
A Study of Backoff Barrier Synchronization

by

Mathews Malieakkal Cherian

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1989

© Massachusetts Institute of Technology 1989

Signature of Author .. .
Department of Electrical Engineering and Computer Science

May 19, 1989

Certified by
Thesis Supervisor (Academic)

Certified by
Company Supervisor (Cooperating Company)

Accepted by .. .
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

A Study of Backoff Barrier Synchronization

by

Mathews Malieakkal Ch~fill

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 1989, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

2

Shared-memory multiprocessors commonly use shared variables for synchronization.
Simulations of real parallel applications show that large-scale cache-coherent multi­
processors suffer significant amounts of invalidation traffic due to synchronization.
Large multiprocessors that do not cache synchronization variables are often more
severely impacted. If this synchronization traffic is not reduced or managed ade­
quately, synchronization references can cause severe congestion in the network. This
thesis reports on data from trace-driven simulations of shared-memory multiproces­
sors, and proposes a class of adaptive backoff methods that do not use any extra
hardware and can significantly reduce the memory traffic to synchronization vari­
ables. These methods use synchronization state to reduce polling of synchronization
variables. Our simulations show that when the number of processors participating in
a barrier synchronization is small compared to the time of arrival of the processors,
reductions of 20 percent to over 95 percent in synchronization traffic can be achieved
at no extra cost. In other situations adaptive backoff techniques result in a tradeoff
between reduced network accesses and increased processor idle time.

Thesis Supervisor: Anant Agarwal
Title: Assistant Professor of Computer Science and Electrical Engineering

Thesis Supervisor: Harold Stone
Title: IBM

3

Acknowledgments

I would like to thank most sincerely my advisor, Anant Agarwal, for providing me

with many ideas and much encouragement. His insight and enthusiasm made this

experience highly productive and enjoyable.

I also have many people at IBM to thank. Many thanks to Kimming So who gave

much of his time and enthusiasm to help move my work forward. I thank Kimming

and Manoj Kumar for contributing many ideas for this work. Thanks also to Alan

Norton, who has always been ready to help when necessary.

Of course, I'd also like to thank the members of Alewife, our research group:

David Chaiken, Beng-Hong Lim, Gino Maa, Kiyoshi Kurihara, and Dann Nussbaum.

Thanks to everyone for putting up with my ten million questions and making life in

the lab fun. Special thanks to nmy office-mate Dann Nussbaum, not only for being

such an off-therwall character, but for always being willing to discuss anything at any

time for any length of time.

Finally, I have my parents to thanks for the tremendous support and encourager

ment they have provided. Thanks be to God.

Contents

1 Introduction 9

2 Multiprocessor Simulation 13

2.1 Objectives 13

2.2 Trace-driven Simulation 14

2.2.1 The Hardware Model . 16

2.2.2 The Programming Model . 17

2.3 Simulation Methodology 24

2.3.1 Timing ... 25

2.3.2 Limitations 25

2.4 Post-mortem Scheduler Design Features . 26

2.5 The Cache Simulator and Network Model 28

2.5.1 Multiprocessor Cache Simulator 28

2.5.2 The Network Model 29

2.6 Summary of methodology 31

3 The Synchronization Problem 33

3.0.1 Background 33

3.0.2 Synchronization References and Scalability . 39

3.1 Why do synchronization references hurt performance? . 42

3.1.1 Disallowing Caching of Synchronization Variables 44

4

CONTENTS

4 Analysis

4.1 Adaptive Backoff Barrier Synchronization

4.1.1 Previous Work

4.1.2 Backoff on the barrier variable .

4.1.3 Backoff on the barrier flag

4.2 The Network Model .

4.3 A Barrier Model . . .

4.3.1 Analytically Estimating Barrier Performance .

4.3.2 Simulation Methodology

4.4 Evaluation

4.4.1 Estimating the Potential Reduction in Traffic

4.4.2 Simulation results .

4.5 Discussion of Tradeoffs

4.5.1 Summary ...

4.6 Optimizations and Extensions

4.7 Conclusions

A Applications

5

47

47

48

48

49

50

51

53

55

56

56

58

62

64

66

69

70

List of Figures

2-1 Multiprocessor Model.

2-2 Serial Section

2-3 Parallel Section

2-4 Barrier Synchronization.

2-5 Scheduler structure

2-6 Scheduler Input . .

3-1 Read-Modify-Write Synchronizations

3-2 Fetch&Add Synchronization

3-3 Cache invalidation statistics for SIMPLE with 64 processors. The height of

a bar at x reflects the fraction of write hits to previously clean blocks that

14

20

22

23

27

29

35

37

resulted in x invalidation messages. 40

3-4 Cache invalidation statistics for WEATHER with 64 processors. The height

of a bar at x reflects the fraction of write hits to previously clean blocks that

resulted in x invalidation messages. 41

3-5 Cache invalidation statistics for FFT with 64 processors. The height of a

4-1

bar at x reflects the fraction of write hits to previously clean blocks that

resulted in x invalidation messages. 42

Intervals of execution and synchronization. 52

4-2 Comparing the predictions of the analytical model and predictions of barrier

performance. 57

6

LIST OF FIGUll.BS

. . -·
.

7

60

•
4-S hlcll•1a111 flf•••••••l•••llt,A • lla. • 11

4-6 Pac•• ...,,, • ._._,n•1l191111, 1rtfl•1811. a
' . . . ' -, . ·.

•

List of Tables

2.1 Memory references resulting in network transactions.

3.1 Percentage of non-synchronization (NS) and synchronization (S) references

that ca.use invalidations in directory schemes with 2, 3, 4, 5, and 64 point­

ers in a. 64 processor system. Synchronization references comprised 0.2%,

7.9%, a.nd 5.3% of the data. references in FFT, WEATHER, and SIMPLE

30

respectively. 43

3.2 Synchronization traffic to main memory as a. percentage of the total traffic

when the synchronization variables are not cached. Block size is 16 bytes

and cache size is 256KBytes. The non-synchronization blocks a.re cached

and coherence is maintained using directory schemes with 2, 3, 4, 5, and 64

pointers.

4.1 Average number of cycles, A, between first and last arrivals a.t waits a.nd

barriers. E is the a.vera.ge number of cycles between the last arrival at the

previous barrier (or wait) a.nd the first arrival a.t the next barrier (or wait),

i.e. it is the a.vera.ge time between barriers or waits.

8

. 45

. 52

Chapter 1

Introduction

Shared-memory multiprocessors have received much attention in recent times as a

means to achieve cost-effective high performance computing. As designers consider

building larger and larger Multiple-Instruction-Multiple-Data (MIMD) machines 1
,

synchronization has arisen as an important problem. These machines typically run

a number of processes concurrently. The processes might be independent or they all

might be working on a single application. The one characteristic common to every

process, though, is that it must be synchronized to ensure correct sequencing among

sister processes and also guarantee mutually exclusive access to shared mutable data.

As greater numbers of processors must be coordinated, the more crucial it is that

synchronization operations be implemented efficiently.

This thesis considers synchronization in self-scheduling shared-memory multipro­

cessors. These systems commonly use shared variables to synchronize activities among

processors [8, 33, 21) often leading to widespread sharing among processors. Trace­

driven simulations of parallel applications show that these widely shared synchro­

nization variables adversely impact the performance of large-scale multiprocessors,

cache-coherent or otherwise.

1 In an MIMD machine, every processor executes its own code independently of the other proces­
sors. Thus, different processors can run different programs(lO].

9

CHAPTER 1. INTRODUCTION 10

In systems without hardware support for cache coherence, such as the IBM RP3

[25], Ultracomputer [14], Cedar [11], these references to shared variables must tra­

verse the interconnection network. Not only do synchronization references consume

a significant fraction of the network bandwidth, but more important, a widely-shared

synchronization variable (such as in a barrier synchronization) will result in heavy

traffic to the same location in memory and cause hot-spot contention problems [26].

On the other hand, in systems that use directory schemes to maintain cache

coherence, we show that synchronization variables result in excessive invalidation

traffic when the number of pointers in the cache directory is limited. A potential

solution for cache directories would be to implement software combining trees [35]

for synchronization variables. As long as the degree of the nodes in the combining

tree is less than the number of pointers in the cache-directory, then synchronization

variables will not result in extra invalidation traffic. We are currently investigating

this approach and will not address it here.

In this thesis we consider software schemes to reduce the number of synchroniza­

tion spins in multiprocessors that do not cache their synchronization variables. We

propose a set of adaptive backoff techniques which make use of available synchroniza­

tion state information in order to "back off" and postpone polling a synchronization

variable.

The general idea of backoff has been used in one form or another in a number

of applications. The approach was first used in Aloha [1], a radio-based, packet­

switching network. If a collision occurred in the network, each source would backoff

for a random interval before attempting to retransmit. The Ethernet [22] went one

step further and used a random retransmission interval in which collision history

influenced the choice of the mean of the random intervals. Adaptive control schemes

for multiple access communications networks have been analyzed in [19, 18, 20]. We

discuss in section 4.1.1 how and why adaptive backoff synchronization methods differ

from these adaptive control schemes.

CHAPTER 1. INTRODUCTION 11

We evaluate the performance of adaptive backoff synchronization techniques by

applying them to the barrier synchronization. Barrier synchronizations are commonly

used in applications to guarantee that all processors have reached a given point in a

program before proceeding.

We focus on barriers implemented using two shared variables with busy waiting on

synchronization variables [33] (described in detail in section 3.0.1). Alternate barrier

implementations might use a scheme where processors arriving at a barrier are put to

sleep until the last processor arrives. This method avoids the extra network traffic of

polling a barrier flag, but incurs the potentially high overhead of enqueuing a process

on a condition variable. Often, the choice of busy waiting or blocking cannot be made

at compile time due to uncertainty in execution times of processes. In such cases,

our adaptive methods can be used to decide when it might be best to put to sleep a

busy-waiting process as explained in a later section.

Hardware support for barriers has also been proposed m several forms. The

RP3 [25] proposed a combining network in which switches contain special hardware

to combine simultaneous data accesses destined to the same memory location and for­

ward one request. This would eliminate contention in the network and at the memory

modules when a large number of processors reference the same synchronization vari­

able simultaneously, but RP3 cost estimates predict that the switches are expensive

and slow [26). Furthermore, combining performance is eroded when synchronization

references to a given variable do not arrive simultaneously at a switching node. Several

cache-coherent multiprocessors allow simultaneous invalidates of all cached copies of

a block. In such systems all repeat accesses of a synchronization variable can be satis­

fied by the cache. However, the need to rely on resources that can support broadcast

invalidates, such as a shared bus, limits the scalability of such systems. The PAX com­

puter [16] uses special global-synchronization logic implemented in hardware to allow

low-latency, low-cost barrier synchronization. Issues which arise with this approach

concern flexibility in allowing multiple numbers of barriers to execute simultaneously

CHAPTER 1. INTRODUCTION 12

with varying numbers of processors.

The results of this thesis show that backoff techniques applied to barriers yield

reductions in synchronization traffic by 20 percent to over 95 percent in cases where

the number of processors involved in the barrier is s1'Jl compared to the time of

arrival between processors. In other situations, these schemes provide a tradeoff

between cost (in terms of processor idle time) and performance - a tradeoff that can

be determined by the user's needs.

This thesis consists of two parts: 1) development of a trace-driven large-scale

shared-memory multiprocessor simulator in order to study the effect of synchroniza­

tion on multiprocessor performance; and 2) analysis and simulation of adaptive back­

off synchronization techniques.

The rest of the thesis is organized as follows. Chapter 2 first describes the multi­

processor simulation methodology we use. Chapter 3 describes current approaches to

barrier synchronization in shared-memory multiprocessors and presents results from

trace-driven simulations describing how synchronization impacts large-scale multipro­

cessors. Chapter 4 presents adaptive backoff synchronization techniques as they apply

to barriers. A barrier evaluation model and a simulation methodology is described.

Finally, the adaptive backoff techniques are evaluated via an analytical model and

simulations and the tradeoffs involved in their implementation are discussed. Chapter

5 suggests extensions to this work and summarizes the findings.

Chapter 2

Multiprocessor Simulation

2.1 Objectives

The objective of the multiprocessor simulations in this thesis is to understand the

impact of synchronization on large-scale shared-memory multiprocessor performance.

Given this objective, we are primarily interested in gaining an understanding of mul­

tiprocessor reference behavior. Specifically we would like to measure the a.mount of

traffic to memory generated by synchronization events.

