =] (¢ (1) X(t - iNT) + A, (1) Ut - iND)]
i=0

where N = % , and ¢, and Ai are called plant transition matrices and

i
control transition matrices respectively.

The accuracy of evaluation of these sets of transition matrices
depends upon the accuracy of evaluation of the matrix exponential, In
section 2-3 a simple procedure based on the truncation of the infinite

A

series of e T (11,6), which guarantees a specified accuracy in the matrix

exponential, is described.



Also, a procedure is developed (21) to ensure that the calculated
transient state of unforced linear time~invariant dynamic systems with
sero time delay, is accurate to a specified tolerance.

Several sample problems are presented to demonstrate the

computation techniques.

1-3 Application of results in dynamic simulation

The two sets of simulators deduced throughout the development of
this work, were tested on the time-shared IBM 7094 operated by Project MAC,
and the entire operationm, input and output, was carried out at an IBM 1050
remote console typewriter., The algorithms will be part of the ENPORT
Project which is being carried out at the mechanical engineering department
under the direction of Professor Rosenberg.

ENPORT is a digital computer program that accepts a bond graph
description of a dynamic system and produces its time response, Work is
being done on the theory of bond graphs, and a systematic graphical
method has been developed for generating the state differential equations.
ENPORT is organized in such a way that a broad class of nonlinear, active
and passive, mixed energy~type systems can be handled.

The wakelike nature of certain types of distributed systems make
simulation by means of the digital computer, with its ability to exactly
model the time delay operator, very natural. A simulation method based on

delay~bond modeling has been developed by Auslander (1).



CHAPTER 2

DYNAMIC RESPONSE OF LINEAR TIME~INVARIANT SYSTEMS

The analysis of many systems problems encountered in scientific
and engineering investigations can be performed by either one of two
major approaches. The essentially block diagram approach, imvolves the
determination of the transfer characteristics of the system components
and the overall transfer characteristics. The second approach is based
primarily upon the characterization of a system by a number of coupled
first order differential equations which govern the behavior of the state
variables. This technique is often implemented with the aid of a state

variable diagram and is referred to as the state-variable approach.

2-1 System Characterization by State Variables

From the point of view of system analysis it is convenient to
classify the variables which characterize or are assoclated with any
system into (1) input, or forcing signals, Ui, which in essence represent
the stimuli generated by systems othar than the ome under investigation
and which influence the system behavior; (2) output, or response,
variables Y{, which describe those aspects of system behavior that are
of interest to the investigator; and (3) state variables Xi, which
characterize the dynamic behavior of the system under investigation,

One way of defining state variables is by making use of the state
variable diagram. A state variable diagram is made up of integrators,
coefficients and summing devices. It describes the relationships among

the gtate variables and provide physical interpretations of them. The



outputs of the integrators denote the state variables,

For continuous-time systems the state variable diagram is the
same as the analog-computer simulation diagram. The state variable
diagram may be derived from the overall transfer function of the system
in three different ways (1) direct programming, (2) parallel programning,
and (3) iterative programming, These methods are later ilustrated in the
chapter corresponding to the solution to sample problems, Further
information can be obtained from Tou (19), Schwarz and Friedland (18) and

Ogata (15).
2-2 Digital Solution of the Matrix Differential Equation

A linear time-invariant system or process can be described by a set
of first order linear differential equations with constant coefficients,

which may be expressed in matrix form as

glc_(:) = A X(t) + D U(t) (2.1)
where
A 1s the coefficient matrix
D is the driving matrix
X is the state variable vector
U is the state forcing signal vector
By analogy to the scalar case, the solution of eq. (2.1) is

T
x(m = ATy y 4 j AT = Dy yeoy ar (2.2)

t
-]

with the initial conditions given by E(to)'
For simplicity let to = 0, and let us define

AT

P(T) = e (2.3)



as the transition matrix of the process. An equivalent name is the matrix
exponential,

Therefore eq. (2.2) can be reduced to
T—AI
X(T) = ®(T) X(0) + &(T) Ie D U(1) dt (2.4)
0
If T 1s small compared to the shortest period of interest in U(t),

U(t) may be approximated over the regiom by U(0).

Then eq. (2.4) becomes

X(T) = o(T) X(0) + ¢<r>[ JZQ_AT dr] D U(9) (2.5)
By integration of the series of e T
j:e"’" at = a1 - 0(-1) (2.6)
Thus
X(T) = o(T) X(0) + &(T) A"L[1 - &(-1)] D B(O) 2.7)

Let us define

1 AT A-l e-AT

M) = [T At - 1D (2.9)

as the control transition matrix.
From the series definition of e-AI, it 1s observed that

A—l e-AT - e-AI Afl

Therefore, eq. (2.9) becomes

1 | AT -AT ;-1

M) = [eAT 4™ D

AT = (AT At - Al

or

AT = [T -1 a0 (2.10)



Thus eq. (2.8) can finally be written as

x(m = AT x0) + (AT - » 471 DUy , (2.11)
oY
X(T) = &(T) X(0) + A(T) u(o) (2.12)

In general eq. (2.12) can be expressed as

X@EFIT) = o(T) X(KT) + A(T) U(KT) (2,13)
which indicates that the state vector of the process after a particular
interval depends upon the previous vector and also depends upon the
forcing vector evaluated at the previous time.

There are several methods available for computing the closed form
expression for eAT, either as a special case of the study of the functions
of a matrix or by a purely algebraic method based on the Laplace Transform.
It is suggested, for those interested in these schemes, that they consult

Ogata (l5), Zadeh and Desoer (23), or Bellman (2),

2-~3 Digital Evaluation of the Matrix Exponential

eAT is given by
2
AT B B, B B, B
e’ = e -I+B+2(ll)+3(ﬁ)+---- (2.14)

note that each term in parenthesis is equal to the previous term. This
provides a convenient recursion scheme.

To ensure a reasonable truncation of the series, it is necessary
to judge the convergence of the series. The norm of 2 matrix A is a real,
non-negative number denoted by "AH , that gives a measure of the size of
the matrix elements.

Let



o) = T aM 4R
where M is the truncated matrix which is an approximation of eA'r (see

reference 11)

K i
w - A (2.15)
1=0
and R is the remainder matrix
[ i
r= ] A (2.16)
1=K+1

If each element in the matrix eA.r i1s required with an accuracy

of "d" significant digits, then

fr

ia

~d
ij| 10 |miJ| (2.17)

where rij and mij are elements of matrices R and M respectively.

Let us define the norm of matrix A as:

lal = min{max [}|a,,|1, max [}|a,,|1} (2.18)
PR AR Rl U

For this norm, we have

s sll<lallial (2.19)
IaiJI;lA‘ (2.20)

and
laklelic 1all + lsl (2.21)

Then, it follows that
o {1 o i i
A A
ey <l A2 el (2.22)
1=K+1 imK+1

if the same norm is applied to the remainder matrix R.

Upon expansion of eq. (2.22)
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K+1 K+1
= (K+1)!

|K*21 K+2
(k+2)!

. la

+ (2.23)
and, calling € the ratio of the second term to the first

"A"K+2 TK+2

o K+2)1 _ lallc
H A|l<+1 T1<+1 K+2 (2.24)

®DT

Therefore

IIAI!r < (2.25)

Making the substitution of eq. (2.19) into eq.(2.23), it follows

that
Irgyl shenflacl | lan®ll an? |+
K! K+1 X! (K+2) (K+1)
el @n® |
Kl ) () () T (2.26)
or

|1llm[ug_1 Lac Ilac ),

K+1 K+2 K+l

LMJLLTJHALJI,L S ] . (2.27)

K+3 K+2 K+l

Thus

1j|<-(-—)——u AT I[L—JL[A‘ e lac by

K1 K42
|A'r Il ax_|
L +-——}] (2.28)

Now, because any factor of the form "EI§J| for a>2 is always less

than €, by eq. (2.24), then
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(21( 2 3 k4
Irijlé “ A;! “{"%&% {L+e+e+e+e+ —1} ] (2.29)

If e<1, eq. (2.29) takes the form

I, llao®ad 1
B0 e 1 e .30

This equation is suggested by Everling (6) as the upper bound in
the remainder matrix R.

In order to initialize the procedure, a certain K has to be
chosen, but this K cannot be arbitrary, because it may happen that e>1,
and relatfon (2.30) would not hold any more.

This situation can be solved using eq. (2.25); thus

& Azl
=" ¢

In order to ensure that e<1/2, the initial condition for K should

be
> 2 | acl (2.31)

However, it is possible that "AT"be less than 1/2; then K would
be less than one. So, in order to avoid this possibility, an initial value
of K can be obtained from

K = max [ 2lacl, 2 ] (2.32)

At this point, Everling (6) suggests that K be incremented by
half of its initial value, in the course of iteration.

Although the matrix series approach for the evaluation of the
transition matrix is suitable for digital computation, the disadventage
stems from the convergence requirements for the series eAT, so it would
be desirable to speed the computation.

This can be done recalling the basic relationship
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a
eAT = [eAT/a] (2.33)
where o is chosen using the following expression
_ 4B
a = 2 > max la IT (2.34)
i,]3

where R is the smallest integer allowed.

The idea is to compute eAT/a, because the norm of Ar/a is smaller
than At, and the series will converge faster. Once the addition of the
corresponding elements in the matrix terms of the infinite series is done,
all that is required is to raise the result to the power a. The last step
involves very few matrix multiplications, because a is a power of 2; for
example, if ¢ = 32 only 5 matrix multiplications are performed at the end
of the computation.

The steps presented in this section are summarized in a flow

diagram in chapter 4.
2-4 Error bounds in the transient response

Although the matrix eAT can be obtained within prescribed
accuracy, the truncation error of the matrix series, and the roundoff
error do propagate in the state vector with increasing time.

It is desirable, therefore to derive recursion relations which
bound the propagated error due to these sources. Whitney (21) suggests
one method.

The homogeneous case of eq. (2.13) is
X(K+1 T) = ¢(T) X(K T) (2.35)

If eq. (2.15) is used in place of ¢(T), the numerical calculation



13

reads

_)_(*(1(+1 T) =M K*(K T) (2.36)
where X, (K+l T) is the perturbed state vector obtained from numerical
calculation.

The propagated error at time (K+1) T due to the approximate M

is
E(KHL T) = X(K+1 T) - X, (K+L T) (2.37)
Rewriting eq. (2.35) and substracting eq. (2.36) from it yields
XEA T) - X, (K41 T) = [MRI[X, (K T) + E(K T)]
- M X, (KT , (2.38)
or
E(R+L T) = [M + RIE(K T) + R X, (K T) (2.39)
From eq. (2.17)
Iryyle 10-d|mij| .17
We can define
R, = |r1j| 1 (2.40)

vhere I 1s a matrix each of whose elements 1s unity. Replacing R with R

in (2.39), we obtain the running error bound for E(K+l1 T), that is

ERHL T) = [M+ R] E(K T) + R, X, (X T) (2.41)

The computation may be initialized assuming E(0) is zero.
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CHAPTER 3

DYNAMIC RESPONSE OF LINEAR TIME-INVARIANT SYSTEMS

WITH LUMPED PARAMETERS AND TIME DELAYS

It has been found that many industrial processes in which
transportation lags are common can be described by a system of
differential-difference equations, The chemical process industry offers
many examples,

This chapter analyzes the special case of a system subject to
one delay, and a technique suitable for digital computation is described.

