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Probabilistic Reasoning in the Domain of Genetic Counseling 

Nomi L. Harris 

This report is a modified version of a thesis submitted to the Department of Elec­
trical Engineering and Computer Science in May, 1989, in partial fulfillment of the 
requirements for the degree of master of science. 

Abstract 

This paper describes a program, GEN INFER, which uses belief networks to calculate 
risks of inheriting genetic disorders. GENINFER is based on Judea Pearl's [17] algo­
rithm for fusion and propagation in probabilistic belief networks. These networks 
allow the effects of various pieces of information to be propagated and fused in such 
a way that, when equilibrium is reached, each proposition can be assigned a degree 
of belief consistent with the axioms of probability theory. 

GENINFER takes as input pedigrees of families affected with genetic disorders, 
as well as supplementary phenotypic information. Other factors that can affect the 
inheritance of genetic disorders, such as population frequency and mutation, are also 
taken into acount. GENINFER can handle diseases with incomplete penetrance or 
age-dependent expressivity. GENINFER'S output consists of genotype probabilities 
for all family members and estimated genetic risks for prospective children. 

Pearl's basic algorithm cannot directly handle multiply-connected networks, which 
arise in the genetic counseling domain whenever a family pedigree includes consan­
guinity or more than one child per couple. GENINFER makes use of two cycle 
breaking methods, clustering and conditioning, to handle these situations. 

Research Supervisor: Peter Szolovits 
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provide one such mechanism. 

A belief network consists of a set of nodes, which represent propositions or vari­

ables, connected by directed links, which represent direct relationships between the 

nodes. Belief networks allow the impacts of various pieces of information to be prop­

agated and fused in such a way that, when equilibrium is reached, each proposition 

can be assigned a degree of belief consistent with the axioms of probability the­

ory. Judea Pearl's [17] algorithm for fusion and propagation in probabilistic belief 

networks propagates information through a network by means of messages passed 

between nodes. 

I have implemented a system for genetic counseling, GENINFER, which is based 

on Pearl's method. This thesis describes how I adapted Pearl's method for use in 

the genetic counseling domain, and how I supplemented the basic algorithm, which 

can handle only singly-connected networks, with techniques for handling multiply­

connected belief networks. 

A description of any family with a single-gene inherited defect (which may be 

recessive, dominant, or X-linked) can serve as input to GENINFER. The family 

description is converted to a probabilistic belief network, through which all relevant 

information can be propagated in order to arrive at a belief distribution for the 

genotype of each individual. Additional data pertaining to the specific disorder 

and the possible phenotypes of family members may also be entered; all data is 

fused in a manner consistent with probability theory. Conditioning, which is a way 

of dealing with multiply-connected networks, is used for families in which there is 

consanguinity (marriage between relatives). Clustering is used in order to prevent 

cycles in families with multiple children. The output of GENINFER is an assessment 

of the probabilities of each possible genotype for each person in the family, and a 

risk estimate for future offspring of the consultand (if a consultand is specified). 
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to a particular gene; it can be described by specifying an unordered pair of alleles. 

The phenotype is the physical manifestation of the genotype by the organism. For 

unilocal traits, the possible genotypes are homozygous normal (both alleles normal), 

heterozygous (one normal allele, one defective), and homozygous affected (both al­

leles defective). The set of possible phenotypes is usually {affected, unaffected}, 

although for some disorders the affected phenotype may vary in degree of severity. 

There are a number of different inheritance patterns by which genes may be 

passed to descendants. The most common inheritance patterns for unilocal traits 

are recessive, dominant, and X-linked. A recessive trait is not observable in the 

phenotype unless it is present on both alleles. A person who is heterozygous for 

a recessive trait will not exhibit the disorder, but will be a carrier for that trait. 

A dominant trait is exhibited if it is present at either one or both of the alleles; 

there are no carriers for dominant traits. An X-linked trait is controlled by a gene 

on the X chromosome. Since males have only one X chromosome, they cannot be 

heterozygous for an X-linked trait; they either have the defective gene on their single 

X chromosome (making them hemizygous for the trait), or they are unaffected. 

1.3 Genetic Counseling 

Genetic diseases account for a large proportion of birth defects. People with a 

family history of a genetic disorder may be concerned about the risk that future 

children will suffer from the disorder. The role of a genetic counselor is to assess 

a consultand's risk of passing on a genetic disorder and offer advice on the best 

course of action. Often, consultands will be relieved to hear that their risk of having 

an affected child is quite low, and they can proceed with their plans to raise a 

family. Sometimes the genetic counselor might recommend amniocentesis, which is 

a technique for collecting a few fetal cells from the uterus of a pregnant woman so 

that they can be tested for genetic defects. 

When implementing an AI program in a particular domain, it is helpful to have 

the advice of an expert in the domain. The domain expert who advised me was Dr. 

4 



1.3.2 How G ENlNFER can aid genetic counselors 

The Bayesian calculations that must be performed in order to advise consultands 

about their probable risk can be quite complex. However tempting it may be to 

the genetic counselor to neglect these calculations, it is essential to perform them 

correctly and completely in order to give consultands an accurate assessment. As 

Edmond Murphy, a proponent of Bayesian methods in genetic counseling, phrased 

it, 

There can be no doubt but that an exhaustive analysis of a pedigree, 

even when the mode of inheritance is simple, may itself be complicated. 

In the practical situation, the ideal method may not be applied because 

the counselor either becomes lost in the_ logic or finds the method te­

dious ... I suggest that if they cannot find the time to do the calculations 

themselves, they should delegate the job to someone else. ( [13), p. 396) 

Murphy may not have had a computer in mind when he suggested delegating the 

arduous calculations to "someone else," but in many respects a computer is the ideal 

entity for such tasks. 

GEN INFER is not intended to deprive genetic counselors of their jobs; it does not 

cover every facet of the genetic counseling process. For example, many of the people 

who consult a genetic counselor are older women concerned about the risk of having 

a child with Down's syndrome; pedigree analysis is usually not an important factor 

when addressing this concern. For cases that fall within GENINFER's capabilities, 

however, the answers it gives are compatible with those provided by the domain 

experts. Section 7.2 discusses some extensions that might make GENINFER more 

useful to genetic counselors. 
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The extensional approach treats uncertainty as a truth value attached to a formula, 

and regards the uncertainty of a given formula as a function of the uncertainties of 

its subformulas. Many rule-based or production systems, such as MYCIN, follow the 

extensional approach. In the intensional, or model-based approach, uncertainty is 

attached to states of being or subsets of possible worlds. MUNIN [15] is an example 

of an expert system that uses the intensional approach. In general, extensional sys­

tems tend to be computationally efficient but semantically sloppy, while intensional 

systems are semantically clear but computationally expensive [18]. Much research 

in uncertainty has focused on attempting to reconcile the tradeoff between semantic 

clarity and computational efficiency. 

Bayesian inference and belief networks, which will be discussed in sections 2.2 

and 2.3, are tools that can be used to construct.intensional systems. Belief networks 

clarify the semantics by making causal relationships specific. 

2.2 Bayesian Inference 

Bayesian inference is a mechanism, based on the use of conditional probabilities, 

for reasoning under uncertainty. If we want to calculate the probability of an 

event A, for example, we can take the weighted sum of the probabilities that 

A occurs, conditional on a set of exhaustive and mutually exclusive events Bi= 

P(A) = 2:P(AIBi)P(B;). The conditional belief of a hypothesis H given a piece of 
t 

evidence E can be calculated with Bayes' rule: P(HIE) = P(Ei~r;<H). 
Bayes' rule can be viewed as combining predictive and diagnostic support. Defin­

ing the prior odds on H as O(H) = ~~12) = 1 ~i~h) and the likelihood ratio as 

L(EIH) = ~~~12)' the posterior odds of H given E, O(HIE) = ~~1i}f2) are given 

by the product L(EIH)O(H). The prior odds represent the predictive support 

provided by the background knowledge, while the likelihood ratio represents the 

diagnostic support given to H by E, the evidence observed. 

As an example of how Bayesian revision can be used, consider this hypothetical 

medical scenario. A 23-year-old woman consults a physician, complaining of fatigue, 
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2.3 What Are Belief Networks? 

Belief networks are a graphical representation that allow probabilistic techniques 

such as Bayesian updating to be applied to a system of dependent variables. Belief 

networks (also called Bayesian networks, inference nets, or causal nets) consist of 

a set of nodes connected by directed links. The nodes represent propositions or 

variables, and the links represent direct relationships between the nodes. The re­

lationships may be causal, but they are not limited to this interpretation. Belief 

networks allow the impacts of various pieces of information to be propagated and 

fused in such a way that, when equilibrium is reached, each proposition can be 

assigned a probability or degree of belief consistent with the axioms of probability 

theory [17]. This is possible because of the explicit representation of conditional 

independence between the variables. The absence of an arc from a node x to a node 

y implies that y is conditionally independent of x, given the values of the predecessor 

nodes of x [6]. 

As an example of how belief networks are constructed, consider this simplified 

medical scenario. A 45-year-old woman, complaining of abdominal pain and severe 

diarrhea, consults a physician. These symptoms could be caused by a disease called 

ulcerative colitis, but there are other possible diagnoses, such as amoebic infection. 

Amoebic infections are rare in the United States but are more common in certain 

other countries. When asked whether she has been out of the country recently, the 

patient replies that she visited Mexico a few weeks ago. This evidence gives support 

to the hypothesis that the patient's symptoms are due to an amoebic infection. 

Although ulcerative colitis and amoebic infection are not causally connected to each 

other, and although the patient could conceivably be suffering from both conditions, 

increased belief in the amoebic infection hypothesis "explains away" the evidence of 

severe diarrhea and has the effect of weakening the physician's belief in the ulcerative 

colitis hypothesis. 

This scenario can be represented by the belief network shown in figure 2.1. The 

four variables-abbreviated as diarrhea, Mexico, colitis, and amoebic-are repre­

sented by nodes in the network. The links, in this case, represent causal relationships 
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Shachter's method involves removing nodes from the influence diagram by per­

forming value-preserving reductions. For example, "barren" nodes-those with no 

successors-can be removed from the diagram. Other manipulations allow us to 

eliminate certain chance and decision nodes or to reverse arcs. Each of these op­

erations changes the conditional probabilities of the nodes without changing the 

underlying probability distribution of the influence diagram. If an influence dia­

gram is regular, then each step of the algorithm removes at least one node, so the 

algorithm will always terminate with a single value node remaining. 

2.4.2 Pearl 

Pearl's method for fusion and propagation in belief networks ( [17], [18]) uses local 

message passing to communicate information between nodes. Messages received by 

nodes are combined in a manner consistent with Bayesian theory. The probabilistic 

relationships between the nodes are specified by conditional probability matrices. If 

the network is singly connected, the parameters reach equilibrium (meaning that all 

information has been communicated to all nodes in the network) in time proportional 

to the length of the longest path in the network. Multiply-connected networks must 

be handled specially to avoid infinite cycling of information around a closed loop. 

Pearl's method is described in greater detail in chapter 4; methods for dealing with 

cycles are discussed in chapter 5. 

2.4.3 Lauritzen & Spiegelhalter 

Lauritzen and Spiegelhalter's [11] method for absorption and propagation of evi­

dence in belief networks is based on topologically manipulating the networks and 

using a range of local representations for the joint probability distributions. The 

problem of loops in multiply-connected networks is avoided by clustering the nodes 

into maximal connected components, or cliques. A clique is defined as a set of 

nodes such that each node in the set has an arc to all other nodes in the set. Clique 

potentials are conditional probabilities defined on cliques. 

12 



collecting terms involving nodes in each clique, removing cliques one at a time. In 

general, the procedure when i cliques remain is to transform the evidence potential 

of C;, 1f;(C1), to p(R;IS;) = 1f;(C;)L¢(C;), and then to multiply the potentials for 
R; 

ck, a parent clique of C;, by L¢(C;). The node probabilities can then be obtained 
R; 

by chaining back through the graph and using the conditional probability tables 

[11]. 

Notice that when we transform the potential of C;, we also change the potential 

of its parent clique. This is the mechanism by which information is propagated 

through the graph. 

Peeling 

The Lauritzen & Spiegelhalter method is related to the peeling method of Cannings 

et al., which is described in [26]. The peeling process exploits the conditional inde­

pendence properties expressed by the graph in order to successively "peel" the graph 

down to the nodes of interest [21]. At each stage in the peeling, there is a "cutset" 

that divides the graph into two disjoint, independent components: the peeled set 

(which includes nodes whose information has already been fully incorporated) and 

the unpeeled set. For each cutset, there is a probability function called an R func­

tion which encapsulates the information in the peeled set. The peeling method is 

based on the relationship between R functions on successive cutsets, which derives 

from the property of conditional independence [26]. 

There are many similarities between Lauritzen and Spiegelhalter's method and 

the peeling procedure. The peeled nodes correspond to members of cliques of higher 

order in the set chain. The cutsets on which R functions are defined are the clique 

separators through which evidence is propagated. One difference between the two 

approaches is that the Lauritzen & Spiegelhalter procedure, unlike peeling, chains 

back through the network to obtain marginal distributions on the individual nodes 

[21]. 
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Chapter 3 

Previous Approaches to the 

Genetic Counseling Problem 

3.1 Bayesian Approaches to Calculation of Ge­

netic Risks 

Bayesian techniques can be used to calculate genotype probabilities for individuals 

in a family at risk for a genetic disorder. Unlike non-Bayesian approaches, which 

consider only positive information, Bayesian inference allows all of the information 

in the pedigree, both positive and negative, to be taken into account. This often 

has the effect of lowering our estimate of the probability that a consultand's future 

children will be affected with the disorder in question. 

