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The Held-Karp heuristic for the Traveling Salesman Problem (TSP) has in prac­
tice provided near-optimal lower bounds on the cost of solutions to the TSP. We 
analyze the structure of Held-Karp solutions in order to shed light on their quality. 
In the symmetric case with triangle inequality, we show that a class of instances has 
planar solutions. We also show that Held-Karp solutions have a certain monotonicity 
property. This leads to an alternate proof of a result of Wolsey, which shows that 
the value of Held-Karp heuristic is always at least ~OPT, where OPT is the cost 
of the optimum TSP tour. Additionally, we show that the value of the Held-Karp 
heuristic is equal to that of the linear relaxation of the biconnected-graph problem 
when edge costs are non-negative. 

In the asymmetric case with triangle inequality, we show that there are many 
equivalent definitions of the Held-Karp heuristic, which include finding optimally 
weighted 1-arborescences, 1-antiarborescences, asymmetric 1-trees, and assignment 
problems. We prove that monotonicity holds in the asymmetric case as well. These 
theorems imply that the value of the Held-Karp heuristic is no less than flo~nl OPT 
and no less than the value of the Balas-Christofides heuristic for the asymmetric 
TSP. 

For the 1,2-TSP, we show that the Held-Karp heuristic cannot do any better than 

1
9
0 0PT, even as the number of nodes tends to infinity. 
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Chapter 1 

Introduction 

1.1 General Background 

The Traveling Salesman Problem (TSP) is one of the most notorious in the field of 

combinatorial optimization, and one of the most well-studied [24]. As with many 

other famous open questions in mathematics, such as Fermat's Last Theorem, the 

question is quite easy to state, but its solution has evaded researchers. The problem 

is this: given the costs associated with traveling between any pair of n cities, find 

the least-cost tour that visits each city exactly once. In other words, suppose we 

have costs Cij, 1 ~ i, j ~ n, associated with traveling from city i to city j. To solve 

a particular instance of the problem (that is, to solve the problem for a particular n 

and a particular set of Cij ), we must find a cyclic permutation an such that 

n n 

L C;i7n(i) = min. L Ci-rn(i). 
i=l Tn cyclic i=l 

The open question posed by the Traveling Salesman Problem differs from that 

posed by Fermat's Last Theorem, however, in that it involves determining the exis­

tence of an algorithm for the TSP whose running time is bounded by a polynomial 

inn. A polynomial-time algorithm for the TSP would be able to determine an for all 

possible instances. Proving the existence of such an algorithm (either constructively 

or non-constructively) would be similar to proving that a decision version of the TSP 

is in P, the class of all polynomial-time solvable decision problems. The decision ver­

sion of the TSP includes an extra number B in the input and outputs "yes" if and 

only if the cost of the minimum tour is no greater than B. If a polynomial-time alga-

13 



14 CHAPTER 1. INTRODUCTION 

rithm for the TSP exists, then certainly a polynomial- time algorithm for the decision 

version of the TSP exists. It is also not too hard to see that the converse is true (see 

[20], pp. 46-48). Thus a polynomial-time algorithm for the TSP exists if and only 

if the TSP decision problem is in P. This does not seem very likely, however, since 

the TSP decision problem is NP-complete [22]. NP-completeness implies that if the 

TSP decision problem is in P, then P =NP. Whether or not P =NP is unknown, 

but it is generally believed that P :/=NP. 

Nevertheless, work has continued on the TSP through attempts to find polynomial­

time approximation algorithms [21]. The most natural way to approximate the TSP 

is to devise an algorithm that explicitly constructs a tour which is not necessarily 

the minimum-cost tour. Such an algorithm may have a guarantee that the tour it 

constructs has cost no greater than a times the cost of the optimum tour (OPT), for 

some a > 1. Another way to approximate the TSP is to find a value that estimates 

the cost of the optimal tour. There are several ways to find such a value. One way 

is to construct an optimal relaxed tour. If we think of a tour as a combinatorial 

object with certain properties (e.g., a graph with n edges, connected, each node with 

degree two, and so on), then a relaxed tour is a combinatorial object with a subset of 

those properties, so that all tours are also relaxed tours. For example, an assignment 

is a relaxed tour since it is a graph with n edges such that each node has degree 

two. Clearly a minimum-cost relaxed tour can have cost no greater than OPT. A 

relaxed-tour approximation algorithm may also have a guarantee that the value it 

produces is no less than I times OPT, I < 1. Thus by finding optimal relaxed tours 

in polynomial time, we can approximate the value of the optimal tour without explic­

itly constructing a tour. We will call an approximation algorithm non-constructive 

if it does not construct a tour in its approximation of OPT. From here on, we will 

say that an approximation algorithm has a guarantee of a if a > 1 and the value it 

returns is between OPT and a OPT, and that it has a guarantee of/ if/ < 1 and the 

value it returns is between 10PT and OPT. We can transform an a approximation 

algorithm into a/ = ~ approximation algorithm simply by multiplying the value of 

the a algorithm by ~· Therefore, an a approximation algorithm will be said to be 

"as good as" a / = ~ approximation algorithm. 

Unfortunately, Sahni & Gonzalez [32] have shown that no TSP approximation 
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algorithms exist with constant guarantees unless P = NP. Thus research in ap­

proximation algorithms for the TSP has concentrated on several special cases of the 

TSP, each of which is NP-complete in its own right. These special cases include 

the symmetric TSP with triangle inequality, the asymmetric TSP with triangle in­

equality, and the symmetric 1,2-TSP. A TSP instance is said to be symmetric if 

Cij = Cji for all i,j, and asymmetric if this is not necessarily the case. An instance 

obeys the triangle inequality if Cij ~ Cik + Ckj for all distinct i, j, k, and an instance 

is a case of the 1,2-TSP if for all i,j either Cij = 1 or Cij = 2. The best known 

tour-constructing approximation algorithms for these three cases have guarantees of 

a = ~ [3], a = flog n l [11], and a = ~ [30] respectively. Not as much work has 

been done on finding non-constructive approximation algorithms with good guaran­

tees. N evetheless, in the symmetric case with triangle inequality, it is well known 

that finding a minimum-cost spanning tree gives an I = ! guarantee. In addition, 

several non-constructive heuristics seem to do very well in practice [17], [1], [2]. In 

particular, a "lower bound" heuristic developed by Held and Karp typically delivers 

solutions of cost above 99% of OPT for the symmetric case with triangle inequality 

[4], [37]. 

1.2 The Held-Karp Heuristic 

Held and Karp proposed trying to find a minimum-cost tour in the symmetric case 

by trying to find an optimally weighted 1-tree [17]. A 1-tree of a graph G = (V,E) 

with V = {1, ... , n} is a spanning tree on nodes {2, ... , n} plus two edges incident 

to node 1. Thus a 1-tree has exactly one cycle, which contains node 1, and node 1 

always has degree two. Note that a 1-tree is a relaxed tour. A minimum-cost 1-tree 

can be obtained by finding a minimum-cost spanning tree on {2, ... , n} and adding 

the two lowest cost edges incident to node 1. If 7r = (7r1 , •.. ,7rn) is a real n-vector, 

then the minimum-cost 1-tree with respect to 7r is defined to be the minimum-cost 

1-tree with respect to the reducffi costs Cij = Cij + 7r i + 7r j. If Tk is the minimum-cost 

1-tree with respect to 7r, we define w(7r) such that 

n 

w(7r)= L 'C;j-2L7r;. 
(i,j)ETk i=l 
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The value produced by the Held-Karp heuristic is max11" w( 7r ). In other words, the 

Held-Karp heuristic finds the vector 7r such that the value of the minimum-cost 1-tree 

is the greatest. 

Intuitively, the heuristic tries to find the 7r vector such that the 1-tree is as close 

as possible to being a tour, without exceeding the cost of the optimal tour. Suppose 

that the minimum-cost I-tree with respect to 7r has a node u with degree greater 

than 2. Then it seems that we should be able to find a 7r 1 such that w( 7r1
) > w( 7r) 

simply by increasing the value of 7r u, since this will increase the L(i,j)ETk Cij part of 

w(7r) by more than the -2 "Lf=1 7r; part will decrease. Likewise, if u has degree 1, 

then we should be able to find a a 7r1 such that w( 7r1
) > w( 7r) by decreasing the value 

of 7r u. Th us by finding max11" w( 7r), the heuristic tries to force the degree of all nodes 

to be 2. Now suppose Tt is the minimum-cost tour. Then 

n 

w(7r) L Cij - 2 L 7r; 
(i,j)ETk i=l 

n 

< L Cij - 2 L 7r; 
(i,j)ETt i=l 

n 

L ( Cij + 7r i + 7r j) - 2 L 7r i 
(i,j)ET1 i=l 

L Cij· 

(i,j)ETt 

So certainly max11" w( 7r) is no greater than the cost of the optimal tour, L( i,j)ETi Cij. 

Held and Karp proved the following theorem about their heuristic. 

Theorem 1.2.1 (Held, Karp [17)) The Held-Karp heuristic produces exactly the 

same value as the following linear program1 : 

1 In fact, Held and Karp consider a linear program with the subtour elimination constraints (that 
is, constraints L Xij :=:; JSJ-1) only for those subsets not containing node 1. However, it is easy to see 
that the additional constraints are implied by the corresponding constraint on the complementary 
set of nodes. 
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mznzmzze I: CijXij (1.1) 
l~i<j~n 

subject to: LXij + LXji 2, i = 1, 2, ... , n, 
j>i j<i 

I: X" ') < ISl-1, for any proper subset Sc V, 
iES,jES,i<j 

Xij < 1 1 ~ i < j ~ n, 

Xij > 0 1 ~ i < j ~ n. 

This linear program produces a relaxed tour, where variable Xij denotes the 

amount of edge (i,j) in the solution. Note that if the Xij variables were guaranteed 

to be either 0 or 1, the relaxed tour would be an actual tour, and the linear program 

would solve the TSP exactly. Linear program (1.1) is sometimes called the linear 

relaxation of the TSP. 2 We will refer to (1.1) as the Subtour LP. 

The formulation of the heuristic as a search for an optimally weighted 1-tree can 

be thought of as an instance of Lagrangean relaxation. In Lagrangean relaxation, 

some constraints of a linear program are dropped, but penalties for their violation 

are added to the objective function. In the case of the Subtour LP, the constraints 

forcing the degree of each node to be 2 are dropped but the 7r vector acts as a penalty 

for violating the node degree constraints. The 7r; are sometimes called Lagrangean 

multipliers. 

There are other equivalent formulations of the Held-Karp heuristic. In their 

original paper, Held and Karp noted that max1!" w( 7r) can be expressed as a linear 

program. Let T1 , T2 , ••• , Tt be an enumeration of all 1-trees. It will be convenient to 

let ck be the cost of 1-tree Tk, dik be the degree of node i in Tk, and Vik = dik - 2. 

