
~ -- -- ··- .. ---- ---·- - ·-- · ·-·- -· - ·· ·-- - ··--· - -

LABORATORY FOR ~~ ~~~sg;;rs
COMPUTER SCIENCE ~ lft. TECHNOLOGY

MIT/LCS{fR-457

USING CYCLES AND
SCALING IN PARALLEL

ALGORITHMS

Clifford Stein

August 1989

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

---- -·---- --------·· -···- -

--·-.- -- -- --·-· ··-~~----------------~-----------·- ------·--·- --- ·· ·----.--·----- ·-· -------··---------·· ... -------------------- ·- ······ - " - ... ···--- ---· ... · · ·· ·-· ---· -

Using Cycles and Scaling
•
Ill

Parallel Algorithms
by

Clifford Stein

B.S.E., Computer Science
Princeton University

{1987)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology
August 1989

© Massachusetts Institute of Technology 1989

'f
Signature of Author __ _....._.;.;...-+--A-'.:.-..:;.-+-----'"';.c;_~-"tJ;.,c'}....;.f.;_,~._.· ~· --------

f Electrical Engineering and Computer Science
· (1 August 18, 1989

C7 ~---.-0 ~/~ Certified by _
7
,..L ____ ~...__ __ d--J...___ _____________ _

David Shmoys
Associate Professor of Mathematics

Thesis Supervisor

Accepted by-------------------------
Arthur C. Smith

Chairman, Department Committee on Graduate Students

1

2
;:-:· .':\,'.

··,v~.,~;\~:::,;,

aaiiee M.~~~'
' ·- . !~~': ~ . '

Lam:'~~.·r .· • tllilM ~: t·,, ...-.u~-.n1._..-.. · ~, , ,.c:,. ··~<·;
•' ·~:::- '\r,., '~ .. ~ c; •, • : : ~ .<2il~::·~

---~~--<;>"'

. . ·,. ~~?~~" -~

-~::· ---~~i:·~:_:'.~ -.
,-~~~}'.·\'

,..

dJimt ,o 'llN&ttA . '
~ ·~ ••rtn•Dfi ,.'$11!111 ·,,,.j: ·.: .

. . ··~\'.~;~

Using Cycles and Scaling
•
Ill

Parallel Algorithms
by

Clifford Stein

Submitted to the
Department of Electrical Engineering and Computer Science

on August 18, 1989
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

3

We introduce the technique of decomposing an undirected graph by finding a max­
imal set of edge-disjoint cycles. We give a parallel algorithm to find this decomposi­
tion in O(log n) time on (m + n) /log n processors. We then use this decomposition
to give the first efficient parallel algorithm for finding an approximation to a min­
imum cycle cover. Our algorithm finds a cycle cover whose size is within a factor
of 0(1 + ~1nn) of the minimum sized cover using O(log2 n) time on (m + n) /log n
processors. We also generalize these algorithms to weighted graphs with running
times that are a factor of O(log C) slower than their unweighted counterparts, where
C is the largest weight in the graph. Finally, we show how to use scaling to develop
parallel algorithms for the assignment problem in which the number of processors
used is independent of the magnitude of the edge costs. This leads to algorithms
for the assignment problem that do less work than any known RNC algorithms for
this problem.

Portions of this thesis are joint work with Philip Klein.

Thesis Supervisor: David Shmoys

Title: Associate Professor of Mathematics

Keywords: parallel algorithms, undirected graphs, cycles, Euler tour, cycle cover,
scaling, matching, assignment problem.

The author was supported in part by a graduate fellowship from GE, by Air Force Contract
AFOSR-86-0078, and by an NSF PYI awarded to David Shmoys, with matching funds from IBM,
Sun Microsystems, and UPS.

• Bf)~~~i:

euuf;tiwafA ·1tt1-.fl.·~l~
. ' . .~ '-~ .. ~~--.· ·-:

siatah~ .
.-1o1.~·.·

91>1%'*~ ~ ·~-.-~---pa
lllll~i••A•-

lb,,, .. ~--,, •. llM:~·
S!>~ - ~ ~·· •t.1JIMitlo 1NUM

' ' < - " ,_ - :'·~:f- " ;

'~·<,, b8~3adA
~)~~~·.

h1tiit00 ~. uA vi .JO.-., tM -..kQ-• ·1' .. ·.
,Mal molt shmil 54i-tb~ Mi-Ir.~~ of

5

Acknowledgments

I am deeply greatful to David Shmoys for advising this thesis. His support, encour­

agement, guidance, and ability to point me in the right direction were invaluable.

He has been extremely generous with his time and ideas and was always willing to

listen.

I am very lucky to have the privilege of working with Philip Klein. I have learned

a great deal about research, writing, and scholarship from Philip. I thank him for

allowing me to include our joint work in Chapter 2 and for helping provide the proof

of Lemma 3.2.1.

I thank Margaret Tuttle and David Williamson for carefully reading a draft of

this thesis. I also thank Joel Wein, James Park, Eva Tardos, Jim Orlin, Mark

Hansen and Bruce Maggs for many helpful discussions, and Tom Carmen for help

with Figure 2.2.

I am greatful to my parents for their constant love and support. I am also

greatful to Rebecca lvry for her support and understanding and for always being

there for me. Finally, I thank my officemates Tom Carmen, Bruce Maggs, and Sally

Goldman for making our office an interesting and comfortable place to be.

a e

.·.··~~
~ifff»G ,Jtoq.q:n klJ .aiMldl tf'1·~ Wllll~tr·~

.eldsuUt;vai ~l&W ~ii •AF.,.fll-.·11!1t~ljrl#q1,.,l.J;
oi)eil.liw 1rt•''"'- uw . .a. ...W hM molt u·•· ···.·. ~'. '

. . . ' ;~ < ;,._ :::.- ,;- '-._ ~:: _<-' '

~~·;,~~~:~;,

b-&IU91 if'44#l ""wx ~~·---·•-··~·:lfllr~I,._~ at I
1olaria>iiuubl .~~~-,~·. :;~Jab •
~ w .otveiq~ • u.i ~diilltflrhtllAI,,. ••.-W<UW

,. ' ·. •:-:-~. -:·~.- - ':

~ ft.int>~ i~ "tU ~••••ilPf
:l14M .«ihO m!l. ,q-1.' av! ..fw' -1. ~Jllf'f~·
qJarl l':>l M~') .a•• . .-.~ w•l:•t•L'll.· lllul_

. . . . ·.• . " •c;:• ~ \· d:.S .., Jiinr

.. - J ~.- t.,.,. ... f;1ltmi1;;"•: ·.~,;..,. 1

~ r(~W~ ,Q},W. .. ~ .. ~'·-~:'Ii·,,, Qt M1-.
lfW I>~ , ... M CHnf.•~•T•••••#' ~. . .-.dft .. J

.9'01-""'Lo....LL. 'l.._._,_;ti _,.,; ;.]~---~ ~ ·'• .-•47'.W···"'.·····.···~ . - - ' . '-.. ·-_" :-:· .· ,~ .'' . : .c·}_:, ,,,(.,'

Contents

1 Introduction

2 Finding a Maximal Set of Edge Disjoint Cycles
2.1 Preliminaries
2.2 An Algorithm for Graphs .. .
2.3 An Algorithm for Multigraphs .

3 Approximating the Minimum Cycle Cover
3.1 Preliminaries, Background, and a First Algorithm
3.2 Finding a Cover of Size 0(m log n) ...
3.3 Finding a Cover of Size 0(m + n log n)

4 Finding an Assignment while Doing Less Work
4.1 Preliminaries
4.2 Computing Zero-Tight Dual Variables
4.3 A Scaling Algorithm

5 Conclusions and Open Problems

7

10

14
14
16
20

24
24
26
28

31
31
33
34

39

...

OJ:'

~r

~f

tl'l
oc

N
~

•
a~ . . .
lt
!£

" N: .· ' '

it

..~· :,,~- ,, '

;ill~--~-- '
..... ,. c

;,~,':;.;;-;J..,-.

r.s
t.r
1.r

lfl!lfll.,.N, #i, I
r.e
t.e
i,.&

·-w;~•.1•-•~·-~ .. .-0 • . - .-., '--~;- _·. -: . ~,..](--_','. !1-.

t •.

. ,..,::;:~(~; , ..

