
Design and Implementation of a

Packet Switched Routing Chip

MIT / LCS / TR-482

August 4, 1994

Christopher Frank Joerg

This report describes research done at the Laboratory of Computer Science of the

Massachusetts Institute of Technology. Funding for the Laboratory is provided in

part by the Advanced Research Projects Agency of the Department of Defense

under O�ce of Naval Research contract N00014-84-K-0099.

The author was supported in part by a graduate fellowship from the National Sci-

ence Foundation.

This report was originally published as the author's Masters thesis.

Design and Implementation of a

Packet Switched Routing Chip

Christopher Frank Joerg

MIT / LCS / TR-482
December 1990

c
 Christopher Frank Joerg 1990

The author hereby grants to MIT permission to reproduce and to

distribute copies of this technical report in whole or in part.

This report describes research done at the Laboratory of Computer Science of the
Massachusetts Institute of Technology. Funding for the Laboratory is provided in
part by the Advanced Research Projects Agency of the Department of Defense under
O�ce of Naval Research contract N00014-84-K-0099.
The author was supported in part by a graduate fellowship from the National Science
Foundation.

This report was originally published as the author's Masters thesis.

Design and Implementation of a

Packet Switched Routing Chip

Christopher Frank Joerg

Technical Report MIT / LCS / TR-482
December 1990

MIT Laboratory for Computer Science

545 Technology Square

Cambridge MA 02139

Abstract

Monsoon is a parallel processing data
ow computer that will require a high bandwidth
interconnection network. A packet switched routing chip (PaRC) is described that will
be used as the basis of this network. PaRC is a 4 by 4 routing switch which has been
designed and fabricated as a CMOS gate array. PaRC will receive packets via one of
its four input ports, store the packet in an on-chip bu�er, and eventually transmit the
packet via one of its four output ports. PaRC operates at 50 MHz, and each port has
a bandwidth of 800 Mbits per second. Each input port operates asynchronously and
has enough bu�ering to store four packets. The bu�ering and scheduling algorithms
used in PaRC were designed to provide high utilization of the available bandwidth,
while providing low latency for non-blocked packets. In addition, PaRC provides
a mechanism whereby a processor can quickly receive an acknowledgment when a
message it sent has been received. Although the design of PaRC has been driven by
the needs of Monsoon, PaRC has been designed to be suitable for a wide variety of
communication networks.

Key Words and Phrases: Interconnection Networks, Monsoon, Packet Switched
Networks, Packet Bu�ering Algorithms, VLSI

3

Acknowledgments

I would like to thank all the members of the Computation Structures Group, especially

Andy Boughton, my thesis supervisor, who has been a tremendous help both while I

was working on PaRC and while I was writing this thesis. Despite having a million

things to do, he was always willing to do what he could to help out. Thanks also

to Ralph Tiberio, Jack Costanza, Ken Steele, Greg Papadopoulos, Brian Scott, Paul

Bauer, and Constance Je�ery for their help and friendship.

And, of course, many thanks to my wonderful parents.

4

Contents

1 Introduction 8

1.1 Monsoon Requirements : 10

1.2 Network Overview : 11

1.3 Road Map : 15

2 Design of PaRC 16

2.1 Overview of PaRC : 16

2.2 Bu�er Utilization : 18

2.3 Scheduling Strategy : 21

2.4 Circuit Switched Packets : 24

2.4.1 Why They Are Needed : 24

2.4.2 How They Work : 25

2.5 PaRC Interface : 27

2.6 Error Detection : 29

2.6.1 Types of Errors : 29

2.6.2 How Errors are Dealt With : : : : : : : : : : : : : : : : : : : 32

2.7 Flow Control : 33

2.8 Routing : 36

2.9 Control Port : 43

3 Implementation of PaRC 45

3.1 The Technology : 45

3.2 Packet Bu�ers : 46

3.3 Input Port : 49

3.4 Scheduler : 61

5

3.5 Transmitter : 65

3.5.1 Outgoing Data : 65

3.5.2 Transmitter Logic : 67

3.6 Control Section : 69

3.6.1 Statistics : 72

3.7 Other Details : 75

3.7.1 Single Packet Latency : 75

3.7.2 Critical Paths : 75

3.7.3 Clock Frequency Di�erences : : : : : : : : : : : : : : : : : : : 76

4 Test Vectors 78

4.1 The Need for Test Vectors : 78

4.2 Testing for Defects : 79

4.3 Test Vectors for PaRC : 82

5 Conclusions 87

5.1 Future Work : 87

5.2 Summary : 88

A PaRC User's Guide 91

A.1 Introduction : 91

A.2 Input Port : 93

A.2.1 Input Data Bus : 93

A.2.2 CRC : 95

A.2.3 Routing : 97

A.2.4 Bu�er Use : 99

A.2.5 Flow Control : 100

A.3 Output Port : 102

A.3.1 Scheduler : 103

A.3.2 Transmitter : 104

A.3.3 ICLK : 106

A.4 Control Section : 106

A.4.1 Reset : 107

A.4.2 Control Locations : 107

A.4.3 Statistics : 112

A.4.4 Control Port Interface : 115

6

List of Figures

1.1 A Butter
y Network using 2x2 Switches. : : : : : : : : : : : : : : : : 13

2.1 Top Level View of PaRC : 17

2.2 Routing in a Butter
y Network : 37

2.3 Several Ways to hook nodes into a network. : : : : : : : : : : : : : : 39

2.4 A typical fat tree : 40

2.5 A fat tree made of PaRCs : 42

3.1 A Packet Bu�er : 47

3.2 The FMEM Component : 50

3.3 Block Diagram of the Input Port : 51

3.4 Writing into a Packet Bu�er : 54

3.5 Block Diagram of the Scheduler : 62

3.6 Overview of the Transmitter : 66

3.7 The Control Port : 69

3.8 The Statistics Section : 72

4.1 Testing a NAND gate : 80

4.2 A NAND-OR circuit : 81

7

Chapter 1

Introduction

Multiprocessing is becoming prevalent as a way to increase the price-performance

ratio of high performance computers. An important aspect of a multiprocessor is

how its processors are interconnected. Some parallel machines simply connect their

processors together by a shared bus. This is a very simple scheme that provides for

quick message transfers and will often allow existing uniprocessors to be used with

few modi�cations. But this method cannot provide enough bandwidth for more than

a few processors; instead, interconnection networks are often used. These networks

use switching elements to send messages between processors. Messages are sent from

the originating processor, through one or more switching elements, and then to the

destination processor. Since communication must now go through the switches, the

latency of inter-processor communication has been increased. But the bandwidth is

much greater since many messages can be sent simultaneously.

There are many types of switching elements and many types of networks that can

be built out of those elements. The type of network used in a machine has a great

impact on how the machine performs, and on what types of algorithms the machine

can run well. PaRC is a routing switch designed to form the network for the Monsoon

data
ow machine [10][9], but it has been kept general enough to be used in other types

of networks as well.

Monsoon is a parallel processing data
ow computer currently being developed. A

data
ow machine is one which executes using a data-driven model of computation.

8

Programs on a data
ow machine consist of data
ow graphs. Each node of the graph

represents an operation to be performed; each arc in the graph signi�es that the

data produced by the node at the head of the arc is used by the node at the tail.

The model of computation is called data-driven because an operation is free to be

executed whenever it has all of its data. This is very di�erent from a traditional

von Neumann machine in which the operation to be executed next is selected based

on which operation has just been completed. Since a data-driven model imposes

fewer constraints on the ordering of operations, it is a promising model for parallel

machines.

A data
ow processor operates by consuming and producing packets of data known

as tokens. A token represents a piece of data
owing along an arc of a data
ow graph.

A token is simply a piece of data connected to a tag. When a processor consumes a

token it uses the tag portion of the token to determine what operation to perform on

the data portion. After performing the operation, it uses the results to produce zero

or more new tokens. In a single node data
ow machine, a processor will eventually

consume all the tokens that it produces. In a multi-node data
ow machine such as

Monsoon, one node may send a token to another, causing the second node to con-

currently perform part of the computation. In this way, many nodes may cooperate

on solving a single problem. The language Id [8] is a parallel language designed with

data
ow processors in mind. From this language a compiler can directly generate

data
ow graphs. These graphs allow the executable code to retain the parallelism

that was inherent in the original algorithm. This allows a data
ow machine to exploit

many opportunities for parallelism that conventional machines do not. To support

this parallelism, a high bandwidth network is needed to interconnect the processors.

The rest of this paper will describe the design and implementation of PaRC, a packet

switched routing chip which will be used as the basis for this network.

9

1.1 Monsoon Requirements

Although PaRC was designed to be
exible enough to be used in many types of

machines, its main goal was to provide a network for Monsoon. Since PaRC was

optimized to work with Monsoon, we will �rst look at the requirements Monsoon

places on any proposed network.

The �rst requirement is that the network provide high bandwidth to and from each

node. Nodes will be either a data
ow processor or an I-Structure memory board [13].

It is noted in [9] and [1] that for compiled scienti�c code, 30-40% of the instructions

executed by a processor will be either a store or a fetch. Most, if not all, of these will

require sending the store or fetch through the network. [9] goes on to say that after

including other causes for network tra�c (e.g., argument passing), on average half

of the instructions executed will generate a token for the network. Since Monsoon is

intended to be a high performance processor, a high bandwidth network is a necessity.

Also, the latency of the network should be kept to a minimum. Most algorithms

go through periods where the potential parallelism is large, and periods where it is

small. During periods of high parallelism, most processors will have plenty of tokens

to process. So even if they have several pending memory requests, they will have

other operations to execute while the requests are being processed. The opposite

may be true during periods of low parallelism. A processor may send o� a memory

request and have very little to do until the request is answered. Since the time spent

waiting for a reply may directly increase the execution time of the program, we want

the network latency to be as short as possible. The latency of a network is a function

of many factors, such as the con�guration of the network, the latency of the network

switch, and the amount of tra�c in the network. Since during low parallelism tra�c

may be light, and since we are especially concerned with latency during periods of

low parallelism, we want to pay particular attention to minimizing the latency during

light tra�c. In particular, we want to minimize the latency of non-blocked packets.