The derivation follows a criterion developed by Koepcke (9).

3-1 Digital solution of the matrix differential-difference equation

Consider a dynamic system which is governed by the following

differential-difference equation

3.(_(:) = A X(t) + B X(t - T) +DU(t) + D,U(t - T) (3.1)
where
X(t) = (n x 1) vector, referred to as the state vector;
U(t) = (r x 1) input vector, assumed constant between samples;
i,e, U(t) = U(tk) for tkiggtx+l;
A, B= (n x n) constant coefficient matrices; and
D., D, = (n x r) constant driving matrices

Let us consider first the homogeneous part of eq. (3,1); that is

g(:) = A X(t) + B X(t - T) (3.2)

Taking the laplace transform of eq. (3.2),
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SX(S) - X(0) = (A + B e °1) X(5) (3.3)
or
X(S) = [SI ~ (A + B e 31171 x(0) (3.4)
Defining ZEe_ST, then
X(S) = [SI - (A +B 217! x0 , (3.5)
or
X(8) = 2 (1 - (a+B2)/5170 5O . (3.6)
Let W = [T - R}, vhere R = 4122 | than
WeI+R+R 4R 48 4 e, 3.7

Therefore, one should choose an "S" large enough to ensure that
eq. (3.7) is valid.

Thus

2 3
X(S) = % (L + A ; BZ + (A +zBZ! + (A +3BZ! +

S S
4
+ABD 4 ) O (3.8)
S
Recall the facts that
(A + B2)? = A2 + A(BZ) + (B2)A + (BZ)Z

3

(A + 82)> = a3 + A2(BZ) + A(BZ)A + A(BZT + (BZ)A® +

+ (BZ)A(BZ) + (82)%A + (82)°
(A + B2)* = A% + A3(82) + A2(82)A + A2(B2) %+ A(BZ)A? +
+ A(BZ)A(BZ) + A(BZ)2A + A(BZ)3 + (B2)AD +

+ (BZ)A2(BZ) + (BZ)A(BZ)A + (BZ)A(BZ)Z +

+ (82)24% + (82)%A(82) + (82)%a + (32)*
ete,

Then, arranging by terms of equal delay,
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where

2,3 4
x9) = [E+d A A Ay x4
s2 53 st s

o (B2, AGD) + (DA A@D) + AGIIA ¥ Y
2 4

S S3 S
3 2 2 3
+ A"(BZ) + A"(BZ)A '; A(BZ) A” + (BZ)A + - ] X(0) +
S

2 2, 2,2
B2, AGDT +BDAGD + (DA A(BD” + AGBZABE)
s st s°

+ A‘BZ!ZA + sBZIAZQBZE + (BZ)A(BZ)A + SBZZZAZ +

SS

+--1X(0) +

3 3 2 2 3
+ [SBZE + A(BZ) " + (BZ)A(BZ)' 5+ (BZ) "A(BZ) + (BZ)"A +
S

]
+ == ] X(0) +

4
v {2, 1 X(0) +
S

+ mm——me (3.9)
Now, because
ZX(t) = X(t - T) (zze’), (3.10)
We have
zX(0) = X(-T) ,

22%(0) = x(-21) ,
23%(0) = X(-31) , and so forth,
Therefore, X(S) can be arranged in the following way.

X(S) = %a(9)X(0) + ¢1(X(-T) + 82(K(-2T) + ¢3(S)X(-3D) +

+ 0, (S}N(-4T) + ~—= (3.11)



2 3 4

¢u(s)-—1-+52-+-A—3-+5-z+%+ ---------

s S ] S S

B AB + BA A2B+ABA+BA2
$1(8) = =5+ 7t 7 +

5 S S

A3B+AZBA+ABA2+BA3
t I e
s

B2 ABZ +BAB+B2A A232+ABAB+A52A+BA2B
e;(s)--—3-+ % + —— 5 +

s S S

BABA + B24A>
+——5 +
[

3 3 2 2 3
03(5)-&5+AB 4 BAB ;—B&+Bé+____

] ]

4
¢..(S)--—-+

SS

Rearranging terms, it follows that

2 3 4
¢o(s).l+.1\_2.+£\.3.+ﬁz+£\?+ ----------
s s S s S
2
¢l(s)_§_2_+_;A_B+3I§_4_+A(AB+B_%)+BA +
S S s

+ A[A(AB + BA) + Ba%) + A’

S5

+

S S S
2
. BIAAB + BA) + BA®] |
5
S
B> AB> + B[AB? + B(AB + BA))
03(s) = &+ - + -
S S
4
B
¢4, (S) "—5‘+
S

17

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

Let us try to find a relationship among the coefficients. With



i8

this idea in mind, we shall form the array shown in figure 3.1:

§907138W NOTITSURIY

pamioJsurII-aoeTdET 9Y2 JO SIUBWATL Byl Jo Aexay T°C 2andTd

+ + 4
i “ AR
0 0 0 0 0
o2 0 0 0 0
[(ve + gv)9 + Aumvim + HNmZ mm 0 0 0
Hmﬁ + (Ve + av)vid + [(VvE + gv)d + ANS<_< (v + av)d + ANS< Nm 0 0
(Ve + _Né + (Ve + 9V)V]V e+ (ve + av)y (va + av | € 0
WY v o v I
¢S y=S =S z-S 1S
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It is seen that the correlation among the elements (call any

element b c ) is
YoM,

0 0 C,,~t+C, ,~{C

22 23 24
o] 0 0 C3§¢~C34
0 0 0 0 C44

where the arrows indicate the inmediate dependance; i.e., C12 depends on

Col and cll' etc.

From a careful study of the array in fig, 3.1, it is found that

b 0 e V0 R SV I
Sj Sj+l Sj+l

(3.22)
where “i" 1s the subindex denoting row and "3j" is the subindex denoting
column,

The following conditions should be added, in order to initialize

a computational procedure

c =0 >0 3.23
1, 321 (3.23)
Coo = 1 (3.24)
Ci,o =0 1>0 (3.25)

The inverse laplace transform of eq. (3,22) yields (note:

LIt%/al] = 1/5%M )
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i=1 9
T T T
[ci.j] _—‘-(j-'l)! - [Aci,j-ll ""‘jl + [Bci-l,j-l] -—j—!— (3.26)

Therefore

- b P h P
Ci,j [Aci,j-ll T (=11 + [Bci—l,j—lL—l— -1 ,(3.27)

i 3=l LR b
or
[AC 1T + [BC It
1,4-1 1-1,4-1
c - . 3.28
1,3 3 (3.28)
Changing i for j+1, eg. (3.28) takes the final form
[AT]C + [BT]C
- i, 1=1,1
ci,j+1 J+1 (3.29)

Actually eq. (3.29) gives all coefficients without any need to

multiply them by 11
e

This is because T has been assoclated with matrix A and B, and in
order to compute any Ci J41° the initial conditions given by eqs. (3.23),
’
(3.24) and (3.25) have to be considered.

The computation of the C is done in a recursive way, as

i,j+1
given by eq. (3.29). Once they are computed, they may be substituted in
the inverse laplace transformation of eqs. (3.17), (3.18), etc., so that
do(t), 01(1), %2(T), ++. can be generated, The last set of matrices are
called "plant transition matrices".

Returning to eq. (3,11), if ets is multiplied into both sides,

then
eB5x(s) = 90(8)e"Sx(0) + 8, (8)eSSx(-1) + ¢1(5)eSx(-21) +

+ 03(5)eSX(-3T) + ——- , (3.30)

or
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eB5x(s) = Ga(S)X(t) + O (SIX(t = T) + 02(SIX(t = 2T) +
+ 03(S)X(t = 3T) + —— o (3.31)

Taking the inverse laplace tramnsform of eq. (3.31), it turns out

to be
X(e + 1) = $(D)X(t) + & (DX(e = T) + & (VX(e - 2T) +
+ $3(T)X(t = 3T) + =————, (3.32)
or
e+ =] o (VX - 41D (3.33)
1m0

This is the sampled version of the homogeneous part of the
differential-difference equation.

Now, let us comsider the addition of an input vector or forcing
signal.

In chapter 2, section 2-2, it was found that the digital version

of the time-invariant matrix differential equation adopted the form

X(&FL T) = &(T) X(KT) + A(T) U(KT) (3.34)
where
o(m) = AT (3.35)
and
A = (AT -1 a7t p (3.36)
Although it was not demonstrated, it can be shown that
A(T) -E %‘;;‘—B%! T0 , (3.37)
=0
or
A(T) = E L‘%—j——j-}r- TD. (3.38)

3=0
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If the terms and TD were absent, the series would be the well

i

j+1

known matrix exponential, whose terms can be computed in a recursive way by
. fan

co.j 141 (3.39)

Therefore, eq. (3.38) is

p T
- ———— .40
A(T) JZO co'j T D (3.40)

By following the same line of reasoning, the control transition
matrices in the case of the complete differential~difference equation can

be written as

s T o T
A (T) = jzici»i Tt jzici-l’j i (3.41)

and the complete difference equation is

-

Xt + 1) = ] [0,(7) X(t = 4T) + 4,(1) U(t = iT)] (3.42)
1=0

In resume, the digital version of

A(t) = A X(t) + B X(t = T) + D U(t) + D,U(t = T)

is
X+ 1) = ] [e(1) X(t - iNT) + A, (T) U(t - IND)]
im0
where
T
N = T
[+ -
i(T) jZoci-J
. _ lati ¢, , + (BT C
i,i+1 j+1
C =1
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CHAPTER 4

ALGORITHMS FOR DIGITAL COMPUTATION

This chapter presents flowcharts for the algorithms of chapters
2 and 3, from which the computer programs were derived. They accept as
input the coefficient matrices, the driving matrices, the initial state
vector, and deterministic forcing vectors. As output, the computer will
produce the state vector at the current sampling time and the set of
transition matrices, if desired.

Because these routines will eventually become part of Project
ENPORT, they were designed to be used on the time-sharing system. However,
they may be operated in the BATCH procedure without any difficulty, by
modifying the input/output statements.

The programs were written in the MAD language, and are listed in

Appendix A,
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4—-1-1 TRANS

Purpose: to compute the time response of linear time-invariant

systems,

Inputs: order of system (M = ); sampling time (T = ); final
time (TF = ); number of input signals (R = ); the

augmented A matrix and the initial state (x(1) = ).

Outputs: the transition matrix; the current time; and the state

of the system.

Remarks: main program. Subroutines called by TRANS: EXPMAT, and

DISTUR,
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Read from the console
order of system (M = )
sampling time (T = )
final time (TF = )

i

Is there any disturbing no

signal ?

yes

Read from the console

number of input signals

(R=)

y

Read from the console
the augmented A matrix
A(l,1) = ==, A(2,1) = ==
AM,1) = —=

\

Read from the console
initial state X(1) = ==

\

Save inftial state
XI(1) = X(1)
XI(M~R) = X(M~R)

TA = T TA i3 running time

TRANS, Page 1 of 3 pages,



no

Is R4 0?7

yes,

Execute distur. (TA)

XI(M-R+1) = X(M-R+1)

XI(M) = X(M)

A
Initial error
E(1) = 0.

