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Chapter 1 

Introduction 

Continuations control program flow using purely functional means. Informally, a contin­
uation is a function representing the rest of the program: when passed an intermediate 
result (a value in a functional language, a store in an imperative language), the function 
"continues" the computation to the final result. In LISP programs, for example, the control 
stack can be thought of as representing the continuation of a program: the stack tells the 
interpreter how to continue the computation to the final answer. At a lower level, a program 
counter also represents a continuation, although the "function" may not be very clear. 

The explicit use of continuations pervades the theory and practice of programming 
languages. Continuations first appeared in continuation-style semantics for imperative lan­
guages [11, 30, 31]. In this style, continuations are explicitly passed to the meanings of all 
program statements. The meaning of imperative statements can be modeled as functions 
that change the continuation. For example, in an ALGOL-like language with goto <label> 
statements, each label marks a particular continuation. The meaning of the statement 
goto <label> is one that, upon receiving a store and a continuation, discards that contin­
uation and passes the store to the continuation associated with <label>. Highly imperative 
constructs like goto are difficult or impossible to represent in "direct" semantics in which 
statements are modeled as functions from answers to answers [11, 30]. 

Continuations appear in at least two other settings. In languages such as LISP and 
Scheme, the continuation of a program may be accessed through the control operator 
call-with-current-continuation (call/cc) [23]. The programmer may then use the 
continuation to repeat certain calculations, perform error traps, backtrack through a com­
putation, or simulate forks and joins [10]. Continuations have also been used in compilers 
for languages such as Scheme and ML. These compilers apply a continuation-passing style 
(cps) transform as a fundamental step in compilation [1, 9, 28]. 

Each of the three settings involves "programming" with continuations, and it is almost 
self-evident that this requires a different style of thinking. What is not obvious, however, 
is whether working in a continuation setting requires new reasoning tools. Indeed, certain 
principles should remain vali<l in the context of continuati< ns. For example, the substitution 
of actual parameters for formal parameters in procedure calls should not become invalid­
otherwise, the addition of continuations would change the programming language in drastic 
ways! 

On the other hand, the mere addition of continuation-based control operators to lan­
guages suggests that continuations change programming in a fundamental way. In the 
presence of control operaton., a programmer may be able to distinguish pieces of code that 
were indistinguishable without control operators, making the language more powerful. One 
can make similar arguments for the other two settings. For instance, programs not ex­
pressible when programming directly in the language become expressible when using cps 
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converted code. 
This thesis attempts to make precise the intuition that continuations "change things" 

in the three settings of continuations. Using specific counterexamples, we shall prove that 
certain familiar reasoning principles are unsound in the three settings of continuations. In 
essence, reasoning about code in the usual way may lead one to draw faulty conclusions 
about the behavior of that code. By understanding the failure of reasoning principles in 
each of the three settings of continuations, we move closer to understanding continuations 
themselves; insights generated by the examples will help in building a suitable theory of 
continuations. 

1.1 Reasoning about Code 

By "reasoning principles" we mean principles for proving equivalences of code. Such prin­
ciples capture the notion of "behavior of code." For example, a A-abstraction applied to an 
integer argument in LISP behaves the same (ignoring efficiency issues) as the body of the 
abstraction with the integer in place of the abstracted variable. These two pieces of code are 
equivalent, and the definition of a LISP interpreter may be used to verify this equivalence. 

Two pieces of code are ''equivalent" if they produce the same "outcomes" under the 
interpreter. To make this more precise, we must define the observations, the net outcomes 
of the interpreter considered important. Typically, we choose to observe terms at which the 
interpreter stops. In the language Av defined in Chapter 2, we will observe evaluation to 
numerals. 1 Let Eval(M) be a partial function from terms to terms, representing the output 
of the interpreter on terms; we then say 

Definition 1.1 {Informal) Two terms M and N are observationally equivalent if 
Eval(M) and Eval(N) agree on all observations. 

Two programs are observationally equivalent if they produce the same observable results. 
Observational equivalenc~ states that two terms as g ven cannot be told apart by the 

interpreter. For languages with functional terms, observational equivalence is too coarse; 
one may still be able to distinguish two observationally equivalent terms. For instance, if we 
choose to observe "termination of the interpreter" in LISP, any two A-abstractions would 
agree on all observations and hence would be considered observationally equivalent. Yet 
a programmer may be able to distinguish two A-abstractions by writing a context (a term 
with a hole) that makes the terms evaluate to different observations. One may formalize 
this ability to distinguish terms: 

Definition 1.2 {Informal) Two terms M and N are observationally distinguishable 
iff for some context C[·], C[M] and C[N] differ on somt observation (in other words, are 
not observationally equivalent.) 

The complementary notion is, in fact, more important: 

Definition 1.3 {Informal) Two terms Mand N are observationally congruent {writ­
ten M =-obs N} iff they are not observationally distinguishable. 

1 More complex observations may result in finer distinctions betv- ~en terms; see [4, 17] for an example of 
another reasonable notion of observation. 
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Observational congruence is the congruence closure of observational equivalence. 
From a software engineering perspective, observational congruence captures the notion 

of "modularity" of code. For example, two routines that "'sort" should be observationally 
congruent: the "sort" routines should be interchangeable in any program, and the program 
should produce the same answers using either routine. Observational congruence also pro­
vides one definition of a "correct" compiler optimization: if one piece of code is replaced by 
a faster yet observationally congruent piece, the optimization is "safe," i.e., the optimized 
code will still produce the expected answer. 

When we say "reasoning about code," we mean reasoning used to prove observational 
congruences. In fact, almost any reasoning principle may be viewed as a way to verify 
observational congruences. For instance, fixpoint induction in denotational semantics and 
pure A-calculus-like equational reasoning are reasoning tools for proving congruences. These 
formal reasoning principles help justify the informal observational congruence reasoning 
used by programmers, clarifying common assumptions about the behavior of code. 

1.2 Outline of Thesis 

We concentrate on the setting of cps conversion, since the cps transform seems fundamental 
to understanding the other two settings of continuations. a continuation transform forms 
the basis of many continuation semantics (cf. [24, 26, 30]) and is often used to describe 
the semantics of call/cc-like operators (cf. [7, 8].) Chapter 2 describes a call-by-value 
functional language Av and its continuation transform, both of which are the focus of study. 

In Chapter 3, we describe specific examples that show the failure of reasoning princi­
ples based on observational congruence. These examples will have the form "M and N are 
observationally congruent but not congruent in one of the continuation settings." In par­
ticular, we show that two terms may be observationally congruent but their cps-transforms 
may not be. Similar observations are also made for the other two settings of continuations. 

The unsoundness of familiar reasoning principles indicates that a theory of continuations 
remains to be found. Chapter 4 discusses possible directions for such a theory. One method 
(currently being pursued) involves extending the retraction-based method of Meyer and 
Wand [15]. One might also seek results tying the three settings of continuations together. 
Finally, an Appendix is included which contains proofs of "standard" theorems for Av. 
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Chapter 2 

The Language and its Continuation Transform 

This chapter defines Av, a call-by-value version of the language PCF [20, 25], including an 
interpreter for Av. A call-by-value continuation transform for the language is then given, 
along with theorems that show the correctness of the transform. 