By \latency of a non-blocked packet," we mean the delay from when the �rst word

of a packet is received to when it is transmitted, assuming that the packet does not

10

have to wait due to other packets using the output it needs.

Monsoon will use its network solely for passing around tokens. Given that tokens

are of a �xed sized, the messages in the network will all be of the same size as well.

Additionally, a Monsoon processor will sometimes need to know when a packet it sent

has been received. The network should provide some means to acknowledge that a

packet has arrived at its destination. In PaRC this is supported by allowing special

packets called \Circuit Switched Packets." Also, the number of nodes in Monsoon

may vary from just a few nodes to many hundreds. The network must be able to

support all sized machines.

Lastly, let us emphasize that even though PaRC is being designed to support

Monsoon, this is not its only goal. PaRC will be
exible enough to support many

di�erent types of networks.

1.2 Network Overview

Before designing PaRC, we �rst had to determine what type of network we wanted

to build. Based on the above requirements, a number decisions about the network

can be made.

The �rst is to make the network a packet switched network. A packet switched

network (also called store-and-forward) is one in which messages are sent as a unit

from point to point in the network. Switches have several inputs which are used to

receive messages (packets), and several outputs which are used for sending packets.

When a packet is sent to a switch, that switch stores the packet in a bu�er. If the

output that the packet needs to go to is available (i.e., the output is not currently

sending some other packet), the packet will be sent out through that output. If the

output is unavailable, then the packet is blocked and, it will stay in the bu�er until it

can be sent out. A switch will accept packets as long as it has room to bu�er them,

regardless of whether or not the packets outputs are available.

An alternative to packet switching is circuit switching. In a typical circuit switched

11

network, messages are transmitted by making a complete connection through the

network from the sender to the receiver. The message is sent along this path, passing

right through the switching nodes.1 When making the connection, the header of

a message moves from switch to switch, establishing a connection from the sender

to the header's current location. If the header reaches its destination then there is

a complete path from sender to receiver, so the message will be successfully sent.

However, when the header enters a switch, the output it wants to use may already

be in use. When this occurs the connection is not made, and the sender will have to

make another attempt to send the message.

The main reason for choosing packet switching over circuit switching is the high

throughput that is needed. A \link" is a connection which sends data to and from

a switch. Depending on the machine, these links often make connections between

boards or even between racks. Links are often the most expensive components of a

network. Given a limited number of links, we need to make the best possible use of

their bandwidth. A packet switched network will make better use of its bandwidth

than would a similar circuit switched network. If a message can currently be sent

only part way to its destination, a packet switched network will send the message as

far as it can. A circuit switched network would not, thus wasting bandwidth that the

packet switched network uses.

A disadvantage of packet switched networks is that they often have a longer latency

than circuit switched networks. At each stage of a network, a packet may have to wait

while other packets use the link it needs. Additionally, even if the packet does not

have to wait for other packets, the switch may wait until the packet is fully received

before it sends the packet to the next stage. This cause of latency can be lessened by

allowing the switch to send out a packet before it has fully arrived. This is known as

streaming. When this is done, and a packet's path is clear, the latency for a packet

switched network will be comparable to that of a circuit switched network.

Another important characteristic of a network is its topology. The topology

1Circuit switching is often compared to making a phone call, whereas packet switching is com-
pared to sending a letter through the mail.

12

of a network describes how the elements of a network are connected. An n-cube

topology[11] (also called butter
y) was chosen for Monsoon. Figure 1.1 shows a net-

work made of 2x2 butter
y switches.

.

.

.

N
O
D
E
S

.

.

.

Stage 1 Stage 2 Stage 3 Stage 4

.

.

.

N
O
D
E
S

.

.

.

Figure 1.1: A Butter
y Network using 2x2 Switches.

An important feature of this topology is that any size network can be made out

of the same switches. For networks such as the hypercube (which is used in the

Connection Machine [15] and the Cosmic Cube [12]), the number of connections to a

switching node is a function of the number of nodes in a network. Since the number

of nodes in Monsoon will vary greatly, it is useful to have a switching node whose

complexity will not increase as the size of the machine increases.

Another bene�t of the butter
y topology is that it allows a message to go between

13

any two nodes while passing through only a small number of switches. This is impor-

tant since each node that a message passes through adds to its latency. In a butter
y

network, a message will need to pass through only O(logN) switches, where N is the

number of nodes being connected. This is also true of the hypercube, but is not true

of networks such as a mesh. A mesh uses �xed sized switches, as does a butter
y,

but a message may pass through O(
p
N) or O(3

p
N) switching nodes to get to its

destination.

In the mesh and hypercube networks mentioned above, each switching element

was associated with a node. These are called direct networks. The Monsoon network

will be an indirect network. In this network only the switches in the �rst and last

stages will be connected to nodes. All other switches will be connected only to other

switches. An advantage of a direct network is that each node has several nodes which

are very close to it (i.e., signi�cantly closer than the average node). This can be

taken advantage of when writing programs. By trying to get nodes to communicate

primarily with nodes they are close to, a programmer may be able to reduce the

average distance messages need to travel, and thereby speed up the program. In

Monsoon there is no sense of locality between processors. In other words, when one

node needs to send a message, it is equally likely (or nearly so) that that message

will go to any of the other processors.

A large Monsoon system will be spread out over many boards in many di�erent

cages. Providing a synchronous clock over such a large machine would be a very

di�cult task.2 Since the nodes of this system are independent and may operate

asynchronously, we did not want to provide a synchronous clock just for the network.

For this reason each PaRC will operate asynchronously. This means that packets

coming into PaRC from di�erent places will all be transmitted from separate clock

domains. The cost of synchronizing these incoming packets is that the latency of a

packet is slightly increased. Since the networks will be spread out over many boards,

some of the connections to and from PaRC may be quite long. This will a�ect the

2[16] shows some of the di�culties of providing a synchronous clock, and shows one way of
overcoming them.

14

ow control mechanism. PaRC should work well on all sized links, including both

short links between PaRCs on the same board, and long links going between racks.

Lastly, the network should also preserve the ordering of packets. If two packets have

the same sender and the same receiver, the packets should arrive in the same order

in which they were sent.

1.3 Road Map

The work in this report is a continuation of the work begun in my bachelor's thesis[6].

The ideas in that thesis have been expanded upon and used in the design and fabrica-

tion of a PaRC chip. The rest of this report describes the design and implementation

of PaRC. The next chapter begins with an overview of PaRC and then describes

some of the key ideas that had the greatest impact on the design and performance

of PaRC. Chapter 3 describes some of the implementation details of each section of

PaRC. Chapter 4 describes the process of generating the test vectors which are used

to test newly fabricated chips. The �nal chapter gives some conclusions and men-

tions some changes that future versions of PaRC could incorporate. The appendix

contains the PaRC User's Guide. This guide contains the information users need to

know when including PaRC in their system. Since this guide is meant to stand on its

own, it duplicates some of the information contained in the body of this document.

15

Chapter 2

Design of PaRC

2.1 Overview of PaRC

PaRC is a 4 by 4 routing switch on a chip. It receives packets via one of its 4 input

ports, writes them into an on-chip bu�er, and eventually sends them out via one of

its 4 output ports. This section will provide an overview of the major components of

PaRC. Figure 2.1 shows these components in a top level diagram of PaRC. A more

detailed description of these components can be found in Chapter 3.

The �rst major component is the input port. This component is responsible for

receiving packets, checking them for errors, and writing the packets into memory.

The input port must also determine on which output port a packet should be sent. It

then makes a request to that output port's scheduler, telling the scheduler in which

bu�er the packet is being stored. The input port must also notice when its memory

is �lling up, and then notify the sender not to send any more packets. The memory

of each input port is composed of 4 separate bu�ers, each of which can store exactly

one packet.

Each output port is made up of two components: a scheduler and a transmitter.

The scheduler keeps track of all the packets which need to use the output port and

chooses which packet will be transmitted next. If two or more of the waiting packets

were received via the same input port, the scheduler must guarantee that they are

16

Input
Port

Input
Port

Input
Port

Input
Port

Scheduler
Transmitter

Scheduler
Transmitter

Scheduler
Transmitter

Scheduler
Transmitter

Control
Port

Packet
Buffers

The major datapaths and I/Os of PaRC are shown

Figure 2.1: Top Level View of PaRC

17

transmitted in the same order in which they arrived. The transmitter is the com-

ponent which sends packets o� the chip. When the transmitter is ready to send a

packet, it �rst �nds out from the scheduler where the next packet is being stored.

The transmitter then reads the packet out of its bu�er and transmits it to the next

stage of the network. If the packet is a circuit switched packet (i.e., a packet which

requires an acknowledgment), the transmitter must also ensure that an acknowledg-

ment is produced at the appropriate time. Circuit switched packets will be discussed

in more detail in Section 2.4

The control section has two main functions. One function is to keep statistics on

the performance of the network. The other is to provide an interface by which the

performance of PaRC can be controlled and monitored. Through this interface all of

PaRC's programmable features can be controlled (such as how routing is done). This

interface can connect to a network control system which will allow the operation of

the network to be controlled by software.

2.2 Bu�er Utilization

A design decision that greatly a�ects the performance of a packet switched network is

how much bu�ering each switch has and how that bu�ering is used. Typically, store

and forward networks store messages coming in over the same input in one long �fo

(�rst-in-�rst-out) bu�er associated with that input. PaRC does not do this. Instead,

it splits the memory associated with each input port into four separate bu�ers, each

of which is large enough to hold exactly one packet. The principle reason for doing

this is to maximize the chip's throughput.

If the memory was organized as one large �fo queue, then it would only be possible

to read out the packet at the top of the queue. When that packet was blocked, nothing

could be read out of that �fo, even if the other packets in the �fo were not blocked.