In simulating a multiprocessor system, we must simulate the behavior of each

of the components depicted in Figure 2-1: processors, caches, interconnection net­

work, and memory modules. Processor simulation can be slow and complex. We can

capture the memory reference behavior of the processor in a couple of ways: 1) Do

a functional multiprocessor simulation, simulating the arithmetic/logic capabilities

of each processor; 2) Perform an instruction level simulation; or 3) Do trace-driven

simulations, using an existing instrumentable multiprocessor to record the references

made by each processor, thereby attaining a multiprocesssor reference trace.

The functional simulation approach entails onerous development and execution

time because it attempts to simulate the instruction sequencing and arithmetic/logic

actions of each processor in the system. Instruction level simulation are not quite

13

CHAPTER 2. MULTIPROCESSOR SIMULATION 14

Interconnection Network

Memory I-- Memory r---1 Memory r---1

CWie CWie CWie

I I I
Proc:mor Procmcr Procaor

Figure 2-1: Multiprocessor Model. The primary elements of the MIMD shared-memory
machine are the processors, caches, interconnection network, and memory modules.

as computation intensive, but both approaches become prohibitively expensive as we

attempt to simulate large systems. So we look to the trace-driven approach for our

simulations.

2.2 Trace-driven Simulation

Trace-driven simulation refers to the simulation of a computer system using a trace of

an application's references to memory as the input driving the system. Trace-driven

simulation has been of invaluable benefit in analyzing and designing numerous ele-

CHAPTER 2. MULTIPROCESSOR SIMULATION 15

ments of high-performance computer systems: memory hierarchies, instruction sets,

pipeline organization. Trace-driven simulation has become particularly important in

the area of cache design [29, 13, 15, 30]. Previously cache designers relied on ana­

lytical models or simulation of proposed caches using rough assumptions of memory

reference behavior. Cache behavior is highly sensitive to memory reference patterns,

though, so the results of these earlier evaluations were highly dependent on the as­

sumptions made about reference behavior. Often trace-driven simulation is used to

experimentally validate analytical or intuitive models of systems as well as evaluate

proposed architectures.

In a similar fa.Shion, multiprocessor design can benefit from the trace-driven sim­

ulation of real parallel applications. Optimal design of the memory subsystem is

crucial to multiprocessor performance. Many important questions bearing relation­

ship to memory subsystem design remain open:

• Is there locality among references in a multiprocessor system? If there is, then

the memory structure should exploit the locality to improve request service

time, rather than making all memory locations a uniform distance away from

processors - thereby enforcing a slower service time for all processors in the

system.

• How frequently are variables shared among processors? When sharing does

occur, how many processors are involved?

• Understanding the answers to the above two questions would help to answer

the question of whether multiprocessors should utilize caches. The overhead of

caching shared variables might outweigh the benefits.

• Is hotspot contention truly a problem in real application? Is it a bad enough a

problem to merit building expensive combining network to resolve contention?

This list is by no means complete. A thorough understanding of multiprocessor

reference behavior is needed in order to address these questions. In addition, refer-

CHAPTER 2. MULTIPROCESSOR SIMULATION 16

ence traces allow testing out of new ideas such as cache-directory schemes for cache

coherency. In this thesis, the multiprocessor traces generated are used to gauge the

impact of synchronization on performance in shared-memory systems.

The design of large-scale multiprocessor systems has, as of yet, not benefitted from

trace-driven simulations because of the difficulty in obtaining multiprocessor traces

of large systems. Large-scale multiprocessors with tracing capability do not exist,

forcing designers of these systems to rely on analytical models of multiprocessors and

extrapolations of address patterns from uniprocessor systems (unless of course one

wanted to actually build the proposed hardware to see how it performed!). Multipro­

cessor tracing techniques have been developed [28, 32] but none of these techniques

produce data for systems of greater than sixteen processors because they rely on an

existing parallel system to produce a multiprocessor trace.

In order to obtain multiprocessor traces of large-scale systems, this thesis makes

use of a "post-mortem" scheduling technique [5] in which a multiprocessor trace of a

real parallel application is generated from the application's uniprocessor trace with

synchronization information imbedded in it. The uniprocessor trace with synchro­

nization information essentially provides us with a task trace which we can then

schedule into a multiple processor execution trace with the post-mortem scheduler.

This methodology (described in detail below) allows simulation of any n-way system

with constant overhead, ie. simulating a 1024-way system is as cheap as simulating

an eight-way system, and only a uniprocessor is required to produce the trace. The

multiprocessor trace can then be used to drive cache and network simulations.

2.2.1 The Hardware Model

Figure 2-1 describes the logical hardware model of the multiprocessor simulated in

this thesis. Processors operating in a MIMD fashion are connected to shared-memory

modules via an interconnection network. All data {private and shared) and instruc­

tions are cached, and all cache misses must be serviced through the network.

CHAPTER 2. MULTIPROCESSOR SIMULATION 17

The primary hardware primitive used for synchronization in this model is a generic

read-modify-write (RMW) primitive which allows an atomic update of a memory

location. ff more than one processor attempts a RMW on the same location, only

one succeeds, while the others have to wait and try the rbl cycle. All synchronization

events in the application code are based on this hardware synchronization primitive.

For our trace-driven simulations, the network and memory were not modeled. The

caches were simulated using a cache-directory to maintain coherency of data among

the processors, and we assumed a network model (described in section 2.5.2) in order

to measure the network load generated by the applications.

A few important assumptions are made in this model: 1) we assume a Rise-like

architecture for the processor, ie. processors execute an instruction every cycle; and

2) we assume a canonical model of time in the simulations where the principal clock

is a processor's reference. A processor makes a reference each network cycle unless

it is waiting due to RMW contention (simulation timing issues will be discussed in

more detail in section 2.3.1.

2.2.2 The Programming Model

The model of computation assumed for the parallel applications traced in this thesis is

the Single-Program-Multiple-Data [8] (SPMD) programming paradigm. In this model

all processors execute the same application code, but synchronization constructs dy­

namically assign portions of the code (tasks) to each of the processors. SPMD is an

example of a self-scheduling computational model, differing from other computational

models such as master-slave or fork-join which require that one process execute the

code and spawn other processes when parallel execution is required. These other

approaches have a much higher system overhead than SPMD because they spawn

processes at the beginning of every parallel section and kill them at the end. With

the SPMD paradigm processes are spawned once - at the beginning of the application.

The SPMD model used in this thesis was implemented on the EPEX [12] system,

CHAPTER 2. MULTIPROCESSOR SIMULATION 18

which allows parallel execution on IBM S/370 machines. The Fortran applications

used were all parallelized by imbedding into the code synchronization constructs which

result in execution conforming to the SPMD paradigm.

In SPMD code, there exist three types of tasks: serial, parallel, or replicate.

Synchronization code surrounding these tasks determines whether or not the section

should be executed by an arriving processor. Each of these code sections is described

in detail below along with the synchronization code used to implement SPMD self­

scheduling.

The synchronization implementations described are those used in the post-mortem

scheduler and differ slightly from the synchronization code described in [8). The

primary difference is that the synchronization code in [8] allows more flexibility in

parallel execution. The synchronization simulated in the scheduler is optimized to the

applications we traced. In these applications every serial and parallel section contains

a wait, guaranteeing that all processors in the system are executing the same section

at any given time. We do not have to worry about a variable number of processors

executing different sections simultaneously or about stragglers arriving at a section

long after everyone else has arrived and departed. Thus, our synchronization code is

not as complicated as that of EPEX. The code described in [8] allows processors to

overlap execution of consecutive sections if possible.

Serial Sections

A serial task is executed by only one processor. Serial sections in applications often

correspond to initialization code or 1/0. Synchronization code before and after the

section ensure that only the first processor arriving at the section executes it while

the others skip to the end. An option at the end of the serial section specifies whether

processors must wait for the processor executing the section to finish or whether they

can simply proceed. If a process arrives after the serial section has been executed,

it simply skips to the end and proceeds. All the serial sections in the applications

CHAPTER 2. MULTIPROCESSOR SIMULATION 19

traced for this thesis specify the wait option.

The synchronization code for the serial section (as simulated by the post-mortem

scheduler) maintains a shared-variable CNTR, initialized to zero, which is incre­

mented via a RMW operation to indicate the number of processors which have arrived

at the section. If the value returned is greater than one the processor knows another

processor is already executing the section, so it proceeds to the end of the section

where it atomically decrements the counter. If the wait option is set and the counter

value returned upon decrementing is not zero (indicating that not all the processors

have arrived), the processor repeatedly polls, ie. busy waits, on a shared-variable wait

FLAG until it is set. Figure 2-2 illustrates the serial section synchronization in terms

of the references made to the synchronization variables involved. Every process incre­

ments and decrements the shared-variable CNTR, and all wait on the shared-variable

FLAG. When the processor executing the serial section finishes (decrementing the

shared counter to zero), it sets the wait flag and all processors proceed upon seeing

the set flag. The general form of this wait, also used at the end of a parallel section,

is illustrated in Figure 2-2.

Parallel Sections

Parallel sections are primarily parallel loops whose iterations are mutually indepen­

dent. Since the iterations are mutually independent, processors can execute them in

parallel. H dependencies do exist among the iterations, locks can be placed around

the critical sections and the processors can still execute the sections in parallel. Syn­

chronization code dynamically assigns iterations of the parallel loops to processors as

they arrive at the beginning of the loop. Upon completing an iteration, the proces­

sor is assigned another iteration if more work is available. When no more iterations

are available the processor proceeds to the end of the parallel section where, as with

the serial section, the processor can proceed or wait depending on whether the wait

option is specified. Once again, all the parallel sections in our applications have the

CHAPTER 2. MULTIPROCESSOR SIMULATION 20

011 • - • n.-

CNTR-+-1
Serial Fork

n-1

Serial Walt

Figure 2-2: Processors increment the shared variable CNTR upon arriving and decrement
the variable upon finishing the section. Processors then access the shared variable Flag as
they busy wait at the end of the loop.

wait option specified.

In the SPMD paradigm, parallel iterations can also be chunked, ie more than

one loop iteration can be assigned to a processor every time it comes around for

more work. Thus, the time between synchronization is reduced. This technique is,

naturally, often used when iterations are of short length. In the simulations we ran,

loop iterations often ran into the tens of thousands of instructions, so we had no

need to chunk. Table 4.1 displays the average length of the parallel sections in the

applications we traced.

CHAPTER 2. MULTIPROCESSOR SIMULATION 21

Figure 2-3 illustrates the synchronization and flow of the parallel loop section

as implemented in the post-mortem scheduler. The synchronization code is similar

to that of the serial section, except now we have a loop index variable, LPINDEX,

which processors decrement upon picking up an iteration to execute. The index

value is initialized to the number of available parallel loops. When the index reaches

zero, indicating all the work in the section has been assigned, processors skip to

the wait section at the end of the loop where they atomically decrement a shared

variable, CNTR, initialized to one less than the number of processors executing the

application. The processors busy-wait on a shared variable, FLAG, until the last

processor that is returned a value of one upon decrementing CNTR then sets the flag.

All proceed after reading the set flag.

This implementation is much simpler than the more flexible implementation de­

scribed in [8]. In [8] additional shared synchronization variables are needed to keep

track of which sections of the application have been executed. Each section maintains

a shared clock, against which processors compare their private clocks to see whether

they have arrived early, late, or on time. If a processor arrives early, it waits for the

shared clock to catch up; if it arrives late, it increments its private clock and skips to

the next section; if it arrives on time, it enters the section and looks for work (through

loop index distribution). If there is no work left, the processor sets another shared

variable, gate, which prevents any more processors from entering the section. When

all processors in the section have finished, the processor which set the gate increments

the shared clock and resets the synchronization variables used in the section. The

important point to note with this implementation is that only those processors which

have entered the section need to wait for the section to be finished. Others (late

arrivals, for example) can continue to the next independent section or reexecute the

current section.

CHAPTER 2. MULTIPROCESSOR SIMULATION

011 • - • :n-

LPINDEX+l.

0

Parallel VVa.lt

Parallel Fork

n-1

Execute
Iteration.

22

Figure 2-3: The synchronization code of a parallel section is similar to that in the serial.
section, except now we have a LPINDEX shared variable which processors decrement every
time they pick up a loop iteration.

Replicate Sections

Replicate sections are sections which can be executed by all processors in the system.

Typically these sections contain a small amount of code that could be executed seri­

ally, ie. put into a serial section. The amount of code is so small, however, that the

synchronization overhead of a serial section is too high to merit enclosing the code in

a serial section. Thus, as long as execution by all processors does not affect the cor­

rectness of the code, every processor replicates the computation. Since all processors

execute this section, no synchronization is required.

CHAPTER 2. MULTIPROCESSOR SIMULATION 23

Barrier

Barrier Flag

Figure 2-4: A barrier synchronization is similar to the wait at the end of a parallel or
serial section. Arriving processors increment a shared-variable CNTR and busy-wait on
Flag.