2.1 Syntax 

The familiar syntax of the simply-typed .\-calculus forms the basis of Av· Each term in Av 
has a type of the form o or (a __, T), where o is the sole base type, the type of natural 
numbers, and a __, T is the type of functions from a to r. 1 The set of terms with their 
corresponding types is defined in Figure 2.1. In this definition and throughout the text, 
Greek letters (with the exception of "'' ,\, and µ) denote types, uppercase Roman letters 

xa : a 

!17 : (7 

Cz; 0 

succ, pred : o __, o 
(condBMN):o 

(MN): T 

- .\-variables, where x E £ 
- µ-variables, where f E M 
- numerals (l 2: 0) 
- functional constants 
- conditionals, where B, M, N : o 

- applications, where M : a __, T and N : a 
- .\-abstractions, where M : T 

- recursive definitions, where M : a 

( AX 17 .M) : (7 _.. T 

(µr.M): a 
~~~~~~~~~~~~~~~~~~~~----"' 

Figure 2.1: The syntax for Av; here, C and M are two disjoint, infinite sets of variables. Each 
variable in Av is tagged with a type (cf. [20]), but types will often be dropped when the context is 
clear. 

denote terms, the lowercase letters f, g, and h are ft-variables, and all other letters (e.g., 
K-, a, b, c) are .\-variables except when otherwise stated. 

The .X- and µ-variables occurring in a term may be bound or free [2]. If two terms M 
and N differ only in the names of bound variables, we consider them to be syntactically 
equivalent and write M = N [2]. A term is closed if it contains no free variables; otherwise, 
a term is open. 

Contexts are special terms containing holes. A context C[·] is derived from a term M 
by replacing all free occurrences of some variable in M, say r, by a hole [·]. C[N] is the 
result of replacing every hole in C[ ·] with N, where N : a and the type of the hole is a. 

1 As is customary, parentheses will frequently be dropped from types with the understanding that --+ 

associates to the right. For example, o --+ o --+ o is short for ( o --+ ( o --+ o )). 
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(>-.x.M) V --t11 M[x := V], Va value µf.M --tv M[f := µf.M] 

succ Cf --tv Ct+l pred co --tv Co 

cond co Mo Mi --tv Mo pred C/+i --tv C/ 
cond C/+i Mo Mi --tv Mi 

B --t B' 
cond B Mo Mi --tv cond B' Mo Mi 

M --tv M', c E { succ, pred} 
c M --tv c M' 

M --tv M' N --t N' 
MN --tv M' N >-.x.M N --tv >-.x.M N' 

Figure 2.2: Structured rewrite rules for Av. Substitution of the term N for the variable x in M, 
with the necessary renaming of bound variables, is written M[x := N] (see [2) for a formal definition.) 

2.2 Operational Semantics 

The relation --tv, the one-step reduction relation on terms of Av, is defined in Figure 2.2 
using a structured operational semantics [19, 21]. In reducing applications, operands are 
substituted in for .X-bound variables only when the operand is a value. A value (usually 
denoted by V) is a >-.-abstraction, a constant, or a >-.-variable. None of these terms can be 
rewritten using --tv, so a vahe is a term in evaluated form. 2 

It is relatively easy to see from the fact that values are stopped that --tv is deterministic. 
This allows us to define an interpreter for Av from --tv· Since Av is a language for arithmetic, 
we choose the final answers of the interpreter to be numerals. The input to an interpreter 
for Av should therefore be closed terms of base type which we call complete programs. 
(A complete program is a program coupled with a particular set of inputs.) The reflexive, 
transitive closure of the relation --tv, -v, can be used to define a partial recursive function 

Evalv: Complete programs___... Numerals 

Evalv(M) = { C/ if 1..1 -v Cf 

undefined otherwise 

which is an interpreter for the language. 
In our investigation of the cps transform we will be most interested in reasoning about 

the behavior of code under Evalv. We say that 

Definition 2.1 M observationally approximates N, written M :Sv N, if, for any con­
text C[·] such that C[M] and C[N] are complete programs, C[M] -v cz implies C[N] -v q. 

Two terms Mand N are observationally congruent, written M =~bs N, if M :Sv N and 
N :Sv M. 

Observational congruences can be difficult to prove using only the definition [12]. For 
example, consider the terms Ni = .Xx.(.Xy.y) C3 and N 2 = .Xx.c3 • If Ni is applied to an 

2 Using this rationale, µ-variables might also be considered values, if it were not for the fact that µ­

variables may be replaced by terms that require further evaluation. For example, f gets replaced by a 
non-value in the reduction µf .f --+v f[f := µf .fl. In contrast, >..-variables remain values when reduced and 
hence are considered values. This distinction explains the need for two disjoint sets of variables. Plotkin 
also uses two sets of variables in one version of his metalanguage (22]. 
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argument during the evaluation of a program, the "active" subterm at the next stage will 
be (> .. y.y) c 3 which will reduce to c 3 • If N 2 appeared as the subterm instead, c3 will again 
be the result. The terms should thus be congruent. This argument, however, is difficult to 
formalize and is of little use in proving other observational congruences. 

Equational reasoning based on -+v can be used to prove N1 =~bs N2. Define the relation 
=v by replacing all -+v's in the definition of -+v by =v's, adding the axioms reflexivity, 
symmetry, and transitivity, and condensing the operation:J rules with antecedents into the 
congruence rule 

M =v lvl' 
C[M] =v C[M'] 

where C[·] is any context (not necessarily making C[M] a complete program.) The rules of 
=v are sound for proving observational congruences. 

Theorem 2.2 If M =v N, then M =~bs N. 

Proof: Delayed to the Appendix. • 
Ni =~bs N 2 now follows from the fact that Ni =v N2. 

The converse to Theorem 2.2 is false: there are terms that are observationally congru­
ent but cannot be proven equivalent.3 The following theorem will be useful in verifying 
congruences: 

Theorem 2.3 Let M and N be closed terms of the same type. Then M :::Sv N iff, for all 
vectors V of closed values, M V -v V~ implies N V -,, V{ and V~ = V{ if either is a 
numeral. 

Proof: Delayed to the Appendix. • 
Theorem 2.3 states that applicative contexts determine observational congruence (cf. [3].) 

2.3 Continuation Transform 

2.3.1 Definition 

The continuation transform for Av is based on a cps transform appropriate for call-by-value 
[9, 15, 19]. The transform of a term M, written M, is another term of Av· Figure 2.3 defines 
the transform of a term by structural induction on the term. 

The behavior of the interpreter for Av provides clues to understanding the continuized 
version of a term. Basically, the flow of control is made explicit by the continuations of 
a cps-converted term. For example, since values are not evaluated, the cps transform of a 
value simply passes the value to a continuation (the rest of the program.) For applications 
as well, the continuations in the transform of an application mimic the flow of control in the 
interpreter: the continuation passed to the operator first evaluates the operand and passes 
control to the operand's continuation, which, in turn, applies the operator to the operand. 

The explicit incorporation of continuations requires that the transform change the type 