E(M) = 0.

5]

GCet transition matrix

Execute expmat. (T)

Output to comsole
Transition matrix
EM(1,J)

\

Save transition matrix
EMP(I,J) = EM(I,J)

\
Initialization

PE(L) = 0 @

Y(I) = 0

é TRANS, Page 2 of 3 pages

E(I) is error vector

TZ is time increment

PE 18 new E

Y is new X

27
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Compute new state

Y(I) = Y(I) + EMP(I,J)*X(J)

i

PE(I) = PE(1) + (EMP(I,J) + RIJ)*E(J) RIJ is upper bound in
+ RIJ*X(J) remainder terms

!

NORM = J |PE(I) |
I

!

no 7

Is NORM > 107/ 2

yas

T = TA

!

Execute expmat, (T)

I

PE(I) = 0.
Y(I) = 0.

\
Y(I) = Y(I) + EM(I,J)*XI(J)

PE(I) = PE(I) + RIJ*XI(J)
N|

i ]
X(I) = Y(I)

E(I) = PE(I)

Output to the console
TA, X(1) ... X(M=R)

|
{18 TA < TF ?F“ﬁ;é - TA+TFP’

‘yes

Get new disturb. vector

Execute distur. (TA)

l End of program]

®

TRANS, Page 3 of 3 pages.
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[Entry to expmat. I

B(I,J) = A(1,J)

B(I,J) = B(I,J)*T

Y

a = 2B

> max|B(I,J)|
8 is the smallest positive

integer

A
B(I,J) = B(I,0)/a

\

NORM = §B] = min{max(Z|B(1,3)]], max[Z|B(I,J)]]}
I J J I

[
Initial values of K K is the number of

K = max[2#NORM, 2] terms of the series

Increment

IN = K/2

EXPMAT. Page 1 of 2 pages.
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K
B sl 1
RLJ = " Kl"l K+l 1-€

Y

Is RIJ < 10"7|m(1.J)| 7]&,1 - K+ IN

Y
TERM = EM#®EM

/
LL = LL+1

[ 2 for o]

Yes v

Function return

Y
[AFnd of functionA]

EXPMAT. Page 2 of 2 pages.
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42l TIMDEL

Purpose: to compute the time response of linear systems with

lumped parameters and time delays.

Inputs: order of system (M = ); sampling time (T = ); time
delay (TD = ); final time (TF = ); number of imput
signals (R = ); the A matrix; the B matrix; the Dl

matrix; the D, matrix; the initial state (X(1,1) = ).

2
Outputs: the plant transition matrices, the control tranmsition
matrices if desired; the current time; and the state

of the system.

Remarks: main program. Subroutines called by TIMDEL: DELFOR,
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Read from the console
order of system (M = )
sampling time (T = )
time delay (TD = )
final time (TF = )

\

Is there any disturbing

no
signal?
y.l‘ Rs(Q
Read from the console
number of input signals
(R =)
\
REL = TD/T REL > 1, integer

\
Read from the console

the A matrix, A(1,1) = --
A(2,1) = ==

\

Read from the console
the B matrix, B(l,1) = --
B(2,1) = =

yes ]

Read from the console
the D1 matrix. Dl(l,l) " ——
Dl(z.l) - -

®

TIMDEL, Page 1 of 3 pages.
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Read from the consocle
the D2 matrix, Dz(l,l) - -
D2(2,1) - -

no

\

Compute set of transition
matrices
Execute delfor. (T)

Do you wish to have tha

transition matrices ?

yes

Output to the console
plant transition matrices
EM(L), control transition
matrices DELF(L)

R |

et |

Read from the console
initial state X(1,1) = =w-

W is the number of
transition matrices

computed

Xis (Mx W)

W-1

X(TA+T) = ] EM(I+1) X(TA - I*REL*T)

I=0

no

Is R¢ 0?7

[Efacuto pertur, (TA;]
L ]

W=1

X(TA+T) = X(TA+T) + ] DELF(I+1) U(TA - I*REL*T)

I=Q

- 1

TA = TA+ T

Qutput to the console

TA, X(TA+T) | "

TIMDEL. Page 2 of 3 pages.






ros transition matrices




IiEntty to delforg]

[aa,n = aq, 1]

[Bcz,0) = Bz, p*r |

no IsR$0 2?7

) S

yes

Y
E)I(I.J) = D (1,J)%T
!

D, (L,J) = D,(I,])*T

il

sk |

NORM = || A)| = Min max[f|A(I,])|], max[Z|A(I,J) [1
I J J I

Y

Initial value of K K is the number of terms
K = max{2*NORM, 2] of the series -AT

Increment

IN = K/2

C(=1,3) = 0, J30
Y
[co,00 =1 |
Y
[e2,-1 =0 |
LC(I,O) -0, 1>01

DELFOR., Page 1 of 2 pages.

39



40

@

- |

C(1,J+1) = LALCCLLD + [BIC(I-1,)

J+1

Y

K

J=0

EM(I+1) = ] c(I,

J)

L=1

K= K+IN|

>4
C(1,J) *T*D
G(L,I) =} —L;)l——x.

J=1

IDELF(I+1) = G(1,I) + G(2,Iﬂ|

Is I 407

no

\
NORM
€ = a2

y

K

KT

L AS] Norw 3
ws | gl 2]

Y

no

Is RIJ < 1077 |EM(T) | 2

yes |
\

|1- [lencz+n}t < 107

7,

yas

i

[;;hction retuqﬂ
Y

[End of functiogl

RIJ is upper bound 1

remainder terms of e

DELFOR., Page 2 of 2 pages.

n
AT
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the forcing signai vector at tne current

Ihe program has to keep track of the past.

ABMATKS © 5un

called by [IMDUL,
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CHAPTER 5

SOLUTION TO SAMPLE PROBLEMS

This chapter describes a set of sample problems which were

43

selected because they represent typical applications of the two simulators.

They are intended to show the use of the state variable diagram, and also

to show the accuracy of the methods,

5-1 Test problem for the simulation of dynamic systems without delay

Example 5-1, Although this example may represent a great number

of physical processes, it was selected purely from the mathematical point

of view, The same problem was run by Liou (11).
Given
0 1 0
i(t) =1 0 0 1 1X(e)
=475 =2,75 =3

and

2
X(0) = | -2.5

3.75

Obtain X(nT) using T = 0,1 Min.

The reported solution by Liou and the one obtained by the

simulator are

(5.1)

(5.2)






loadgo trans expmat distur

W 1010.4

EXECUTION.

GIVE ORDER OF SYSTEM (M =)

SAMPLING TIME (T = ), FINAL TIME (TF =)
m=3,t=.1,tf=2.+

IS THERE ANY DISTURBING SIGNAL
no

GIVE THE A MATRIX (A(1,1)=--,A(2,1)=-~)
a(1,1)=0.,1.,0,+

a(2,1)=0.,0.,1.*

a(3,1)=-.75,-2,75,~3.*

GIVE INITIAL STATE (X(1)=--)
x(1)=2.,-2.5,3.75%*

TERMS OF THE MATRIX EXPONENTIAL

EM( 1, 1) = .99388L4E 00
EM( 1, 2) = .995717€E-01
EM( 1, 3) = L452513E-02
EM( 2, 1) = -.339385E-02
EM( Z, 2) = .987440E 00
EM( 2, 3) = .8539963E-01
EM( 3, 1) = -.644972E-01
EM( 3, 2) = -,239884E 00
EM( 3, 3) = .729451E 00
TIME X(1) X(2)
.10 .176781E 01 -.215290E
.20 .156774E 01 -.185614E
.30 .139515E 01 -.160242E
.40 .124603E 01 -. 13854 8E
.50 .111700E 01 -.119997E
.60 .100515E 01 -.104131E
.70 .907978E 00 -.905571E
.80 .823379E 00 ~-.789413E
.90 .743538E 00 ~.689964E
1.00 .684911E 00 -.604775E
1.10 .628178E 00 -.531753E
1.20 .578215E 00 -.469107E
1,30 .534062E 00 -.415312E
1.40 .494901E 00 -.369064E
1.50 .460034E 00 -.329250E
1.60 .428868E 00 -.294921E
1.70 .400894E 00 ~-.265268E
1.80 .375681E 00 -.239602E
1.90 .352861E 00 -.217334E
2.00 .332118E 00 -.197965E
2.10 .313185E 00 -.181068E

END OF EXECUTION
TO CONTINUE, GO TO THE TOP OF A NEW PAGE
AND PRINT AN ASTERISK

01
01
01
01
01
0l
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

V() = A ¥(E)

XD
Y(t) =(X(2)
X(3)

0 1 0
A={ O 0 1
=475 =2.75 =3

2
!(0) = |=2,5
3.75]

X(3)

01
01
01
01
01
01
01
01
00
00
00
00
0o
00
00
00
00
00
00
00
00

.320616E
.274116E
.234368E
.200401E
.171382E
.146596E
.125431E
.107362E
.919418E
.787838E
.675590E
.579853E
.498212E
.L28602E
.369257E
.318666E
.275537E
.238768E
.207415E
.180676E
.157862E

Figure 5,1 Console transaction for example 5.1

45
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A liquid stream enters tank 1 (figure 5.3) at a volumetric flow
rate F cfm and contains reactant A at a concentration of Co moles A/ft3.
Reactant A decomposes in the tanks according to the irreversible chemical
reaction.

A ———— B
The reaction is first order and proceeds at a rate
r=%kec
where
r = moles A decomposing/(ft3)(time)
c = concentration of A, moles A/ft3
k = velocity constant, a function of temperature

The reaction is to be carried out in a series of two stirred
tanks, The tanks are maintained at different temperatures. The temperature
in tank 2 is to be greater than the temperature in tank 1, with the result
that kz, the velocity constant in tank 2, is greater than in tank 1, kl.
Changes in physical properties due to chemical reaction are neglected.

The purpose of the control system is to maintain oo the
concentration of A leaving tank 2, at some desired value in spite of
variation in inlet concentration €yt This will be accomplished by adding a
stream of pure A to tank 1 through a control valve.

Further assumptions are that the control valve and the measuring
element have no dynamics, and that the controller exert proportional action
on the process,

A portion of the liquid leaving tank 2 is continuously withdrawn
through a sample line. The measuring element is remotely located from the
process, because rigid ambient conditions must be maintained for accurate

concentration measurements. The sample line can be represented by a
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transportation lag.

controller

vV, T., ¢

product
stream

composition
measuring
lement

1
| I heating coils

Figure 5,3

Control of a stirred-tank chemical reactor

= sample
stream

The following data is assumad to apply to the system

Molecular weight of A
Pa

c
os

Valve sensitivity kv

100 1b/1b mole

0.8 1b -ol./ft3

0.1 1b mole

100 cfm

A/ft3

1.0 1b mole/min

1/6 min~ !