Barriers

A barrier is a synchronization event which requires that all processors executing an

application reach the barrier before proceeding. Barriers are similar to the waits at

the end of serial and parallel sections. Figure 2-4 illustrates the flow diagram of a

barrier. Processors arriving at a barrier increment the barrier variable, a shared­

variable CNTR initially set to one less than than the number processors executing

the application. If the variable's value is greater than zero, the processor polls the

barrier FLAG which is set by the last processor to reach the barrier. Note that the

processors waiting are busy-waiting on the barrier flag.

One note about the SPMD computational model is that it classifies data as private

or shared. Instructions and private data are in private memory whereas data shared by

CHAPTER 2. MULTIPROCESSOR SIMULATION 24

all processors and synchronization variables are in shared memory. In our simulations

both private and shared variables are cached, and miss requests are sent out over the

network. Cache coherency is not maintained, however, for private data.

A final note to make is that our simulations assumed no process-switching.

2.3 Simulation Methodology

The multiprocessor simulation methodology used in this thesis makes use, as men­

tioned earlier, of a post-mortem scheduling technique. This technique generates a

multiprocessor trace from the memory reference trace of a uniprocessor execution of

an application parallelized using the SPMD computational model. Key to the scheme

is that the uniprocessor execution trace include information about synchronization

events in the code. Since in the SPMD model, synchronization events surround each

task in the system, whether serial, parallel, or replicate, the uniprocessor trace with

synchronization information can be viewed as a trace of all the tasks in a parallel

application. Thus we have a description of the reference behavior of all the tasks, but

we have no temporal ordering of tasks. The post-mortem scheduler produces a tem­

poral ordering by simulating processors executing the parallel application described

by the uniprocessor trace. The scheduler first makes a pass through the uniprocessor

trace and constructs a task trace from the synchronization markers in the trace. The

scheduler then simulates processors processors executing these tasks in parallel in an

SPMD fashion and assigns tasks to processors. Execution of the tasks by processors is

simulated in a round-robin fashion with each processor making one reference (unless

waiting to do a RMW) each cycle from the task the processor is executing.

The scheduler also simulates processor behavior at the synchronization events in

the program and outputs the appropriate synchronization references into the multi­

processor traces. Note that since the scheduler simulates the behavior of the proces­

sors at the synchronization events, we are free to choose whatever synchronization

CHAPTER 2. MULTIPROCESSOR SIMULATION 25

implementation we desire, whether, for example, in the case of barrier synchroniza­

tions, busy-wait, semi-busy wait, adaptive backoff, or distributed barrier trees.

2.3.1 Timing

An important issue in multiprocessor simulation is timing. Synchronization deter­

mines the temporal behavior of references in a multiprocessor system. If we are

studying synchronization traffic we must accurately simulate the temporal behavior

of the processors. For example, the number of synchronization spins a processor

makes while waiting at a barrier synchronization will be affected if timing is off.

In our simulations, we use a canonical cycle in which a. processor makes a. ref­

erence every cycle. Therefore cycles in our simulations a.re determined by processor

references. For Vax-like machines, this a. reasonable approximation. In our case, our

reference trace is generated by PSIMUL [32], which runs on an IBM S/370. The

approximation of one reference a cycle is not quite as accurate, but good enough for

the purposes of our simulations.

2.3.2 Limitations

As just mentioned, the scheduler assumes a processor makes a reference every cycle

- an approximation. Instructions of varying execution times all are assumed to ex­

ecute in unit time. Moreover, time taken to execute register-to-register instructions

is not reflected in the multiprocessor trace. The reference trace generated by the

multiprocessor simulator, therefore, is an approximation to a true execution.

A related problem is that the post-mortem scheduler is not connected to the

memory subsystem (caches, network and memory modules), so delays in any of these

elements is not reflected in the execution trace. Delays, especially those due to hotspot

contention, could seriously affect the synchronization reference behavior of processors.

The simulator does take into account delays in one case (mentioned earlier): when

processors perform simultaneous RMWs to the same location. Only one processor

CHAPTER 2. MULTIPROCESSOR SIMULATION 26

can make a RMW to a location at any given time. All other processors executing a

RMW to the same location at the same time execute a NOP.

2.4 Post-mortem Scheduler Design Features

Trace-driven simulation, whether for uniprocessors or multiprocessors, is an onerous

process. The sheer amounts of data involved (in the hundreds of mega.bytes of trace

data) demands that careful thought be given to the design of an efficient simulator.

Following are some important features of the design of the post-mortem scheduler.

Perhaps the most important feature of the simulator's design is its u.e m direct

access i/o when simulating the multiple processors' progress down the uniprocessor

trace. As described in section 2.3, the scheduler first makes a pass through the en­

tire uniprocessor trace and builds a data. structure which points to the beginning of

every task in the uniprocessor trace and contains a description of the task type. The

data structure also contains entries for state information describing which processors

have executed the section, etc. Please see Figure 2-5. Processors traverse this data

structure, rather than the actual reference trace, to determine which tasks need to be

executed. A task might contain over one hundred-thousand references. It is crucial

that the scheduler use a higher level description of the trace in order to schedule

processors. Once the processor has traversed the data structure and finds a task to

execute, the scheduler uses direct access i/o1 jump to the location in the uniprocessor

trace pointed to by the data structure, and the processor can start picking up ref­

erences, "executing" the section. This ability is especially useful for scheduling the

execution of parallel loops. As figure 2-3 illustrates, processors are assigned itera­

tions of a parallel loop. The iterations appear sequentially on the uniprocessor trace.

Processors traverse the data structure until they find an unexecuted iteration (task).

With direct access i/o they can jump to the location pointed to in the uniprocessor

1 Both Unix and the VM operating systems have facilities to do direct access i/o. A C or Pascal
application on these systems can use the Lseek function to jump to a desired location.

CHAPTER 2. MULTIPROCESSOR SIMULATION

Proceaaora

Proc

Ta.ak
Trace

U:n.lproceaaor
Trace

27

Figure 2-5: Simulated processors traverse a task trace rather than the actual reference
trace.

trace and execute the task.

Another feature of the scheduler is that it can simulate different forms of synchro­

nization at a barrier (wait). The scheduler contains a barrier routine which simulates

the processor's behavior at a barrier (wait). If an implementation other than busy­

wait is desired, this routine need simply be changed to reflect the desired behavior.

The adaptive backoff synchronization techniques presented in this paper, for example,

can be implemented in the waits.

Finally the scheduler was designed with a convenient interface to a network sim­

ulator. Rather than writing to disk the references made by each processor, and then

having the network simulator read the trace, each processor in the scheduler has an

output buffer from which the network simulator can directly read references.

CHAPTER 2. MULTIPROCESSOR SIMULATION 28

2.5 The Cache Simulator and Network Model

Thus far, we have described only the simulation of the processor element in Figure

2-1. The multiprocessor traces produced by the post-mortem scheduler's simulation

of processor can be fed into a cache simulator. We then make certain assumptions

(described shortly) about an interconnection network in order to take statistics from

the cache simulator and arrive at an approximate measure for network load - certainly

an important metric in any evaluation of multiprocessor performance.

2.5.1 Multiprocessor Cache Simulator

The cache simulator implements n direct-mapped caches of a specified size and block­

size which use a central directory to maintain cache-coherency in an n-processor sys­

tem.

The cache takes input in the form of an interleaved multiprocessor trace which

contains every processor's reference on a cycle-by-cycle basis. Figure 2-6 describes

the input trace. Each 6-byte input trace entry contains a 8-bit processor id, and

8-bit tag describing each the kind of reference being made, and a 32-bit word for the

actual reference. The cache simulator simply reads the input reference and takes the

appropriate set of actions to update the cache and maintain coherency as mandated

by the write-invalidate directory scheme.

The simulator's output is in the form of cache statistics, such as private and shared

hits and misses, invalidations to clean objects, invalidations to read-only objects, etc.

Parameters for cache size, line size, number of processors, and number of directory

pointers can be chosen. Ha variable is shared among more processors than available

pointers, then the simulator uses a random method to invalidate a pointer and adds

a pointer in its place to satisfy the new request. Processor NOPs result, of course, in

no action taken for the cycle.

CHAPTER 2. MULTIPROCESSOR SIMULATION

8-blt 8-blt

Proc. id Tac
24-blt

Addr-

Uniprocessor
Trace

•
•
•

29

Figure 2-6: The cache-directory simulator takes a 6-byte interleaved multiprocessor trace
of the above form.

2.5.2 The Network Model

In this thesis we do not actually simulate the interconnection network or memory

modules of a multiprocessor system. We are, however, interested in the average re­

quest rates to memory and the percentage of it caused by synchronization references.

Rather than running a detailed simulation which would take into account contention

in the network, backpressure, and other factors (and would require further analysis),

we simply count network transactions resulting from each reference in order to find

an approximate figure for the network load. A network transaction is simply defined

as a trip across a network. For example, in the event of a cache miss to an object

not in any cache, two network transactions are generated: one to send the requested

address to memory, and one to send the requested data from memory to the pro­

cessor. In our model, all references, whether local or shared, traverse the network.

Table 2.1 describes the possible reference events and their costs in terms of network

transactions. We arrive at the average network load by multiplying the event frequen­

cies (outputted from cache-directory simulator) by the network transaction cost per

CHAPTER 2. MULTIPROCESSOR SIMULATION 30

Event no. of Network Blocks
Type Transactions Transferred

dirninsm 2 mod+addr+mod+data
dirnrmwr 4 mod +addr+mod +addr+mod +data+mod +data
dirnrmnw 2 mod +ad~-timod +data
dirnrmbn 2 mod +addr+mod +data
dirnwmwr 4 mod+addr+mod+addr+mod+data+mod+data
dirnwmnw 4 mod+addr+mod +inv+mod+mod+data
dirnwhnw 4 mod+addr+mod+inv+mod+mod
dirnwmbn 2 mod +addr+mod +data
dirnrmil 2 mod+inv+mod
dirnwiOl 2 mod+inv+mod
drtyrplc 1 mod +addr+data
syncsnc 2 mod +addr+mod +data

Table 2.1: Memory references resulting in network tra.nsa.ctions.

event and dividing the sum of these weighted event frequencies by the total number

of references (cycles) made. As described in [23], the network load can be used by a

network model to compute processor utilization numbers.

LEGEND

Event type

dirninsm

dirnrmwr

dirnrmnv

dirnrmbn

dirnvmwr

dirnvmnv

dirnvmbn

dirnvhnv

dirnrmi1

dirnvi01

drtyrplc

syncsnc

Instruction miss

Read miss, block dirty in another cache

Read miss, block clean in another cache

Read miss, block not in any other cache

Write miss, block dirty in another cache

Write miss, block clean in another cache

Write miss, block not in any other cache

Write hit, block clean in another cache

Pointer invalidation due to too fev pointers

Pointer invalidation due to a write

Memory update on replace of a dirty object

Uncached synchronization reference

CHAPTER 2. MULTIPROCESSOR SIMULATION

Blocks

Type

mod

addr

data

inv

size

(in 32-bit vords)

.5

1

1

an invalidation

description

memory module number state info.

memory address

cache blocksize

2.6 Summary of methodology

31

Listed below are the steps necessary to produce a multiprocessor trace using the

post-mortem scheduler.

• Parallelize a Fortran application using the SPMD computational model. All

independent loop iterations ca.n be parallelized.

• Run the application on the EPEX/Fortran system under PSIMUL [32] to obtain

a uniprocessor reference trace of the application. The memory reference trace

PSIMUL outputs is arranged in blocks of 24000 bytes. Each trace entry is four

bytes. The first entry in a block has the following format:

FIELD

cpuid

blank

of BITS

8

24

DESCRIPTION

cpuid (0 for uniprocessor run)

blank

The subsequent 5999 entries have the following format:

FIELD # of BITS DESCRIPTION

CHAPTER 2. MULTIPROCESSOR SIMULATION 32

tag 8

addr/marker 24

Fetch\tAdd Reference 10ccc1xx

Synchronization Marker 01ccc000

Instr./Data Reference OOcccsxx

xx • 01 instr. fetch

xx = 10 data fetch

xx - 11 data store

s .. 1 shared ref.

s - 0 private ref.

CCC I of instructions

between a ref.

if tag is a marker, marker number

else, reference virtual address

For a description of the markers which surround the parallel, serial and replicate

sections, please refer to [31].

• Simulate a multiprocessor execution using the post-mortem scheduler. Specify

the number of processors desired.

• Use the multiprocessor trace to drive cache and network simulators.

