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Abstract 

I use a network simulator to explore rate-based congestion control in networks with "smart" 
links that can feed back information to tell senders to adjust their transmission rates. This method 
differs in a very important way from congestion control in which a congested network component 
just drops packets--the most commonly used method. It is clearly advantageous for the links in 
the network to communicate with the end users about the network capacity, rather than the users 
unilaterally picking a transmission rate. The components in the middle of the network, not the 
end users, have information about the capacity and traffic in the network. 

I experiment with three different algorithms for calculating the control rate to feed back to the 
users. All of the algorithms exhibit problems in the form of large queues when simulated with a 
configuration modeling the dynamics of a packet-voice system. However, the problems are not 
with the algorithms themselves, but with the fact that feedback takes time. If the network steady­
state utilization is low enough that it can absorb transients in the traffic through it, then the large 
queues disappear. If the users are modified to start sending slowly, to allow the network to adapt 
to a new flow without causing congestion, a greater portion of the network's bandwidth can be 
used. 
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Chapter One 

Introduction 

A network consists of users, who want to transmit data to one another, connected by various 

switches and links. Each component of the network has some finite capacity for processing 

and/or transmitting data packets. Therefore, the transmission of data in the network must be 

controlled in two logically separate but necessarily interrelated ways. The sender must not send 

faster than its corresponding receiver can process the data (flow control), and the sum of the 

flows through any part of the network must not exceed the capacity of that part (congestion 

control). Each method of control is limited by the other. The transmitter cannot send faster than 

the capacity of the network even if the receiver could process the flow, and the network cannot 

force the transmitter to use all of the available capacity if doing so would overwhelm the receiver. 

In this thesis I use simulation to explore a new method of congestion control (from [Mosely 84]) 

in which the links in the network regulate the rate of the data being sent by the individual users. 

This introduction gives an overview and describes the limitations of current flow and congestion 

control methods and describes the operation of the new rate-based method. Chapter 2 contains a 

detailed description of the network model used in the simulation and of the implementation of the 

rate-based congestion control algorithm. In Chapter 3, I describe the results obtained by running 

the simulator on two different network topologies, one designed by Mosely and a simpler one 

designed by me. I also attempt to obtain better results by modifying the operation of the protocol. 

Finally, in Chapter 4 I draw some conclusions from the results and give suggestions for further 

research. 

1.1 Flow Control 

The sender and receiver of data must somehow agree on the rate and amount of data flowing from 

the sender to the receiver. Such flow control is most commonly accomplished by using windows. 

The window is the amount of unacknowledged data that the sender is allowed to send. When a 

receiver acknowledges the receipt of some of the data, the sender can send that much more. At 

any given time there is only as much data in transit as the size of the window. 

Window-based flow control works acceptably well for relatively low delay networks. However, 

it fails when it is necessary to have large amounts of data in transit in order to utilize all of the 

bandwidth of the network, as in a high-speed but high delay network. If a data transfer is to make 

effective use of the available bandwidth, the window must be made very large. The window must 

be large enough for the sender to keep sending until it gets an acknowledgment from the receiver. 
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However, if such a large window is transmitted all at once, the flood of packets is very likely to 

overload some intermediate network component, resulting in the loss of packets. 

When using a network with a very large delay, a flow control method based on the regulation of 

the rate of the data being sent can work much better. Rather than controlling the amount of data 

outstanding, the sender and receiver negotiate the rate at which packets will be transmitted. The 

NETBLT protocol [Oark 87] uses rate-based flow control. NETBLT has been implemented and 

shown to be able to use a large fraction of the available bandwidth even over a long-delay 

network such as the Wideband satellite network. The Wideband network has a round-trip delay 

of 1.8 seconds, and an available bandwidth of approximately one megabit/second. In tests, 

NETBLT achieved steady-state (not including time to set up the connection) throughput values 

between 926 and 942 megabits/second, using more than 90 percent of the available bandwidth 

[Lambert 87]. 