2/3 nin-l

300 ft3

1/6 cfm/psi

Measuring device sensitivity

km = 100 in, pen travel/(lb nolo/fts)

Time delay in sample line = T

The overall block diagram which the authors propose is
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n‘

Figure 5,4

Block diagram for a chemical reactor

control system

It is assumed that the inlet concentration e, does not change

with tima.

As was discussed in chapter 2, the state variable diagram can

be obtained in three ways. Direct programming will be used in this case.

With this purpose, let it be called e, the input to the lag term E%I

and g its output in figure 5.4, then

or

c e ———
< S IEss?

Eq. (5.4) can be written as

c-.SS-Eb

vhere

Transposing

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)
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By a similar procadure

c
R
- roli] (5.8)
A
or
c -1
2.t (5.9)
A 1+8
-1
Cn - § E. (5.10)
where
e
E = ---A---__1 (5.11)
R T
Transposing
E =c, -8te¢
a A A (5.12)

The state variabls diagram follows from eqs. (5.5), (5.7) and

eqs. (5.10), (5.12), and 1is shown in figure 5.5.
X,(0) L@
X X

[} 2 1
| x f .5 / -

~1 ]

e v

Figure 5,5
State variable diagram for a chemical reactor

control system

The notation in figure 5.5 has been changed slightly. This is in
order to follow the same symbolism given in the previous chapters,

In figure 5.5 the state variables ars Xl and Xz. The differential-
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difference equations for the atate variables are readly obtained by

inspection of the diagram, That is,

X1 = =,5 Xl + .5 X2 (5.13)
Xz - - X2 + K U=XK Xl(t -1T) (5.14)
Therefore the matrix differential-difference equation is
. "05 . 0 O 0
X(t) = X(t) + Xt =T+ | | U (5.15)
Q -1 -K 0 K
where
X, (e)
X(t) = X, (t)

From this equation, it is seen that the coefficient matrices and

=5 W5
A= (5.16)
Q =1

0 0
B = (5.17)
-K ]

driving matrices are

0

b, = (5.18)
1 K
0

D, = (5.19)
2 0

Five numerical examples were run using this system. These are

summarized as follows.

Example 5.2.1, Overall foxrward gain K= 5,24, We assume a time delay
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equal to zero., A unit step is the input and all initial conditions are

zero., The matrix differential equation is

-05 .5 0

V(t) = |-5.24 -1 5.24 v(t) (5.20)
0 0 0
where
X, (t)
Y(t) = |X,(t) (5.21)
u(e)

Example 5,2.2. Overall forward gain K = 5,24, and time delay =
5 Min.,. Same conditions of the state were taken, The matrix differential-

difference equation is

. -5 W5 0 0 0
X(t) = X(t) + X(t - .5) + U(t) +
0 - 5,24

o]
+ Ut - .5) (5.22)

Example 5,2,3. Overall forward gain K = 1,85, Time delay 1is zero.

The remaining conditions are the same. The state equation is

-5 .50
V(t) = |-1.85 -1 1.85| ¥(t) (5.23)

0 Q 0

Example 5,2,4, Overall forward gain K = 1,85, Time delay = ,5 min,

Unit step and zero initial conditions are assumed, The state equation is
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. 5 .5 0 0 0
X(t) = X(t) + X(t = .5) + u(e) +
0 -1 -1.85 0 1,85
0
+ Ut = .5) (5.24)
0

Example 5.2.5. This is the same as example 5,2.4, with the
exception of the time delay, which is taken equal to 1 min.. The state

equation is

. =5 .5 0 0 0
X(t) = X(e) + X(t-1) + u(t)
0 -1 -1.85 0 1.85

0
+ u(t - 1) (5.25)
0

All five examples with the input/output information and the
response curves, are shown in figures 5.6 to 5.15.

The interested reader should compare the responses of the three
cases with delay with those given by Coughanowr and Koppel on page 467 of

reference (4).
5-3 Test problem for the simulation of dynamic systems with delays

The eighth example was run in order to check the accuracy of
evaluation of the set of transition matrices. This example is discussed by
Koepcke (9).

The problem is described as an unstable process which is governed

by
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L

GIVE ORDER OF SYSTEM (M = )

SAMPLING TIME (T = ), FINAL TIME (TF = )
in=2,t=.5,tf=11,*

1S THERE ANY DISTURBING SIGNAL
yes

GIVE NUMBER OF INPUT SIGNALS (R = )
r=1x

GIVE THE A MATRIX (A(1,1)=--,A(2,1)=--)
a(1,1)==-.5,.5,0.*
a(2,1)=-5.24,-1.,5.24x*

a(3,1)=0.,0.,0.*

GIVE INITIAL STATE (X(1)===)
x(1)=0.,0.*

TERMS OF THE MATRIX EXPONENTIAL

EM( 1, 1) = .556076E 00
EM( 1, 2) = .154089E 00
EM( 1, 3) = .243387E 00
EM( 2, 1) = -.161485E 01
EM( 2, 2) = .401987E 00
Ep( 2, 3) = .18582LE Q1
EM( 3, 1) = .000000E 00
EM( 3, 2) = .000000E 06O
EM( 3, 3) = 1.000000E 0O
TIME X(1) X(2)
.50 .243387E 00 .185824E
1.00 .065063E 00 .221219¢E
1.50 .354087E 00 .167353E
2.00 .103181E 01 .990264E
2.50 .969739E 00 .590102E
3.00 .873563E 00 .529468F
3.50 .810740E 00 .6060403E
4,00 .735981E 00 .8144B8E
4,50 .811516E Q0 .900262E
5.00 .833372E 00 .909654E
5.50 .846373E 00 .878136E
6.00 .849679E 00 .843503E
6.50 .845848E 00 .825210E
7.00 .8L0898E 00 .824044E
7.50 .837966E 00 .831568E
8.00 .837495E 00 .839327E
8.50 .838429E 00 .843206E
5.00 .833546E 00 .843258€E
3.50 .840175E 00 L.8L1475E
10.00 .840250E 00 .839743E
10.50 .840025E 00 .838925E
11.00 .8339774LE 00 .833960E

END OF EXECUTION
TU CONTINUE, GO TO THE TOP OF A NEW PAGE
AND PRINT AN ASTERISK

Figure 5,6 Console transaction

V(t) = A Y(®)

X(1)
v(e) = |x(2)
u(l)

=5
A= [=5,24
0

0
X(0) = {0

for example 5.2,1

]
-1
0

0
5.2
0

!
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loadgo timdel delfor pertur

W 1039.4

EXECUTION.

GIVE ORDER OF SYSTEM (M )
DESIRED SAMPLING TIME (T )

TIME DELAY (TD = ), FINAL TIME (TF
m=2,t=,5,td=.5,tf=15,+

)

IS THERE ANY DISTURBING SIGNAL
yes

NUMBER OF
r=1%

INPUT SIGNALS (R )

GIVE THE A MATRIX (A(1,1)=--,A(2,1)=-=)
a(l,1)=-.5,.5%
a(2,1)=0.,-1.=

GIVE THE B MATRIX (B(1,1)=--,8(2,1)==-)
b(1,1)=0.,0.+
b(2,1)=-5.24,0.+

GIVE THE D1 MATRIX (D1(1,1)=--,D1(2,1)
d1(1,1)=0.+
d1(2,1)=5,24%*

--)

GIVE THE D2 MATRIX (D2(1,1)=--,D02(2,1)==~)
d2(1,1)=0.*

d2(2,1)=0.*
DO YOU WISH TO HAVE THE TRANSITIUN MATRICES
yes

TRANSFER MATRIX PHI( 0)

et ( 1, 1) = .778801E 00
EM( 1, 2) = .172270E 00
EM( 2, 1) = .000000E 00
EM( 2, 2) = .606531F 00
TRANSFER MATRIX PHI( 1

EM( 1, 1) = -,235067E 00
EM( 1, 2) = -.187866E-01
EM( 2, 1) = -.180539E 01
EM( 2, 2) = -,216281E 00
TRANSFER MATRIX PHI( 2)

EM( 1, 1) = .126127€E-01
EM( 1, 2) = .614986E-03
EM( 2, 1) = .136883E 00
EM( 2, 2) = .119377E-01
TRANSFER MATRIX PHI( 3)

EM( 1, 1) = -,273338E-03
EM( 1, 2) = =-,958848E-05
EM( 2, 1) = -.,644506E-02
EM( 2, 2) = -.263750E-03
TRANSFER MATRIX PHI( L)

EM( 1, 1) = .318384E-05
EM( 1, 2) = .872148E-07
EM( 2, 1) = .100487E-03
EM( 2, 2) = .303662E-05
TRANSFER MATRIX PHI( 5)

EM( 1, 1) = -.231099€E-07
EM( 1, 2) = =-.519268E-09
EM( 2, 1) = -.,914011E-06
EM( 2, 2) = -.225900E-07

éu)-A§®)+BX&-.ﬂ

+ DlU(t) + DZU(C ~ 45)

-5 .5
R
"o )
B = Ls.za o]

b [5?24J
n- o [6]

TRANSFER MATRIX DELTA(
DEL( 1, 1)

0)

DEL( 2, 1)

TRANSFER MATRIX DELTA( 1)

DEL( 1, 1) = -,132818E-01
DEL( 2, 1) = -.210165E 00
TRANSFER MATRIX DELTA( 2)
DEL( 1, 1) = .283552E~03
DEL( 2, 1) = .072861E-02
TRANSFER MATRIX DELTA( 3)

DEL( 1, 1) = -.,327556E-05
DEL( 2, 1) = -.103763E-03
TRANSFER MATRIX DELTA( 4)

DELC 1, 1) = .236515E-07
DEL( 2, 1) = .937662E-06

TRANSFER MATRIX DELTA(
DEL( 1, 1

5)

DEL( 2, 1)

.256388E 00

.206178E 01

~.116723E-09

-.555865E-08



TRANSFER MATRIX PHI( 6)

EM( 1, 1) = .114L463E~09

EM( 1, 2) = .218008E-11

e 2, 1) = .544192E-08

EM( 2, 2) = .112283E-03
GIVE THE INITIAL STATE (X(1,1)=---)
x(1,1)=0.,0.%

TIME X(1) X(2)

.50 .2564E 00 .2062E 01
1.00 .7980E 00 .3102E 01
1.50 .1300E 01 .2831E 01
2.00 .1502E 01 .1539E 01
2.50 .1332E 01 .2406E-01
3.00 .9204E 00 -.8884E 00
3.50 .5132E 00 -.7847E 00
4.00 .3246E 00 .1653F 00
4.50 L4235E 00 L1364E 01
5.00 .7391E 00 .2150€E 01
5.50 .1067E 01 .2155E 01
6.00 .12378 01 .1465E 01
6.50 .1173E 01 .5227€E 00
7.00 .I475E 00 -.1450E 00
7.50 .6857E 00 -.2163E 090
8.00 .5343E 00 .2774E 00
8.50 .5622E 00 .1013E 01
9.00 .7330E 00 .1573E 01
9.50 .9408E 00 .1683E 01