Chapter 3

The Synchronization Problem

This chapter presents data from trace-driven multiprocessor simulations of the FFT

[6], SIMPLE [7], and WEATHER [17] applications1 and uses the example of a barrier

synchronization to explain why synchronization is a problem in large-scale systems,

cache-coherent or otherwise. First we describe the many different ways in which

synchronization is implemented in machines and focus on the special case of barrier

synchronizations.

3.0.1 Background

Several different approaches have been taken in addressing synchronization in shared­

memory multiprocessors. Often machines have simple synchronization primitives in

hardware which allow implementation of more sophisticated synchronization in soft­

ware. This chapter first describes the hardware synchronization primitives machines

use. Approaches to barrier synchronization are then described.

Figure 2-1 in chapter 2 describes the logical model of the system considered in this

thesis: a large number of processors attached to memory modules via an interconnec­

tion network. Caching synchronization references in the system is optional. When

1See Appendix for a description of the applications.

33

CHAPTER 3. THE SYNCHRONIZATION PROBLEM 34

caches are included, a mechanism for maintaining consistency of data in the caches

must be maintained, often exacerbating the synchronization problem. This problem

will be discussed in detail later. A more detailed description of the model actually

simulated is described in Chapter 2.

Hardware Synchronization Primitives

Most multiprocessors have low-level synchronization mechanisms which provide some

form of an atomic operation in order to allow exclusive access to shared variables.

Higher-level synchronization mechanisms (such as a barrier or a fork) are then built

on top of these hardware primitives in microcode or software. Synchronization can

also be achieved via interprocessor interrupts, ie. a process can synchronize with a

sister process by sending an interrupt to the processor on which the sister process

is running. Interprocessor interrupts can be used in conjunction with lower-level

hardware synchronization primitives as will be explained below.

Perhaps the most common class of hardware synchronization primitives used are

so-called read-modify-write (RMW) primitives. Test-&-Set and Compare-&-Swap are

examples of RMW mechanisms. See Figure 3-1. With both these primitives, a proces­

sor attempts to access a lock via an atomic read-modify-write to a shared location in

memory. The higher-level synchronization microcode or software will typically repeat

the operation if the lock is not obtained - a process called busy-waiting or spinning

on a lock. In Test-&-Set the operation is successful, ie. the lock has been obtained, if

the returned value is O; in Compare-&-Swap success is indicated by the flag z being

set.

Spin locks have two major drawbacks: 1) the processor is idle while it spins on the

lock waiting for it to be released; and 2) spin locks generate a tremendous amount of

traffic to memory which can result in bus or network contention. This spin traffic is

especially deleterious in the case where more than one processor is spinning on the

same lock (as is typically the case in barrier synchronizations). The adaptive backoff

CHAPTER 3. THE SYNCHRONIZATION PROBLEM

Test_And_Set(lock)
{

temp= lock;
lock= 1;
return(temp);

}
Reset(lock)
{
lock=O;
}

Compare_And_Swap(rl, r2, w)
{

temp= w;
if(temp == rl) {

w = r2;
z = 1;

} else {
rl =temp;
z = O;

}
}

35

10

20

Figure 3-1: Test&Set and Compare&Swap are common examples of hardware synchroniza­
tion primitives upon which more sophisticated synchronization events are built in software
(eg, barriers).

techniques proposed in this thesis can also be applied to these spin locks to reduce

the number of fruitless synchronization spins performed as discussed in Chapter 5.

One alternative to spinning used in the C.mmp is to make use of interprocessor

interrupts. H a processor unsuccessfully attempts to obtain a lock, it puts itself on

a queue of processors waiting for the lock and disables all interrupts except for the

interprocessor interrupt .. When a process releases the lock it broadcasts an inter­

processor interrupt, "awakening" the waiting processors. This type of lock is ca.lled

a sleep-lock or suspend-lock. The advantage, of course, is that memory traffic is re­

duced. However, operating system overhead is incurred every time the processor goes

CHAPTER 3. THE SYNCHRONIZATION PROBLEM 36

to sleep, and processor utilization is still expended.

Another hardware synchronization primitive similar to Test-&-Set and Compare­

&-Swap is the Fhll/Empty bit synchronization primitive used in the HEP. Shared

memory words in this system are tagged with an Full/Empty bit which essentially

acts as a lock. A shared location can only be read when it has been updated and

tagged as full. After a successful read, the tag is reset to empty. Conversely, writes

to the location can only occur when the tag indicates empty. A successful write

leaves the location tagged as full. This system also "spins" on a memory location

when unsuccessful in obtaining it. Note that both the Test-&-Set and Full/Empty

bit schemes can be implemented in hardware at the memory module.

The one common characteristic of the schemes described so far is that when a

number of processors are trying access the same lock simultaneously, the processors

are necessarily serialized because only one processor can own the lock at any given

time. The Fetch&Add synchronization has been proposed to address this problem

in the RP3 and NYU Ultracomputer. See Figure 3-2. The Fetch&Add synchro­

nization in these machines makes use of a special combining interconnection network

to combine simultaneous accesses to the same location in memory, thus updating

the location only once. H N processors attempt to increment the same location in

memory through a Fetch&Add, the location is updated once, with the sum of the

N Fetch&Adds, and the processors are each returned values which correspond to

an arbitrary serialization of the N increment requests. This feature is well-suited

to applications such as accessing sequentially allocated queue structures or forking

processes in a parallel loop whose iterations are independent. The SPMD paradigm

of computation uses Fetch&Adds in parallel loop forks and barrier synchronizations.

Barrier Synchronizations

As mentioned earlier, a barrier synchronization requires that all processors executing

the application arrive at the barrier before proceeding.

CHAPTER 3. THE SYNCHRONIZATION PROBLEM

Fetch_And_Add(x,a)
{

}

temp= x;
x =temp+ a;
return(temp);

Figure 3-2: Description of Fetch/ Add Synchronization

37

A typical implementation of a barrier might use a shared variable whose initial

value is zero. Each processor arriving at the barrier increments the shared variable.

If the variable attains the value N, implying that all N processors have reached the

barrier, the processor can proceed. Otherwise, it repeatedly tests the barrier until

the above condition is true. The increment operation on the barrier variable must

be atomic. This implementation has the drawback that ea.ch processor attempting to

increment the barrier variable must contend with all the others simply polling it to

test for the proceed condition.

A better implementation, e.g., Tang and Yew's [33], splits the barrier into two

shared variables: an incrementing variable (henceforth called the barrier tJariable)

initially set to zero, and a barrier flag variable also initially reset. An arriving prcr

cessor increments the barrier variable. IT the variable's value is less than N, the

processor polls the barrier flag which is set by the last processor to reach the barrier.

Even this scheme requires that the last processor to reach the barrier compete with

the N-1 processors testing the barrier flag when it tries to set the flag. More impor­

tantly, however, in both implementations the shared variables involved are necessarily

shared among all processors in the system. It is precisely this widespread sharing that

impacts performance when scaling to large systems.

The shared variables, barrier variable and barrier flag, can be updated with any of

the hardware synchronization primitives discussed above. In the RP3, for example,

Fetch&Adds are used to increment the barrier variable and set the barrier flag. The

RP3's combining network aids this barrier implementation because it combines all

CHAPTER 3. THE SYNCHRONIZATION PROBLEM 38

simultaneous accesses to the same location (in this case, the harrier variable and har­

rier flag). Without this hardware feature, multiple processors spinning on the barrier

flag would easily result in hotspot contention at the barrier flag's memory module.

As shown in [26], this contention can result in tree saturation thereby reducing the

utilization of all processors in the system. The only problem with combining networks

is that they are expensive to build and are slow. An RP3 report [26] estimated that

just a 2x2 combining switch would be from 6 to 32 times more expensive, in terms of

switch size and/or cost, than a normal switch.

The problem of hotspot contention arising from processors spinning on the barrier

flag can also be alleviated by caching synchronization variables. Processors spin on

the barrier variable in their cache rather than making references across the network.

Problems with this scheme arise when the barrier flag is set by the last arriving

processor. The copies of the barrier flag in each cache must then be either updated

or invalidated and read again depending on the system's cache-coherency policy. We

will discuss the effects of barrier synchronization on cache-coherent multiprocessor

performance in detail shortly.

One hardware scheme used in the PAX computer [16] completely avoids problems

of memory contention and cache-coherency by implementing barrier synchronization

with special hardware which allows for low-latency global synchronization. A high­

level logical description of the hardware is as follows: upon reaching a barrier every

processor sets a line connected to a large, central AND-gate. Once all processors

have arrived, the AND-gate sets a global line which signals all processors to proceed.

The primary considerations with this approach is the additional hardware complexity

involved in having a centralized resource such as an AND-gate when trying to build a

scalable architecture. Ideally we would like a scalable machine to be as modular (and

distributable) as possible. Also the barrier will have to be flexible enough to deal

with situations where multiple barriers a.re simultaneously executing among subsets

of processors.

CHAPTER 3. THE SYNCHRONIZATION PROBLEM 39

3.0.2 Synchronization References and Scalability

The widespread sharing that occurs with synchronization variables is not a problem

when used in bus-based snoopy-cache multiprocessors. Because snoopy-cache-based

protocols perform broadcast invalidates or updates, a variable shared among all pro­

cessors generates no more traffic on the shared bus than a variable shared among only

two processors. The limitation of snoopy-based schemes, however, is that they do not

scale to large multiprocessor systems. Since these schemes require low latency broad­

casts for cache coherence, as well as the ability to "watch" all bus transactions, they

must use a shared bus for communication. A single bus cannot offer the bandwidth

demanded by large-sea.le shared-memory multiprocessors.

Unfortunately, wide.spread sharing of synchronization variables can drastically im­

pair performance in large-scale multiprocessors, cache-coherent or otherwise.

An Aside on Directory Schemes for Cache Coherency

First, let us consider multiprocessors with coherent caches, where a directory is used

to keep track of cached copies of shared blocks. In genera.I, for every memory block,

a directory must store as many pointers as the number of processors (say N) in the

system [4]. Such a scheme is termed DirNN B, for N-pointers-No-Broadcast in [3]. In

practice, it is possible to maintain just i pointers (i < N) to yield the limited-directory

scheme denoted DiriN B [3]. Invalidations are forced to limit the cached copies of

a block to i, or to gain exclusive ownership on a write. Results in [3] showed that

during an invalidation situation, few invalidations were actually necessary. Results

from our trace-driven simulations of 64-processor systems discussed below as well as

the results in [34] corroborate the findings in [3].

Figure 3-3 shows an invalidation histogram for a 64-processor simulation of

DirN NB driven by a trace from the SIMPLE application. We also ran simulations on

FFT and WEATHER application traces with 64 processors. l The simulations used

2See Section A in the Appendix for a deacription of the applications.

CHAPTER 3. THE SYNCHRONIZATION PROBLEM 40

r:
•

•

"'

•
10 _.

I f • I 4 6 I 7 I I fl ff 1•,.....,....
Figure 3-3: Cache invalidation statistics for SIMPLE with 64 processors. The height of
a ba.r at x reflects the fraction of write hits to previously clean blocks that resulted in x
invalidation messages.

direct-mapped caches of size 256KBytes and block size 16 bytes. The graph shows

the histogram of the number of invalidations required during a write to a previously

clean block. We see that in over 95 percent of the times that an invalidation occurred

(in both 16 and 64 processor simulations), a block had to be invalidated from no

more than three caches. Figures 3-4 and 3-5 show the invalidation histograms for

FFT and WEATHER; in both these applications the corresponding figure is over 99

percent. The graphs shows the percentage of writes which resulted in invalidations to

up to 12 ca.ches. Writes resulting in invalidations of greater numbers of caches were

proportionately insignificant.

Figures 3-3, 3-4, and 3~5 essentially show the amount of sharing occurring among

processors between writes. Since we a.re using a write invalidation scheme a.ll sharing

is ceased upon a write and processors start from scratch loading shared variables into

their cache as needed. H we used a write-update scheme, sharing among processors

CHAPTER 3. THE SYNCHRONIZATION PROBLEM 41

r:
• - WTHR114

1'0

•
.,

"'

10

0--.-.-------------------------• 1 6 1 ' • • 7 • • 11 11 16
,,,..., ti# tnqp'dplpp

Figure 3-4: Cache invalidation statistics for WEATHER with 64 processors. The height
of a bar at x reflects the fraction of write hits to previously clean blocks that resulted in x
invalidation messages.

would likely be greater than the above graphs indicate because shared variables never

get invalidated unless replaced by another block.

Another important parameter which can affect the invalidation graphs is the cache

block size. The larger the block size, the more the block can potentially be shared

among processors. This statement is particularly true if an application exhibits fine

grain sharing, ie. processors frequently contend for one or more words in the same

block. In these cases, the overhead of write-invalidation schemes as described above

can be very high if a small block size is not used. On the other hand, if an application

has good per processor locality, then write-invalidate protocols perform better [9].