Consider the pedigree shown in figure 3.1, in which Betty's two brothers are both 

affected with hemophilia. Betty is concerned that her next son might be hemophilic. 

She would like to know the probability that this will occur. A naive calculation of the 

risk to Betty's next son would yield the incorrect estimate of 0.25 by the following 

reasoning: There is a 0.5 chance that Betty is a carrier, since her mother has one 

J.efective allele and one normal one. If she is a carrier, each of her sons has a 0.5 

probability of being affected. The value o.f 0.25 is obtained by multiplying 0.5 and 

0.5. However, this calculation ignores an additional piece of information provided 
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form of retinitis pigmentosa (which causes blindness). Since Daphne's uncle Clifford 

is affected, Daphne is worried that she might be a carrier for retinitis pigmentosa. 

If she were a carrier, each of Daphne's sons would have a 50% percent risk of being 

affected. A naive calculation of the risk to Daphne's prospective son would give 

the overly pessimistic probability of 1/8, or 12%. The use of Bayesian probabilities 

revises our assessment of risk to Daphne's prospective son, lowering it to only 2%. 

Alice Andrew 

David Daphne 

Figure 3.2: Pedigree for family affected with X-linked retinitis pigmentosa 

In order to determine Daphne's probability of being a carrier, we must first cal­

culate the probability that her mother, Clara, is a carrier. The table below shows 

the calculation of Clara's probability of being a carrier [14]. Notice that information 

Prior probability 
Conditional probability 
(one normal son) 

Joint probability 
Posterior probability 
Risk to next son 

Betty is a carrier 
0.5 

0.5 
0.25 

.25/(.25 + .5) = .33 
0.17 

Betty is not a carrier 
0.5 

1 
0.5 
.67 
0 

Table 3.1: Calculation of risk to Betty's future children 
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3.2.1 PEDIG 

One early program, PEDIG [9], was written in FORTRAN. It uses only the infor­

mation in the pedigree; no other data can be considered. PEDIG also suffers from 

an inability to process families in which there is consanguinity. 

3.2.2 GENEX 

The GENEX processor, by J. Hilden [10], derives probability formulas, rather than 

numerical answers, for problems involving inheritance of qualitative traits. In order 

to use a given pedigree as input, the pedigree must first be broken down by hand 

into atomic assumptions described in terms of probabilities. The formulas derived 

by GENEX may, according to Hilden, "provide valuable insight into certain areas, 

notably in statistical genetics"; however, they are not likely to be of much practical 

value to genetic counselors. 

3.2.3 Prokosch et al. 

Prokosch, Seuchter, Thompson, and Skolnick [19] used a commercially available 

expert system shell (Intelligence/Compiler) as the basis of two prototypes of an 

expert system for human genetics. One approach investigated by Prokosch and his 

colleagues is object-oriented: family relationships are represented by three frames 

(KINDRED, INDIVIDUAL, and MARRIAGE). The other approach, fact-based 

pedigree representation, was favored as being "more readable and easier to program" 

[19]. In this representation, parent-child relationships are described by Prolog-like 

statements such as "X is-mother-of Y." Forward-chaining rules must be added to 

allow the system to deduce other family relationships. For example, to assert the 

relation "grandfather," the following rule is used: 

If X is-father-of Z and 

Z is-parent-of Y 

then 
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Figure 4.1: Message-passing in a belief network 

Each node in a belief network may contain evidence or information, which we 

wish to propagate to all other nodes in the network in order to calculate a belief 

distribution for the network. The propagation of information through the belief net­

work is accomplished by means of messages sent between nodes by two parameters, 

7r and A. 7r is a vector representing causal support from a node's ancestors, while A 

represents diagnostic support from a node's descendants. Each node contains a con­

ditional probability matrix, which characterizes the relationship between the node 

and its parents. 

4.1.1 Calculating beliefs 

The belief in a hypothesis depends on three parameters: the strength of the causal 

support for the hypothesis, the strength of the diagnostic support for the hypothesis, 

and the conditional probability matrix. Consider the portion of a belief network 

shown in Figure 4.1 [17]. We are interested in calculating the belief in each possible 

hypothesis for variable A. Variables B and C are causally related to A, and A is 

causally related to its children X and Y. Each link is labeled with two dynamic 

parameters, 7r and A, which encode the messages sent between a pair of nodes. 

AA(B), for example, represents the message sent from node A to its parent node, B. 

After the influence of all data has been propagated through the network, the 
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Figure 4.2: Propagation of updates 
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there are no cycles in the network. Note that Pearl's algorithm is distributed: 

messages are passed between nodes, not through any central control. When the 

network has reached equilibrium, the beliefs in the possible hypotheses, conditional 

on the available evidence, can be obtained by using the fusion equation described 

in section 4.1.1. 

4.2 Applying Pearl's Algorithm to the Genetic 

Counseling Problem 

Pearl's algorithm extends the idea of Bayesian revision to an arbitrary network, such 

as a pedigree. I have adapted and extended Pearl's general-purpose method for use 

in the domain of genetic counseling. 
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man with genotype j will have a child with genotype k. Note that Vi,f2~,Mi,j,k = 1, 
k 

where i, j, and k range over the values {affected, heterozygous, normal}, since every 

child must have one of the three genotypes. 

Table 4.1 shows a conditional probability matrix for a male individual in a 

family at risk for an X-linked genetic disorder. 

Mother and father 

I Male child II AA I AH I AN I HA I HH I HNI NA I NH INN I 
A 1 0 1 0.5 0 0.5 0 0 0 
H 0 0 0 0 0 0 0 0 0 
N 0 0 0 0.5 0 0.5 1 0 1 

Table 4.1: Probability matrix for X-linked disorder 

4.2.2 Initializing the parameters 

When applying Pearl's method to a specific domain, the initialization of the pa­

rameters is the aspect that requires the most modification. Before we begin the 

propagation process, the 7r and A parameters must be initialized to reflect the avail­

able evidence. Only links leading to root nodes (i.e., those with no ancestors in the 

pedigree) are assigned initial 7rs, and only links leading to leaf nodes are assigned 

initial AS. The parameters on the other links are calculated during the propagation 

phase of the algorithm. 

Evidence pertaining to individuals' genotypes can often be obtained by consid­

ering their phenotypes. This evidence is represented by attaching a dummy leaf to 

each person node, with the A on the link set to represent what we know about the 

person. In effect, the dummy leaf represents the phenotype of its parent, while the 

parent itself represents the genotype. Figure 4.4 shows the belief network for Betty's 

family, with dummy leaves added to represent the phenotype of each individual. 

Each value Ai in the initial A vector represents P(phenotypelgenotypei), or the 

probability that we would see the observed phenotype if the genotype of the person 

were i. For example, for a person affected with a dominant disorder, the initial A 
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inferences should result." When I experimented with changing the value of p for a 

particular family, the calculated beliefs varied only slightly. 

4.2.3 Propagation 

In the intuitive view of the propagation phase of Pearl's algorithm, 7r and,\ messages 

are passed between nodes. In my program, this message-passing is accomplished by 

assigning 7r and ,\ vectors to the links between nodes, and updating the vectors to 

reflect the transmission of new information. Once the initial values for some of the 

parameters have been set, other parameters are put on a queue to await updating. 

The exact order in which links that are on the queue are updated is not important, 

as long as we make sure that each parameter is not present in the queue more than 

once at a given time. 

The propagation procedure takes a 7r or,\ parameter off the queue and updates it 

with the fusion equations. When a parameter is updated, we compare its new values 

to the values that were present before the update. If the difference between the old 

values and the new values is small enough to be attributable to roundoff error, we 

move on to the next item on the queue. Otherwise, the parameters dependent on 

the newly updated parameter must be put on the queue. If the,\ on a link changes, 

we must update the .As of the links from the parent to the grandparents and the 7rs 

for the siblings of the child. When a 7r vector is updated, we must update the ,\ on 

the link from the child to the child's other parent and the 7rS on the links from the 

child to the child's children. All person nodes have at least one "child": the dummy 

leaf node. 

One special case that was not mentioned by Pearl applies when the 7r vector 

on a link to a root node is being updated. (This will occur when the ,\ of another 

child of the root is updated.) Instead of multiplying the summation of the weighted 

probabilities of the grandparents by the ,\ vectors of the sibling nodes of the child 

in order to obtain the new 7r, we must multiply by the prior probabilities for the 

parent: 
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4.3 Advantages of Pearl's Method over Murphy 

& Chase 

The methods described by Murphy and Chase [14] could be directly implemented, 

but using Pearl's algorithm has a number of advantages over that approach. Unlike 

the case-specific methods described in Murphy & Chase, Pearl's method is robust 

and generalizable. Murphy & Chase describe separate procedures for different types 

of families and different inheritance patterns. With Pearl's method, there is no 

need to approach different genetic counseling cases differently, nor is it necessary 

to specify a consultand: all available information is propagated to all nodes in the 

belief network. Information outside of the pedigree itself, such as the results of 

enzyme tests, can be incorporated orthogonally, without disrupting the structure of 

the underlying family network (see Section 6.4). This supplementary information is 

automatically fused with the pedigree data to yield correct combined probabilities. 

The methods in Murphy & Chase rest on the assumption that no unaffected 

individual is a carrier unless he or she has affected offspring; however, because 

this assumption is not explicitly specified, it cannot be adjusted. It is difficult 

to consider population risks when using the methods in Murphy and Chase. The 

background risk of a disorder can be specified as input to GENlNFER, which allows 

it to take advantage of increased knowledge about the prevalence of the disease 

in the population of interest. For example, if a consultand belongs to an ethnic 

group known to have a higher incidence of the disease in question, this information 

can be taken into account by the system. Pearl's method also allows penetrance 

probabilities to be incorporated in a straightforward manner (see section 6.1). The 

possibility that an instance of a disorder has been caused by a new mutation can be 

covered by altering the conditional probability matrices (see section 6.3). 

A key limitation of many programs or procedures for calculating genetic risk is 

that they cannot be used on families with consanguinity. I have extended Pearl's ba­

sic algorithm to handle such families. The methods I used to handle these multiply­

connected family networks are described in the next chapter. 
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by instantiating a selected group of variables in order to break the communication 

pathways. 

In stochastic simulation, each variable is first assigned a fixed value. Each node 

then examines the current state of its neighbors, computes a belief distribution for 

its host variable, and randomly selects one value from the computed distribution. 

Beliefs are computed by calculating the percentage of times that each value is se­

lected by a node [18]. Stochastic simulation is guaranteed to converge eventually on 

the correct belief assignment, but it generally requires a very long relaxation period 

before it reaches a steady state [17]. However, Chavez and Cooper [4] have con­

structed an algorithm that efficiently approximates the solutions to belief networks 

by means of stochastic simulation. The runni!1g time of their algorithm does not 

increase exponentially with the number of loop-cutset nodes. 

Olesen et al. [15] and Lauritzen & Spiegelhalter ( [11], [21]) use two forms 

of clustering to break cycles. For each set of nodes that share a common parent 

or parents, an extra node is inserted between the children and the parents. All 

parents in a "family" then point to an intermediate node, which points to each 

of the children of those parents. This process of introducing intermediate nodes is 

referred to as "marrying nodes" by Spiegelhalter and as "divorcing multiple parents" 

by Olesen. In addition, both pairs of researchers use triangulation to form cliques 

in the multiply-connected networks. The cliques can be treated as clustered nodes, 

and the hypergraph formed by the cliques and the connections between them is 

guaranteed to be acyclic [25]. 

Agosta [1] has derived a closed form solution, based on clustering, for certain 

multiply-connected belief networks. Unfortunately, the solution is applicable only 

if the leaf nodes are conditionally independent, which is not the case for family 

networks. 

Although probabilistic inference in singly-connected (acyclic) belief networks can 

be performed in polynomial time, probabilistic inference in multiply-connected net­

works has been shown to be NP-hard [7]. Therefore, it may not be possible to find 
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Figure 5.2: Structure of family network with parental unit added 

5.4 Clustering: Parental Units 

In clustering, instead of connecting each child directly to its parent, an intermediate 

node is introduced. I call this node a parental unit; Spiegelhalter [21] refers to it 

as a marriage node. The parental unit contains no new information, but rather 

combines the information provided by the parents and passes it on to the children. 

As Figure 5.2 illustrates, the addition of a parental unit breaks up the figure-eight 

cycle. Note that each person node must still be assigned a dummy leaf, which is 

connected directly to it. Because they contain no phenotypic information, parental 

units are not assigned dummy leaves. The parental unit structure is flexible enough 

to accommodate families with remarriages and half-siblings, because each person 

can belong to more than one parental unit. 

In unclustered networks, there was only one kind of link between nodes. Links 

in clustered networks can be of three different types: 

1. Links from person nodes down to parental units; 

2. Links from parental units down to person nodes; 

3. Links from person nodes to dummy leaf nodes. 

The heterogeneity of the clustered networks is reflected by the 7r and .A vectors 

and the conditional probability matrices. The 7r and .A messages sent by person 

nodes will still have three entries. The messages sent by parental units, however, 

have 9 (3x3) elements, because they represent possible genotypes of a couple. The 

conditional probability matrices in the p~ental units have 9x3x3 entries, rather 

than 3x3x3; each element Ni,j,k represents the probability that the parental unit has 
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[24], where v1 ••• vn are the possible values that the loop-cutset nodes can take on. 