10.00 .1072E 01 .1335E 01
10.50 .1065E 01 .7646E 00
11.00 .940LE QO .2388E 00
11.50 .7766E 00 .1715E 00
12.00 .B6UBE 00 .4115E 00
12.50 .6573E 00 .8506E 00
13.00 .7480E 00 L1234E 01
13.50 .8763E 00 .1366E 01
14.00 .9708E 00 .1205E 01
14.50 .9854E 00 .8692E 00
15.00 .9214E 00 .5560E 00

END OF EXECUTION

TO CONTINUE,
AND PRINT AN

GO TO THE TOP OF A NEW PAGE

ASTERISK

Figure 5,8 Console transaction for example 5,2.,2

57

TRANSFER MATRIX DELTA( 6)

DEL(

DEL(

1,

2,

1)
1)

L418403E-12

.232657E-10
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*

GIVE ORDER OF SYSTEM (M

SAMPLING TIME (T = ),

n=2,t=,5,tf=11,*

1S THERE ANY DISTURBING SIGNAL

yes

GIVE NUMBER OF

r=1x

GIVE THE A MATRIX (A(1,1)=--,A(2,1)==--)

a(1,1)=-.5,.5,0.*
a(2,1)=-1.85,-1.,1.85%*
a(3,1)=0.,0.,0.*

GIVE INITIAL STATE (X(1)=-~)

x(1)=0.,0.*

)

FINAL TIME (TF = )

INPUT SIGNALS (R =)

TERMS OF THE MATRIX EXPONENTIAL

EM(
EM(
EM(
EM(
EM(
EM(
EM{(
EM(
EM(

TIME

.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50

10.00
10.50
11.00

1, 1)
1, 2)
1, 3)
2, 1)
2, 2)
2, 3)
3, 1)
3, 2)
3, 3)

X(1)

.888757E~

.267189E
L444358E
.577874LE
.658281E
.B94033E
.699993E
.690429E
.675860E
.662472E
.652899E
.6LT74L58E
.6452393E
.645202E
.646113E
.O47276E
.64827LE
.648953E
.649314E
.6LIL38E
.6439420E
.bL9339E

END OF EXECUTION
GO TO THE TOP OF A NEW PAGE
AND PRINT AN ASTERISK

TO CONTINUE,

Figure 5,10 Console transaction for example 5,2.3

1

01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

.637370E 00
.165714E 00
.888757E-01
«613141E 00
.531656E 00
.702016E 00
.000000E 00
.000000E 00
.000000E OO

X{(2)

.702016E
.102075E
.108088E
.100422E
.881598E
.767104E
.684312E
.636641E
.617160E
.615736E
.623187E
.633019E
.641581E
+OUT7461E
.650643E
.651776E
.651666E
.6509395E
.650222E
.643590E
.649178E
.648970E

V() = A V(O

X(1)
V(t) =|X(2)
U(l)

=a3
A= ~1.85

0

s 1]

%) 0
-1 1.8
0 0

59
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*

GIVE ORDER OF SYSTEM (M =)

DESIRED SAMPLING TIME (T =)

TIME DELAY (TD = ), FINAL TIME (TF =)
m=2,t=.5,td=.5,tf=15.*

IS THERE ANY DISTURBING SIGNAL
yeés

NUMBER OF INPUT SIGNALS (R =)
r=1=«

GIVE THE A MATRIX (A(1,1)=--,A(2,1)=--)
a(l,1)=-.5,,5*
a(2,1)=0.,~1.%

GIVE THE B MATRIX (B(1,1)=--,B8(2,1)=~--)
b(1,1)=0.,0,.*
b(2,1)=-1.85,0.%

GIVE THE D1 MATRIX (D1(1,1)=--,D1(2,1)=--)
di(1,1)=0.*
d1(2,1)=1.85«

GIVE THE D2 MATRIX (D2(1,1)=--,D2(2,1)==-~)
d2(1,1)=0.=*

d42(2,1)=0.*
DO YOU WISH TO HAVE THE TRANSITION MATR!CES
no

GIVE THE INITIAL STATE (X(1,1)=---)
x(1,1)=0.,0.%
TIME X(1) X(2)

.50 .9052E-01 .7279E 00
1.00 .2848E 00 .1143E 01
1.50 .4352E 00 .1282E 01
2.00 .B64L4E 00 .1214E 01
2.50 .7664E 00 .1034E 01
3.00 .8015E 00 .8266E 00
3.50 .7862E 00 .6539E 00
4.00 LT431E 00 .5448E 00
4,50 .6932E 00 .5021E 00
5.00 .6512E 00 .5114E 00
5.50 .6245E 00 .5508E 00
6.00 .6138E GO .5995E 00
6.50 .6158E 00 .6421E 00
7.00 .6251E 00 .6704E 00
7.50 .6369E 00 .6829E 00
8.00 .6U72E G0 .6825E 00
8.50 .654L1E 00 .6740E 00
3.00 .6572E 00 .6627E 00
9.50 .6572E 00 .6523E 00

10.00 .6552E 00 .6450E 00
10.50 .6525E 00 .6414E 00
11.00 .6LI3E 00 .6411E 00
11,50 .6482E 00 .6429E 00
12.00 L6473E 00 .BU4SS5E 00
12.50 .6472E 00 .6480E 00
13.00 .B476E 00 .6499E 00
13.50 .6482E 00 .6508E 00
14.00 .6488E 00 .6510E 00
14.50 .6493E 00 .6507E 00

15.00 .64395E 00 .6501E 00

61

i(t) = A X(t) + B X(t - ,5)

+ Dlu(:) + D2U(t ~ 45)

Figure 5,12

Console transaction for example

5.2.4
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loadgo timdel delfor pertur
W 1250.1

EXECUTION.

GIVE ORDER OF SYSTEM (M
DESIRED SAMPLING TIME (T
TIME DELAY (TD ), FINAL

in=2,t=.5,td=1,,tf=15.+

)
)
TIME (TF

)

15 THERE ANY DISTURBING SIGNAL
yes

NUMBER OF INPUT SIGNALS (R = )

r=1%

GIVE THE A MATRIX (A(1,1)=--,A(2,1)
a(1,1)=-.5,.5*
a(2,1)=0.,-1.*

--)

GIVE THE B MATRIX (B(1l,1)=--,8(2,1)=--)
b(1,1)=0.,0.%*
b(2,1)=-1.85,0.%

GIVE THE D1 MATRIX (D1(1,1)=--,01(2,1)=--)
d1(1,1)=0.»
d1(2,1)=1.85%*

GIVE THE D2 MATRIX (D2(1,1)=--,D2(2,1)=--)

d2(1,1)=0.+

d2(2,1)=0.*

DO YOU WISH TO HAVE THE TRANSITION MATRICES

yes
TRANSFER MATRIX PHI( 0)
EM( 1, 1) = .778801E 00
EM( 1, 2) = .172270E 00
EM( 2, 1) = .000000E 00
EM( 2, 2) = .6006531E 00
TRANSFER MATRIX PHI( 1)
EM( 1, 1) = -.829913E-01
EM( 1, 2) = -,663267E-02
EM( 2, 1) = =-.637399E 00
EM( 2, 2) = -.763586E-01
TRANSFER MATRIX PHI( 2)
EM( 1, 1) = .157213E-02
EM( 1, 2) = .766560E-04
EM( 2, 1) = +245409E-01
EM( 2, 2) = .149548E-02
TRANSFER MATRIX PHI( 3)
EM( 1, 1) = -,120288E-04
EM( 1, 2) = =,421960E-06
EM( 2, 1) = =-,283627E-03
EM( 2, 2) = -.116068E-04
TRANSFER MATRIX PHI( L)
EM( 1, 1) = .494666E-07
EM( 1, 2) = .135504E-08
EM( 2, 1) = .156125E-05
EM( 2, 2) = J481116E-07
TRANSFER MATRIX PHI( 5)
EM( 1, 1) = -.126765E-09
EM( 1, 2) = -.284835E-11
EM( 2, 1) = -.501365E-08
EM( 2, 2) = -.123917E-09

63

i(t) = A X(t) + B X(t - 1)
+ Dlu(t) + DZU(t - 1)
o [7d
B |:—1(.)BS g}
Dy = [1.25]
by = [ gJ

TRANSFER MATRIX DELTA( 0)

DEL( 1, 1) = .905188E-01
DEL( 2, 1) = .727918E 00
TRANSFER MATRIX DELTA( 1)

DEL( 1, 1) = -.165553E-02
DEL( 2, 1) = -.261964E-01

TRANSFER MATRIX DELTA( 2)

DEL( 1, 1) = .124783E-04
DEL( 2, 1) = .296106E-03
TRANSFER MATRIX DELTA( 3)

DEL( 1, 1) = -,508918E-07
DEL( 2, 1) = -.161214E~05
TRANSFER MATRIX DELTA( 4)

DEL( 1, 1) = .129736E-09
DEL( 2, 1) = .514338E-08
TRANSFER MATRIX DELTA( 5)

DEL( 1, 1) = =-.226048E-12
DEL( 2, 1) = -.107649E-10



64

GJYE THE INITIAL STATE (X(1,1)===-)
x(1,1)=0,,0.+
TIME X(1) X(2)

.50 .9052E-01 .7279E 00
1.00 .2864E 00 .1169E 01
1.50 .5134E 00 .1411E 01
2,00 .7194E 00 L14LLE 01
2.50 .8664E 00 .1306E 01
3.00 .9369E 00 .1063E 01
3.50 .9328E 00 .786LE 00
4. 00 .8712E 00 .5417E 00
4,50 .7771E 00 .3720E 00
5.00 .6770E 00 .2960E 00
5.50 .5928E 00 .3093E 00
6.00 .5384E 00 .3897E 00
6.50 .5185E 00 .5062E 00
7.00 .5299E 00 .6269E 00
7.50 .5634E 00 .7262E 00
8.00 .6073E 00 .7881E 00
8.50 .6503E 00 .8080E 00
9.00 .6838E 00 .7909E 00
9.50 .7029E 00 .7482E 00

10.00 .7068E 00 .6944E 00
10.50 .6980E 00 .6429E 00
11.00 .6810E 00 .6038E 00
11.50 .6611E 00 .5825E 00
12.00 .6430E 00 .5795E 00
12.50 .6301E 00 .5915E 00
13.00 .6239E 00 .6128E 00
13.50 .6243E 00 .6370E 00
14.00 .6296E 00 .658LE 00
14.50 .6379E 00 .6733E 00
15.00 .6LEGE 00 .6800E 00

END OF EXECUTION
TO CONTINUE, GO TO THE TOP OF A NEW PAGE
AND PRINT AN ASTERISK

Figure 5,14 Console transaction for example 5.2.5
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. ] 1 2 ] 0
() = X(t) + X(t-T) + U(t = T) (5.26)
-1 ) 0 -1 1

It is assumed the sampling time equal to the time delay. That is,
TeTe —mnin (5.27)

Koepcke reported the following results of the plant transition

matrices and the control transition matrices:

[ .7071068 ,7071068] [ .00000 ]
00 - Ao -

|-. 7071068  .7071068] | .00000

[ 1338340 .0277680] [ 2928932}
9 = A =

|-.0277680 -.0782980] | .7071068]

[ 0109582 ,0022524] [ .0075873]
’z - Az -

|-.0022524 0026278 | ~0308106 |

[ ,0005903  .0000742] [ +0004532]
$; = Ay =

[-.0000742 =,0000854 | | .0007349]

[ ,0000236 ,0000026] " .0000119]
0.. - An. -

-.0000026  .0000013 | -.0000165 |

[ 0000008 ,0000001] [ .0000003]
$s = As =

|~.0000001 ~,0000000 | .0000002 |

The time response of the syatem was obtained assuming a step

input and zero initial conditions for the integrators.