So then 
n 

w(7r) = min[q + L 'lriVik]. 
k i=l 

Thus we can express max1!" w( 7r) as 

2 Interestingly enough, (1.1) was the basis of one of the earliest attempts to grapple with the TSP. 
Dantzig, Fulkerson, and Johnson [5) started with the node degree constraints I: Xij = 2 and added 
subtour elimination constraints as necessary. 
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maximize w 

subject to: w S: Ck + 2:::~1 1riVik. \:/k = 1, ... , t. 
(1.2) 

The dual of this linear program will also be an equivalent formulation of the heuristic. 

Taking the dual of (1.2) yields 

minimize 
subject to: 

Lk CkYk 

Lk Yk 

Lk VikYk 

Yk 

1, 
0 i = l, ... ,n, 

> 0. 

(1.3) 

Held and Karp noted that the LP above finds the minimum-cost convex combination 

of 1-trees such that the average degree of each node is 2. Finally, it has been shown 

that the subtour elimination constraints of the Subtour LP can be replaced with 

constraints of the form3 

L Xij 2: 2 vs c v. 
i,jES;i<j 

This replacement of constraints yields an LP that is another equivalent formulation 

of the Held-Karp heuristic. 

Held and Karp proposed several algorithms for finding the optimally weighted 

1-tree [17], [18]. Their most successful approach involves use of a technique known 

as subgradient optimization. Given a concave function f, a vector s is said to be 

the subgradient of f at u if for all u, f(u) + s . ( u - u) 2: J( u ). It turns out that 

for sufficiently small .X, TI + .Xs is closer than TI to the point at which f reaches its 

maximum value. Let Vk = ( dlk-2, d2k - 2, ... , dnk - 2), where dik is the degree of the 

ith node of the minimum-cost 1-tree with respect to 7r, Tk. Held and Karp showed 

that vk is a subgradient for the function w( 7r ). They then proposed generating a 

sequence of 7r vectors ( 7r1 , 7r 2 , ... ) according to the rule 

where 0 < _xm S: 2 and w is some "target value" such that w(7r) < w S: max'l'!" w(7r). 

Notice that this update rule is a formalization of the intuition above of increasing 'Tri 

when d;k > 2 and decreasing 7rj when dik < 2. Held and Karp showed that if _xm 2: f 

3 See Lemma 8 of (16) 
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for some E > 0 for all m, then the sequence of -;rm either converges to or contains 

some -;r1 such that w( -;r1) 2: w. 

No one has yet bounded the number of iterations of subgradient optimization to 

guarantee a polynomial running time. The ellipsoid method of linear programming 

can be used on the LP formulation, since max-flow programs can be used to find 

violated constraints or verify the feasability of solutions. Thus the ellipsoid method 

can find the solution to the Subtour LP in polynomial time [23], [15]. In fact, the 

solution can be found in strongly polynomial time due to a result of Frank and Tardos 

[9]. However, both of these algorithms are considered to be more of theoretical 

interest rather than practical interest. No practical algorithms are known for the 

Held-Karp heuristic that are guaranteed to run in polynomial time. 

The Held-Karp heuristic has proven interesting for a number of reasons. The 

first reason, as mentioned above, is its astonishing accuracy in practice. Johnson 

[19], who uses the heuristic to evaluate the performance of various tour-constructing 

algorithms, estimates that the Held-Karp heuristic usually comes within 99.5% of 

the cost of the optimal solution. The second reason is that the heuristic is used 

as the basis for still more sophisticated heuristics for the TSP. Several researchers 

have used it within branch and bound schemes (see [2]). Grotschel and Padberg use 

the Subtour LP as the basic linear program within their cutting plane approach to 

solving the TSP [28]. 

The reasons for the near-optimality of the heuristic's solutions have not been well 

understood. This thesis investigates the structure of solutions found by the Held­

Karp heuristic in order to shed light on their accuracy. We consider the symmetric 

case with triangle inequality, the asymmetric case with triangle inequality, and the 

1,2-TSP in Chapters 2, 3, and 4 respectively. 

In the chapter on the symmetric case, we show that instances from two-dimensional 

Euclidean space have planar solutions. We also show that symmetric instances with 

the triangle inequality have a certain monotonicity property: namely, given a graph 

G' induced by removing a node of a graph G, the value obtained by the heuristic 

on G' is not greater than the value for G. With one additional lemma, we give an 

alternate proof of a theorem of Wolsey [39] which shows that the Held-Karp heuristic 

has a / = ~ guarantee for these instances. We explore connections between Held-
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Karp solutions and solutions to another NP-complete problem, the minimum-cost 

biconnected-graph problem. Finally, we conjecture that the Held-Karp heuristic has 

a guarantee of I= ~ and we provide an example which meets this lower bound. 

For the asymmetric case, we consider the extension of the heuristic to the asym­

metric case proposed by Held and Karp in terms of weighted 1-arborescences. We 

show, using a powerful theorem of Geoffrion [12], that the heuristic can also be 

viewed in terms of weighted 1-antiarborescences, assignment problems, and asym­

metric 1-trees. We deduce as a corollary that the Held-Karp heuristic has a bound 

that dominates the bound of another non-constructive lower-bound heuristic for the 

asymmetric TSP due to Balas and Christofides [1]. We give the analagous monotonic­

ity proof for the asymmetric case with triangle inequality and show how this implies 

an / = r1o!nl guarantee, matching the best known a = flog n l tour-constructing 

guarantee. 

Finally, for the 1,2-TSP case, we show that the heuristic cannot do better than 

/ = 1
9
0 , even as n tends to infinity. We again investigate connections between Held­

Karp solutions, the minimum-cost biconnected graph, and the TSP. 



Chapter 2 

The Symmetric Case with 
Triangle Inequality 

Recall from the previous chapter that a TSP instance is symmetric if Cij = Cji for all 

i,j, and obeys the triangle inequality if Cik + Ckj ~ Cij for all i,j, k where i, j, and k 

are distinct. The symmetric case of the TSP with the triangle inequality is perhaps 

the most-studied special case of the TSP. It contains the subcase of finding tours 

through points in the plane, where Cij is the Euclidean distance between points i and 

j, since the Euclidean metric is symmetric and obeys the triangle inequality. We will 

call this subcase the Euclidean TSP. One of the earliest papers on solving the TSP 

dealt with the Euclidean TSP, finding a tour through cities of the 48 continental 

states of the U.S. [5]. The Euclidean TSP is NP-complete [29]. 

2.1 Planarity of Solutions 

We begin this chapter by showing that for any instance of the TSP1 which has 

an embedding of its nodes in the plane that obeys certain properties, the Held-Karp 

heuristic has an optimal solution that is planar. We will then show that the Euclidean 

TSP with the straightforward "Euclidean embedding" always has a planar solution. 

First we need to define what we mean by an embedding and what it means for a 

Held-Karp solution to be planar. An embedding is a one-to-one mapping from the 

nodes of the instance to points in the plane. The embedding corresponds a distinct 

1 We will assume for the rest of this chapter that any TSP instance referred to is symmetric and 
obeys the triangle inequality. 

21 
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point Pi E R2 with each node i. An embedding does not require the topological 

distance between Pi and Pj to be the same as the distance Cij between nodes i and j. 

Let x be the optimal solution to the Subtour LP on n nodes, let V = {1, ... ,n}, and 

let ELP = {(i,j)jxij > O}. We say xis planar if and only if the graph G = (V,ELP) 

is planar. We will show planarity by concentrating on a particular embedding of 

nodes in the plane. If G is planar, then it will have a plane representation for that 

particular embedding of nodes [26]. All that remains to be proved is that given an 

embedding, G has a plane representation, and thus is planar. We will now show that 

any instance of the TSP has a planar Held-Karp solution if there exists an embedding 

that meets two conditions. The first condition is that no three of the points of the 

embedding are colinear. The second condition is that the edge costs obey a property 

called the box property. 

Property 2.1.1 (Box Property) Consider an embedding of the nodes 1, ... , n of 

a TSP instance into the plane at points p1 , ... , Pn respectively. Pick any four distinct 

nodes i,j,k,l such that the line segments (p;,pj), (pj,Pk), (Pk,Pz), and (p1,Pi) define 

a convex quadrilateral. The embedding of the TSP instance is said to have the box 

property if for any such i, j, k, l, Cij + Ck/ < Cik + Cj/ and Ci/ + Cjk < Cik + Cj/. 

In other words, an embedding has the box property if for any four points defining 

a convex quadrilateral, the sum of the edge costs of opposing sides of the quadrilateral 

is less than the sum of the diagonals. 

We will now show that given an embedding of an instance with the box property 

and with no three points colinear, there is an optimal solution to the Subtour LP 

that is planar. To do this, we will first show that we can use the formulation of the 

Held-Karp heuristic as a convex combination of 1-trees instead of the Subtour LP 

formulation. Then we will show that if we draw straight line segments between Pi 

and Pj for every edge ( i, j) in the convex-combination solution, intersecting segments 

imply that the solution is not optimal. 

As was noted in Chapter 1, the following linear program is an equivalent formu­

lation of the Held-Karp heuristic: 
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m1mm1ze 
subject to: 

Lk CkYk, 

LkYk 

Lk VikYk 

Yk 

1, 
0 i=l, ... ,n, 

> 0. 

23 

(2.1) 

If y is the optimal solution to this linear program, let Ecc = {( i, j)l3k with ( i,j) E 

Tk and Yk > O}. We will show that Ecc = ELP so we can use the edge set Ecc 

when drawing lines in the plane. 

Lemma 2.1.2 Ecc = ELP for some optimal solution x to the Subtour LP. 

Proof: Let y be a feasible solution to (2.1). Set 

Xij = L Yk· 
{kl(i,j)ETk} 

We will show that xis a feasible solution of the same cost for the Subtour LP. Since 

the Subtour LP and LP (2.1) both give the same value, if y is optimal, then x will 

be also. The constraint Xij ~ 1 follows from Lk Yk = 1 and Xij 2:: 0 from Yk 2:: 0. 

