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Abstract

Replicating various components of a system isacommon techniquefor providing highly avail-
able services in the presence of failures. A replication scheme is a mechanism for organizing
thesereplicas so that asagroup they provideaservicethat hasthe same semanticsastheoriginal
unreplicated service. Viewstamped replication is a new replication scheme for providing high
availability.

This thesis describes an implementation of viewstamped replication in the context of the
Argus programming language and run-time system. The programmer writes an Argus program
to provide a service without worrying about availability. The run-time system automatically
replicatesthe service using the viewstamped replication scheme, and thereforemakesthe service
highly available. Performance measurements indicate that this method allows a program to be
made highly available without degradation of performance.
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Chapter 1
| ntroduction

High availability is essential to many computer-based services. Consider an airline reservation
system that handles flight bookings for customers from all over the country. Suppose this
system resides on a single computer. A failure of this computer could cripple the airline
because customers could not make any reservations or get flight information for the duration
of thefailure. Thisloss of serviceishighly undesirable; we would like to make the reservation
service remain available in spite of failures.

A common technique for achieving availability is to replicate the service. For example, if
there are copies of the reservation system on several computers, the failure of asingle computer
could be tolerated because the other copies would remain available. This replication, however,
does not come for free. The replicas have to be organized so that as a group they provide a
service equivalent to the original unreplicated service. Variousreplication schemesthat achieve
this organization are described in the literature: weighted voting [Gif79], quorum consensus
[Her86] and primary copy replication [AD76].

This thesis describe an implementation of viewstamped replication [Oki88], which is an
extension of primary copy replication. This implementation demonstrates that viewstamped
replication is an efficient technique for building highly available services. The replication
scheme has little impact on the performance of the service, but allows the service to remain
available in the presence of failures. Performance measurements that support this claim are
givenin alater chapter.

This implementation is done in context of the Argus programming language and run-time
system [Lis88]. The Argus system has been designed as a tool for easy construction of long-
lived services. The Argus run-time system is modified to automatically make services written
using the Argus programming language highly available.

13



14 CHAPTER 1. INTRODUCTION

1.1 TheReplication Scheme

In primary copy replication, the unit of replication isamodule. A module is an encapsulation
of some resources together with the operations used to access these resources. Each module
is replaced by several copies. One of these copies is designated the primary; the others are
backups. All module operations are executed at the primary. The effects of these operations
are propagated to the backups in the background. If the primary ever fails, a backup takes over
and becomes the new primary.

Viewstamped replication extends the primary copy scheme to limit the impact of system
failures. Whenever afailure occurs, normal activity is suspended, the replicas are reorganized,
and a new primary is selected if the old one is now inaccessible. When this reorganization is
complete, normal activities are alowed to resume.

[Oki88] gives a comparison of the viewstamped replication scheme with several well-
known replication schemes and systems from the literature (Voting [Gif79], Virtua Partitions
[ESC85], Isis[Bir85], Circus[Coo85], Tandem’sNonStop System [Bar78, Bar81], and Auragen
[BBG83)).

1.2 System Model

The replication method operates in a distributed computer system that consists of many nodes
linked by a communication network. The communication network may have an arbitrary
topol ogy — for example, many local areanetworksconnected by along haul network. Processes
residing on different nodes can communi cate by sending messagesover the network. Weassume
that in the absence of failures, any node can send a message to any other node in the system.

Both the nodes and the communi cation network may fail. Nodes may crash, but we assume
that they are failstop [Sch83]; i.e., once a node fails in any manner, it stops all activity. Each
node has volatile storage that is lost in a crash. Nodes may also have disks that provide non-
volatile storage. Data stored on disks survives most node crashes, but some node crashes may
result in disk mediafailuresthat destroy thisdata. Each node also has a small amount of stable
storage. Stable storage is amemory device that preserves information written to it with avery
high probability [Lam81].

The communi cation network may drop messages, duplicate them, deliver them out of order,
or delay them. In addition, communication link failures might cause the network to partition
into isolated subnetworks that cannot communi cate with each other. We assume that both node
and link failures are repaired.
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1.3 Overview

Chapter 2 presents the Argus model of computation which is based on transactions [Gra78],
and describes the portions relevant to this implementation.

Chapter 3 givesageneral overview of the replication scheme. In particular, the terminology
used is presented, and then the replication scheme is described.

Chapter 4 covers my implementation of transactions. It describes the extra processing
needed at the clients and the servers to integrate transactions into the replication scheme.
Performance measurements of the replicated system are given, and compared with the corre-
sponding measurementsfor an unreplicated Argus system. A brief comparison of thereplicated
system with the replicated transaction facility in Isis[Bir85] is also given.

Chapter 5 presents my implementation of the algorithm used to handle system failures.
This agorithm involves communication between the replicas to select a new primary. The
performance of this algorithm is discussed, and some future optimizations are presented.

Chapter 6 presentsasummary of what has been accomplished and discusses somedirections
for future research.






Chapter 2

The Argus System

Argus is an integrated programming language and run-time system [Lis88] for developing
distributed programs. It is intended to be used primarily to write programs that maintain on-
linedatafor long periods of times, such asbanking systems, mail systemsand airlinereservation
systems. Thison-line data is required to remain consistent in spite of failures and concurrent
access.

This chapter describes the Argus model of computation. The presentation focuses on
guardians and atomic actions.

2.1 Guardians

Thelogical nodesin an Argus system are called guardians. A guardian isa specia object that
resides at a single physical node in a distributed system. Logically, a guardian is an abstract
data object that encapsulates its resources and provides operations to access these resources.
These operations, called handlers, can be used by other guardians to access and modify the
resources controlled by the guardian. For example, consider a guardian that models a bank
account (see Figure 2.1). It provides handlers to deposit and withdraw money, and to conduct
balance inquiries. Another guardian might maintain a database of bibliographic references for
aresearch group, and provide handlers to make queries and add new bibliographic entries.
Internally, a guardian contains data objects that represent the resources it is controlling.
Theseobjects can be accessed only by invoking the guardian’ shandlersusing aremote procedure
call mechanism [Nel81]. The caller sends the name of the handler to be invoked, and some
arguments, to the guardian in a call message. When the handler invocation is finished, the
results are passed back to the caller in areturn message (see Figure 2.2). The Argus run-time

17



18 CHAPTER 2. THE ARGUS SYSTEM

bank_account = guardian
% Maintain a bank account
deposit = handler (amount: int)
% Deposit amount to the account
end deposit

withdraw = handler (amount: int) signals (insufficient_funds)
% Withdraw amount from the account.
% Signal error if there are not enough funds in the account.
end withdraw

balance = handler () returns (int)
% Return account balance.
end balance

end bank_account

Figure 2.1: Bank account guardian.

Cadll Message
<Handler name, Arguments>

Caller Callee

Return Message
<Results>

Figure 2.2: Decomposition of a handler call into a call message and a return message.

system takes care of all details of message construction and transmission inherent in the remote
call mechanism.

Inside a guardian, there are one or more processes (or threads of control) that execute
concurrently. Whenever a handler call comesin, a new process is created to execute the call.
When the call isfinished, the process sends the results back to the caller, and then is destroyed.
In addition, there may be background processes that carry out tasks unrelated to a particular
handler call. For example, a guardian that represents a bank branch may have a process that
periodically audits all the accounts and reports any problems to the branch manager.
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2.1.1 Failureand Recovery

A guardian is resilient to node failures. After a physical node recovers from a crash, the
guardiansthat reside on the node can reconstruct their data objects by reading them from stable
storage. During normal operation, the guardian’s data objects are periodically copied to stable
storage to minimize the loss of information in case of anode failure. The exact point at which
these objects are written to stable storage is described in Section 2.3.1.

A crash destroysall processes and objectsat aguardian. After the crash, the Argusrun-time
system recovers the guardian’s objects from stable storage. The loss of processesis masked by
running computations as atomic actions [GLPT76], or actionsfor short. Actions also solvethe
problems created by allowing concurrency within one guardian.

2.2 Atomic Actions

Two useful properties of atomic actions that help solve the problems created by concurrency
and failures are serializability and totality. The serializability property impliesthat the effect of
running a number of actions concurrently isthe same as the effect of running them sequentially
in some unspecified order. Serializability permits concurrent execution yet ensures that the
concurrent actions do not interfere with each other. The totality of actions implies that an
action either completes entirely or has no visible effect on the system’s state. If an action
completes, it is said to commit; otherwise it is said to abort. The effects of committed actions
are made permanent by writing their changes to stable storage.

2.2.1 Atomic Objects

Atomic objects are used to implement atomic actions. Operations running on behalf of atomic
actions limit their access to atomic objects. Two key properties of atomic objects help control
this access to implement both serializability and totality of atomic actions.

Two Phase L ocking

First, every operation carried out on any atomic object uses strict two-phase locking [GLPT76]
to implement serializability of concurrent actions. Every operation on an atomic object is
classified as either areader or awriter. All operations that modify an object are called writers;
other operations are called readers. A read lock isacquired before areader accesses an object,
and awrite lock is acquired before awriter accesses an object. At any given time, at most one
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action can hold a write lock on an object. These locks are held until the action commits or
aborts, and do not need to be re-acquired if the action references the object again. Thislocking
schemeis called two-phase | ocking because the activity can be divided into two distinct phases.
In thefirst phase, all the locks are obtained as needed. In the second phase, at commit or abort
time, all the locks are released simultaneoudly.

Versions

Second, different versions of atomic objects are kept to implement totality. The state of an
atomic object is kept in a base version. Whenever an operation modifies the object on behalf
of an action, a tentative version is created to hold the modified state of the object. When the
modifying action commits, the tentative version replaces the base version, and the new state of
the object iswritten to stable storage. If the action aborts, the tentative version is thrown away.

2.2.2 Nested Actions

Atomic actions can be generalized to nested atomic actions by using subactionsto build higher
level actionsin ahierarchical fashion, thus forming trees of nested actions[Mos81]. An action
that is nested inside another is called a subaction. Non-nested actions are called topactions.
The standard tree terminology of parent, child, ancestor and descendant appliesto action trees.

Nested actions have two desirable properties. First, since siblingsin an action tree can run
concurrently, they allow concurrency within an action. Second, nested actions can be used as
a checkpointing mechanism. For example, each handler call in Argus runs as a subaction of its
caler. If acall failsfor some reason, the run-time system simply aborts the call subaction and
allow the caller to try again. In thisway, the effects of failures are limited.

2.2.3 LockingRules

Subactions require extensionsto locking and version management. The complete set of rulesis
summarized in Figure 2.3. These rules ensure several things. First, a subaction is allowed to
obtain aread lock on an object only if all holders of writelocks on that objects are its ancestors.
Similarly, a subaction can get a write lock on an object only if all holders of any sort of lock
on the object are its ancestors. This prevents improper concurrent access to an atomic object
because in the Argus model a child never runs concurrently with its parent.

Second, when a subaction aborts, its locks and versions are discarded and its parent action
can continue from the state at which the subaction started. When a subaction commits, itslocks
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Acquiring aread lock:

— All holders of write locks on X must be ancestors of S.

Acquiring awrite lock:

— AIll holders of read and write locks on X must be ancestors of S.

— If thisisthefirst time S has acquired a write lock on X, push a copy of the object on top
of the version stack.

Commit:

— S’sparent acquires S’slock on X.

— If S holdsawrite lock on X, then S’s version (which is on the top of the version stack for
X)) becomes S’s parent’s version.

Abort;

— S’slock and version, if any, are discarded.