The solution is depicted in figures 5.18 and 5.19.



In a similar way, this same example was tested assuming no lags

in the system, that is

2 1 0
) = -1 -1 1] 3w (5.28)
o o o
where
X, (v)
y(t) = xz(:) (5.29)
u(e)

The evaluation of the state is shown in figures 5.16 and 5.17.

It is interesting to compare the transient response in both cases.
As it can be seen in the plots (figures 5.17 and 5.,19), the case with
delay is something less unstable than the linear one with delay equal to

Zero.

67
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*

GIVE ORDER OF SYSTEM (M =)

SAMPLING TIME (T = ), FINAL TIME (TF =)
m=2,t=.5,tf=15,+*

IS THERE ANY DISTURBING SIGNAL
yes

GIVE NUMBER OF INPUT SIGNALS (R =)

r=1=

GIVE THE A MATRIX (A(1,1)=--,A(2,1)=--)
a(l,1)=.2,1.,0.+

a(2,1)=-1.,-.1,1.=*

a(3,1)=0.,0.,0.*

GIVE INITIAL STATE (X(1)=--)
x(1)=0,,0.*

TERMS OF THE MATRIX EXPONENTIAL

EM( 1, 1) = .976370E 00

EM( 1, 2) = .492031E 00

EM( 1, 3) = .124527€ 00

EM( 2, 1) = =-.492031E 00

EM( 2, 2) = .828760E 00

EM( 2, 3) = .467126E 0O

EM( 3, 1) = .000000E 00

EM( 3, 2) = .000000E 00

EM( 3, 3) = 1.000000E 00

TIME X(1) X(2)
.50 .124527E 00 .467126E
1.00 4759528 00 .792990E
1,50 .979407E 00 .890141E
2.00 .151877€ 01 . 722940
2.50 .196311E 01 .318989E
3.00 .219820E 01 -.234422E
3.50 .215544E 01 -.808739E
4.00 .183111€ 01 -.126367E
4.50 .129060E 01 -.148112E
5.00 .655877€ 00 ~.139538E
5.50 .783336E-01 -.101203E
6.00 -.296938E 00 -.L10143E
6.50 -.367197E 00 .273318E
7.00 -.995124E-01 .874313E
7.50 .457555E 00 .124068E
8.00 .118173E 01 .127022¢
8.50 .190332E 01 .938392E
3.00 .244459E 01 .308336E
9.50 .266306E 01 -.480150E
10.00 .248841E 01 -.124111E
10.50 1843478 01 -.178583E
11.00 .114338E 01 -.196915E
11.50 .272011E 00 -.172740E
12.00 ~.4539826E 00 -.109832E

V() = A 9(D)

¥ -|:

uQ1)

.2

A= -1 -
0

X(1)
X(2)

1

0

0 (3]

00
01
01
01
01
01

1

0
1
0

}
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*

GIVE ORDER OF SYSTEM (M = )
DESIRED SAMPLING TIME (T =)

TIME DELAY (7D ), FINAL TIME (TF
n=2,t=,7853982, td=,7853982, tf=20,~

=)

IS THERE ANY DISTURBING SIGNAL
yes
NUMBER OF INPUT SIGNALS (R =)
r=1%

GIVE THE A MATRIX (A(1l,1)=--,A(2,1)=--)
a(l,1)=0.,1.*
a(2,1)=-1.,0.*

GIVE THE B MATRIX (B(1,1)=--,B(2,1)=--~)
b(1,1)=.2,0.~
b(2,1)=0.,-.1*

GIVE THE D1 MATRIX (DI1(1,1)=--,D1(2,1)=--)
d1(1,1)=0.+
d1(2,1)=0.%

GIVE THE D2 MATRIX (D2(1,1)=--,D2(2,1)==-)
d2(1,1)=0.*

X(8)

d2(2,1)=1.+*
DO YOU WISH TO HAVE THE TRANSITION MATRICES
yes

TRANSFER MATRIX PHI( 0)

EM( 1, 1) = .707107E 00
EM( 1, 2) = .707107E 00
EM( 2, 1) = -,707107E 0C
EM( 2, 2) = .707107E 00
TRANSFER MATRIX PHI( 1)

Et( 1, 1) = .13383LE 00
EM( 1, 2) = .277680E-01
EM( 2, 1) = -.277680E-01
EM( 2, 2) = -.782980E-01
TRANSFER MATRIX PHI( 2)

EM( 1, 1) = .109582€-01
EM( 1, 2) = .225237E-02
EM( 2, 1) = =.,225237€E-02
EM( 2, 2) = .262783E-02
TRANSFER MATRIX PHI( 3)

EM( 1, 1) = .530343E-03
EM( 1, 2) = L741765E-04
£M( 2, 1) = =,741765E-04
EM( 2, 2) = -,853680E-04
TRANSFER MATRIX PHI( 4)

EM( 1, 1) = .235559E-04
EM( 1, 2) = -259254E-05
EM( 2, 1) = =.259254E-05
EM( 2, 2) = .130299E-05
TRANSFER MATRIX PHI( 5)

EM( 1, 1) = .748663E-06
EM( 1, 2) = .651465E-07
Em( 2, 1) = -.651465E-07
EM( 2, 2) = =-.290989E~07

AZ(®) +3 Xt -

ik
+ DlU(t) + DZU(t - 4)

SHER]
- [
N
=[]

TRANSFER MATRIX DELTA( 0)
DEL( 1, 1) = .000000E
DEL( 2, 1) = .000000E
TRANSFER MATRIX DELTA( 1)
DEL( 1, 1) = .292893E
DEL( 2, 1) = .707107E
TRANSFER MATRIX DELTA( 2)
DEL( 1, 1) = .758732E-
DEL( 2, 1) = -.308106E
TRANSFER MATRIX DELTA( 3)
DEL( 1, 1) = J453237E
DEL 2, 1) = . 734907E-
TRANSFER MATRIX DELTA( &)
DEL( 1, 1) = .118773E-
DEL( 2, 1) = =-.164710E-
TRANSFER MATRIX DELTA( 5)
DELC 1, 1) = 3441108~
DEL( 2, 1) = .217079E-
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TRANSFER MATRIX PHI( 6) TRANSFER MATRIX DELTA( 6)
EM( 1, 1) = .197624E-07 DEL( 1, 1) = .739099E-08
EM( 1, 2) = .150533E~08
EM( 2, 1) = -.150533E-08 DEL( 2, 1) = =~,367553E-08
EM( 2, 2) = .218458E~09

GIVE THE INITIAL STATE (X(1,1)=---)

x(1,1)=0.,0.%

TIME X(1) X(2)

.79 .0000E 00 .0000E 00
1.57 .2929E 00 +7071E 00
2,36 .1008E 01 .3632F 00
3.14 -1758E 01 .5864E 00
3.93 .2125E 01 -.2538E 00
4.71 .188%E 01 ~.1100E 01
5.50 .1158E 01 -.1478E 01
6.28 .3207E 00 -.1159E 01
7.07 ~-.1582E 00 -.2928E 00
7.85 .3256E-02 .6571E 00
8.64 .7401E 00 .1163F 01
9.42 .1663E 01 L3241F 30

10.21 .2263F 01 LLLBT7E-01
11.00 .2132E 01 -.1009E 01
11.78 .1462E 01 -.1654E 01
12,57 L4567E 00 -.1514E 01
13.35 ~.2735E 00 -.b6351E 00
14,14 -.3088E 00 +5194E 00
14.92 .3980E 00 .1315€ 01
15.71 .1481E 01 .1292E 01
16.49 .2349E 01 .4317E 00
17.28 .2503E 01 -.8138E 00
18.06 .1842E 01 -.1775E 01
18.85 .6885E 00 -.1890E 01
19.63 ~.3244E 00 -.1067E 01
20.42 -.b6256E 00 .2718E 00

END OF EXECUTION
TO CONTINUE, GO TO THE TOP OF A NEW PAGE
AND PRINT AN ASTERISK

Figure 5,18 Console transaction for example 5.3

when time delay = % min
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CHAPTER 6

COMMENTS AND SUGGESTIONS FOR FUTURE RESEARCH

In obtaining eAT by the use of a digital computer the virtues of
the series expansion technique are its simplicity and ease in programming.
It is not necessary to find the eigenvalues of A. There is, however, some
computational disadvantage to the series expansion method. This comes from
the convergence requirements for the series., In general, it is reasonable
to compute eAT by the power series when T is small, The running time for
the matrix exponential simulation will be among the longest of various
schemes. Use of the Jordan Canonical form, for example, requires
considerably more programming, but will run in a fraction of time needed
for the series solution.

Some suggestions concerning the bound on the error in the
evaluation of the matrix exponential when the matrix A is known with some
error are given by Levis (10).

The simulation technique for linear time-invariant dynamic
systems has been tested, and it was found that the use of the augmented A

matrix (X(t) = A X(t) + D U(t) can be expressed as V(t) = [A D

0 OJX(t), where

y(ov) -Eﬂ ) greatly improved the procedure. The reason is that the actual
reduction of the elements of the augmented matrix times T to values less
than one can be performed successfully. However, this method cannot be
used for calculating the digital version of the control transition matrix,
Another scheme that can be used to check the error bound in the
state is to divide the time region of interest in two or three parts.
Preferably these times should be powers of two times the sampling time.

Next, compute the matrix exponential at the desired sampling time.
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Recursively multiply it until the matrix expomential is found for the other
selected times, The state at those times can be found and saved. Now,

using the recursive process of state evaluation at the sampling time,
compare the state with the selected ones, If the error is unacceptable,

the state with less error can be used as a new initial condition, and the
procedure may be continued.

It was found in chapter 3 that the elements ci,j form an array
of infinite order. The first row is of main importance because its elements
are the terms of eAT. Therefore, the truncation technique already discussed
can be used.

In a similar fashion, the elements ci,i are actually the terms of
the infinite series eBT. It is reasonable to expect smaller values of these
norms as "i" grows. Therefore, intuitively the number of terms used to
truncate the first row can be used to trumcate 9;(T), $2(7), etc. It would
be interesting to make a study about how the truncation terms should be
taken in each row in order to save computation time while maintaining

accuracy.
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TRANS

Purpose: to compute the time response of linear time-invariant

systems.

Inputs: order of system (M = ); sampling time (T = ); final
time (TF = ); number of input signals (R = ); the

augmented A matrix and the initial state (X(1) = ).