Furthermore, Lk v;kYk = 0 implies Lk d;kYk = 2 and thus Lk L{jl(i,j)ETk} Yk = 2, so 

that 

LXij + LXji = L L Yk = 2. 
j>i j<i j {kl(i,j)ETk} 

Moreover, 1-trees have one unique cycle, which contains node 1. So for any 1-tree, 

2: 1 < ISi - 1 for any k,S ~ {2, ... ,n} 
{(i,j)l(i,j)ETk; i,jES} 

2: Yk < Yk(ISI - 1) for any k,S ~ {2, ... ,n} 
{(i,j)l(i,j)ETk; i,jES} 

2: 2: Yk < ISi - 1 S ~ {2, ... ,n} 
k {(i,j)l(i,j)ETk; i,jES} 

2: 2: Yk < ISi- 1 S~{2, ... ,n} 
i,jES {kl(i,j)ETk} 

L Xij < ISi- 1 S ~ {2, ... ,n}. 
i,jES 

Thus the subtour elimination constraints are satisfied. The remaining constraints 

for the sets S that include node 1 are implied by the previous constraints. Fi­

nally, Lk CkYk = LI:Si<j:Sn L{kl(i,j)ETk} CijYk = LI:Si<j:Sn CijXij, so the two feasible 
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solutions have the same cost. Since Xij = L{kl(i,j)ETk} Yk, Xij > 0 if and only if 

there exists k such that ( i, j) E Tk and Yk > 0. Hence ( i, j) E ELP if and only if 

(i,j)EEcc.• 

Thus we can work with the convex combination of 1-trees, knowing that an 

optimal solution to this LP will produce the same set of edges as an optimal solution 

to the Subtour LP. We will now prove that given an embedding with the right 

properties, we can draw straight lines for all edges in Ecc without having any lines 

intersect. 

Theorem 2.1.3 Let p1 , ... ,Pn be the embedding of the nodes of an instance of the 

TSP such that the embedding has the box property, and such that no three points Pi 

are colinear. Then there exists an optimal solution to the Subtour LP that is planar. 

Proof: Let y be an optimal solution to (2.1 ). Draw a straight line segment between 

Pi and Pj for all ( i,j) E Ecc. Suppose that two of these line segments intersect. Call 

them (Pi,Pk) and (pj,Pt)· Since no three points are colinear, Pi, Pj, Pk, and Pt must 

form a convex quadrilateral. The two line segments (Pi,Pk) and (pj,Pl) correspond 

to edges (i,k) and (j,l). Suppose that both edges (i,k) and (j,l) are in a single 

1-tree, Tq. Since any 1-tree is connected and (i,k) and (j,l) are in Tq, there exists a 

path in Tq either from i to j, from j to k, from k to l, or from l to i that does not 

pass through either of the other two nodes. Without loss of generality, suppose that 

the path is from i to j, and it does not pass through k or l. Create a new 1-tree Tr 

from Tq by removing (i,k) and (j,l) and adding (i,l) and (j,k). The path from i 

to j ensures that Tr is connected. See Figure 2.1. Let y~ = Yk fork :f; q,r, and let 

y~ = 0 and y~ =Yr+ Yq· It is not difficult to see that since y is feasible for (2.1), so 

is y'. By the box property, since Pi, Pj, Pki Pl formed a convex quadrilateral, we have 

Ci/+ Cjk < Cik + Cj/· Therefore, Lk CkY~ < Lk CkYk· This contradicts our hypothesis 

that y is an optimal solution to (2.1). 

Now suppose that the edges ( i, k) and (j, l) corresponding to the crossing line 

segments come from two different 1-trees, ( i, k) from Tq and (j, l) from Tr. Without 

loss of generality, suppose that Yq :S: Yr· There are two classes of ways that Tq and Tr 

can be connected, so again, without loss of generality, we will pick one example from 

each class and assert that the other cases in each class are similar. For the first class, 
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.. 

Figure 2.1: Example if crossed lines are in a single 1-tree 

we will say that Tq has paths from i to j and from k to l (without going through k, l 

and through i,j respectively), and Tr has paths from i to j and from j to k. In this 

first class of cases, we are able to remove the "diagonal" edges from the trees and 

replace them with "opposing sides" while keeping the 1-trees properly connected: in 

this case, we create Tq 1 from Tq by removing ( i, k) and adding (j, k), and Tri from Tr 

by removing (j, l) and adding ( i, l). We set y~ 1 = Yql + Yq, y~1 = Yrl +yq, Y~ = Yr -yq, 

y~ = 0, and y~ = Yk elsewhere. y' is feasible for (2.1) since y is, but the difference 

in cost between the two solutions is Yq(c;1 + cjk) - Yq(cik + Cj1). This difference is 

negative by the box property, soy' is a cheaper solution to (2.1), contradicting the 

optimality of y. 

For the second class, we will say that Tq has paths from i to j and from k to 

l, and Tr has paths from i to l and from j to k (again, the paths do not visit the 

other two nodes). Create four new 1-trees: Tq 1 from Tq by deleting (i, k) and adding 

(j,k), Tq2 from Tq by deleting (i,k) and adding (i,l), Tri from Tr by deleting (j,l) 

and adding (i,j), and Tr2 from Tr by deleting (j,l) and adding (k,l). See Figure 2.2. 

It is not difficult to check that all the new 1-trees are properly connected. Now, let 

Y~1 = Yql + !Yq, Y~2 = Yq2 + hq, Y~1 = Yrl + !Yq, Y~2 = Yr2 + !Yq, y~ =Yr -yq, y~ = 0, 

and y~ = Yk elsewhere. Since y is feasible for (2.1), so is y'. However, the difference 

in cost between the two solutions is ~Yq(Cij + Cjk + Ckl + C/i) - yq(Cik + Cj/). Dy the 
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box property this difference is negative, so y' is a cheaper solution, contradicting the 

optimality of y. 

In all cases, the existence of crossing line segments leads to a contradiction. Thus 

the embedding of the TSP instance must yield some optimal solution x such that 

G = (V, ELP) has a plane representation for that embedding. By previous discussion, 

this proves that xis planar. • 

In the case of the Euclidean TSP, there is a natural "Euclidean embedding" of 

the nodes in to pain ts in the plane such that for any nodes i and j, Cij = d(p;, Pj), 

where d(p;,pj) is the Euclidean distance between points p; and Pj· We will show that 

given this Euclidean embedding for an instance of the Euclidean TSP, there is always 

an optimal solution to the Subtour LP that is planar. We will do this by showing 

that the Euclidean embedding always has the box property, and that we can drop 

the restriction of colinearity from the theorem above. 

Lemma 2.1.4 The Euclidean embedding for a Euclidean TSP instance always has 

the box property. 

Proof: Let pi, ... ,pn be the Euclidean embedding of nodes 1, ... , n from a Euclidean 

TSP instance. Pick any four distinct nodes i, j, k, l such that the line segments 

(p;,pj), (pj,Pk), (pk, pi), and (p1,p;) define a convex quadrilateral. Then the diagonals 

(Pi, Pk), (Pj, Pt) of the quadrilateral intersect at exactly one particular point in 2R2 . 

Call this point q. Since q does not lie on the any of the line segments (Pi,Pj), (Pk.Pt), 

(Pt, Pi), and (Pj, Pk), the following statements hold under the Euclidean metric: 

• d(pi,p;) < d(pi, q) + d(q,pi) 

Adding the first two statements together gives d(pi,Pj) + d(pk,Pt) < d(p;,q) + 
d(q,pk)+d(pj, q)+d(q,pt), and adding together the last two gives d(p;,pz)+d(pj,Pk) < 

d(p;,q) + d(q,pk) + d(pj,q) + d(q,p1) (using symmetry). But d(p;,q) + d(q,pk) = 
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Trl .. 
P1 pk 

pk 

Tr 

Tr2 

Figure 2.2: Example if crossed lines are from two 1-trees 
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d(pi,Pk) and d(pi,q) + d(q,pi) = d(pi,PI), since q lies on the line segments (Pi,Pk) 

and (Pi, Pl). Because this is a Euclidean embedding of a Euclidean TSP instance, 

Cii = d(pi,Pi), Ck/= d(pk,Pl), and so forth. Thus Cii +Ck/< Cik +Ci/ and Ci/+ Cik < 

Cik +Ci/· • 

Finally, we remove the restriction on colinearity for the Euclidean TSP. 

Theorem 2.1.5 Given the Euclidean embedding for an instance of the Euclidean 

TSP, there exists an optimal solution to the Subtour LP that is planar. 

Proof: Observe that for the Euclidean TSP d(pi, Pi)+ d(pk, Pl) < d(pi, Pk)+ d(pi, Pl) 

and d(pi, pz)+d(pi, pk) < d(pi, Pk)+d(pi, P1) even when Pi or pz lies on the line segment 

(Pi,Pk), or when Pi or Pk lies on the segment (pi, Pl). Hence, using the reasoning 

found in Theorem 2.1.3 and Lemma 2.1.4 above, intersecting line segments of this 

type contradict the optimality of y, the optimal solution to 2.1. 

We must now handle the general case when three or more points are colinear. Let 

x be an optimal solution to the Subtour LP, with the subtour elimination constraints 

replaced by LiES,i¢S Xii ::'.': 2 constraints. By the reasoning above, drawing straight 

line segments for all edges in ELP yields no intersecting line segments unless all 

the points corresponding to the intersecting segments are colinear. Without loss of 

generality, suppose that points p1, ... ,pk are colinear, in numerical order on the line. 

Suppose also that drawing straight lines for all edges in ELP causes lines to be drawn 

through points p2, ... ,Pk-1; that is, for each node i E {2, ... , k - 1}, there is some 

edge (a, b) E ELP with 1 ~a< i < b ~ k. 

Let S = {1, ... ,k}. Let to= Li¢Sxli and tk = Li¢Sxki· Furthermore, we set 

ti = Ll:Sa:Si<b:Sk Xab for i = 1, ... , k - 1. That is, ti will be the sum of the Xab that 

"get drawn" between nodes i and i + 1. Since the degree of nodes 1 and k is 2, it 

follows that to+ t1 = 2, and tk-1 + tk = 2. 

Suppose S i V. Since x is a solution to the Subtour LP, we know that 

LiES,i¢SXii ::'.': 2. For i E {2, ... ,k-1}, there is no (i,j) E ELP with j r/. S. If there 

was such an edge ( i,j), then since there exists an edge (a, b ), 1 ~ a < i < b ~ k, 

with Pi on the line segment (pa, Pb), we have a contradiction by the discussion of the 

initial paragraph. Therefore, LiES,i¢SXii = Li¢s(x1i + Xki) =to+ tk ::'.': 2. Using 

S' = {1, ... , k - 1} and S" = {2, ... , k }, one can show similarly that to + tk-l ::'.': 2 
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and ti + tk ~ 2. Solving with the equations above yields to = ti = tk-1 = tk = 1. 

Then using Si = { i + 1, ... , k }, we get ti + tk ~ 2, which implies ti ~ 1. We now 

construct a new solution to the Subtour LP which has no greater cost: xi,i+l = 1 

for i = l, ... ,k-1, xij = x 1j for j > k, xkj = Xkj for j > k, and xj1 = Xjt for 

j, l > k. Clearly for the Euclidean TSP this solution has no greater cost, since in 

the old solution ti ~ 1. The node degree constraints are satisfied, since each node 

has degree 2. Suppose that there is some set T such that LiET,jrt_T xij < 2. Then it 

must be the case that T n S = {1, ... , i} or T n S = { i, ... , k} for 1 ~ i ~ k. For 

any other possible T n S, it is clear that LiET,jrt_T xij ~ 2. If some set of the form 

T n S = {1, ... , i} or T n S = {i, ... , k} is infeasible for x', then TU S must also be 

infeasible for x'. However, this implies TU S was infeasible for x, a contradiction. 