Figure 2.3: Rulesfor locking and version management for object X by subaction S.

and versions areinherited by its parent. If the parent abortslater, all modifications made by the
subaction will be undone because the parent’s locks and versions will be discarded. A stack
of versionsis used to implement this abort mechanism for nested actions. One version is kept
for each active action that is modifying the object. When a subaction needs a new version, the
version on top of the version stack is copied and the result is pushed on the stack.

2.24 Using Nested Actions

Subactions can be created in a number of ways.

e Every handler call runs as a subaction. This subaction is started on the caller’s side and
is called the call action. This extra action is used to ensure that handler calls have a
zero or one semantics. If the call is successful and the called guardian replies, the call
happens exactly once. |If for some reason it is not possible to complete the call, the
run-time system abortsthe call action. Thetotality of atomic actionsthus guarantees that
effectively the call did not happen at all. Therefore running aremote procedure call asa
subaction ensures that the call has clean semantics.
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Figure 2.4: Action spreading out due to nested handler calls.

e When a handler call message is received at a guardian, a subaction is created to process
it. Thissubactionis called the handler action. The handler action provides a separation
between the calling and the called guardian, and ensures that each individual action runs
at just one guardian.

e Explicit subactions can be created by the programmer to provide extra concurrency and
a checkpointing mechanism.

2.3 Committing and Aborting Actions

A distributed program in Argus consists of a collection of guardians spread over the nodes
of the network. A computation is initiated at some guardian by creating a topaction. This
computation spreads to other guardiansin the system by means of handler calls.

For example, in Figure 2.4, topaction T starts out at guardian G1, makes a handler call
hl to G2, which in turn makes handler call h2 to G4. When hl is finished, T makes a final
handler call h3 from G1 to G3. In this manner, topaction T, which started at G1 manages to
spread to G2, G3 and G4. When T commits, all modifications made by T’s descendants are
written to stable storage using the standard two-phase commit protocol [Gra78]. The guardian
where the topaction started acts as the coordinator for the commit protocol; guardians visited
by descendants of the topaction are the participants. Information about the guardians visited
by the descendants of atopaction is collected in handler call reply messages. The coordinator
uses this information to compute the set of guardians that participated in the topaction. In the
preceding example, G1 will be the coordinator and G1, G2, G3 and G4 will be the participants.
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2.3.1 Two Phase Commit

Subaction commit and aborts are implemented using the rules in Figure 2.3. The two phase
commit protocol [Gra78] is used to implement topaction commits. In the first phase, the
coordinator sends out prepare messages to all the participants. When a participant receives a
prepare message for topaction T, it releases all read locks held by T and sends a reply back
to the coordinator. If the coordinator receives areply from each participant, the second phase
is started and the coordinator sends out commit messages to all the participants. When a
participant receives acommit message for topaction T, it releases all write locks held on behalf
T, writes the tentative versions of the atomic objects modified by T to stable storage, and
installs these tentative versions as the new base versions. However, if in the first phase one of
the participant refuses to prepare, or due to a failure the coordinator does not receive a reply
from a participant, then the coordinator aborts the action and sends out abort messages to all
the participants. On receiving an abort message, a participant releases all locks held on behalf
of the action, and throws away all tentative versions of atomic objects modified by the action.

Information needs to be written to stable storage during this protocol to ensure that the
effects of the committed topaction survive crashes.

1. Beforeaparticipant agreesto prepare by replying to aprepare message, it writesaprepare
record to stable storage. Thisrecord contains the tentative versions of all atomic objects
modified by the topaction. The prepare record ensures that if the coordinator decides to
commit the topaction, all the modifications made by the topaction can be recovered from
stable storage after a participant crash.

2. In phasetwo, the coordinator sends commit messagesto all the participants and waits for
acknowledgments. If the coordinator crashes while waiting for the acknowledgments,
some participants may receive the commit message, while others may not. To solve
this problem, the coordinator writes acommitting record to stable storage before sending
the commit messages. When all the commit messages have been acknowledged, the
coordinator writes a done record to stable storage. On recovering from the crash, if there
is a committing record for the topaction, but no corresponding done record, the newly
recovered coordinator will resend the commit messages to all the participants and again
wait for acknowledgments.

3. When a participant is notified of the commit or abort of a topaction, it records this
notification on stable storage by writing either a commit or an abort record. These
records are used during recovery of the guardian’s state from stable storage after a crash.
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If there is a commit record for a topaction, the tentative versions in the corresponding
prepare record are installed as base versions. If thereisan abort record for the topaction,
the tentative versions are thrown away.

Various optimizations are made for topactions that do not modify anything at some partic-
ipants. At such participants, no prepare record is written for topaction T. In addition, these
participants are omitted from phase two of the commit protocol because they have no write
locks that need to be released, or tentative versions that need to be installed. Therefore, if the
topaction isread-only at all participants, the entire second phase is omitted.



Chapter 3
Viewstamped Replication

The mechanisms presented in Chapter 2 allow a programmer to construct services which are
highly reliable; i.e., with a high probability, the service does not lose necessary information.
However, Argus does not provide any mechanisms to make services highly available. The
programmer must explicitly arrange for availability, perhaps by replicating the service onto
severa guardians which communicate with one another to keep their state mutually consistent.
Viewstamped replication addresses this problem by automatically providing availability. Since
the programming mode is not changed, the programmer writes programs as before, and the
run-time system is configured so that the services provided by these programs are highly
available.

This chapter gives an overview of the replication scheme as described in [Oki88]. The
replication scheme is then broken down into several different sections, and the implementation
of each is described separately in later chapters.

3.1 Overview

Each individual guardian is replicated to obtain a guardian group. Each guardian group
consists of several members called cohorts. This set of cohortsis called the guardian group’s
configuration. The configuration behaves as a single logical entity that provides the same
service as the original unreplicated guardian. Each cohort has a system-wide unique name
called itsguardian identifier, or gid for short. Guardian groups have unique names called group
identifiers, or groupid for short. Each cohort knowsits own gid as well as the configuration and
the groupid of the guardian group to which it belongs. It is assumed that a guardian group’s
configuration never changes — the set of cohorts that belong to the group is fixed at group
creation time.

25



26 CHAPTER 3. VIEWSTAMPED REPLICATION

Figure 3.1: Normal operation of replicated guardian group G consisting of cohorts a, b, ¢, d
and e with primary a.

One member of the configuration isdesignated the primary; the other members are backups.
During normal operation, handler calls made to the guardian group are routed to the primary.
The primary executesall incoming handler callsand propagatesinformation about these handler
calls to the backups in the background. If any cohort crashes or becomes inaccessible because
of network failures, the remaining cohorts undergo areorganization. If the original primary is
no longer accessible, anew primary is selected during the reorgani zation.

Figure 3.1 illustrates the interaction between aguardian group and aclient. Gisaguardian
group consisting of the five cohorts a, b, ¢, d and e. Cohort a is the primary, and the rest are
backups. The five cohorts are grouped together in the picture to suggest that they form asingle
logical entity G, even though physically they may be distributed over a network. The client C
communicates with G, and its requests are routed to the primary a. Cohort a carries out the
request and replies back to C; it also sendsinformation about completed requests to the backups
in the background.

Suppose a failure causes a network to be partitioned asin Figure 3.2. In response to this
failure, G reorganizes itself automatically to remain available. This reorganization is called a
view change, and the algorithm that carries it out is called the view change algorithm. The
remaining cohorts select anew primary, b in this example, since the old primary ais no longer
accessible. After thisreorganization, b isready to receive new requests on behalf of G.

Consider what happens to transactions that are active during a view change. Suppose
transaction T1 had made some handler calls to the old primary a before the view change. T1
then decides to commit, and a prepare message is sent to the new primary b. What should
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Communication Failure

Figure 3.2: Guardian group partitioned due to network failure with old primary a, and new
primary b.

b do on receiving this message? If all the activity carried out on behalf of T1 at a has been
propagated to b, then b can go ahead and let T1 commit. However, if some of thisinformation
did not make it to b before the partition, b does not know about all the activity carried out at
G on behalf of T1, and hasto abort T1. Viewstamped replication provides an inexpensive way
of determining what information is “known” at a guardian, and what information needs to be
known to alow atransaction to commit.

Toes rest of this chapter explains the various parts of the viewstamped replication scheme.

3.2 View Management

Each guardian group goes through a sequence of node and communication link failures and
recoveries. Since these failures can interfere with the semantics of the service provided by the
guardian group, a mechanism is needed to mask these failures from the outside world. The
concept of views provides this mechanism. A view existsfor a period of time during which the
communication capability of the guardian group remains unchanged. It identifies the primary
and the set of cohorts that are active during this period of time.

In Figure 3.3, guardian group G starts out in view {a : b, ¢, d, e}; ais the primary, and b,
¢, d and e are the backups. Because of a communication failure, which makes a unreachable
from therest of the group, G then undergoesaview change and entersthe new view {b : ¢, d, e}
with b as the new primary.
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View v1 View v2

Communication Failure

Figure 3.3: View changein guardian group G due to partitioning of old primary a from the rest
of the cohorts.

Each view is named from a set of totally ordered viewids. The scheme used for generating
the viewids must guarantee that they are unique, and that viewids for later views should be
larger than viewidsfor earlier views.

When the communication capability of the guardian group changes, due to either failure
or recovery of acommunication link or a node, aview change algorithmis initiated to form a
new view. A modification of the virtual partitions protocol proposed in [ESC85] is used for
this purpose. The algorithm creates a new view consisting of at least a majority of the cohorts
in the configuration. It also assigns a unique viewid to this new view.

In Figure 3.3, a partition in the network changes the communication capability of the
guardian group G. The view change algorithm discards the old view {a : b, ¢, d, e} and creates
the new view {b : ¢, d, e} with new primary b. It also assigns the unique viewid v2 to the new
view.

The view change algorithm a so finds the most “up-to-date” state from thelocal states of all
the members of the old view that are accessible in the new view. Since each view consists of at
least amajority of the cohorts in the configuration, the intersection of the old and the new view
must be non-empty, and at least one such state is always available. This state is transmitted to
the new primary as part of the view change and is used as the initial state of the guardian in the
new view.
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3.3 Mechanismsfor Running Transactions

The system makes several guarantees to correctly implement atomic transactions. First, if
a topaction commits in some view, its effects are guaranteed to survive all subsequent view
changesby waiting for these effectsto reach at | east amajority of the cohortsin the configuration
before allowing the topaction to commit. When the next view is formed, its initial state will
contain al the effects of the committed topaction. Since this initial state is propagated to at
least amagjority of the cohorts at view change time, the effects of the committed topaction will
survive the next view change too. By induction, the effects of the committed topaction will be
known in al future views.

Second, if information about acommitted subaction Sislost during aview change, then the
topaction T that is an ancestor of .S must not be allowed to commit. Thisis done by allowing
T to prepare at G only if al effects of T's descendants are “known” at G’'s primary. If any of
these effects have been lost during intervening view changes, T must be aborted. Timestamps
are used to determine what is “known” at a given cohort.

3.3.1 Timestamps

Any activity at the primary which needs to be propagated to the backups is called an event.
Completion of handler calls, topaction commits and topaction aborts are examples of events.
Timestamps are assigned to each event; these timestamps must be unique within aview. The
timestamps should also form a totally ordered set within a view, with later events receiving
larger timestamps than earlier events.

Thereplication scheme requires that information about events be propagated to the backups
in timestamp order. Thisguaranteesthat if a cohort knows about an event, then it knows about
all earlier eventsin the same view.

3.3.2 Viewstamps

Timestamps are tagged with the viewid of the view they were generated in to form viewstamps.
Since viewids are unique across a guardian group, and timestamps are unique within aview, a
viewstamp uniquely names an event that happened at the guardian group. Therefore, we can
use aset of viewstamps S to describe what a cohort “knows’. This set is called the viewstamp
history of the cohort.