. ~,~,,_:; .. •"

;-.~.,::·_·;

Chapter 1

Introduction

Many graph-theoretic problems that are "easy" to solve sequentially turn out to be

much more difficult to solve in parallel. For example, most linear-time sequential

graph algorithms rely on decomposing a graph with a breadth-first search or a

depth-first search. However, no fast and efficient parallel algorithm is known for

either of these problems, i.e. no polylogarithmic-time algorithm is known that has

a processor-time product even close to linear in the number of nodes and edges in

the input graph. Thus, in order to design fast and efficient parallel algorithms for

graph theoretic problems, we must consider new, or at least different, types of graph

decompositions and algorithmic techniques. Examples of such decompositions that

have proven fruitful include ear decompositions (35, 36], and Euler tours (44, 8, 34,

18]; examples of useful general techniques include divide and conquer [32, 28] and

dynamic programming [1]. The novel use of these decomposition and algorithmic

techniques has led to efficient parallel algorithms for a variety of problems, and in

some cases to improved sequential algorithms as well. In this thesis we introduce a

new technique of decomposing a graph into a maximal set of edge-disjoint cycles and

show how an old algorithmic technique, scaling, can be used to achieve improved

parallel algorithms for the assignment problem.

In Chapter 2, we introduce the technique of decomposing a graph by finding

a maximal set of edge-disjoint cycles. Given a graph, we would like to identify a

collection of edge-disjoint cycles whose removal renders the graph acyclic. We give

a parallel algorithm that solves this problem for n-node, m-edge undirected graphs

in 0 (log n) time using (m + n)/log n processors of a concurrent-read concurrent-

11

12 CHAPTER 1. INTRODUCTION

write parallel random access machine (CRCW PRAM) [31). Since the problem

requires n(n + m) operations in the worst case, our algorithm is optimal in its use

of parallelism.

This technique is related to the Euler tour technique. In 1736, Euler posed

the first graph theoretic problem, known as the Konigsberg Bridge Problem. This

problem can be phrased in graph-theoretic terms as: given an undirected graph

G, find a cycle that covers every edge in the graph exactly once. A cycle of this

form is called an Eulerian cycle and a graph that contains such a cycle is called

an Eulerian graph. Euler showed that a graph is Eulerian if and only if the graph

is connected and every node in the graph has even degree. Moreover, there is a

linear-time sequential algorithm which, given an Eulerian graph, finds an Eulerian

cycle. Awerbach, Israeli, and Shiloach [8) have given a parallel algorithm to solve

this problem in O(log n) time using n + m processors, for graphs with n nodes and

m edges.

As this technique has proven useful for Eulerian graphs, there has been work on

approximating Eulerian tours in non-Eulerian graphs. The standard technique is to

convert a non-Eulerian graph into an Eulerian graph by adding a new node v', and

an edge between every odd degree node and v'. However, this technique does not

always prove to be useful algorithmically. Finding a maximal set of edge-disjoint

cycles can be viewed as an alternative method of approximating an Eulerian tour,

as it defines a maximal Eulerian subgraph.

We also introduce a generalization of our algorithm that handles integer-weighted

undirected graphs as well. We think of the edge weights as edge multiplicities and

find a set of cycles with multiplicities, whose removal renders the graph acyclic. The

algorithm takes O(log n log C) time on (m + n)/log n processors of a CRCW PRAM,

where C is the largest edge weight in the graph. We hope that this generalization

will be of use in solving network optimization problems, as the weights allow us to

model the notions of flow and capacity.

In Chapter 3, we demonstrate the utility of this technique by using it to find a

cycle cover of a biconnected graph. A cycle cover is a set of cycles such that every

edge in the graph appears in at least one cycle. In applications such as the analysis

of irrigation systems by the Hardy Cross method [13) and the analysis of electrical

13

circuits, it is important to find a small cycle cover. Finding a minimum cover-one

using the fewest possible edges-is conjectured to be NP-complete [25]. We give

the first efficient parallel approximation algorithm for this problem, as we can find

an 0(1 + n~°.!nn) approximation to the minimum cycle cover in O(log2 n) time on

(m + n) flog n processors. We also generalize this algorithm to multigraphs using

0 (log2 n log C) time on (m + n) / log n processors.

Additionally, our techniques yield a useful sequential algorithm. The sequential

algorithm that finds the smallest cycle cover is that of Alon and Tarsi [6]; their

algorithm guarantees a constant factor approximation. However, their algorithm

requires 0(m + n 2) time. Thus by sacrificing an 0(1 + n~°.!:) factor in the size of

the cover, we obtain a faster algorithm, one that runs in 0(m + n log n) time . Note

that for non-sparse graphs (m > n log n), our techniques yield a cover whose size is

within a constant factor of optimal. Further, for all classes of graphs, our algorithm

is faster than any of the previous algorithms for finding a cycle cover (6, 25, 26].

In Chapter 4, we demonstrate how scaling can be used to substantially reduce

the amount of work needed to find a minimum perfect matching in a bipartite graph.

Karp, Upfal, and Wigderson [30], and Mulmuley, Vazirani, and Vazirani [38], have

recently developed randomized NC (RNC)1 parallel algorithms for the minimum

perfect matching problem, assuming that the input is given in unary. For both of

these algorithms, the number of processors needed is proportional to the magnitude

of the largest edge cost. We show how to convert these algorithms into algorithms

that use a number of processors that is independent of the magnitude of the largest

edge cost, provided that the graph is bipartite. As a tradeoff, we get an increase in

the time spent that is proportional to the logarithm of the magnitude of the largest

number. If C = n(nl+~), we get algorithms that do less work, where work is the

product of the number of processors used and the time spent. Assuming similarity2 ,

our algorithms are in RNC.

We achieve these results by using scaling, which reduces the problem of finding

1 NC is the class of algorithms that, on input of size n, use n ki processors and O(Iogk, n) time,
for some constants k1 and k2. RNC algorithms a.re NC algorithms that allow ea.ch processor to
generate an O(log n) bit random number at ea.ch step in the computation.

2The similarity assumption is the assumption that log n = O(log C) where C is the largest edge
cost. See [17] for details.

14 CHAPTER 1. INTRODUCTION

a matching in a graph with large edge costs to the problem of finding a sequence

of matchings in a sequence of graphs, each of which has small edge costs. Scaling

was first introduced by Edmonds and Karp [15] and has recently been a part of

efficient sequential algorithms for shortest paths [3, 17], maximum fl.ow [17, 4, 5],

minimum-cost fl.ow [15, 23, 2, 39, 19], and matching [19, 4]. In parallel computation

scaling has received somewhat less attention [19, 21]. Our algorithm combines ideas

involving scaling and dual variables from the sequential algorithms of Gabow [17]

and Gabow and Tarjan [19], with the parallel matching algorithms of Mulmuley,

Vazirani, and Vazirani [38] and Karp, Upfal, and Wigderson [30].

Chapter 2

Finding a Maximal Set of Edge
Disjoint Cycles

In this chapter, we introduce a new graph decomposition technique, that of decom­

posing a graph into a maximal set of edge-disjoint cycles. Alternatively, this can

be viewed as a set of cycles whose removal from a graph renders the graph acyclic.

In Section 2.1, we discuss the concepts of a cycle space and a cycle basis, and show

their relationship to a spanning forest of a graph. In Section 2.2, we use these con­

cepts to give a parallel algorithm that finds a maximal set of edge-disjoint cycles

in O(logn) time on (m + n)/logn processors. Finally, in Section 2.3, we use the

algorithm of Section 2.2 as a subroutine in an algorithm that finds a maximal set of

edge-disjoint cycles in O(log n log C) time on a multigraph, where C is the largest

edge multiplicity.

This chapter is joint work with Philip Klein.

2 .1 Preliminaries

Let G = (V, E) be an n-node, m-edge undirected graph with node set V and edge set

E = { ei, ... , em}· A maximal set of edge-disjoint cycles of G = (V, E) is a set of cy-

cles Ci, ... , Ck s.t. Ci~ E, Ci n Ci= 0 for i /; j, and the graph G' = (V, E - UiCi)

is acyclic. Let {O, l}E denote them-dimensional vector space over GF(2). Each sub­

graph Hof G corresponds to a vector µ(H) = (µ 1(H), ... ,µm(H)), where µi(H) = 1

if edge ei appears in H, and µi(H) = 0 otherwise. Further, for any edge e, let µ(e)

15

16 CHAPTER 2. FINDING A MAXIMAL SET OF EDGE DISJOINT CYCLES

be the vector corresponding to the subgraph containing only edge e. An even-degree

subgmph of G is a subgraph in which every node has even degree. Every connected

component of an even-degree subgraph is Eulerian; hence, the edges of such a sub­

graph can be decomposed into cycles. Furthermore, the following fact is well-known:

Fact 2.1.1 Let C(G) = {µ 1 , ... ,µ1} be the vectors corresponding to {H1 , ... , H1},

the set of all even degree subgraphs of G. Then C(G) is a vector subspace of {O, l}E.