Hence x' is an optimal solution for the Subtour LP, and it no longer has intersecting 

line segments for the colinear points p1, ... ,Pk· 

Suppose S = V. Using arguments similar to those above, it can be shown that 

ti ~ 2 for 1 ~ i ~ n - 1. Hence the solution xi,i+l = 1 for 1 ~ i ~ n - 1, xin = 1 

is of no greater cost. Since the solution is a tour, it is clearly feasible, and it can be 

drawn in the plane by using straight line segments between Pi and Pi+i for the edges 

( i, i + 1), and a curve between p1 and Pn for the edge (1, n ). • 

Planarity may be useful in discovering further structure of solutions for the Sub­

tour LP, and perhaps even proving tight lower bounds. Planar graphs have many 

nice properties not shared by their non-planar counterparts. For instance, it is known 

that every 4-vertex-connected planar graph has a Hamiltonian cycle (that is, a tour) 

[35], [36]. 

2.2 Monotonicity of Solutions 

The Held-Karp heuristic on symmetric instances of the TSP with triangle inequality 

has a certain monotonicity property, which we will define and prove in this section. 

As a consequence of this theorem, we derive an alternate proof of Wolsey's I = ~ 
lower bound on the cost of Subtour LP solutions. That is, the Held-Karp heuristic 

will always produce a solution that has cost no less than ~OPT. Monotonicity will 

allow us to prove this statement by bounding the value of the Held-Karp heuristic 
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on subsets of nodes in a useful way. 

Let V = {1, 2, ... , n} be the set of nodes, and let 0 ~ V. Let W be the cost 

of the Subtour LP, and let Wo be the cost of the Subtour LP on the node set 0. 

We will say that the Subtour LP is monotone if for any TSP instance with node 

set V, and for any 0 ~ V, Wo ::;: W. If n ::;: 5, then it is well known that the 

extreme points of the polytope defined by the Subtour LP (1.1) are integral [16]; i.e., 

they correspond to tours. Thus, in this case, the triangle inequality implies that an 

optimal tour on V can be shortcut to yield a tour on 0 that is no longer. So the 

Subtour LP is monotone for n ::;: 5. Consider next n > 5. By observing that the 

Subtour LP (1.1) is independent of the choice of the special node 1, we can assume 

that, without loss of generality, 0 = {1, ... , n - 1} = [n - l]. We shall show that 

assuming W[n-l] > W leads to a contradiction. We will draw heavily on Held and 

Karp's alternate formulation of the Subtour LP as an optimally weighted 1-tree. 

Define the adjusted cost of a 1-tree Ta with respect to 7r to be 

n 

Ca + L 1riVia· 

i=l 

Note that when Ta is the minimum-cost 1-tree with respect to 7r, its adjusted cost 

is w( 7r ). Let T = Tk and 7F = (7F1 , ... , 7F n-l) be the optimal 1-tree and the optimal 

Lagrangean multipliers for [n - 1], respectively, so that 

n-1 

W[n-1] =Ck+ L 1f;Vik· 

i=l 

(2.2) 

We first show that T and 7F can be picked such that the two edges adjacent to 

node 1 have the same reduced cost. 

Lemma 2.2.1 There exists a vector 7f for [n - 1] for an optimally weighted 1-tree T 

such that if node 1 is adjacent to nodes x and z, c1x = C1z· 

Proof: Suppose that in T, node 1 is adjacent to nodes x and z, and c1x < c1z. This 

implies that (1, x) must be the single cheapest edge adjacent to 1, so all optimal 

1-trees with respect to the Lagrangrean multipliers 7f must include (1, x ). Consider 

again the linear program (2.1 ), the convex combination of 1-trees. By complementary 
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slackness, each tree Tk for which Yk ¥= 0 in (2.1) is an optimal 1-tree with respect to 

7f in the dual LP (1.2). As noted above, (1, x) must be in each of these trees. The 

node x will have degree at least two for each tree, as it will be in the unique cycle of 

the 1-tree. Since the convex combination of 1-trees forces the average degree of each 

node in the trees to be 2, x must have exactly degree two for each tree in the dual 

solution. 

Pick one such tree Tk. Since x has degree 2, increasing 1fx will not change the 

adjusted cost of Tk from the optimum value, W[n-l]· We show that this does not 

affect the optimality of the spanning tree of Tk on 2, ... , n - 1. Increasing 'ffx does not 

affect the relative order of the reduced cost of edges incident to x, and does not affect 

the reduced cost of any other edge. Since x is a leaf in this spanning tree, the edge 

incident to x is the cheapest such edge, and if 'ffx is increased a minimum spanning 

tree will contain this edge. Clearly, all other edges will remain in the spanning tree 

as well. 

If node z is also adjacent to node 1, and we increase 1fx by c1 2 -c1x, then (1, x) and 

(1, z) are still the two cheapest edges adjacent to 1, but c1x = c12 . By the arguments 

above, Tk is a minimum-cost 1-tree with respect to the modified multipliers 7F such 

that Tk has adjusted cost W[n-l]· Thus Tk and the new 7f are optimal solutions to 

the equation (2.2). • 

We will now assume that W[n-l] > Wand show that this leads to a contradiction. 

Let T(7rn) be the minimum-cost 1-tree on V with respect to 7F for nodes in [n - 1] 

and 7r n for node n. If the adjusted cost of T( 7r n) is greater than or equal to W[n-l] 

for any 7rn, then by supposition it is greater than W. Thus we have found a vector 

7r for which the minimum-cost 1-tree on V has adjusted cost greater than W, which 

contradicts the maximality of W. 

Thus, T(7rn) must have adjusted cost less than W[n-l]· We will show that we can 

delete node n from some T(7rn) such that the adjusted cost of the resulting 1-tree 

is no greater, which contradicts the minimality of T with respect to 7f. Thus the 

supposition W < W[n-l] must be false. 

We now show that there exists 7r n such that n has degree two in T( 7r n). 

Lemma 2. 2 .2 If node n in T( 7r n) has degree k < n - 1, then there exists 15 2:: 0 such 
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that n has degree k + 1 in T(7rn - 6). 

Proof: By the definition of a minimum-cost 1-tree, T(7rn) is a minimum-cost span­

ning tree on V - {1} plus the two cheapest edges adjacent to node 1, all with respect 

to the reduced costs Cij· We can assume that the minimum-cost spanning tree is 

constructed as follows: sort the edges in non-decreasing order by reduced cost; in­

clude in the tree those edges that connect two connected components in the graph 

induced by the edges that come earlier in the ordering. Note that by changing 6, 

only the costs of edges incident to n are altered, and these changes can only move 

those edges earlier in the order. Furthermore, if an edge is included, it will still be 

included after moving it earlier in the order. 

For a particular value of 6, there may be many orderings of the edges consistent 

with the reduced costs (due to ties in the values). In an ordering, we can interchange 

any two edges of the same reduced cost. Perform a series of interchanges, bringing 

the edges incident to n earlier in the order, one step at a time. If the degree of n 

increases as a result of one of these interchanges, we have proved the lemma. Next 

consider the edges incident to node 1, and check if the edge (1, n) is of the same cost 

as one of the edges in the current solution. Again, if the degree of node n increases, 

we are done. 

Apply the above argument with 6 = 0. If this fails to produce the desired tree, 

increase t5 until the reduced cost of one of the edges incident ton equals the reduced 

cost of one of the other edges in the graph, and then repeat the procedure given 

above for a the new value of 6. Note that if 6 is sufficiently large (greater than 

maxj{Cjn} - min;,j{Cij}) then the degree of node n must become n - 1. Therefore, 

the procedure given above must terminate and give a 1-tree in which node n has 

degree k + 1. • 

Corollary 2.2.3 There exists a value 'lrn such that node n has degree two in T(7rn)· 

Proof: This follows from Lemma 2.2.2 and and the observation that if 7r n is suffi­

ciently large, then it must have degree 1 in any minimum-cost 1-tree. • 

We can now prove the theorem. 

Theorem 2.2.4 W[n-l] :::; W and thus the Subtour LP is monotone. 
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Proof: Assume, as we have above, that W[n-l] > W, and that T = Tk and 7f are the 

optimal 1-tree and multipliers for [n - l]. Let 1Fn be such that node n has degree two 

in T(1Fn) =Ta, and let wand x be the two nodes adjacent ton. If (w,x) is not in 

Ta, then form the 1-tree n by removing edges (w,n) and (x,n), and adding (w,x). 

Since Vna = 0, Via = Vib, and Cwx ~ Cnx + Cnw, 

(2.3) 

which contradicts the minimality of T( = Tk) with respect to the multipliers 7f. 

Suppose that the edge (w,x) is already in T(1Fn). This means that there is a 

cycle (n, w, x), and since node 1 is in the unique cycle in a 1-tree, either w or x 

must be node 1. Say that w = 1. By the optimality of T(1Fn), (1,x) must be one of 

the edges adjacent to node 1 in T. By Lemma 2.2.1, there exists another edge (1,z) 

with C1z = C1x· So we can remove edge (1, x) and add (1, z) without affecting the 

optimality of T(7F n ). ( 1, x) = ( w, x) is no longer in the tree, so we can shortcut node 

n as above. 

This establishes the desired contradiction, so it must be the case that W[n-l] < 
W.• 

This theorem was also obtained independently by Goemans and Bertsimas [13]. 

To achieve the same I = ~ lower bound on the cost of the Subtour LP as Wolsey 

[39], we use a result of Christofides. Christofides [3] observed that if T is the cost 

of a spanning tree, and M is the cost of a matching on the odd-degree nodes of the 

tree, then M + T ;::.: OPT. This comes from the fact that a tree plus a matching on 

the odd-degree nodes yields an Eulerian graph. By starting with an Eulerian circuit 

of the graph and shortcutting any multiply visited nodes, we can obtain a tour no 

longer than the total length of edges in the Eulerian graph. The same holds true if 

a 1-tree is used instead of a spanning tree. 

If we assume that there is an even number of nodes, the cost of a matching can 

be bounded in terms of W. 

Lemma 2.2.5 Let M be the cost of the minimum-cost matching, assuming that 

n = IVI is even. Then M ~ ~W. 
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Proof: Let x be an optimal solution to the Subtour LP. Then ~x satisfies the 

following constraints: 

LXij + LXji 1, i = 1, 2, ... , n, (2.4) 
j>i j<i 

L:: 1 
S CV, ISi 2'. 3, ISi odd, Xij < 2(1SI - 1), 

iES,jES,i<j 

x·· iJ < 1, 1 :_::; i < j :_::; n, 

x·· 
'J > 0, 1 :_::; i < j :.:; n. 