of a term. A continuized term accepts a continuation as an argument (a function from some 
type to a final answer), and produces a final answer given that continuation. The type of 
final answers for Av is o, so a term of type o is transformed into a term of type ( o -+ o) -+ o. 

3 In fact, observational congruence is not axiomatizable (2, 32], so one cannot hope for an equational proof 
system that captures observational congruence. 
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xu 

r 
C/ 

succ 
pred 

cond B Mo Mi 
(MN) 

>..K.K, x 17 

AK.j(u 1-+o)-+o K, 

AK,.K, C[ 

AK.K (>..x 0 .AK1.K1 (succ x )) 
AK,.K, (>..x 0 .AK1.K1 (pred x )) 
AK:.B(>..m0 .cond m (Mo K:) (M1 K)) 
AK:.M (>..m(u-+r)'.N (>..nu'.m n K:)) 
(where M: a-+ T and N : a) 
AK:.K: ( AX 171 .M) 
AK.(µj(u'-+o)-+o.M) K: 

Figure 2.3: The continuation transform for Av. The types of continuations "' (which have the form 
ex'-+ o) have been omitted for clarity. Note that variables change types when transformed. 

The situation for higher-typed terms is more complicated. The continuation of a higher­
order term needs to accept functions which, given a value and another continuation, produce 
final answers. The transform of a term of type a is thus a term of type (a' -+ o) -+ o, where 
a' is defined recursively by ( r:f. [15]) 

o' 0 

(a-+ r)' a' -+ ( r' -+ o) -+ o. 

2.3.2 Fundamental Properties of the Transform 

By inspecting the definition of the transform, one may observe that every operand in a 
transformed term is a value and hence need not be evaluated. In other words, transformed 
terms may be evaluated tail-recursively. Tail-recursiveness can lead to increased efficiency. 
A traditional call-by-value interpreter (or code generated by compilers) uses a stack to 
remember the position of the subterm currently being evaluated. In transformed terms, all 
operands in applications are in evaluated form, so an interpreter designed specifically for 
transformed terms does not require a stack.4 

A corollary to the fact that all operands are values is unambiguous reducibility: call­
by-name and call-by-value reduction strategies coincide on transformed terms. Unambigu­
ous reducibility allows one to use the transform to simulate call-by-value in a call-by-name 
interpreter, as is done in [19". 

Of course, the transform must satisfy correctness properties as well. If one expects 
to use the transform as a first step in compilation, for example, transformed terms must 
not produce different answers than the original terms! The continuation transform for the 
language satisfies two properties that guarantee its correctness: provable equality (i.e., =v) 
is preserved by the transform and complete programs produce the same output as their 
transformed versions [9, 19]. 

2.3.2.1 Preservation of equational reasoning 

We follow Plotkin's proof in [19] to show that M =v N implies M =v N. 

4 0ne may regard the cps versi<m of a term as incorporating an e~,:ilicit representation of the interpreter's 
control stack. 
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Substitutions performed by =v pose problems to a direct proof. Suppose, for example, 
that =v performs the substitution M[x := V]. We want (>.x.M) V =v M[x := V]. In point 
of fact, it is easy to show that (>.x.M) V =v M[x := lli(V)], where 

Definition 2.4 If V is a vaiue, then lli(V) is defined 

• ll'(xa) = xa'; 

e llf ( C/) = C[; 

• lli(succ) = >.x . .\ii1.!i1 (succ x); 

• ll'(pred) = AX.A!i1.!i1 (pred x); 

• ll'( AX17 .M) = AX 171 .M. 

(Essentially, ll'(V) is V without the leading continuation.) The following lemma allows us 
to complete the argument that (>.x.M) V =v M[x := V]: 

Lemma 2.5 If V is a value and x is a >.-variable, then M[xa' := ll'(V)] = M[xa := V]. 

Proof: By structural induction on M. For the base case, M must be a constant or variable: 

Case l: M = x. Then M[x := ll'(V)] = .\ii.Ii ll'(V) = V = M[x := V]. 

Case 2: M = t for some variable t =/= x. Then M[x ::-= lli(V)] =I= M[x := V]. 

Case 3: M = a for some constant a. Similar to Case 2. 

For the induction case, we also divide into cases depending on the form of M: 

Case 1: M = cond B Mo M1. Then 

M[x := ll'(V)] (.\ii.B (>.m.cond m (Mo ii) (Mt !i)))[x := ll'(V)] 
-=-=---=--------= .\ii.B[x := V] (>.m.cond m (Mo[x := V] ii) (M1[x := V] ii)) 

(by the induction hypothesis) 

M[x:=V]. 

Case 2: M = (M1 M2). Then 

M[x := ll'(V)] (.\ii.Aft (>.m.M"; (An.m n !i)))[x := ll'(V)] 

A!i.M1[x :=VJ (Am.M2[x := V] (>.n.m n ii)) 

(by the induction hypothesis) 

M[x:=V]. 

Case 3: M = >.y.M'. If y = x, then M[x := ll'(V)] = M = M[x := V]. If y =/= x, 

M[x := ll'(V)] (.\ii.Ii (>.y.W))[x := lli(V)] 

Ali.Ii (>.y.M'[:i: := VJ) 

(by the induction hypothesis) 

M[.-r:=V]. 

8 



Case 4: M = µf.M'. We know that x =J f; so 

M[x := Yi'(V)] = (>.K.(µJ.W) K)[x := Yi'(V)] 

= AK.(µf.M'[x := V]) K 

(by the induction hypothesis) 

= M[x :=VJ. 
We have exhausted all cases, hence the lemma holds. 

The analog of Lemma 2.5 for recursive definitions works somewhat more easily: 

• 

Lemma 2.6 If J is a µ-variable, then M[f(u'-+o)-rn := µj(u'-+o)-+o .N] = M[fu := µju .NJ. 

Proof: By structural induction on M. In the base case, we divide into cases on the form 
of M: 

Case 1: M = f. Then M[f := µf.NJ = AK.(µJ.N) K = µf.N = M[f := µf.NJ. 

Case 2: M = t for some variable t =J J. Then M[f := µJ.NJ = t = M[J := µf.NJ. 

Case 3: M = a for some constant a. Similar to Case 2. 

For the induction case, there are four cases to consider: 

Case 1: M = cond B Mo M1. Then 

M[f := µf.N] = (>.K.B (>.m.cond m (Mo K) (Mi K)))[J := µf.NJ 
-~--~ 

= AK.B[j := µf.NJ (>.m.cond m (Mo[!:= µf.NJ K) (M1[f := µf.NJ K)) 
(by the induction hypothesis) 

= M[f := µf.NJ. 

Case 2: M = (M1 M 2 ). Thus, 

M[J := µf.NJ = (>.K.]fi (>.m.J:f2 (>.n.m n K)))[J := µf.NJ 

= AK.M1[f := µf.NJ (>.m.M2[J := µf.NJ (>.n.m n K)) 
(by the induction hypothesis) 

= M[f := pf .NJ. 

Case 3: M = >.y.M'. Note that f =J y; thus 

M[f := µf.NJ = (>.K.K (>.y.W))[f := µf.NJ 

= AK.K (>.y.M'[f := µf.N]) 

(by the induction hypothesis) 

= M[f := µf.NJ. 

Case 4: M = µg.M'. If g = f, M[f := µf.NJ = M = M[f :=pf.NJ. On the other 
hand, if g =J f, 

M[f := µf.NJ = (>.K.(µg.M') ,.q[f :=pf.NJ 

= AK.(µg.M'[f :; pf.NJ) K 

(by the induction hypothesis) 

= M[f :=pf.NJ. 
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This concludes the proof. • 
Given these two lemmas, we may complete the proof of the theorem: 

Theorem 2.7 If M =v N, then M =v N. 

Proof: By induction on the length n of the proof that M =v N. In the base case, the 
length of the proof is 1, so an axiom was used: 

Case 1: (.Xx.M) V =v M[x :=VJ, where V is a value. Recall that V = .A"'·"' w(V). 
Therefore, 

(.Xx.M) V -v A/'i,.(AK,1.K1 (.Xx.M)) (.Xm.V (.Xn.m n K)) 

-v AK.(.Xm.V (.Xn.m n K)) (.Xx.M) 

-v AK.V (.Xn.(.Xx.M) n K) 

-v AK.(.Xn.(.Xx.M) n K) w(V) 

-v AK.( .Xx.M) w(V) K 

-v AK.(M[x := w(V)]) K, 

-v AK.M[x :=VJ K 

where the last equation follows from Lemma 2.5. Examining the continuation trans­
form, we note that every continuized term begins with a .A-abstraction; thus, 

AK.M[x := V] K =v M[:r :=VJ 

so (.Xx.M) V =v M[x :=VJ. 

Case 2: cond co Mo M1 =v Mo. By calculation, 

cond co Mo M 1 -v AK-.(AK1.K1 co) (.Xm.cond m (Mo K) (M1 "')) 