1.2 Congestion Control 

While flow control concerns the ends of a single connection, congestion control concerns the 
aggregate of the flows in the network. When the sum of the flows through a component of the 

network exceeds its capacity, something must give. Usually, when a network becomes 

congested, the result is a build up of packets in the queues of its switches. The switches either 

cannot process the packets fast enough, or the links connected to the switches cannot transmit the 

packets fast enough. In either case, switches most commonly deal with congestion by dropping 

packets when they reach the limit of their buffer capacity. In a system using window-based flow 

control, the build up of queues and dropping of packets causes the users to reduce the amount of 

data sent because acknowledgments will be delayed or lost because of the congestion. 

In contrast, the loss of packets does not slow down NETBLT, which uses rate-based flow control. 
The sender will keep sending packets at the negotiated rate (at least until a complete buffer of 

data is sent; see the NETBLT paper) regardless of how many are lost in the network. The end 

users negotiate the transmission rate without any knowledge of the intervening network. (Of 

course, some knowledge about a workable rate must be either hardwired into the protocol or 

given by the (human) user, since the protocol as described in [Clark 87] has no way of finding out 

from the network what sort of a rate is reasonable.) Some work is being done on an algorithm for 

NETBLT that uses the interpacket arrival time to decide, without any direct communication from 
the network itself, if there is congestion or not. Since the receiver knows the rate at which the 

packets were transmitted, if they arrive at a different rate there must be some sort of congestion 

along the way. If congestion is detected, the transmission rate is adjusted to the rate at which the 

packets were actually received [Lambert 88]. While this method of congestion detection and 

control has worked in simulation, it does have one disadvantage. It is possible to end up with an 
unfair allocation of bandwidth among the various flows through the congested network 
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component. If the switches that are congested in the network control their flows, they can 

allocate a fair proportion of the available bandwidth to each flow. 

This thesis explores the behavior of a simple computer network using another type of rate-based 

protocol. The end users send data at some rate which is determined by feedback from the links in 

the network. The links in the network calculate a ''control rate'' based on the number of flows 

using the link, capacity of the link, and current transmission rate of the various flows through the 

link. The control rate of a link is the maximum rate, in bits per second, at which any sender using 

this link should transmit. As a packet travels through the network, each link puts the minimum of 

the packet's current control rate and the link's calculated control rate into the packet (the sender 

sets the control rate of the packet to infinity when it is generated). Therefore, when the packet 

reaches its destination, it contains the minimum control rate of all the links along its path. The 

receiver periodically transmits short control packets to its sender that contain the last control rate 

received. When the sender gets a control packet, it sets its transmission rate to the control rate 
found therein, thereby completing the feedback loop. 

I simulate three algorithms from Mosely for calculating the control values. Mosely examined the 

convergence and fairness of the three algorithms, and ran a computer simulation of them. With a 
dynamic network load, her simulation produced unsatisfactory results for all three. The links 

could not prevent changes in the number of flows from causing large packet queues to build up. 

She concluded that the control value algorithms did not converge quickly enough to handle the 

dynamics of the packet voice model that she was simulating. 

The protocol exhibits an interesting non-linearity as successively larger loads are placed upon it. 

As the applied load grows closer to the link capacity, the queues jump from tens to thousands of 

packets. There is essentially no intermediate region of operation. Once the queues become so 

large, the delay becomes so huge as to render the feedback control useless. 

The protocol can use more of the link capacity before failing by introducing a "slow start" 

convention.1 A new talk spurt sends at one tenth of its assigned rate until it receives its first 
control packet. This delay gives the links a better chance to react to the new flow before its data 

can seriously affect the network. Slow start does not prevent the instability--it merely moves the 
point of instability higher on the scale of link utilization. 

1This "slow start" shares its name and general idea with Van Jacobson's slow start for TCP ([Jacobson 88]). They 
are otherwise unrelated. 
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Chapter Two 

The Simulation 

2.1 The Model 

I used Mosely's network model adapted to my simulator to perform the experiments. The 

network consists of users, hosts, switches, and links. Hosts and switches did not exist in 

Mosely's simulator, and merely contain the packet queues in my simulator (see below). Users 

transmit data packets to their partners (other users) at a constant rate. The links along the route of 
a packet use information about the sender's transmission rate contained in the packet to keep 

statistics about the number of flows in the link and the transmission rates of those flows. Using 

the table of flows and rates, each link calculates a control rate at which the flows through it 

should send. This rate is inserted into packets that pass through the link, and the receiver of the 

packet periodically puts the last received control rate into a control packet and sends it back to the 

sender. The sending user changes the length of the data packets that it sends to make its data 
transmission rate be the rate as received in the latest control packet. This feedback loop works in 

both directions. In other words, the data packets arriving at the receiver contain a transmission 

rate for the receiver (to use when it starts sending) just as the control packets arriving at the 

sender contain the rate for the sender. Figure 2-1 shows the structure of a path that data packets 

might take to get from sender to receiver. 