By a classic result of Edmonds [6], these are exactly the constraints for the linear 

programming formulation of the matching problem. Since the objective function for 

the two LPs is exactly the same (min l::i::;i<j:S:n CijXij) and ~xis a feasible solution 

to (2.4), the cost of the matching is no greater than half the cost of the Subtour LP. 

Thus M:.:; ~W. • 
Pick a minimum-cost 1-tree Ts with 7r; = 0, for all i. This implies Cs :_::; W. Let 

0 ~ V be the odd-degree nodes of T. Then 

OPT < Cs +Mo (2.5) 

OPT < 
1 

w+ 2Wo (2.6) 

OPT 
1 

(2.7) < w+-w 
2 

OPT < ~w 
2 

~OPT < w 
3 

Equation (2.5) follows from Christofides' technique, (2.6) follows from Lemma 

2.2.5, and (2.7) follows from the monotonicity theorem. Therefore, W, the value 

of the Subtour LP, is bounded above by OPT and bounded below by ~OPT. We 

note that this result shows that the Held-Karp heuristic does as well as the best­

known tour-constructing heuristic for the symmetric TSP with triangle inequality. 

Christofides' heuristic [3] is guaranteed to construct a tour with cost no greater than 

~OPT. 
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The/ = ~lower bound for the Held-Karp heuristic is not known to be tight. The 

worst case known is a family of graphs shown in part (a) of Figure 2.3, which was 

introduced by Monma, Munson, and Pulleyblank [27] in a slightly different context. 

Let the distance from any node i to any node j of the graph be the number of edges 

in the shortest path between i and j. This yields an instance of the TSP that is 

symmetric and obeys the triangle inequality. Part (b) of the figure shows an optimal 

tour of the graph of cost 4k + 2. Part ( c) shows a feasible solution to the Su btour 

LP of cost 3k + 3. Since there are 3k + 2 nodes in the graph, and each edge costs 

at least one, the cost of the optimal solution to the LP is at least 3k + 2. Then the 

ratio of the cost of the LP solution to the cost of the optimal tour is between ~U~ 

and ~U~. Notice that this ratio tends to ~ ask tends to infinity. We conjecture that 

the actual lower bound for the Held-Karp heuristic is I = ~-

2.3 Connections to the Biconnected Graph Problem 

Monma, Munson, and Pulleyblank [27] have shown that there are interesting connec­

tions between the TSP, the Held-Karp heuristic, and another NP-complete problem, 

the minimum-cost biconnected-gmph problem. We say a graph G = (V, E) is bicon­

nected if the graph is connected, and the removal of any edge does not disconnect 

the graph. Given costs Cij the minimum-cost biconnected-graph problem is to find 

E' such that G = (V, E') is biconnected and 

L Cij = l_Ilin L Cij. 
(i,j)EE' {Sl(G,S) biconnected} (i,j)ES 

Eswaran and Tarjan [8] have shown that the minimum-cost biconnected-graph prob­

lem is NP-complete even when edge costs are either 1 or 2. 

Monma, Munson, and Pulleyblank have shown that if the Cij are symmetric and 

obey the triangle inequality, then the minimum-cost biconnected graph is a I = ~ 
lower bound for the TSP 2

• They also show that this bound is tight, by using the 

same family of graphs as our conjectured worst-case instance for the Held-Karp 

heuristic. Furthermore, they include a result of Cunningham that shows that the 

optimal solution to the Subtour LP has cost no greater than that of the minimum-cost 

2 Frederickson and Ja'Ja' (10] showed earlier that this was true for planar graphs. 
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biconnected graph. 

We draw an additional connection to the minimum-cost biconnected-graph prob­

lem by relating the value of its linear relaxation to the value of the Held-Karp heuris­

tic for non-negative Cij. Consider the following linear program: 

mm1m1ze L: CijXij (2.8) 
l:Si<j:Sn 

subject to: LXij + LXji > 2, i = 1, 2, ... , n, 
j>i j<i 

L: Xij > 2, for any proper subset Sc V, 
iES,jrf_S,i<j 

Xij < 1, 1:::;; i < j :::;; n, 

x·· •J > 0, 1:::;; i < j :::;; n. 

As with the Subtour LP, if the Xij in LP (2.8) were guaranteed to be either 0 or 

1, the solution would be the minimum-cost biconnected graph. Therefore (2.8) is a 

linear relaxation of the biconnected-graph problem in the same way that the Subtour 

LP is a linear relaxation of the TSP. If we let W be the cost of the optimal solution 

to Subtour LP and B be the cost of the optimal solution to (2.8), it is not too hard 

to see that B :::;; W. If the subtour elimination constraints of the Subtour LP are 

replaced by 'EiES,jrf_S,i<j Xij 2 2 constraints, any x that is feasible for the Subtour 

LP is feasible for (2.8), and so B :::;; W. We show that W and B are in fact equal for 

a large number of cases. 

Theorem 2.3.1 If Cij 2 0 for all i,j, then W = B. 

Proof: Define the potential function <I> to be 

<P(x) = L(LXij + LXji-2). 
i j>i j<i 

Intuitively, <P(x) is the total amount that the degree of each node in a solution to 

the biconnected LP (2.8) exceeds 2. Pick the vertex x of the polytope defined by the 

biconnected LP such that 'Ei:::;i<j:Sn CijXij = B (that is, xis an optimal vertex), and 

such that <I>( x) is minimized. If <I>( x) = 0, then we are done, since x will be feasible 
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for the Subtour LP, implying W ::; B and thus W = B. Suppose that <I>(x) > 0. 

We will derive a contradiction by finding a feasible point x of no greater cost (i.e., 

xis optimal) such that <I>(x) < <I>(x). Since xis the convex combination of optimal 

vertices and <I> is a linear function, there must exist some optimal vertex x' of the 

polytope with <I>( x') < <I>( x ). The existence of x' will complete the contradiction. 

Recall that a multigraph is a graph such that there may be more than one edge 

between any two nodes, and an Eulerian graph is a graph in which each node has 

an even number of edges incident to it. Our proof relies heavily on the following 

theorem of Lovasz about Eulerian multigraphs. 

Theorem 2.3.2 (Lovasz [25]) Let G be an Eulerian multigraph, z a node of G, 

and ( z, u) an edge of G. Then there exists another edge ( z, v) in G such that in the 

graph G' formed by removing (z,u) and (z,v) from G and adding (u,v) 

ca1(a,b) = ca(a,b) 

where a, b are any two nodes of G distinct from z, and where ca( a, b) denotes the 

number of edge-disjoint paths between a and b. 

We will convert our optimal vertex x into an Eulerian multigraph by multiplying 

each Xij by a constant factor. Since x is a vertex of the polytope, the Xij must be 

rational. Thus we can find some least common denominator q of x12, x13 , ... , Xn-l,n· 

The multigraph Gx induced by 2qx (that is, the graph with 2qxij edges between 

nodes i and j) is then an Eulerian multigraph. 

Choose a node z such that L:j>z Xzj + L:j<z Xzi > 2. Such a node z must exist 

since <I>(x) > 0. Then z must have degree at least 2q + 2 in Gx. Apply Lovasz's 

theorem to z in Gx for some arbitrarily chosen u such that (z, u) is in Gx. The 

theorem produces a new graph Gx that shortcuts the node z; that is, edges (z,u) 

and (z,v) are removed for some v, and edge (u,v) is added. Consider the vector x 

with Xij equal to the number of edges (i,j) in Gx divided by 2q. It will be shown 

that if Xuv ::; 1, then we are done. Otherwise there will be two cases to consider. 

First we suppose that Xuv ::; 1. 

Lemma 2.3.3 Ifxuv ::; 1, then x is a feasible point for the biconnected LP such that 

the cost ofx is no greater than the cost ofx and <I>(x) < <I>(x). 
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P f B t t . - + 1 - 1 - 1 d -roo: y cons rue ion, Xuv = Xuv 2q, Xzu = Xzu- 2q, Xzv = Xzv- 2q, an Xij = Xij 

everywhere else. Thus certainly <I>(x) < <I>( x ), and also the cost of x is no greater 

than the cost of x by the triangle inequality. Since z had degree at least 2q + 2 in 

Gx, it must have degree at least 2q in Gx, and hence at least degree 2 in x, so all 

the node degree constraints of the biconnected LP are satisfied. Likewise, because 

(z,u) and (z,v) were in Gx, Xzu ~~and Xzv ~~'so x ~ 0. By the assumption and 

observations above, x s; 1. 

Finally, we need to show that the 'L,iES,j(lS,i<j Xij ~ 2 cut constraints are obeyed. 

Since 'L,iES,j(lS,i<j Xij ~ 2, it follows from the max-flow min-cut theorem that 

ccx(a,b) ~ 4q for all distinct nodes a and b. By Lovasz's theorem c0 )a,b) ~ 4q for 

all nodes a and b different than z. Hence for every subset S such that there exists 

a E S, b (j_ S, with a, b ¢. z, 'L,iES,j(lS,i<j Xij ~ 2. The only case in which this does not 

occur is when S = { z} or S = { z} in which case these cut constrain ts follow from 

the node degree constraint for z. • 

Now we suppose that the lemma does not apply; that is, there does not exist 

edges (z,u) and (z,v) such that Lovasz's theorem applies without causing Xuv > 1. 

There are two cases to consider. First, suppose that for every pair of edges ( z, u) and 

(z,v) adjacent to z, Xuv = 1. There must exist at least three distinct points u,v,w 

with Xzu > 0,Xzv > 0, and Xzw > 0 (otherwise, the degree of z can't be greater than 

2). Also note that Xzu > 0 implies that Xzu ~ i" and similarly for the other edges. 

By assumption, Xuv = Xvw = Xuw = 1. Then we assert that setting Xuv = Xuv - 2
1
q 

and Xij = Xij elsewhere produces a feasible point x for the biconnected LP. It has no 

greater cost (since Cuv ~ 0) and <I>(x) < <I>(x) (since the degree of u has decreased). 

The feasibility of x for all constraints follows straightforwardly except for the cut 

constraints for which u E S, v (j_ S. Then we have the following cases: 

• z,w ES implies 'L,iES,j(lS,i<j Xij ~ Xuv + Xvw + Xzv ~ 2 + ~' 

• Z E S, W (j_ S implies 'L,iES,j(lS,i<j Xij ~ Xuv + Xuw + Xzw ~ 2 + ~' 

• Z (j_ S, WE S implies 'L,iES,j(lS,i<j Xij ~ Xuv + Xvw + Xzw ~ 2 + ~' 

• z, W (j_ S implies 'L,iES,j(lS,i<j Xij ~ Xuv + Xuw + Xzw ~ 2 + i-· 
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Figure 2.4: Case 1 if Lemma 2.3.3 does not apply 

In every case the cut is not less than 2 + l, so we can certainly reduce Xuv by 2
1 

• q q 

See Figure 2.4. 