P(AIE, C1 = v1 , ... , Cn = vn) can be calculated by running Pearl's algorithm on 

the conditioned network. The calculation of the joint probability of the loop-cutset 

given evidence E, P( C1 = v1 , ... , Cn = vnlE), will be discussed in section 5.5.3. 

5.5.1 Choosing a loop-cutset 

A loop-cutset must contain at least one node from every cycle in the network, with 

the additional constraint that a loop-cutset node may not have more than one parent 

in the same cycle. (If a loop-cutset node is the child to more than one other node in 

the loop, it will receive top-down information more than once, leading to incorrect 

updating.) 

An ideal loop-cutset contains as few nodes as possible while still satisfying all 

conditions. Keeping the loop-cutset small helps to minimize the expensive opera­

tions that must be performed on it. Finding the optimal loop-cutset for a network is 

NP-hard, but a reasonably good loop-cutset can be found quickly (in O(n 2
) worst­

case time complexity) by following this simple heuristic algorithm [24]: 

1. Remove (or mark) all nodes that are not in any cycle. 

2. If there are any nodes remaining, they are in a cycle, so choose a good loop­
cutset candidate from the cycle (one that does not have more than one parent 
in the cycle.) Add this node to the loop-cutset and remove it from the network. 

3. Loop back to step 1. If there are no remaining nodes in a cycle, we are done. 

In practice, families tend not to have multiple cycles, so the loop-cutset will typically 

contain only one or two nodes. 

5.5.2 Checking for cycles 

The algorithm for finding the loop-cutset requires that we check for cycles in the 

network. In fact, we will not need to condition the network in the first place if it is 

free of cycles. 

We can check for cycles in a belief network by using a version of depth-first 

search. We start with any node, and follow a link out of it to another node. Each 
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1c1 
P(Ck) = IlP(Cj = Vj), 

j=l 

where Vj is the value assigned to loop-cutset node Cj in the kth instantiation. 

Calculating joint probabilities of loop-cutset instantiations 

There is a problem with this formula: how do we know what P( Cj = Vj) is when 

we can't run the propagation algorithm on the intact network? Suermondt [23] has 

derived a method for calculating joint probabilities for loop-cutset instantiations. 

First, the nodes in the network are ordered according to the "is-a-predecessor-of" 

relationship; this can be accomplished by a topological sort. When the nodes in 

a network are numbered topologically, any ancestor of a given node has a smaller 

number than that node. An algorithm that topologically sorts a network can be 

obtained by modifying the depth-first search algorithm. 

The initial beliefs, or priors, are calculated for each node in order of the topo­

logical numbering, as follows: If a node has no predecessors, its prior is simply the 

normalized product of the 7r and A vectors on the link to its dummy leaf. If a node 

has predecessors, we will already have calculated their priors because of the order 

in which we are processing the nodes. The prior for node A then becomes: 

Prior( A;) = L:P(A;JMother;, Fatherk)BEL(Motherj)BEL(Fatherk) 
j,k 

The priors are used when calculating the joint probabilities of loop-cutset m­

stantiations [23]. Let c1 represent the probability that loop-cutset node C1 takes 

on the value v1. For each loop-cutset instantiation [ci, ... ,en], we want to calculate 

P( Ci, ... , Cn) = P( ci)P( c2 lc1)P( c3Jci, c2) ... P( cnJci, ... , Cn-1). 

The joint probability of the loop-cutset instantiation is calculated as follows [23]: 

1. Let C1 be the first node in the loop-cutset, which has been topologically sorted. 
Set C1 to v1 , the first value in the current loop-cutset instantiation. 

2. Let x be the prior probability that C1 = v 1 . 

3. Initialize the joint probability to 1. 

4. While there are still loop-cutset members that have not yet been instantiated, 
do: 
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Chapter 6 

Incorporating Additional 

Information 

The facilities for calculating genetic risk that I have described thus far rely only 

on simple phenotypic evidence in the pedigree (i.e., affected vs. unaffected) and on 

the background risk of the disorder. GENINFER is capable of incorporating other 

sources of information, concerning both the disorder and individual family members. 

In addition to the population frequency of the disease, the penetrance and the 

mutation rate may be supplied as input. Some disorders may have age-dependent 

expressivity; this can be specified so that it is taken into account. Finally, there 

may be auxiliary phenotypic information, such as enzyme levels, for members of the 

family; these data are automatically combined with other forms of information to 

produce combined genotype probabilities. 

6.1 Penetrance 

In some genetic disorders, there may be individuals who have affected genotypes, yet 

appear normal. These people can pass on the defective allele to their children. The 

probability that a person with a defective gene will exhibit the defect is called the 

penetrance of the gene. Incomplete penetrance is different from simple recessivity: 

in a disorder with incomplete penetrance, there may be two individuals who have 
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manner similar to penetrance probabilities, since the probability that the disorder 

is expressed at a given age is equivalent to its penetrance at that age. 

6.3 Mutation 

A child with a genetic disorder has usually inherited the disorder from his or her 

parents. Sometimes, however, a genetic defect may be due to a spontaneous muta­

tion that took place in the genes of the affected individual. In the case of certain 

genetic disorders, e.g., achondroplastic dwarfism, mutation is to blame more often 

than inheritance. In other disorders, spontaneous mutation may be rare but not 

unheard of. 

The possibility of spontaneous mutation should be taken into consideration both 

to predict risks for future offspring and to expiain the genotypes of ancestors. For 

example, when a child affected with a dominant disorder is born to two unaffected 

parents, mutation may be to blame. GENlNFER allows the mutation rate of a disor­

der to be specified in the input. Unlike penetrance, which affects prior probabilities, 

the mutation rate is taken into account by altering the conditional probability ma­

trices. Table 6.1 shows a conditional probability matrix for an autosomal recessive 

disorder with mutation rate µ. The exact numbers in the matrix are less important 

than the fact that some entries that used to be zero have become non-zero. Note 

that the probabilities in each column still sum to one. 

Mother and father 
I Child II AA I AH I AN I HA I HH I HN I NA I NH INN 

A 1 .5 + µ µ .5 + µ .25 + µ µ µ µ 0 
H 0 .5 - µ 1 - µ .5 - µ .5 + 2µ .5 + 2µ 1 - µ .5 + 2µ µ 
N 0 0 0 0 .25 - 3µ .5 - 3µ 0 .5 - 3µ 1 - µ 

Table 6.1: Conditional probability matrix for an autosomal recessive disorder with 
mutation rate µ 

What about the possibility of back mutation? Could a defective allele sponta­

neously revert to a normal state? While not impossible, this phenomenon is rare 
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A given piece of information may not definitively reveal the true phenotype; there 

may be uncertainty associated with any piece of information. The results of a test 

are therefore weighted by the accuracy of the test. 

Supplementary information is included in the network by allowing each person 

node to have more than one dummy leaf. Each dummy leaf represents some ev­

idence regarding the person's genotype. The information is entered in the form 

P(Jindinglgenotypei)· If a test is not 100% accurate, the probabilities will not be 0 

or 1. This is how uncertainty regarding the significance of the data is encoded. For 

example, if an individual has tested positive for an abnormally high level of some 

enzyme, and the probability that a positive result on this test indicates a heterozy­

gous genotype is 0.92, then the vector will contain the element P(high enzyme level 

I heterozygous) = .92. The user does not need to perform a Bayesian revision on 

the data, because this is done automatically by Pearl's algorithm. 

When there was only one dummy leaf per node, the probability that a node had a 

particular genotype was calculated by multiplying together the final 7r and ,\ vectors 

on the link between the node and its dummy leaf. If supplementary phenotypic data 

is entered, causing some nodes to have more than one dummy leaf, all leaves must 

be considered when calculating the belief for a node. The new belief function is: 

BEL(personi) =a* IT-Xd(personi) L P(personilPUg)7ri(PUg) 
d gEGxG 

where PU is the parental unit of person i, d E dummy leaves of A, and G = {affected, 

heterozygous, normal}. 

6.5 Explaining Anomalies 

Sometimes the information provided to GENINFER by a user contains apparent 

inconsistencies. For example, the child of two unaffected parents may be identified as 

exhibiting a dominant disorder (one with 100% penetrance, let's assume). Situations 

of this type cause all of the beliefs calculated by GENINFER to come out to zero 

for one or more individuals. The program. checks for this occurrence. When it is 

detected, the location in the pedigree of the unexpected event is pinpointed, and 
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Genotype probabilities for BETTY-FAMILY family: 

PERSON HOMOZYGOUS AFFECTED HETEROZYGOUS HOMOZYGOUS NORMAL 
hypoth-male 0.16667 0.00000 0.83333 
hypoth-female 0.00000 0.16667 0.83333 
ARTHUR 0.00000 0.00000 1.00000 
ANNE 0.00000 1.00000 0.00000 
BENJAMIN 1.00000 0.00000 0.00000 
BILL 1.00000 0.00000 0.00000 
BETTY 0.00000 0.33333 0.66667 
BOB 0.00000 0.00000 1.00000 
CLAUDE 0.00000 0.00000 1.00000 

Consultands BETTY and BOB are concerned about the risk of passing 
on HEMOPHILIA, an X-LINKED disorder, to future offspring. 
After analyzing all available information, I have assessed the 
risks as follows: 
Female offspring have a O.OY. chance of being affected with 
HEMOPHILIA and a 17Y. chance of being carriers. 
Male offspring have a 17Y. chance of being affected and a 83Y. 
chance of being normal. 

Table 6.2: Output of GENINFER on Betty's family (see Figure 3.1) 
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Chapter 7 

Conclusions 

I have shown that Pearl's method for propagation and fusion in probabilistic belief 

networks can be implemented in a working system in a real-world domain, and that 

clustering and conditioning can be used together to handle successfully the problem 

of multiply-connected networks. 

Several characteristics of the genetic counseling domain make it well suited to an 

artificial intelligence approach. The domain encompasses many types of knowledge, 

both qualitative and quantitative, and a successful approach must be able to combine 

these diverse sources of information. Cases on which to test a program for genetic 

counseling are readily available. The problem of uncertainty must be dealt with 

appropriately. In genetic counseling, unlike some other domains, the uncertainty 

can generally be expressed numerically, which makes probabilistic reasoning more 

directly applicable. 

In order to adapt Pearl's algorithm for use in the genetic counseling domain, some 

aspects had to be changed substantially, while others remained relatively untouched. 

Figuring out how to set the initial parameters was a large part of the battle to 

implement the algorithm. Moreover, because all evidence is available to the network 

at the same time, certain boundary conditions had to be adjusted. The procedures 

that break cycles by clustering and conditioning the networks added substantially 

to the size of the program. 

The choice of Pearl's method for the problem of genetic counseling has a number 
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Suermondt, Chavez, and Cooper [2] have performed such an experiment in a dif­

ferent domain: they implemented Lauritzen and Spiegelhalter's method and Pearl's 

method (with conditioning) and compared their performance on a sample network 

which implements an alarm message system for patient monitoring (ALARM). The 

ALARM network is shown in Figure 7.1 [2]. 

Hypovolemia 

LowOua>ut 

TM ALARM Mtwork rtpresc111ing cmual reladonslUps is 1"'1w11 with diagnostic ( •>. ~ 
( 0) and measuremelfl ( G) noda. CO: cardiac output, CVP: ctlllTal ~nous J"euure, LVED volunw: left 
ve111ricular end-diastolic vollllM, LV failure: l4ft ~lllricuJ/Jr failure, MV: 1ltilulu ~lllilalio11, PA. Sal: pul­

mo1111TJ ~ry orygaa .raturatiolt, PAP: p&dmo1111TJ artery prasure. PCWP: pulmonary capillllry wedge 
preuure, Pru: breazlillg pnmve. RR: rupira1ory rau, TPR: total puipheal ruistallce, 1V: tUl.al vob.uM 

Figure 7 .1: The ALARM network 

The time complexity of Pearl's conditioning algorithm is proportional to the 

product of the size of the network, the number of loop-cutset instantiations, and 

the number of pieces of evidence, whereas the time complexity of Lauritzen and 

Spiegelhalter's approach is linear in the number of cliques and exponential in the 

size of the largest clique in the network. Because of the configuration of the ALARM 

network, Lauritzen and Spiegelhalter's algorithm ran significantly faster on this 

network than did Pearl's. The ALARM network has five separate loops, which 

makes the loop-cutset impractically large. With a loop-cutset of this size, Pearl's 

propagation algorithm must be run 160 (5 * 25 ) times. 
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it could ask the user to enter information relevant to a particular disorder. This 

capability is already present to a limited degree. For example, GENINFER asks if 

the disorder being examined is age-dependent; if the user indicates that it is, he or 

she is prompted to enter the ages of family members. 

GENINFER's utility would be increased if it were supplied with more background 

knowledge about specific genetic disorders. It could keep a database of facts such 

as the population frequencies and penetrances of various genetic disorders. It could 

also be stocked with data about disorders with age-dependent expressivity; currently, 

Huntington's disease is the only disorder for which it has this kind of data. 

It has been suggested that I enable the genetic counseling program to run in 

reverse: given a family affected with a genetic disorder, have the program figure out 

the inheritance pattern of the disorder. This capability would be useful for cases 

involving heritable defects that can result from several different inheritance pat­

terns (e.g., retinitis pigmentosa). This problem might be amenable to an approach 

involving belief networks. 

Another possibility for future work is to implement Lauritzen and Spiegelhalter's 

algorithm in the genetic counseling domain, and empirically compare the running 

times. 