For example, suppose a cohort knows about events with timestamps 1 through 4 from view
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v1, and about events with timestamps 1 and 2 from view v2. Then, its viewstamp history is
{(v1.1), (v1.2), (v1.3), (v1.4), (v2.1), (v2.2)}

Since viewids are totally ordered, and all timestamps within a view are totally ordered, a
total order can also be imposed on viewstamps. Viewstamps within the same view are ordered
by timestamps. Viewstamps in different views are ordered by viewids. More rigorously, we
can define atotal order < on viewstamps such that (v1.t1) < (v2.t2) if

(vl <v2)or((vl=v2)and (t1 < t2))

The next section describes how these mechanisms are used for topaction commits.

3.4 Transaction Processing

In a transaction processing system, clients make handler calls to servers, and act as two-phase
commit coordinators at commit time.

3.4.1 Handler Calls

Clients make handler calls to servers. They send their belief about about the server’s current
viewid along with other relevant information to the server primary in the call message. If the
viewid in the call message does not match the view the primary isin, the primary rejectsthe call
message since it may lack results from earlier calls done by T, and the client tries again with
another viewid. Otherwise, the handler call is processed at the primary. The primary generates
anew viewstamp for the handler call event. This viewstamp flows back on the reply message
to the client. For each topaction, the client keeps track of a set of viewstamps V.S S(T, S) for
each server S that the topaction 7' visits.

In Figure 3.4, the client sends a call message to the server G, which isin view v2. When
G's primary P receives the call message, it generates a new viewstamp (v2.4) for the handler
call event, does the processing required by the handler call, adds the new viewstamp to its
viewstamp history, and sends the viewstamp back to the client. The client adds (v2.4) to
VSS(T,G).

3.4.2 Two Phase Commit

As described above, the coordinator keeps a set of viewstamps V.S S(T, S) for each server S
that participated in the topaction 7. At commit time for topaction 7', the coordinator sends a
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Process Handler Call G
Assign Viewstamp to Event

call(THV2,...) G

Reply with Viewstamp List

reply(T,<v2.4>,...)

<v1.1><v1.2><v1.3>
<v2.1><v2.2><v2.3>
<v2.4>

Figure 3.4: Handler call processing. Viewidsflow from the client to the server, and viewstamps
flow from the server to the client.

prepare message to each participant. The prepare message sent to server S contains the list
of viewstamps V.SS(T,S). The server primary now needs to decide if enough information
is known to allow the topaction to commit. Each cohort C’s viewstamp history V.SH(C)
describes the events known by C'; see Section 3.3.2. Therefore, the primary P knows enough
information to allow 7" to commit if

1. VSS(T,S) CVSH(P)
2. For dl transactions X, if 7' dependson X then V.SS(X,S) C VSH(P).

Thefirst condition iseasy to check. A property of V'S H(P) removesthe need for checking the
second condition. Let T' depend on transaction X. The serializability property of transactions
guarantees that X has aready committed. Since information about committed transactions
is guaranteed to survive into all subsequent views, V.SS(X,S) C VSH(P). Therefore, the
second condition is always guaranteed to hold and we do not need to check for it explicitly.
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prepare(<v1.3>,<v1.8>,<v2.7>)
<v1.1..10><v2.1..6>

<v1.1..10><v2.1..9>

<v1.1..10><v2.1...6>

Figure 3.5: Deciding whether a server should let atopaction commit.

In Figure 3.5, the client sends the viewstamp set {(v1.3),(v1.8),(v2.7)} to the server G.
Since the primary’s viewstamp history is a superset of this set, the primary knows that enough
information is available to allow the topaction to commit.

However, thisis not sufficient. To make commits permanent, we must also ensure that a
majority of the cohorts have enough information. For example, suppose we allow the topaction
to commit after checking only that the primary has enough information. Right after the commit,
the primary could crash, and nobody in the resulting view would have all theinformation about
the topaction — even though it committed. Therefore, before the primary can allow the
topaction to commit, it has to ensure that a majority of the cohorts in the configuration know
about all the activity done on behalf of the topaction. It does this by waiting for the required
information to propagate to at least a sub-majority of the cohorts in the configuration, where a
sub-magjority is one less than a simple majority; a sub-majority plus the primary constitutes a
majority.

Consider Figure 3.5 again. The primary has to wait until at least one of its backups hears
about the event with viewstamp (v2.7), so that a majority of the cohorts in the configuration
will know everything done on behalf of the topaction. Waiting for the required information to
propagate to a sub-majority corresponds to writing the prepare record to stable storage in the
unreplicated transaction system.



Chapter 4

Transaction | mplementation

This chapter describes my implementation of transactions for viewstamped replication. The
Argus implementation was used as the basis for this work. First, | give an overview of the
portion of the run-time system responsible for transaction processing. Then, in Section 4.2 the
implementation of nested actions is described. In Section 4.3 the mechanism for propagating
information from the primary to the backupsis described. Section 4.4 describes the mechanism
for locating the current primary of aguardian group. Section 4.5 describestheimplementation of
handler calls. Section 4.6 describesthe two phase commit protocol used for topaction commits.
Section 4.7 presents some performance figures for transactions running under viewstamped
replication. Finaly, Section 4.7.3 compares the performance of the replicated system with the
Isisreplicated transaction facility [Bir85].

4.1 Overview

The organization of the transaction processing run-time system is given in Figure 4.1. The
primary executes incoming handler calls and participates in the two phase commit protocol
with primaries of other guardian groups. Both handler call processing, and the commit protocol
generate events that are propagated to the backups by several Sender processes. Each sender
process is responsible for sending event records to one backup; it communicates with the
Receiver process at that backup to achieve reliable and in-order transmission of the event
records.

33
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Primary Handler Call Commit

Processing Protocol

't

Generate
Events

Y Y Y Y

Sender Sender Sender Sender

Event Record Transmission

' '

Receiver Receiver Receiver Receiver

Backup Backup Backup Backup

Figure 4.1: Anoverview of the transaction processing implementation.

4.2 Actions

This section describes the implementation of atomic actions for viewstamped replication.
Section 4.2.1 describes a useful method for visualizing nested actions and presents an example
that will be used in the rest of this section to illustrate different points. Section 4.2.2 describes
a mechanism for naming nested actions that simplifies the implementation of some operations
on nested actions. Section 4.2.3, Section 4.2.4 and Section 4.2.5 describe information about
nested actions that is collected and then used in the implementation of two phase commit.

421 Action Trees

Nested transactions can fan out to several guardian groups via handler calls. Actions trees
provide a useful way to visualize the state of a transaction that spans several guardian groups.
Thetreeisasimplemodel for the nested structure of atransaction. Each actioninthetransaction
maps to a node in the tree. The nodes in the tree can be marked one of three ways — active,
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A@G1

active

O committed
Al@G1 A2@ G2 ® aborted

All1@G3 Al2@G4 A21@G3 A22@G5 A.23 @ G6

Figure 4.2: Action tree showing the location and status of topaction A.

aborted or committed — to show the state of the corresponding action. In addition, the location
at which an action runsis also marked on the action tree.

Consider Figure 4.2.  Action A is active at guardian group G1. Subaction A.1 at G1
aborted. A.1'schildren, A.1.1 at guardian group G3 and A.1.2 at guardian group G4 have both
committed; however, since their parent A.1 has aborted, both A.1.1 and A.1.2 are considered to
have aborted with respect to the topaction A. Subaction A.2 ran at guardian group G2 and has
committed. Two of itschildren, A.2.1 at G3 and A.2.2 at G5 have committed. The remaining
child, A.2.3, ran at G6 and has aborted.

Recall that ahandler call createstwo actions. acall action at the caller, and ahandler action
at the callee. For simplicity, only handler actions are shown in this action tree. Thereal action
tree can be obtained by inserting appropriate call action nodes above the handler action nodes
inFigure 4.2.

4.2.2 Action ldentifiers

An actions is named by an action identifier (aid for short). The aid for an action A is just
the aid for its parent action concatenated with an extra entry. This extra entry is of the form
(uid, groupid) where groupid is the identifier of the guardian group where A ran, and uid isa
small tag to differentiate between siblings that run at the same guardian group. This naming
schemeisjust avariation on the labelsfor the actionsin Figure4.2. Action A'said is[(1,G1)],
action A.l'said is[(1,G1),(1,G1)] and action A.1.2’said is[(1,G1),(1,G1),(2,G4)].
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Given this representation for an aid, it is easy to implement the following operations on
action identifiers.

e check whether an action is an ancestor of another action.
e find an action’s parent.
¢ find the groupid of the guardian group where an action ran.

e find the least common ancestor of two actions.

4.2.3 Participant Set

At topaction commit time, the coordinator needs to know the guardian groups at which the
topaction ran. Thisis done by collecting a participant set up the action tree. When an action
starts running at a particular guardian group G, its participant set isinitialized to {G}. If an
action commits, its participant set is merged into its parent’s participant set; if the action isa
handler action, the participant set is passed back to the parent call action by piggybacking it on
the reply message for the handler call. In Figure 4.2, A.2's participant set is { G2, G3, G5}, and
A'sparticipant setis{G1, G2, G3, G5}. Thelocationsof aborted subactionsare notincludedin
the participant set. Therefore, G4 and G6 will not beinvolved in the topaction commit protocol
for A.

424 AbortsSet

The aborts set for an action X isthe set of subactions of X that have aborted. For example, the
aborts set for action A in Figure 4.2 is

(A1 ALLAL2A23}

These sets are computed up the action tree just as the participant sets are. There is a more
compact representation for these sets. If anaction A isamember of theabortsset, thenall proper
descendants of A are removed from the aborts set. This compaction is correct because A’s
membership in the aborts set implies the membership of al its descendants (descendants of an
aborted action are a so considered aborted). The aborts set given above shrinksto {A.1, A.2.3}
after applying this compaction.
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4.25 Viewstamp Sets

Asdiscussedin Section 3.4.2, the prepare message for topaction 7" sent to participant P contains
the viewstamp set V'S S(T, P). These sets are also computed up the action tree. If action A
has n participants, it will have n viewstamp sets, one per participant. It may seem expensiveto
move these n sets around, but a simple optimization drastically reduces the size of these sets.

In Section 3.3.1, it was noted that if a cohort knows about an event with a particular
timestamp in view v, then it knows about all eventsin view v that have smaller timestamps.
More formally, if (v.y) isin VSH(C) and y > z then (v.z) isin VSH(C). Therefore, if
V' SS(T, P) contains more than one viewstamp for a particular view, than all but the largest
of these viewstamps can be safely discarded. Let us see why thisis a correct optimization to
make. Let participant P's primary be X. Let (v.ts) be the largest viewstamp in V.SS(T, P)
for view v. If (v.ts) € VSH(X), then all the discarded viewstampswill alsobein VSH(X).
If (v.ts) ¢ VSH(X), then VSS(T, P) isnot asubset of VSH(X). Therefore, the reduced
viewstamp set isa subset of V' SH (X) iff the original viewstamp set V.SS(T', P) isasubset of
V SH(X), and the optimization is correct.

After making this optimization, there will be at most one viewstamp per view in this
participant’s viewstamp set. For example, let V.SS(T, P) for an action be

{(v1.3), (v1.5), (v1.6), (v2.1), (v2.8)}

The reduced viewstamp set will bejust {(v1.6), (v2.8)}. Thisoptimization is performed asthe
viewstamp sets are merged up the action tree. The optimization was first given in [Oki88], but
it was used directly, and not presented as a method for reducing the size of the viewstamp sets.