-v AK-.cond co (Mo K) (M1 K) 

-v AK-.(Mo K) =v Mo. 

Case 3: cond c1+1 Mo M1 =v M1. Similar to the previous case. 

Case 4: succ C/ =v C/+i · By calculation, 

succc1 -v AK.(AK1.K1 (Ax.AK2.K-2 (succx))) (Am.(AK3.K3 c1) (An.m n K)) 

-v AK.( AK3.f£3 c1) ( An.(Ax.AK2.K-2 ( succ x)) n K) 

-v AK.( AX.AK2.K2 ( succ x)) C/ K 

-v A/'£,1'£ (succ c1) =v AK.!'£ C/+1 -v C/+1· 

Case 5: pred co =v co. Similar to the previous case. 

Case 6: pred C/+1 =v c1. Similar to the previous case. 

Case 7: µf.M =v M[f := µf.MJ. By calculation, 

µf .M -v AK.(µf .M) K 

-v AK.(M[f := µf.M]) K 

-v Af£.(M[f := µf.M]) K -v M[f := µf.M], 

the third equation following from Lemma 2.6. 
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Case 8: M =v lvl. Trivial. 

In the induction case, the length of the proof is n + 1; again, we divide into cases, this 
time depending on the last rule used: 

Case 1: M =v N and N =v P implies M =v P. By the induction hypothesis, we know 
that M =v N and N =v P, so we can conclude that M =v P by the transitivity rule. 

Case 2: M =v N implies N =v M. Trivial. 

Case 3: M =v N implie~ C[M] =v C[N]. Using the iAuction hypothesis M =v N, an 
easy structural induction on the context C[·] shows that C[M] =v C[N]. 

This list exhausts the possibilities for last rule used, hence we are done. • 

2.3.2.2 Adequacy 

Theorem 2. 7 does not explain the correspondence of evaluation of terms and their cps­
versions. For complete programs in particular, we expect the interpreter to give the same 
answers from both the direct and continuized versions, except that continuized versions 
must be passed a "default continuation," viz., the identity function: 

M -v cz iff M (.Xx.x) -v cz. 

Indeed, this fact must hold if we wish to use cps conversion in compilers.5 

The proof proceeds using the method in [19]. The key observation is that certain reduc­
tions on transformed terms have no corresponding reduction on non-continuized versions. 
For example, consider the complete program c5. The direcc version cannot be reduced, but 
cs ( .Xx.x) can be: 

(.XK.K cs) (.Xx.x) -+v (.Xx.x) C5 -+v C5. 

The first reduction is callee an administrative reduction, since only a continuation is 
passed. The relation* applies a continuized term to a continuation and performs all possible 
administrative reductions: 

Definition 2.8 For any term Af : a and any value J( : a'-+ o, we define M * J( by 

µf.M'*K 

J( tJF(M), if M is a value 

f(a'-+o)-+o J(, if f is a µ-variable 

{ 
cond tJF(B) (M1 K) (M2 K) 
B *(.Xm.(cond m (M1 K) (M2 K))) 

if B is a value 
otherwise 

{ M1 * (.Xm.M2 (.Xn.m n K)) 
M2 * (.Xn.tfr(M1) n K) 
tfr(M1) tfr(M2) J( 

µf.(M' K) 

if M1 is not a value 
if M1, but not M2, is a value 
otherwise 

The following lemma confirms that the definition actually represents a "partial reduction" 
of a continuized term: 

5 Note that the::} direction foLows from Theorems 2.2 and 2.7, but the converse does not follow directly. 
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Lemma 2.9 If]( is a value, then M ]( -v M *](· 

Proof: By structural induction on M. For the base case, divide into cases depending on 
M: 

Case 1: M = x. Then M ]( = (>.K-.K- x) ]( -+v ]( x = M *](· 

Case 2: M = J. Then M ]( = (>.K-.f K-) ]( -+v f ]( = M * K. 

Case 3: M = q. Then M ]( = (>.K-.K- ct)]( -+v ]( cz = M * K. 

Case 4: M = succ. Then M ]( -+v ]( ( AX.AK-.K- succ x) = M * K. 

Case 5: M = pred. Similar to the previous case. 

For the induction case, 

Case 1: M = cond B M1 M2. Then 

M ]( (>.K-.B (>.m.cond m (M1 K-) (M2 K-))) ]( 

-+v B (>.m.cond m (M1 K) (M2 K)). 

If Bis a value, then M ]( -v cond tir(B) (M1 K) (M2 K); otherwise, 

M ]( -v B *(>.m.cond m (M1 K) (M2 K)) = M * ]( 

(by the induction hypothesis.) 

Case 2: M = (M1 M2). If M1 is not a value, 

M ]( (>.K-.M1 (>.m.M2 (>.n.m n K-))) ]( 

-+v M1 (>.m.M2 (>.n.m n K)) 

-v M1 * (>.m.M2 (>.n.m n K)) = M * ]( 

(by the induction hypothesis.) 

If M1 but not M2 is a value, 

M ]( -v M2 (>.n.tir(M1) n K) 

-v M2 * (>.n.tP'(M1) n K) = M * ]( 
(by the induction hypothesis.) 

Finally, if both M 1 and M2 are values, 

Case 3: M = >.x.M'. Then 

M ]( = (>.""·"" (>.x.M')) ]( -+v ]( (>.x.M') = M * K. 

Case 4: M = µf.M'. Then 

M ]( = (>.K-.(µf.M') K-) ]( -+v (µf.M') ]( = M * K. 

This concludes the proof of the lemma. • 
Once the administrative reductions on a continuized term have been performed, the 

next reductions correspond to reductions on the original version of the term: 
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Lemma 2.10 If M -+v N and]( is a value, then M * ]( -v N * K. 

Proof: By induction on the length of proof of M -+v N. In the base case, the length of 
the reduction is 1; we divide into cases depending on the operational rule used: 

Case 1: (>..x.M') V -+v M'[x := V]. Then 

M * ]( IJF( >.x.M') IJF(V) ]( 

-+v (Afl[x := IJF(V)]) ]( 

-v M'[x := V] * K 

(by Lemmas 2.5 and 2.9) 

N *IC 

Case 2: succ C/ -+v c1+1 · Then 

M * ]{ -v IJF( SUCC) IJF( C[) ]( -v ]( ( SUCC C/) -+v K C/+l = N * J(. 

Case 3: pred co -+v co. Similar to the previous case. 

Case 4: pred C/+1 -+v q. Similar to the previous case. 

Case 5: cond co M1 M2 --rv M1. Then 

M ""'K = cond co (M1 K) (M2 K) -v M1 * K 

by Lemma 2.9. 

Case 6: cond C/+i M1 M2 -+v M2. Similar to the previous case. 

Case 7: (µf.M') -+v M'[f := µf.M']. Then 

M * ]( (µf .M') K 

-+v (Afl[f := µJ .Afl]) ]( 

-v M'[f := µf .M'] * K 

by Lemmas 2.6 and 2.9. 

In the induction case we consider proofs of length greater than 1, and divide into cases 
depending on the last operational rule used: 

Case 1: B -+v B' implies cond B M1 M 2 -+v cond B' M1 M 2 • Note that B cannot be a 
value; hence if B' is not a value, 

M * K B * (>.m.cond m (M1 K) (M2 K)) 

-v B' * (>.m.cond m (M1 ]() (M2 K)) = N * K 

by the induction hypothesis. If B' is a value, then 

M * K -v cond IJF(B') (M1 K) (M2 K) = N * K. 

Case 2: P -+v P' impli.~s succ P -+v succ P'. P cannot be a value, so if P' is not a 
value, 

M *]( P*(>.n.(>.x.AK,,K, (succx)) n K) 

-v P' * ( >.n.( >.x.>."'·"' ( succ x)) n K) = N * ]( 
by the induction hypothesis. If P' is a value, then 

M *]( -v (>.x.>.K..K, (succx)) IJF(P') ]( = N *](. 
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Case 3: P ---*v P' implies pred P ---*v pred P'. Similar to the previous case. 

Case 4: Q ---*v Q' implies (>.x.P) Q ---*v (>.x.P) Q'. Similar to the previous case. 

Case 5: P ---*v P' implies P Q ---*v P' Q. P cannot be a value, so if P' is not a value, 

M * J( P * (>-.m.Q (>.n.m n K)) 

-v P' * (>.m.Q (>.n.m n K)) = N * J( 

by the induction hypothesis. If P' is a value and Q is not, then 

M * ]( -v Q (>.n.IJF(P') n K) 

-v Q * (>.n.IJF(P') n K) = N * K. 

by Lemma 2.9. If both P' and Q are values, then 

M*K -v Q (>.n.IJF(P') n K) 

-v tJF(P') tJF(Q) ]( = N*K· 

As all operational rules have been considered, we are done. • 
These facts about administrative and non-administrative reductions on continuized 

terms give us the ability to prove the following theorem originally due to Fischer [9]: 

Theorem 2.11 (Adequacy) If M is a complete program, then 

Eval,u(M) = C/ iff Evalv(M (>.x 0 .x)) = C[. 

Proof: (::::?) Suppose Evalv(M) = ci; then we know that M -v C/. By Lemmas 2.9 and 
2.10 we then have 