The second case to consider if Lemma 2.3.3 does not apply is when (z,v) and 

(z,w) are non-zero edges with Xvw < 1, but choosing (z,v) causes Lovasz's theorem 

to choose ( z, u) such that Xuv = 1, and choosing ( z, w) causes the theorem to choose 

(z,y) with Xwy = 1 (possibly u = y). It turns out that in this case we can obtain 

.(' 'bl . t - b tt' - + 1 - 1 - 1 d a ieas1 e pmn X y Se Ing Xvw = Xvw 2q, Xzv = Xzv - 2q, Xzw = Xzw - 2q' an 

Xij = Xij everywhere else. Again, showing that the cost of x and <I>(x) are no greater 

than those of x is trivial. Likewise, showing feasibility for all constraints is easy 

except for the cut constraints in which z ES, v,w (j_ S. Since Lovasz's theorem says 

we could have shortcut to (u,v) or to (w,y), it follows that for all S with z ES and 

either u, v </- S, or w, y {j_ S, 'Z-iES,jrf.S,i<j Xij 2: 2 + ~· So the only case remaining is 

when u and y are in S. Then 'Z.iES,jff.S,i<j Xij 2'. Xuv +xwy+Xzw 2'. 2+ ~· Thus, we can 

produce an x by shortcutting to ( v, w) without violating any of the cut constraints. 

See Figure 2.5. 

In every case, we have produced a feasible point x with the necessary properties, 

so we have reached a contradiction, and the theorem is proven.• 

A more general version of this theorem was proven independently by Goemans 

and Bertsimas [13], also by using Lovasz's theorem. 
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.. 

Figure 2.5: Case 2 if Lemma 2.3.3 does not apply 

That W = Bis true in a large class of instances is somewhat surprising, especially 

since the minimum-cost biconnected graph generally does not have the same cost as 

the minimum-cost tour in the same class of instances. The equality of W and B 

also implies that we have another equivalent formulation of the Held-Karp heuristic 

in the biconnected LP. Goemans and Bertsimas (14] use this formulation in their 

probabilistic analysis of the Held-Karp heuristic; it is possible that this formulation 

will continue to be useful in further analysis of the heuristic. 



Chapter 3 

The Asymmetric Case with 
Triangle Inequality 

A TSP instance is said to be asymmetric if it is not necessarily the case that c;j = 

Cji for all i,j. The asymmetric case seems to be harder than the symmetric case 

of the TSP: even with the triangle inequality, the best known tour-constructing 

heuristic has a = flog n l [11 ]. Non-constructive heuristics seem to do as well as their 

symmetric counterparts, however. A lower-bound heuristic of Balas and Christofides 

[1] produced values that were usually 99.5% OPT in one study of the heuristic [4]. 

The Held-Karp heuristic on asymmetric instances is also doing well. We will show 

that the Held-Karp heuristic has a guarantee of I= ~ and has a bound no less 
l'ognl 

than that of the Balas-Christofides heuristic. 

3.1 Definition of the Asymmetric Held-Karp Heuristic 

First, we must define the Held-Karp heuristic in the asymmetric case. An arbores­

cence on a directed graph G = (D, A) is a tree such that each node of the tree has 

indegree one with the exception of a distinguished node known as the root, which has 

indegree zero. Thus there is a directed path from the root to every other node. A 

1-arborescence is an arborescence having node 1 as the root and one additional arc 

( i, 1 ). So a 1-arborescence has exactly one directed cycle, which contains node 1. As 

in the symmetric case, the 1-arboresence can be weighted by Lagrangean multipliers 

a= (a1, ... ,an), so that the minimum-cost 1-arborescence is chosen with respect to 

42 
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reduced costs Cij = e;j +a;. If Tk is the minimum-cost 1-arborescence with respect 

to a, and 
n 

w(a) = L Cij - L:a;, 
(i,j)ETk i=l 

then the value of the Held-Karp heuristic in the asymmetric case is max°' w(a). 

Held and Karp [17] noted that their results for the symmetric case carried over 

straightforwardly to the asymmetric case. In particular, their statement implies that 

the value of the Held-Karp heuristic is equal to the value of the following linear 

relaxation of the asymmetric TSP: 

m1mm1ze L: e;jXij (3.1) 
l~i,j~n 

subject to: L:x·· iJ 1, j = 1, .. . n, 

L:x·· iJ 1, i = 1, ... ,n, 
j 

L: Xij < \S\- 1, for any proper subset ScV 
iES,jES 

x·· iJ > 0, 1 ~ i,j ~ n. 

Held and Karp do not formally prove that max°' w( a) and the value of the LP (3.1) 

are equal. We will do so here by using a powerful theorem of Geoffrion. Geoffrion 

[12] examines Lagrangean relaxation in a general setting by considering the following 

linear programs: 

J( >.) 

where >. is fixed, and, 

minimize ex 
subject to: Ax > b, 

Bx > d, 
x > 0, 

minimize 
subject to: 

ex+ >.(b- Ax), 
Bx 

x 

> 
> 

d, 
0, 

x; integer, 

(3.2) 

(3.3) 
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maximize over .\ 
subject to: 

f(.\) 
.\. 
' ~ 0 when Aix ~bi, 

unrestricted when Aix = bi. 

Geoffrion then shows the following theorem. 

(3.4) 

Theorem 3.1.1 (Geoffrion [12]) Suppose that for all feasible.\, the optimal value 

of (3. 3) is not altered by dropping the integrality constraints. Then the optimal value 

of (3.2) is equal to the optimal value of (3.4). 

Now we can prove Held and Karp's theorem for the asymmetric case. 

Theorem 3.1.2 (Held, Karp [1 7]) Let W be the optimal value of the asymmetric 

Subtour LP (3.1). Then W = maxa w(a). 

Proof: To apply Geoffrion's theorem, we have c correspond to the c;j, x correspond 

to the Xij, Ax 2: b correspond to the constraints Lj Xij = 1, i = 1, ... , n, and Bx 2: d 

correspond to both Li Xij = 1, j = 1, ... , n, and the subtour elimination constraints 

LiES,jESXij::; ISl-1 for any SC {2, ... ,n} or any S = {1,k} fork E {2, ... ,n}. 

First, notice that the optimal value of (3.2) will be the same as that of the asymmetric 

Subtour LP (3.1)1 . Second, if the Xij are forced to be integers, then only vectors x 

corresponding to 1-arborescences satisfy the Bx ~ d constraints. Hence we can view 

the linear program (3.3) as finding the 1-arborescence that minimizes ex -.\(b-Ax). 

But ex -.\(b-Ax) = Li,j(cij + .\i)Xij -Ei.\;, so minimizing this quantity is the 

same as finding the minimum-cost 1-arborescence with respect to .\. Therefore, the 

value of the LP (3.3) is equal to the value of w(.\), and the value of (3.4) is the same 

as the value of the Held-Karp heuristic. 

It will follow that the optimal value of the asymmetric Subtour LP is equal to 

the value of the Held-Karp heuristic if the polytope Bx ~ d has integer extreme 

points. By a theorem of Edmonds [7], Bx ~ d has integer extreme points because 

it represents the intersection of two matroids (the 1-tree matroid and the indegree 1 

matroid). • 

The choice of which constraints from the asymmetric Subtour LP to assign to 

Ax ~ b and which to assign to Bx ~ d was somewhat arbitrary, so it turns out 

1 As before, the missing constraints are implied by other constraints. 
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that we can prove similar theorems not considered by Held and Karp. We state 

a few of the possible theorems below. A few terms need to be defined first. A 1-

antiarborescence is the same as a 1-arborescence, except that each node is constrained 

to have outdegree 1, rather than indegree 1. An asymmetric 1-tree is a directed graph 

whose underlying graph is a 1-tree. 

Theorem 3.1.3 Define the minimum-cost 1-antiarborescence with respect to a real 

n-vector /3 = (/31 , ... , f3n) to be the minimum-cost 1-antiarborescence with respect to 

edge costs Cij = Cij + /3j. If Tk is the minimum-cost 1-antiarborescence with respect 

to /3, define 
n 

w(/3) = L Cij - L/3j. 
(i,j)ETk j=l 

Then max/3 w(/3) = W. 

Theorem 3.1.4 Define the minimum-cost asymmetric 1-tree with respect to the real 

n-vectors a= (a1 , ... ,an) and /3 = (/31 , ... ,/3n) to be the minimum-cost asymmetric 

1-tree with respect to edge costs Cij = c;j + a; + /3j. If Tk is the minimum-cost 

asymmetric 1-tree with respect to a,/3, define 

n 

w(a,/3) = L c;j - L(a; + /3;). 
(i,j)ETk i=l 

Then maxa,/3 w(a,/3) = W. 

Theorem 3.1.5 Index all the proper subsets S C V by q, so that there are z proper 

subsets of V, Si, ... , Sq, ... , Sz· Define the minimum-cost assignment with respect 

to the real z-vector s = (s1 , ... ,sz) to be the minimum-cost assignment with respect 

to edge costs Cij + L{q:(i,j)ESq} sq. If Ak is the minimum-cost assignment with respect 

to s, define 
z 

a(s) = L C;j - L(JSqJ - l)sq· 
(i,j)EAk q=l 

Theorem 3.1.3 follows from choosing the subtour elimination constraints and the 

outdegree 1 constraints for Bx :2: d. Theorem 3.1.4 follows from picking the subtour 
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elimination constraints plus the additional redundant constraint Li,j X;j = n for 

Bx ;::: d, while Theorem 3.1.5 comes from picking the indegree 1 and outdegree 1 

constraints for Bx ;::: d. In each case, the results of Edmonds [7] guarantee that 

Bx ;::: d has integer extreme points. 

Theorem 3.1.5 is of special interest, since some non-constructive approximation 

algorithms for the asymmetric TSP are based on the assignment problem. Several 

researchers have used the assignment problem with no edge weighting as a lower 

bound for the TSP (see [2], §2). A more sophisticated approach was developed by 

Balas and Christofides [1]. They consider the minimum-cost assignment Az subject 

to a certain set of weights Wt. They find 

where T is a set of linear combinations of the subtour elimination constraints and 

node-degree constraints expressed in the generic form 

2: aLxij ;::: ai. 
l~i,j~n 

Although the best bound can be obtained by finding maxw2'.0 L( w), for computational 

reasons Balas and Christofides consider maxwEW L( w ), where W is a particular sub­

set of the non-negative w. The next theorem shows that their heuristic is dominated 

by the Held-Karp heuristic. 

Theorem 3.1.6 The value produced by the Balas-Christofides heuristic is no greater 

than that of the Held-Karp heuristic. 