The statistics of the flow of packets in the network are also from Mosely, and model the packet­

switched transmission of voice. Each user sends data only to one other user, its partner. The 

partners alternate sending data packets to each other in ''talk spurts.'' The length of each talk 

spurt in packets is a geometric random variable. Since the packet transmission rate is constant, 

the data transmission rate is varied by varying the length of the packets. When a talk spurt ends, 

the sending user marks the last packet as such and becomes the receiver. When the receiver 

receives the last packet it becomes the sender. A detailed description of each network component 

follows: 

2.1.1 USER 

Users come in pairs. Each user sends to and receives from its partner only. The partners alternate 

sending data packets in talk spurts that last (on the average) 1.2 seconds. An active user sends 50 

data packets per second. The data transmission rate is varied by making the length of each packet 

be the desired rate (in bits/second) divided by 50. Each packet sent by a user contains a control 

rate, a feedback rate, and the current transmission rate of the sending user. The control rate is 

initialized to infinity when the packet is created, and is modified by links along its route as 
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Data ackets 

Link 1 

Link2 

through host 
(but no ueue) 

User 80 

Figure 2-l:Example path between two users 
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discussed below. The feedback rate is the control rate from the last control packet received 

(which will become the current transmission rate of this user's partner). A flag in the packet is 

set if it is the last packet in a talk spurt. Each data packet has a 1/60 probability of being the last 

packet in a spurt, so that the number of packets per talk spurt is a geometric random variable with 

mean 60. 

The inactive partner in a pair of users sends a control packet to its active partner every 100 

milliseconds. The control packet has a fixed length of ten bits, and contains only the control rate 

and feedback rate as discussed above.2 

When a user (active or inactive) receives a packet, it sets its current transmission rate to the 
feedback rate contained in the packet (which is the control value last received by this user's 

partner), and sets its control value to the control value in the packet (to be sent back to its 
partner). If the end-of-spurt flag is set, the receiving user becomes active and starts sending data 

packets. 

2.1.2 HOST 

A host serves as the intermediary between users and links. It decides where to send packets by 

looking up their destination in a routing table, then sends the packet on after a constant delay. If 

the packet is going to a link and the link is busy, the host queues the packet until its destination 
link is free. There is a separate output queue for each link attached to the host. The host has an 

infinite number of buffers, and so no packets are ever dropped due to lack of buffer space. 

2.1.3 SWITCH 

A switch is very similar to a host, but connects only links together, not users.3 

2.1.4 LINK 

A link receives a packet from a host or a switch, and then transmits the packet to the next host or 

switch on the packet's route. (The next host or switch on the route has been placed into the 

packet after the routing table lookup in the previous host or switch.) The time to transmit the 

packet is a constant plus the link's capacity divided by the packet length. The minimum of the 

control value in the packet and the link's current control value (calculated as described below) is 
placed in the packet. 

2The ten bit length is an arbitrary limit used by Mosely. I am not sure how to fit both of these values (not to mention 
destination address, etc.) into ten bits in reality. Also, the 100 millisecond interval between control packets is the 
number chosen by Mosely as often enough, but not so often as to add a significant load to the network. 

3Mosely did not have hosts or switches. A link's queue was contained within the link, and each packet contained its 
route. My implementation behaves similarly to hers; this representation conforms to the structure of the simulator used 
for this evaluation. 
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Each link maintains a table, keyed by destination user, containing the current transmission rate of 

each flow as reported in the last data packet received belonging to that flow. When the last 

packet in a talk spurt is received, the flow is removed from the table. When a packet for a 

destination not in the table is received, a new entry is created in the table. At fixed intervals, the 

link uses the information from this table to calculate a new control value, using one of the three 

algorithms described below. 