We will call this vector subspace the cycle space of G and denote it by C(G). Further,

we will use the following simple corollary of Fact 2.1.1:

Fact 2.1.2 For two even-degree subgraphs H 1 and H 2 of G, the elementwise mod

2 sum of the vectors µ(H1) and µ(H2) is again a vector µ(H) corresponding to an

even-degree subgraph H.

Note that this cycle space can contain as many as 2m vectors, and is, in this form,

impractical algorithmically.

Thus, we will focus on finding a cycle basis of the cycle space C(G), i.e. a set

of linearly independent vectors that span the cycle space. Clearly, the number of

vectors in any basis is equal to the dimension of the space, and hence is independent

of the choice of the basis. In fact, the size of a cycle basis can be well characterized:

Lemma 2 .1.3 ([9]) Let G be a graph with p connected components. The cardinality

of any cycle basis of G is exactly m - n + p.

We proceed to characterize an easily found basis.

Let F be a spanning forest of G. Let F be a rooted version of F; that is, F is

obtained from F by choosing a root within each tree of F. For each node v, there

is a unique simple path P(v) from v to the root of the tree containing v. For two

nodes v and w belonging to the same tree, the lowest common ancestor of v and w,

denoted lca(v,w), is the first node common to P(v) and P(w).

An edge e = (v, w) of G not appearing in F is called a cycle-edge (with respect

to F) because FU { e} contains a unique simple cycle, denoted C(e). In particular,

the cycle C(e) consists of e, together with the paths from v and w to their lowest

2.2. AN ALGORITHM FOR GRAPHS 17

common ancestor in fr. Using the GF(2) vector notation, we can write the cycle

C(e) as

µ(C(e)) = µ(e) + µ(P(v)) + µ(P(w)), (2.1)

because the portions of P(v) and P(w) from lea(v, w) to the root coincide and cancel

each other. w~ can now characterize a particular basis 8:

Lemma 2.1.4 Let graph G have spanning forest F. Then B = {µ(C(e))le ¢ F} is

a cycle basis of G.

Proof: Let ei, ••• e1i: be the cycle-edges of G with respect to F. Then each vector

µ(C(ei)) in B contains exactly one cycle-edge ei; further, each cycle-edge appears

in exactly one vector in B. Thus, this collection of vectors is linearly independent,

and its cardinality is m - (n - p), since any spanning forest contains n - p edges.

Thus, by Lemma 2.1.3, B is a cycle basis. •

2.2 An Algorithm for Graphs

We will use the cycle basis B as a building block for a simple algorithm for finding

a maximal set of edge-disjoint cycles. First, we find a rooted spanning forest, F, of

G. Second, we let B = {µ1 .. . µk} be the cycle basis defined in Lemma 2.1.4 and

compute the subgraph H defined by

µ(H) = L µi. (2.2)
µiEf3

Finally, we decompose H into a set of edge-disjoint cycles. The algorithm appears

in Figure 2.1.

To show that this is indeed a maximal set of edge-disjoint cycles, we will prove

the following lemma:

Lemma 2.2.1 Let H be defined by µ(H) = LµieBµi. Then His a maximal set of

edge-disjoint cycles.

18 CHAPTER 2. FINDING A MAXIMAL SET OF EDGE DISJOINT CYCLES

Input: Undirected graph G.
Output: H, a maximal set of edge-disjoint cycles of G.
1 Choose a rooted spanning forest F of G.

2 Determine the subgraph Hof G by (2.2).

3 Decompose H into edge-disjoint cycles.

Figure 2.1: Algorithm Maximal Cycles

Proof: By repeated application of Fact 2.1.2, H is an even degree subgraph, and

hence, can be decomposed into edge-disjoint cycles. Now we show that it is maximal.

Let ei, ... ek be the cycle-edges of G with respect to F. Then, by equation 2.1 and

the definition of B,

µ(H) = E µi = E µ(C(e)) (2.3)
µ•eB eEF

where the sum is elementwise mod 2. Since each edge e not in F occurs exactly

once in the sum, e is in the subgraph H. Thus H contains all non-forest edges and

possibly some forest edges. All edges not in H must be in F, so G - H ~ F, and

thus G - H is acyclic. •

Now, we focus on the time it takes to implement algorithm Maximal Cycles.

Step 1 can be implemented in O(log n) time using (m + n)/ log n processors by the

spanning tree algorithm of Jung [29]. Step 3 can be implemented in O(log n) time

using (n + m) /log n processors by the list-ranking algorithm of Cole and Vishkin

[11] or that of Anderson and Miller [7]. A naive implementation of step 2 consists

of summing at most m - n + 1 vectors of length m. This approach takes O(log n)

time but requires about m 2 processors. We describe an alternate approach that

takes advantage of the structure of the problem to achieve O(log n) time using only

(n + m) / log n processors.

Recall that our goal is to achieve a characterization of which edges are in

µ(H) = Lµ•eB µi. First observe that every edge of G that is not in the forest

F is automatically in the subgraph H. Thus, we need only determine which edges

of Fare contained in H. We use equation 2.1 to rewrite equation 2.3 as

µ(H) = E [µ(e) + µ(P(v)) + µ(P(w))]. (2.4)
e=(v,w)EF

Now focus on µi(H), the ith component of µ(H). Because addition over GF(2)

2.2. AN ALGORITHM FOR GRAPHS 19

111111111111111!1111••·

A

F

Figure 2.2: To obtain Fsplit' split into two every edge not in the forest F. (The
shaded edges are a spanning tree rooted at r.)

is equivalent to logical exclusive-or, we can express equation 2.4 as

µi(H) = 1 ¢? ffi µi(e)EBµi(P(v))EBµi(P(w)). (2.5)
e=(v,w)flF

Let (x, y) be an edge of F corresponding to µi(H) with y the parent of x. For

any e = (v,w) ¢ F, µi(e) = 0, and µi(P(v)) = 1 only if vis a descendant of x.

Let

#d(x) = l{(v,w) : (v,w) ¢ F}I. (2.6)
v a descendant of x

We can use equation 2.6 to rewrite equation 2.5 as

(x,y) EH{:} #d(x) = 1 mod 2. (2.7)

In order to compute H, therefore, it suffices to compute #d(x) for each node x of

G.

We compute #d(x) by the following procedure. Let Fsplit be the rooted forest

obtained from F and G by splitting in two each edge not in F, as illustrated in

Figure 2.2. More formally, Fsplit is obtained from F by adding two new nodes ai

and bi and two new edges (ai,x) and (bi,Y) for each edge ei = (x,y) E G - F. We

refer to the original nodes of G as old nodes and the new nodes obtained by splitting

edges as new nodes. We then use parallel tree evaluation [37, 44, 11], to compute,

20 CHAPTER 2. FINDING A MAXIMAL SET OF EDGE DISJOINT CYCLES

Input: Undirected graph G with spanning forest F.
Output: H, an even degree subgraph of G, such that G - His acyclic.

1 Let Fsplit be obtained from G by splitting in two each edge not in F
2 For each node x E G, use parallel tree evaluation to compute #n(x), the

number of descendant new nodes of x in Fsplit·

3 Let H = {(v,w): (v,w) ¢ F} U {(x,y): #n(x) = 1mod2}

Figure 2.3: Computing the subgraph H

for each node x, #n(x), the number of descendants of x that are new nodes. This

implementation of Step 2 appears in Figure 2.3.

The following lemma justifies this procedure:

Lemma 2.2.2 Let #n(x) be the number of descendant new nodes of x in Fspliti

and let #d(x) be defined by equation 2.6. Then #n(x) = #d(x), where #d(x) is

computed in G. Further, #n(x) can be computed in O(log n) time on (m + n) /log n

processors.

Proof: In the rooted forest Fsplit, each of the new nodes a; and bi is a leaf.

It is easy to see that the number of new nodes connected to an old node v is

I {(v, w) : (v, w) ¢ F} I· Hence for each node x of G, the number of descendants of

x in Fsplit that are new nodes is exactly #d(x). Thus to compute #d(x), it suffices

to compute #n(x) in Faplit· Further, observe that the number of nodes in Fsplit.

including new nodes, is at most n + 2m. Thus, using parallel tree evaluation, we

can compute #n(x) for all old nodes x of G simultaneously, in O(logn) time using

(m + n) / log n processors.

Combining all the above results, we get the following theorem:

Theorem 2.2.3 Algorithm Maximal Cycles, with Step 2 implemented as in Figure

2. 3 finds a maximal set of edge-disjoint cycles in an undirected graph in O(log n)

time on (n + m) /log n processors.