This puts a severe limitation on the throughput of the network. Assuming that the

top of each port's �fo has a packet which is heading for a random destination, then on

18

average only 2.7 of those 4 packets would be unblocked. This means that even if the

links entering a chip can supply a packet whenever room is available, the utilization

rate for links leaving that chip would be only 68%. This means that one-third of the

each link's bandwidth would be wasted!

This rate can be improved by looking at more than just the top packet. If the �rst

packet is blocked we could look at the next packet and send that packet if it is not

blocked. If we do this then the best case utilization rate rises from 67% to 80%. (The

best case utilization rate is de�ned to be the average utilization of output ports if all

bu�ers always have a packet. This is not a measure of how well we expect to do, but

is a limit on how well we could possibly do.) If we can look at all four packets and

send the �rst one that is not blocked the best case utilization rises to 90%.

The ability to read from any bu�er can be used to our advantage even more. We

can give each bu�er its own output circuitry, thus allowing each bu�er to be read

independently. It then becomes possible to read out two (or more) bu�ers from the

same input port at the same time. This permits each output port to read from any

bu�er that has a packet for it, regardless of which other bu�ers are currently being

read. By doing this, the best case link utilization rate for PaRC rises to 99%. Another

advantage of adding output circuitry to each bu�er is that it makes it faster to begin

to read out a packet. Since the bu�er always knows which word will be read next,

it can begin the read of that word on the cycle before it is needed. This helps to

minimize the latency of packets.

Two properties of PaRC are exploited in reaching this best case utilization rate.

First, we make use of the fact that all of the packet memory can be put on-chip. If

packets were stored externally it would be very expensive to use this scheme because

it would greatly increase the number of chips needed for packet bu�ering. It would

require a larger number (at least one per bu�er) of small memories (or �fo memories),

as well as additional external circuitry to multiplex together the results. (Using

multiported memories could reduce this cost somewhat.)

Also, if the packets were not of �xed size, but their sizes varied greatly, this scheme

19

would be very ine�cient. To use this scheme, we would have to make each bu�er large

enough to hold the largest allowable packet. For smaller packets, part of the bu�er

space would be wasted. In a single �fo scheme, memory space is not wasted because

each packet takes up only as much room as it needs. So given a �xed amount of

memory, the separate �fo scheme would bu�er signi�cantly fewer packets. Although

if most packets were close to the maximum packet size, this loss would be relatively

insigni�cant.

These are signi�cant improvements. Not only do they increase the throughput

greatly, but they also decrease latency; packets which would have been stuck behind

other packets can now be sent as soon as their output port is available. These im-

provements are successful because they help to prevent output ports from being idle

while there are packets waiting to use them.

These improvements, which were �rst described in my bachelor's thesis, are related

to the recently published Virtual Channel Flow Control scheme of Dally [3]. This

scheme is mostly concerned with networks where packets may be large enough so

that switches will not bu�er entire packets. The concept of virtual channels are used

to achieve results similar to PaRC by restricting a packet to use only a portion of the

bu�ering in an input port. This is done by dividing up the bu�er space into several

smaller separate �fos, and assigning each �fo to a di�erent \virtual channel." When

a packet is sent to a switch, the sender must associate the packet with a virtual

channel that is not currently in use, and the packet can only use the bu�er space

associated with its virtual channel. If a packet becomes blocked it will �ll up its

bu�er space, and the sender will stop sending the packet until more space is available

for it. Since a packet can only use the space associated with its virtual channel, it

does not �ll up the rest of the bu�er space in that input. This allows another packet

to be sent to that input and stored into the bu�ers associated with a di�erent virtual

channel. This packet may take a di�erent path than the earlier packet so it may not

get blocked. This improves both the average throughput and latency of the switch.

PaRC's bu�ering scheme is similar to a virtual channel scheme in which there are

four virtual channels, and each virtual channel has enough bu�ering to store exactly

20

one packet. PaRC's scheme is simpler since it does not deal with bu�ering only part

of a packet. PaRC's scheme also requires less bandwidth overhead since the receiver

does not have to be told what virtual channel the data is being sent on, and since

separate
ow control information is not needed for each virtual channel.

PaRC's bu�ering strategy greatly improves the chip's throughput and latency, but

these improvements do come at a price. In addition to adding to the size of the

packet bu�ers, this scheme makes the scheduling problem much more complex. The

scheduler must still ensure that packets following the same path do not get out of

order. More precisely, packets that arrive through the same port and which will go

out the same port must be sent out in the same order in which they were received.

This is easily done when there is a single �fo bu�er, since packets can only be read

out in exactly the same order they arrived. This is not true in PaRC; there is no way

to tell which of two packets arrived �rst simply by looking at packet memory. The

scheduling strategy will have to solve this problem.

2.3 Scheduling Strategy

The scheduling strategy had to be designed to take advantage of the large number

of independent �fo bu�ers that each transmitter could read from. It also had to deal

with the ordering problem outlined above. There are two types of schedulers that

PaRC could have used: centralized and distributed. In the distributed method, each

output port has its own scheduler; while in a centralized method there is one scheduler

that makes the scheduling decisions for all the ports. A centralized scheduler has the

advantage of more
exibility; it can easily deal with packets that can be sent to more

than one output port. However, since it is more complex, it is slower and probably

cannot schedule more than one or two packets each cycle. A distributed method was

chosen so that ports would not have to sit idle for several cycles while waiting for the

scheduler to get a chance to schedule them.

In a simple distributed scheme, each packet bu�er has a request line to each sched-

21

uler and holds it high whenever it has a packet going to that output port. This

strategy would not work in PaRC because it would fail to guarantee that packets

traveling between the same ports are kept in order. Adding a timestamp to each

request would not work because there is no limit on the amount of time that a packet

could have to wait in a bu�er.

The �rst idea on how to deal with this problem was to prioritize each of the

packets in an input port. The packet which has been waiting the longest would have

the highest priority. This worked as follows: When a packet arrived and all bu�ers

were empty, it would be given the highest priority, 3. If another packet arrived before

this packet left, it would be given a slightly lower priority: 2. (In general the priority

given to an incoming packet is (i � 1), where i is the number of available bu�ers).

Each time a packet is removed, all remaining lower priority packets would have their

priority increased by 1. Note that if several packets were removed on the same cycle

each of the remaining packets would have to be increased by an appropriate amount.

On each cycle the input port would have to look at its four bu�ers and choose the

highest priority packet going to each output port. The schedulers would then choose

between the packets chosen by the input ports. This scheme would work but the logic

for it would be very complex and, more importantly, slow; thus adding extra cycles

to the latency of non-blocked packets.

To simplify (and thus speed up) scheduling, a way to use the advantages of single

�fo bu�ering is needed. This is done by putting a �fo queue in each scheduler; but

instead of bu�ering packets, these �fos only need to bu�er pointers to packets. When

a new request arrives, a pointer to the requesting packet is added to the bottom of

this scheduling �fo (s-�fo). Choosing the next packet to be transmitted is as simple

as reading the top of the s-�fo. This scheme makes it possible to start reading out a

packet on the cycle immediately after its request has been made.

There is one ine�ciency we must tolerate with this scheme. To guarantee that

none of these s-�fos �ll up, each scheduler's s-�fo must be large enough to store a

request from every input �fo. So there is four times as much s-�fo space as could ever

22

be in use at one time. This is bearable because each s-�fo location is small (5 bits:

4 to point to the packet, and one to indicate whether or not the packet is a circuit

switched packet). The total size of all the s-�fos is equivalent to approximately two

packets worth of bu�ering.

PaRC's bu�ering and scheduling schemes, both of which were described in my bach-

elor's thesis, are related to the later work of Frazier and Tamir. Their dynamically-

allocated-multi-queue (DAMQ) bu�er [4] is a way to con�gure and control an input

port's memory in order to reduce output port contention. In a DAMQ bu�er the

memory is split into �xed sized blocks. Packets are stored using one or more full

blocks. Several logical queues of these blocks are maintained in the DAMQ bu�er,

and the DAMQ is able to move blocks between queues. One of these queues is a

list of free blocks; the rest are queues of blocks which contain packets headed for the

same output port. At a given time the head block of any one queue may be read out

of memory. As with PaRC this increases the performance of a machine by allowing

packets to leave an input port in a di�erent order than they arrived. However the

DAMQ bu�er is not as e�cient as PaRC since only one packet can be read out of an

input port's memory at a time.

By maintaining queues in each input port, a switch using DAMQ bu�ers solves the

problem of keeping packets in �fo order. In a DAMQ bu�er, each queue has its own

head and tail pointer; each block of memory also has its own pointer which is used

to establish its position in a queue. The state of these pointers describes the current

state of the queues. The DAMQ moves blocks between queues by manipulating these

pointers. However moving a block between queues (e.g., from the free list to an output

port's queue) is a complex task that takes three cycles. (It actually takes 6 cycles

since the control of these pointers is shared between logic for incoming and outgoing

data.) PaRC does a similar job by using a scheduler �fo. Since PaRC uses an actual

�fo its control is much simpler. In each cycle an item can be added to and removed

from the queue. The price for this speed and simplicity is that extra memory space

is needed since at most one-fourth of s-�fo memory is used at any one time. Also,

by placing the queue in the output port rather than the input port, PaRC provides

23

�rst-come-�rst-served scheduling for packets which arrive via di�erent input ports.

2.4 Circuit Switched Packets

2.4.1 Why They Are Needed

Circuit switch packets were added to PaRC so that a processor can send a packet

and be sure that it has been received before continuing. Although most of the time

processors do not care when their messages are received, there are a few cases where

it does matter. One example is when memory is to be deallocated. An object in

memory can be deallocated only if we know it will never be used again. In particular,

when it can be proven that an object is only used within a certain block(s) of code,

we would like to be able to deallocate that object after running that code.