2.1.5 Routing 

Routing in the network is static. A route is defined in each direction for each pair of users (so the 

path from one user to its partner may be different than the return path). The routes are stored in a 

global table, and each host or switch uses itself and the packet's destination as a key in order to 

find out the next link and next host or switch in the packet's route. 

2.2 Control Value Algorithms 

The links calculate their control values using one of three formulas, (using the following 

variables): 

p.(t) 
J 

c. 
J 

w. 
J 

r .. 
•] 

f. J 

The three formulas: 

Hayden: 

Control rate (in bits/second) of link number j at time t. This value is placed 
into each packet passing through the link (as described above) so that it will 
find its way back to the transmitter of data packets. 

Effective capacity of link j, c.=aC., where O.O<a< 1.0 and C. is the real 
J J J 

capacity of the link in bits per second. 4 Used to calculate the control value as 
described below. 

Current number of flows seen at link j. This number is the size of the link's 
table of flows and transmission rates as described above. When a packet is 
received that belongs to a flow that is not in table, W is incremented. When 

J 
the last packet in a talk spurt is processed by the link, its transmission rate is 
removed from the table, and W. is decremented. 

J 

Current transmission rate of flow i as seen at link j. This is the current 
transmission rate as reported by each active user in its packets. 

L; r iJ for each active flow i through the link. This is the reported total flow of 

data through the link, calculated by adding the reported rates of all flows 
through the link. 

p.(t+ l)=max [c./W., min [c., p.(t) + (c.-f.(t))/W. ]. 
J ]] ]] ]] J 

The new control rate is the old control rate adjusted up or down by the 
amount of extra or deficit capacity. The adjustment is divided by the number 
of flows since the control rate applies to each flow. This formula is from 
[Hayden 81]. 

4Mosely fixed a at 0.8, while I used several different values. See Chapter 3. 
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Mosely: 

Jaffe: 

p/t+l)=max [c/W1, min [c1, max [r ii(t)] +(cr.'1-(t))IW)]. 

Max[r .. (t)] is the maximum transmission rate reported of all the flows though 
the uri'k:. The new control rate is the largest reported transmission rate 
adjusted up or down by the amount of extra or deficit capacity. The 
adjustment is divided by the number of flows since the control rate applies to 
each flow. The largest reported transmission rate is used so that if some of 
the flows are constrained by other, slower (or more busy) links then the flows 
that are constrained by this link will get more of this link's capacity. 

p/t+l)=max [c/(W1+ 1), min [c1, p/t)+ (crfj<t)-p/t))l(W1+1)]]. 

The new control rate is the old control rate adjusted up or down by the 
amount of extra or deficit capacity minus the old control rate. The control 
values calculated by this formula tend to be smaller than those calculated by 
the other two for two reasons. The effective capacity of the link used in the 
calculation is smaller. First, it is divided by W.+ 1 rather than W.. Second, 
the current control rate is subtracted from the ~djustment. This 

1
formula is 

from [Jaffe 80]. 

Note that each of the formulas bounds the control value by the effective capacity of the link 
divided by the number of flows (number of flows plus one for Jaffe) and the effective capacity. 

The links calculate a new control value either every 20 or every 100 milliseconds.5 In addition, 
the links can optionally use a "protocol" (invented by Mosely) to decide whether to calculate a 

new control value or not. The idea behind the protocol is to wait until all senders have received 

the latest control rate before computing a new control rate. The protocol allows a new value to be 

calculated only if all the flows currently in the link's table are transmitting at a rate less than or 

equal to the link's current control value: rii(t)'.5.p/f) for every flow i through the link. This 
requirement guarantees that all senders using the link have either received the new rate, or are 

transmitting at a lower rate received from some other link. If the protocol is not satisfied, the link 

waits for 20 milliseconds before trying again. 

2.3 The Simulator 

The simulator that I used is one developed at MIT. It is an interactive, event driven simulator. It 

consists of an 1/0 manager that provides an interface to the X window system, and an event 

manager that allows network components to schedule events for each other. Any sort of packet 

switching network component can be simulated, provided that its behavior can be described in a 

single-threaded C program. I wrote new components to act as users and links, but used existing 
host and switch components to connect users and links together, to route the packets, and to 

manage the packet queues for the links. All simulations were run with identical random number 
generator seeds. 