Proof: Immediate from Lemmas 2.2.1 and 2.2.2 and the fact that computing #n(x)

is the dominant step in computing subgraph H. •

2.3. AN ALGORITHM FOR MULTIGRAPHS 21

2.3 An Algorithm for Multigraphs

In order to model the notions of flow and capacity that arise in network optimiza­

tion problems, we consider multigraphs, graphs in which there may be many edges

connecting a given pair of nodes. A multigraph can be succinctly represented as

G = (V,E,m), where G' = (V,E) is an ordinary (simple) graph, and m: E-+ z+
assigns a non-negative multiplicity to each edge in E. Thus for each edge e = (x,y)

of the simple graph G', there are m(e) edges with the same endpoints x and y in

the multigraph G. Since the multiplicity of an edge changes over the course of the

algorithm, we will use m0 (e) to denote the multiplicity of edge e in the input graph,

and m(e) to denote the current multiplicity of edge e. Let M be the maximum

multiplicity of any edge in the multigraph G.

We shall give a parallel algorithm to find a maximal collection of edge-disjoint

cycles in a multigraph G, where no cycle is permitted to contain more than one edge

with the same endpoints. Observe that if M is very large, we might have to remove

an enormous number of cycles from Gin order to render G acyclic. Therefore, the

output of the algorithm shall consist of a collection of pairs of the form (C, m), where

C is a cycle and m is taken to be the multiplicity of the cycle. Such a collection

is a solution to the maximal edge-disjoint cycles problem for G if the following two

conditions are satisfied:

M.1: For every edge e of G', the sum of the multiplicities of cycles C in which e

occurs is at most the original multiplicity of e in G.

M.2: The set of edges e for which the above inequality is strict form an acyclic

subgraph of G'.

Our parallel algorithm to find such a solution takes O(log n log M) time using

(m + n) / log n processors.

Define m(C), the multiplicity of cycle C, to be mineec{m(e)}, and define the

maximum cycle multiplicity of a multigraph to be the maximum multiplicity of any

cycle in G, i.e. maxcec m(C), where C is the set of all cycles in G'. Our general

approach will be to remove cycles of high multiplicity. Our algorithm ensures that

the maximum cycle multiplicity is a non-increasing function of time. More specifi-

22 CHAPTER 2. FINDING A MAXIMAL SET OF EDGE DISJOINT CYCLES

Input: Multigraph C = (V, E, mo).
Output: S, a maximal set of edge-disjoint cycles.
1 Let D. +- 2flog(M+l)l. Let S +- 0. Let m +-mo.

2 While D. > 1

3 Let ct::. be the graph induced on the edges of C' with m(e) ~ D./2.
4 Let F be a spanning forest of ct::. in which appear all edges of multiplicity

at least D..
5 Using F, find a maximal set of edge-disjoint cycles in ct::., ignoring multi-

plicities.
6 For each cycle C found in step 5,
7 Assign multiplicity D./2 to C, and add it to S.
8 For each edge e EC, let m(e) +- m(e) - D./2.
9 Let D. +- D./2.

10 Output the set S of cycles with multiplicities.

Figure 2.4: Algorithm Maximal Capacitated Cycles

cally, we will show that a routine similar to Maximal Cycles, applied to the proper

graph, will decrease the maximum cycle multiplicity by a factor of 2. Assuming all

initial multiplicities are integer-valued, only log M iterations are needed.

The algorithm maintains a variable D. such that D. is a strict upper bound on the

maximum cycle multiplicity. In one iteration of the algorithm we consider only the

edges of multiplicity at least D./2. Furthermore, we force all edges of multiplicity

at least D. to be in the spanning tree. Once we have ensured that we satisfy these

constraints, we find a maximal set of edge-disjoint cycles in the resulting graph,

assign each of these cycles a multiplicity of D./2, and then remove these cycles

from C, adding them to S. The algorithm, Maximal Capacitated Cycles, appears

in Figure 2.4. When an iteration terminates, S contains a collection of cycles with

multiplicities. To show this collection is maximal, we first prove the following lemma:

Lemma 2.3.1 At each iteration in algorithm Maximal Capacitated Cycles, step 4
succeeds, and the maximum cycle multiplicity is less than D..

Proof: The proof is by induction on the number of iterations. The basis is trivial

because initially D. exceeds every edge-multiplicity. Suppose that after i iterations,

the lemma holds, and the loop has not terminated. We will prove the lemma holds

after the i + 1st iteration. Since there is no cycle of multiplicity D., the edges of

2.3. AN ALGORITHM FOR MULTIGRAPHS 23

multiplicity at least t::. form an acyclic subgraph of G. Hence a spanning forest F

containing every such edge can be constructed in Step 4. Consider the non-tree edges

with multiplicity at least t::../2. Since they are not in the forest, these edges each

have multiplicity less than t::... In steps 5 through 8, we reduce the multiplicity of

each of these edges by t::../2. Hence after step 8, every non-tree edge has multiplicity

less than t::../2. Thus, the edges of multiplicity greater than or equal to t::../2 form

an acyclic subgraph, and after t::. is halved in step 9, the lemma still holds. •

Given this lemma, we can prove the following theorem:

Theorem 2.3.2 Algorithm Maximal Capacitated Cycles finds a maximal set of cy­

cles in an n-node undirected multigraph G in O(log n log M) time on (m + n) /log n

processors.

Proof: First we show that when the algorithm terminates, S is a maximal set of

edge-disjoint cycles. It is easy to see that condition M.1 is maintained throughout

the algorithm. Thus, when the algorithm terminates, for each edge e, the current

value of m(e) is mo(e)- E{c:eeC} m(C), where m(C) is the multiplicity of cycle C

in S, and m(e) 2: 0. Furthermore, since t::. ~ 1, by Lemma 2.3.1 there are no cycles

of multiplicity greater than or equal to one and the graph of edges with m(e) > 0 is

acyclic. Thus we have satisfied condition M.2.

Now we show that we can achieve the stated resource bounds. Since t::. is initially

no bigger than 2(M + 1), and never decreases below 1, there are only O(logM)

iterations. We claim that each iteration can be carried out in O(log n) time on

n + m processors. It is easy to see that each step, except for steps 4 and 5, takes

constant time on n + m processors and hence takes O(log n) time on (n + m)/log n

processors. By looking at the spanning tree algorithm of [29], it is easy to see that

given an acyclic set of edges that have to be in the spanning tree, the problem

only becomes easier, thus steps 4 and 5 can be done in the same time as algorithm

Maximal Cycles. •

We conclude with three observations. First, assuming similarity, i.e. M = 0(nk)

for some constant k [17], this algorithm runs in O(log2 n) time on (m+n)/logn

processors. Second, observe that when we removed a cycle we always assigned it

a multiplicity of t::../2. However, we could in general assign it a higher multiplicity,

24 CHAPTER 2. FINDING A MAXIMAL SET OF EDGE DISJOINT CYCLES

namely that of the minimum-multiplicity edge in it. Since this could only serve to

reduce the maximum cycle multiplicity at an even faster rate, the bounds above

still hold. Finally, while this algorithm has been presented as an algorithm on

multigraphs, it could also be viewed as an algorithm that works on graphs with

weights or capacities on the edges, where the weights or capacities correspond to

the edge multiplicities.

Chapter 3

Approximating the Minimum
Cycle Cover

In this chapter, we develop algorithms for approximating the minimum cycle cover.

A cycle cover of a graph is a set of cycles in which each edge of the graph is in

at least one cycle. The minimum cycle cover is a cover that uses the fewest edges

possible. We give a series of parallel algorithms, each of which finds a smaller cover

than the previous one. In Section 3.1, after giving the history of the problem, we

give a simple algorithm that finds a cover of size O(m + n2). In Section 3.2, we give

a more involved algorithm that finds a cover of size O(mlogn), and in Section 3.3,

we improve the size of the cover to be O(m + nlogn). We conclude by observing

that these techniques also yield an efficient sequential algorithm.

3.1 Preliminaries, Background, and a First Algorithm

Let C = {Ci, ... , Ck} be a set of simple cycles in the undirected graph G = (V, E),

and let E(C) be the set of edges contained in C. More generally, we denote the set

of edges in some subgraph S by E(S). We say that C is a cycle cover of the graph

G = (V, E) if E(C) = E, i.e. every edge is in at least one cycle in the set C. We

define the size of a cycle cover to be the total number of edges in the cycles that

constitute that cover, i.e. ICI = :Lc,ec IE(Ci)I. The minimum cycle cover is the

cycle cover for which ICI is minimized.

Sequential algorithms for finding a cycle cover have been developed with two

25

26 CHAPTER 3. APPROXIMATING THE MINIMUM CYCLE COVER

goals in mind. The first goal is to find a cover of small size, and the second is to

get an algorithm that runs quickly. The first algorithm for this problem, by Itai

and Rodeh [26], finds a cover of size O(m + nlogn) in O(n3) time. Subsequently,

Itai, Lipton, Papadimitriou and Rodeh [25] showed that every graph has a cover

of size min{3m-6,m + 6n - 7} and that this cover can be found in O(n2) time.