In its current form, GENINFER can provide a genetic counselor with genetic 

probabilities, but it is not equipped to offer advice on desirable courses of action. 

Adding a module that employed utility theory and decision analysis would narrow 

the gap between GENINFER's capabilities and the capabilities of a human genetic 

counselor. It is not clear, however, that such an addition would be feasible, or 

that it would be appreciated. Assigning utilities to such variables as the value of 

having a normal child is a difficult task, and not one that most consultands would 

feel comfortable with. Moreover, physicians have traditionally displayed a lack of 

enthusiasm for computer programs that they feel might replace them. 

It is clear that no computer program can or should take the place of a human 

physician. With this caveat in mind, we can continue to explore the ways in which 
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Mother (if known): 
Father (if known): 
Additional phenotypic information: 

(lperson56I IS #<Name: ANNE; Gender: FEMALE; Parents: UNKNOWN 
and UNKNOWN; Pheno: UNAFFECTED) 

More people to enter? (y or n, default y): y 

Person's name (must be unique) : Arthur 
Gender: male 
Phenotype (affected, unaffected, or unknown): 
Mother (if known): 
Father (if known): 
Additional phenotypic information: 

unaffected 

(lperson57I IS #<Name: ARTHUR; Gender: HALE; Parents: UNKNOWN 
and UNKNOWN; Pheno: UNAFFECTED) 

More people to enter? (y or n, default y): y 

Person's name (must be unique) : Benjamin 
Gender: male 
Phenotype (affected, unaffected, or unknown): 
Mother (if known) : Anne 
Father (if known): Arthur 
Additional phenotypic information: 

affected 

(lperson58I IS #<Name: BENJAMIN; Gender: MALE; Parents: ANNE 
and ARTHUR; Pheno: AFFECTED) 

Input other people ... 

More people to enter? (y or n, default y): n 

If there is a specific consultand, please enter her name, and then 
her husband's name (if known). 

Consul tand: Betty 
Husband: Bob 

(lfamilySSI •#<Family: BROWN. Disorder: HEMOPHILIA (X-LINKED). 
Consultands: BETTY, BOB 
Background risk: 0.01; Penetrance: 1; Mutation rate: O.> 

BETTY-FAMILY family before propagating information: 
#<Family: BETTY-FAMILY. Disorder: SPASTIC-PARAPLEGIA (X-LINKED). 
Consultands: BETTY, BOB. 
Background risk: 0.01; Penetrance: 1; Mutation rate: O.> 
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SMITH family before propagating information: 
#<Family: SMITH. Disorder: RETINITIS-PIGMENTOSA (I-LINKED). 

Consultands: DAPHNE, NONE. 
Background risk: 1.0e-4; Penetrance: 1; Mutation rate: O.> 

PERSON GENDER PHENOTYPE PARENTS 

ALICE FEMALE UNAFFECTED UNKNOWN, UNKNOWN 
ANDREW MALE AFFECTED UNKNOWN, UNKNOWN 
BARBARA FEMALE UNAFFECTED ALICE, ANDREW 
BRIAN MALE UNAFFECTED AMALIA, UNKNOWN 
CLARA FEMALE UNAFFECTED BARBARA, UNKNOWN 
CLIFFORD MALE AFFECTED BARBARA, UNKNOWN 
DAVID MALE UNAFFECTED CLARA, UNKNOWN 
DIANA FEMALE UNAFFECTED CLARA, UNKNOWN 
DOROTHY FEMALE UNAFFECTED CLARA, UNKNOWN 
DAPHNE FEMALE UNAFFECTED CLARA, UNKNOWN 
DIANASON1 MALE UNAFFECTED DIANA, UNKNOWN 
DUNASON2 MALE UNAFFECTED DIANA, UNKNOWN 
DOROTHYSON1 MALE UNAFFECTED DOROTHY, UNKNOWN 
DOROTHYSON2 MALE UNAFFECTED DOROTHY, UNKNOWN 
DOROTHYSON3 MALE UNAFFECTED DOROTHY, UNKNOWN 
DAPHNESON1 MALE UNAFFECTED DAPHNE, UNKNOWN 

Genotype probabilities for SMITH family: 

PERSON HOMOZYGOUS AFFECTED HETEROZYGOUS HOMOZYGOUS NORMAL 

hypoth-male47 1.94157e-2 0.00000 0.98058 
hypoth-female46 1.94157e-6 1. 95118e-2 0.98049 
ALICE 0.00000 1.00000e-4 0.99990 
ANDREW 1.00000 0.00000 0.00000 
BARBARA 0.00000 1.00000 0.00000 
BRIAN 0.00000 0.00000 1.00000 
CLARA 0.00000 0.11649 0.88351 
CLIFFORD 1.00000 0.00000 0.00000 
DAVID 0.00000 0.00000 1.00000 
DIANA 0.00000 2.32994e-2 0.97670 
DOROTHY 0.00000 1.29448e-2 0.98706 
DAPHNE 0.00000 3.88314e-2 0.96117 
DIANASON1 0.00000 0.00000 1.00000 
DIANASON2 0.00000 0.00000 1.00000 
DOROTHYSON1 0.00000 0.00000 1.00000 
DOROTHYSON2 0.00000 0.00000 1.00000 
DOROTHYSON3 0.00000 0.00000 1.00000 
DAPHNESON1 0.00000 0.00000 1.00000 

Consultand DAPHNE is concerned about the risk of passing on 
RETINITIS-PIGMENTOSA, an I-LINKED disorder, to future offspring. 
After analyzing all available information, I have assessed the risks as 
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A.3 Age-dependent expressivity 

The rnnsultands in the following two examples, Betty and Bob, are concerned about 
the risk of Huntington's disease, since Betty's father and brother are affected with 
Huntington's. In the first example, Betty and Bob are fairly old, so the probability 
that they are carrying the Huntington's gene but have not yet expressed it is low. 
The couple in the second example is young, so there is a higher probability that 
they might pass on the Huntington's allele to their offspring, without yet having 
manisfested the disease themselves. 

A.3.1 Old parents 

BROWN family before propagating information: 
#<Family: BROWN. Disorder: HUNTINGTON (AUTOSOMAL-DOMINANT). 
Consultands: BETTY, BOB. 
Background risk: 5.0e-5; Penetrance: 1; Mutation rate: O.> 

PERSON GENDER AGE PHENOTYPE PARENTS 

ARTHUR MALE 65 AFFECTED UNKNOWN, UNKNOWN 
ANNE FEMALE 64 UNAFFECTED UNKNOWN, UNKNOWN 
BENJAMIN MALE 45 AFFECTED ANNE, ARTHUR 
BETTY FEMALE 42 UNAFFECTED ANNE, ARTHUR 
BOB MALE 40 UNAFFECTED UNKNOWN, UNKNOWN 

Genotype probabilities for BROWN family: 

PERSON HOMOZYGOUS AFFECTED HETEROZYGOUS HOMOZYGOUS NORMAL 

ARTHUR 1. 52547e-5 0.99998 0.00000 
ANNE 0.00000 2.59332e-6 1.00000 
BENJAMIN 8.64445e-7 1.00000 0.00000 
BETTY 0.00000 0.15256 0.84744 
BOB 0.00000 1.80006e-5 0.99998 

Consultands BETTY and BOB are concerned about the risk of passing on 
HUNTINGTON, an AUTOSOMAL-DOMINANT disorder, to future offspring. 
After analyzing all available information, I have assessed the risks 
as follo.-s: 
Future offspring have a 8% risk of being affected .-ith HUNTINGTON. 

A.3.2 Young parents 

BROWN family before propagating information: 
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PERSON HOMOZYGOUS AFFECTED HETEROZYGOUS HOMOZYGOUS NORMAL 

JUDY 
CHARLIE 
NOMI 
ELAINE 

0.00000 
0.00000 
0.00000 
0.00000 

0.27836 
1.74409e-2 
0.14550 
0.14550 

0.72164 
0.98256 
0.85450 
0.85450 

Consultands JUDY and CHARLIE are concerned about the risk of passing on 
TAY-SACHS, an AUTOSOMAL-RECESSIVE disorder, to future offspring. 
After analyzing all available information, I have assessed the risks as 
follows: 
Future offspring have a 0.077'l. risk of being affected with TAY-SACHS 
and a 14'l. chance of being carriers. 

A.5 Anomalous situation 

In this example, a child with a dominant disorder is born to two unaffected par­
ents. This anomalous situation results in all-zero belief functions for some of the 
family members. This outcome is detected by GENINFER, which proposes possible 
explanations for the anomaly. 

HARRIS family before propagating information: 
#<Family: HARRIS. Disorder: ACHONDROPLASTIC-DWARFISM (AUTOSOMAL-DOMINANT). 
Consultands: JUDY, CHARLIE. 
Background risk: 0.002; Penetrance: 1; Mutation rate: O.> 

PERSON GENDER PHENOTYPE PARENTS 

JUDY FEMALE UNAFFECTED UNKNOWN, UNKNOWN 
CHARLIE HALE UNAFFECTED UNKNOWN, UNKNOWN 
NOMI FEMALE UNAFFECTED JUDY, CHARLIE 
ELAINE FEMALE AFFECTED JUDY, CHARLIE 

Genotype probabilities for HARRIS family: 

PERSON HOMOZYGOUS AFFECTED HETEROZYGOUS HOMOZYGOUS NORMAL 

JUDY 
CHARLIE 
NOMI 
ELAINE 

0.00000 
0.00000 
0.00000 
0.00000 

0.00000 
0.00000 
0.00000 
0.00000 

0.00000 
0.00000 
0.00000 
0.00000 

There is an apparently anomalous situation in the HARRIS family. 
ELAINE, who would be expected to be unaffected, is listed as affected. 
There are several possible explanations for this. 
1. The penetrance of ACHONDROPLASTIC-DWARFISM is not really 100'l. 

(so JUDY or CHARLIE might actually have the affected genotype, 
despite appearing unaffected). 
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A.7.1 One loop 

Output of GENINFER on pedigree from [21]. This pedigree has one cycle, caused 
by the marriage between Charles and his niece Florence. Charles and Florence are 
concerned about having a child with APKD, since Florence's brother George has an 
affected son. Charles is selected as the node for the loop-cutset, and the propagation 
algorithm is run once for every possible genotype that George could have. 

SPIEGELHALTER-FAMILY before propagating information: 
#<Family: SPIEGELHALTER-FAMILY. Disorder: APKD (AUTOSOMAL-RECESSIVE). 
Consultands: FLORENCE, CHARLES. 
Background risk: 0.002; Penetrance: 1; Mutation rate: O.> 

PERSON GENDER PHENOTYPE PARENTS 

hypothetical275 FEMALE UNKNOWN 
ANNETTE FEMALE UNAFFECTED 
BARTLEBY MALE UNAFFECTED 
CHARLES MALE UNAFFECTED 
DONNA FEMALE UNAFFECTED 
FLORENCE FEMALE UNAFFECTED 
GEORGE MALE UNAFFECTED 
HILDA FEMALE UNAFFECTED 
JOHN MALE AFFECTED 

(PEDIGREE HAS CYCLE--FORMING CUTSET) 
(CUTSET IS 

FLORENCE, CHARLES 
UNKNOWN, UNKNOWN 
UNKNOWN, UNKNOWN 
ANNETTE, BARTLEBY 
ANNETTE, BARTLEBY 
DONNA, UNKNOWN 
DONNA, UNKNOWN 
UNKNOWN, UNKNOWN 
HILDA, GEORGE 

(#<Name: CHARLES; Gender: MALE; Parents: ANNETTE and BARTLEBY; 
Pheno: UNAFFECTED; PU: #<Parental unit: parents are ANNETTE, BARTLEBY>>)) 

(CONDITIONING NETWORK ... ) 

(CONFIG (CHARLES = UNAFFECTED) RESULTED IN JOINT CUTSET PROB 0.6) 
(SAVED BELIEF OF (0.0 0.25187972 0.74812037) FOR lhypothetical273I) 
(SAVED BELIEF OF (O.O 0.25687972 0.74312025) FOR ANNETTE) 
(SAVED BELIEF OF (O.O 0.25687972 0.74312025) FOR BARTLEBY) 
(SAVED BELIEF OF (O.O 0.0 1.0) FOR CHARLES) 
(SAVED BELIEF OF (O.O 0.49874687 0.5012531) FOR DONNA) 
(SAVED BELIEF OF (O.O 0.50375944 0.49624062) FOR FLORENCE) 
(SAVED BELIEF OF (O.O 1.0 0.0) FOR GEORGE) 
(SAVED BELIEF OF (O.O 1.0 0.0) FOR HILDA) 
(SAVED BELIEF OF (1.0 0.0 0.0) FOR JOHN) 

(CONFIG (CHARLES = HETEROZYGOUS) RESULTED IN JOINT CUTSET PROB 0.4) 
(SAVED BELIEF OF (0.12593986 0.5 0.37406015) FOR lhypothetical273l) 
(SAVED BELIEF OF (O.O 0.2568797 0.74312025) FOR ANNETTE) 
(SAVED BELIEF OF (O.O 0.2568797 0.74312025) FOR BARTLEBY) 
(SAVED BELIEF OF (O.O 1.0 0.0) FOR CHARLES) 
(SAVED BELIEF OF (0.0 0.4987469 0.5012532) FOR DONNA) 
(SAVED BELIEF OF (0.0 0.50375944 0.49624062) FOR FLORENCE) 
(SAVED BELIEF OF (0.0 1.0 0.0) FOR GEORGE) 
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PERSON GENDER PHENOTYPE PARENTS 