5These parameters can all be set to any v alue--the numbers given here are just the ones that Mosely and I used in the 
simulation. 
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Chapter Three 

Results 

3.1 Mosely's Topology 

Mosely' s topology consists of eight links and 80 users. (See Figure 3-1.) Each user i has as its 

partner user 81-i. Links one through four handle 20 users each (averaging 10 flows each, since 

only half the users are active at any given time). Links five through eight handle eight, 16, 24, 

and 32 users (an average of four, eight, twelve and sixteen flows) each, respectively. The links 

are unidirectional, and in general the packets of each partner travel along different links.6 For 

example, user 1 transmits packets to its partner, user 80, over link 1 followed by link 8. User 80 

sends packets back on link 4 followed by link 5. 

Mosely ran simulations for both a static and dynamic network. In the static network, all the even 

numbered users transmit without stopping. The length of a talk spurt is infinite. She showed that 

all of the different algorithms eventually converge to the correct control value, though with 

different types of oscillation and different periods. In the dynamic network, the users alternate 

talk spurts as described above. Mosely simulated each of the algorithms with and without the 

protocol. The Hayden and Jaffe algorithms were run only with slow control rate updates, and the 

Mosely algorithm only with fast updates because she concluded from the static results that they 

performed best under those conditions. 

In Mosely's simulation, none of the algorithms behave very well, and in particular the Hayden 

and Mosely algorithms "produce totally unacceptable queues. " 7 As shown by the static results, 

every algorithm takes at least 2-3 seconds to converge. Mosely concludes that the algorithms do 

not work well in the dynamic case because all of the algorithms take too long to converge to the 

correct control value. 

The rate at which the control rates converge is not the problem per se. The problem is that the 

new flows enter while transmitting at a control rate calculated for a smaller number of flows. 

Until the new control rates are fed back to the senders, the link will be overloaded. If the link 

does not have enough unused capacity to absorb the transient, large queues will build up 
regardless of the control rate calculation algorithm. Mosely does not run the dynamic simulation 
for Hayden or Jaffe with fast control rate updates, nor with her own algorithm with slow updates 

6Four pairs do share link 7, but they should not make a significant change in the operating characteristics of the 
network. 

7Mosely, p. 131. 
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Senders: 

All users send on 
one of these links. 

All users receive on 
one of these links. 

Receivers: 

Host 

1-2 
21-22 
41-42 
61-62 

Switch 

Host 

13-20 
33-40 
53-60 
73-80 

Figure 3-l:Mosely's Topology 
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(or at least she nowhere mentions such a simulation). She bases this decision on the static results. 

I ran all permutations of algorithm, update frequency, and protocol. The variations that Mosely 

did not run are neither better nor worse than the others--they do not follow the static results. Just 

as an example, Hayden's algorithm with no protocol and slow update control updates, (figure 

A-1) (one that Mosely did run) certainly does not behave any better than the same algorithm with 

fast control rate updates (figure A-2). 

She also comments that the ''bits transmitted'' value for the Jaffe algorithm oscillates, and that 

the oscillation is because of the oscillation in control value in the static case. However, the value 

does not oscillate on its own--it actually follows the number of flows. As the number of flows 

decreases, the bits transmitted rate will go down until the control value changes to compensate, 

and the change has been fed back to the active users. In some sense, the bits transmitted value is 

the derivative of the number of flows. The only reason that the Jaffe appears to ''oscillate'' more 

than the other algorithms is that it does a better job of avoiding large queues. If there is a queue 

of packets waiting to be transmitted over a link, the bits transmitted value will naturally stay at 

the capacity of the link, and not oscillate at all. If the packet queue is generally empty, however, 

the bits transmitted value will vary as the number of flows changes, as described above. 