To safely deallocate an object we must be sure that all reads and writes of that

object have been completed. Since code will only complete after all the reads have

returned, we know that once the code has run there are no outstanding reads. How-

ever, this is not true with writes. It is possible for a location to be written but never

read; so just because the code has completed does not mean that all the writes have

completed.

If all the writes, as well as the deallocation, were issued by the same processor, this

would not be a problem. The deallocation would be issued after the writes and the

network would guarantee that they arrived in the same order. But this is not always

the case. Node A may send the writes to node B and then tell node C that the code

block has completed. Node C may then send the deallocation to B. It is possible that

it may take longer for a write to go from A to B than for the deallocation information

to go from A to C to B, this would cause the write to arrive after the object has been

deallocated.

To prevent this from happening node A must not tell C that it is done until all of

its writes have completed. One way for A to know that the write is complete is to do

24

a read of the location. But this is slow, as it would require at least the full network

transit time of two packets. This would also increase network tra�c, since it requires

sending two extra packets. Another way is to do a write which requires the memory

to send back a packet to acknowledge the write. However, this would still be slow and

would still increase network tra�c (although only by one extra packet). Instead we use

packets which can generate an acknowledgment without sending back an additional

packet. These are called circuit switched packets. In the above example, processor

A can send the write as a circuit switched packet, so it will get an acknowledgment

when the packet arrives. Once A knows that its write has arrived at B, it can inform

C that it has completed. If C then sends a deallocation message to B, that message

could only arrive after the write.

2.4.2 How They Work

The original idea for circuit switched packets was that as they traveled through the

network they would hold on to the links they crossed, thus creating a connection

from the sender to the receiver. This connection would be similar to those in circuit

switched networks, hence the name \circuit switched" packets. When the packet

reached its destination, an acknowledgment signal would be sent back along this

connection, thereby informing the sender that its packet had arrived. This signal

would also break each connection after crossing it. This scheme had the drawback

that links could be blocked for long periods of time during circuit switched packets.

During most of this time the link would be idle, since once the packet was sent,

nothing else could be sent until the connection was broken.

This scheme was greatly improved by allowing normal packets to be sent across

the link while waiting for the acknowledgment signal. All that must be done is to

keep track of where the packet came from. So now a circuit switched packet is sent

the same way as any other packet, the only di�erence is that when the packet leaves

a PaRC chip, the transmitter keeps a \back pointer" to the port which the packet

came from. These back pointers lead from the packet's current location back to the

25

sender of the packet. When the packet reaches its destination an acknowledgment

signal is generated which uses these pointers to �nd its way back to the sender and

inform it that its packet has arrived.1 This does not eliminate all blockage due to

circuit switched packets. If a circuit switched packet needs to be sent out through

a port that is already waiting for an acknowledgment, the port will be blocked until

the acknowledgment for the �rst circuit switched packet arrives. If the second circuit

switched packet were sent, then when an acknowledgment signal arrived, there would

be no way of knowing which packet the acknowledgment was for.

Another way to reduce the disruption of circuit switched packets is by minimizing

the time spent waiting for the acknowledgment signal. This is done in two ways. The

�rst is minimizing the time it takes for an acknowledgment to be routed through a

PaRC chip. We do not wait for the acknowledgment to be latched in and synchronized

before we pass it on. Instead as soon as a PaRC chip receives an acknowledgment, it

begins to send it on.

The second way to minimize the time spent waiting for acknowledgments is by

generating each acknowledgment as soon as possible. One way to acknowledge circuit

switched packets is to have the receiver generate an acknowledgment once it receives

the packet, but it is not really necessary to wait this long. It could be done sooner

by taking advantage of the property that once a packet is being sent to the receiver,

no new packet could possibly get there before it. This means we can have the PaRC

chips in the last stage of the network generate an acknowledgment as soon as they

begin sending a circuit switched packet to the processor/memory node.

The acknowledgment can be generated even sooner if we take advantage of the

fact that each node receives packets from only one PaRC chip. Once a packet has

been received and its request placed on the appropriate s-�fo, there is no way that

any new packet can get ahead of it on that s-�fo. Since that is the only way to get to

the receiving node, no packet not already on the s-�fo can get to the receiver before

this packet. This means we can generate the acknowledgment as soon as a packet's

1Each link has a dedicated wire that is used for transmitting this acknowledgment signal. This
wire transmits data in the opposite direction as the rest of the link.

26

request is stored. Taking this one step further, we can have the next to last PaRC

chip generate the acknowledgment as soon as it sends out the circuit switched packet.

This can be done since once the packet has started to be sent out, it is guaranteed to

be put on the next s-�fo within a short, �xed period of time. When this is done, the

�nal stage of PaRC chips should treat all packets as normal packets.

2.5 PaRC Interface

When sending packets, the output ports of PaRC will have to send those packets ac-

cording to a speci�ed protocol. Of course, the input ports will have to receive packets

according to this same protocol. This protocol will de�ne the interface between PaRC

chips. This interface is important because it will in
uence the number of wires needed

in a link (and hence its cost) and the amount of usable bandwidth we get out of those

wires.

Each link will consist of 16 bits of data, accompanied by a clock. Each link

needs its own clock because, as mentioned earlier, each part of the network operates

asynchronously. It is assumed that the rising edge of the clock occurs while the data

is stable. Since PaRC can operate at 50MHz, this gives us a raw bandwidth of 800

Mbits per second per port.

The data that the processor needs to send are messages which are 144 bits long.

Since our datapath is 16 bits wide, this data takes up 9 words of our packet. In

addition, a packet also contains 2 extra words which are used to check for errors.2

Finally, we need information on how to route the packet. This information will be

placed in the �rst word, the header, since we want to be able to start sending out a

packet soon after it arrives. This gives us a 12 word packet whose format is shown in

the following table.

2Optionally, one or both of these words can be used for data instead of error checking.

27

WORD USE WORD USE

0 Header word 6 Data word 5
1 Data word 0 7 Data word 6
2 Data word 1 8 Data word 7
3 Data word 2 9 Data word 8
4 Data word 3 10 CRC word 0
5 Data word 4 11 CRC word 1

PaRC Packet Format

The above information describes what packets look like, but it doesn't say how an

input port can determine when a packet begins. One possible way is to have an extra

wire which provides a frame bit. This bit would go high only during the �rst word

of a packet. This would work but would be a very ine�cient use of the wire. Instead

PaRC uses one of the bits in the header (the uppermost bit) as a Start-Of-Packet

(SOP) bit. When an input port is not receiving a packet, it looks at the value of this

bit. When the SOP bit is 0 then no packet is being started. When it becomes a 1

then a packet is being started, and this word is its header. The next 11 words must

then be the rest of the packet. During these words the bit position used as a SOP

bit is used as a normal data bit. In this way only one bit per packet is \wasted" as

overhead. If we had used a separate wire for a frame bit, we would have wasted 12

bits of bandwidth per packet.

Once the 12 words of a packet have been received, the input port begins looking

at the SOP bit again to see when the next packet begins. There is no need for an idle

word between packets; an output port may begin to send a new packet immediately

after the previous one has completed. This also helps to make maximum use of our

bandwidth.

In addition to the SOP bit, the header of a packet also contains up to 15 bits of

information which will be used to determine how the packet will be routed. The use

of these bits will be described in the section on routing (Section 2.8). Optionally, one

of these bits can be used to indicate whether or not this packet is a circuit switched

packet. The format of the header is:

28

Header Format

Bit 15 Bit 14 Bits [13..0]

1 CSP/ROUTE-DATA.14 ROUTE-DATA.[13..0]

When an output port is not transmitting a packet, it will transmit one of 2 speci�ed

idle patterns. (Of course both of these patterns have a 0 in the SOP bit.) The

output port will either alternate between these patterns (to keep the output data bits

changing) or can always use the same pattern. (This will cut down on the power

usage.) Speci�ed idle patterns are used to allow an input port to detect virtually all

link transmission errors. How this is done will be described in the following section.

2.6 Error Detection

The PaRC interface is designed to detect virtually all link transmission errors. If an

error were to go undetected, Monsoon could produce an incorrect result. We want to

minimize the possibility of this happening. It is also important that we detect where

the error occurred, so that we can take steps to prevent it from reoccurring. If we

only did end-to-end checks (i.e., checking the validity of packets as they enter and

leave the network) we would not be able to do this.

2.6.1 Types of Errors

There are three types of errors that an input port can detect on a link. These are

room-error, CRC-error, and idle-error.

Each input port only has enough bu�ers to store 4 packets. A room error occurs

when a packet arrives and there is no room for it.3 When this occurs the input port

will receive the entire packet and simply discard it.

Error checking is done on packets by use of a Cyclic Redundancy Code (CRC). As

each data word of a packet is received, it is accumulated into a checksum. PaRC uses

3The
ow control mechanism should prevent this from occurring. See section Section 2.7.

29

a 32 bit checksum and accumulates values using the CRC32 polynomial. The header

and the 9 data words are accumulated to produce a checksum; this checksum is the

32 bits that should appear in the �nal two words of the packet. A CRC error occurs

when the checksum computed by the input port does not match the CRC at the end

of the packet. Using this code there is less than a 1 in 109 chance of an incorrect

packet being mistaken for a correct one. In addition there are certain types of errors

which will always be detected. More details on the CRC are given in Section 3.3.

As mentioned earlier, PaRC's output ports always output one of two speci�ed

patterns, called idle patterns, when they are not sending a packet. When an input

port is not receiving a packet it checks to see that each word it receives is one of the

idle patterns. An idle error occurs when a word is not part of a packet and is not one

of the idle patterns. By checking for CRC and idle errors, the input port is able to

detect virtually all link transmission errors.

Here are the possible transmission errors, and how they will be detected:

� Error occurs inside of packet (i.e., any bit except SOP bit). This will cause the

checksum to be incorrect, thereby creating a CRC error.