JEANETTE FEMALE UNAFFECTED UNKNOWN, UNKNOWN 
KATE FEMALE UNAFFECTED JEANETTE, UNKNOWN 
KYLE MALE UNAFFECTED JEANETTE, UNKNOWN 
LAURA FEMALE UNAFFECTED KATE, KYLE 
LANCE MALE UNAFFECTED KATE, KYLE 
MARK MALE AFFECTED LAURA, LANCE 

(PEDIGREE HAS CYCLE--FORMING CUTSET) 
(CUTSET IS 

(#<Name: KYLE; Gender: MALE; Parents: JEANETTE and UNKNOWN; 
Pheno: UNAFFECTED; PU: #<Parental unit: parents are JEANETTE, NIL>> 
#<Name: LANCE; Gender: MALE; Parents: KATE and KYLE; 
Pheno: UNAFFECTED; PU: #<Parental unit: parents are KATE, KYLE>>)) 

Genotype probabilities for DOUBLE-CYCLE family: 

PERSON HOMOZYGOUS AFFECTED HETEROZYGOUS HOMOZYGOUS NORMAL 

JEANETTE 0.00000 0.35719 0.64281 
KATE 0.00000 0.71430 0.28570 
KYLE 0.00000 0.50008 0.49992 
LAURA 0.00000 1.00000 0.00000 
LANCE 0.00000 1.00000 0.00000 
MARK 1.00000 0.00000 0.00000 
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(SAVED BELIEF OF (O.O 1.0 0.0) FOR HILDA) 
(SAVED BELIEF OF (1.0 0.0 0.0) FOR JOHN) 

(CONFIG (CHARLES = AFFECTED) RESULTED IN JOINT CUTSET PROB 0.0) 
(SAVED BELIEF OF (0.25187972 0.7481203 0.0) FOR ihypothetical273l) 
(SAVED BELIEF OF (O.O 0.25687972 0.7431203) FOR ANNETTE) 
(SAVED BELIEF OF (0.0 0.25687972 0.7431203) FOR BARTLEBY) 
(SAVED BELIEF OF (1.0 0.0 0.0) FOR CHARLES) 
(SAVED BELIEF OF (O.O 0.49874687 0.5012531) FOR DONNA) 
(SAVED BELIEF OF (O.O 0.5037594 0.4962406) FOR FLORENCE) 
(SAVED BELIEF OF (O.O 1.0 0.0) FOR GEORGE) 
(SAVED BELIEF OF (O.O 1.0 0.0) FOR HILDA) 
(SAVED BELIEF OF (1.0 0.0 0.0) FOR JOHN) 

Genotype probabilities for SPIEGELHALTER-FAMILY: 

PERSON HOMOZYGOUS AFFECTED HETEROZYGOUS HOMOZYGOUS NORMAL 

hypothetical7S 5.00750e-2 0.35023 0.59970 
ANNETTE 0.00000 0.25138 0.74862 
BARTLEBY 0.00000 0.25138 0.74862 
CHARLES 0.00000 0.40000 0.60000 
DONNA 0.00000 0.49975 0.50025 
FLORENCE 0.00000 0.50075 0.49925 
GEORGE 0.00000 1.00000 0.00000 
HILDA 0.00000 1.00000 0.00000 
JOHN 1.00000 0.00000 0.00000 

Consultands FLORENCE and CHARLES are concerned about the risk of passing 
on APKD, an AUTOSOMAL-RECESSIVE disorder, to future offspring. 
After analyzing all available information, I have assessed the risks as 
follows: 
Future offspring have a 25'l. risk of being affected with APKD and a 75'l. 
chance of being carriers. 

A.7.2 Multiple loops 

The pedigree for this rather unusual family has two loops caused by two generations 
of brother-sister inbreeding. The loop-cutset therefore contains two nodes, one from 
each loop. 

DOUBLE-CYCLE family before propagating information: 
#<Family: DOUBLE-CYCLE. Disorder: THALESSEMIA-A (AUTOSOMAL-RECESSIVE). 
Consultands: NONE, NONE. 
Background risk: 1.0e-4; Penetrance: 1; Mutation rate: O.> 
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2. ACHONDROPLASTIC-DWARFISH has variable expressivity. 
3. JUDY and CHARLIE are not really ELAINE's parents. 
4. A spontaneous mutation caused ELAINE to be affected with 

ACHONDROPLASTIC-DWARFISH. 
5. There was user error in entering the pedigree data. 

A.6 Disorder caused by new mutation 

This pedigree is the same as the one in the previous example, but this time the 
mutation rate of the disorder is non-zero, which allows the possibility that a new 
mutation was responsible for the affected child. 

HARRIS family before propagating information: 
#<Family: HARRIS. Disorder: ACHONDROPLASTIC-DWARFISH (AUTOSOHAL-DOHINANT). 
Consultands: JUDY, CHARLIE. 
Background risk: 0.002; Penetrance: 1; Mutation rate: 0.005.> 

PERSON GENDER PHENOTYPE PARENTS 

JUDY FEMALE UNAFFECTED UNKNOWN, UNKNOWN 
CHARLIE HALE UNAFFECTED UNKNOWN, UNKNOWN 
NOMI FEMALE UNAFFECTED JUDY, CHARLIE 
ELAINE FEMALE AFFECTED JUDY, CHARLIE 

Genotype probabilities for HARRIS family: 

PERSON HOMOZYGOUS AFFECTED HETEROZYGOUS HOMOZYGOUS NORMAL 

JUDY 
CHARLIE 
NOMI 
ELAINE 

0.00000 
0.00000 
0.00000 
0.00000 

0.00000 
0.00000 
0.00000 
1.00000 

1.00000 
1.00000 
1.00000 
0.00000 

Consultands JUDY and CHARLIE are concerned about the risk of passing on 
ACHONDROPLASTIC-DWARFISH, an AUTOSOHAL-DOHINANT disorder, to future 
offspring. 
After analyzing all available information, I have assessed the risks as 
follmlS: 
Future offspring have a 0.5% risk of being affected with 
ACHONDROPLASTIC-DWARFISH. 

A.7 Consanguinity 

Consanguinity, or inbreeding, in the family pedigree causes the belief network for 
the family to have one or more loops. These loops are broken by conditioning the 
network. 
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#<Family: BROWN. Disorder: HUNTINGTON (AUTOSOMAL-DOMINANT). 
Consultands: BETTY, BOB. 
Background risk: 5.0e-5; Penetrance: 1; Mutation rate: O.> 

PERSON GENDER AGE PHENOTYPE PARENTS 

ARTHUR MALE 45 AFFECTED UNKNOWN, UNKNOWN 
ANNE FEMALE 44 UNAFFECTED UNKNOWN, UNKNOWN 
BENJAMIN MALE 23 AFFECTED ANNE, ARTHUR 
BETTY FEMALE 22 UNAFFECTED ANNE, ARTHUR 
BOB MALE 25 UNAFFECTED UNKNOWN, UNKNOWN 

Genotype probabilities for BROWN family: 

PERSON HOMOZYGOUS AFFECTED HETEROZYGOUS HOMOZYGOUS NORMAL 

ARTHUR 4.56519e-5 0.99995 0.00000 
ANNE 0.00000 1.96632e-5 0.99998 
BENJAMIN 6.55445e-6 0.99999 0.00000 
BETTY 0.00000 0.45655 0.54345 
BOB 0.00000 7.49981e-5 0.99992 

Consultands BETTY and BOB are concerned about the risk of passing on 
HUNTINGTON, an AUTOSOMAL-DOMINANT disorder, to future offspring. 
After analyzing all available information, I have assessed the risks 
as follows: 
Future offspring have a 23'l. risk of being affected with HUNTINGTON. 

A.4 Additional phenotypic information 

The consultands are concerned about bearing a child with an autosomal recessive 
disorder. A carrier test performed on Judy yields a positive result, which implies 
with 9.53 certainty that she is, in fact, a carrier. 

HARRIS family before propagating information: 
#<Family: HARRIS. Disorder: TAY-SACHS (AUTOSOMAL-RECESSIVE). 
Consultands: JUDY, CHARLIE. 
Background risk: 0.01; Penetrance: 1; Mutation rate: O.> 
PERSON GENDER PHENOTYPE PARENTS ADDITIONAL INFO 

JUDY FEMALE UNAFFECTED UNKNOWN, UNKNOWN (0 .95 .05) 
CHARLIE MALE UNAFFECTED UNKNOWN, UNKNOWN 
NOMI FEMALE UNAFFECTED JUDY, CHARLIE 
ELAINE FEMALE UNAFFECTED JUDY, CHARLIE 

Genotype probabilities for HARRIS family: 
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follo11s: 
Female offspring have a 0.000019% chance of being affected 11ith 
RETINITIS-PIGMENTOSA and a 1.951% chance of being carriers. 
Male offspring have a 1.942% chance of being affected and a 98% chance 
of being normal. 

A.2.2 High background risk 

Output of GENINFER on pedigree shown in Figure 3.2, with population risk set to 
0.01 (1000 times as high as in the previous example). 

SMITH family before propagating information: 
#<Family: SMITH. Disorder: RETINITIS-PIGMENTOSA (X-LINKED). 
Consultands: DAPHNE, NONE. 
Background risk: 0.01; Penetrance: 1; Mutation rate: O.> 

Genotype probabilities for SMITH family: 
PERSON HOMOZYGOUS AFFECTED HETEROZYGOUS HOMOZYGOUS NORMAL 

hypoth-male67 1.96575e-2 0.00000 0.98034 
hypoth-female66 1.96575e-4 2.92643e-2 0.97054 
ALICE 0.00000 1.000000e-2 0.99000 
ANDREW 1.00000 0.00000 0.00000 
BARBARA 0.00000 1.00000 0.00000 
BRIAN 0.00000 0.00000 1.00000 
CLARA 0.00000 0.11751 0.88249 
CLIFFORD 1.00000 0.00000 0.00000 
DAVID 0.00000 0.00000 1.00000 
DIANA 0.00000 2.36482e-2 0.97635 
DOROTHY 0.00000 1.32037e-2 0.98680 
DAPHNE 0.00000 3.93149e-2 0.96069 
DIANASON1 0.00000 0.00000 1.00000 
DIANASON2 0.00000 0.00000 1.00000 
DOROTHYSON1 0.00000 0.00000 1.00000 
DOROTHYSON2 0.00000 0.00000 1.00000 
DOROTHYSON3 0.00000 0.00000 1.00000 
DAPHNESON1 0.00000 0.00000 1.00000 

Consultand DAPHNE is concerned about the risk of passing on 
RETINITIS-PIGMENTOSA, an X-LINKED disorder, to future offspring. 
After analyzing all available information, I have assessed the 
follo11s: 
Female offspring have a 0.002% chance of being affected ~ith 
RETINITIS-PIGMENTOSA and a 3'l. chance of being carriers. 

risks as 

Male offspring have a 1.966% chance of being affected and a 98% chance 
of being normal. 
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PERSON GENDER PHENOTYPE PARENTS 

ARTHUR MALE UNAFFECTED UNKNOWN, UNKNOWN 
ANNE FEMALE UNAFFECTED UNKNOWN, UNKNOWN 
BENJAMIN MALE AFFECTED ANNE, ARTHUR 
BILL MALE AFFECTED ANNE, ARTHUR 
BETTY FEMALE UNAFFECTED ANNE, ARTHUR 
BOB MALE UNAFFECTED UNKNOWN, UNKNOWN 
CLAUDE MALE UNAFFECTED BETTY, BOB 

Genotype probabilities for BETTY-FAMILY family: 

PERSON HOMOZYGOUS AFFECTED HETEROZYGOUS HOMOZYGOUS NORMAL 

hypoth-male 0.16667 0.00000 0.83333 
hypoth-female 0.00000 0.16667 0.83333 
ARTHUR 0.00000 0.00000 1.00000 
ANNE 0.00000 1.00000 0.00000 
BENJ:A:MHT 1.00000 0.00000 0.00000 
BILL 1.00000 0.00000 0.00000 
BETTY 0.00000 0.33333 0.66667 
BOB 0.00000 0.00000 1.00000 
CLAUDE 0.00000 0.00000 1.00000 

Consultands BETTY and BOB are concerned about the risk of passing 
on HEMOPHILIA, an X-LINKED disorder, to future offspring. 
After analyzing all available information, I have assessed the 
risks as follows: 
Female offspring have a O.O'l. chance of being affected with 
HEMOPHILIA and a 17% chance of being carriers. 
Male offspring have a 17% chance of being affected and a 83% 
chance of being normal. 

A.2 Big pedigree with different prior risks 

The output of GEN!NFER on the big pedigree in Figure 3.2 is shown here; input 
is not shown. The prior or background risk of the disorder in question, retinitis 
pigmentosa, is set to two different values so that the results may be compared. As 
was mentioned, the genotype probabilities are only slightly changed, even when the 
background risk is changed 1000-fold. 

A.2.1 Low background risk 

Output of GENINFER on pedigree shown in Figure 3.2, with population risk set to 
0.0001. 
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Chapter A 

Appendix 

This appendix contains several examples of GENINFER running. The first example 
shows both input and output; the other examples show only output. 

A.1 Betty's family 

GENlNFER running on Betty's family (figure 3.1). Both input and output are 
shown; text typed in by the user is shown in italics. 

(geninfer) 

Welcome to Geninfer. 
in a family with some 
information about the 
family. 

This program evaluates genotype probabilities 
genetic disorder. You will be asked to enter 
family and then about the individuals in the 

Relationships between family members are specified by listing each 
person's parents, so you should type in individuals from the top of 
the pedigree down. 