43 Event Log

When a backup joins a view, the primary may need to update the backup’s state so that it
corresponds to the primary’s state. One way to perform this update is to send the primary’s
whole state over the network. This method may be unnecessarily expensive if the differences
between the primary and the backups’' statesis small. A more efficient method that transmits
just the differences between the two statesexists. Thekey insight hereisthat acohort’s state can
be represented by the sequence of events that it knows about. Therefore, if each cohort stores
the eventsit knows about in an event log, the primary can efficiently update a backup’s state by
sending thedifferences between the primary’ sand the backup’slog. Log compaction techniques
can be used to prevent these logs from growing without bound. My implementation uses event
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| committing | :
— | new-view |
participants set — |  done |
aborts set iensam Fisior | topaction aid |
topaction aid P y
| completed-.call | | committed | ~aborted |
handler aid aborts set ‘ topaction ad ‘
object information topaction aid P

Figure 4.3: Format of event records

logs to transfer information from the primary to the backups. However, the implementation
does not contain alog compaction scheme.

43.1 Event Types

There are six different kinds of events that can be stored in the event log. Their formats are
shown in Figure 4.3.  Committing and done events are generated at the coordinator of a
committing action. A completed-call event is generated when a handler call completes at a
server. Theformat of completed-call event recordsis described later in Section 4.5. Committed
and aborted events are generated when a participant is notified of the status of a topaction.
New-view records are written to thelog by the newly selected primary as part of the view change
process.

4.3.2 Viewstamp History

As described in Section 3.3.1, a cohort’s viewstamp history is the set of viewstamps that
describe what the cohort knows; i.e., a cohort’s viewstamp history is the set of viewstamps for
al the events in the cohort’s event log. The technique used to compress the viewstamp sets
generated during transaction processing, as described in Section 4.2.5, is also used to get a
compact representation of a cohort’s viewstamp history. If a cohort has an event from view v
initsevent log, then it has all other events with smaller viewstamps from view v. Thisimplies
that if (v.z) € VSH(C)andy < z then (v.y) € VSH(C). Therefore, the representation of a
cohort viewstamp history just records the largest viewstamp from each view about which view
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extent[b]: viewstamp % Viewstamp of last event known to be in b'slog
flood_to[b]: viewstamp % Viewstamp of event we want in b’slog

sender[b] = process
% Use streaming protocol to reliably send the portion of the event log between
% extent[b] and flood_to[b] to b.
while true do
wait for extent[b] < flood_to[b]
% Invoke streaming protocol

end
end sender[b]

Figure 4.4: Sending the event log to a backup

the cohort knows. For example, let a cohort’s viewstamp history be
{(v11),...(v1.29), (v2.1), ... (v2.11)}

This history isuniquely represented by the set {(v1.29), (v2.11)}.

4.3.3 Primary to Backup Transmission

At severa points, the primary must guarantee that some information has reached a mgjority of
the cohorts in the configuration. For example, when a participant primary receives a prepare
message for a topaction T, it needs to ensure that all the completed-call eventsfor topaction T
have reached a majority of the cohorts in the configuration. This ensures that if T commits,
its effects will survive subsequent view changes. The primary guarantees that particular events
are known at a majority of the cohorts by sending portions of the event log to its backups.

The mechanism used to transmit a portion of the event log from the primary to a backup b
isillustrated in Figure 4.4. extent[b] is the viewstamp of the last event known by the primary
to be in b’'s event log. flood-to[b] is the viewstamp of the most recent event in the portion
of the log that has to be sent to b. The process sender[b] waits until some event needs to be
sent to be b. It then uses a reliable message delivery system to send the portion of the event
log between extent[b] and flood-to[b] to b. The current implementation uses a sliding window
protocol [Tan81] for fast and efficient message delivery. This protocol updates extent[b] based
on the information present in acknowledgment messages received from b.

The interface to this transmission mechanism is provided by the procedure force-events
shown in Figure 4.5.  Submajority(backups) returns a subset of the backups that forms a
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force—events = proc (events. set[event])
max_vs. viewstamp := max {e.vs | e € events}
dests: set[cohort] := submajority(backups)
for b: cohort in dests do
flood_to[b] := max {flood_to[b], max_vs}
end
% Wait until max_vs reaches a submagjority
wait for A\ qeqs(EXtent[b] > max_vs)
end force—events

Figure 4.5: Forcing a set of eventsto amajority of the configuration

sub-magjority of the configuration. The primary and a sub-majority together form a mgority
in the configuration. Therefore, to guarantee that a set of events is known at a magjority, the
primary sends the relevant portion of the event log to a sub-majority of its backups' and waits
until it receives acknowledgments.

4.4 Locating Primaries

Handler call and prepare messages need to be sent to the destination guardian group’s primary.
These messages al so need to contain the correct viewids so that old primaries safely ignore the
message. To achievethis, each guardian maintains a cache that maps guardian group identifiers
to viewids and primary identifiers. This cache may be out of date because of view changes
that the guardian has not heard about. When sending a handler call or a prepare message, the
primary identifier and viewid are looked up in this cache and the message is sent.

If the cohort that receives the message detects that the information retrieved from the cache
isout of date— the viewid in the messageis not correct, or the cohort is not the current primary
— the cohort replies with a message containing the correct information. This information is
used to update the cache and the message is sent again.

45 Handler Calls

The client primary uses the mechanism described in Section 4.4 to send ahandler call message
to the server primary. The server primary creates a handler action that runs the code associated

In the current implementation, one sub-majority is picked at the start of a view and information is always
forced to this sub-mgjority for the duration of the view.
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% Type of completed call event record
type completed_call _record = record |
id: aid, % Action identifier
objects: array[obj_info] % Locks and tentative versions

]

% Type of information kept for each accessed object
type obj_info = oneof [
read_lock: object.id, % Read locked object’sid
write_lock: write.info % Write locked object info

]

% Type of information kept for write locked objects
type write.info = record [
id: object_id, % Object identifier
tentative: object % Tentative version

]

Figure 4.6: Format of completed call event record

with the handler specified in the handler call message. Running this code may involve nested
handler cals to other guardians, see Figure 2.4 for an example. After running this code, the
handler action generates a completed-call event record for this handler call.

The format for thisevent record isgivenin Figure4.6. The completed call record contains
alist of all thelocksacquired by the handler action. Inaddition, therecord containsthe tentative
versions of all objects modified by the handler action. The completed call record is appended
to the event log, and a new viewstamp is generated for it. This viewstamp is merged into
the viewstamp set collected for the handler action as described in Section 4.2.5. Finaly, the
handler action commits by sending a reply message to the client. This reply message contains
the viewstamp, participant and aborts set collected for the handler action as well as the results
of executing the actual handler named in the handler call message sent by the client. If the
handler action aborts, areply issent back to the client indicating that the handl er action aborted.
No other information is sent to the client in this case.

4.6 Two Phase Commit

Sections 4.6.1 and 4.6.2 describe the implementation of two phase commit in the replicated
transaction system. T refers to the topaction being committed. The primary of the guardian
group that created 7' is the commit coordinator.
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46.1 PhaseOne

The coordinator sends a prepare message to each participant’s primary The prepare message
sent to participant P’s primary has three fields —

1. T’saction identifier.

2. VSS(T, P). The participant primary uses this set to determine whether or not 7" should
be allowed to commit.

3. List of action identifiers of aborted subactions of 7". The participant primary releases
locks and discards tentative versions held on behalf of these aborted subactions.

All the information required to generate the prepare messages is collected by the mechanisms
described in Section 4.2. The coordinator waits for replies to al the prepare messages. If a
reply isnot received from a participant in a certain amount of time, the coordinator re-sendsthe
prepare message. If no reply is received after the prepare message has been re-sent a certain
number of times, the participant is assumed to be unreachable, and the topaction is aborted. If
all the participants agree to prepare by sending a prepare-ok message as areply, the coordinator
proceeds to phase two. If some participant refuses to prepare by sending a refuse-prepare
message, the topaction is aborted.

When participant P’s primary X receives a prepare message, it extracts the viewstamp set
VSS(T, P) from the message. If V'SS(T, P) is a subset of the primary’s viewstamp history
V SH(X), enough information is present to allow the topaction to commit; if not, the primary
sends a refuse-prepare message to the coordinator. If the topaction can commit, the primary
forces the set of events corresponding to the viewstamp set V.SS(T, P) to a sub-magjority
using the procedure force-events described in Section 4.3.3. This forcing is analogous to
writing the prepare record to stable storage in the unreplicated transaction system. Thewriteto
stable storage in an unreplicated system ensures that the modifications made by T" will survive
subsequent crashes. The forcing of V.SS(T, P) to a sub-mgjority in the replicated system
ensures that the modifications made by 7" will survive subsequent view changes. Finaly, X
sends a prepare ok message to the coordinator.

4.6.2 PhaseTwo

The coordinator appends a committing event record to the event log and then forces it to a
sub-majority. If the coordinator crashes during phase two, this record is used to determine
whether or not 7' committed. If the committing record survivesinto the new view, 7" isassumed
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to have committed; otherwise, T is aborted. The coordinator forces the committing event to
a sub-majority; when the force is finished, the committing event is guaranteed to survive into
subsequent views, and the topaction 7" isknown to have committed. The coordinator then sends
commit messages to al the participant primaries. When these commit messages have all been
acknowledged, adone event record is appended to the log and lazily propagated to the backups.
The committing and done records serve the same purpose as the corresponding records written
to stable storage in the unreplicated system; see Section 2.3.1.

When the participant primary receives a commit message from the coordinator, a commit
event record is appended to the event log and forced to a sub-mgjority. When the force has
finished, an acknowledgment is sent to the coordinator.

4.6.3 Aborts

The coordinator may decide to abort the topaction (for example, if a participant refuses to
prepare or if a participant is unreachable). The coordinator then generates an aborted record
for the topaction and appends it to the event log. It also sends messages to all the participants
informing them of the topaction abort so that they may release locks held by descendants of
this topaction. The coordinator does not make sure that these messages reach the participants,
because if some other action wants to acquire alock held by a descendant of this topaction, it
can always find out about the abort by contacting the coordinator.

4.6.4 Optimizations

Several simple optimizations were made to the two phase commit protocol to improve system
performance and decrease the latency of the commit protocol.

1. Sincethe coordinator is aso a participant, the coordinator sends messages to itself. This
can be easily optimized so that instead of sending amessageto itself, the coordinator just
performs the computation that would be done in response to the message.

2. Theoutcomeof thetopaction (commit vs. abort) isknown once the committing record has
been forced to a sub-majority at the coordinator. Therefore, the user code can be allowed
to continue at this point, and the rest of phase two can be finished in the background by
the run-time system. This decreases the latency of the two phase commit protocol from
the point of view of user code.

3. The optimizations made in the unreplicated system for topactions that were read-only at
some participants can also be applied here.
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If T is read-only at participant P, then P is not included in phase two of the commit
protocol. When P’s primary gets the prepare message in phase one, after forcing
VSS(T, P) to a sub-magjority, it appends a commit event record to the event log and
sends a reply to the coordinator indicating that it is prepared read-only. The participant
P does not need to be included in the rest of the commit protocol. If al the participants
are read-only, during phase two the coordinator does not generate either a committing or
adone record because there are no participants that need to be informed of 7"s commit.

In the unreplicated system, no prepare record was written to stable storage at a participant
where the topaction was read-only. In the replicated system, we still require the events
associated with V.SS(T, P) to beforced to asub-majority during phase one. Thisisdone
because some failure and recovery sequences can result in multiple concurrent primaries,
where the primary in the most recent view does not know all the completed call events
generated by 7" whereas some out of date primary has all these eventsinitslog. If the
prepare message arrives at the out of date primary, the topaction should not be allowed
to commit because another action might have acquired conflicting locks at the other
primary. Attempting to force V.SS(T, P) to a sub-majority ensures that this conditionis
detected, because at |east amgjority of the cohortsin the configuration will know that the
primary that received the prepare message is out of date. These cohorts will not accept
the portions of the event log that the primary sends to them. Therefore, the force will not
succeed, and the topaction will be aborted.