The effect of block size on the performance of cache-coherent multiprocessors is an

important area of study. For the purposes of this thesis, we perform all our simulations

with a fixed block size of 16 bytes.

CHAPTER 3. THE SYNCHRONIZATION PROBLEM

r:
• • FFT64

19

•
•
40

30

:Ill

10 , ________ ._. __________________ _
I 1 2 I 4 • I 1 • I 11 11 12

..... el~-

42

Figure 3-5: Cache invalidation statistics for FFT with 64 processors. The height of a
bar at x reflects the fraction of write hits to previously clea.n blocks that resulted in x
invalidation messages.

3.1 Why do synchronization references hurt per-

formance?

Our simulations revealed that synchronization variables were largely responsible for

the cases in which more than four caches were invalidated.. Barrier synchronizations,

for example, required sharing of the barrier flag among all processors, Thus, when

the barrier flag was updated by the last processor, an invalidation to all caches in the

system was required..

The true damaging impact of synchronization references, however, is observed.

only when the effect of simultaneous read sharing is considered. Recall that using i

pointers limits simultaneous read sharing of a block to only i copies, and invalidations

must occur to enforce this rule. For synchronizations like barriers, active sharing

might occur among all processors involved, resulting in a high invalidation rate in

CHAPTER 3. THE SYNCHRONIZATION PROBLEM 43

Pt rs SIMPLE WEATHER FFT
NS s NS s NS s

2 8.5 93.5 1.9 99.9 6.7 99.0
3 7.1 81.3 1. 7 99.9 5.0 99.0
4 6.0 81.1 1.5 99.9 3.5 98.9
5 5.2 99.9 1.5 99.9 3.5 98.8
64 .53 1.2 1.2 .03 3.5 3.5

Table 3.1: Percentage of non-synchronization (NS) a.nd synchronization (S) references that
cause invalidations in directory schemes with 2, 3, 4, 5, and 64 pointers in a 64 processor
system. Synchronization references comprised 0.23, 7.93, and 5.33 of the data references
in FFT, WEATHER, and SIMPLE respectively.

directory-based schemes.

Table 3.1 shows the fraction of synchronization references out of the total number

of synchronization references which resulted in an invalidation. The percentage is far

higher than the corresponding fraction for non-synchronization data references. Note

that the percentage of synchronization and non-synchronization references that cause

invalidations decrease dramatically for SIMPLE and WEATHER in the 64 pointer

case. This implies that most of the invalidation occurring is due to widespread read

sharing. The FFT application clearly illustrates this fact. The percentage of non­

synchronization references causing an invalidation stays constant at 3.5 percent after

three pointers, indicating that non-synchronization variables get shared among no

more than three pointers (between writes). The remaining 3.5 percent of references

that cause invalidations in the four, five, and sixty-four pointer cases, are due to

write invalidations. The percentage of synchronization references for FFT that cause

invalidations, on the other hand, remains constant through the five pointer case and

drops drama.tically for sixty-four pointers. This behavior is directly due to the wide­

spread sharing of the barrier synchronization variables in FFT. Since the barrier

variable is shared among all the processors, it thrashes the pointers in the cases

where only a few pointers are available - resulting in a high invalidation rate. In the

sixty-four pointer case, however, there is no invalidation due to read-sharing.

It is clear that invalidation traffic due to synchronizations can be deleterious to

CHAPTER 3. THE SYNCHRONIZATION PROBLEM 44

the performance of cache-coherent multiprocessors. One solution is to use software

combining trees. Alternatively, one ca.n disallow caching synchronization variables.

3.1.1 Disallowing Caching of Synchronization Variables

If most synchronization accesses cause invalidations that involve multiword transfers,

then why cache synchronization variables? The problems with this approach are sim­

ilar to those in multiprocessors that make all shared locations uncacheable: increased

network traffic and potential hot-spot contention. Synchronization references are of­

ten to the same location in memory, and even a small fraction of all data accesses to

the same "hot" module can ca.use tree saturation [26) in the interconnection network

and a corresponding severe drop in the effective memory bandwidth.

Table 3.2 shows that the percentage of unca.ched synchronization traffic to memory

out of the total data traffic can be large. Section 2.5.2 describes how we computed

traffic to memory. Briefly, we compute traffic to memory by summing the total

number of network transactions generated by references. For example, in the ca.se

of a cache miss, two network transactions are generated: one to send the requested

address to memory and one to send the requested data from memory to the processor.

The reason SIMPLE and WEATHER generate far more synchronization traffic

than FFT is that their load balancing is not as good as in FFT (see Section A for

details), resulting in more synchronization accesses at loop barriers as processors wait

for all processors to arrive. The slight relative increase of synchronization overhead

in all cases when going from two to five pointers is because synchronization traffic

remained constant while invalidation traffic (part of total memory traffic) decreased

as more pointers were available for sharing of blocks. The fact that synchronization

overhead increased for SIMPLE when going from 5 to 64 pointers indicates that SIM­

PLE has relatively more invalidation than WEATHER or FFT. The synchronization

overhead for WEATHER was particularly bad because the number of processors run­

ning the application was often greater than the pa.rallelism afforded in the application,

CHAPTER 3. THE SYNCHRONIZATION PROBLEM 45

Ptrs SIMPLE WEATHER FFT
Traf. _{_%J Traf. J..%1 Traf. J.%1

2 22.0 55.4 1.3
3 23.5 56.3 1.4
4 24.6 57.4 r• 1.5
5 25.6 57.6 1.5

64 35.3 59.9 1.5

Table 3.2: Synchronization traffic to main memory as a percentage of the total traffic
when the synchronization variables a.re not cached. Block size is 16 bytes and cache size is
256KBytes. The non-synchronization blocks a.re cached and coherence is maintained using
directory schemes with 2, 3, 4, 5, a.nd 64 pointers.

resulting in synchronization traffic as processors sat busy-waiting for their brethren

to arrive. In this case, the WEATHER simulation is a good example of the unfor­

tunate effects of poor load-balancing. FFT, on the other hand, represents the ideal

case when synchronization overhead can be very low as Table 3.2 shows. Though the

execution was load-balanced, synchronization traffic in FFT still accounted for 1.2

percent of all references. Considering that most of this traffic is to the same location

in memory, we cannot ignore the potential for hotspot contention and the resulting

tree saturation. The SIMPLE data is probably the most representative example of a

typical pa.rallel execution. SIMPLE contained a number of serial sections and pa.rallel

sections which did not contain n-way parallelism - typical of most applications.

Therefore, if we are to scale multiprocessors, network traffic due to synchronization

must be rigorously minimized.

In large-scale shared-memory multiprocessors, such as the RP3, Ultracomputer,

Cedar, all traffic to shared variables must go over the network3, and the relative

fraction of network &CCe88e8 attributable to synchronization is slightly smaller. We

measured memory traffic when shared variables were not cached and found that syn­

chronization traffic accounted for 25.5%, 49.2%, and 1.4 7% of the total traffic in

SIMPLE, WEATHER, and FFT, respectively, in 64 processor simulations. Our mo-

3 Although temporary caching of shared locations with compiler inserted cache ftuah directives
can help relieve network load.

ti--iw11• 1lwul1•1•1it.,Pnitl1Jtrm•l1 .. iltp•Wte••,Hilc
•• ,.,. 11111£ . , • 1talirr.

Chapter 4

Analysis

In this chapter we apply adaptive backoff techniques to barrier synchronizations and

evaluate their performance. The evaluation is carried out via an analytical model

and via simulation of a barrier synchronization model. First we describe adaptive

backoff synchronization techniques as applied to a barrier evaluation model. We then

describe the model of the network used. Finally we discuss the results of simulations

and the tradeoffs involved in using adaptive backoff techniques.

4.1 Adaptive Backoff Barrier Synchronization

The basic idea behind adaptive backoff methods is simple. An adaptive backoff barrier

technique makes use of available information in deciding how long to wait before trying

to read a barrier flag rather than continuously polling the flag.

We will assume barriers implemented using a separate barrier variable and a bar­

rier flag as described earlier. H the barrier variable and flag are one and the same ob­

ject, the relative advantage of using adaptive backoff techniques will be even greater.

47

CHAPTER 4. ANALYSIS 48

4.1.1 Previous Work

As mentioned in section 1, the fundamental idea of backoff has been applied in many

situations previously. The majority of the work has been in developing adaptive

control algorithms for transmission across communications networks. These schemes

typically involve backing off by random intervals with means determined by collision

history.

We do not use this method to determine backoff intervals for two primary reasons.

First, we want the backoff to be as efficient as possible, ie. backoff decisions must cost

just a few instructions. Calculating a random backoff interval could involve hundreds

of instructions - too high an overhead for our liking.

More importantly, though, backing off by a random interval would result in in­

creased contention at memory modules because it destroys serialization among the

processors. When multiple processors initially attempt to update the barrier variable

simultaneously, they a.re necessarily serialized (we do not use a Fetch&Add). This

serialization remains for the duration of the barrier synchronization while processors

poll the barrier flag and backoff. We desire serialization because it reduces contention,

especially when the processors attempt to poll the barrier flag. If we used a backoff

method with a random wait interval, all serialization is destroyed if processors come

back to poll the barrier flag at the same time. The processors are serialized again as

they contend to access the barrier flag, and the process repeats itself.

4.1.2 Backoff on the barrier variable

The first method, called backoff on the bamer variable, is the simplest and attempts

to make use of the state of the barrier variable to reduce unnecessary network accesses

on the barrier flag. The barrier variable value reveals the number of processors waiting

at the barrier. Let there be N processors that must arrive at the barrier, and let the

average memory access time over the network be 1 cycle as mentioned earlier. If i

processors have reached the barrier, then an arriving processor can start polling the

CHAPTER4. ANALYSIS 49

barrier flag at least (N-i) cycles after reaching the barrier variable A.

4.1.3 Backoff on the barrier flag

Backoff on the barrier flag is another method that tries to reduce the number of

spins on the barrier flag. Processors can remember the number of times they have

polled the barrier flag and correspondingly backoff by a linear or exponential amount

the longer they have waited. This code can be part of the barrier implementation

in software and needs no hardware support. In discussing the performance of these

latter methods, we assume that backoff on the barrier variable is also applied.

In backoff on the barrier variable, if the interarrival times of processors are very

large, then a processor might wait its N-i cycles and start polling the barrier flag

long before the last processor arrives at the barrier. In these situations, we might

wait longer before polling the flag, say (N-i)+C or (N-i)*C, where C is some positive

integer. While this might reduce the number of unnecessary network accesses, it

might also cause the processor to remain idle and miss accessing the barrier at the

earliest it becomes available. We suggest some methods of choosing appropriate

backoff parameters in Section 4.6.

In backoff on the barrier flag, there exists a danger of backing off much more

than necessary. Clearly there is a tradeoff between network access reduction and

cpu idle time. H only a small fraction of the processors are involved in a barrier

synchronization, then to reduce the hot-spot contention problem, one might prefer to

take the hit in cpu idle time for these contending processors so that the remaining

processors in the system can perform unhindered. As mentioned before, even a small

percentage of memory references to the same "hot" memory module can result in

severe congestion in the interconnection network, thereby reducing all processors'

utilization [26]. Of course, if all processors in a system are involved in a barrier

synchronization, then the cpu idle time becomes an important consideration.

Backoff decisions are made only when a process has just updated the barrier

CHAPTER 4. ANALYSIS 50

variable, a.nd when the process has rea.d the barrier Hag and the Hag is not set.

So, once a processor initiates a barrier rea.d request, the network controller for that

processor attempts to rea.d the barrier. If contention th'~arts this attempt, the access

is repeated until the Hag is rea.d. We propose some othh}chemes where the network

controller ca.n back off if network congestion is high.

For software-tree based implementations of barriers on non-cache-coherent mul­

tiprocessor as suggested by Yew, Tzeng, and Lawrie [35], our methods can still be

used to reduce the spins on the intermediate nodes of the tree. Of course, in a

cache-coherent multiprocessor with more pointers than the degree of the nodes, all

intermediate nodes can be cached and backoff is not necessary.

We evaluate these ideas using a barrier model through analysis and simulations

and discuss the tra.deoffs between reduced synchronization accesses and wasted cpu

cycles. First, though, we must describe the model of the network used for the simu­

lations.