First I will ask you for some information about the family being 
counseled. 

Family name: Brown 
Name of disorder: hemophilia 
Inheritance-type (autosomal-recessive, autosomal-dominant, or 
X-linked): X-linked 

Population frequency of disease allele (default 0.01): 
Penetrance of disorder (between 0 and 1, default 1): 0.99 
Does this disorder exhibit age-dependent expressivity? (default no): 

Please enter individuals in family, starting with the oldest generation. 
Person's name (must be unique) : Am~e 
Gender: female 
Phenotype (affected, unaffected, or unknown): unajjected 
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Other factors which handicap Pearl's performance on this example are the large 

sets of data that must be propagated sequentially, and the peripheral locations of 

most of the measurement nodes, which increase the number of possible loop-cutset 

instantiations. The Lauritzen-Spiegelhalter procedure, in contrast, runs faster when 

there is a large set of evidence, because evidence simplifies the clique trees [2]. In 

the ALARM network, no node has more than three parents, so the maximum clique 

size stays relatively small. 

Although Lauritzen & Spiegelhatler's algorithm outperformed Pearl's algorithm 

on the ALARM network, there is reason to believe that the difference in perfor­

mance might be minimal in the genetic counseling domain. One factor is that the 

Lauritzen-Spiegelhalter algorithm requires overhead time to moralize and triangu­

late a network. This makes it more suitable for applications, such as ALARM, in 

which a single large network is going to be used repeatedly. The time required to 

configure networks might be more of a drawback for GENINFER, since a new belief 

network is constructed for each pedigree. 

Another point to consider is that preliminary results have suggested that the 

Lauritzen-Spiegelhalter algorithm is efficient for networks with many small cycles, 

but less good for networks with one or two large cycles, because of the work involved 

in triangulating such networks. If a pedigree has any cycles (disregarding the arti­

factual cycles caused by multiple-child families, which are eliminated by clustering), 

they are likely to be fairly large: matings between siblings are less common than 

consanguinity involving more distantly related individuals. 

7 .2 Possible Extensions 

In order to make GENINFER more accessible to genetic counselors, the current user 

interface probably should be replaced with a graphical interface. One possibility 

would be to let the user draw pedigrees with the mouse, and have the program ask 

questions about family members in order to acquire the needed information. 

It might be possible to endow the system with greater "intelligence" so that 
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of advantages. Probabilistic reasoning is a suitable approach for a field in which 

risks and likelihoods play such a central role and uncertainty is readily expressed 

numerically. Pedigrees fit naturally into the belief network approach, and this ap­

proach has the advantage of being able to fuse all available data pertaining to the 

pedigree. Supplementary data of various types can be incorporated orthogonally, 

without disturbing the underlying structure of the family network. It is easy to 

assess risks for prospective offspring by adding hypothetical children to the belief 

networks. Clustering works well with the family networks, since each child has only 

two parents. Since prior probabilities of genotypes are available, the system can 

make intelligent "guesses" about the genotypes of people for whom no phenotypic 

information is available. 

The main disadvantage of Pearl's method is its slowness, particularly for families 

whose family networks contain cycles. It might be possible to improve the running 

time of GENINFER by using more heuristics and taking advantage of special cases. 

For example, if a child with a recessive disorder is born to a couple with normal 

phenotypes, it is clear to a human expert that either the parents are both carriers 

or the appearance of the disorder in the child was caused by a new mutation. The 

program takes a while to reach this conclusion, because it must propagate all infor­

mation through the entire pedigree. It might be worthwhile to have the program 

scan the pedigree before beginning the propagation algorithm in order to check for 

genotype assessments that follow immediately from the structure of the pedigree. 

Another possibility would be to use Lauritzen and Spiegelhalter's method, which 

shares most of the advantages of Pearl's method and may run faster. 

7.1 Pearl vs. Lauritzen and Spiegelhalter 

Implementing Spiegelhalter's method for calculating genotype probabilities would 

be an interesting experiment: the running time of that program could then be com­

pared with the running time of the program based on Pearl's method. Beinlich, 
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possible explanations for the apparent anomaly are proposed. In the situation just 

described, the following explanations would be proposed: 

• The penetrance of the disease is not really 100%. 

• The disorder has variable expressivity, and the parents of the affected child 
are actually affected with mild cases of the disorder. 

• The putative parents of the affected child are not the actual biological parents. 

• The mutation rate of the disorder is non-zero; a spontaneous mutation oc­
curred in the affected child. 

• The user made one or more errors when entering the data. 

6.6 Input and Output of GENlNFER 

The current version of GENINFER has an interface that prompts users to enter in­

formation about the genetic disorder being investigated, and then lets them enter 

data for individuals in the pedigree. The user is asked to enter the family name, 

disorder, inheritance type, background risk, penetrance, etc. For some fields, such 

as penetrance, a default value is supplied, which the user can accept or modify. 

Family members are entered in topological order, starting with the oldest ancestors; 

family relationships can then be completely specified by simply identifying each per­

son's mother and father. For each family member, the user is asked to enter the 

individual's gender, phenotype (which may be "unknown"), parents, and any sup­

plementary phenotypic evidence that is available, such as the results of enzyme tests. 

The user can also specify a particular consultand and, optionally, the consultand's 

spouse or partner. 

The output of GENINFER is a list of the probabilities that each member of the 

family is homozygous affected, heterozygous, or homozygous normal. If the pedigree 

appears to contain anomalous or contradictory information, possible explanations 

are proposed, as was discussed in the previous section. If a consultand has been 

specified, GENINFER calculates the consultand's risk of bearing an affected child. 

(For X-linked disorders, separate risks are calculated for male and female offspring.) 

For example, the table of genotype probabilities that GENINFER outputs for Betty's 
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enough that it can be disregarded. There are many ways for a normal gene to be­

come defective, but very few ways for a defective gene to become normal. In general, 

the possibility of back mutation can be safely ignored [14]. 

Considering spontaneous mutation as a possible cause of genetic disease is more 

useful for explaining unusual pedigree configurations than for predicting genetic risk 

to future offspring. I found that non-zero mutation rates cause problems with one 

aspect of the conditioning algorithm. If a particular loop-cutset configuration results 

in an "impossible" assignment of genotypes to individuals, we want to be sure the 

joint probability for this instantiation comes out to zero. If the mutation rate of 

the disorder is non-zero, however, these incorrect configurations will not be caught, 

and the final beliefs will be incorrect. In order to avoid this problem, the program 

sets the mutation rate to zero if it is necessary to condition the network. Setting 

the mutation rate to zero has little effect on the calculated beliefs, and it prevents 

gross errors from occurring. However, this problem probably should be addressed 

in future versions of GENINFER. 

6.4 Combining Multiple Sources of Information 

Phenotypic information can take more than one form. In the simplest cases, it 

is clear from straightforward observation that an individual either has the genetic 

disease or does not have it. Sometimes, however, there may be other sources of 

information, such as enzyme levels, that suggest the presence of a defective allele. 

One of the advantages of using Pearl's algorithm is that it allows all available data 

to be supplied to the network and combined appropriately. 

Types of data that might be relevant to a genetic consultation include: 

• Results of carrier tests 

• Enzyme levels 

• Blood groups 

• Restriction fragment length polymorphisms 
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the same genotype, and yet different phenotypes. For example, an individual could 

have the allele for a dominant disorder and yet not exhibit the disorder. Neurofi­

bromatosis is an example of a genetic disorder with relatively low penetrance. 

The user can specify the penetrance of a disorder as a number between 0 and 

1. If the penetrance probability is not specified by the user, the program assumes 

100% penetrance. If a disease has 100% penetrance, then all individuals with the 

allele will exhibit a phenotype consistent with their genotype. Penetrance informa­

tion is incorporated into the belief network by entering it into the initial 7r and >. 

parameters, changing the prior beliefs. The prior probability that a person with a 

normal phenotype has a defective genotype becomes 1 - penetrance. If penetrance is 

1, this probability will be 0, just as it was before we considered penetrance proba­

bilities. The prior probabilities are the only quantities affected by penetrance; the 

conditional probability matrices, for example, are unchanged. 

6.2 Age-dependent Expressivity 

Some genetic disorders do not reveal their presence until the affected individual 

reaches adulthood. The most familiar example of this kind of late-onset genetic 

defect is Huntington's disease, which is caused by an autosomal dominant allele. 

People with the Huntington's allele seem normal until some time in middle age, when 

the devastating symptoms begin to appear. By this time, they may already have 

had children, each of whom has a 50% chance of inheriting the disorder. Because the 

presentation of symptoms of Huntington's disease is time-dependent, determination 

of phenotype is not clear-cut. A person who has reached the age of 65 without 

symptoms probably does not carry the defective gene, but we can reach no such 

conclusion about an asymptomatic 25-year-old. 

In order to handle disorders with age-dependent expressivity, GENINFER must 

be supplied with data about the percentage of people who express the disorder at 

each age range. For testing purposes, I have provided it with data for Hunting­

ton's disease. The age-dependent probabilities of presentation can be handled in a 
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5. Multiply the joint by x. 

6. Propagate the influence of the "evidence" C1 = v1 through the network, using 
the normal propagation and fusion equations. After propagation, the other 
nodes will have parameters consistent with the "observed" value for C1. 

7. Restore node C1 to its original state (i.e., its value is no longer fixed.) 

8. Consider the next loop-cutset node, C2, and the next value, v2. Set x to 
BEL( C2 = v2). Because we already propagated the instantiation of C1 to vi, 

BEL(C2 = v2) = P(C2 = v2IC1 = v1). 

9. Loop back to step 4. 

5.5.4 Speeding up conditioning 

The exponential running time of the conditioning algorithm can be a problem for 

belief networks with multiple cycles. One way to minimize the time required by 

conditioning is to choose a minimal (or close to minimal) loop-cutset. Another 

possibility is to process the loop-cutset instantiations in parallel [24). Each time the 

propagation algorithm is run during conditioning, the order of updates will be the 

same; the difference lies in the initializations of certain parameters. Therefore, it 

should be feasible to maintain, on each link, 7r and ,\ vectors for each loop-cutset 

instantiation, and update all of them at once. 

If a particular loop-cutset instantiation results in an impossible assignment of 

genotypes to individuals (for example, an affected person being labeled as "homozy­

gous normal"), the joint probability for the instantiation will come out to zero, and 

the beliefs calculated during the instantiation will be irrelevant. This case can be 

taken advantage of in order to heuristically speed up conditioning: if a loop-cutset 

instantiation is known to be impossible, it is not necessary to propagate the influence 

of that particular instantiation. I have not implemented this heuristic, but doing so 

would probably be straightforward. 
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time we follow a link to a node, we mark both the link and the node as being visited. 

·when searching for the next node to visit, we follow only unvisited links out of the 

current node. If we ever follow an unvisited link and reach a node that has already 

been ·isited, there must be a cycle, because there is more than one path between two 

nodes. Moreover, the already-visited node that alerted us to the presence of a cycle 

must be in the cycle; we can use it as a starting point to search for a loop-cutset 

node. 

5.5.3 Conditioning the network 

Once the loop-cutset has been found, the network must be physically disconnected 

at the nodes in the loop-cutset in order to break the cycles. A copy of the loop-cutset 

node is included on both sides of a break, as shown in Figure 5.3. 

Loop-cutset ~ 
node 

1"1gure 5.3: Disconnecting the network at a loop-cutset node 

The next step is to instantiate all the nodes in the loop-cutset and run the 

propagation algorithm once for all such instantiations, of which there will be an 

exponential number: lgenotypesjl=taetl. (In practice, the size of the loop-cutset is 

usually small, so this exponential complexity is not a major problem in this domain.) 

In order to find the conditioned beliefs for each node, we sum the products of the 

values found for each loop-cutset instantiation and the weights of the loop-cutset 

instantiations: 
1apc1 

BEL(A;) = L BELk(A;)P(C1c) 
k=I 

where ck represents the kth instantiation of the loop-cutset, and 
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type k, given that the parents are of types i and j. The only information conveyed 

by these matrices is how the genotype probabilities of the parents are fused in the 

corresponding parental unit. The equations for propagating the influence of 7r and 

,\ vectors must be altered somewhat in order to handle the heterogeneous vectors 

and matrices, but the basic mechanism of message-passing is unchanged. 

The use of clustering eliminates looping due to artifactual cycles. However, as 

all possible combinations of propositions from the individual nodes in a cluster must 

be represented in the "supernode" that comprises the cluster, this method is not 

practical for large cycles such as those that result from matings between related 

individuals. These cycles can be broken by conditioning the network. 

5.5 Conditioning 

A multiply-connected belief network can be conditioned by selecting a loop-cutset 

from the network and considering all possible combinations of values that nodes in 

the loop-cutset can take on [24]. Each possible combination is treated as a separate 

case. Conditioning is sometimes referred to as reasoning by assumptions, because 

for each configuration of the loop-cutset, we are assuming that the nodes in the 

loop-cutset have those values, and reasoning about the rest of the network based on 

those assumptions. Pearl argues that the use of conditioning is not foreign to human 

reasoning: when we find it difficult to estimate the likelihood of a given outcome, 

we may make hypothetical assumptions to simply the process [17]. By considering 

each possible case separately, conditioning prevents infinite cycling without loss of 

information. 