Finally, she concludes that Jaffe is the best of a bad lot. The queues that build up are not as big as 

the others, and the average delay between the time a packet enters the queue and the time that it 

finishes transmission is much smaller than any of the other algorithms. In addition, the 

throughput of Jaffe is only slightly lower than the others. However, delay is not a valid 

comparison between these algorithms in this case. Of course the other algorithms have a much 

greater delay--the packets spend much of their time waiting in queues. In this case, delay is a 

symptom, not a problem with the algorithm. Second, the only reason that Jaffe does not have 

such large queues is that it does not attempt to use as much of the capacity of the link as the other 

two. When calculating a new control value, it uses W. + 1 as the divisor rather than W.. The 
} } 

effective capacity of the link is therefore smaller than the other two. As I will show later, if the 

effective capacity is lowered for the other two algorithms, they will not have large queues either, 

while if the effective capacity is increased for Jaffe, it does not work any more. Finally, if large 

queues build during a simulation run, the average throughput is also not a valid comparison. 

During the time that there are packets in the queue, the link should be running at its maximum 

capacity. However, this throughput, while nice and high, is not in any sense a measure of the 

effectiveness of the particular algorithm. The circumstances under which the large throughput is 

obtained (large queues) are undesirable. 
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3.2 My Topology 

In order to more easily look for new explanations for the poor behavior of the algorithms, to look 

at the interaction of traffic in two directions, and to explore the oscillation problem, I ran more 

simulations with a simpler topology. I also ran the simulations for 150 seconds rather than 30 to 

see how the network behaved for longer periods of time, and varied the effective capacity 

parameter. 

The topology I used has forty users and two half duplex links (the equivalent of one full duplex 

link). See figure 3-2. All the odd numbered users (1, 3, ... , 39) communicate with their partners 

through link 1, and their partners (user i has as its partner user 41-i) send packets back through 

link 2. During normal operation, there should be 20 flows active at any instant (on the average, 

10 through each link). 

All even-numbered users 

Host 

1 2 

Host 

All odd-numbered users 

Figure 3-2:Heybey's Simple Topology 

3.2.1 Stable and unstable region 

The protocol operates either stably or unstably. As the "effective capacity" parameter is varied, 

the maximum queue length observed during a simulation run makes a sudden jump from less than 
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100 to several thousand. When operating in the stable region, the queues have a startup spike of 

up to several hundred, then drop to around five packets with occasional spikes up to 50. In the 

unstable region, the queues oscillate wildly from zero to two or three thousand packets, and down 

again. The difference can be clearly seen in figures A-5 and A-6. The parameters of the two 

simulations differ only in the effective capacity, which is 0.55 for the first run and 0.56 for the 

second. In figure A-5, the queue hovers around ten or so and the number of flows oscillates 

around 10, while in figure A-6, the queue varies from zero to 2000 and the number of flows 

oscillates from zero to 15 in phase with the queue oscillation. One run has a region of operation 

during which the queues oscillate between zero and seven or eight hundred packets. However, 

the oscillations disappear and the protocol remains in the stable region for the rest of the run. 

As the effective capacity parameter is increased, there is not always a clean break between stable 

and unstable operation. If effective capacity is much lower or much higher than the point at 

which unstable operation begins, the protocols always operate stably or unstably, respectively. 

As the effective capacity is increased in steps, the protocol may operate stably, unstably, and then 

stably again. However, there is no intermediate region of operation. No combination of 
parameters results in a queue that could be considered to be "between" the stable and unstable 
regions. 

Once the queues build up to unreasonable lengths, the packets from which the links get their rate 

information are so old that the control has no effect. Because of the wild oscillations, the users 

who have just finished a talk spurt are sending control packets to their partners with rates that are 

very fast. The link with no queue has no load, and so has set its control rates all the way up. 

3.2.2 How to Operate Stably 

The key to avoiding the unstable region is to avoid attempting to use too large a percentage of a 

link's capacity. When running the simulator with the same parameters as used by Mosely, the 
only algorithm that works at all is Jaffe. As mentioned above, I believe that the reason that Jaffe 

seems to perform better is because it does not attempt to use as much of the link's capacity as 

Hayden or Mosely. In order to test this hypothesis, I ran the Hayden and Mosely algorithms with 
a lower effective link capacity. 