Outputs: the transition matrix; the current time; and the state

of the system.

Remarks: main program, Subroutine called by TRANS: EXPMAT, and

DISTUR,
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PROGRAM COMMON A, EMy My RIJs Ry X
DIMENSTON X{2U)}seY(2U)9E(20)sPE(20)eX1(20)
DIMENSION EMP{40CsH) sAL40CsH) 9EM(400sH)
INTEGER TsJsMsRsWISH

FORMAT VARTABLF FM

VECTOR VALUES H=2s1+0

PRINT COMMENT $GIVE ORDER OF SYSTEM (M = )%
PRINT COMMENT $SAMPLING TIME (T = }» FINAL TIME (TF = )%
READ DATA

PRINT COMMENT %

FM=M

PRINT COMMENT $IS THERE ANY DISTURBING SIGNALS
RFAD FORMAT S3,WISH

VECTOR VALUES 53 = % (3%%

WHFENEVFR WISH.F.3YESS

PRINT COMMENT 3% %

PRINT COMMENT $GIVE NUMBER OF INPUT SIGNALS (R = )%
READ DATA

M=M+R

OTHERWISE

R=n

END OF CONDITIONAL

H{2) =M

PRINT COMMENT $ &

PRINT COMMENT 3$GIVE THE A MATRIX (A{lsl)=——3sA(2s1)=——1%
THROUGH LUPEs FOR I=1s1slaGaM

READ DATA

PRINT COMMENT $ 3

PRINT COMMENT $GIVE INITIAL STATE (X{1l)=-—)%
READ DATA

THROUGH ALICIAs FOR I=13151aGe({M=R)

XI{Iy=x(1)

TA=T

WHENEVER ReNFeuU

EXECUTE DISTURS. (TA)

J=M=-R+1

THROUGH JULIAs FOR I=Js1lsleGaeM

XI(J)r=Xx(J}

CONTINUF

END OF CONDITIONAL

THROUGH ALMAs FOR I=1s1914Ge (M)

E(I1)=0.

TZ2=T

EXECUTE FXPMATL (T}

THROUGH FANNYs FCR I=131914GaeM

THROUGH FANNYs FOR J=1s1sJeGeM

PRINT FORMAT CUATROsIsJsEMITsJ)

VECTOR VALUES CUATRO = 31H 9589 3HEM(sI4s1Hss1493H) =2E14e6%D
CONTINUF

THROUGH MARTA,s FOR 1=1s1s1eGe(M=R)

THROUGH MARTAs FOR J=1s1sJeGeM
EMP(I4J)=EM(],+J)

WHENEVER (M=R)alL o6

PRINT COMMFNT % %

PRINT FORMAT Sls (I=1s1914Ge(M=R)sl)

VECTOR VALUES S1 = % 956s4HTIMEsSBs ' FMY(2HX(s1191H)sS12) /%S
END OF CONDITIONAL

TRANSFER TO TERESA

TA=TA+7Z
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TERFSA

MARTA
FLENA

ROSA

FSTHFR
ROSANA

SARA

CARMEN

ILILTA

WHENFVER ReNFo0

EXECUTF DISTUR. (TA)

FND OF CONDITIONAL

THROUGH ELENAs FOR 151s1s14Ge(M=R)
PELT)=0

Y(1)=04

THROUGH MARTA» FOR J=LslsJeGeM

YOI =Y LTI +EMP (1500 ¥X(J)

PELTI=(EMP (15 ) +RIJIXECII4RII*X (J)+PECT)
CONTINUF

CONT INUF

ENORM=0,

THROUGH ROSAs FOR I=1s1s14Ge(M-R)
ENORM=ENORM+4 ABS o (PF (1))

WHENEVER ENORYeGFa(10saPu=07)

T=TA

EXECUTE EXPMAT.(T)

THROUGH ROSANAs FOR I=1s1514Ge(M=R)
PECT}=0.

Y(I)=04

THROUGH ESTHERs FOR J=1s1sJeGaM

YOI =Y (1I+EM( T, 1*XT0)

PECI1=PF (11+RIJ*XT(J)

CONT INUF

CONT INUF

OTHERWISE

TRANSFFR TO SARA

END OF CONDITIONAL

THROUGH CARMENs FOR I=1s1s14Gae(M=R)
XCI =Y (1)

F(I)=PE(T)

J=M-R+1

THROUGH LILIAs FOR I=JslsleGaM
F(J1=0.

WHENEVER (M=R)aLe6

PRINT FORMAT 525TAsX(1)seaX(M=R)
VECTOR VALUFS 52 = $ »542F6e2 'FMI(53,E14e6) %3
OTHERWISE

PRINT RFSULTS TA

PRINT RESULTS X(1)esaX{M=R)

END OF CONDITIONAL

WHENFVER TAsLeTFs TRANSFER TO OLGA
PRINT COMMENT $END OF EXECUTIONS
PRINT COMNENT $TO CONTINUE, GO TO THE TOP OF A NEW PAGES
PRINT COMMENT $AND PRINT AN ASTERISKS
READ DATA

TRANSFER TO MAGDA

END OF PROGRAM



Turpose !

Kemarks -

EXPMAT

compute the matrix exponential.

suortoutine called by TRANS,

83
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EXTERNAL FUNCTION (T)
PROGRAM COMMON As EMs My RIJs Rs X
DIMENSION A(4U0sHY s EMIGUUSH) s TERMI40UOsH) s NTERMI 400D sH )
DIMENSION X{2U)eB(4UDsHY}
VECTOR VALUES H=2+1s0
INTEGER KslsdslL sMslLLsYsQ
ENTRY TO EXPMAT,
H({2)=M
THROUGH ELENAy FOR I=1s1s1eGeM
THROQUGH ELENAs FOR J=1s19sJeGeM
BlIsJ)=A(TsJ)
FLENA BiTIsJ)=R({1sJ)*T
AMIN=R(1,1)
THROUGH DIANAs FOR I=29151eGaeV
WHENEVER R{IsI)aleAMINY AMIN=R(I,1)
DIANA CONTINUE
FAC=EXP+ (AMIN)
THROUGH OLGAs FOR I=191s1sGeM
OLGA BlIsI}=B{Is])=-AMIN
Y=eABSeB(191)
THROUGH SARAs FOR I=1s1914GeM
THROUGH SARAs FOR J=131sJeGeM
WHENEVER JABSe(B(IsJ)})eGalY+00a)s Y=oABSL(B(IsJ))
SARA CONT INUF
TAP=1,
YE=Y+0,
THROUGH ALLMAy FOR Q=151+Q4Ge10
TAP=2 +*¥TAP
WHENEVER TAP+GEeYEs TRANSFER TO ESTHER
ALMA CONT INUF
FSTHER Y=TAP
THROUGH YOLISs FOR I=19151eGeM
THROUGH YOLISs FOR J=1s1lsJteGeM
B{IsJY=B{IsJ)/{Y4+0,.)
YOLIS TERMI(TI,,J)=B(1+J)
LL=0
GLORIA MAXH=0.
MAXV=0,
THROUGH MARIAs FOR I=191s]eGeM
SUMH=0,
SUMV=0,
THROUGH ROSANAs FOR J=191sJeGeM
SUMH=SUMH+ e ABS«TERM( T s J)
SUMV=5SUMV+s ABSeTERM{Js 1)
ROSANA CONTINUE
WHENEVER SUMHeGeMAXHsMAXH=SUMH
WHENEVER SUMVeGeMAXVIMAXV=SUMV
MARTIA CONTINUFE
NORM=MAXH
WHENEVER MAXVel ¢« NORMsNORM=MAXV
WHENEVER LLeNEsUs TRANSFER TO DFLIA
SCLO=NORM
K=24 *NORM
WHENEVER Kel e2s K=2
IN=K/2
VECTOR VALUES CINCO = 31H »2HK=,14%%
THROUGH SUSANAs FOR I=19151eGeM
THROUGH SUSANAs FOR J=1313JeGaeM
UNIT=C.
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ISABEL

EVA

LILTA

AURORA

DELIA

JULTA

MAGUE
MARTA

OLIVIA
ALICIA

CARMEN
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WHENEVER JeEels UNIT=1s
EM(TsJ)=UNIT+B(]sJ)

CONTINUE

WHENEVER LLeGF«Ks TRANSFER TO GLORIA
LL=LL+1

THROUGH LILIAs FOR L=1s1lsLeGeM
THROUGH LILIAs FOR I=1slsleGeM
NTERM(L+1)=0s

THROUGH EVAs FOR J=1s1sJeGeM
NTERM(Ls I)=NTERM(LsI)+B(LsJI}*TERM({JsI)
CONTINUE
EM(LsI)=EMIL s II+NTERMILsI)/(LL+1s)
CONTINUE

THROUGH AURORAs FOR I=1313s1eGeM
THROUGH AURORAs FOR J=1lslsJeGeM
TERM{ T sJ)=NTERM{IsJ)/(LL+1e)
TRANSFER TO ISABEL

EPS=SOLO/(K+2e)
RIJ=NORM*SOLO/ ( (K+1a)¥(1e—=EPS))
THROUGH JULIAs FOR I=1s191eGeM
THROUGH JULIAs FOR J=lslsJeGeM
WW=oABS o (EM(IsJ)*10eePe—-7)
WHENEVER RIJeGeWW

K=K+IN

TRANSFER TO ISABEL

OTHERWISE

TRANSFER TO JULIA

END OF CONDITIONAL

CONTINUE

THROUGH ALICIAs FOR LL=1s1sLLeGe@Q
THROUGH MARTAs FOR L=1s1sLeGeM
THROUGH MARTAs FOR I=19191eGeM
TERM(Ls1)=0.

THROUGH MAGUEs FOR J=131sJeGeM
TERMI{L T )=TERM(L oI )+EM{L s J) ¥EM{ Uy 1)
CONTINUF

CONTINUF

THROUGH OLIVIAs FOR I=1s1ls1eGeM
THROUGH OLIVIAs FOR J=1lslsJaGeM
EM(IsJ)=TERM(IsJ)

CONTINUE

PRINT COMMENT $ &

PRINT COMMENT $ TERMS OF THE MATRIX EXPONENTIALS$
THROUGH CARMENs FOR I=1s1sleGeM
THROUGH CARMENs FOR J=1s1lsJeGeM
EM(IsJ)=FAC¥EM(I5J)

FUNCTION RETURN

END OF FUNCTION
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TIMDEL

Purpose: to compute the time response of linear systems with

lumped parameters and time delays.

Inputs: order of system (M = ); sampling time (T = ); time
delay (TID = ); final time (TF = ); number of input
signals (R = ); the A matrix; the B matrix; the Dl

matrix; the D, matrix; the initial state (X(1,1) = ).