� Error turns SOP bit from 1 to 0. The input port will expect the word to be

an idle pattern, since a packet is not starting. Since it probably will not be, an

idle error will occur. In addition, the remaining words in the packet will either

cause idle errors, or begin a packet which will have a bad CRC.

� Error occurs in SOP bit of idle pattern (i.e., turns SOP bit from 0 to 1.) This

will create a packet which will have a bad CRC, causing a CRC error.

� Error occurs in other bits of idle pattern. This will give an idle error (but will

not cause any loss of data).

This makes it extremely unlikely that an undetected error will occur. And when

errors do occur, it will be easy to pinpoint their location since we can tell where the

error �rst appeared.

30

Since the network will be spread out over many boards, the links between PaRC

chips will need to go from board to board. To reduce the number of wires that must

be sent between boards, and to reduce the chance of errors on these connections, the

Data Link Chip [2] was designed. This chip will take the 16 signals from from an

output port, multiplex them into 4 values, and transmit them di�erentially at 4 times

the speed of PaRC. A DLC will also be at the receiving end of the link to receive

these signals. It will demultiplex these values and send them to an input port, along

with a clock. The transmitting DLC can also detect errors and report them to the

PaRC chip.

When the network is initialized, each transmitting DLC will synchronize itself to

the output clock being produced by the port it is connected to. This will let it know

when it is safe to sample the data coming from the output port. This output clock

is generated from PaRC's main clock (ICLK). Since ICLK is generated by the DLC

from the DLC's clock, the DLC should stay synchronized to the data out clock. If the

data-out clock were to drift from its original position in relation to the DLC clock, it

is possible this synchronization could be lost. The main reason that the clock might

drift is the changing speed of the PaRC circuitry as it heats up. Synchronization

should not be lost even when PaRC moves across its entire allowable temperature

range. Nevertheless, the DLC continually checks to ensure that synchronization has

not been lost.

When a DLC detects a possible problem with its synchronization, it can report

one of two errors: LINK-ERR and LINK-GRAY. The di�erence between these errors

is that when a link-gray occurs no data has been lost. When a link-err occurs it is

likely that bad data has been transmitted. (Note that if bad data was transmitted,

it should be detected by the input port that is receiving data from that link.) When

one of these errors is detected the link should be taken out of use, resynchronized,

and put back in use. All of this can be done via software.

31

2.6.2 How Errors are Dealt With

When an error is detected we would like to

� Prevent any data from being lost, if possible; else minimize the amount of data

lost.

� Determine where the error occurred.

To prevent data from being lost, or minimize the amount that is lost, when we

detect an error we may want to stop using the connection on which the error occurred.

To help do this, when PaRC detects an error, it will immediately bring its ERROR

output high. The network control system can see this and stop the ports which are

using that connection. This prevents any more data from being lost. Unfortunately

it may take many PaRC cycles before this can be done.

Because of this PaRC can be programmed to go into \passive mode" when it

detects an error. When in passive mode, PaRC will not begin to transmit any more

packets. In addition, when in passive mode each of the input ports will tell the port

which sends packets to it to stop sending packets. This should stop packets from

being sent to or from the PaRC chip, thus limiting the amount of data that could be

lost.4 In particular, if the only errors recorded were from the link, then no data at all

will have been lost. Software can tell PaRC to resynchronize the links and have PaRC

exit from passive mode; the machine will then continue normally. Even if errors were

detected by the input port it is possible that no data has been lost if the errors were

caused by corrupted bits in idle patterns.

To help determine where the error occurred, PaRC keeps track of what errors it

has detected. For the errors detected by input ports, PaRC keeps track of how many

(0, 1, 2, or more than 2) of each error type was detected by each port. For each type

of link error, PaRC keeps track of whether or not that error has occurred on each of

the output ports. All of these values can be read via PaRC's control port.

4Although if the
ow control line is giving erroneous values, packets may continue to be sent to
the chip.

32

2.7 Flow Control

Flow control is needed between each transmitter and the input port that it connects

to so that an input port does not receive more packets than it has room to bu�er.

The mechanism chosen for this is important because a sub-optimal mechanism could

needlessly delay packets, which would both add latency, and reduce the throughput

of the links. This problem is not trivial due to the delay in sending
ow control

information from the receiver to the sender. We may have to turn o� the sender

before the receiver is full so that the data sent after it is told to stop does not

overshoot the amount of room available to store data.

The scheme used in PaRC has a simple basis. The input port produces an asyn-

chronous signal called WAIT, which is sent to the output port. When this signal is

low the output port can send packets. When it is high the output port should stop

sending packets. (Of course, any packet it has already started to send should be com-

pleted.) This mechanism has the advantage of needing only one signal sent between

transmitter and receiver. Also the logic to implement it is fairly simple. To produce

WAIT the input port looks at all four of its packet bu�ers, and asserts WAIT only if

none of them are currently ready to accept a new packet.

There is one major problem with this strategy. If it takes too long for the trans-

mitter to receive the WAIT signal, it will begin sending another packet even though

there is no more room. The length of the delay between PaRC chips is critical because

this delay counts twice in determining if the WAIT signal will be received in time:

A transmitter begins reading out a packet and then sends it out across a link. An

input port receives the �rst word and if there is no room for any packets after this one

it will assert WAIT. This signal is then sent back across the link to the transmitter

and synchronized to its clock. This synchronized signal must go high soon enough to

prevent the transmitter from sending a new packet.

Given the particulars of PaRC's implementation the link transit time of the data

plus the link transit time of the WAIT signal must be less than 8 cycles (= 160ns) for

this to work correctly. Considering the delay of the DLC and the wiring we expect

33

to use, this will allow links over 30 feet long. Although this should be long enough

for the links we expect to use, we still want PaRC to be able to support longer links.

An important feature of this scheme is that its performance was optimal; no other

strategy could do better.5 There are other schemes which could be used, which also

give good performance, and will work on longer links. One possibility is to have the

receiver send back a value giving the number of packet bu�ers currently available.

However, this scheme would be very costly as it requires sending back several lines

for data, and possibly a clock as well. A variation of this is to send back a pulse each

time a packet bu�er is freed. This allows the transmitter to determine exactly how

many bu�ers the receiver has available. Since the sender would then know exactly

how many bu�ers the receiver has available, this would also give optimal use of the

packet bu�ers. This requires only a single signal but it has several problems, such

as what happens if a transmitter misses one of the pulses. Also the logic becomes

complex since, for example, several bu�ers can become available at once, but the

input port can only send a pulse every other cycle.

To allow longer links, the input port can be programmed to generate a di�erent

wait signal called LWAIT (for Long WAIT). LWAIT is similar to WAIT except that

it is asserted whenever there are only 0 or 1 available bu�ers. As soon as three bu�ers

are full, the input port says to stop sending. If the link is long enough the transmitter

will send out one more packet before it is stopped by the LWAIT signal. This is �ne

since LWAIT was raised while there was still one bu�er available. Using LWAIT the

allowable round trip transit time is increased by almost 12 cycles. This allows links

much longer than will probably ever be needed.

The problem with using LWAIT is that its performance is not optimal since it

sometimes wastes one of the bu�ers. This may occur in two places:

� When the number of available bu�ers drops from 2 to 1. LWAIT may go high

in time to stop the next packet, thus leaving one of the bu�ers unused.

5It is optimal given the constraints of the �xed delay between sender and receiver and given that
we do not know in advance when bu�ers will become available.

34

� When the number of available bu�ers rises from 0 to 1. There is now an available

bu�er, but no packet will be sent to it until a second bu�er becomes available.

The �rst concern is not as much of a problem as it may at �rst seem. In light tra�c,

using LWAIT will not hurt much because the input bu�ers will rarely �ll up enough

to force LWAIT high. In heavy tra�c, when a third bu�er is put in use, LWAIT will

be asserted. But since tra�c is heavy other packets will have been waiting to use the

link and by the time the rising LWAIT signal gets to the transmitter, the transmitter

will have already begun to send another packet. So the fourth bu�er will be �lled

anyway.

This will be true only on longer links, since on short links the LWAIT signal will

be received before the transmitter begins to send the packet. By using either WAIT

or LWAIT based on the length of the link we can minimize this problem. On links

where the rising WAIT signal is guaranteed to be received in time we can use the

normal WAIT signal. On links where the rising WAIT signal is guaranteed not to

stop the next packet, LWAIT will be used and if there is a packet waiting it will be

sent into the fourth bu�er. It is only on the remaining links, those where the rising

WAIT signal may or may not arrive in time, that we lose. (The uncertainty is due

to the synchronization of the WAIT signal, and to variations in component delays.)

Since the WAIT signal may not arrive in time we must generate the LWAIT signal.

But if the signal does arrive soon enough, it may prevent a waiting packet from being

sent into the fourth bu�er.

To minimize the performance degradations of the above two concerns, PaRC can

generate a modi�ed LWAIT signal which di�ers from the normal LWAIT in two ways.

The �rst modi�cation is to delay the rising edge of LWAIT by two cycles. On links

where the LWAIT signal may or may not arrive in time, this should increase the

delay enough so that all four bu�ers can be �lled. De-assertions of LWAIT are not

delayed because when LWAIT goes low we want new packets to be sent as soon as

possible. This has the side e�ect of reducing the allowable round trip transit time by

two cycles. But even with this change we can still use links much longer than we will

35

need.

The second concern above is that when all four bu�ers are full and one of the

bu�ers becomes free, LWAIT stays high. It will not be de-asserted again until there

are two available bu�er spaces. A bu�er is now being wasted since there is an empty

bu�er and nothing is allowed to be sent to it. There is a way to improve upon this

as well. When the number of free bu�ers increases from 0 to 1, the transmitter is

allowed to send one (and only one) more packet. This is done by de-asserting LWAIT

for two cycles. When the transmitter notices that LWAIT is low it will begin to send

a packet if it has any. It can only send one because LWAIT will be high again by

the time the transmitter �nishes sending the packet. If the transmitter does not have

any waiting packets during the time when LWAIT is low then no packets will be sent,

even if one arrives shortly thereafter.