Proof: As with Theorem 3.1.5, we apply Geoffrion's theorem by letting Bx ;::: d 

correspond to the constraints Lj Xij = 1, i = 1, ... , n and Li Xij = 1, j = 1, ... , n, 

and let Ax ;::: b correspond to the constraints LI::;i,j~n a;jXij ;::: ah, t E T. Then 

ex+ >.(b - Ax) = L(>.). By Edmonds' theorem, Bx ;::: d has integer extreme points, 

so maxw2'.0 L( w) has the same value as the optimal value to the linear program 
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m1mm1ze L CijXij (3.5) 
l~i,j~n 

subject to: LXij 1 1 ::; i ::; n, 
j 

LXij 1 1 ::; j ::; n, 

L 
t > at t ET, a;jXij 0 

l~i,j~n 

Xij > 0. 

Since the equations Li~i,j~n a~jXij ~ ah are simply linear combinations of the 

subtour elimination constraints and the node degree constraints, the linear program 

above (3.5) must be achieving the same optimal value as the asymmetric Subtour 

LP (3.1) without the redundant constraints. Therefore, maxw2:0 L( w) = W, so that 

maxwEwL(w)::; W. • 

Despite this theorem, Smith [34] finds empirically that in the asymmetric case, 

assignment problem heuristics produce better lower bounds than the subgradient op­

timization version of the Held-Karp heuristic which uses weighted 1-arborescences, 

even when the assignment problems are unweighted. This suggests that this com­

putational method for the Held-Karp heuristic in the asymmetric case needs some 

improvement. 

3.2 Monotonicity of Solutions 

In the asymmetric case with triangle inequality, the best known tour-constructing 

algorithm produces a tour of cost at most flog n l OPT. We will show that the Held­

Karp heuristic for the same set of problems does at least as well, with a guarantee of 

'Y = rio!nl. To prove this, we first need to show a result analagous to the monotonic­

ity result given for the symmetric case in Section 2.2. The proof of this result is very 

similar to the proof of Theorem 2.2.4, but we include it here for completeness. We 

will use the fact that the asymmetric Subtour LP (3.1) has the same value as opti­

mally weighted asymmetric 1-trees (via Theorem 3.1.4). Recall that a minimum-cost 

asymmetric 1-tree with respect to a and (3 is the minimum-cost asymmetric 1-tree 
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with respect to edge costs Cij = Cij + a; + /3j. Then, when Tk is the minimum-cost 

asymmetric 1-tree with respect to a,/3, 

n 

w(a,/3)= L C;j-L(a;+/3;), 
(i,j)ETk i=l 

and by our theorem, maxa,/3 w(a,/3) = W. 

First, we establish some notational conventions. O;k,lik will be the outdegree 

and indegree, respectively, of the ith node in the kth asymmetric 1-tree. Then 

a;k = Oik - 1 and b;k = I;k - 1. Set ck = L(i,j)ETk Cij. The adjusted cost of a tree 

Tk will be 
n n 

ck+ L(aiaik + /3;b;k) = L Cij - L(ai + /3i)· 
i=l (i,j)ETk i=l 

We will let {ij} stand for some orientation of the edge (i,j) so that a sentence like 

"removing {ij} lowers the cost by c{ij}" means either "removing (i,j) lowers the cost 

by Ci/' or "removing (j, i) lowers the cost by Cji". 

As in the symmetric case, we can express finding the optimal asymmetric 1-tree 

as a linear program. If we let T1 , ••• , Tt be the enumeration of all asymmetric 1-trees, 

then finding maxa,/3 w(a,/3) can be expressed as 

maximize w 
subject to: w < Ck+ L:i=1 (aiaik + /3ibik), Vk = 1, ... , t. 

The dual of this LP is 

minimize 
subject to: 

Lk CkYk 

Lk llikYk 

Lk bikYk 

Yk > 

0, i = 1, ... , n, 
0, i = 1, ... ,n, 
0. 

(3.6) 

(3.7) 

The dual finds the convex combination of asymmetric 1-trees such that each node 

has average indegree 1 and average outdegree 1. 

Recall the definition of monotonicity. If Wis the cost of the asymmetric Subtour 

LP, 0 ~ V, and Wo is the cost of the asymmetric Subtour LP on node set 0, then 

the asymmetric Subtour LP is monotone if for any TSP instance and any 0 ~ V, 

Wo :::; W. As before, we will let W denote the value of the asymmetric Subtour 
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LP, and let W[n-l] denote the value of the asymmetric Subtour LP on the node set 

{1, ... , n - 1 }. Assuming W[n-l] > W will lead to a contradiction. 

Let T = Tk, a= (01, ... ,an-1), and fi = (fi1, ... ,fin_1) be the optimal 1-tree 

and the optimal Lagrangean multipliers for [n - 1], respectively, so that 

n-1 
w[n-1] = Ck+ I)aiaik + fiibik)· (3.8) 

i=l 

We first show that T and (a, /3) can be picked such that the two edges adjacent 

to node 1 have the same reduced cost. 

Lemma 3.2.1 There exist Lagrangean multipliers (a, fi) for [n -1] for an optimally 

weighted 1-tree T such that if {1,x}, {1,z} ET, then c{lx} = c{lz}· 

Suppose that {1, x }, {1, z} ET, and c{lx} < c{lz}· This implies that {1, x} must 

be the single cheapest edge adjacent to 1, so all optimal 1-trees with respect to the 

Lagrangrean multipliers (a, fi) must include {1, x }. 

Consider the dual linear program (3.7) that finds the minimum-cost convex com­

bination of asymmetric 1-trees. By complementary slackness, each tree Tk for which 

Yk i= 0 in the optimal dual solution is a minimum-cost 1-tree with respect to (a,/3) 

in the primal. As noted above, {1, x} must be in each of these trees. Since x will 

have at least degree two for each tree (as it is in a cycle), it must have exactly degree 

two for each tree in the dual solution. In fact, it must have indegree exactly 1 and 

outdegree exactly 1. 

Pick one such tree Tk. Since x has indegree 1 and outdegree 1, increasing either 

Zix or fix will not change the adjusted cost of Tk from the optimum value, W[n-l]· As 

in the symmetric case, this does not affect the optimality of the spanning tree of Tk 

on 2, ... , n - 1. If node z is also adjacent to node 1, we increase Zix (if {1, x} = ( x, 1), 

fix if {1,x} = (1,x)) byc{lz}-c{lx}· Then {1,x} and {1,z} are still the two cheapest 

edges adjacent to 1, but c{lx} = c{lz}· By the arguments above, Tk is a minimum­

cost 1-tree with respect to the modified multipliers (a, fi) such that Tk has adjusted 

cost W[n-l] · Th us Tk and the new (a, iJ) are optimal. • 

We will now assume that W[n-l] > Wand show that this leads to a contradiction. 

Let T(an,f3n) be the minimum-cost 1-tree on V with respect to (a,/3) for nodes in 
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[n - 1] and O:n,/3n for node n. If the adjusted cost of T(an,/3n) is greater than or 

equal to W[n-l] for any O:n,/3n, then by supposition it is greater than W. Thus we 

have found vectors (a,/3) for which the minimum-cost 1-tree on V has adjusted cost 

greater than W, which contradicts the maximality of W. 

Thus, T(o:n,/3n) must have adjusted cost less than W[n-l]· We will show that we 

can delete node n from some T(o:n,/3n) such that the adjusted cost of the resulting 

1-tree is no greater, which contradicts the minimality of T with respect to (a, /J). 

Thus the supposition W < W[n-l] must be false. 

Lemma 3.2.2 There exist o:n, f3n such that n has indegree one and outdegree one in 

Proof: If O:n, f3n are sufficiently large, then the node must have either indegree one, 

outdegree zero OR indegree zero, outdegree one in any minimum-cost 1-tree. Then, 

as in the symmetric case, we can slowly reduce either O:n or f3n by D until n has 

indegree one and outdegree one. • 

We can now prove the theorem. 

Theorem 3.2.3 W[n-l] s; W and thus the asymmetric Subtour LP is monotone. 

Proof: Assume, as we have above, that W[n-l] > W, and that T = Tk and a, 7J are 

the optimal 1-tree and multipliers for [n - l]. Let an, /Jn be such that node n has 

indegree one and outdegree one in T(an, /Jn) = Tp, and let w and x be the two nodes 

adjacent ton, with (w,n),(n,x) E Tp. If (w,x) and (x,w) are not in Tp, then form 

the 1- tree Tq by removing edges ( w, n) and ( n, x), and adding ( w, x ). Since anp = 0, 

bnp = 0, a;p = a;q, b;p = biq, and Cwx s; Cwn + Cnx by the triangle inequality, 

Cq + I:i==-1
1 
(ailliq + /J;biq) < Cp + O:nllnp + f3nbnp + I:~/ (aiaip + /Jibip) 

< Ck+ I:~/(aiaik + /J;b;k), 
(3.9) 

which contradicts the minimality of T(= Tk) on [n-1] with respect to the multipliers 

(a,:B). 

Suppose that the edge (w,x) (or (x,w)) is already in T(o:n,/3n)· This means that 

there is a undirected cycle ( n, w, x ), and since node 1 is in the unique cycle in a 
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1-tree, either w or x must be node 1. Say that w = 1. By the optimality of T( O'.n, f3n), 

{1, x} must be one of the edges adjacent to node 1 in T. By Lemma 3.2.1, there 

exists another edge {1, z} with c{lz} = C{ix}· So we can remove edge {1, x} and add 

{1, z} without affecting the optimality of T( an, f3n)· {1, x} = { w, x} is no longer in 

the tree, so we can shortcut node n as above. 

This establishes the desired contradiction, so it must be the case that W[n-l] < 

W.• 
The best-known tour-constructing approximation algorithm has a guarantee of 

a = flog n l OPT and is due to Frieze, Galbiati, and Maffioli [11]. Their algorithm in­

volves iterating the assignment problem. The assignment problem yields a collection 

of subtours on the nodes. A representative node from each subtour is selected, and 

the process is iterated. When all remaining nodes are in one subtour, the subtours 

represented by the remaining nodes are patched in. Since the number of nodes is 

at least halved on every iteration, at most flog n l iterations are needed. Further­

more, each assignment problem is a lower bound on the cost of the tour; i.e., if 

Ai, ... , A[1ognl are the costs of the flog n l assignment problems, then Ai s; OPT 

for 1 s; i s; flog n l · Also, since the combination of the assignments yields a directed 

Eulerian graph which can be shortcut to a tour, EP:~nl Ai 2': OPT. It follows that 

this method yields a tour no longer than flog n l OPT. 

The cost of each assignment problem can be bounded in terms of W. 

Lemma 3.2.4 Let Ai be the cost on an assignment problem on some subset of nodes 

Sic V. Then Ai s; W. 