This result relies on a result of J a.eger [27] that shows that every biconnected graph

has a nowhere zero flow modulo 8, and results of Tarjan [43] and Shiloach [42] that

find edge-disjoint branchings. They also conjecture that finding the minimum cycle

cover is NP-complete. Alon and Tarsi [6] have developed an algorithm that finds

a smaller cover, one of size at most min{~m, m + ~n - ~},and runs in O(m + n2
)

time. This result relies on a proof by Seymour [41] that every biconnected graph

has a nowhere zero flow modulo 6. Alon and Tarsi also note that a certain graph

called the Peterson graph [26, 25] has 15 edges and no cycle cover of size less than

21. This graph can be generalized to show that there exists an infinite family of

graphs of m edges that have a minimum cycle cover of size at least im.

In this section, we consider the problem of finding a cycle cover in parallel. We

first note that all the sequential algorithms mentioned above rely on edge-disjoint

branchings and nowhere zero flows. All algorithms known to us for these problems

require the computation of 11(n) maximum flows on graphs with polynomial bounded

capacities. Even if this sequence of computations could be efficiently parallelized,

the best known NC algorithm for computing one maximum flow in a graph with

polynomial bounded capacities uses many processors and randomness [30].

Thus, we focus on a different strategy that is based on using the algorithm

Maximal Cycles as a subroutine. First observe that the output of this algorithm is

a set of cycles C such that m - n + 1 ~ IE(C)I ~ m. Thus, we already know how

to find a set of cycles that cover all but n - 1 or fewer of the edges. We could then

cover each of the remaining edges with a cycle using (m + n)/logn processors per

edge in 0 (log n) time, yielding a cycle cover of size m + n(n - 1) using 0 (log n)

time on n(m + n) processors. This gives the fastest parallel algorithm to find any

type of non-trivial cycle cover. However, the size of the cover and the number of

processors used are too large to be of practical interest; we will focus on finding a

cover of smaller size.

3.2. FINDING A COVER OF SIZE O(MLOGN)

Input: Biconnected graph G = (V, E).
Output: C, a cycle cover of size O(mlogn).
1 Initialize C to empty.

2 While E(C) -::j: E

3 Let Ge= (V,E(C)).
4 Find F, a spanning forest of Ge.
5 Find T, a spanning tree of G containing all edges in F.

27

6 Find !:,.C ={Ci, ... ,Ck}, a maximal set of edge-disjoint cycles in G covering
all edges not in T.

7 Add the cycles in !:,.C to C.

Figure 3.1: Algorithm Cycle Cover

3.2 Finding a Cover of Size O(m log n)

In this section we will use the algorithm Maximal Cycles to develop an algorithm

that finds a cycle cover of size O(mlogn). As in algorithm Maximal Capacitated

Cycles, we will utilize our freedom to choose which edges to put in the spanning tree.

Our algorithm will proceed in iterations; in each iteration we will use the algorithm

Maximal Cycles to choose a set of cycles to add to our collection C. In general,

during iteration i we will prefer to put in the spanning tree edges that were put into

C in some iteration previous to i. Thus, we will force as many uncovered edges as

possible to be non-tree edges. This means that they will be included in some cycle

during iteration i and hence added to C.

To achieve this, we will first find a spanning forest of the graph induced by

E(C), the edges already covered. Next, we extend this to a spanning tree of G.

Given this tree, we use the algorithm Maximal Cycles to find a maximal set of

edge-disjoint cycles in G, which we then add to C. The algorithm appears in Figure

3.1. Informally, this strategy achieves our goal of putting as few uncovered edges as

possible in the spanning tree; we will now proceed to show this more rigorously.

The key to the analysis of the algorithm is to show that the number of iterations

is O(log n). At the beginning of each iteration, we have a graph G in which a set

E(C) of edges are covered. We would like to be able to show that in each iteration,

a constant fraction of the uncovered edges become covered. As we will show, if all

nodes have degree three or more, this is true. However, if a graph has nodes of

28 CHAPTER 3. APPROXIMATING THE MINIMUM CYCLE COVER

degree two, it is not necessarily the case that a constant fraction of the uncovered

edges become covered. However, by defining progress in terms of an auxiliary graph

in which every node has degree three or more, we obtain the desired result.

We derive an auxiliary graph H = H(G, E(C)) from G and the covered edges

such that each iteration reduces the number of edges of H by a constant fraction.

To obtain H from G, first contract all the covered edges E(C), then splice out all

nodes of degree two. (To "splice out" a node of degree two is to contract one of its

incident edges.)

Lemma 3.2.1 Let C be the cycle cover at the beginning of some iteration of algo­

rithm Cycle Cover, and let LlC be the collection of edge-disjoint cycles found in step

6. Then either H(G,E(C U LlC)) has at most two-thirds the edges of H(G,E(C)),

or the algorithm terminates immediately.

Proof: Let TH be the spanning tree of H = H(G, E(C)) obtained from the spanning

tree T of G by contraction: contract each edge of T that was contracted in obtaining

H from G. Every non-tree edge in H with respect to TH is a non-tree edge in G

with respect to T, so the edges covered by the cycle collection LlC found in step 6

include all non-tree edges of H. There are two cases to consider:

Case 1: (H has at least one edge.) Let nH be the number of nodes in H. Since

every node of H has degree at least three, H has at least ~nH edges. The number

of tree-edges in H is nH - 1, hence the number of nontree edges of H is more

than one-third the number of edges of H. Thus the graph H' obtained from H by

contracting non tree edges has fewer than two-thirds the edges of H. But the graph

H(G,E(C U LlC)) is obtainable from H' by contractions, and so has no more edges

than H'.

Case 2; (H has no edges) Since contraction preserves connectivity H must consist

of a single isolated node. Then the graph G', obtained from G by contracting edges

covered by C, is biconnected with degree at most two, and hence is a simple cycle

(or a single isolated node). In this case, we claim that the collection LlC of step

6 covers all as-yet-uncovered edges of G, and hence that the algorithm terminates.

To prove the claim, simply contract the edges of LlC that are already in C. The

resulting cycle collection LlC' is a subgraph of G'; since G' consists of a simple cycle,

3.3. FINDING A COVER OF SIZE O(M + NLOGN) 29

6.C' must include every edge of G'. •

Given this lemma, we can prove the following theorem:

Theorem 3.2.2 Algorithm Cycle Cover finds a cycle cover of size 0(m log n) in

0 (log2 n) time using (m + n) /log n processors.

Proof: Each iteration of the while loop finds a cycle cover of size at most m.

By Lemma 3.2.1, there are O(log n) iterations and each iteration is the algorithm

Maximal Cycles with some restrictions place on the choice of the spanning tree. •

We note that in practice, we would change Step 7 to include a cycle AC only if

it contained some edge that was not already in C. This could be checked in O(log n)

time on (m + n)/logn processors using pointer jumping [10]. Also, we could replace

Steps 3, 4, and 5 with the computation of a minimum spanning tree of G with the

edges in E(C) weighted with 0 and the rest of the edges weighted with 1.

3.3 Finding a Cover of Size O(m + nlogn)

In this section, we show how to decrease the size of the cycle cover from 0(m log n)

to 0(m + n log n) using no additional resources. Observe that the first iteration of

the algorithm finds a cover of size no less than m - n + 1. Thus the number of

edges not in C is at most n - 1. Assume that we can form a biconnected graph B

that contains all the uncovered edges, and has at most 2n edges. We can run the

algorithm Cycle Cover on B and obtain a cover of size 0(n log n). Then we can

combine this cover with the set of cycles obtained from the first iteration of the

algorithm on G, and obtain a cycle cover of size O(m+nlogn), using no additional

resources. It is known how to find such a graph B in linear-time sequentially [25),

but this requires using depth-first search. We present a parallel algorithm that does

not use depth-first search and finds a graph Bin O(log n) time using (m + n)/log n

processors.

First, for each node v, we compute level(v), its distance from the root in some

rooted spanning tree T. Then, for each non-tree edge (v,w), we compute lca(v,w).

Finally, we choose the edges of B by including the spanning tree T, and, for each

each node v, the edge (v,w), where w is the node that minimizes level(lca(v,w)).

30 CHAPTER 3. APPROXIMATING THE MINIMUM CYCLE COVER

Input: A biconnected graph G and a rooted spanning tree i'.
Output: A biconnected graph B = (V,EB) s.t. T ~Band IEBI ~ 2n.

1 Vv E V, compute level(v), the distance from v to the root of T.
2 V(v,w) ~ T, compute lca(v,w).

3 Vv EV, let N(v) be the non-tree neighbor w minimizing level(lca(v,w)).

4 LetEB=TU{(v,N(v)): vEV}.

Figure 3.2: Algorithm Sparse Biconnected Subgraph

This algorithm, Sparse Biconnected Subgraph, appears in Figure 3.2.