4.2 The Network Model

The network model we assume is the following: processors can access any memory

over the network in one network cycle. We do not model network contention, but do

model contention for the barrier variable and Hag. We also assume that the barrier

variable and Hag are in different memory modules, so simultaneous requests to the

two by different processors can be satisfied. We assume that in a network cycle only

one processor can access the barrier variable or the barrier Hag. If a processor is

denied access to the variable in a network cycle it repeats the access to the variable

in the next network cycle: This model might correspond to a crossbar switch where

the only contention is for the end memory modules that have the barrier variable and

flag. It also roughly approximates the performance of a circuit-switched multistage

interconnection network, where the network cycle time can be the round-trip time

CHAPTER 4. ANALYSIS 51

over the network. In the latter case the contention at intermediate network nodes is

not included.

The network traffic rates computed using our barrier scheme might also be input

into a more complex model of a multistage interconnection network such as that

proposed by Patel [24] if network contention results are desired. Unfortunately Patel's

model does not account for hot-spot contention. We are also using large parallel traces

of real applications derived using various synchronization schemes to drive network

models to obtain performance estimates in the presence of hot-spots caused by barrier

traffic and when the barrier traffic is reduced using our techniques.

4.3 A Barrier Model

We first describe the model that we use to evaluate barriers. We use two metrics:

(1) the number of network accesses per process in accessing the barrier variable and

barrier flag; and (2) the number of cycles that an average process spends from the

time it arrives at the barrier to the time it is allowed to proceed from the barrier.

Overall performance is impacted by the total network traffic, which includes the

regula.r non-barrier traffic and the barrier traffic. Beea.use we currently do not model

hot-spot traffic contention in the network, we preferred to present the numbers for

the barrier traffic alone, as average numbers for overall traffic might be misleading in

terms of the adverse effect of the barrier traffic focused on one memory module.

Let us define A to be the time interval during which processes can arrive at the

barrier. A is the time from the first processor's arrival at the barrier variable to

the last processor's arrival. The complementary interval between these two events

we call E, i.e., the time between barriers in an application. H we were to follow an

application's execution through time, E and A would appea.r as shown in Figure 4-1.

Table 4.1 measures A for our applications. A is defined to be the number of cpu

cycles from the time the first processor sta.rts polling the barrier flag to the time

CHAPTER 4. ANALYSIS 52

Execution Bar. Execution Bar.
1-------------1----1------------1----1-----

E A E A

Figure 4-1: Intervals of execution and synchronization.

Application Processors A E
SIMPLE 16 7021 42007

64 7068 6195
WEATHER 16 82754 495298

64 82787 82716
FFT 16 237 228073

64 285 57997

Table 4.1: Average number of cycles, A, between first and last arrivals at waits and
barriers. Eis the average number of cycles between the last arrival at the previous bani.er
(or wait) and the first anival a.t the next barrier (or wait), i.e. it is the a.vera.ge time between
barriers or waits.

the last processor sets the barrier flag. Interestingly the average A for SIMPLE

and WEATHER did not increase as greatly as for FFT when going from 16 to 64

processors. For highly uniform and load-balanced applications such as FFT the spread

among arrivals is primarily due to the serialization which takes place at the loop index

assignment. Thus, FFT was relatively more affected than the other applications when

the number of processors increased.

E and A for SIMPLE and WEATHER with 64 processors are similarly sized

because the applications were not perfectly load-balanced: Not all the parallel loops

contained a nice multiple of iterations which could be distributed evenly among all

processors. The few processors without work proceeded directly to the barrier.

The barrier model we use for our analysis and simulations is actually slightly

different from the A we measured, and allows us to model a varying number of

synchronizing processors for a given value of A. Our measurements of A from the

applications were for a relatively large number of processors and this measurement

yields an indication of the maximum time span between the first and last arrival at

CHAPTER 4. ANALYSIS 53

a synchronization point in that application. It is likely that a smaller number of

processors can have an actual value of A much smaller than this maximum span.

Therefore, we now define A to be the interval during which processors may arrive at

the barrier, and N to be the number of synchronizing processors. We further assume

that each processor has a uniform probability of appearing at any time instant during

the interval A. From the uniform probability of arrival during the interval A we must

compute the average time span between the first and last arrivals out of a. total of N

arrivals. This span must tend to A as N becomes large.

To determine whether our assumption of uniform probability of arrival within A

was reasonable we measured the arrival times in our applications. We found that

the distribution is roughly uniform for FFT but is skewed towards the beginning

and the end of the interval for SIMPLE. This skewing occurs because of uneven

load-balancing. We observed, however, in the last peak that processor arrivals were

still uniform over the last 200 references (2]. There seems to be no real pattern and

our assumption of a uniform distribution is not expected to significantly change our

results for minor variations in the arrivals. We also present additional validation

of this model by comparing the predictions obtained through simulations using the

model and through measurements using the actual traces in Section 4.5.1.

4.3.1 Analytically Estimating Barrier Performance

We first present some simple calculations for extreme cases of A to determine the

bounds on the possible savings and to provide insight into our simulations.

When all processors arrive simultaneously (A= 0) and no ba.ckoff, a processor will

make on average N + N + N /2 synchronization references. Each processor makes N /2

barrier variable references, polls the barrier flag N /2 times before the last processor

gets through the barrier variable, continues polling the barrier flag N times until the

last processor sets the flag, and finally leaves after N /2 references, on average. We

denote this model that assumes simultaneous arrival as Model 1.

CHAPTER 4. ANALYSIS 54

HA >> N, there is practically no contention to get the barrier variable. In this

case we assume that processors appear at the barrier at a given time instant within

the time interval A with uniform probability. Let us first compute the average time

span T between the first and the last arrival within the interval A given N processors.

The average time from the beginning of the interval to the first arrival ca.n be shown

to be A/(N + 1), and the average time from the last arrival to the end of the interval

to be AN/(N + 1). The required time span T is the difference of the two, or

N-1
T =A (4.1)

N+l

Observe that T approaches A as N becomes large. Thus, each processor make on

average T /2 + N + N /2 network accesses during the synchronization phase. This is

Model 2.

Let us now consider backoff on the barrier variable, where we backoff an amount

proportional to the the barrier variable value. H i is the value of the barrier variable

upon a processor's arrival, then the processor can wait N - i cycles before beginning

to poll the barrier flag. When A= 0, the average number of synchronization accesses

becomes N /2 + N + N /2 cycles because the processor does not start polling the flag

until the last processor gets through the barrier. A similar savings of N/2 is made for

A>> N. With backoff' only on the barrier variable, the potential savings get smaller

as A gets larger because the savings is a constant N/2 no matter what A is.

Backoff' on the barrier flag uses the number of times the flag has been polled.

Rather than continuously polling the barrier flag until it is set, we backoff by some

function of the number of times we have already rea.d the shared variable. From Model

2 for A>> N, the potential savings in network accesses can be as large as log,,(T/2)

for exponential backoff', where b is the basis of the exponential backoff' algorithm

used. In addition we reduce interference with the final processor write request that

will release the processes waiting on the flag. The backoff' on the barrier flag can also

incur a high penalty - we might backoff too far and waste cpu cycles. This idea is

tested out in simulations discussed in the next section.

CHAPTER 4. ANALYSIS 55

Finally, we present some network access rates for barriers on multiprocessors with

hardware support for barrier synchronization to provide a basis for comparison with

the backoff schemes. Examples of such hardware support are a bus to allow either

global invalidations, or global updates, of cache entries, Qirectory with a full pointer

map, and special logic to implement a global synchronization gate as suggested by

Hoshino [16). H there are N processors the invalidating bus incurs 3n + 1 accesses for

a barrier: n fetches of the barrier variable, n invalidations for n writes of the barrier

variable, n fetches of the flag, and the final global invalidation caused by the write into

the barrier flag, yielding roughly 3 accesses per processor per barrier operation. The

updating bus uses roughly 2 bus accesses per processor. The same number of accesses

applies to an invalidating scheme that can detect a fetch with intent to write. Like

the bus, the directory scheme incurs 3n on barrier variable accesses and invalidations,

and flag accesses, but lacking a global broadcast must incur an additional n for the

individual invalidates on the final write to the barrier flag, yielding 4 on average per

processor per barrier operation. The Hoshino scheme uses n accesses to the global

synchronization gate and the final single broadcast message to the participants to

inform them to proceed, for a per-processor average of 1.

4.3.2 Simulation Methodology

We also use simulations to predict barrier performance with and without backoff'. The

barrier and network models are the same as described previously. Our simulation

methodology is described here.

In our simulations, processors arrive with uniform probability during the interval

of size A. Each processor .first increments the barrier variable and then spins on the

barrier flag until it is set by the last arriving processor. Our previous data in Table 4.1

showed that for three applications the value of E was between 6195 and 495298 cycles

on average and the value of A was between 237 and 82787 cycles. While we simulated

a wide range of A values, we show the results for A = 0, 100, and 1000 for brevity

CHAPTER 4. ANALYSIS 56

because it is only the relative size of the interval with respect to the number of

processors involved in the barrier that is important; larger values of A yielded no

additional insight.

Each simulation run measured the average number of network accesses made by

a process from the time it arrived at the barrier variable to the time it proceeded

from the barrier flag after having successfully tested the flag and observing a true

value. As mentioned before, the number of network accesses includes contention for

the barrier. We also measured the average time each process spent from the time it

arrived at the barrier to the time it left.

4.4 Evaluation

We evaluate the backoff methods using the models just described. This section first

compares the predictions of the model with simulations. We then estimate the po­

tential savings in network traffic using backoff techniques and discuss the tradeoffs

involved in choosing the right parameters for the backoff algorithm.

4.4.1 Estimating the Potential Reduction in Traffic

We will first analyze the accuracy of our simple model in predicting the behavior of

the barrier synchronization under various load conditions. The model will indicate

the range of performance gains that we might expect using the backoff techniques

and give insight into our simulation numbers.

Figure 4-2 compares model predictions of network accesses with simulation results

for A = 0, A = 100, and A = 1000, without backoff. The model can be modified

to predict the performance of the backoff schemes, but for certain cases it can get

quite complicated. We will, however, mention what terms in the model equations get

impacted by the various schemes.

The network accesses for A = 0, A = 100 do not differ much overall, but the way

CHAPTER 4. ANALYSIS

J
1JOO

1200

1100

J 1000

I llDD

""'
100

300

a-a A«N (Model 1)
o-o A-'J (Sim)
a---a A-100 (Model 2)
o- - -o A•100 (Sim)
a a A·1000(Model2)
O·····O A·1~ (Sim)

. ,
I :: ,

:: I

... : ,'
• I

i :
••• I I

•• • I ,'

.• I
Ii I

.,,•• I .. · '
•••••• I ,' , ,

O•• I I .. , J ,',
,•" I I ,,.. ,'

.. ··• .4' ••• ••
100 ••• •••••

0
1 2 .. 121 a. 612

• ol PrDoeaot9

57

Figure 4-2: Comparing the predictions of the analytical model and predictions of barrier
perform.a.nee.

in which they differ is significant. For N < 32, A= 0 results in fewer accesses than

A = 100 because when A= 0 processes do not have to wait for the last processor

to arrive at the barrier. For larger N, however, A = 100 starts performing better

because when the arrivals are spread out slightly, there is less contention in accessing

the barrier. We observe a similar behavior for A= 1000 as N approaches A. When

N is small, A= 1000 makes far more accesses than A= 0 or A= 100.

The model is accurate as the figure shows. Model 1, as expected, matches the

curves for the A < < N cases. In particular, Model 1 closely approximates the A = 0

case, and yields a good match with the A = 100 curve for N > 16.

Model 2 matches all the cases where A>> N. Specifically, the Model 2 curve for

A = 1000 provides a near perfect match with the corresponding simulation curve for

all the values of N shown. The Model 2 curve for A= 100 matches the simulation

A= 100 curve for N < 128. When N is greater than 128, the model begins to under­

estimate the contention in accessing the barrier variable. In general, the maximum

of the predictions of the two models yields a good fit with simulation in all ranges.

Where N > A, the model implies that the potential reduction in network traffic is

CHAPTER 4. ANALYSIS 58

20%. When A > N, the potential gains are much more significant. Han exponential

backoff method is used with base b, then if the network accesses of the flag were

M, with backoff these accesses can be reduced to the order of logi,(M). Because the

waiting processes are not busily accessing the flag, the final process that must set the

flag can usually proceed to update the flag without interference.

4.4.2 Simulation results

We now present simulation results for barrier synchronization performance. Figure 4-

3 shows the net accesses for N ranging from 2 through 512 when A= 0, i.e., when all

processes arrive at the barrier at the same time. The curve follows the model as shown

before, which means that the net accesses increase as 5N /2, where N is the number

of processors. The curves for backoff on the barrier variable alone, and backoff on

the barrier flag with backoff constant 2, 4,and 8 are also shown (as mentioned before,

all our simulated cases of backoff on the barrier flag include first backing-off on the

barrier variable.)