M (>.x.x)-v M*(>.x.x)-v Ct*(>.x.x)-v C/. 

Thus, Evalv(M (>.x.x )) = C/. 

( ~) Suppose Evalv(M) is not defined. Then 

By Lemmas 2.9 and 2.10, we thus know 

M (>.x.x) -v M *(>.x.x) -v M1 * (>.x.x) -v M2 * (>.x.x) -v 

so Evalv(M (>.x 0 .x )) is not defined either. • 
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Chapter 3 

Continuations May Be Unreasonable 

The Adequacy Theorem establishes a strong connection between the evaluation of terms 
and their continuized versions. The theorem easily extends to reasoning about complete 
programs, viz., proving observational congruences. It follows that for complete programs 
Mand N, 

M =~bs N iff M ( >.x .x) =~bs N ( >.x.x ). 

The connection between direct and continuized versions of higher-order terms is less obvious, 
but one may still see a partial relationship between reasoning on direct versus reasoning on 
continuized terms: 

Corollary 3.1 If M =~bs N, then M =~bs N. 

Proof: Suppose M and N were distinguishable by some context C[·]. Then by the Ade­
quacy Theorem, the context C[ ·] ( >.x.x) would distinguish M and N, a contradiction. • 

In particular, if one can distinguish two terms by a context, the transforms of those terms 
will also be distinguishable. 

The problem with the continuation transform is that the converse of Corollary 3.1 does 
not hold: observational congruence on direct terms does not coincide with congruence on 
continuized terms. Similar anomalies occur in the other two settings. For example, suppose 
we augment Av with the call/cc-like operators C and A defined in [7, 8]. Terms that are 
observationally congruent in Av may become distinguishable using contexts containing these 
new operators. In the case of continuation semantics, thue are observationally congruent 
terms that are equivalent in a direct semantics but not equivalent in a continuation seman­
tics. Reasoning principles based on observational congruence may thus become unsound in 
settings involving continuations. 

In the continuation transform setting, the anomaly is manifested at terms of higher 
type. In particular, two higher-order closed terms may be observationally congruent but 
their transforms may not be 

Theorem 3.2 There exist two closed, pure (i.e., containing no constants, conditionals, or 
recursion) terms, namely 

M 1 >.x 0 -+o-+o.>.y0 -+ 0 .>.z0 .(>.w.x z w) (y z) 

M2 >.xo-+o-+o,>.yo-+o,>.zo.x z (y z), 
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Proof: To show M 1 =~bs M 2 , we proceed in a purely operational fashion using Theo­
rem 2.3.1 We first show that M1 ~v Mz. Pick any values Vi, Vi, and V3-then M2 -v V', 
M2 Vi -v V" and M2 Vi V2 -v V 111

, so all vectors V of length 0, 1, or 2 make the statement 

M1 V -v V~ implies M2 V -*v V{ 

hold. Now suppose M1 Vi V2 V3 -v C[. Then 

so it must be the case that Vi V3 -v V' and Vi V3 -v V" for some values V' and V". 
Therefore, 

-v V" V' 

-v C[. 

Thus, by Theorem 2.3, M 1 ~v lvfz. Using a similar argument, one can show M2 ~v M1. 
To show that M1 ¢~bs M2, we first reduce M1 and M2 using =v: 

-v 

-v 

AK,o,K,o (>..x.>..K,1,K,1 (>..y.AK,z,K,z (>..z.AK,3.y z (>..n.x z (>..m.m n K,3))))) 

AK,o,K,o (>.x">.K,1,K,1 (>.y.AK,z.K,z (>.z.AK,3.x z (>.m.y z (>.n.m n K,3))))) 

(where the types have been omitted for clarity.) Intuitively, the difference between M1 and 
M 2 comes from a difference in the way M1 and M 2 are reduced when applied to arguments: 
M 1 evaluates (y z) first, while M 2 evaluates (x z) first. The typable context 

C[·] [·]No, where 
No >.p.p (>..a.>..b.c1) N1, where 
]IT l >.q.q (>.a.>..b.c2) N2, where 
N2 = >.r.r c1 (>.a.a) 

distinguishes M1 and M2, since C[M1] terminates with result c2 and C[M2] terminates with 
result c1 : 

C[M1] -v (>.a.>.b.c2) c1 (>.n.(>.a.>.b.c1) c1 (>.m.m n (>.a.a))) 

C[M2] -v (>..a.>..b.c1) c1 (>.m.(>..a.>.b.c2) c1 (>..n.m n (>..a.a))) 

-v C1. 

- -2 
Thus M1 ¢~bs M2. • 

Using a marked language (cf. Appendix), one can show that the untyped versions of M 1 

and M2 are congruent in any untyped context. Nevertheless, a simple typable context using 
only numerals distinguishes their transforms. 

1 0ther techniques exist for verifying congruences: one may rely upon either an adequate or fully-abstract 
denotational semantics or upon an equational system sound for =~bs yet strong enough to prove the congru­
ence (12, 20). Either method rests upon a nontrivial adequacy or soundness proof. Plotkin (18) claims both 
methods can be used to prove M1 =~bs lrf2, using either pre-domains (22] or Moggi's Ap (16), but I have not 
worked through the proofs of adequacy of the pre-domain semantics or soundness of Ap for =~bs· 

2 ln fact, a stronger statement is true: M1 iv M2 and .M2 iv M1. 
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The Adequacy Theorem clarifies why M1 ¢~bs M2: a context with "illegal" continuations 
distinguishes the continuized terms. One could sensibly argue that M1 and M2 should not 
be distinguished, since the distinguishing context will never arise under the intended uses 
of M 1 and M 2. But granting this, the theorem nevertheless points out a legitimate concern: 
what methods shall we use to prove that two terms are congruent with respect to all "legal" 
contexts, and what exactly are the legal contexts? This question might arise if we wanted 
to justify a post-transform code optimization in which transformed code M was replaced 
by an "optimized" expression N equivalent to Min all legal contexts. For any No, N itself 
need not equal No. 

It is not surprising that Theorem 3.2 has an analog in the call/cc setting. Consider, 
for example, the language Ac with the call/cc-like operator C and the abort operator A 
[6, 7, 8]. More precisely, Ac has the same syntax as the untyped version of Av (i.e., where no 
variables are decorated with types, and terms need not be well-typed), with the additional 
terms CM and AM. The reduction relation for Ac, -+c, is defined by the rules 

(AM) N -+c AM 
V (AM) -+c AM 

(CM) N -+c C (>1/'i,.M (> .. m.K, (m N))) 
V (CM) -+c C (>-.K,.M (>.v.K, (V v))) 

and the outermost computation rules (which are only applicable in empty contexts) 

AM t>c M CM l>c M (,\x.A x) 

in addition to the (untyped versions of) rules of -+v. Let -c be the reflexive, transitive 
closure of (-+c U t>c), and let =~bs denote the observational congruence relation on terms of 
Ac when observing numerals. Then 

Theorem 3.3 If M1 and M2 are the terms above, M 1 ¢~bs M2. 

Proof: Let C[·] be the context [·] (,\x.n) (,\y.C (,\x.c1)) C1. Here, n is any divergent term 
(such as µf.f.) This context forces C[M2] to diverge but makes C[M1] converge to c1: 

C[M1] -c (;\w.(.\x.n) c1 w) ((.\y.C (>.x.c1)) c1) 

-c (>.w.(,\x.n) c1 w) (C (>.x.c1)) 

-c C (,\K,.(,\x.c1) (,\v.K, ((>.w.(>.x.n) c1 w) v))) 

!> c (.\K,.(,\x.c1) (,\v.K, ((>.w.(>.x.n) c1 w) v))) (>.x.A x) 

-c p.x.c1) (>.v.(>.x.A x) ((>.w.(,\x.n) c1 w) v)) 

-c C1 

C[M2] -c ((.\x.n) c1) ((>.y.C (>.x.c1)) c1) 

-c n ((,\y.C (>.x.c1)) c1) 

-c n ((>.y.C (>.x.c1)) c1) 

-c 

Thus, M1 ¢~bs M2. • 
The particular terms M1 .md }.1[2 can also be used to point out problems with continu­

ation semantics. If one bases the semantics of Av on the transform, i.e. the meaning of a 