Lemma 3.3.1 Given a biconnected graph G and a spanning tree T, algorithm

Sparse Biconnected Subgraph computes a biconnected graph B = (V, EB) s.t. T ~ B

and IEBI ~ 2n - 1.

Proof: Since EB contains the n - 1 tree edges and at most one additional edge per

node, IEBI ~ 2n - 1. Further, since B contains a spanning tree, B is connected.

Now we will argue that B is biconnected. Assume that B is not biconnected. This

implies that there exists a node v' that is an articulation point of B, i.e. there

is no edge from a descendant of v' to an ancestor of v' (descendant and ancestor

are defined with respect to T). This implies that for each descendant x of v' in

G, the y that minimizes level(lca(x, y)) is also a descendant of v'. But if the y

that minimizes level (lea(x, y)) is a descendant of x, then all y such that (x, y) is an

edge must also be descendants of v'. This implies that v' is an articulation point

of G, which contradicts the assumption that G is biconnected. Thus, B must be

biconnected. •

Combining Lemma 3.3.1 with Theorem 3.2.2 we get the main result of this

section.

Theorem 3.3.2 Combining algorithms Cycle Cover and Sparse Biconnected Sub­

graph yields an algorithm that finds a cycle cover of size 0 (m + n log n) using

O(log2 n) time on (m + n) /log n processors .

Proof: The bound follows from the previous results and the results of [40] that

show how to compute lea and level in the stated time bounds. •

Our parallel algorithm translates into an efficient sequential algorithm.

3.3. FINDING A COVER OF SIZE O(M + N LOG N) 31

Theorem 3.3.3 A sequential implementation of algorithms Cycle Cover and Sparse

Biconnected Subgraph finds a cycle cover of size 0(m + n log n) in sequential time

O(m + nlog n).

Proof: The first maximal set of edge-disjoint cycles can be computed in O(m + n)

time by algorithm Maximal Cycles. We then find a sparse biconnected subgraph

in 0 (n + m) time. Finally we run algorithm Cycle Cover on the sparse graph in

O(nlogn) time.•

The cover we find is within a factor of 0(1 + n~°Jnn) of optimal. Thus for graphs

with m > n log n, the size of the cover is within constant factor of optimal, and the

algorithm is faster than any of the previous algorithms.

We conclude by observing the algorithm generalizes to multigraphs in the natural

way, by replacing the algorithm of Section 2.2 with the algorithm of Section 2.3, as

is summarized in the following theorem:

Theorem 3.3.4 Let G = (V,E,c) be a multigraph with maximum edge multiplic­

ity C. Then, algorithm Cycle Cover with algorithm Maximal Cycles replaced by

Maximal Capacitated Cycles finds a cycle cover of size 0(mC log n) and runs in

O(log2 nlogC) time on (m + n)/logn processors.

Proof: The running time follows from Theorems 3.2.2 and 2.3.2. The size of the

cycle cover is 0(mC log n) because there are at most mC edges in the graph and

O(log n) iterations of Maximal Capacitated Cycles. •

Note that we did not use a reduction to a sparse biconnected graph, as it is not

clear, in this case, what exactly a sparse biconnected multigraph is.

Chapter 4

Finding an Assignment while
Doing Less Work

In this chapter, we show how to use scaling to reduce the total amount of work

needed to find a minimum perfect matching in a bipartite graph. Our techniques

convert algorithms that use a number of processors dependent on the magnitude of

the largest cost in the graph into algorithms that use a number of processors that

is independent of the edge costs.

4.1 Preliminaries

Let G = (V, E, c) be a graph with node set V, edge set E, and an integral cost c(v, w)

associated with each edge (v, w). The edges of a graph may be either undirected or

directed. In the former case, we will denote an edge between node v and node w

by (v,w), while in the latter case, we will denote an edge from node v to node w

as [v, w]. A graph is bipartite if the nodes can be divided into two sets Vi and V2

such that V =Vi U V2, Vin Vi = 0, and all edges have one endpoint in Vi and one

endpoint in Vi.
A matching on a graph is a set M of edges, such that each node is incident to

no more than one edge from M. A perfect matching is a matching in which every

node is incident to exactly one matched edge. If the edges have costs, the cost

of a matching is the sum of the costs of the edges in the matching. A minimum

perfect matching (MPM) is the perfect matching with the smallest possible cost. In

32

4.1. PRELIMINARIES 33

a bipartite graph, an MPM is also called an assignment. It will be convenient to

associate an integer-valued dual variable d(v) with each node v. This allows us to

define c(v, w), the reduced cost of edge (v, w), with respect to dual variables d by

c(v,w) = c(v,w) - d(v)- d(w). Let M be a matching. We say that a set of dual

variables is tight if

(v, w) E M => c(v, w) ~ 0

(v,w)¢M => c(v,w);?:O.

We say that a set of dual variables is zero-tight if

(v,w) EM => c(v,w) = 0

(v,w) ¢ M => c(v,w);?: 0.

(4.1)

(4.2)

(4.3)

(4.4)

We define the work done by an algorithm as the product of the number of

processors used and the time spent.

The first algorithm for the assignment problem is Kuhn's Hungarian algorithm

[33). Implemented with Fibonacci heaps [16), this algorithm runs in 0(nm+n2 log n)

time, which remains the best known strongly polynomial algorithm for the assign­

ment problem. Using ideas from this algorithm, the cardinality matching algorithm

of Hop croft and Karp [24), and scaling, Gabow and Tarjan [19) have developed an al­

gorithm that runs in O(y'nmlog(nC)) time. There are no known NC algorithms for

the assignment problem; however, there are RNC algorithms under the assumption

that the input is given in unary. The first RNC algorithm under this assumption

was given by Karp, Upfal, and Wigderson [30]. An implementation of this algo­

rithm by Galil and Pan [20) uses (n + C')M(n) processors and O(lognlog2(nC'))

time where C' is an upper bound on the maximum cost of any matching, and M(n)

is the minimum number of processors needed to multiply two n x n matrices. Cur­

rently M(n) = O(n2·376) [12], and trivially, M(n) = n(n2). Subsequently, a faster

algorithm was discovered by Mulmuley, Vazirani, and Vazirani [38], that finds an

assignment in O(log2 n) time using nmCM(n) processors, where C is the largest

edge cost in the input graph. As neither one of these algorithms does less work

than the other on all graphs, we will give our improvements relative to both of these

algorithms.

34 CHAPTER 4. FINDING AN ASSIGNMENT WHILE DOING LESS WORK

Input: G = (V, E, w) and a perfect matching M ~ E.
Output: Zero-tight dual variables.
1 Let G' = (V', E', c') be the directed graph with

2

3

4

5

•V' =VU {s}
•E' = {[s,v] Iv E Vi} U {[v,w] I (v,w) r/. M} U {[w,v] I (v,w) EM}

{

0 v = s
•c'[v,w]= c(v,w) v:j:.sand(v,w)rf_M

-c(v,w) v :j:. sand (v,w) EM.

6(v) .--- shortest path distance from s to v in G'.

If v E Vi, o(v) .-- -o(v).

{
O wEVi

€(w) = c(v',w)- o(v')- o(w) w E Vi and (v',w) EM.

Return c5 + f.
Figure 4.1: Procedure Compute Zero-Tight Duals (V, E, w, M)

4.2 Computing Zero-Tight Dual Variables

In this section, we address the problem of finding zero-tight duals given a matching.

This can be done by the following procedure. First we create a directed graph by

directing all the unmatched edges from Vi to Vi and all the matched edges from Vi
to Vi. We give the matched edges negative costs and the unmatched edges positive

costs. Further, we add an extra nodes, with edges of cost 0 from s to every node

in Vi. Now, we compute the shortest path distance from s to every node v, and let

these distances be the dual variables. To convert these distances to zero-tight duals,

we add, to each dual variable in V2 , the reduced cost of its associated matched edge.

The details appear in Figure 4.1.

Lemma 4.2.1 The dual variables computed by procedure Compute Zero-Tight Du­

als are zero-tight with respect to matching M in graph G'.