Note that the "effective link capacity" as set in the simulation and used to calculate the control 

rates can not be compared between different algorithms. When I adjusted the effective capacity 

so as to make all three algorithm work, the average throughput (calculated over the entire 
simulation run) is hardly different between the three algorithms despite the different values for 

effective capacity. Maximum throughputs are 30 kbps for Hayden (at an effective capacity of 
0.7), 31 kbps for Jaffe (at 0.79), and 31 kbps for Mosely (at 0.69). 
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3.2.3 Slow Start 

Since it is the variance in the talk spurts that cause the protocol to enter the unstable region, I tried 

making the users start a talk spurt by sending slowly. When a user starts a talk spurt, it sends at a 

rate that is one tenth of its control rate until it receives its first control packet. After receiving its 

first control packet, it resumes transmitting at full speed. While in slow start, it still puts the full 

rate in each transmitted packet, but it doesn't actually transmit at that rate. 

Slow start increases by a significant amount the percentage of the link capacity that can be used 

before the protocol enters the unstable region. With slow start, the maximum throughputs (at 

effective capacity) achieved are 35 kbps for Hayden (0.88), 36 kbps for Jaffe (1.01), and 35 kbps 

for Mosely (0.82). See Table 3-1 for a complete listing. The table lists the highest effective 

capacity (and throughput) at which each combination of algorithm and parameters could be run 

before becoming unstable. In other words, the simulation run with the next larger effective 

capacity value was unstable. However, once it has become unstable, slow start does not help the 
protocol recover. The huge queueing delays render any sort of control, slow start or not, 
worthless. 

with slow start 
Algorithm/protocol/update rate Eff. capacity Throughput Eff. capacity Throughput 

Hayden/no/fast 
Hayden/no/slow 
Hayden/yes/fast 
Hayden/yes/slow 
Jaffe/no/fast 
Jaffe/no/slow 
Jaffe/yes/fast 
Jaffe/yes/slow 
Mosely/no/fast 
Mosely/no/slow 
Mosely/yes/fast 
Mosely/yes/slow 

0.55 
0.70 
0.39 
0.58 
0.73 
0.81 
0.51 
0.61 
0.69 
0.73 
0.70 
0.74 

25.4 
30.4 
19.4 
25.6 
29.8 
32.0 
22.1 
24.3 
32.1 
33.4 
31.2 
32.5 

0.70 
0.90 
0.53 
0.79 
0.90 
1.01 
0.70 
0.80 
0.87 
0.79 
0.88 
0.91 

29.4 
35.7 
23.8 
31.7 
33.4 
36.2 
27.6 
29.0 
37.0 
33.3 
35.8 
36.4 

Table 3-1: Table of maximum throughputs (KBits/sec) and effective capacities 

3.2.4 Why the protocol does not recover 

When the system does enter the unstable region, it does not, in general, ever recover.8 There are 

three problems that contribute to its staying there. One, the convoying effect, is easily visible on 

all of the unstable figures, but especially on figures A-3 and A-4. Note that the size of the queue 

and the number of flows through the link oscillate synchronously, and that the number of flows 

8There are several runs in which the queues oscillated for a few cycles up to 800 or 900 packets and then do recover. 
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recorded by the link drops close to zero when the queue drains. While there is a large queue on 

one of the two links, the other link is almost completely unloaded. When the queues become 
large, the queueing delay becomes longer than the 1.2 second average length of a talk spurt. 

Therefore, all the active users transmitting through the overloaded link have finished their talk 

spurts, but their partners have not become active yet since they have not received the end-of-spurt 

packets which are waiting in the queue. When the queue drains (since there are no more packets 

arriving in it any more), many of the inactive user start transmitting. Since there were almost no 
flows in the other direction, they all start transmitting at the very high rate fed back by the 

unloaded link. A queue then develops on that link, beginning another cycle. Although the flows 

are supposed to start and stop randomly and independently, they instead fall into a pattern of all 

the flows going in one direction, then the other. 

The second problem that aggravates the instability is the "forward queueing problem." Links 

extract the sending rate information from the packets as they are transmitted. If there is a large 
queue in only one direction, however, the information in the packets that the link sees is old. The 

control value calculated by the link is fed back to the senders very quickly (because the opposite 
direction has very little load). However, the control is based on old information, and so will not 

be correct. 