Figure 4-3 corresponds fairly well with our model's prediction of the reduction

in synchronization references due to backing off on the barrier variable. Backoff on

the barrier variable reduced the number of network accesses from 160 to 132, a 15%

reduction. Not surprisingly, backoff on the barrier flag made no difference because

everyone reaches the barrier at the same time when A= 0.

Backoff with A = 1000 often has a savings greater than the log of the time interval

of arrival at the barrier because of reduced interference with the final write request

into the fiag. This phenomenon also explains the fewer network accesses for backoff

with base 8 &t A=lOOO than at A=O for 32 processors. However, this savings often

comes at the expense of increased processor waiting times.

Figures 4-4 and 4-5 correspond to the network accesses by a process for A = 100

and A = 1000 respectively. In Figure 4-4 for the backoff on the barrier variable we

see similar savings as in Figure 4-3 with A = 0 because the interval A is still not

CHAPTER 4. ANALYSIS 59

very big compared to the number of processors. Note, however, the big reductions

that the exponential backoffs on the barrier flag gave. With A= 100, not everyone

reaches the barrier flag simultaneously, so the ones who arrive early backoff by a large

value. For example, with 16 processors and a base 4 backoff on the barrier flag, we

see a savings of over 90% in network accesses. For 64 processors, base 8 backoff yields

savings of about 60%.

The proportional benefit due to backoff decreases as N increases because con­

tention in the network to access the barrier flag becomes a sizable portion of the

network accesses. Recall that an unsuccessful network access in accessing the barrier

flag is still counted as a network access. (To reduce these unsuccessful accesses one

might use backoff techniques in the network accessing as discussed later.) For exam­

ple, when A= 100 and N = 512, base 8 backoff yields less than a 30% reduction in

network accesses.

Bac.koff on the barrier variable alone, for A = 1000, offers only modest savings.

Interestingly this scheme offers virtually no savings for up to 32 processors, because

few processors contend for the barrier flag, but the savings become more significant

as the number of processors increases. For 256 processors, for example, backoff on

the barrier variable yields about a 15% improvement.

The savings due to exponential backoff on the barrier flag with A= 1000, however,

are quite dramatic. Since the processors potentially have a large interval to poll the

barrier flag before everyone arrives, over 95% savings in network accesses results with

binary backoff on the barrier flag with 16 processors. The 64 processor case offers a

similar improvement.

The small number of network accesses with backoff on the barrier flag for the cases

A = 0 and N < 8, A = 100 and N < 32, and A = 1000 and N < 128, compares

reasonably with the network accesses in the bus-based schemes, the broadcast based

schemes, or the Hoshino scheme, with no extra hardware or the broadcast require­

ment. However, when A is smaller or N is larger, the backoff schemes tend to do much

CHAPTER 4. ANALYSIS

IOO

700

""'
stJO

400

JOO -100

0
1 a 4

Without Backoff
Backoff on Barrier Var.
Bue 2 Baekoff on Ban1er Flag
Bue 4 Backoff on Ban1er Flag
Bue a Backoff on Banier Flag

, ,, u ... ,.
"' $f J

lolptDoe•sors

Figure 4-3: Performance of ba.ckoff algorithms for A= O.

J
1300

1200

1100

I 1000

IOO

IOO

700 -.,,,
400

JOO -100

0
1

Without Backoff
Backoff on Barrier Var.
Bae 2 Backaff on Banler Flag
Bue 4 Backoff on Ban1er Flag
e... a Backoff on Banter Flag

a " 1 ~ u N m at m
I ol PfD09llOIS

Figure 4-4: Performance of ba.ckoff algorithms for A= 100.

60

CHAPTER 4.
Without Backotf
Backotf on Barrier Var.
Bue 2 Backaff on Banter Flag
Baae 4 Backoff on Banter Flag
Bue 8 Backaff on Banter Flag

I , . , : , . , : , : , .
IOO ,' :' •

I :" j
'100 ,,' :' i

, : I

IOO •' _: f i
• I •

!IOO :' ; !
• • I
• I :

400 i/
- ! : i "1111 • • I . , :

zoo ! f J
.: .' I

100 ... ! :
.·· ·' .. -·' , __ _.I-ii_~-.... __ _

1 1 11 u ,,. 1a as 11a
• ol ptDON#l9

Figure 4-5: Perform.a.nee of backoff algorithms for A= 1000.

worse than the schemes that have special hardware support for synchronization.

61

It is clear that backoff on the barrier fiag is potentially much more beneficial for

large A because most of the network accesses that happen while the processes await

the remaining processes to arrive at the barrier can be obviated. These accesses

correspond to the first term in the Model 2 equation. Backoff on the barrier variable

alone does not impact performance significantly when N is small compared to A, but

can yield up to a 20% improvement when N is large.

It is interesting to see that the network accesses increase dramatically for N = 128

(A = 1000). It seems that the backoff techniques are not as useful in this case

(improvement is less than about 30% for N = 256 and backoff with base 2), although

for these cases barrier synchronization is probably inappropriate anyway without some

form of distributed software combining [35). Our backoff methods can still be used on

the intermediate nodes of the combining tree. The reason for the sharp increase can

be described as follows: When the number of processors is small compared to A, a

process can get access to the barrier Hag usually within one network access. However,

when the number of processors is not small compared to A, then a process will suffer

contention in trying to access the barrier fiag, and contention shows up as repeated

network accesses.

CHAPTER 4. ANALYSIS 62

In both cases the network accesses can be dramatically reduced for N < 128. For

larger N, when the contention due to multiple processors simultaneously accessing the

barrier increases, the relative benefit decreases. Recall, we do nothing about these

contention accesses. A method described in the next section can help reduce this

problem.

Our simulations show that using a backoff method on both the barrier variable

and the barrier flag can yield savings from 20% to over 95% of the network accesses.

However, the reduction in network traffic using the backoff methods does not always

come for free. Because a backoff method can cause unnecessary processor idle time, we

must carefully analyre the delays that these techniques can introduce. The occurrence

of delays alone might not be a major cause for alarm, because these delays correspond

to the delays suffered by the synchronizing processes alone, and do not aff~t other

processes. The next section addresses these issues.

4.5 Discussion of Tradeoffs

An appropriate backoff constant must be determined by trading off the reduction in

network accesses with the potential increase in the number of cycles the cpu spends

idling during backoff.

We determined from our simulations the average waiting times per processor when

A = 0, 100 and 1000 for four cases: without backoff, with backoff on the barrier

variable and with exponential backoff on the barrier flag with bases 2, 4 and 8. The

waiting time for a process is computed as the number of cycles between first arriving

at the barrier to when the process finds the barrier flag set.

For A = 0, and A = 100, we found that the waiting times for all the four curves

are similar because the opportunity for a large backoff time is rare given that all the

processes arrive within a 100 cycles of each other. The waiting time in these cases

is proportional to the number of network accesses, as it is precisely these network

CHAPTER 4. ANALYSIS

Without Badcoff

Back.off on Barrta:.Y•-··-·,
Base 2 ,..-··· """··,
Base4 (...... \
Base 8/ \

i \
i \
I \
I ""'••,
i "...,:
: ~ I ~ 1200

:Iii -·-·--·-·-·-·-·-·
.' -·--· /

1000

""' I
. · ·' I _, •

.l ,.,. .·
// .. ····
. I ••

200 /.i ... ··
1/·' o..__. __ ..___. __ ..__. __ _.

1 4 I ~ U N ~ ~ ~
lol~

Figure 4-6: Processor waiting times for ba.cko:ff algorithms for A= 1000.

accesses that give rise to the delays at the harrier.

63

We found that in all cases binary hackoff provides a favorable tradeoff between

large reductions in synchronization references and contained increases in wasted cpu

cycles. Consider, Figure 4-6, which shows average processor waiting times for A =
1000. For 64 processors, binary hackoff decreased synchronization accesses by 97%

while increasing the time spent at the harrier by only 16%.

However, the average time spent idling can increase dramatically when both A

and the base of the backoff algorithm are large because of the possibility of large

backoff times. As an example, for 64 processors and A = 1000, the waiting times

without backoff and with base 8 exponential backoff on the flag are 576 and 2048

respectively - depicting an increase of over 350% due to hackoff. Even in this case,

one important benefit is that the barrier accesses are both reduced and spread out

uniformly over time.

When the arrival interval A is much larger than the number of processors, and

a high processor utilization is important, one can modify the backoff algorithm as

follows. ff the backoff amount crosses some preset threshold, then it might he worth-

CHAPTER 4. ANALYSIS 64

while to place the process on a queue pending the arrival of the last process. The

enqueuing operation incurs a constant overhead that might be unnecessary should

the processes arrive within a small interval. Because A cannot often be determined a

priori, such a method of deciding when to put a process to sleep seems promising.

Interestingly, for A = 1000, the average waiting times per processor reach a max­

imum around 64 processors and then actually decline as N increases. When the

number of processors is small compared to A, the processors can test the flag with­

out excessive contention with other processors. After each unsuccessful test, they

back off, and the backoff time is exponentially related to the number of unsuccessful

tests. Because the number of such accesses can be quite large when contention is low

and A is large, the potential for overshooting the point where the flag is set arises.

Conversely, when the number of processors is comparable to A {or greater than A),

the number of times a process manages to access the barrier flag is small due to

contention with other processes. In such cases, the network access count increases,

but the average waiting time per processor decreases. Referring to Figures 4-5 and

4-6 the decrease in the waiting time for the backoff curves closely corresponds to the

increase in network accesses.

4.5.1 Summary

A few general observations can be made at this point. When the number of processors

participating in the barrier synchronization is small compared to the time of arrival

of the processors, significant reduction in network accesses can be achieved without

compromising processor utilization due to backoff waiting for a small backoff base. In

such cases, the number of synchronization network accesses is similar to those made in

schemes that use special hardware support such as synchronization buses, broadcasts,

or global synchronization logic. When the number of processors is large, and if they

arrive within a relatively small interval of time, a penalty in either network accesses

or processor idle time must be paid. However, depending on the situation, one can

CHAPTER 4. ANALYSIS 65

be traded for the other.

A good example of a situation in which backoff barriers are useful would be in

cases where an application is poorly load balanced. As we saw with WEATHER,

non-optimal load-balancing can result in a large amount of synchronization traffic to

memory as processors busy-wait at the end of a parallel section waiting for everyone

to arrive. Since this is a situation where the arrival-time spread of processors can be

large compared to the number of processors in the application, backoff barriers can

potentially significantly reduce the number of synchronization accesses ma.de at the

barrier without hurting processor utilization. We can verify this by simulating backoff

barrier synchronization in the post-mortem scheduler and measuring the resulting

synchronization traffic in the multiprocessor traces.

Our discussion thus far focused on the traffic and the waiting time during the exe­

cution of the barrier. We can also look at the effect on average traffic with the caveat

that such smoothing might tend to make barrier accesses seem less disruptive. We

measured the average network data traffic per processor in FFT (assuming separate

packet-switched networks for the request and response), excluding synchronization

references, to be 0.133 network accesses per cycle. Using results from our simulations

of the barriers with A = 100 (roughly approximating the barrier interval A in FFT

with 64 processors) we compute the extra traffic due to barriers when the barrier

variable and the barrier flag are not cached. Adding these synchronization references

to our base network traffic, the average traffic increases to 0.136 network accesses per

cycle (assuming that the base traffic in A is also 0.133). Now, with a base 8 expo­

nential backoff we find that the average network traffic drops to 0.134. This decrease

is significant considering that these savings come from reductions in synchronization

references which are effectively hot-spot references. Moreover, we observe in this case

that the base 8 exponential backoff also results in a 10 percent decrease in waiting

time at the barrier. Both average network traffic and waiting time at synchronizations

are reduced using backoff methods for our FFT application.

CHAPTER 4. ANALYSIS 66

As a validation of our barrier simulation model, we also compared the average net­

work traffic in FFT when synchronization references are not cached with the average

network traffic predicted by our barrier model simulations. The numbers correlated

well, with barrier simulations predicting 0.136 net ac~ per cycle per processor,

while measurements from FFT yielded 0.135.

We analyzed the tradeoff between network accesses and processor idle time due to

backoff. In general, reducing the number of network accesses might be more important

than reducing the processor idle time because reducing the number of network accesses

also reduces the processor idle time because of the reduced contention in the network,

and because of decreased competition with the regular network activities of the other

processors not involved in the barrier.

4.6 Optimizations and Extensions

Adaptive backoff techniques have several other applications. For example, this tech­

nique can be applied to processors waiting on a resource that requires mutually ex­

clusive access. Instead of spinning on the resource lock, the processors can backoff

testing the lock by an amount proportional to the number of waiting processors.

Adaptive techniques are more suited to this situation than barrier synchronization

because the waiting time is proportional to the number of processors (the constant

of the proportion is the average time the resource is held by each processor).