Proof: First note that because M is a MPM, G' has no negative cycles, so the

shortest path distances are well-defined. Now, we will show that the dual variables

c5 computed in Steps 1, 2, and 3 are tight with respect to c. By the shortest path

4.3. A SCALING ALGORITHM 35

inequality and step 3,

(v, w) rt M * t5(w) ::; c(v, w) + (-t5(v)) * c(v, w) - t5(v) - t5(w) 2:'. o. (4.5)

Similarly,

(v,w) EM* -t5(v)::; -c(v,w) + t5(w) * c(v,w)- t5(v)- t5(w)::; 0, (4.6)

so equations 4.1 and 4.2 are satisfied. Now consider the reduced costs of the edges

with respect to dual variables t5 + €. Because the €(w)'s are either the reduced costs

of matched edges or 0 they are always non-positive. Thus, if (v, w) rt M, its new

reduced cost is

>

>

c(v,w)- (t5(v) + €(v)) - (t5(w) + €(w))

c(v,w)- t5(v)- t5(w)- (€(v) + €(w))

c(v, w) - t5 (v) - t5 (w)

0

If (v,w) EM, then its new reduced cost is

(because €(v) ::; 0 \:/i)

by equation 4.5.

c(v,w)- t5(v)- (t5(w)- (c(v,w)- t5(v)- t5(w))) = 0.

Thus, the dual variables satisfy conditions 4.3 and 4.4, and are indeed zero-tight. •

4.3 A Scaling Algorithm

Now we give the complete algorithm that combines scaling, the procedure Compute

Zero-Tight Duals, and a subroutine for computing an MPM. The algorithm proceeds

in O(logn) iterations. At the beginning of each iteration, one bit is added to the

costs and dual variables. Then a perfect matching and zero-tight dual variables are

found on the graph with edges of reduced cost no greater than 2n. The new dual

variables are added to the old ones and the iteration terminates. The key to the

efficiency of this algorithm is step 4, where we ignore edges with reduced cost greater

than 2n. It remains to be shown that this does not change the value of the MPM.

The details of the algorithm appear in Figure 4.2.

36 CHAPTER 4. FINDING AN ASSIGNMENT WHILE DOING LESS WORK

Input: G = (V, E, <-0) an undirected bipartite graph with bipartition Vi and V2 and
cost <-0(v,w) on edge (v,w). Assume that G contains a perfect matching.
Output: A minimum perfect matching M.

1 d(v) - { ! v E Vi
0 v E Vi-

2

3

4
5
6
7

8

c(v, w) - 0 'f(v, w) EE.
Let C = max(v,w)eE{lco(v, w)I}.

For l = 1 to [1og2 CJ

d(v) - { 2d(v) - 1 v E Vi
2d(v) v E Vi.

c(v,w) - 2c(v,w) +(the zth signed bit of c0(v,w)) 'l(v,w) EE.
Let E' = {(v,w) I (v,w) EE and c(v,w) ~ 2n}.
Compute M, a MPM in G' = (V,E',c).
Ll - Compute Zero-Tight Duals (V, E', c, M).
d(v) - d(v) + Ll(v) 'Iv EV.

Output M, a minimum perfect matching.

Figure 4.2: Algorithm Assignment (V, E, c0). Letting d be non-integral is simply
for ease of presentation. Note that d immediately becomes integral in step 3 and
remains integral throughout the remainder of the algorithm.

4.3. A SCALING ALGORITHM 37

Lemma 4.3.1 The graph G = (V, E, w) formed in step 4 of algorithm Assign­

ment always contains a MPM of total cost no more than 2n. Further, V(v, w) E E,

c(v,w) 2:: 0.

Proof: We will prove this by induction on the number of iterations of the loop in

step 2. During the first iteration, all costs are either 0 or 1, so the lemma is true.

Assume that it is true after step 4 on iteration l - 1. Then, by Lemma 4.2.1, the

costs care zero-tight with respect to Ll. Because

c(v,w)- Ll(v)- ~(w)

= (c(v, w) - d(v) - d(w)) - Ll(v) - Ll(w)

(c(v, w)- (d(v) + Ll(v))- (d(w) + Ll(w))

it is also true that c is zero-tight with respect to d + Ll.

Thus, in the graph G = (V, E, c), the reduced cost of M with respect to d + Ll

is 0 and the reduced cost of every edge is non-negative. So at the start of iteration

l, all the edges have non-negative reduced cost and the MPM has reduced cost 0.

Now consider the effect of adding a new bit of cost and updating the dual variables

in Step 3. Let the subscripts old and new refer to the old and new values of the

variables.

Cnew(v,w)- dnew(v)- dnew(w)

= 2c0 1d(v,w) + (-1 or 0 or 1)- (2d01d(v)- 1) - 2d0 1d(w)

= 2(c0 1d(v,w)- d0 1d(v)- d0 1d(w)) + (0 or 1 or 2)

Letting c(v, w) be the reduced cost of edge (v, w) we conclude that

2Cold(v, W) :::; Cnew(v, W) :::; 2Co1d(V, W) + 2 V(v, W) E E. (4. 7)

Since we have just shown that all the old reduced costs are positive, it is clear

that all the new reduced costs are also positive. Now consider the new cost of the

matching from the previous iteration. Using the second inequality in equation 4.7,

we see that

L Cnew(v, W) :::; L 2C0 1d(v, W) + 2 :::; L 2 :::; 2n.
(v,w)EM (v,w)EM (v,w)EM

38 CHAPTER 4. FINDING AN ASSIGNMENT WHILE DOING LESS WORK

Thus the condition is satisfied after Step 4 in iteration l, and the induction holds .

•
From this lemma we conclude that no edge of reduced cost greater than 2n can

be in the MPM, thus justifying their exclusion from the matching subroutine. This

leads to our main result.

Theorem 4.3.2 Let algorithm A be a mndomized pamllel algorithm for MPM that

uses Cf(n,m) processors and O(logkn) time, where f(n,m) is a polynomial inn

and m and k is a non-negative integer. Using algorithm Assignment we can convert

algorithm A into an algorithm for MPM that uses nf(n, m) + M(n) processors and

O((logkn + log2 n) log C) time.

Proof: First we must verify that our algorithm actually finds a MPM. From Lemma

4.3.1, we see that ignoring edges of reduced cost greater than 2n does not change

the value of the MPM. Therefore, at each step we find a valid MPM with respect to

the reduced costs. Because an MPM with respect to the reduced costs has the same

value as an MPM with respect to the actual costs, in the last iteration we really are

finding an MPM in the graph where the current edge costs are the same as the edge

costs of the input graph, thus proving correctness. To derive the resource bounds,

observe that whenever we find a MPM in step 5, C ~ 2n. Procedure Compute Zero­

Tight Duals is dominated by the shortest path computation that takes O(log2 n)

time on M(n) processors. All other steps in the algorithm can be implemented in

constant time on 0(m + n) processors. Combining these observations with the fact

that there are only log C iterations of the main loop, the theorem follows. •

Corollary 4.3.3

• Algorithm Assignment, combined with the matching algorithm of {30}, yields a

mndomized parallel algorithm for computing an MPM using n 2M(n) proces­

sors and O(log3 nlog C) time.

• Algorithm Assignment, combined with the matching algorithm of {38}, yields

a randomized parallel algorithm for computing an MPM using n2 mM(n) pro­

cessors in O(log2n log C) time.

4.3. A SCALING ALGORITHM 39

Proof: Immediate from Theorem 4.3.2 and the algorithms in [30], [20], and [38]. •

Observe that our algorithm performs less work in the case that C = f!(nl+~) for

some E > 0. Further, our algorithm outperforms the old algorithms by a factor of

0(nl~c), so as C gets larger, our algorithm becomes even more efficient than the

previous algorithms.

We can extend this algorithm for a minimum perfect matching to one that finds

a minimum-cost (not necessarily perfect) matching. Let G = (V, E, c) be a graph

in which we would like to find a minimum-cost matching. We employ the standard

trick of using an augmented graph G' = (V, V x V,c') where c'(v,w) = c(v,w) if

(v, w) E E and c'(v, w) = nC otherwise. It is easy to see that a minimum perfect

matching in G' corresponds to a minimum-cost matching in G.

Corollary 4.3.4 Given a graph G with maximum edge cost C, running algorithm

Assignment on G' yields an algorithm that finds a minimum cost matching us­

ing n 2 M(n) processors and O(log3nlog(nC)) time or n2 mM(n) processors and

0 (log2 n log(nC)) time.

Chapter 5

Conclusions and Open
Problems

We have presented a new technique for decomposing undirected graphs and have

given one application: finding an approximation to the minimum cycle cover. We

suspect that this technique will be useful for solving other problems as well. For

example, observe that the maximal edge-disjoint cycles problem is closely related to

a problem that arises in finding a minimum-cost circulation in a network, namely,

finding a maximal set of weighted cycles in a positively-weighted directed graph.

In this case, the weight of an edge represents the capacity of that edge, and the

weight of a cycle represents the fl.ow on that cycle. A maximal set of weighted

cycles corresponds directly to a set of capacitated cycles such that, after fl.ow is

pushed around these cycles, the graph of edges that still have positive capacity is

acyclic. Goldberg and Tarjan [22] solve the minimum-cost circulation problem by

repeatedly finding a maximal set of weighted cycles; they show how to solve the

latter problem sequentially in O(mlogn) time.