4.7 Performance

Thissection discussesthe performance of thereplicated transaction system and comparesit with
the original unreplicated system. Both systems are very similar. In particular, the replicated
system was implemented by adding the replication scheme to the unreplicated Argus system.
If future technology speeds up the unreplicated system, the same increase in speed should show
up in the replicated system.

The performance figures were collected by repeating the experiments a large number of
times and dividing the elapsed time by the number of repetitions. This technique was mo-
tivated by the very large granularity (10 ms) of the system clock. All measurements were
obtained on MicroVAX II's running the 4.3 BSD operating system and connected by a 10
megabits/second ethernet. For more detailed performance measurements of the unreplicated
system see [LCJS87].
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Handler | Orig- Replicated

Call inal |11[13]31]33
Null 19| 20| 20| 20| 20
Read 23| 24| 24| 24| 25
Write 23| 24| 25| 25| 25

Table 4.1: The time (in milliseconds) required to make a handler call. Origina refers to the
unreplicated system. a, b refersto areplicated systemwith a replicasfor theclient and b replicas
for the server.

4.7.1 Handler Calls

We measured thetimesfor three different kinds of handler calls. Null handler callshave no user
code to execute. Read handler calls read a small object, thereby acquiring aread lock. Write
handler calls modify a small object, thereby acquiring a write lock and creating a tentative
version. These cals were run on both the original system, and the replicated system with
varying degrees of replication. The times for these calls are given in Table 4.1. The column
labeled “Origina” gives handler call times on the unreplicated system. The other columns
give the times for the replicated system with different degrees of replication. For example,
the column labeled 1, 3 gives handler call performance figures for a system where the client
guardian group is composed of one cohort and the server guardian group is composed of three
cohorts.

In all of the cases covered, the difference between the unreplicated and thereplicated handler
calsisat most two milliseconds. This difference is due to severa factors:

1. Primary and viewid lookups at the caller.

2. Viewid checks at the callee.

3. The viewstamp sets flowing on the reply messages.

4. The generation of completed call records.

5. Contention for processing resources with the processes that send the event log to the
backups.
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Top- | Orig- Replicated

action | ind [ 11][13[31[33
Read 40| 43| 61| 43| 63
Write | 127 | 50| 62| 70| 82

Table 4.2: Thetime (in milliseconds) required to run atopaction consisting of one handler call.
Original refers to the unreplicated system. a, b refers to areplicated system with a replicas of
the client and b replicas of the server.

4.7.2 Top Actions

The read and write handler calls described in the previous section were also used to collect
performance measurements for topactions. Table 4.2 gives performance figures for topactions
that consist of one handler call each. A read topaction consists of one read handler call; awrite
topaction consists of one write handler call.  In the following discussion, O will refer to an
unreplicated system and R(a, b) will refer to areplicated system with a cohorts for the client
guardian group and b cohorts for the server guardian group.

Read Topactions

Let us examine the numbers for read topactions. In O, a read topaction consists of a read
handler call and phase one of the two phase commit protocol; the second phase is optimized
away. The handler call takes 23 ms, and the message round trip delay involved in sending a
prepare message and waiting for areply from the participant accounts for the remaining 17 ms.

In R(1, 1) the handler call takes 24 ms. The remaining 19 ms are spent in phase one of the
two phase commit protocol. Phase one of the replicated system involves forcing a portion of
the event log to a sub-magjority at the participant. However, in R(1, 1) asub-majority has size
zero, so no extratimeis spent forcing the event log. Therefore, aread topaction takes roughly
the sametimein both O and R(1, 1).

In R(1, 3) however, a sub-mgjority has size one. Therefore, in R(1, 3) there is a message
round trip delay while the server primary forces a portion of the event log to a sub-mgjority
during phase one. This accounts for the extra 18 ms required when the server guardian group
isreplicated.

In R(3, 1), the coordinator for two phase commit isreplicated. However, the coordinator for
aread-only topaction does not force anything to a sub-mgjority. Therefore, no extra overhead
isinvolved in replicating the coordinator, and the time for R(3, 1) is the same as the time for
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R(1,1). For the same reason, the difference between R(1,3) and R(3,3) is negligible for a
read topaction.

Write Topactions

In the original system O, the time required to run a write topaction is 127 ms, which is more
than three times as much as the time required to run aread topaction. Thisextratimeis spent
writing different records to stable storage. However, the implementation of O for which these
performance measurements were collected does not use real stable storage. It fakes stable
storage by writing to a disk. In a system that uses stable storage, the time to run a write
topaction will be even greater.

In the replicated system, forcing to a sub-majority takes the place of writing to stable
storage. Since sending messages across the network is considerably faster than writing to
a conventional stable storage implementation, we expect write topactions to run faster in the
replicated system. Let uslook at the costs of running awrite topaction on a system with varying
degrees of replication.

In R(1,1), awrite topaction is just dightly more expensive than a read topaction. This
difference is caused by interference between consecutive write topactions. In particular, the
second phase of the commit protocol at a participant interferes with the processing of the next
write topaction at the participant. Sincethereisno phase two at a participant where atopaction
isread-only, this interference does not occur for read topactions.

In R(1,3), write topactions take approximately the same time as read topactions. One
would expect the interference visible in R(1,1) to show up in R(1, 3) too. However, when
the participant guardian group has three cohorts, the extra time needed to force event records
to a sub-majority masks the interference between consecutive write topactions. Therefore, in
R(1, 3), write topactions are only as expensive as read topactions.

Write topactions in R(3,1) are 20 ms more expensive than write topactions in R(1, 1).
Forcing the committing record at the coordinator accounts for this difference in cost. In
R(1,1), this force is very cheap because the coordinator has no backups. In R(3,1), the
force is more expensive because the coordinator has two backups and the force hasto go to a
sub-magjority (one) of the backups. The same fact accounts for the 20 ms difference between
write topactionsin R(1, 3) and R(3, 3).
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Top- Orig- Replicated

action inal 11] 13| 31| 33
Read (10) 241 | 260 | 290 | 262 | 291
Write (10) 340 | 272 | 302 | 294 | 322
Read (100) | 2266 | 2472 | 2543 | 2477 | 2554
Write (100) | 2484 | 2500 | 2590 | 2500 | 2600

Table 4.3: Thetime (in milliseconds) required to run atopaction consisting of multiple handler
calls. Origina refers to the unreplicated system. a,b refers to a replicated system with a
replicas of the client and b replicas of the server. The number in the leftmost column gives the
number of handler calls comprising a single topaction.

Multiple Handler Calls

Table 4.3 presents performance figures for topactions consisting of multiple handler calls.
These measurements are interesting because we can expect topactions to consist of multiple
handler calls. The cost of committing topactions with multiple handler calls is amortized over
the different handler cals. Therefore, the overall cost per handler call should decrease as the
number of handler calls per topaction is increased.

The measurements in Table 4.3 are what would be expected given the performance of
handler callsin Table 4.1 and single handler call topactions in Table 4.2. As the number of
handler calls per topaction increases, the time spent making handler calls begins to dominate
the time spent during two phase commit. Therefore, since handler callsin the replicated system
are slightly more expensive than handler callsin the unreplicated system, topactions consisting
of alarge number of handler calls are more expensivein the replicated system. For example, in
R(3,3) atopaction consisting of one hundred write handler calls takes 2600 ms, whereas the
sametopaction in O takes 2484 ms. Thistrandatesinto adifference of 1.6 msper handler call,
which is reasonable, given the observed difference of 2 ms between handler calsin R(3, 3)
and O.

4.7.3 Comparison with Isis

This section compares the performance of the replicated transaction system with the Isis
replicated transaction facility [Bir85]. Each service in the Isis system is composed of several
replicas. Rather than designating one replica as the primary for the entire service, any replica
can act as the coordinator for a particular handler call. Since different handler calls can have
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different coordinators, the handler calls have to be synchronized with each other. Read handler
calls are handled locally by acquiring a read lock and returning the result to the caller. Write
handler cals are handled by first using an atomic broadcast protocol [BJ87] to acquire write
locks at &l the replicas and then performing the modifications.

The following table gives the costs of looking up and inserting new entries into a directory
service consisting of three replicas.

Operation | Isis | VS
L ookup 100 | 28
I nsert 158 | 30

These numbers measure the average cost per handler call (in milliseconds) of a transaction
containing 25 requests. Thefirst column givesthe performanceof anIsissystem [Bir85] running
on Sun 2/50 computers. The second column gives the numbers for a system with viewstamped
replication running on MicroVAX |1 computers. Both systemsuse a 10 megabit/second ethernet
for communication. The difference in performance arises mainly from the large costs of the
atomic broadcast protocolsused in Isis. A newer version of the Isis system is supposed to have
significantly faster implementations of these protocols, but performance numbersfor these new
protocols were not available in time for inclusion in thisthesis.






Chapter 5

View Change Algorithm

Thischapter describestheview changealgorithm that i sinvoked in responseto node and network
failures and subsequent recoveries. Section 5.1 givesan overview of the entire run-time system,
including the components that implement the view change algorithm. Section 5.2 describesthe
strategy used to detect failures and recoveries. Section 5.3 presents the implementation of the
actual view management algorithm.

The pseudo-code fragments presented in this chapter make extensive use of communication
facilities and timeouts. Most of this usage should be self-explanatory. Appendix A describes
some of the less obvious features used in the code fragments.

5.1 System Overview

Figure 5.1 gives an overview of the replication scheme’'simplementation. Normal processing
encompasses handler call executions and two phase commits at the primary. This activity is
described by a sequence of event records that are generated during normal processing. The
event records are transmitted to the backups by the Sender processes. Each sender process
communicates with a Receiver process at one of the backups. The receiver processes receive
event records from the primary and store them locally in the event log. Whenever a receiver
process receives an event record marking the start of a new view, it notifies the View manager
process, which makes the cohort a backup member of the new view.

The Prober process runs at each cohort; it detects failures and subsequent recoveries of
other cohortsin the guardian group by communicating with their prober processes. In response
to such a failure or recovery, the prober process notifies the view manager process, which
initiatesaview change. Thisview change protocol isimplemented by communication between
the view manager processes running at different cohorts.

51
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Figure 5.1: Implementation Overview.

5.2 Failure and Recovery Detection

Each cohort periodically sends |’ malive messagesviaits Prober processto all the other cohorts
in the configuration. If cohort A does not receive any such message from cohort B in agiven
amount of time, then A assumes B has crashed. B may not have actually crashed; it may just
have been partitioned from A by a communication link failure.

Node and communication link failures are detected by the absence of I’m alive messages.
Node and communication link recoveries are detected by a cohort when it receivesan I'malive
message from a cohort that was previously assumed to have crashed. The rest of this section
describes the failure and recovery detection mechanism in more detail.

Each cohort A maintains some state information for failure and recovery detection (see
Figure 5.2). The set alive_cohorts contains the guardian identifiers for the cohorts that A
considersalive. Last_ msg maps from each cohort B to the time when the most recent I'malive
message from B was received by A; see Appendix A for an explanation of the map datatype.
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send_delay:  time_delta % Interval to wait between sending messages
death_timeout: time_delta % Cohort dead if no msg in this much time

my_id: gid % My guardian id

other_cohorts: set[gid] % Guardian group configuration — { my_id }
alive_cohorts: set[gid] % Set of cohorts considered alive

last_-msg: map[gid,time] % Map from cohort id to time last msg received

Figure 5.2: State maintained at each cohort for failure and recovery detection.

probe_sender = process
while true do
for cohort: gid in other_cohorts do
send alive(my_id) to cohort.probe receiver
end
wait until current_time() + send_delay
end
end probe_sender

Figure 5.3: Process that periodically sends I’'m alive messages to all other cohorts in the
configuration.