Because conditioning breaks the cycles in a multiply-connected network, evidence 

can be propagated in the conditioned network in the normal manner using Pearl's 

algorithm. The resulting beliefs are then weighed by the joint probability of the 

instantiated nodes in the loop-cutset. Given a piece of evidence E and a loop-cutset 

consisting of nodes C1 , ... , Cn, then for any node A, 

P(AIE) = L P(AIE, C1 = V1, ... , Cn = Vn)P(C1 = V1, ... , Cn = VnlE) 
C1 ... Cn 

37 



Consanguinity Artifact 

Figure 5.1: Two types of cycles in family networks 

a general, exact solution to probabilistic reasoning in multiply-connected belief net­

works. Instead, fruitful approaches may involve special-cased algorithms or heuristic 

techniques that minimize the combinatorial complexity of the calculations. 

5.3 Multiply-connected Family Networks 

Belief networks for families may include two types of cycles. Some small proportion 

of families have cycles caused by consanguinity (for example, if two cousins marry). 

The number of nodes in these cycles will depend on the degree of consanguinity. 

Another type of cycle is more ubiquitous: it appears every time two parents have 

two or more children in common. These cycles are an artifact of a representation 

that connects each child with both of its parents. If there are two children, this will 

lead to an undirected figure-eight cycle (see Figure 5.1). 

GENlNFER uses a combination of clustering and conditioning to deal with the 

two types of cycles that can appear in family networks. Although conditioning can 

be used to break any cycle, its exponential time complexity makes it computation­

ally undesirable. If conditioning were used to handle the artifactual cycles in all 

families with multiple children, the program would be unacceptably slow. There­

fore, another technique must be used to break up these small cycles. I chose the 

clustering approach. 
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Chapter 5 

Multiply-Connected Belief 

Networks 

5.1 Why Cycles Are a Problem 

Pearl's propagation method is restricted to singly connected graphs, i.e., graphs 

with at most one path between any two nodes. Because propagation of informa­

tion is not under central control, information could cycle indefinitely if there were 

loops in the network. Even if the parameters converged to a stable equilibrium, 

the posterior probabilities that were calculated would not be correct, because the 

propagation equations are based on conditional independence assumptions that may 

be violated in multiply-connected networks [18]. For example, when we calculate 

a new 7r message, we assume that the parents of the child node have no common 

ancestors in the network. 

5.2 Coping with Cycles 

Pearl mentions three ways to handle graphs with cycles: clustering, conditioning, 

and stochastic simulation [17]. In clustering, groups of nodes are made into "supern­

odes" or clusters, so that the network formed by the clusters and the interconnections 

between them is acyclic. Conditioning prevents messages from cycling indefinitely 
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7rA(Bi) = Priar(Bi) L 7rB(Cj)7rB(Dk)P(BilCj, Dk) 
j,kE{A,H,N} 

where A is the child node, Bis the parent, and C and D are the parents of B. 

The propagation phase is complete when the 7r and >. messages have reached 

stable values and are no longer changed by updates. If the network has no cycles, 

propagation will take time proportional to the longest path in the network. However, 

networks with cycles may never reach equilibrium. In the genetic counseling domain, 

cycles can be caused by consanguinity or by families with multiple children. Chapter 

5 explains how this problem is handled. 

4.2.4 Calculating genotype probabilities 

When propagation is completed, the final parameters can be used to calculate the 

belief that each person is affected, heterozygous, or normal. The belief that a person 

has genotype k is the normalized product of >.k and 7rk on the link to that person's 

dummy leaf: 

BEL(persani) = 0'.1rdummy(persani)>.dummy(persani) 

The genotype beliefs thus obtained can be used to calculate the risk to future 

children of each person in the pedigree. GENINFER also allows a specific consultand 

or couple to be specified; the genotype probabilities for future children of the con­

sultand( s) are then calculated. This is accomplished by having the program assign 

a "hypothetical" child to the consultand and calculate genotype probabilities for 

this child. Unlike the dummy leaves, this hypothetical child is treated like a regular 

person node; it has its own dummy leaf. If the disorder under consideration is X­

linked, the risks to male and female offspring may be different, so two hypothetical 

children are created, one of each gender. 
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vector on the link to the dummy leaf would be ( 1, 1, 0), because P (affected phenotype 

I homoZ'!}gous affected) = 1, P( affected phenotype I heteroZ'!}gous) = 1, and P( affected 

phenotype I homoZ'!}gous normaQ = 0. (Note that this does not take into account the 

possibility of incomplete penetrance; this issue will be discussed in Section 6.1.) If 

the node being initialized is a root node for which we have phenotypic information, 

the 7r on the dummy link is initialized to match the ,\ on that link. 

Often, the pedigree contains members whose phenotypes are not known. GEN­

INFER permits their phenotypes to be specified as "unknown," and sets the ,\ vector 

on the dummy link to (1, 1, 1). If an individual of unknown phenotype is a root 

node, the 7r vector is set to reflect the background level of the disease in the pop­

ulation. I assumed that the genotype distribution of the population follows the 

Hardy-Weinberg equilibrium, i.e., if the frequency of the defective allele is p, and 

the frequency of the normal allele is q (where q == 1- p), then p2 of the population is 

homozygous affected, 2pq is heterozygous, and q2 is homozygous normal. The value 

of p differs for different diseases and different populations. GENINFER allows the 

user to specify p for each disorder. 

Thompson [27] points out that although the basis for allele frequencies and the 

applicability of the Hardy-Weinberg equilibrium may be difficult to justify, using 

these assumptions seldom presents a practical problem. As Thompson says, "The 

ability to assign a prior probability to a genotype is crucial, but the exact numerical 

value assigned seldom matters. Provided sensible assumptions are made, reliable 

Arthur Anne 

o~ 

Benjamin 
Bob 

0 
Figure 4.4: Dummy leaves represent phenotypes 
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4.2.1 Modeling the domain 

In order to use Pearl's algorithm for pedigree analysis, the pedigree must be con­

verted to a belief network in which the nodes represent people in the family and the 

links between nodes represent parent-child relationships. Other family relationships, 

such as "sibling," do not need to be specified explicitly; they are implicit in the net­

work structure. Figure 4.3 shows the belief network that would be constructed for 

Betty's family. 

Arthur Anne Arthur Anne 

.. 
Benjamin Bill 

Claude 

Figure 4.3: Belief network for Betty's family 

In the genetic diseases that I have considered, there are three possible genotypes: 

homozygous affected, heterozygous (which may mean an affected or unaffected phe­

notype, depending on the inheritance pattern of the disorder in question), or ho­

mozygous normal. (For the case of males with X-linked disorders, I assume that 

they can be affected or normal, but not heterozygous. This is not strictly true, 

but it creates no inconsistencies.) Each of the three genotypes is considered as a 

"hypothesis" for the-genotype of a node. Running Pearl's algorithm on a family 

network allows us to calculate the beliefs in each genotype for each family member. 

The inheritance pattern of a disorder is encoded by the conditional probability 

matrix assigned to each node. The contents of these matrices depend on the inher­

itance pattern and, in the case of X-linked disorders, the gender of the individual. 

Since each person has two parents, and there are three possible genotypes for each 

person, the conditional probability matrices are three-dimensional matrices of size 

3x3x3. Entry Mi,j,k represents the probability that a woman with genotype i and a 
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belief in hypothesis i for variable A can be calculated as follows: 

BEL(A;) = a.Xx(A;).Xy(A;)L P(AIBj, Ck)7rA(Bj)7rA(Ck) 
j,k 

where a is a normalization constant. [17] . .Xx(A;) refers to the diagnostic support 

from node X toward hypothesis i for variable A. 

Alternatively, from the 7r and,,\ on the link to a single child node, we can calculate 

the belief distribution for the parent node A in a straightforward fashion: 

4.1.2 Propagating information 

Once initial values for 7r and ,,\ have been assigned, the information represented by 

these vectors can be propagated throughout the network [17]. The new 7r on a link 

depends on the .Xs sent by the child node's sibling nodes and the 7rS sent by the 

parents of the parent node: 

7rx(A;) = .-\y(A;)[L7rA(Bj)7rA(Ck) P(A;IBj, Ck)], 
j,k 

where j and k range over all possible values for B and C. ,,\ depends on the 7r of 

the spouse (i.e., the other parent of the child) and the .Xs of the children: 

.XA(B;) = L[7rA(Ci)L .Xx(Ak).-\y(Ak) P(AklB;, Cj)] 
j k 

Each time a parameter is updated, all of the parameters that are causally related 

to it must be updated as well. In this way, information represented by the parameters 

is propagated in all directions through the network. When a 7r on a link is updated, 

the 7rS of the child nodes and the ,,\ of the spouse node must be revised. When 

a link's ,,\ parameters are updated, the .Xs of the parents and the 7rS of the child's 

siblings need to be recalculated. Figure 4.2 illustrates the propagation of updates 

of the parameters. 

Whenever we update a parameter, we can put all of the parameters that depend 

on it on a queue to await updating. If the value of a parameter does not change 

when it is updated, the parameters that depend on it are not put on the queue. 

Propagation is complete when the queue of parameters to be updated is empty. The 

network will reach this stable state in time proportional to its diameter, assuming 
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Chapter 4 

Pearl's Method 

4.1 Propagation and Fusion in Singly-Connected 

Belief Networks 

Pearl's method for fusion and propagation in probabilistic belief networks [17] allows 

all information relevant to a set of hypotheses to be combined in a manner consistent 

with Bayesian theory. It can be used in any domain for which uncertainty can 

be expressed numerically and conditional relationships between variables can be 

specified. This chapter describes the basic method and then explains how it was 

adapted to the genetic counseling domain. 

Pearl's method calculates joint probabilities by making use of the chain-rule rep­

resentation. The joint probability of all the nodes in the network can be expressed 

as a product of conditional probabilities, with each factor containing only one vari­

able on the left side of the conditioning bar [17]. If the variables in the network are 

X1, ... Xn, then 

P(xi, X2, ... , Xn) = P(xnlXn-1, ... , x1) ... P(x3lx2, X1)P(x2lx1)P(xl). 

This means that the joint probability of any instantiation of all the variables in an 

n-node belief network can be calculated as a product of only n probabilities rather 

than all 2n [6]. Quantifying the dependencies among nodes in this way also ensures 

the consistency and completeness of the belief network [17]. 
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X is-grandfather-of Y; 

It is not clear whether rules must be provided for every possible relationship: is 

there a rule, for example, that represents the relationship "is-second-cousin-once­

removed-of"? 

Genealogical analysis by Prokosch's system begins with an "intelligent" data 

acquisition phase in which heuristics help to guide requests for pedigree information. 

Next, forward-chaining inference evaluates all facts in the database and asserts all 

obtained relationships as facts. Subsequent steps depend on the question asked of 

the expert system. For example, the prototype system was used to surmise the 

ancestral source of a recessive allele. For this application, an expert system called 

CENEX (not the same CENEX written by Hilden) was called upon. The ultimate 

goal of Prokosch and his colleagues is to create an expert system shell for human 

genetics which will let experts in the domain create their own knowledge base and 

add modules for specific applications [I9]. 

It is not clear what mechanism Prokosch's system uses to calculate genotype 

probabilities. Issues such as incorporating supplementary phenotypic data and han­

dling families with consanguinity are not discussed. The most interesting contri­

bution of this paper is the idea of heuristically deciding what pedigree information 

to request from the user and which ancestors to calculate probabilities for. This 

heuristic approach could potentially speed up genetic risk calculations. 

3.2.4 Spiegelhalter 

Of researchers who have considered the application of computer techniques to ge­

netic counseling, Spiegelhalter was the only one to advocate the use of probabilistic 

belief networks. A recent paper by Spiegelhalter [2I] explores, from a theoretical 

standpoint, the application of Lauritzen and Spiegelhalter's method [I I] (see Section 

2.4.3) to the problem of genetic inheritance. 

Spiegelhalter has not yet implemented his proposal in a working system, nor does 

he address all of the aspects of the genetic counseling problem covered by GEN INFER, 
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Prior 
Conditional 
Joint 
Provisional posterior 

Clara is a carrier 
0.5 

1/2 * 5/8 * 9/16 = 45/256 
45/512 

45/301 = 0.15 

Clara is not a carrier 
0.5 
1 

256/512 
256/301 = 0.85 

Table 3.2: Calculation of Clara's risk of being a carrier 

must be propagated both up and down in the tree in order to calculate the prob­

abilities. To calculate the probability that Clara is a carrier, we use information 

provided by her son and her grandchildren. We then use Clara's risk when calculat­

ing probabilities for her daughters: her daughters' prior probability of being carriers 

is half their mother's risk. 

3.1.1 Applying Bayesian methods to medicine 

Although Bayesian methods provide more accurate estimates of risk than the "clas­

sical" Mendelian formulas, they are not in common use by most genetic counselors. 

This is due not only to historical ignorance of Bayesian techniques-a weakness that 

is only recently beginning to be corrected-but also to the fact that these methods 

are very complicated to use, especially for large families. Bayes' rule was invented in 

1763, but it was not until the 1950s that Bayesian methods became widely used. In 

1959, Ledley and Lusted's seminal paper [12] introduced formal probabilistic reason­

ing methods, including a simplified form of Bayes' rule, to the medical community. 

Murphy and Chase [14] were among the first to advocate the Bayesian approach 

to genetic counseling. They describe a collection of techniques that can be used to 

assess genetic risks in various types of families. 

3.2 Previous Programs Dealing with Genetic Risk 

Several previous programs have addressed the genetic counseling problem, but none 

so far have made use of Pearl's method. Spiegelhalter's approach [21] is the most 

promising, although it has not yet been implemented in a working system. 
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Arthur Anne 

Benjamin Bill 

Claude 

Figure 3.1: Pedigree for Betty's family 

by the pedigree: the fact that Betty already has a normal son weakens the belief 

that she is a carrier. 