In view of the application to minimum-cost circulation, it is an important open

problem to determine whether there is an efficient parallel algorithm for eliminating

cycles in a weighted directed graph. At present, the most efficient parallel algorithm

for this problem uses a reduction to weighted non-bipartite matching, which takes

O(log2 n) time on nmM(n) processors, and uses randomization[38].

We have also given an algorithm for the assignment problem that performs less

work than the previously known RNC algorithms. It has the appealing feature of

40

41

having the number of processors be independent of the size of the edge costs. Actual

parallel machines have a fixed number of processors. Therefore, this technique gives

a way to solve assignment problems with arbitrarily large edge costs without having

to resort to a machine with more processors.

In contrast with previous algorithms, this algorithm only works for bipartite

graphs. This is because the problem of finding tight dual variables in general graphs

appears to be no easier than actually finding a matching, even sequentially [14].

However, finding dual variables is the only part of the algorithm that does not

generalize to general graphs.

Bibliography

[1] A. Aggarwal and J. Park. Parallel searching in multidimensional monotone
arrays. Journal of Algorithms, 1989. Submitted. Portions of this paper appear in
Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer
Science, 1988.

[2] R. K. Ahuja, A.V. Goldberg, J.B. Orlin, and R.E. Tarjan. Finding minimum
cost flows by double scaling. Sloan Working Paper 2047-88, MIT, Cambridge,
MA, 1988.

[3] R. K. Ahuja, K. Melhorn, J. B. Orlin, and R.E. Tarjan. Faster algorithms for
the shortest paths problem. Technical Report CS-TR-154-88, Department of
Computer Science, Princeton University, 1989.

[4] R. K. Ahuja and J. B. Orlin. A fast and simple algorithm for the maximum
flow problem. Sloan Working Paper 1905-87, MIT, Cambridge, MA, 1987. To
appear in Opemtions Research.

[5] R. K. Ahuja, J. B. Orlin, and R.E. Tarjan. Improved time bounds for the
maximum flow problem. Sloan Working Paper 1767-88, MIT, Cambridge, MA,
1988.

[6] N. Alon and M. Tarsi. Covering multigraphs by simple circuits. SIAM Journal
of Algebmic and Discrete Methods, 6:345-350, 1985.

[7] R.J. Anderson and G .L. Miller. Deterministic parallel list ranking. In Agaean
Workshop on Computing, pages 81-90, 1988. Published as Lecture Notes in
Computer Science 319, Springer-Verlag.

[8] B. Awerbach, A. Israeli, and Y. Shiloach. Finding euler circuits in logarithmic
parallel time. In Proceedings of the 16th Annual ACM Symposium on Theory
of Computing, pages 249-257, 1984.

[9] C. Berge." Graphs and hypergmphs. North Holland Mathematical library, 1979.

[10] R. Cole and U. Vishkin. Approximate and exact parallel scheduling with ap­
plications to list, tree, and graph problems. In Proceedings of the 27th Annual
Symposium on Foundations of Computer Science, pages 478-491, 1986.

42

BIBLIOGRAPHY 43

[11] R. Cole and U. Vishkin. Optimal parallel algorithms for expression tree evalua­
tion and list ranking. In Agaean Workshop on Computing, pages 91-100, 1988.
Published as Lecture Notes in Computer Science 319, Springer-Verlag.

[12] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro­
gressions. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, pages 1-6, 1987.

[13] H. Cross. Analysis of flow in networks of conduits of conductors. Bulletin 286,
University of Illinois Engineering Experimental Station, Urbana, Ill., 1936.

[14] W.H. Cunningham and A.B. Marsh. A primal algorithm for optimum matching.
Mathematical Programming Study, 8, 1978.

[15] J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic efficiency
for network fl.ow problems. Journal of the ACM, 19:248-264, 1972.

[16] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34:596-615, 1987.

[17] H. Gabow. Scaling algorithms for network problems. Journal of Computer and
System Sciences, 31:148-168, 1985.

[18] H. Gabow. Using euler partitions to edge-color bipartite multigraphs. Interna­
tional Journal of Computing and Information Science, 5:345-355, 1976.

[19] H. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems.
Technical Report CS-TR-111-87, Princeton University, Princeton, NJ, August
1987.

[20] Z. Galil and V. Pan. Improved processor bounds for algebraic and combina­
torial problems in RNC. In Proceedings of the 26th Annual Symposium on
Foundations of Computer Science, pages 490-495, 1985. To appear in Journal
of the ACM.

[21] A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya. Sublinear-time parallel algo­
rithms for matching and related problems. In Proceedings of the 29th Annual
Symposium on Foundations of Computer Science, pages 17 4-185, 1988.

[22] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by can­
celing negative cycles. In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, pages 388-397, 1988.

[23] A. V. Goldberg and R. E. Tarjan. Solving minimum-cost fl.ow problems by
successive approximation. In Proceedings of the 19th Annual ACM Symposium
on Theory of Computing, pages 7-18, 1987. To appear in Math. Oper. Res.

[24] J. E. Hopcroft and R. M. Karp. An n 512 algorithm for maximum matching in
bipartite graphs. SIAM Journal on Computing, 2:225-231, 1973.

[25] A. Itai, R. J. Lipton, C.H. Papadimitriou, and M. Rodeh. Covering graphs by
simple circuits. SIAM Journal on Computing, 10(4):746-750, 1981.

44 BIBLIOGRAPHY

[26] A. Itai and M. Rodeh. Covering a graph by circuits. In Proceeding of the I CA LP
Conference, U dine, 1978.

[27] F. Jaeger. On nowhere-zero flow in multigraphs. In Proceedings of the Fifth
British Combinatorial Conferenc.e., pages 373-378, 1975.

[28] D. Johnson. Parallel algorithms for minimum cuts and maximum flows in planar
networks. Journal of the ACM, 950-967, 1987.

[29] H. Jung. An optimal parallel algorithm for computing connected components in
a graph. Preprint, Humboldt University, Berlin, German Democratic Republic,
1989.

[30] R. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in
random NC. In Proceedings of the 17th Annual ACM Symposium on Theory
of Computing, pages 22-32, 1985.

[31] R. M. Karp and V. Ramachandran. A Survey of Parallel Algorithms for Shared­
Memory Machines. Technical Report UCB/CSD 88/408, Computer Science
Division, University of California, Berkeley, CA, March 1988.

[32] P. Klein. Efficient parallel algorithms for planar, chordal, and interval graphs.
PhD thesis, MIT, Cambridge, MA, August 1988.

[33] H.W. Kuhn. The hungarian method for the assignment problem. In Naval
Research Logistics Quarterly, pages 83-97, 1955.

[34] G. F. Lev, N. Pippenger, and L. G. Valiant. A fast parallel algorithm for
routing in permutation networks. IEEE Transactions on Computers, C-30:93-
100, 1981.

[35] L. Lovasz. Computing ears and branchings in parallel. In Proceedings of the
26th Annual Symposium on Foundations of Computer Science, pages 464-467,
1985.

[36] Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition search (EDS)
and st-numbering in graphs. In VLSI algorithms and architectures, Lecture
notes in computer science 227, pages 34-45, Springer-Verlag, 1986.

[37] G. Miller and J. Reif. Parallel tree contraction and its application. In Pro­
ceedings of the 26th Annual Symposium on Foundations of Computer Science,
pages 478-489, IEEE, October 1985.

[38] K. Mulmuley, U.V. Vazirani, and V.V. Vazirani. Matching is as easy as matrix
inversion. In Proceedings of the 19th Annual A CM Symposium on Theory of
Computing, pages 345-354, 1987.

[39] H. Rock. Scaling techniques for minimal cost network flows. In Discrete Struc­
tures and Algorithms, pages 181-191, Carl Hansen, Munich, 1980.

[40] B. Schieber and U. Vishkin. On finding lowest common ancestors: simplification
and parallelization. In Agaean Workshop on Computing, pages 111-123, 1988.
Published as Lecture Notes in Computer Science 319, Springer-Verlag.

BIBLIOGRAPHY 45

[41] P.D. Seymour. Nowhere-zero 6 flows. Journal of Combinatorial Theory B,
30:130-135, 1981.

[42] Y. Shiloach. Edge-disjoint branching in directed multigraphs. Information
Processing Letters, 8:24-27, 1979.

[43] R. E. Tarjan. A good algorithm for edge-disjoint branchings. Information
Processing Letters, 3:51-53, 1975.

[44] R. E. Tarjan and U. Vishkin. Finding biconnected components and computing
tree functions in logarithmic parallel time. In Proceedings of the 16th Annual
ACM Symposium on Theory of Computing, pages 12-20, 1984.