Three processes at each cohort provide failure and recovery detection. The Prober process
in Figure 5.1 is the composition of these three processes. The probe-sender process (see
Figure 5.3) sends I’ m alive messagesto all other cohorts every send_delay time units.

The probe-receiver process (see Figure 5.4) receives I’ m alive messages from sender pro-
cesses at other cohorts. It updates the state variables alive_cohorts and last_msg in response
to these messages. In addition, when a message is received from a cohort that is considered
crashed, i.e, it isnot an element of the set alive_cohorts, aview changeis initiated.

Thefailure-detector process(seeFigure5.5) waitsuntil it locatesacohort inthealive_cohorts
set from which an I’ malive message has not been received for the last death_timeout time units.
It removes this cohort from the alive_cohorts set and initiates aview change. In other words, if
amessage is not received from a cohort for death_timeout time units, the cohort is assumed to
have crashed and a view changeisinitiated. Death_timeout should be several times as large as
send_delay so that lost I’ m alive messages do not cause unnecessary view changes.

There are conflicting requirements that influence the choice of send_delay and death_time-
out. On the one hand, these values should be large so that the failure and recovery detection
mechanism is activated infrequently and does not interfere with transaction processing. On the
other hand, these values should be small so that failures are detected quickly. The correct choice
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probe_receiver = process
while true do
receive
alive(cohort; gid):
% Update the time last message was received from cohort
last_msg[cohort] := current_time()

% I'm alive message from cohort

if cohort ¢ alive_cohortsthen
% Dead cohort is now alive
alive_cohorts := dlive_cohorts U { cohort }
send start_view_change to my_id.view_manager
end

end
end probe_receiver

Figure 5.4: Process that receives I’ m alive messages and detects cohort recoveries.

failure_detector = process
while true do
% Check if there is a cohort from which a message hasn't been received recently
for cohort: gid in alive_cohorts do
if (current_time() — last_msg[cohort]) > death_timeout then
alive_cohorts := alive_cohorts — {cohort}
send start_view_change to my_id.view_manager
end
end
% Wait until time to check again
time_of _next_death: time := min {last_msg|[c] | ¢ € alive_cohorts} + death_timeout
wait until time_of _next_death
end
end failure_detector

Figure 5.5: Process that detects cohort failures.

of valuesfor these two system parameters is an engineering decision that should be made after
careful consideration. In my implementation, send_delay is five seconds and death_timeout is
five times the value of send_delay. Death_timeout is made significantly larger than send_delay

because some I’ m alive messages may be lost because we use an unreliable message transport
mechanism.
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% State kept for view management
type status = oneof |

active, % Cohort is member of current view
view_manager, % Cohort is view change manager
inactive % Cohort is none of the above
]

state: status % Current cohort state

cur.view: view % Most recent view entered by this cohort
max_viewid: viewid % Largest viewid seen at this cohort
crashed: bool % True if recovering from a crash

Figure 5.6: State information used by the view change algorithm.

5.3 TheAlgorithm

The view change agorithm is invoked by the failure and recovery detection mechanism as
described in the previous section. The cohort where the algorithm isinitiated becomesthe view
change manager. It sends out invitationsto all the other cohortsin the group; the other cohorts
reply to the invitations with acceptance messages. When the manager has received acceptances
from enough cohorts, it formsanew view. The manager then sendsamessageto the new view’'s
primary to inform it of the new view. A single failure or recovery may be detected by several
different cohorts, each of which may initiate a view change in response; the protocol correctly
handles multiple concurrent view changes.

5.3.1 Statelnformation

Each cohort maintains state information that is needed by the view change agorithm (see
Figure 5.6). The cohort can bein one of three states. A cohort is active when it is either the
primary or a backup in some view. A cohort enters the view_manager state when it detects a
failure or recovery and initiatesaview change algorithm. A cohort isinactivewhenit isneither
active nor a view_manager. Cur_view records the most recent view of which the cohort was
amember. Cur_view.vid is maintained on stable storage; every time the cohort enters a new
view, the modification to cur view.vid is recorded on stable storage. Max_viewid is the largest
viewid ever seen by the cohort; it is a'so maintained on stable storage. Crashed is a boolean
variable that is true for any cohort that has not entered a view since it last crashed. Therefore,
if crashed is true at cohort A, then A’s event log has been lost in the crash and has not been
updated since. Crashed and cur _view.vid are used during view formation to decide whether or
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not a new view can be formed without losing committed information.
A view management process runs at each cohort; it manages this state information, and
initiates and responds to view change messages (see Figure 5.7).

5.3.2 TheActive State

An active view management process responds to two kinds of messages. If astart_view_change
message is received from the failure and recovery detection mechanism, the view management
process enters the view_manager state. An active process also responds to invitations to join
new views by calling the procedure accept_invite, which tries to accept the invitation; see
Figure 5.8. The invitation message contains the viewid of the new view being formed. If this
viewid is not greater than max_viewid, the largest viewid seen at this cohort, the invitation is
ignored and the cohort remains in the active state. Otherwise, max_viewid is updated and an
acceptance message is sent back to the view manager that sent the invitation. After sending the
acceptance message, the process enters the inactive state.

Several pieces of information are passed in this acceptance message. First, the boolean
variable crashed is part of the message, indicating whether or not the cohort responding to the
invitation hasrecovered fromitslast crash. Second, the cohort sendsthe most recent view it was
apart of. For cohorts that have not recovered from their last crash, only the viewid component
of this view is meaningful, as it is the only component stored on stable storage. Third, the
cohort sends the viewstamp of the most recent event in its event log. For cohorts that have
not recovered from their last crash, this viewstamp is the viewstamp for a special event that
is present at the beginning of each cohort’s event log. The viewstamps sent in the acceptance
messages are used by a newly selected primary to update the extent[b] variables maintained by
the sender processes; see Figure 4.4. The acceptance message also contains the identity of the
cohort that accepted the invitation, and the viewid of the view being formed. After sending the
acceptance message, the view management process enters the inactive state.

5.3.3 Thelnactive State

Aninactiveview management process acceptsfour typesof messages. If it receivesaninvitation
tojoinanew view, it callsthe procedureaccept_inviteto respond to theinvitation; see Figure5.8.
If itisnotified of afailure or recovery by thefailure and recovery detection mechanism, it enters
the view_manager state and initiates aview change.

If the processreceivesamessage from the manager of asuccessful view changethat indicates
that it should becomethe primary in anew view, it calls the procedureturn_into_primary tojoin
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view_manager = process
while true do
tagcase state
tag active:
receive
start_view_change:
state := view_manager
invite(new_viewid: viewid, manager: gid):
if accept_invite(new_viewid, manager) then
state := inactive
end
others:
% Ignore other kinds of messages
tag inactive:
% Remain inactive for next view_manager_repeat time units.
% Then try a view change
next_attempt: time := current_time() + view_manager_repeat
while state = inactive do
receive befor e next_attempt
invite(new_viewid: viewid, manager: gid):
if accept_invite(new_viewid, manager) then
% Accepted invitation from a view manager. Delay view
% mgmt. for another view_manager_repeat time units
next_attempt := current_time() + view_manager_repeat
end
become_primary(nv: view, new_extents. map[gid, viewstamp]):
state := active
turn_into_primary(nv, new_extents)
start_view_change:
state := view_manager
new_view_event_record(nv: view, history: set[viewstamp]):
state := active
turn_into_backup(nv, history)
timeout:
% Have timed out. Try another view change
state := view_manager
others:
% lgnore other messages
end
tag view_manager:
do_view_change()
end
end
end view_manager

Figure 5.7: The view management process run at every cohort.
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% Handle invitation message. Return true iff invitation accepted.
accept_invite = proc (new_viewid: viewid, manager: gid) returns (bool)
if new_viewid < max_viewid then
return false
ese
max_viewid := new_viewid
write_to_stable_storage(max_viewid)
send accept(crashed, cur_view, event_log$max_vs(), new_viewid, my_id)
to manager.view_manager
return true
end
end accept_invite

Figure 5.8: Accepting an invitation to join anew view.

turn_into_primary= proc (new_view: view, backup_extents: map[gid, viewstamp])
Cur_view := new_view
write_to_stable_storage(cur_view.vid)
backups := cur_view.backups
execute_log()
vs. viewstamp := event_log$append(new_view_record(cur_view, vs_history))
for backup: gid in backups do
extent[backup] := backup_extents backup]
end
% Send new view record to all and then become active
force_to_al({vs})
end turn_into_primary

turn_into_backup = proc (new_view: view, primary_history: set[viewstamp])
event_log$trim_to(primary_history)
vs_history := primary_history
CuUr_view := new_view
write_to_stable_storage(cur_view.vid)
end turn_into_backup

Figure 5.9: Entering a new view.

the new view as aprimary; see Figure 5.9. Turn_into_primary updates the extent[b] variables
maintained by the sending processes (see Figure 4.4) and generates a new view event record
containing the new view and the primary’s viewstamp history.

If the new primary was previously a backup, some of the event recordsin its event log may
not have been appliedtoitsstate. Therefore, the new primary invokesthe procedure execute_log
to update its state to correspond to the set of eventsin the event log. The procedure force_to_all
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is then called to send the contents of the entire event log to all the backups. Force_to_all is
the same force (see Figure 4.5), except that force_to_all forces the events to al of the backups
instead of just a sub-majority. Just like force, force_to_all sends a portion of the event log to a
backup only if the backup does not aready have that portion.

If areceiving process (see Figure 5.1) receives a new view event record from the sender
process at a newly selected primary, it notifies the inactive view management process, which
in turn calls the procedure turn_into_backup to join the new view as a backup; see Figure 5.9.
The viewstamp history passed in the new view event record is used to update the cohort’s own
viewstamp history, and to trim portions of the cohort’s event log that are not present at the
primary. Both turn_into_backup and turn_into_primary update the variable cur_view and write
cur_view.vid to stable storage to record the cohort’s membership in the new view.

If the inactive view management process does not receive any of these messages within a
giveninterval of time, it timesout and initiatesanew view change by entering the view_manager
state.

534 TheView Manager State

The behavior of aview management processin the view_manager stateisshownin Figure 5.10.
The manager starts out by creating a new viewid new_vid that is greater than all other viewids
seen by the manager. All viewids have two fields, a counter and a tag. The new viewid is
generated by incrementing max_viewid.counter and tagging it with the manager’s guardian
identifier. Theviewidisordered lexicographically by thesetwofields; i.e., (c1.gl) < (c2.92) if
cl < c2or(cl=c2and gl < ¢g2). Thetag field guarantees that viewids generated at different
cohorts will be different. The counter field guarantees that the new viewid will be greater than
max_viewid and therefore greater than all other viewids seen by the manager. Max_viewid is
set to new_vid and then written to stable storage. The manager then sends invitations to all
other cohortsin the group and waitsfor their replies. Thereplies are stored in responses, which
maps cohort guardian identifiers to the replies. The manager stops waiting for replies when a
reply has been received from each cohort. A timeout, accept_wait, is built-in so that if a cohort
is unreachable due to a guardian or communication link failure, the manager does not wait too
long for it to respond. In the current implementation, accept_wait is one second. In addition
to timing out, the manager stopswaiting if it receives an invitation to join aview with a higher
viewid than new_vid. An acceptance is sent back in response to this invitation and the view
manager process enters the inactive state.