The calculation described above neglects to take into account some of the in­

formation provided by the pedigree: we must consider Betty's descendents as well 

as her ancestors, and negative as well as positive information. Because Anne is an 

obligate carrier, Betty's prior probability of being a carrier for hemophilia is 0.5, as 

we calculated above. However, we have more information about Betty: the fact that 

she already has a normal son makes it less likely that she is a carrier. The Bayesian 

approach allows negative information, such as Betty's normal son, to be taken into 

account when calculating the probability that Betty is a carrier. 

Table 3.1 shows the Bayesian derivation of Betty's risk of having a hemophilic 

son [14]. The row labeled "Conditional probability" lists the probability that Betty 

would have had a normal son if she were (or were not) a carrier. The joint is 

the product of the prior probability and the conditional probability. The posterior 

probability is obtained by normalizing the joint probabilities. The risk that Betty's 

next son will be hemophilic is half her risk of being a carrier. 

Because simple Mendelian calculations fail to back-propagate information pro­

vided by unaffected offspring, they often overestimate risk. In Betty's case, for 

example, the Bayesian calculation leads to a risk estimate of 0.17 for Betty's next 

son, rather than 0.25. The larger the pedigree, the larger the disparity between 

simple Mendelian calculations and Bayesian revisions tends to be. 

Consider the pedigree shown in Figure 3.2 for a family affected with an X-linked 
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2.5 Advantages and Disadvantages of a Proba­

bilistic Approach to Uncertainty 

One reason to favor probabilistic inference over extensional approaches is that it 

may be more compatible with the way people think. As Pearl argues, "The notions 

of dependence and conditional dependence are more basic to human reasoning than 

are the numerical values attached to probability judgements" [17]. Pearl feels that 

much of human knowledge can be represented by dependency graphs, and that we 

mentally trace links in these graphs in order to query or update that knowledge. 

Cooper [6] points out that since probability is a widely used language for express­

ing uncertainty, expert systems that are probability-based have a better chance of 

being compatible with other systems. Another advantage is that in a probabilistic 

system, statistical data can be used directly as a form of knowledge. 

The use of probabilistic inference in expert systems also has several drawbacks. 

One major obstacle to implementing systems based on probabilistic inference is that 

it is often difficult for a domain expert to state explicitly all of the variables and 

quantitative dependencies that are present within the domain. A partial solution 

to this problem has been proposed by Spiegelhalter and Lauritzen [22], who suggest 

sequentially updating probabilities as a database of cases accumulates. Another 

possible approach is the use of prototypical probability functions, which express a 

joint conditional probability by using many fewer than 2n-l probabilities [6]. 

Even with techniques such as these, however, probabilistic inference is not ap­

propriate for all domains. For example, if our subjective probabilities change as a 

result of introspection, without any change in the empirical data, Bayes' rule will 

not be capable of modeling the consequent changes in belief [8]. Moreover, some re­

searchers feel that Bayesian methods are a poor model for human thought processes. 

Bayesian inference is clearly not applicable to all problems involving uncertainty, but 

it is nonetheless a useful paradigm. 
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Graph transformations 

Starting with a directed graph, the first step is to transform it into a "moral" 

graph by dropping the directions from links and connecting nodes with common 

children. In order for node probabilities to be calculable by clique potentials, the 

graph must be triangulated (i.e., all cycles of length four or more must have a chord 

or "shortcut"). We would like to find a triangulation so that the cliques thus formed 

have the minimum number of total states, since computational efficiency depends on 

the number of possible states of a clique. [21]. The problem of finding the minimal 

fill-in that completely triangulates the graph is NP-complete [28], but a fairly good 

fill-in can be found in 0( N + E) time (where N is the number of nodes in the graph 

and E is the number of edges) by using an algqrithm such as maximum cardinality 

search [25]. 

Once the graph has been triangulated, the maximal cliques can be regarded 

as clusters and treated as single nodes during propagation, since the hypergraph 

formed by the set of cliques of a triangulated graph is guaranteed to be acyclic [25]. 

The cliques also satisfy the running intersection property: there is an ordering of the 

cliques C1, C2, ... , CN such that Vi > 1, Ci n (ck u ... u ci_i) ~ ck for some k < 1. In 

other words, the nodes of a clique also contained in previous cliques are all members 

of one previous clique, known as the parent clique [ll]. We can therefore create a 

junction-tree in which each clique is joined to its unique parent. The junction-tree 

has the property that if any two cliques Ci and Cj have common nodes, then these 

nodes are contained in all cliques along the unique path between Ci and Cj [21]. 

The running intersection property allows the joint probability of a configuration of 

the network to be expressed as a product of functions on cliques [11]. 

Initialization and absorption 

When the cliques are ordered in a junction-tree, then for each clique C; there is a 

parent clique Ck, k < i. The separator, Si, is defined as Ciuck (i.e., the nodes in Ci 

"inherited" from the parent clique), and the residual Ri is Ci \ Si (the "new" nodes 

in Ci)· The procedure for obtaining the joint probability of the cliques involves 
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Colitis 

Figure 2.1: Belief network for amoebic infection/ulcerative colitis example 

between variables. 

2.4 Probabilistic Reasoning Techniques for Be­

lief Networks 

A number of researchers have derived methods-for calculating beliefs or joint proba­

bilities using belief networks. I will describe briefly the methods of Shachter, Pearl, 

and Lauritzen and Spiegelhalter. Pearl's method and Lauritzen and Spiegelhalter's 

method are capable of handling the same problems; their performance on various 

examples differs only in terms of running time. Shachter's method, unlike the others 

I describe, is useful for problems that involve decision-making under uncertainty. 

2.4.1 Shachter 

Shachter's method [20] operates on a type of network called an influence diagram. 

Influence diagrams may have three types of nodes: chance nodes, decision nodes, 

and value nodes. Directed arcs leading to random variable nodes (chance nodes or 

value nodes) indicate probabilistic dependence, while directed arcs to decision nodes 

indicate which information is available at the time of the decision. Shachter assumes 

that there is a single random variable associated with a unique value node, which 

represents the expected utility of the outcome. Influence diagrams may not have 

cycles: a cycle would violate the decision maker's free will or the assumption of time 

precedence. An influence diagram is regular if: (1) it has no cycles; (2) the value 

node (if present) has no successors; and (3) there is a directed path that contains 

all of the decision nodes (i.e., there is a total ordering of all the decisions). 
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headaches, and loss of appetite. The physician suspects that the patient may be 

suffering from a certain rare viral infection. Although this virus is found in only 

2% of patients with these symptoms, it is important to check for this possibility, 

because if the virus goes untreated it could be fatal. However, the treatment for 

the virus has possibly detrimental side effects, so the physician does not want to 

administer it unnecessarily. The patient's blood is therefore tested for the presence 

of the virus. 

The lab that tests for the virus has a good track record, but not a perfect one. 

If the patient is infected, there is a 99% chance that the virus will be detected. If, 

however, the patient is not infected, there is a 4% chance that the test will show a 

false positive result. If the patient described above tests positive for the presence 

of the virus, what should be the physician's belief that she is actually infected with 

the virus? 

We can calculate P(InfectedlPositive), where Positive represents a "positive" 

result on the blood test, and Infected represents the event that the patient really 

has the viral infection, by using Bayes' formula: 

P(Infectedl Positive) _ P(Poaitive!Infected)P(Infected) 
- P( Poaitivejl nf ected)P( Infected)+ P( Positive jU ninf ected)P(U ninf ected) 

.99•.02 

= .34 

The support accorded to the hypothesis that the patient is infected with the virus 

has been increased by the evidence of the positive test result, but the belief in this 

hypothesis is still only 1/3, even though the test is quite accurate by most standards. 

Bayes' formula presupposes some simplifying conditions that may not always 

hold. Note that the likelihood ratio involves the term P(El·H), which is assumed 

to be a constant. However, since -.H can stand for any disease other than H, this 

conditional probability may vary, depending on which -.H we are considering. Belief 

networks remedy this limitation by allowing the likelihood ratio to change if new 

evidence arrives. 

9 



Chapter 2 

Uncertainty 

Most systems, whether they are natural or synthetic, can be represented as a set of 

interdependent elements. However, for many real-world domains we may not have 

a complete picture of all of the variables and the relationships between them. The 

variables may not be limited to a simple true/false dichotomy, and the implications 

between variables may be fuzzy. In order to model a real-world domain accurately, 

it is therefore desirable to have some way of representing and handling uncertainty. 

Although there are a number of alternatives, many researchers favor belief networks 

because they provide a natural and efficient way to handle uncertainty. 

2.1 Approaches to Handling Uncertainty 

Pearl [18] classifies approaches to handling uncertainty into three schools: logicist, 

neo-calculist, and neo-probabilist. Logicists attempt to handle uncertainty with 

nonnumerical techniques such as nonmonotonic logic. The neo-calculist school uses 

numerical representations of uncertainty, but rejects probability calculus and uses 

alternatives such as the Dempster-Shafer calculus, fuzzy logic, and certainty factors. 

The neo-probabilists, which include Pearl, hold to traditional probability theory, 

supplementing it with additional computational facilities to make it suitable for AI 

problems. 

Approaches to uncertainty may also be categorized as extensional or intensional. 
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Figure 1.1: Pedigree for a family affected with albinism 

Susan Pauker, a genetic counselor at the Harvard Community Health Plan. I also 

referred to textbooks on genetic counseling, particularly Murphy and Chase [14], for 

examples with which to compare the results obtained by my program. 

1.3.1 Pedigrees 

The most important source of information for a genetic counselor is the family his­

tory of the consultand. Pedigrees are family tree diagrams showing the incidence of 

a particular genetic disorder in a family. In pedigree diagrams, men are represented 

by squares, women by circles. (Individuals of unknown gender, such as unborn fe­

tuses, may be indicated by diamonds.) The offspring of a couple are shown hanging 

from a line drawn between the two members of the couple. A filled-in circle or 

square represents a person who exhibits the trait in question; a half-filled circle or 

square indicates a definite carrier. In Chapter 4, I will show how pedigrees can be 

transformed into belief networks. 

Figure 1.1 shows a pedigree for a family affected with albinism, an autosomal 

recessive disorder. Since Bart and Bonnie have an affected child, they must both be 

carriers for albinism. Camille may or may not be a carrier for the disorder. 
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1.1 Overview 

The next two sections of this chapter present some of the basic principles of hu­

man genetics and genetic counseling. Chapter 2 gives an overview of approaches 

to uncertainty in artificial intelligence. Chapter 3 discusses previous approaches 

to the genetic counseling problem, both human- and computer-based. Chapter 4 

first describes Pearl's basic algorithm and then explains how I adapted it for use 

in the domain of genetic counseling. In Chapter 5, methods for handling multiply­

connected belief networks are discussed. Chapter 6 describes how supplementary 

data pertaining to the family and disorder of interest are incorporated by GENIN­

FER. Finally, Chapter 7 reviews the insights gained by this project and discusses 

opportunities for future work. 

1.2 Principles of Human Genetics 

Humans have 22 pairs of autosomal chromosomes plus one pair of sex chromosomes, 

which are two X's for females and an X plus a Y for males. Thus, all genes occur in 

pairs (called alleles), with the exception of genes on the X chromosome, which are 

found in pairs only in females. 

Genetic disorders can be classified into three basic categories: aneuploid, unilo­

cal, and multilocal [14]. Aneuploid disorders, of which Down's syndrome is the 

most common example, are caused by an abnormal number of chromosomes. Unilo­

cal conditions are attributable to a single base pair substitution at one point in a 

chromosome---in other words, they are caused by a single defective allele or pair of 

alleles. Many genetic disorders, such as cystic :fibrosis and sickle cell anemia, are 

unilocal. Multilocal disorders are caused by defects at several different genetic loci 

(i.e., more than one gene is responsible). Although multilocal disorders, like unilo­

cal disorders, are inherited, it is difficult to predict their occurrence or trace their 

progress through the generations. My system deals only with unilocal disorders. 

Two concepts that are central to the study of genetics are genotype and phe­

notype. Genotype refers to the genetic composition of an individual with regard 
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Chapter 1 

Introduction 

In the early days of artificial intelligence, many researchers attempted to produce 

general-purpose programs capable of solving a range of problems. As we learn 

more about how difficult it is to solve seemingly simple AI problems, it becomes 

clear that trying to tackle such large issues may be less productive than selecting 

a specific domain, such as some aspect of medicine, in which to test ideas. Once a 

domain has been selected, designing programs in the domain may give rise to new 

ideas that have the potential to be extended and generalized. Thus, research in 

medical artificial intelligence has a dual purpose: to advance basic AI research, and 

to produce programs that are useful to medical professionals. The domain of genetic 

counseling provides opportunities for progress toward both goals. In particular, it 

is a good springboard for research in probabilistic belief networks. 

As artificial intelligence techniques are applied to an ever-widening field of do­

mains, the problem of how to handle uncertainty emerges repeatedly. The domain 

of genetic inheritance is no exception: many of the questions we might ask in this 

field involve uncertainty. For example, is a particular individual heterozygous or 

homozygous for an allele of interest? Are the children of a given couple likely to 

be affected with a particular genetic disorder? Was the gene that caused a baby to 

be born blind transmitted by her mother, her father, or both? In order to provide 

coherent answers to questions such as these, an expert, human or otherwise, must 

have some mechanism for handling uncertainties and probabilities. Belief networks 
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