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term M is the meaning of M in some well-chosen model, two terms may be observationally 
congruent but fail to be equivalent in the model. The terms M1 and M2 again provide the 
desired example. 

Less contrived examples c:,ppear in the literature. Mey .. ff and Sieber, for instance, point 
out that two ALGOL blocks may be observationally congruent but not congruent if goto 
statements are allowed [14]. Since jumps are usually definable in a continuation semantics, 
the two blocks will not be semantically equivalent. Reasoning principles based on a con­
tinuation semantics may thrni lead one to conclude facts that are not true about the actual 
behavior of code. 

The failure of familiar reasoning principles seems to be known (albeit informally) in 
the community of compiler designers. In the presence of control operators or cps-converted 
code, typical compiler optimizations are unsound and procedure calls are often treated as 
"black holes." But one need not conclude from the failure of some reasoning principles that 
the situation for continuations is a black hole. There are interesting reasoning principles 
which hold in continuation settings. For example, consider the Av terms 

P1 >.a.>.b.(>.x.x) ((>.y.y) (ab)) 

P2 >.a.>.b.(>.x .x) (a b) 

that are not provably equivalent using =v· In Ac these two terms are observationally 
congruent, a fact proven by Felleisen [5] who has developed further principles for proving 
observational congruences in this setting. A setting involving continuations seems to require 
a new theory for reasoning about code. Such a theory remains to be found. 
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Chapter 4 

Conclusion 

Reasoning about the behavior of cps-converted code requi~·es additional assumptions if con­
verted terms are to behave as their direct versions. Theorem 3.2 makes this formal: con­
tinuations not arising in continuized contexts may distinguish cps-converted terms. Two 
possible approaches for a theory of continuations may be based upon this observation. 

One approach to a theory of continuations attempts to capture the notion of a "legal" 
continuation. An algebraic method along these lines is developed in [15] using retractions. 1 

Definition 4.1 (Informal) A retraction pair ( i, j) is a pair of functions such that for 
anyx,j(ix)=x. 

Meyer and Wand define retraction pairs (at all types) that, when applied to a continuized 
term, supply the right continuations at the right time. Specifically, in the simply-typed, 
call-by-name >.-calculus with no constants (.An, with (Jry equational reasoning =n), Meyer 
and Wand prove 

Theorem 4.2 (Meyer, Wand) For any type a, there exist An-definable retraction pairs 
( ; J. ) and (I J ) where ; · "' -+ ,,,, , 1·~ ·. "'' ~ "', I~ ·. ,,,, -+ (("'' -+ o) -+ o), and •a, DI DI, DI ' •a . LI. LI. ~ LI. ~ u. ~ u. LI. 

J°' : ((a'-+ o)-+ o)-+ a', namely 

Ia >.x°'
1
.AK,°'

1
--+ 0 ,K, x 

JOI { >.x(o--+o)--+o,x (>.ao.a) if a = o 
( I ) I I I 

if a= a-+ r >.x °' --+o --+o .>.ba .AK,r -+o .x (>.a°' .a b /'i,) 

{ >.x 0 .x if a = o 
Za 

>.xa--+r .>.au' .Ir ( ir ( X (jr; a))) if a= a-+ r 

Ja { >.x 0 .x if a = o 
>.x(u--+r)'.>.au.jr (Jr (x (ia a))) if a= a-+ r 

Moreover, M =n Ja(Ja M) for any closed, pure term M. 

By applying the retractions, one can thus recover the meaning of a direct term from its 
continuized form. 2 

1 Inclusive predicates have also been used to establish connecticns between the direct and continuation 
semantics of a language [24, 26, 29]. The inclusive predicate approach seems necessary in cases where the 
denotational domains are built re~ursively. 

2 Even in the simplified setting of An, we cannot expect to have M = i( M) for any i. This follows because 
there are two pure, closed terms M, N where M =n N but M and N An-convert to distinct normal forms, 
namely the terms M = Aa.Ab.Ac.(Az.a) (b c) and N = Aa.Ab.Ac.a. If I- i(M) =Mand I- i(N) = N, theu it 
would follow that I- M = N which, by Statman's typical ambiguity theorem [27], is equationally inconsistent. 
In the case of Av, we similarly cannot have M = i( M) for any i by Theorem 3.2. 
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Theorem 4.2 can be misl2ading as soon as recursion is added to the language. In the 
pure simply-typed calculus, call-by-name and call-by-value convertibility coincide since no 
term causes a divergent computation [2]. Because call-by-name equational reasoning is not 
sound for the observational congruence theory of Av, the retraction pairs above may not be 
appropriate for Av· In fact, the retraction pairs are no longer retractions: one can only show 
that M =::;v la(Ia M) and M =::;v ia(ia M). We conjecture that a similar reformulation of 
Theorem 4.2 holds.3 

Conjecture 4.3 For any closed term M of type a, M =::;v ia(la M). 

This conjecture does not hold if we reverse the :5v: 

Theorem 4.4 Let a= (o--+ o--+ o--+ o)--+ (o--+ o)--+ o--+ (o--+ o) and let 

S = >.x.>.y.>.z.x z (y z) 

be of type a. Thenja(Ja S) i.v S. 

Proof: In the proof of Theorem 3.2, we saw that 

S =v AK-o.K-o (>.x.AK-1.K-1 (>.y.AK-2.K-2 (>.z.AK-3.x z (>.m.y z (>.n.m n K-3))))) 

Using the fact that ( i V) is =v to a value, we can find a simpler form for j ( J S): 

ia(>.x.>.K-1·"'1 (>.y.AK-2.K-2 (>.z.AK-3.X z (>.m.y z (>.n.m n K-3))))) 

>.a1.j(J (>.K-1.li1 (>.y.>.r;,2.K-2 (>.z.Ali3.(i al) z (>.m.y z (>.n.m n K-3)))))) 

-v >.a1.>.a2.j(J (>."'2·"'2 (>.z.AK-3.(i ai) z (>.m.(i a2) z (>.n.m n K-3))))) 
-v 

-v >.a1.>.a2.>.a3.j(J (>.r;,3.(i ai) (i a3) (>.m.(i a2) (i a3) (>.n.m n K-3)))) 

-v >.a1.>.a2.Aa3.Aa4. 

j 0 (J0 (>.r;,.(i ai) (i a3) (><.m.(i a2) (i a3) (>.n.m n (>.a.a (i a4) Ii))))) 

Thus, in the typable context 

C[·] = (>.x.c1) ([·] (>.a.n) Vi Vi) 

where Vi and V2 are closed values, C[S] does not halt but C[j(J S)] -v c1 . • 
It also remains open whether there is a Av-definable j ;uch that M =~bs j(M) or even 
whether an interpretation of such a j exists in one of the standard semantical models of Av. 

Another approach to a theory of continuations involves finding general methods for 
proving observational congruences like P 1 and P2 • A theory in this spirit might exploit the 
analogy between the three settings of continuation transform, continuation semantics, and 
call/cc-like congruence. w~ conjecture that a precise match may be found among them. 

Conjecture 4.5 For appropriate choice of direct semantics D[·], continuation semantics 
C[·], continuation transform M, and observational congruence relation =~bs using call/cc­
like operators in contexts, 

M =~bs N if! D[M] = D[N] 
if! C[M] = C[N] 
if! M =~bs N. 

3 The announcement in [13] of this result is withdrawn. 
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Establiahing thi1 coojedue clearly reqtirel tadiDg a tuiabJ1 1•dl.ed triple of trausform, 
continuation semantics, and call/cc-lib operatara, &.,_, w ·.~ mu.ti not try to 
match up a. call-by-value traufonn with a caB-by'-ua:ae dind ~of a language wita 
call/ cc-like open.ton. 

Developing reliable priadplea for .....omq ~ eaatia ,,,_,.. ia the ultimate goal of 
this reeea.rch, a.nd it ia uaclar, (t.t tlail time)wldellGf;tMle .__,,, ..... will yield s-era1 
principles. Bota a.veav.ee are·Wng pumaed. · · · 
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Appendix A 