After theresponses have been collected, anew primary is selected from the set of responding
cohorts. The new primary should have more information than all other cohorts that responded
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% Information stored about acceptances in response to invitations
type response = record [ last_view: view, max_vs: viewstamp, crashed: bool ]

do_view_change = proc ()
new_vid: viewid := make_viewid{counter: max_viewid.counter + 1, tag: my.id}
max_viewid := new_vid
write_to_stable_storage(max_viewid)
for cohort: gid in configuration — {my_gid} do
send invite(new_vid, my_gid) to cohort.view_manager
end
responses. map[gid,response]
responses,my_gid] := make_response(cur_view, event_log$max_vs(), crashed)

% Wait for acceptances that can be received in time acceptwait
finish_waiting: time := current_time() + accept_wait
waiting: bool := true
while waiting do
receive befor e finish_waiting
start_view_change: % Restart view management
return
accept(crash: bool, last_view: view, max_vs: viewstamp, vid: viewid, id: gid):
if vid = new_vid then % Responding to current view change
responsegid] := make_response(last_view, max_vs, crash)
if |responses| = |configuration| then
% Got responses from everybody — stop waiting
waiting := false
end
end
invite(new_viewid: viewid, manager: gid):
if accept_invite(new_viewid, manager) then
state := inactive
return
end
timeout: % Stop waiting for acceptances
waiting := false
others: % Ignore other messages
end

primary: gid := find_primary(responses)
if can_form_view(primary, responses) then
% Make view
v: view := make_view(primary, vid, {c | ¢ € responses} — {primary})
extents: map[gid, viewstamp] := {c — vs| ¢ € v.backups and vs = responses|c].max_vs}
send become_primary(v, extents) to primary.view_manager

state := inactive

end
end do_view_change

Figure 5.10: The view management process at a view change manager.
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can_form_view = proc (primary: gid, responses. map[gid, response]) returns (bool)
last_view: view := responseg primary].last_view
1: if not is_mgjority({c | ¢ € responses}) then
return false
end
2: if not is-mgjority({c | responses[c].last_view.vid < last_view.vid}) then
return false
end
not_crashed: set[gid] := {c | not responses[c].crashed}
old_crashed: set[gid] := {c | responses[c].crashed and responses|c].max_vs.vid < last_view.vid}
3: if last_view.primary € not_crashed then
return true
end
4: if is.mgority(not_crashed U old_crashed) then
return true
end
return false
end can_form_view

Figure 5.11: Deciding whether anew view can be formed.

to the invitation; i.e., the max_vs field in its response message should not be smaller than
the max_vs field of any other response to the invitation. This procedure will automatically
choose a non-crashed cohort over a crashed cohort because crashed cohorts return the smallest
viewstamp possible.

After the new primary has been selected, the collected responses are checked to see if
a new view can be formed; see Figure 5.11. The conditions checked for allowing a view
formation are described in Section 5.3.5. If these conditions are met, the new primary isnotified
of the new view. If for some reason the new view cannot be formed, the view management
process becomesinactive. Inactive processes eventually timeout and initiate anew view change
protocol.

5.3.5 FormingaNew View

There are two properties that must hold for all views. First, the view should contain at least
amaority of the cohorts in the configuration. Second, all previously committed information
should be present at the primary of the new view. The view formation conditionsin Figure5.11
ensure that the new view has the two required properties. These conditions are arelaxation of
the ones described in [Oki88] and were developed during a discussion with Robert E. Gruber.
Thealgorithmin Figure 5.11 checks that the new view hasthefirst property in the obviousway.
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Therest of the algorithm ensures that all committed information is present at the new primary.
Thevariable last_view isused in the rest of thisdiscussion to refer to the last view of which the
new primary was a member.

We can divide committed information into three categories — committed_in_last, commit-
ted_before_last, and committed_after _last. Committed_in_last refers to information committed
during last_view, committed_before_last refers to information committed before last_view, and
committed_after |ast refersto information committed after last_view.

Since the new primary has not seen any views after last_view, it does not have any com-
mitted_after_last information. Therefore, if there is a possibility that committed_after_last
information exists, the view formation cannot be allowed to succeed. No information can
have been committed after last_view if a majority of the cohorts have not seen a view after
last_view. Therefore, test number 2 in the algorithm allows the view formation to proceed only
if amajority of the cohorts have not seen aview after last_view.

Consider committed_before_last information. If we assume that the view formation that
led to the formation of last_view was correct, then last_view.primary had al the commit-
ted_before_last information at the start of last_view. As part of the view change protocol, this
committed information was made available to al of the members of last_view, including the
new primary. Therefore, the new primary is guaranteed to have all the committed_before_last
information.

Consider the committed_in_last information. If last_view.primary is a non-crashed member
of the new view, then it has al the committed_in_last information. Since the new primary
is supposed to have more information than all the other cohorts in the new view, the new
primary aso has all the committed_in_last information. Therefore, test number 3 allows the
view formation to succeed if last_view.primary is a non-crashed member of the new view.

If last_view.primary has crashed since the formation of last_view, some committed_in_last
information may have been lost because all the members of last_view that had this committed
information may have crashed either during or after last_view. However, if the non-crashed
cohorts and the cohorts that crashed before last_view form a mgjority, then we know that the
cohorts that crashed during or after last_view do not form a majority. Therefore, since all
committed information iswritten to amajority of the cohorts, at |east one of the cohortswith all
the committed_in_last informationis present inthe new view. Sincethenew primary issupposed
to have more information than all the other cohorts in the new view, the new primary also has
all the committed_in_last information. Therefore, test number 4 alows the view formation to
succeed if the non-crashed cohortsand the cohortsthat crashed beforelast_view form amajority.
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54 Performance

This section describes the performance of the view change algorithm. There are several factors
that contribute to the overall cost of aview change.

1. The view change manager writes the new max_viewid to stable storage and sends invita-
tionsto all other cohorts.

2. The new max_viewid is written to stable storage by the cohorts that decide to accept the
invitations.

3. Themanager waits at most accept_wait time unitsfor acceptances from the other cohorts.
4. The manager send the new view information to the new primary.

5. The new primary updates its state by executing the portion of the event log that it has
received since the last time it was a primary.

6. The new primary writes cur _view.vid to stable storage.
7. The new primary forces the contents of the event log to all the backups.

The main costs here are the writes to stable storage, the execution of the event log and the force
of the log to al the backups. Since the cost of writes to stable storage is fairly insignificant
compared to accept_wait, stable storage writes can be ignored when discussing the cost of view
changes.

5.4.1 Executingthe Event Log

The cost of executing the event |og depends on the size of the portion that needs to be executed.
If the new primary was aso the primary in the previous view then the entire event log will
already have been executed and this cost will be zero. However, in certain situations the new
primary will need to executethe entire event log. Sinceit takes approximately 18 secondsin the
current implementation to execute one megabyte of the log, view changes become very costly
asthelog getslarge. One possibleway to avoid this cost isto execute event records asthey are
inserted into the event log at a backup, instead of waiting for a view change before executing
the entire event log in one shot. The disadvantage of this method isthat it increases the amount
of computation that needs to be performed by a backup in response to the receipt of an event
record from the primary. This method is not part of the current implementation.
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5.4.2 ForcingthelLogtotheBackups

The cost of forcing the event log to the backups depends on how out of date the backups' event
logs are. If al the logs at the backups are fairly up-to-date with respect to the primary’s event
log, then the force does not take very long. On the other hand, a backup that has just recovered
from a crash does not have anything in itslog and the primary’s entire event log has to be sent
to the backup. In aview with two backups, sending a megabyte of information to both backups
takes approximately 8 seconds. Therefore, it is quite costly to force the event log to backups
that are significantly out of date. One solution to this problem is to store the event log on
non-volatile storage. Event logs on non-volatile storage will survive normal node crashes and
newly recovered cohorts will not be completely out of date with respect to the primary’s event
log. If the event log on non-volatile storage is destroyed by a mediafailure, then the system can
fall back to the original method. It should be relatively straightforward to add this optimization
to the current implementation.

5.5 Optimizations

The cost of the protocols presented in this chapter can be reduced in several ways. First, the
failure detection scheme described in Section 5.2 involves sending a message from each cohort
to every other cohort in the configuration. Therefore, inaconfiguration with n cohorts, n(n—1)
failure detection messages are sent every send_delay time units. Section 5.5.1 presents severa
schemes to reduce this cost. Second, a single failure or recovery can be detected by many
cohorts. Therefore, multiple view change protocol s can be started in responseto asinglefailure
or recovery. Section 5.5.2 describes several schemes that try to minimize the number of view
change protocols started in response to a single failure or recovery. Third, view changes run
faster if we keep the log small. Thisisdescribed in Section 5.5.3.

Since view changes are assumed to be rare — they only occur as a result of node or
communication failures — the cost of view changes is not as important as the impact of
the replication scheme on normal processing. Therefore, the implementation has been tuned
for efficient normal processing. The optimizations described in this section have not been
implemented.

5.5.1 Reducingthe Cost of Failure Detection

There are several mechanisms that can be used to reduce the number of messages sent for
failure detection. Two are described below.
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1. I’'malive messages can be piggy-backed on other messages. Since aprimary periodically
sends event records to the backups and receives acknowledgments, (see Figure 4.4), this
technique can significantly reduce the number of explicit I’ malive messages sent between
the primary and the backups. Sincethel’ malive messages contain very littleinformation,
the piggy-backing imposes very little extra cost on normal message transmission.

2. Backups try to detect just their primary’s failure. Primaries and inactive cohorts try to
detect failures and recoveries of all other cohorts. If al the cohorts are active and part
of the same view, this mechanism will cut down the number of I’ m alive messages sent
each send_delay time units to 2(n — 1) because the primary will send n — 1 messages
(one to each backup), and the n — 1 backups will each send a message to the primary.

5.5.2 Preventing Concurrent View Managers

The view change agorithm performs correctly in the presence of multiple concurrent view
change managers[Oki88]. However, it is desirable to minimize the number of concurrent view
changesinitiated in response to afailure or recovery detection, as concurrent view changes can
interfere with each other and delay the formation of a new view. One way to achieve thisisto
assign different values of death_timeout to al the cohorts in the guardian group. For example,
consider the configuration {g1, g2, ¢3,...}. Let g1's death_timeout value be smaller than all
the other cohorts' values. Suppose some cohort fails at timet. If gl isalive, thisfalure will
probably be detected by g1 before it is detected by another cohort. Therefore g1 will initiate a
view change and notify the other cohorts of the failure before any of the other cohorts have a
chance to detect the failure first-hand and initiate a view change of their own.

The second scheme described in Section 5.5.1 also reduces the number of concurrent view
changesinitiated in response to certain failures. If the failed cohort isabackup, the failure will
be detected by just the primary and only one view change will be initiated. However, failures
of inactive cohorts and the primary might still result in the initiation of multiple view changes.

5.5.3 Log Compaction

Since the costs of executing the event log and updating the event logs at the backups are
proportional to thelog size, view changes can be made faster by keeping thelog small. Standard
log compaction techniques can be used to achievethis. A log compaction technigueinvolvesthe
periodic application of transformations that reduce the size of thelog. For example, one useful
transformation discards the completed call event records for subactions of aborted topactions.
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Another transformation discards the effects of a handler call that have been superseded by later
handler calls. These transformations can keep the size of the log very close to the amount
of state being maintained by the guardian group. Since the log can be used to generate the
guardian group state, and therefore the size of the state is a lower bound on the log size, we
cannot hope to do better than this.



Chapter 6
Conclusions

Thisthesis presents an implementation of areplication schemefor constructing highly available
services. Each service is composed of severa cohorts (or replicas). One of these cohorts is
designated the primary and the others are the backups. The primary handles al requests made
to the service and propagates information about these requests to the backups. If the primary
crashes, a backup takes over.