For both of these modi�cations there is only a small window of time when a packet

will be able to be sent into an otherwise wasted bu�er. If no packet needs to be

sent during that time, then the bu�er will remain empty. So it is during moderate

and heavy tra�c that these modi�cations will be most e�ective; and that is exactly

when they are most needed. In fact, if there are always waiting packets, then these

modi�cations cause the LWAIT
ow control strategy to give us optimal performance.

It is only when the modi�cations provide a window in which a packet could be sent,

and one is not, that this strategy is sub-optimal.

2.8 Routing

When a packet enters PaRC, the input port must decide which of the 4 output ports

the packet should be sent out of. This is where the 14 (or 15) ROUTE-DATA bits

from the header are used. Each PaRC chip can be made to look at two di�erent bits

of ROUTE-DATA. This allows networks of size 214 = 16K to be supported; 32K if

circuit switched packets are not being used.

The standard way that routing is done is to tell the PaRC chip which two bits of

36

the routing data to look at. Packets going through that chip will then go to the port

indicated by the two selected bits. With this routing mechanism, butter
y routing

can easily be done by using the destination address as the routing data. Each stage

of the network can then route based on consecutive bits of the address. Figure 2.2

shows one way this could be done in a butter
y network made up of 2x2 switches.

Since the destination address is 011, the �rst stage of the network sends the packet

out port 0, the second stage port 1, and the third stage also port 1. This is true

regardless of where the packet enters the network. Routing can be done the same

way with 4x4 switches except that each stage uses two bits for routing instead of one.

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

111

110

101

100

011

010

001

000

111

110

101

100

011

010

001

000

This shows the route a packet would take to
get to node 011 (from node 101).

Stage 1 Stage 2 Stage 3nodes nodes

Figure 2.2: Routing in a Butter
y Network

PaRC is also able to do routing based on local congestion. In this mode only

one bit of the routing data is looked at. This bit is used to determine if the packet

should got to a top port (ports 3 and 2) or to a bottom port (ports 1 and 0). If it

37

is determined that the packet should go to a top (bottom) port, PaRC will choose

the top (bottom) port with the shortest queue of waiting packets. This is called

Up/Down routing. Of course, this will be useful only in networks in which there are

several paths that a packet can take to its destination, and in systems where a packet

may go to any of a group of destinations.

PaRC can also act as two parallel 2x2 switches. Packets which enter through one

of the upper two input ports are transmitted out through one of the upper two output

ports. Which of the two output ports is used is determined by looking at one bit of

the packet's routing data. Similarly, packets entering through one of the two lower

ports are routed to a lower port. A variation of this routes based on congestion.

Packets entering through an upper (lower) port are sent to the upper (lower) port

with the shortest output queue.

There are some minor modi�cations to the network Monsoon will use that would

be useful for some machines. Normally the only way one node can talk to another is

to send a message that travels the length of the entire network. In many machines

it is bene�cial for each processor to have a portion of memory which it is closer

to. Objects which will be frequently accessed by a processor will be placed in the

memory close to that processor. Other objects can be distributed as before. Part B

of Figure 2.3 shows one way this can be done. In this con�guration, a processor and

memory unit are bundled together with a PaRC chip. Each has its own port to and

from the network, just as in the standard con�guration. But since the PaRC chip has

been added, the processor and memory can now communicate through a short path.

This will reduce the latency of messages sent between the processor and the memory,

and reduce the volume of tra�c that is sent into the main network. By reducing the

number of messages sent into the main network, we allow the network to support

higher performance nodes.

In some machines it may be desirable to closely bundle three components. For

example, the Epsilon-2 data
ow machine [5], being designed at Sandia National Labs,

may bundle together a processor, a memory, and an IO unit. A way to produce such

38

Processor

Memory

from Network

from Network

Processor

Memory

to Network

to Network

B) Processor and Memory bundled together.

Processor

Memory

from Network

Processor

Memory

to Network

C) Processor, Memory, and IO bundled together.
 This reduces the bandwith to each node.

IO IO

PaRC

PaRC

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

PROCESSOR

MEMORY

to Network

from Network

from Network

to Network

A) Standard way Processors and Memory connect
 to the network

(to Processor) (from Memory)

(from Processor)(to Memory)

Figure 2.3: Several Ways to hook nodes into a network.

39

a con�guration is shown in part C of Figure 2.3. This allows the three components to

quickly communicate with one another. Since there is only one port to the network,

it must be shared by all three components. This decreases the bandwidth that each

has to the rest of the machine. So to use such a con�guration it is necessary that a

large portion of the communication is to one of the local nodes.

N N NN N N NN N N NN N N NN

This shows the nodes, switches and connections in a fat tree.

The closer a connection is to the top of a tree, the higher its bandwidth.

Figure 2.4: A typical fat tree

PaRC would be useful in many networks besides butter
y based networks. One

example is the fat tree network [7]. A fat tree is a network with a topology of a binary

tree. The leaves of the tree are the nodes (processor, memory ...); the nodes of the

tree are the switches. Messages start at the leaves and move up the tree as far as they

need to6, then they go back down the tree. Figure 2.4 shows a portion of a fat tree

network. Since more messages need to pass through the higher nodes of the tree, the

6Each time you move up a tree you double the number of leaf nodes that you are above. Once a
message is above its destination it need go no higher.

40

bandwidth of each link often increases as you go up the tree. Often there are separate

links for going up and down the tree, in this case you can think of the up and down

portions of the network as being separate: A message �rst moves up the tree via the

\up" network. Once it has gone far enough it switches to the \down" network and

is switched down to the appropriate leaf. Figure 2.4 could represent either half of

this network since they are symmetric. Not shown are the paths between the up and

down networks.7

At each node in this network a one bit routing decision is made. On the trip up

messages come in from two locations and the switch decides if the message should

continue going up, or if it should be sent to the down tree. On the trip down, the

switch decides which of the two sub-trees the message should be sent to. Since each

stage routes based on one bit, we can easily make this network out of PaRCs. This is

shown in Figure 2.5. In order to increase the bandwidth we will increase the number

of PaRCs in a switching node. To double the bandwidth in a link we use double the

number of PaRC chips at the switching node at the top of that link. (We could also

increase by other amounts as well, but that is slightly more complex.)

When we double the bandwidth, each PaRC in a switching node will have one

input from each subtree, two outputs to the next higher level and two to the down

tree. (Switch the words inputs and outputs if this is a down tree instead of an up

tree.) Packets may cross either of the two connections to get to the next level. On

the up tree, PaRC's Up/Down routing mechanism would be used to send packets to

the output with the shorter queue.

When we do not increase the bandwidth, each PaRC in a stage has one connection

coming from each sub-tree. In addition, it has one output going to the parent and

one going to the down tree (assuming we are looking at the up tree). Since only two

inputs and outputs are used, only half a PaRC chip is needed. Since one PaRC chip

can act as two parallel 2x2 routers, we could combine two switches. In Figure 2.5 this

7The top of the tree is not shown and would be handled di�erently. No switching node would be
needed as any message coming up one side of the tree would always want to go down the opposite
side of the tree.

41

N N N N N N N N N N N N N N N N

x 2

x 2

x 2

A way to implement fat-trees using PaRCs.
Several PaRCs may be used to implement one switching node.

Link levels marked by "x2" have twice the bandwith between
switching nodes as does the link level immediately below it.

Figure 2.5: A fat tree made of PaRCs

42

is shown by dotted lines around two switches that could be combined into one PaRC

chip. When we combine switches we may be able to make use of PaRC's Up/Down

routing mechanism. This is because the outputs of the two switches are often going

to the same places.

2.9 Control Port

PaRC needs a way by which its operation can be controlled. Rather than having

this done by special control packets, PaRC has a dedicated control port. This port

does not receive or send packets; instead it operates via a simple read-write protocol.

This port is used to control various aspects of the operation of PaRC. It also allows

information about the performance of PaRC to be read out.

The parameters of PaRC which can be controlled by this port include:

� How routing is done.

� Whether the CRC should be checked or generated, and how many words long
the CRC is.

� What errors should be checked for.

� What is done when errors are detected.

� Whether or not circuit switched packets are allowed.

� Which ports are operating and which are turned o�.

The performance values that can be read out include:

� What errors have occurred

� What input bu�ers are in use

� How long each s-�fo queue is

In addition this port keeps statistics on how the output ports are being used. These

statistics will tell what percentage of the time each output port spends:

� Transmitting packets

43

� Idling with no packets to send

� Blocked due to WAIT being high

� Blocked due to Circuit Switched Packets

By looking at these statistics we can get a good idea of how e�ectively each output

port is being utilized.

44

Chapter 3

Implementation of PaRC

3.1 The Technology

PaRC is designed in LSI Logic's LCA10000 CMOS compacted gate array series. The

die used contains almost 75,000 gates. (A gate is de�ned as four transistors, the

equivalent of one NAND gate.) Since routing is done over gates, typically around

40% of the gates on a chip are usable; the exact �gure varies greatly depending on

the design. PaRC uses over 33,000 gates.

On chip propagation delays for this technology are fairly fast. A two input NAND

gate (ND2) in this series has a nominal low-to-high propagation delay of 0.6 ns.

However, this is not as fast as it seems. This delay is increased due to the wire

connecting this output to other inputs, and due to the loading of those other inputs.

When the ND2 gate is driving 4 gates, its nominal delay may increase to about 1.5 ns.

The above values are the nominal times. The actual delays can vary greatly based on

process factors when the chip was fabricated, and the environmental conditions (i.e.,

temperature and voltage) the chip is used in. The best case delays are about 1=2 the

nominal delays, and the worst case delay are nearly twice the nominal. So the worst

case delay for the ND2 mentioned above would be about 2.8 ns.