Standard Theorems for the Language 

The appendix is a compendium of some standard facts about the language Av. Similar 
results appear in [2, 19, 20J for call-by-name languages; the techniques for proving these 
facts carry over largely to the case of Av. The results are stated and proved with little 
comment. 

A.1 Church-Rosser Theorem 

We follow the proof in [2J, using a technique due to Tait and Martin-Lof. 

Definition A.1 The relatio"I :::}P, the parallel reduction relation, is defined inductively 

as follows: 

M :::}P M 
SUCC Cj :::}p Cj+l 

p :::} P' p 

cond co P Q :::}P P' 

B :::}P B', P :::}P P', Q :::}P Q' 
cond B P Q :::}P cond B' P' Q' 

M :::}P M', N :::}P N' 
MN =?p M' N' 

M :::}PM' 

µf.M :::}P µf.M' 

pred c0 :::}P 

pred Cj+l :::}P 

Co 
Cj 

Q :::}p Q' 

cond Cz+1 P Q :::}P Q' 

M :::}PM' 
)..x.M :::}P )..x.M' 

M :::}P M', N :::}P V 
()..x.M) N :::}P M'[x :=VJ 

M :::}P M', µf .M :::}P N 
µf .M :::}P M'[f := NJ 

Lemma A.2 If N :::}P N' and v is any variable, then M[v :=NJ :::}P M[v := N']. 

Proof: By structural induction on M. There are two cases to consider in the base case: 

Case 1: M = v; then M[v :=NJ= N :::}P N' = M[v := N'J. 

Case 2: M = v' for v' some constant or variable not equal to x. Then 

M[v :=NJ= v' :::}P v' = M[v := N'J. 

There are six cases in the induction case: 

Case 1: M = )..v.P; then M[v :=NJ = M :::}PM= M[v := N']. 

Case 2: M = µv.P; then M[v :=NJ = M :::}PM= Jt[v := N'J. 
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Case 3: M = Ay.P. By induction, P[x :=NJ :::;>P P[x := N'J; thus, 

M[x :=NJ *P M[x := N']. 

Case 4: M =µJ.P. Similar to the previous case. 

Case 5: M = cond P1 P2 P3; by induction, Pi[x := Nl *P P;[x := N'J. Thus, 

M[x :=NJ *P M[x := N'J. 

Case 6: M = (P1 P2 ); by induction, P;[x :=NJ *P Pi[x := N'J, so 

M[x :=NJ *P M[x := N'J. 

This completes the proof. • 
Lemma A.3 Suppose M :::;>PM' and N *P N'. If vis a A-variable and N is a value, then 
M[v :=NJ *P M'[v := N'J. If v is a µ-variable, then M[v := N] *P M'[v := N'J. 

Proof: By induction on the definition of M *P M'. In the base case, there are four cases: 

Case 1: M' = M. By Lemma A.2, M[v :=NJ *P M'[v := N'J. 

Case 2: M = succ Cj and M' = Cj+I· Then M[v :=NJ= M :::;>PM'= M'[v := N'J. 

Case 3: M = pred c0 and M 1 = c0 . Similar to the previous case. 

Case 4: M = pred Cj+l and M 1 = Cj. Similar to the i-revious case. 

This completes the base case. In the induction case, there are ten cases: 

Case 1: M = cond co P2 P3 and M' = P~. By induction, P2[v :=NJ *P P~[v := N'J. 
Thus, M[v :=NJ *P M'[v := N'J. 

Case 2: M = cond cz+1 P 2 P3 and Af' = P~. Similar to the previous case. 

Case 3: M = cond P1 P2 P3 and M' = cond P{ P~ P~. By induction, we know that 
Pi[v :=NJ *P Pf[v := N'J. Thus, M[v :=NJ *P M'[v := N'J. 

Case 4: M = Ax.P and M' = Ax.P'. If v = x, then 

M[v :=NJ = M *PM'= M'[v := N'J. 

If v-:/:- x, then by induction P[v :=NJ :::;>P P'[v := N'], so M[v :=NJ :::;>P M'[v := N'J. 

Case 5: M = P Q and M' = P' Q'. Similar to Case 3. 

Case 6: M = (Av.P)Q and M' = P'[v := Q'], where P :::;>P P', Q :::;>P Q', and Q' is 
a value. By the induction hypothesis, Q[v :=NJ *P Q'[v := N'J. Also, since v is a 
A-variable, N must a value, so Q'[v := N'J must be;; value. We can thus use the rules 
of :::;>P: 

M[v :=NJ *P P'[v := Q'[v := N'JJ = M'[v := N'J. 

Case 7: M = (Ax.P)Q and M' = P'[x := Q'], where v-:/:- x, P :::;>P P', Q :::;>P Q', and 
Q' is a value. By the induction hypothesis, P[v :=NJ *P P'[v := N'J and similarly 
for Q. If vis a A-variable, then Q'[v := N'J is a value since N is a value by hypothesis; 
if v is a µ-variable, Q'[v := N'J is a value no matter what N is since Q' is a value. 
Thus, 

M[v :=NJ *P P'[v := N'][x := Q'[v := N'JJ :::;>P P'[x := Q'][v := N'J = M'[v := N'J. 
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Case 8: M = µf.P and M' = µf.P'. Similar to Case 4. 

Case 9: M = µv.P and Af' = P'[v := Q'J, where P °*PP', M °*P Q'. Note that v 
cannot be free in Q', since it is not free in M. Thus, 

M[v :=NJ= M °*PM'= M'[v := N'J. 

Case 10: M = µf.P and M' = P'[f := Q'J, where J 1= v, P °*PP' and M °*P Q'. By 
induction, M[v :=NJ °*P Q'[v := N'J and P[v :=NJ °*P P'[v := N'J. Thus, 

M[v :=NJ °*P P'[v := N'][J := Q'[v := N']] = P'[f := Q'][v := N'] = M'[v := N'J . 

This completes the proof. • 
Lemma A.4 The relation °*P is Church-Rosser. 

Proof: Suppose M °*P M 1 and M °*P M 2 • To show that there is an M3 with M1 °*P M3 
and M 2 °*P M3, proceed by induction on the proof of M °*P M1. In the base case, there 
are four cases: 

Case 1: M 1 = M. Pick M3 = M2; this satisfies the conditions. 

Case 2: M = succ Cj and M 1 = Cj+l · Pick M3 = Cj+l; since M2 can only be M or M1, 
this choice of M3 suffices. 

Case 3: M = pred c0 and M 1 = c0 • Pick M 3 = c0 ; as with the previous case, this M3 
meets the conditions since M2 can only be M or M 1 . 

Case 4: M = pred Cj+l and M 1 = Cj. Pick M 3 = cj; again, this choice suffices. 

This completes the base case. In the induction case, there are eight cases to consider: 

Case 1: M = cond co P2 P3 and M 1 = P~. Then M2 ,s either P~' or cond co P~' P~'· By 
the induction hypothesis, there is a Pt with P~ °*P Pt and P2' °*P Pt. Then picking 
M3 to be P~" works. 

Case 2: M = cond c1+1 P2 P3 and M' = P~. Similar to the previous case. 

Case 3: M = cond P1 P2 P3 and M1 = cond P{ P~ P~, where P; °*P Pf. Then M2 
is either P2', P~', or cond P{' P2' P~'· By the induction hypothesis, there are Pf" with 
Pf °*P Pf" and Pf' °*P Pf". Then picking M3 to be either P2", P~", or cond P{" P2" P~" 
(as appropriate) works. 

Case 4: M = >.x.P and M1 = >.x.P', where P °*P P'. Then M2 must also be of 
the form >.x.P". By induction, pick P"' where P' °*P P"' and P" °*P P"'. Then 
M3 = >.x.P"' will work. 

Case 5: M = (>.x.P)Q and M 1 = P'[x := Q'], where P °*PP', Q °*P Q', and Q' is a 
value. There are two subcases: 

Subcase i: M2 = ( )...x.P")Q". By induction, there are P"' and Q"' with P' °*P P"' 
and P" °*P P"'; pick Q"' similarly. Since Q' is <• value, Q"' must also be a value. 
Pick M3 = P"'[x := Q'"]; M2 °*P M3 easily, and M1 °*P M3 by Lemma A.3. 
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Subcase ii: M2 = P"[x := Q"]. By induction, there are two terms P 111 and Q 111 

with P' =?p P'" and P" =?p P 111
; pick Q"' similarly. Since Q' is a value, Q 111 must 

also be a value. Pick M3 = P"'[x := Q"']; then lJoth M2 =?p M3 and M1 =?p M3 
by Lemma A.3. 

Case 6: M = P Q and M 1 = P' Q', where P =?p P' and Q =?p Q'. There are two 
sub cases: 

Subcase i: M 2 = P" Q". By induction, pick P"' with P' =?p P"' and P" =?p P"'; 
pick Q"' similarly. Then M3 = P 111 Q"' works. 

Subcase ii: P = >..x.R and M 2 = R"[x := Q"], for Q" a value. Then P' = >..x.R'. 
By induction, pick R"' with R' =?p R"' and R" =?p R"'; pick Q"' similarly. As 
above, note that Q"' must be a value. Picking M3 to be R'"[x := Q"'] works, 
since M1 =?p M3 easily and M2 =?p M3 by Lemma A.3. 

Case 7: M = (µJ.P) and M1 = µf.P'. 

Subcase i: M2 = µf.P". By induction, pick P"' as before; then .Af3 = p,j.P"' 
works. 

Subcase ii: M2 = P"[f := Q"], where P =?p P" and M =?p Q". By induction, 
pick P"' as before, and let M3 = P"'[f := Q"]; M1 =?p M3 by the rules of =?p, 

and M2 =?p M3 by Lemma A.3. 