The replication scheme can be divided into two parts, normal processing and view changes.
During normal processing, the primary handles requests from clients. Servicing a request may
result in modifications being made to the service state. These modifications are recorded in
event records, which are propagated to the backups. Cohort and communication link failures
are handled by invoking a view change algorithm that results in the selection of a new primary
and a new active set of backups for this primary. Normal processing continues once the view
change is finished. The service remains available as long as a mgjority of the cohorts that
constitute the service are up and able to communicate with each other.

The thesis demonstrates that viewstamped replication is a feasible low-cost method for
constructing highly available nested transaction based services. Chapter 4 contains a detailed
discussion of the overhead of replication.

The implementation focuses on reducing the overhead imposed by the replication scheme
during normal processing. Normal processing consists of handler calls and topaction commits.
Handler call processing in the replicated system is as efficient as in the unreplicated system
(see Table 4.1). The dlight overhead in the replicated system arises mainly from the creation
and transmission of event records. The other factors that contribute to the increased cost of

67



68 CHAPTER 6. CONCLUSIONS
replicated handler calls are given below.

e Before sending the handler call message, the client locates the server’s current primary
by using the mechanism described in Section 4.4.

e A viewstamp set is sent from the server primary to the client in the handler call reply
message.

e Theclient hasto maintain aviewstamp set for each topaction that is currently active; this
set needs to be updated after every handler call.

The replication scheme must ensure that information about the handler calls made for a com-
mitting topaction is known at a majority of the cohorts. This information is transmitted to
the backups by sending the appropriate event records and waiting for acknowledgments. The
scheme used for the reliable transmission of these event records guarantees that usualy the
acknowledgments will be received after a message round trip delay. In the unreplicated sys-
tem, since there are no backups, the information about handler calls made for the committing
topaction is stored reliably by writing it to stable storage. Since writes to stable storage are
generally more expensive than message round trip delays on a local area network, topaction
commits are cheaper in the replicated system.

The failure detection system and the view change protocol have been implemented and
thoroughly tested. However, their implementation has not been fully optimized. View changes
can be slow after the service has been up for some time; see Section 5.4 for an explanation.
Section 5.5.3 presents an optimization that can significantly speed up view changes.

Inaguardian groupwithn replicas, thefailure detection system can send asmany asn(n—1)
messages during each failure detection interval. Section 5.5.1 presents two methods that can
reduce the number of these messages. The failure detection system can also start multiple view
changes at different cohortsin response to a single failure or recovery. Section 5.5.2 describes
two methods that alleviate this problem by decreasing the number of view changes started in
response to asingle failure or recovery.

6.1 Contributions

This thesis demonstrates that viewstamped replication provides a low-cost method for con-
structing highly available nested transaction based services. This claim is supported by the
performance measurements and the comparison with an unreplicated transaction system given
in Section 4.7. The contributions of thiswork are:
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e Viewstamped replication is integrated into the Argus run-time system to automatically
provide high availability for transaction based services. The programmer designs a
service without worrying about availability; the run-time system automatically replicates
this service to make it highly available.

e The implementation of the replication scheme imposes little overhead on service oper-
ation. In particular, during normal processing the efficiency of the replicated service is
close to that of the unreplicated service.

e Several performance measurements of the replication scheme are given (see Section 4.7).
These measurements are analyzed and compared with corresponding measurements of
the performance of an unreplicated system.

e The conditionsrequired for forming a new view as given in [Oki88] were more stringent
than required. Thethesisrelaxesthese conditions (see Figure5.11 and Section 5.3.5) and
allows view formationsin cases where the original conditionswould not have allowed a
view formation.

e A clean break-down of the replication scheme into different components is given (see
Figure5.1).

e The original replication scheme would transfer the entire service state when sending in-
formation from anew primary to the backups[Oki88]. Thethesisdescribesamechanism
that solves this problem by transferring only the differences between the replica states.
This mechanism uses the event log and the sender and receiver processes.

e A location service for identifying the current primary of areplicated serviceis described
and implemented (Section 4.4).

6.2 Extensions

This section presents some extensions to the viewstamped replication scheme and suggests
some directions for future work.

Improving data resiliency. In the unreplicated system, all committed information is stored
on stable storage and is therefore highly resilient to failures. In the replicated system, there
are copies of al committed information a a majority of the replicas. If these replicas crash
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simultaneously, the committed information will be lost. Thisis a short-coming of the system,
and a mechanism for making the service state resilient to simultaneous failures is needed.

We can makethereplicated serviceresilient to failures by attaching disksto thereplicas, and
waiting for the necessary information to reach at least two disks before alowing a topaction to
commit. Since most stable storage implementations provide resiliency by writing information
to two disks, thisimplementationisasresilient to failures asthe unreplicated transaction system
that uses stable storage.

The increased resiliency to failures does not come without a cost. Topaction commits have
to be delayed whilethe necessary informationiswritten to disks. However, aslight modification
to the scheme can remove this extra cost. If we attach uninterruptible power suppliesto all the
replicas, we do not have to delay the topaction commit until the necessary information reaches
the disks. The information can be written to the disks asynchronously. The uninterruptible
power supply guarantees that if some information reaches a replica, it will make it out to
disk before the replica crashes due to a power failure. Therefore, a topaction commit can be
allowed to compl ete as soon as the necessary information has reached at |east two replicas with
uninterruptible power supplies and attached disks.

The cost of this mechanism liesin the uninterruptible power supplies and the disksrequired
for resiliency. The uninterruptible power supplies are optional, because we can get by with
synchronous writes to disk, as long as we are prepared to pay the extra cost of topaction
commits. However, it is not possible to use this mechanism on disk-less workstations. On
disk-less workstations, the service should probably use a network based stable storage service
to provide high resiliency to failures.

Using stable storage. [DST87, Coh89] describe highly available network-based stable storage
services. These services achieve high availability by replicating the stable storage servers and
using avoting scheme [Gif79] to access the replicas.

Such stable storage services can be used to provide highly available and reliable general
purpose services. Consider an unreplicated Argus guardian that uses a stable storage service
for resiliency. If this guardian fails, the service it provides is not available until the guardian
recovers and re-creates its state from stable storage. However, after the guardian fails, a new
guardian can be created at another location, and the old guardian’s state can be re-created at
the new guardian from stable storage. The new guardian now handles all service requests on
behalf of the old guardian. Therefore, the highly available stable storage service can be used to
create highly available general purpose servicesin a straightforward manner.

Details of how a new guardian takes over from an old one need to be worked out. In
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particular, some form of a view change algorithm is required to replace the original guardian
after it crashes. In addition, a location service [Hwa87] is needed to route requests to the new
guardian.

It would also be interesting to seeif the voting scheme used for implementing the replicated
stable storage services should be replaced by a primary copy replication scheme. The relative
merits of the two schemesin this particular instance are not known.

Replicaswithout data. Both voting and viewstamped replication schemes require aminimum
of threereplicasto providehigher availability than an unreplicated system. However, two copies
of data are enough to make it resilient to many failures (most stable storage implementations
use two disksto store each piece of data).

[P86] proposes an extension to voting schemes where some replicas do not store the service
state; they just provide votes for operations. The replicas without service state are called
witnesses; the replicas with service state are copies. Under very general assumptions, the
reliability of a replicated service consisting of n copies and m witnesses is shown to be the
same as thereliability of a service consisting of n + m copies. Under most circumstances, the
availability of the systemis also not significantly reduced when some copies are replaced with
witnesses.

[MHS89] and [GL89] adapt the witness scheme for primary copy replication. In primary
copy replication, witnesses participate only in primary elections (view changes); they do not
storeany servicestate. Witnessesare an attractive extension to viewstamped replication because
they significantly decrease the amount of resources used by a service without significantly
affecting either itsreliability or availability.

Usingtimeto avoid communication. Section 4.6.4 describeswhy the optimization madeinthe
unreplicated system for the first phase of two phase commit for read-only transactions cannot
be applied in the replicated system. This optimization could not be made because the primary
could not be sure whether or not a new primary had been selected without its knowledge.
There is a simple solution to this problem [MHS89, Lis89]. Each backup periodically makes
a promise to the primary saying that it will not enter a new view for the next n seconds. This
information allows the primary to place alower bound on the earliest time at which anew view
can be formed. If the current time is smaller than this lower bound, then the primary knows
that no new view has been formed yet. Therefore, it does not need to force the read topaction’s
event records to amajority before allowing the topaction to commit. This technique can make
read-only transaction commits as efficient as in the unreplicated system. However, it requires
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that the clocks at the different cohorts either be synchronized, or that they run at nearly identical
rates.



Appendix A

Pseudo-code Syntax

Code fragments presented in this thesis make extensive use of communication facilities and
severa data-types that are not built-in to most languages. This appendix gives an informal
description of some of the non-standard features used in the pseudo-code presented in this
thesis.

A.1 Data Types

This thesis uses some data-types that deserve a detailed explanation.

Time related data types. Two time related data-types, time and time_delta, are used in this
thesis.

e Values of type time represent absolute timein an unspecified time unit.

The function current_time() returns the current time.

Values of type time_delta represent the difference between two time values.

— Subtracting one time value from another gives atime_delta value.

— Subtracting or adding atime_delta value to atime value gives atime vaue.

Addition and subtraction of two time_delta values results in another time_delta value.

Multiplication and division of atime_delta value by an integer or areal number resultsin
atime_delta value.

Values of type time form atotally ordered set, as do values of type time_delta.
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e Special values of type time_delta corresponding to seconds and other standard units of
time are available.

Maps. Vaues of type map provide a mapping from a subset of values of one type to values of
another type. For example, avalue of type map[string,int] maps from stringsto integers.

e Mapsare usually created empty; i.e., they do not provide a mapping for any value.

e Initialized maps of type map[a,b] can be created by providing a set of bindings from
values of type a to values of type b. For example,

m: map[string,int] < {(“a” — 1), (“b” — 2),(“c” — 3)}

e The € operation can be used to check whether a map provides a mapping for a certain
value. With the example shown above, “a” € m will betrue; “x” € m will be false.

e New mappings can be inserted and old ones modified with an array assignment syntax.
For example,

m[“f"] « 19

m[“a’] < 7

e Mappings can be looked up with array lookup syntax; with map minitialized as shown
above, i: int <+ m[“b"] assigns the value 2 to the variablei.

A.2 Waiting

Two features allow a process to wait for either a given condition, or until sometime.

wait for condition. Delay the process until the boolean-valued expression condition becomes
true.

wait until time-value. Delay the process until the time specified by the expression time-value.
For example, “wait until current_time() + second” delays the process for one second.
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A.3 Communication

Processes at agiven cohort can send messages to specific processes at other cohorts. Processes
arrange to receive messages by waiting for them.

send (message) to (gid) . (pid). Send (message) to the process named (pid) at cohort (gid).
The message consists of a name and some values. For example,

employee_number(“ John F. Dog”, 12345)

is a legal message. The message transmission is unreliable; the message may be delayed,
duplicated or never delivered.

receive (message-handlers). Wait until a message is available and then invoke the appropriate
handler from (message-handlers) based on the name of the message received. With the code
shown here, areceipt of the message shown above will insert the mapping (“John F. Doe” —
12345) in database.

receive
address(name: string, addr: string):

employee_number(name: string, number: int):
database/name] < number
others:

end
This code provides message handlers for employee_number and address messages. Other
messages are handled by the other s branch.

receive before (time) (message-handlers). Waitsuntil time (time) for amessage. If amessage
is received, the appropriate message handler in (message-handlers) handles it. A special
message handler named timeout is invoked when no message is received in the allotted time.
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