Of course other gates have di�erent delays. The delay of a 2 input NOR (NR2)

gate under the same conditions may have a worst case delay of 5 ns, fully one quarter

of PaRC's cycle time! There are also high drive gates which are more e�ective at

45

driving large loads. If the above NR2 gate were a high drive gate (NR2P), its worse

case delay would improve to about 3 ns. But there is a catch: high drive cells are

larger, and often have higher input loadings than the normal drive gates.

Since the delays depend so much on the wiring, exact delays are not known while

the design is being done. Once the schematics are complete, a top level
oorplan of

the chip is done. This
oorplan tells where on the die the top level blocks of the

design should be placed. LSI Logic uses this as a guide when doing the complete

layout of the chip. After the layout is done the exact wirelengths are known. These

wirelengths are used to provide a much better estimate of gate delays.

The rest of this chapter will describe the implementation of the components which

make up PaRC.

3.2 Packet Bu�ers

Each input port has its own FMEM block which is made up of four packet bu�ers,

along with some multiplexing logic. The packet bu�ers each store exactly one packet.

They can only be written by that one input port, but can be read by any of the

output ports. The multiplexing logic is used to route the data to the appropriate

output port. The four FMEM blocks account for about half of the gates used on the

chip. A top level diagram of a single packet bu�er is shown in Figure 3.1.

A major constraint that a�ected the design of the packet bu�ers was that all events

had to be created due to the rising edge of the clock. The incoming clock may have

been generated in the previous stage's PaRC chip, so it may be very unbalanced by

the time it arrives on this PaRC chip. Since there is a very large variance in where

the falling edge could be with respect to the rising edge, we could not use the falling

edge of the clock to help generate any signals. Also since the speed of circuits varies

greatly with process and temperature, we could not reliably use a delay element to

give us a pulse that lasted only a portion of a cycle. This meant that all pulses had

to last for one or more full cycles.

46

Data

Select

Write

Data

Select

Write

16

16

6

6

RAM
6x16

RAM
6x16

DOUT

DOUT

MUX

Read

Start

6

6

Make
Available

Output
Counting

DATA-OUT

Read

16

16

16

These signals come
from the Input Port.

Figure 3.1: A Packet Bu�er

In particular, this meant that the write pulse for the memory within the packet

bu�ers had to be an entire cycle long. Because we needed to write the ram during

consecutive cycles, and because the address and data would have to change based on

the same edge as the write pulse, the memory had to be divided into several banks.

For these banks there was the choice of using pre-de�ned memory blocks, or de-

signing the memory ourselves out of single bit memory cells. The prebuilt memory

cells are specially laid out to optimize the use of chip area. So they are denser than a

similar memory built out of discrete cells. Of course, since these are prede�ned they

must be used as is. They do not allow the same
exibility as a specially designed

memory would.

Using the prebuilt cells would have required a three cycle write phase with the

write pulse occurring during the second cycle. In order to guarantee the setup and

hold times for the address, the address would have to appear during the cycle before

47

the write, and continue into the cycle after the write. Since signals can only change

at the start of the cycle, the address would need to appear at the start of the �rst,

and the write pulse could appear at the start of the second. The write pulse would

not end until after the start of the third, so the address would have to remain valid

throughout the third cycle.

By designing the memory ourselves, we can get more
exibility. Each packet bu�er

in PaRC is broken into two blocks, each with six 16-bit locations. Instead of a block

having an address and a single write line, each location in a block has its own separate

write line, and each block has a select line. A word is written whenever the word's

write line and its block select line are both active. Since we do not have an address

that must be stable both before and after the write pulse, this arrangement allows a

bank to be written every other cycle. (Two cycles are needed because the data must

be stable both before and after the end of the write pulse.)

Each packet bu�er contains the logic necessary for reading packets out of the bu�er.

This allows a packet to be given to an output port as soon as a port needs it. Each

word in a block has its own separate read line; a word will drive the block's output

bus whenever its read line is asserted. The control logic guarantees that exactly one

of each block's read lines is asserted at all times. The output of the two memory

blocks are multiplexed together to provide the data output of the packet bu�er.

The packet bu�er has a START signal which tells it to start reading out a packet.

The bu�er waits until it receives the START signal, sends out the 12 words it has

stored, and then waits until it receives another START signal. When not in the

process of reading out a packet, a bu�er has its two memory blocks reading out their

�rst word. The output from the �rst of these blocks is selected by the mux. This

allows an output port to read the �rst word of the packet during the same cycle in

which it asserts START. On the next cycle the packet bu�er
ips the select input

to the mux so that the second word is sent out. At the same time the read address

for the �rst block is incremented, so that the third word can be sent out on the next

cycle. In this way the value to be sent next will always be available before we need

48

to send it.

When a packet bu�er reads out a packet, it must also tell the input port that the

bu�er has been freed. Since the input port may be waiting for another bu�er, the

bu�er should be released as early as possible. This can be done before the packet

is completely read out because it will take several cycles before the input port can

synchronize the bu�er-available signal and start to write a new packet into this bu�er.

It is even safe to have another packet being written into the bu�er while the current

packet is being read out, but only if we can guarantee that no output port will try

to read the new packet until after the �rst packet has been completely sent out. The

signal to release the bu�er is given when the eighth word of the packet is being read;

the reasons why this is safe will be described in the next section.

The FMEM block, shown in Figure 3.2, contains the four packet bu�ers associated

with an input port. The multiplexers in the FMEM block are used to help each output

port get the data from the appropriate packet bu�er. Each output port can read from

any of the sixteen packet bu�ers on the chip. This means we need to multiplex the

data from the 16 bu�ers so that an output port can read the data from the correct

bu�er. The FMEM block performs the �rst stage of this multiplexing. The data from

each packet bu�er goes into four 4-to-1 multiplexers. Each output port receives data

from one of these multiplexers. The output port has direct control of the select lines

for its multiplexer, so it can select the data from any of the four bu�ers. Putting the

multiplexers in the FMEM block cuts down greatly on the amount of area needed for

placing wires between the packet bu�ers and the output ports. Instead of having a

64 (= 16 x 4) bit bus going to all four output ports, there are four 16 bit buses each

going to just one output port.

3.3 Input Port

The Input Port is broken up into a number of sub-blocks. The PACSTART block looks

at the incoming data to determine when a packet starts. The PACCNT block counts

49

SEL
2x4

Packet
Buffer

DATA
SEL

START
DOUT

Packet
Buffer

DATA
SEL

START
DOUT

Packet
Buffer

DATA
SEL

START
DOUT

Make-Avail

Data-Out-0
 (to port 0)

16

Mux 4:1

SEL

Data-Out-1
 (to port 1)

16

Data-Out-2
 (to port 2)

16

Data-Out-3
 (to port 3)

16
Mux 4:1

SEL

Mux 4:1

SEL

Mux 4:1

SEL

Packet
Buffer

DATA
WRITEs

SEL

START
DOUT

2x4

4

MAKE-AVAIL
4

START

Select
Ram

WRITEs

DATA

12

16x2

[Signals from output ports]

[Signals to/from inport ports]

16

2

Make-Avail

Make-Avail

Make-Avail

WRITEs

WRITEs

WRITEs

Figure 3.2: The FMEM Component

50

the incoming words of the packet and produces the write signals for the packet bu�ers,

while the RDATA block supplies the data for the packet bu�ers. The AVAILB block

keeps track of which bu�ers are available, and the WAITUNIT uses this information

to decide when to assert Wait. The SELPORT block determines which port the

packet should be sent to, and the MAKEREQ block makes a request to that port.

Lastly, the CRC and IDLE blocks check for CRC and IDLE errors. Figure 3.3 shows

a block level diagram of the input port.

PacStart

RDATA

DIN

Select-Port

CRC

IDLE

PacCnt

CRC-error

IDLE-error

Write-Ram

AVAILB
PLOC

Select-ram

WAIT

Make
Avail

PORT

Make-REQ

REQUESTs

RDATA

LDIN

WAIT

16x2

16

AVAIL

2

16

16

2

PORT

FIRST

4

FIRST

FIRST

4x2

12

LDIN

LDIN

DATA

CRC-DATA

16

DATA

4

FIRST

FIRST

4

Room-Error

Ack-ReqAck-Req
4

(from packet
buffers)

Figure 3.3: Block Diagram of the Input Port

The stage transmitting to an input port sends both data and a clock to the input

51

port. It is this external clock (XCLK) that most of the input port runs o� of. The

data coming into an input port must be aligned with XCLK such that the clock rises

while the data is stable. To minimize the setup and hold times of the incoming data,

this data is accessed only in a limited way. When the data is brought onto the chip

it goes directly into registers, and only via the outputs of these registers will the

input data be sampled. To allow the register outputs to have some dependence on

the previous state, scan registers will be used. These are simply registers with a two

way mux on their data input. The scan registers allows the register to be loaded

with either the incoming value or an internally generated value. This gives enough

exibility while adding only slightly to the data setup time.

The PACSTART module uses the incoming data to create the signal FIRST. This

signal is high during the cycle when the �rst word of a packet is available. This signal

is used by other blocks which need to know when a new packet is beginning. The

signal is created by loading the incoming SOP bit into a scan register whenever a

new packet could possibly begin, and loading a 0 at all other times. This module

also latches the incoming data into 16 registers to produce the LDIN (Latched Data

IN) bus. This bus contains the word just received and is used by the CRC and IDLE

blocks to check for errors. When PaRC is generating the CRC, the generated CRC

will be latched instead of the last words of the packet.

The PACCNT block counts the incoming words of the packet using a 12 bit unary

counter. The output of this counter is used as the write signals for the packet bu�ers.

The AVAILB block will produce select signals so that a packet bu�er is only selected

when a packet is being received.

The AVAILB block produces the AVAIL signal, which tells which of the bu�ers are

available. When a packet starts being written into a bu�er, that bu�er is immediately

marked as full. When the bu�er signals that the packet has been sent, the bu�er is

marked as available. Several cycles before a new packet could be received, this block

tries to choose one of the available bu�ers into which the next packet will be written.