Case 8: M = (µJ.P) and M 1 = P'[f := Q'J, where P =?p P' and M =?p Q'. 

Subcase i: M2 = µf.P". By induction, pick P"' as before and pick Q"' where 
Q' =?p Q"' and M 2 =?p Q111

• Then M3 = P"'[f := Q"'J works, since M 1 =?p M3 
by Lemma A.3 and M 2 =?p M3 by the rules of =?p· 

Subcase ii: M2 = P"[f := Q"], where P =?p P" and M =?p Q". By induction, 
pick P'" and Q111 as before, and let M3 = P"'[f := Q"']; then M 1 =?p M3 and 
M2 =?p M3 by Lemma A.3. 

• 
Definition A.5 M =?v N iff M =v N using no instance of the symmetry axiom. 

Lemma A.6 M =?; N iff M =?v N. 

Proof: Let ~v be the relation of doing 0 or 1 =v steps without using the symmetry axiom. 
When treated as sets, the relations satisfy 

Since =?v is the transitive closure of ~v, it is also the transitive closure of =?p. • 
Theorem A. 7 The relation =?v is Church-Rosser. 

Proof: Since =?p is Church-Rosser, its transitive closure =?; is also [2]. By Lemma A.6, 
=?v is Church-Rosser. • 
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The most important consequence of the Church-Rosser theorem is 

Theorem 2.2 If M =v N, then M =~bs N. 

Proof: If M =?-v N, then C[M] =?-v C[N]. Thus, if either C[M] or C[N] reduce to C[ under 
-v, both of them will by Theorem A. 7. The theorem then follows by an easy induction on 
the number of occurrences of the symmetry rule. • 

A.2 Applicative Congruence 

At each step, the relation ---+v reduces only one subterm. We call that subterm the active 
subterm (20]. An examination of the operational rules indicates that 

Definition A.8 The active subterm of a non-value, closed term M is 

• M if M is of the form (succ c1), (pred cl), ( cond c1 Mo Ml), (µf.Mo), or ((.>..x.Mo) V) 
for V a value; or 

• The active subterm in Ji,f', where M' is closed and not a value, if M has the form 
(succ M'), (pred M'), ( cond M' Mo Ml), (M' Mo), or ((.>..x.Mo) M'). 

This definition matches the informal description of what the active subterm should be: 

Lemma A.9 Let M be a closed subterm of a non-value, closed term C[M], where M 
contains the active subterm of C[M] and C[·] has only one hole. Then if M ---+v M', 

C( M] ---+v C[ M']. 

Proof: An easy structural induction on C[·]. • 
Lemma A.10 Let M be a closed subterm of a non-value, closed term C[M], where M 
contains the active subterm of C[M] and C[·] has only one hole. Then if M -v M', 

C[M] -v C[M']. 

Proof: By induction on n, where 

The base case, where n = 0, is trivial, so we proceed to the induction case. By the induction 
hypothesis, C[Mo] -v C[Mn-1]. A structural induction on C(·] shows that Mn-l contains 
the active subterm in C[Mn-1]; thus, by Lemma A.9, C[Mn-l] ---+v C[Mn] so the lemma 
holds. • 

Lemma A.11 (Activity) Let M be a closed term of type a and C[·] be a closed context 
with holes of type a. Then C[M] -v ct iff either 

1. C[M'] -v C[ for any M'; or 

2. (.>..x.C[x]) M -v cz. 
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Proof: ( =>) If Mis a value, condition (2) holds immediately. So suppose Mis not a value. 
We use a marking technique due to Bard Bloom. Add to the language Av the term #M for 
any term M, and add the reduction rules (and only these rules) 

#V --+v V, Va value 

to the definition of the --+v relation. Note that these rules do not change the computational 
behavior of Av, i.e., M -v ct iff erase(M) -v q where erase(M) is the result of erasing all 
marks in M. 

Proceed by induction on the number of occurrences of #Min C(#M]. The base case 
(n = 0) is trivial. In the induction case, suppose that C[#M] -v C/. Let C' be the first 
term whose active su bterm is contained in a su bterm of # M; if there is no such C', then 
condition (1) holds. Let C' = D[#M], where D[·] has one hole. Since #M -v V for 
some unmarked value V, using the version of Lemma A.10 for the marked language we 
conclude that C' -v D[V]. Note that there is a context E[·] with n - 1 holes such that 
D[V] = E[#M]. The context E[·] has the property that 

(>.x.C[x]) M -v (>.x.C[x]) V 

-v C[V] = E[V]. 

By the induction hypothesis, either E[M'] -v cz for any M' or (>.x.E[x]) M -v cz. If the 
first condition is true, then (>.x.C[x]) M -v E[V] -v c1 so (>.x.C[x]) M -v cz. If the second 
condition is true, then (>.x.C[x]) M -v E[V] -v cz since (>.x.E[x]) M -v E[V] -v C[. 

( "¢:::) Suppose (>.x.C[x]) ( #M) -v C[. Again, proceed by induction on the number of 
occurrences of #Min C[#M]. The base case (n = 0) is trivial, so consider the induction 
case. Examine the reduction sequence for C[#M], and pick the first C' whose active 
subterm is contained in a #M; if there is no such C', then C[M'] -v cz for any M' so 
C[M] -v C/. Let C' = D[#M], where D(·] is a context with one hole and #M contains the 
active subterm in D[#M]. Then 

D[#M] -v D[V] = E[#M] 

where Vis a value with #M -v V and E(·] is an unmarked context with n - l holes. Since 

(>.x.E[x]) ( #M) -v ct 

by the induction hypothesis E[#M] -v q. Since C[#M] -v E[#M], C[#M] -v C/. • 

Lemma A.12 Let Vo and Vi be closed values of the same type. If Vo V' ::Sv Vi V' for any 
closed value V', then Vo ::Sv Vi. 

Proof: Again, we use the marking technique. Suppose C[#Vo] -v C/ assuming, without 
loss of generality, that C[·] contains no marked terms. We proceed by induction on n, 
where an active subterm of the form ((#Vo) V') (V' any closed value) appears n times in 
the reduction. 
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In the base case, n = O; thus, C[Vi] -v C/ trivially. In the induction case, pick the 
first term C' in the reduction sequence with an active subterm of the form ((#Vo) V'). 
Let C' = D[(#Vo) V'], where D[·] has one hole and the hole is active. We know that 
D[(#Vo) V'] -v C[. By hypothesis, D[Vi V'] -v C[. Let E[·] be the context where 
D[Vi V1

] ---+v E[#Vo] and E[·] has no occurrences of #Vo. Since E[#Vo] -v C/ with (n - 1) 
reductions of the form ( (#Vo) V") for some closed value V", by induction we conclude that 
E[Vi] -v C/. The lemma now follows since C[Vi] -v E[Vi] -v Ct. • 

Theorem 2.3 Let M and N be closed terms of the same type. Then M ::Sv N ijj, for all 
vectors V of closed values, 

M V -v Ve{ implies N V -v V{ and V6 = V{ if either is a numeral. 

Proof: ( :::?- ) Trivial. 
(-¢:=) By induction on types. Consider first the base case, where M and N are of type o. 

Suppose C[·] is a context in which C[M] -v c1; then we know by the Activity Lemma that 
either C(M'] -v C/ for any M' or (,\x.C[x]) M -v C/. In the first case, C(N] -v C/ trivially. 
In the second case, since M must reduce to some numeral, say c11, it must be the case that 
N -v C[!. Thus, C[N] -v C[, so M ::Sv N. 

In the induction case, again consider any C[·] where C(M] -v c1. Then by the Activity 
Lemma, either C[M'] -v C[ for any M' or (,\x.C[x]) M -v C[. In the first case, C[N] -v c1 

trivially. In the second case, M -v V0 for some closed value V0 . Since for any vector V of 
closed values, 

- I - I M V -v V0 implies NV -v V1 , 

it follows (using the empty vector) that N -v Vi for some closed value Vi. By hypothesis, 
for any closed value V', 

(M V') V -v C/ implies (NV') V -v Cz. 

By the induction hypothesis, M V' ::Sv NV' for any V'. By Lemma A.12, since M =~bs V0 
and N =~bs Vi, M ::Sv N. • 
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