Proof Let x be an optimal solution to the asymmetric Subtour LP on the nodes 

0 =Si CV. By the theorem above, Wo ~ W. By Theorem 3.1.5, for assignments 

on Si, maxs::=::o a( s) = Wo. The minimum-cost assignment on Si has cost Ai = a(O), 

so Ai~ W. • 

Thus 

[log n l 
OPT < L Ai 

i=l 
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Chapter 4 

The 1,2-TSP 

The 1,2-TSP is a special subcase of the symmetric TSP in which either Cij = 1 or 

Cij = 2 for all i,j. Notice it follows that the 1,2-TSP obeys the triangle inequality. 

Even with this restriction, the 1,2-TSP is NP-complete; in fact, it was this version 

of the TSP that was shown to be NP-complete in Karp's groundbreaking paper on 

the NP-completeness of certain combinatorial problems [22]. 

The strong limitation on edge costs gives the 1,2-TSP some unusual properties. 

For instance, any tour whatsoever will have cost no more than twice the cost of the 

optimal tour, for the simple reason that a tour will have to cost at least n, but no 

tour can have cost more than 2n. We prove another unusual property of the 1,2-TSP 

below. 

Theorem 4.0.5 Let OPT be the cost of the optimal tour for a 1,2-TSP instance, 

and let BIC be the cost of the minimum-cost biconnected graph. Then OPT = BIC. 

Proof: Since a tour is a biconnected graph, certainly BIC :::; OPT. To prove 

the opposite direction, we will consider the ear-decomposition of the minimum-cost 

biconnected graph. An ear-decomposition is a partition of the edges of a graph into 

"ears", or paths in the graph. The paths are either simple paths (no repeated nodes) 

or simple cycles (only the end-nodes of the path are repeated; "interior" nodes are 

not repeated). An ear decomposition is a sequence of ears such that each edge of the 

graph is uniquely contained in some ear, the end-nodes of an ear appear in previous 

ears in the sequence, but interior nodes of an ear are not contained in any previous 

ear. We will use the following theorem. 
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Theorem 4.0.6 (Whitney [38]) An undirected graph is biconnected if and only if 

it has an ear decomposition whose first ear is a cycle. 

Let Ei, ... ,Ek be the ear decomposition of the minimum-cost biconnected graph. 

We will show inductively that there is a tour through the nodes of the ears Ei, ... , E; 

which cost no more than the edges in Ei, ... ,E;. Then for i = k, we will have a 

tour that costs no more than the costs of the edges in the decomposition; in other 

words, OPT ::; ETC. The base case is trivial, since E1 is a simple cycle. Suppose 

the inductive hypothesis holds for i. Let T; be the tour constructed from Ei, ... , E;. 

If E;+l is an edge, the hypothesis holds for i + 1 trivially. If E;+l is a cycle, it must 

have one node in common with T;: call it p. Let (p, u) be an edge from T; and let 

(p, J) be an edge from E;+1 . Then T;+l can be constructed from T; and E;+l by 

removing (p, u) and (p, J), and adding ( u, !). By the triangle inequality, T;+ 1 will 

have cost no greater than that of T; plus that of Ei+l· Now suppose that E;+1 is 

a path. It meets T; at exactly two nodes: call them p and q. There must be edges 

(p,J) in E;+1 (! "¢ q) and (q,u) in 'Ii. We can construct a tour T;+1 from T; and 

E;+1 by deleting (p,f) and (q,u), and adding (u,f). This changes the cost of T; plus 

E;+l by Cuf - Cpf - Cqu which can be at most 2 - 1 - 1 = 0. • 

Recall our conjecture at the end of Section 2.2 that the lower bound of the Held­

Karp heuristic is the same as the lower bound for the minimum-cost biconnected 

graph (namely, ~OPT) for the symmetric case with triangle inequality. It might 

seem reasonable to conjecture here that the Held-Karp heuristic displays the same 

sort of behavior, and is close to OPT= ETC, perhaps within an additive constant. 

The theorem below shows that this is not the case. 

Theorem 4.0.7 For all No, there exists an instance of the 1,2-TSP with n nodes, 

n ~ No, such that the optimal solution to the Subtour LP has cost 1
9
0 0PT. 

Proof: We will demonstrate a family of instances h of the 1,2-TSP such that 

OPT = lOk and the cost of the optimal solution to the Subtour LP is 9k. The 

family of instances is built up recursively from an instance Ii shown as a graph in 

Figure 4.1. Instance Ii is a known example from the literature. The edges in the 

graph correspond to edges whose cost is 1; edges not present in the graph have cost 



55 

Figure 4.1: Instance Ii 

2. Instance h is constructed by attaching a variant of Ii called Io to nodes ai and 

b1 in Ii. See Figure 4.2; we add edges in the place of the dotted lines. Instance h is 

constructed by attaching Io to a 2 and b2 of h, and so forth. 

First, we will show by induction that the cost of the optimum tour for instance Ik 

is lOk. Figure 4.3 shows a tour of length 10 for I 1 . A tour for h+i can be constructed 

from a tour for h by removing ( ak, bk) and traversing I 0 in a manner similar to the 

tour of Ii. 

Now we need to show that there is no tour of h that has cost less than lOk. The 

base case is simple: by exhaustive search, Ii has no Hamiltonian cycle. Suppose that 

the inductive hypothesis holds for h but not for h+i· We will show that this forces a 

contradiction. All tours of 1,2-TSP instances have cost equal to the number of nodes 

in the graph plus the number of cost-two edges in the tour. If the hypothesis doesn't 

hold for h+i, then there must be fewer than k + 1 cost-two edges in the optimum 

tour for h+i · Divide the cost-two edges of the tour into three sets: Sk,k, So,o, and 

sk,O· Since h+1 is constructed from an h instance and an Io instance, Sk,k will be 

the set of cost-two edges whose endpoints are both in the h section of h+1 , So,o will 

be the set of cost-two edges whose endpoints are both in the Io section, and Sk,o will 

be the remaining cost-two edges. Clearly ISk,kl + ISo,ol + ISk,ol :::; k. 

Suppose ISk,ol = 0. Then the tour must enter and leave the Io section through 
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Figure 4.2: Instance Ji = Ii + Io 

Figure 4.3: Optimum Tour of Ii 
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edges (akic) and (bk,ak+ 1). Any Hamiltonian path in Io from c to ak+l must use a 

cost-two edge. Thus there is a Hamiltonian path entirely in h from ak to bk with 

fewer thank cost-two edges. But then we could construct a tour of h with cost less 

than 9k + k = lOk by adding edge ( ak, bk) to the path, contradicting the hypothesis 

that the optimum tour of h has cost lOk. 

Now suppose ISk,ol > O. Consider the tour of h obtained by shortcutting all 

visits to the Io section. For instance, if the tour enters the Io section via a cost-two 

edge (uk,uo) and leaves it via a cost-two edge (vo,vk), delete the path from uk to 

vk and add edge ( uk, vk)· Call this a "type I" shortcut, and note that it removes at 

least two cost-two edges from the graph and adds at most one. If the tour enters the 

Io section through a cost-two edge (uk,uo) and leaves it via (c,ak) (or (ak+1,bk)), 

remove the path from uk to ak and add edge ( uk, ak) (or (Uk, bk)). This "type II" 

shortcut removes at least one cost-two edge and adds at most one. If we perform 

any type I shortcuts, then our resulting tour of h will have fewer than k cost-two 

edges, which contradicts the hypothesis. We can have at most two type II shortcuts, 

since the tour cannot pass through ak and bk more than one time each. Suppose the 

two type II shortcuts add two cost-two edges ( uk, ak) and ( Vk, bk)· We remove these 

two edges, and construct a new tour by adding (ukivk) and (ak,bk). Then we have 

removed two cost-two edges, and only replaced one, so the new tour of h uses fewer 

than k cost-two edges, a contradiction. 

Finally, suppose we have one type II and no type I shortcuts. If we enter via 

( uk, u0 ) leave via (c, ak), notice that there is no Hamiltonian path from any uo in Io 

through all nodes in Io to c. Thus the path from u0 to c must use at least one cost­

two edge, so performing this type II shortcut removes two cost- two edges and adds 

one, which is again a contradiction. If we enter via (uk,uo) and leave via (ak+i.bk), 

then there must be a cost-two edge in the tour adjacent to ak (since neither (ak,bk) 

nor (ak,c) can be in the tour). Call this edge (ak,v). If (akiv) = (uk.uo), the 

shortcutting removes a cost-two edge and adds a cost-one edge (namely, (ak,bk)). If 

not, perform the shortcut. If it adds a cost-two edge (bk, Uk), then construct a new 

tour by removing (bk,uk) and (akiv) and adding (ak,bk) and (ukiv). In either case, 

we get a tour of h with fewer than k cost-two edges, a contradiction. 

Now we must show a Subtour LP solution for Ik with cost 9k. Certainly any 
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Figure 4.4: Feasible Solution to I2 

solution to the Subtour LP for h must have cost at least 9k, since for any solution 

'Ei<j Xij = n = 9k, and Cij ~ 1 for all i, j. Consider a generalization of the solution 

to lz shown in Figure 4.4. It is not hard to check that this is a feasible solution of 

cost 9k (the subtour elimination constraints can be checked using the edge-shrinking 

heuristic of Crowder and Padberg. See [28], §2.1). • 

The best known guarantee on the Held-Karp heuristic for the 1,2-TSP is the 

/ = ~ bound of the symmetric case with triangle inequality. The best known tour­

constructing heuristic for the 1,2-TSP is due to Papadimitriou and Yannakakis [30). 

Their heuristic guarantees a tour with length no longer iOPT. Since * < i9o, it is 

an interesting open question as to whether the Held-Karp heuristic for the 1,2-TSP 

is as good as Papadimitriou and Yannakakis's heuristic. 



Chapter 5 

Conclusions and Open 
Problems 

Through the course of this thesis, we have seen that solutions produced by the Held­

Karp heuristic have deep connections to matroids and biconnected graphs, and also 

have nice structural properties, including planarity and monotonicity. In some cases 

we have been able to exploit this structure to find lower bounds on the worst-case 

performance of the heuristic. Since we can find no instances on which the heuristic 

does as badly as our bounds, we strongly suspect that these bounds can be improved. 

What are these better bounds? What additional structural properties will we need 

to prove these bounds? 

One of the initial motivations for exploring the structure of Held-Karp solutions 

was the heuristic's extremely good performance "on average". However, we have 

confined ourselves to considering the worst-case performance of the heuristic. Can 

anything be said about the "average" case performance of the heuristic? Goemans 

and Bertsimas [14] give a probabilistic analysis of the heuristic for instances drawn 

from ~d under the Euclidean metric. Can more be done along these lines? 

We noted in the introduction that there are no known practical polynomial-time 

algorithms for the Held-Karp heuristic. We also pointed out in Chapter 3 that 

although in theory the Held-Karp bound for the asymmetric case should be better 

than certain assignment-problem based bounds, in practice some researchers found 

the opposite to be true. This shortfall between theory and practice may be due to use 

of the subgradient optimization algorithm, which is not guaranteed to converge to the 
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