I attempted to solve the forward queueing problem by changing the simulator such that the link 

took the sender's rate out of packets when they were put on the end of the queue, not when they 

were sent. This way, the link's picture of the world is up to date. Unfortunately, this change 

resulted in slightly different behavior, but did not solve the problem of large queues. See figures 

A-7 and A-8. The new strategy led to more and faster oscillation of the queues. The change 

helps the forward queueing problem--the queues are somewhat smaller, and drain more quickly-­

but the convoy problem still remains. The senders get a more correct control value, but the 

inactive users get the large control value from the lightly loaded link more quickly than before. 
Even more of them start transmitting at the fast rate, and the queue in the other direction builds up 

much more quickly. 

Finally, if there is an extremely large queue in one direction, some of the talk spurts in the other 

direction will operate without any control at all. The queueing delay of a 2500 packet queue is 
longer that the duration of a talk spurt. All the control packets from the receiver will be waiting 

in the queue. Therefore, if the link on which the data is being sent was initially unloaded, the 

sender will send at its maximum rate for the entire duration of the talk spurt. If only a few 

senders start under these conditions on the unloaded link, they will build up enough of a queue to 

continue the oscillation as the other queue drains and more sender begin talk spurts. 
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Chapter Four 

Conclusions 

The key to congestion control with these rate-based algorithms is to insure that the network can 

absorb the transients in the data flow expected in the environment. Any of the three algorithms 

can provide effective congestion control with almost equal throughputs if the ''effective 

capacity" used in their control value calculations is adjusted correctly. 

If the effective capacity is not adjusted correctly, and large queues do build up, then none of the 

three algorithms will in general recover. The convoying and forward queueing problems 

collaborate to cause the huge packet queues to oscillate from link to link, at least for this 

particular set of traffic dynamics. 

The effect of the convoy problem is that the flows all travel in one direction, then the other, rather 

than in random patterns as intended. With a large queue, all of the currently active flows in the 

network end before the end-of-spurt packets drain out of the queue. Since the flows have ended, 

the link without a queue has little or no load on it. When the end-of-spurt packet do finally arrive 

at their destinations, all of the inactive users start sending over the previously unloaded link at the 
maximum rate. That link then suddenly has an attempted flow of four or five times its capacity, a 

large queue accumulates, and the cycle starts all over again. 

The forward queueing problem is also because of the large queue. The link updates its 

information about a flow and its current transmission rate when it sends a packet of that flow. If 

there is a large queue, the packet is very old, so the link is working with old information. 

Therefore, the control values that are being produced and sent back to the senders are based on 

what the senders were doing a second ago or more. 

I tried to alleviate the forward queueing problem by giving the links the information in a packet 

when it arrived on the queue, not when it was sent. However, this attempt aggravated the convoy 

problem. The fix, while helping the queue drain more quickly, also ensured that the large control 

value of the relatively unloaded link was quickly sent to the inactive users so that even more of 

them transmitted at the large rate when they became active. 

I also tried to lower the percentage of the bandwidth that had to be reserved to absorb transients 

by changing the users to use slow start when beginning a talk spurt. Slow start allowed me to set 

the effective capacity of all the algorithms higher (resulting in a higher average throughput) 

before they slipped over the edge into instability. 

23 



Appendix A 

Figures 

All of the figures in this appendix depict the number of bits transmitted through the link every 0.1 

seconds (yielding a number approximately equal to the bits per second throughput of the link 

divided by 10), the current number of flows seen by the link times 100, and the output queue size, 

in packets, of the host or switch attached to the link. The queue size is scaled either by 10 or by 

1, depending on its maximum value (if the captions contains "QxlO", the queue length graph has 

been scaled). Since the bits transmitted value is calculated every tenth of a second, it will not 

always be exactly accurate. A packet whose transmission crosses a tenth of a second boundary 

will be counted entirely in the second interval, making the value too low in the first interval and 

too high in the second one. 

Figures A-1 and A-2 (the next two pages) are from my simulation of Mosely's topology and her 

set of parameters. Link capacity is 40 kbps, effective capacity is 0.8 times real capacity, 

propagation delay is 3 milliseconds, and link update attempt interval (the time between attempts 

to calculate a new control rate) is 20 milliseconds. The algorithm, update interval, and protocol 

use are as shown in the figure captions. 
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