2

Outputs: the plant transition matrices, the control transition
matrices if desired; the current time; and the state

of the system,

Remarks: main program. Subroutines called by TIMDEL: DELFOR,

and PERTUR,



MAGDA

MELA

MALENA

ALMA

BFRTA
JULTA

PROGRAM COMMON EMsDELFsMsRsWsA9BsD1sD2>U
DIMENSTION FM{40O0sHY sDELF(4G00sH) sX{400+G) sA1400G)
OIMENSION B{&4U0sG)9N1(4005,619D2(400sG)sUI4UDSE)

INTEGER

IsJdsKsLsMsNsbLLoZswsRsRELOMMyWISHJJ

FORMAT VARIABLE FM

VECTOR VALUFES
VECTOR VALUES
VECTOR VALUES
PRINT COMMENT
PRINT COMMENT
PRINT COMMENT
READ DATA
FM=M

PRINT COMMENT
PRINT COMMENT

READ FORMAT S3sWISH

VECTOR VALUFS

WHENFEVER WISHeE«$YESS

PRINT COMMENT
PRINT COMMENT
RFAD DATA
OTHERWISE

R=0

FND OF CONDITIONAL

REL=TD/T+042

Gl2)=M
H{2)=M
H{3)=M

PRINT COMMENT
PRINT COMMENT
THROUGH MELAS
READ DATA

PRINT COMMENT
PRINT COMMENT

THROUGH MALFNA,

RFAD DATA

WHENFVER ReFe0sTRANSFER TO JULIA

PRINT COMMENT
PRINT COMMENT
THROUGH ALMA,
READ DATA

PRINT COMMENT
PRINT COMMENT

THROUGH BERTAS

RFAD DATA

EXECUTE DELFOR.

G=2510

F=241s0

H=351s0s0

$GIVE ORDER OF SYSTEM (M = )%

$DESIRED SAMPLING TIME (T = )%

$TIME DELAY (TD = )y FINAL TIMF (TF = )%

$ 3

$15 THERE ANY DISTURBING SIGNALS

53 = & (3*%%

$ 3

$NUMBER OF INPUT SIGNALS (R = )%

$ %

$GIVE THE A MATRIX (A(lsl)===sAl(25]1)=-=]%

FOR 1=131s1eGeM

2%

$GIVE THE B MATRIX (B(1s1)===3B(2s1)=-~)%
FOR I=191y1eGeM

t 3

$GIVE THE D1 MATRIX (D1(1s1}===3D1{2s1)=-=)3

FOR I=13131eGeM

$ 9%

$GIVE THE D2 MATRIX (D2(1s1)===sD2(2s1)=~=)%

FOR I=1s1s1eGeM

(T)
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PRINT COMMENT $DO YOU WISH TO HAVF THE TRANSITION MATRICESS
RFEAD FORMAT S3,WISH
WHENFVFR WISHFa3YFS$

THROUGH DULCES

tt=L-1

WHENEVFR ReE«O

FOR L=1s1sLaGeW

PRINT FORVMAT CQCHOsLL

VECTOR VALUES

OCHO = $1H $S8515HTRANSFER MATRIX$S52»

14HPHI (9149 1H) *%

OTHERWISE

PRINT FORMAT SEISsLLsLL

VECTOR VALUES

SEIS= $1H »SB8315HTRANSFER MATRIX»S52»

14HPHI (»1451H) 9583 22HTRANSFER MATRIX DELTA(s14s1H)*3
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CONTINUF

WHENEVFR ZeEels L=L-1

THROUGH ALICIAs FOR K=1s1sKaGaW*REL
THROUGH ALICIAs FOR I=1lslsleGeM
B(KeI)=X(K+1s1)

WHENEVER KeEeWs TRANSFER TO ALICIA
A(Ks I)=U(K+1s 1)

CONT INUE

THROUGH MARTAs FOR K=1s13sKeGeW*REL
THROUGH MARTAs FOR I=191914GeM
X(KsI)=B{KsI)

WHENEVER KeFeWs TRANSFER TO MAFRT®
UGKsI)=A(KsTI)

CONT INUE

TRANSFER TO SONIA

PRINT COMMENT $END OF EXECUTIONS
PRINT COMMENT $TO GONTINUEs GO TO THE TOP OF A NEW PAGE$S
PRINT COMMENT SAND PRINT AN ASTERISKS
READ DATA

TRANSFER TO MAGDA

END OF PROGRAM
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DELFOR

Purpose: to compute the plant transition matrices and the

control transition matrices.

Remarks: subroutine called by TIMDEL.



DELIA
YOLIS

MAGUE

ROSANA

MARTA

SALOME
TSABEL.
FANNY
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EXTERNAL FUNCTION (T)

PROGRAM COMMON EMsDELFsMsRsWsA»BsD1sD2sU
DIMFNSION C(110009H) sAt4005sG)sB(400sG) sEMI4000sH) +XX(4005G)
DIMENSION TERM{400sG)sNTERM(4005G)sUU(4005G) +D1(400+G)
DIMENSION. DELF(40005H)sD2(40CsG) sU(400,E)
INTEGER I3JsKsLsMsNsYsQsRsW

VECTOR VALUES H=35140+0

VECTOR VALUES G=2s1-0

VECTOR VALUES E=25150

ENTRY TO DELFOR.

Gl2)=M

H(2) =M

H{3)=M

LINDA=O.

ROSA==1,

THROUGH YOLISs FOR I=1s1s1eGeM

THROUGH YOLISs FOR J=lslsJeGeM

WHENEVER JeGsRs TRANSFER TO DELIA
D1(1sJ)=D1{1sJ)*T

D2(1eJ)=D2(1sJ)*T

AlTsJI=A{Ts I} T

TERM(TsJ)=A(T9sJ)

B(lsJ)=B(IsJ)*T

N=0

MAXH=0.

MAXV=0e

THROUGH MARIAs FOR I1=191s1sGeM

SUMH=0,

SUMV=0,

THROUGH ROSANAs FOR J=1lslsJeGeM
SUMH=SUMH+«ABSs TERM(1sJ)
SUMV=SUMV+eABS«TERM{Js 1)

CONTINUE

WHENEVER SUMH e GeMAXHsMAXH=SUMH

WHENEVER SUMVeGeMAXVsMAXV=SUMV

CONTINUE

NORM=MAXH

WHENEVER MAXVeL « NORMyNORM=MAXV

WHENEVER LINDANE«Oss TRANSFER TO CARMEN
WHENEVER NeNE«O» TRANSFER TO CHELA
SOLO=NORM

K=2 ¢ ¥*NORM

WHENEVER Kel e2s K=2

W=1

IN=K/2

THROUGH SALOMEs FOR I=1s1514GeM

THROUGH SALOMEs FOR J=1s1sJeGeM
Cl1sI9J)=0e

WHENEVER JeEeIsCllslsJ)=1,
EM(WsIsJ)=Cl19]sJ)

XX(19J)=EM{WsTsJ)

UU(TsJ)=0.

TERM(TI9J)=Cl1s]IsJ)

N=0

WHENEVER NeGEeKeANDeLINDAsE«Oes TRANSFER TO MAGUE
WHENEVER NeGEoKeANDeLINDA«NESOs s TRANSFER TO ELENA
N=N+1

THROUGH HILDAs FOR L=191sL«GeM

THROUGH HILDAs FOR I=1s1sleGeM
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LLILIA

HILDA

JULTA

CHELA

EVA
FLENA

AURORA
MARTA

IRMA
PATY

SONTA

CARMEN

JOSEFA
YOCOo

ELISA

NTERM(LsI)=0.
THROUGH LILIAs FOR J=1slsJeGeM
WHENEVER LINDAGFeOasCIN+19J91)=0,

NTERM{Ls I)=NTERM(LsI)+A{LsJ)*TERMIJs I }4B(L > I *CIN+1sJs 1)

CONTINUE

EM(WsL oI )=EMIWsLs1)+NTERM(Ls 1)/ (N+LINDA)
WHENEVER ReEsOs TRANSFER TO HILDA
XX(LsI)=XX(L s IVANTERMIL » 1) /UIN+LINDAI*(N+LINDA+14))
CONTINUE

THROUGH JULIAs FOR I=13513s]eGeM
THROUGH JULIAs FOR J=1lslsJeGeM
C(N+1915J)=NTERM(1+J)/(N+LINDA}
TERM(TI9J)=CI{N+1s1sJ)

TRANSFER TO FANNY

EPS=SOLO/(K+24)

RIJ=NORM*SOLO/t (K+1le)*(1e-EPS))
THROUGH EVAs FOR I=1slslaGeM
THROUGH EVAs FOR J=1slsJeGeM
WW=eABSe (EMIWs19sJ)%¥10eePe~07)
WHENFVER RIJeGeWW

K=K+IN

TRANSFER TO FANNY

OTHERWISE

TRANSFER TO EVA

END OF CONDITIONAL

CONT INUF

LINDA=LTINDA+1.

ROSA=ROSA+1l.

WHENEVER ReEeO» TRANSFER TO PATY
THROUGH MARTAs FOR L=1s1sLeGeM
THROUGH MARTAs FOR I=1sl91eGaR
TERM{L+1)=0,

THROUGH AURORAs FOR J=191sJeGeM
TERM(L o1 }=TERMIL o I)4XX(Ls ) ¥D1(Js I} 4+UU(LIJI*D2(U» 1)
CONTINUE

CONTINUFE

THROUGH IRMAs FOR I=1s1314GeM
THROUGH IRMAs FOR J=1s13JeGeR
DELF(WelsJ)=TERM(IsJ)

THROUGH SONIAs FOR I=1s191eGeM
THROUGH SONTAs FOR J=1slsJeGeM
TERM(1sJ)=EM{WsIsJ}

UL T sd)=XX(TsJ)

TRANSFER TO MAGUE

WHENEVER NORMsLEe10eePe=07»TRANSFER TO DIANA
THROUGH YOCOs FOR L=1lslsL eGeM
THROUGH YOCOs FOR I=191s1aGeM
NTERM{L s I1=0,

THROUGH JOSEFAs FOR J=1lslsJeGeM
NTERM(L s I}=NTERM(LsI)+B(LsJ)*¥Cl1sJsl)
CONT INUF

WzW+1

THROUGH ELISAs FOR I=13191eGeM
THROUGH ELISAs FOR J=1s19JeGeM
Cl{1s15J)=NTERM(15J)/(ROSA+1.)
XXC1eJ)=C(1919J)/(ROSA+2,)
EM(WsT»J)=Cl1ssJ)
TERM{15J)=C(1s1sJ}

TRANSFER TO ISABEL
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PERTUR

Purpose: to compute the forcing signal vector at the current

time. The program keeps track of the past.

Remarks: subroutine called by TIMDEL.



EXTERNAL FUNCTION (TAsLL)

PROGRAM COMMON EMsDELFsMsRsWsAsBsD1sD2sU

DIMENSION EM(4000sH) sDELF(4000sH)9sA(400+G) +»B(400+G)
DIMENSION D1(400sG)sD2(400+G)sU(4005E)

INTEGER I sLLsRoWIM

VECTOR VALUES G=2s150

‘VECTOR VALUES E=23s1s0

VECTOR. VALUES H=3s1s0+0
ENTRY TO PERTUR.

G(2)=M
H(2)=M
E(2)=W
H(3)=M
UlLL sl )=~
U(LL 92)=~>==

- ,

U(LL sR) ====m
FUNCTION RETURN
END OF FUNCTION
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