An adaptive backoffmethod can be used to reduce contention in unbuffered circuit­

switched networks. If a. network a.ccess suffers a collision, instead of resubmitting the

request immediately, one ca.n ba.ckoff some amount first. We are investigating such

schemes in a large-sea.le mwtiprocessor project called ALEWIFE at MIT. The ba.ckoff

amount can be determined in one of several ways:

• The ba.ckoff amount can be proportional to the network depth traversed by the

message, which is determined by a network supplied status byte indicating the

CHAPTER 4. ANALYSIS 67

stage at which the collision occurred. The rationale for this choice is that the

deeper a message travels, the greater the network resource that it ties up in its

unsuccessful attempt. Conversely, if a collision occurs within a few stages of

travel into the network, the access can be resubmitted sooner as the network

resources tied up will be smaller.

• An argument for making the backoff amount inversely proportional to the net­

work depth traversed can also .he made. The deeper a message travels before

colliding, the less congested the network is expected to be, and so the access

can be retried sooner. Simulations can be used to study the tradeoffs involved

in these two opposing arguments and suggest a practical backoff algorithm.

• A colliding network access might wait some constant time proportional to the

average round trip time through the network before retrying.

• The number of previous unsuccessful tries can be used as a parameter to an

exponential backoff algorithm.

• In a packet-switched network, Scott and Sohi [27] make use of state information

in the memory module queues to signal processors to hold back requests in

congested situations. This state information could also be used to have the

processors ba.ckoff' sending requests by some time proportional to the length of

the queue.

As we mentioned before, the adaptive backoff techniques that we evaluated do

not require special hardware support. The synchronization software that determines

which ba.ckoff' method is used can be designed in one of several ways. One can be

conservative and use a simple adaptive ba.ckoff on the barrier variable and a binary

backoff on the barrier flag. The programmer can write the algorithms into the syn­

chronization macros or routines from a knowledge of the application. The compiler

can determine appropriate code sequences for the barrier synchronizations based on

CHAPTER4. ANALYSIS 68

expected behavior of loops and the amount of visible parallelism. A more venturesome

method might use profiling to determine the temporal behavior of the application and

the number of processors participating in the synchronization and pass this informa­

tion on to the compiler for further optimization. One case where such information

might be useful is in determining when to (or whether to) queue a process to await a

signal when the barrier flag is set rather than spinning on the network.

CHAPTER 4. ANALYSIS 69

4. 7 Conclusions

Network bandwidth is a precious resource in large-scale shared memory multiproces­

sors. This thesis presents a group of adaptive backoff techniques aimed at reducing

the number of network accesses due to synchronizations. We model adaptive tech­

niques for barrier synchronizations and show that in many cases these techniques can

achieve dramatic savings at minimal extra cost. In other situations, however, network

accesses can only be reduced while trading-off utilization of synchronizing processors.

These techniques are implemented in software, and they can be optimized for varying

applications.

The technique is simple and incurs little overhead (in implementation and run­

time expense) unlike hardware combining schemes or specialized global synchroniza­

tion logic. However, as mentioned above, it only provides exceptional advantage in

certain situations such as when the number of processors participating in a barrier

synchronization is small compared to the time of arrival of the processors. An example

of a situation where backoff would help greatly is for applications where load balanc­

ing is poor. As we saw with the WEATHER application, poor load balancing can

result in a tremendous amount of synchronization traffic while processors busy-wait

at the barrier. Adaptive backoff barriers can significantly reduce this traffic.

The central idea behind an adaptive synchronization technique is to use synchro­

nization state information and past history to reduce the number of idle synchroniza­

tion spins. The general technique has many applications, such as reducing network

accesses in barrier synchronizations and minimizing spin-lock accesses of processors

waiting on & shared resource. The application of backoff techniques in unbuffered

circuit-switched networks is especially interesting. These techniques can be applied

in many ways to offer a simple, low-cost method to reduce contention in the network.

Further study is needed to determine the optimal backoff algorithm.

Appendix A

Applications

The three applications which drive our trace-driven simulations are from the class

of scientific/numeric applications. SIMPLE and WEATHER are representative of

a large group of scientific/numeric applications which model physical systems over

time by breaking the domain into a mesh or grid of regions whose state is computed

and updated every time step in the simulation. This approach is naturally suited

to parallel execution because all the gridpoints are working in parallel. Often each

gridpoint in the system performs the same calculations each time step - only the data

is different.

The Fast Fourier Transform (FFT) application, written at IBM, is a parallelized

version of a Radix-2 FFT computation in two variables on a random array of complex

numbers. Since we used a problem size of 128, the parallel loops working on the

128x128 matrix contained 128-way parallelism, providing for an even distribution of

work to the 64 processors in our simulations.

The SIMPLE code models hydrodynamic and thermal behavior of fluids in two

dimensions. Finite difference methods are used to solve the equations of inviscid

compressible hydrodynamics and simple heat conduction on an N x N mesh. Once

again, we used a problem size of 128, but several parallel sections do not contain

fully 128-way parallelism resulting in an uneven distribution of work among the 64

70

APPENDIX A. APPLICATIONS 71

processors in our simulations. SIMPLE is representative of an application with neither

worst-case, nor best-case performance in the SPMD computational model.

The WEATHER code forecasts the weather by modeling the state of the atmo­

sphere. The algorithm breaks the atmosphere down ~io a three-dimensional grid

(108 x 72 X 9 in our case) encircling the globe and computes the value of several

inter-related state variables using finite difference methods. WEATHER was the

most poorly load-balanced application of the three we traced. Fifty-four processors

(we used 64) would be the preferred number of processors to execute this application

for the problem size used. Thus the load balancing in our three applications showed

a wide range.

Bibliography

[1] Norman Abramson. The ALOHA System - Another alternative for computer

communications. In Proc. of the 1977 Fall Joint Computer Conj., pages 281-285,

1977.

[2] Anant Agarwal and Mathews Cherian. Adaptive Backoff Synchronization Tech­

niques. Technical Report, MIT VLSI Memo, April 1989.

[3] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An Eval­

uation of Directory Schemes for Cache Coherence. In Proceedings of the 15th In­

ternational Symposium on Computer Architecture, IEEE, New York, June 1988.
t:'

[4] Lucien M. Censier and Paul Feautrier. A New Solution to Coherence Problems

in Multicache Systems. IEEE Transactions on Computers, C-27(12):1112-1118,

December 1978.

[5] M. Cherian, M. Kumar, and K. So. A Trace-Driven Methodology for Simulation

of Multiprocessors. Technical Report to appear, IBM T. J. Watson Research

Center, Yorktown Heights, 1989.

[6] J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Calculation of

Complex Fourier Series. Math. Comput., 19:297-301, April 1965.

[7] W. P. Crowley, C. P. Hendrickson, and T. E. Rudy. The Simple Code. Technical

Report, Lawrence Livermore Laboratory, February 1978.

72

BIBLIOGRAPHY 73

[8] F. Darema-Rogers, D. A. George, V. A. Norton, and G. F. Pfister. Single­

Program-Multiple-Data Computational Model for EPEX/FORTRAN. Techni­

cal Report RC 11552 (55212), IBM T. J. Watson Research Center, Yorktown

Heights, November 1986.

[9] Susan J. Eggers and Randy H. Katz. The Effect of Sharing on the Cache and Bus

Performance of Parallel Programs. In Proceedings of ASPLOS III, pages 257-

270, April 1989.

[10] M.J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,

54(12):1901-1909, December 1966.

[11] Daniel Gajski, David Kuck, Duncan Lawrie, and Ahmed Saleh. Cedar - A

Large Scale Multiprocessor. In International Conference on Parallel Processing,

pages 524-529, August 1983.

[12] D. A. George. EPEX - Environment for Parallel Execution. Technical Report RC

13158 (58851), IBM T. J. Watson Research Center, Yorktown Heights, Septem­

ber 1987.

[13] James R. Goodman. Using Cache Memory to Reduce Processor-Memory Traf­

fic. In Proceedings of the 10th Annual Symposium on Computer Architecture,

pages 124-131, IEEE, New York, June 1983.

[14] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M.

Snir. The NYU Ultracomputer - Designing a MIMD Shared-Memory Parallel

Ma.chine. IEEE Transactions on Computers, C-32(2):175-189, February 1983.

[15] Mark Hill and Alan Jay Smith. Experimental Evaluation of On-Chip Micro­

processor Cache Memories. In Proceedings of the 11th Annual Symposium on

Computer Architecture, pages 158-166, IEEE, New York, June 1984.

BIBLIOGRAPHY 74

(16] Tsutomu Hoshino. PAX Computer. High-Speed Parallel Processing and Scientific

Computing. Addison Wesley, Reading Mass., 1989. Editor Harold S. Stone.

(17] Eugenia Kalnay-llivas and David Hoitsma. Documentation of the Fourth Order

Band Model. Technical Report, NASA Modeling and Simulation Facility Labora­

tory for Atmospheric Science, NASA/Goddard Space Flight Center, Greenbelt,

MD, 1979.

(18] L. Kleinrock and Y. Yemini. An Optimal Adaptive Scheme for Multiple Access

Broadcast Communication. In Proceedings ICC, June 1978.

(19] S. S. Lam. A Carrier Sense Multiple Access Protocol for Local Networks. Com­

puter Networks, 4(1), January 1980.

(20] S. S. Lam and L. Kleinrock. Packet Switching in a Multiaccess Broadcast Chan­

nel: Dynamic Control Procedures. IEEE Transactions on Computers, C-23,

Sept. 1975.

(21] E. L. Lusk and R. A. Overbeek. Implementation of Monitors with Macros: A

Programming Aid for the HEP and other Parallel Processors. Technical Re­

port ANL-83-97, Argonne National Laboratory, Argonne, Illinois, December

1983.

(22] R. Metcalfe and D. Boggs. Ethernet: Distributed Packet Switching for Local

Computer Networks. Communications of the ACM, 19(7), July 1976.

(23] Sus&n Owicki and Anant Agarwal. Evaluating the Performance of Software

Cache Coherence. In Third International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS III}, April 1989.

[24) Janak H. Patel. Analysis of Multiprocessors with Private Cache Memories. IEEE

Transactions on Computers, C-31 (4):296-304, April 1982.

BIBLIOGRAPHY 75

[25] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder,

K. P. McAuliffe, E. A. Melton, A. Norton, and J. Weiss. The IBM Research Par­

allel Processor Prototype (RP3): Introduction and Architecture. In Proceedings

ICPP, pages 764-771, August 1985.

[26] G. F. Pfister and V. A. Norton. 'Hotspot' Contention and Combining in Mul­

tistage Interconnection Networks. IEEE Transactions on Computers, C-34(10),

October 1985.

[27] Steven Scott and Gurindar Sohi. Using Feedback to Control Tree Saturation In

Multistage Interconnection Networks. In Proceedings 16th Annual lnt'l Symp.

on Computer Architecture, June 1989.

[28] Richard L. Sites and Anant Agarwal. Multiprocessor Cache Analysis usmg

ATUM. In Proceedings of the 15th International Symposium on Computer Ar­

chitecture, pages 186-195, IEEE, New York, June 1988.

[29] Alan Jay Smith. Cache Memories. ACM Computing Surveys, 14(3):473-530,

September 1982.

[30] James E. Smith and James R. Goodman. A Study of Instruction Cache Organi­

zations and Replacement Policies. In Proceedings of the 10th Annual Symposium

on Computer Architecture, pages 132-137, IEEE, New York, June 1983.

[31] K. So, A.S. Bolmarcich, F. Darema-Rogers, and V. A. Norton. SPAN - A Speedup

Analyzer for Parallel Programs. Technical Report RC 12186 (54776), IBM T. J.

Watson Research Center, Yorktown Heights, September 1986.

[32] K. So, F. Darema-Rogers, D. A. George, V. A. Norton, and G. F. Pfister.

PSIMUL - A System for Parallel Simulation of Parallel Systems. Technical Re­

port RC 11674 (58502), IBM T. J. Watson Research Center, Yorktown Heights,

November 1987.

BIBLIOGRAPHY 76

[33] Peiyi Tang and Pen-Chung Yew. Processor Self-scheduling for Multiple-Nested

Parallel Loops. In Proceedings of the 1986 International Conference on Parallel

Processing, pages 528-535, August 1986.

r-.
(34] Wolf-Dietrich Weber and Anoop Gupta. Analysis oiCache Invalidation Patterns

in Multiprocessors. In Third International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS Ill}, April 1989.

(35] P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie. Distributed Hot-Spot Addressing in

Large-Scale Multiprocessors. IEEE Transactions on Computers, C-36(14):388-

395, April 1987.