If none are available, then it keeps trying to choose a bu�er until it is successful. If

52

a packet starts while no bu�ers are available, a room error will be signaled. When

a bu�er is chosen, it appears in the PLOC (Packet LOCation) signal. This signal is

sent to the schedulers so that when a request is made, the schedulers will know which

bu�er the packet is being stored in. Since we choose the next bu�er shortly before

the end of a packet (about 2 words before the end), PLOC will change before the

packet ends. This is safe to do since we know that the scheduler will have processed

the request by that time.

The reason we choose the next bu�er earlier than is necessary is to allow packet

bu�ers to be released sooner. As mentioned in the previous section, bu�ers can be

released before their entire packet has been read out. Releasing a bu�er early is

bene�cial because the input port may be asserting WAIT, waiting for a bu�er to

become available. However, we can not release a bu�er too early, it must be released

late enough so that a new packet stored in it will not start to be read out until the

old packet is completely read out.

If AVAILB always waited until the last possible moment to choose a bu�er, a bu�er

might be chosen just as it was released, and a packet might immediately be written

into that bu�er. The packet bu�ers would have to release their bu�ers late enough

so that this worst-case scenario would operate correctly. By choosing the next bu�er

two cycles before we need it, we can guarantee that a bu�er is not used in the two

cycles after it is released; this allows us to release bu�ers earlier. When there are

bu�ers available, a bu�er will be chosen two cycles before it is needed, so obviously

it will not be used for at least two cycles. However, if no bu�ers are available when

we try to select one, a bu�er which later becomes available might immediately be

selected. This will still work because WAIT will have been asserted, so no packets

will be received (and therefore no bu�er will be used) for at least the next two or

three cycles.

The AVAILB block also produces the select signals for the packet bu�ers. Since

the write line is always active for one of the 12 words, this block must only have a

bu�er selected when we actually want to write that bu�er.

53

Word1

CLK

SEL-upper

WR-1

Word3DATA-1

WR-3

SEL-lower

WR-2

Word2 Word4DATA-2

WR-4

WR-11

WR-12

Word11

Word12Word10

T1 T2 T3 T4 T5 T11 T12 T13

Figure 3.4: Writing into a Packet Bu�er

54

Within a packet bu�er there are two blocks of memory. The select line for each

of these is controlled separately. This prevents glitches when switching from writing

one bu�er to writing another. As soon as the �rst word of a packet is received, the

select line for the upper block of the bu�er is asserted. The write line for the �rst

word will be asserted for this cycle, thus writing the �rst word. On the next cycle the

write of word one ends, and the write of the second word begins. This is when the

select line for the lower block becomes asserted. This allows the second word (which

is in the lower block) to be written.

The select lines stay asserted for most of the packet and writes alternate between

the two blocks. The last word will be written into the lower block. When the write

of this word begins, the upper select line is deasserted. This is done then because on

the next cycle the write line for the �rst word will be asserted again, and we need

to guarantee that the upper block is deselected before that write begins. On the

following cycle, during which a new packet may begin, the lower block is deselected.

As with the upper block, this is done a cycle before the next write to that block may

occur. Figure 3.4 shows the signals used in writing to a packet bu�er.

The RDATA block produces the RDATA bus, which is the data that is written

into the packet bu�ers. Since the data going to the two blocks of memory in a packet

bu�er must change at di�erent times, two buses of data are produced. One goes to

the upper block of memory in every packet bu�er, the other goes to the lower. When

storing a packet these buses change on alternating cycles. This holds the data stable

for about a cycle both before and after the end of the write pulse to a location. When

not storing a packet the �rst RDATA bus is loaded every cycle because a new packet

could begin at any time.

The value for the RDATA bus is produced by scan registers which need to be able

to load data from three places. The new value for the RDATA bus usually comes from

the incoming data bus. When the CRC is being generated, however, the last words of

the packet are instead taken from the CRC block. Also, since the RDATA bus should

only change every other cycle, when it does not need to change the registers should

55

be loaded with their current value. This is implemented by having the incoming data

go directly to the data inputs of the scan registers. As mentioned earlier, this is done

to minimize the data's setup and hold times. The other input to each register is

connected to a multiplexer which allows it to get either the register's current value

or the CRC value.

The SELPORT block selects which port the packet should be sent to. It receives the

�rst incoming data word from the RDATA block. The routing address is determined

by selecting two bits from this word. The value of RINF (Routing-INFormation),

which is a user programmable value in the control port, determines which two bits are

used. The bits are selected by putting the data word into two 16-to-1 multiplexers; the

upper multiplexer chooses the upper bit of the address, the lower multiplexer chooses

the lower bit. Each multiplexer is separately controlled by RINF.1 The output of the

upper and lower multiplexers are used to produce the two bit PORT value, which

indicates the port that this packet will be sent to.

Since the SOP bit of the �rst word is always 1, it is replaced by bits describing

the location of this input port. So in the input to the upper multiplexer, the SOP

bit is replaced with the �rst bit of the input port's location. Similarly in the lower

multiplexer the bit is replaced by the second bit of the input port's location. This

allows routing to be in
uenced by which port the packet arrived in.

To support the Up/Down routing mechanism described earlier, this block is able to

further modify the lower bit of PORT. This block receives a signal from the scheduler

for port 3 which tells it which of ports 2 and 3 has a smaller queue. It receives a

similar signal from port 1 which compares ports 0 and 1. These signals are �rst

synchronized to the local clock by being put through two registers. In order to

do Up/Down routing the lower bit of PORT is put through another multiplexer. If

Up/Down routing is not being done this multiplexer simply passes the bit unchanged.

1The value of RINF coming from the control port is used directly and is not synchronized to this
ports clock domain. This implies that RINF must not be changed while packets are being received.
Synchronizing RINF would have required a total of 64 registers (16 per input port). Since RINF
will normally be set once during startup and then remain the same, synchronizing it was not worth
the additional hardware.

56

If Up/Down routing is being done the bit chosen will depend on the value selected by

the upper multiplexer: If the upper bit is a one, the Up/Down information coming

from port 3 will be selected, otherwise the Up/Down information coming from port

1 is used. This modi�ed lower bit is combined with the upper bit to give the �nal

value of PORT.

The PORT signal is only valid during the �rst two cycles of a packet. This is be-

cause the PORT signal is produced directly from the stored �rst data word. After the

�rst two cycles, the registers in RDATA which hold the �rst word will be overwritten

with the third word. Also, since the Up/Down signals coming from the schedulers

may change at any time, the registers producing the synchronized versions of these

signals are constrained so that they will not change on the cycle after a packet begins.

This will allow the PORT signal to remain the same for the �rst two cycles even if

the Up/Down signals change.

When a packet begins, the MAKEREQ block will make a request to the output

port indicated by the PORT signal. The block must �rst decode the selected port

into a 4 bit unary value and store that value. It is stored using a latch which is gated

by the FIRST signal. A latch is used instead of a register so that the data appears

as soon as possible. Since the PORT value is held for the �rst two cycles, it can be

safely latched in by the falling edge of FIRST which will fall at the beginning of the

second cycle of the packet. When the ith make-request latches goes high, it means a

request will be made to the ith port.

Since requests must be synchronized to the internal clock (ICLK), the rest of this

block operates on that clock. As soon as a new packet is detected, a latch is set to

1 signifying that a request needs to be made. The output of this latch needs to be

synchronized to ICLK. Normally a signal is synchronized by putting it into a register,

and putting the output of that register into another register. If the �rst register

sampled its input as the input was changing, it may take extra time for the register's

output to stabilize. But with very high probability it will stabilize in time to be safely

read by the second register.

57

Synchronizing the request signal is done slightly di�erently. When a packet begins

a 1 is put into the �rst register of a synchronizer. Instead of having one register as

the second stage of the synchronizer, four scan registers are used with the output

of the �rst register being used as the select inputs of the second stage. These four

registers are the request registers. A data input for the ith request register is the

ith bit of the unary port value. When the 1 appears on the output of the �rst stage

of the synchronizer, on the next clock edge the request registers will be loaded with

the unary port value. So one of these registers will go high and the other three will

stay low. The output of these registers are bu�ered and sent to the schedulers as the

request signals. When one of the request signals is asserted, it stays asserted until a

scheduler acknowledges the request. The second data input to each request register

is used to accomplish this.

Note that the request registers are acting as the second stage of the synchronizer

(synchronizing to ICLK), yet one of their data inputs (the port value) is not synchro-

nized with ICLK. Most of the time the select signal will be low so the value of the

unsynchronized data input is unimportant. (The other data input is synchronized,

and is used to keep requests active until the acknowledgment arrives.) The unsyn-

chronized data input is only sampled when a new request is about to be made. This

occurs shortly after a new packet begins. More precisely, the sampling occurs at least

one full ICLK cycle plus some propagation delay after the rising edge on which a new

packet begins. When a new packet begins the data input giving the port value is

guaranteed to get the correct value by 15 ns into the cycle. (This is why a latch is

used for this value rather than a register.) This means that the data is guaranteed

to be stable in time to be safely sampled.2

Error checking is done on packets by use of a Cyclic Redundancy Code (CRC)

2For the data to be safely sampled the following must be true:

Max Time Until Data Valid + Data Setup Time � Min Time Until Data Sampled
or 15 + 2.5 � ICLK-Period + Propagation Delay
or ICLK Period � 17.5 � Propagation Delay

Since the minimum ICLK period is 20ns, this will always be true.

58

[14]. The 32 bit CRC checksum appears in the �nal two words of the packet. The

CRC block can either check or generate this value.

A CRC code uses polynomial division to check the integrity of messages. It treats

the k-bits in a transmitted message as the coe�cients of a polynomial with k terms.

It divides (modulo 2) this polynomial by a known generator polynomial. If there has

not been a transmission error the remainder of this division will be 0. If there has

been a transmission error then, with high probability, the remainder will not be 0.

The CRC can be generated by doing a similar division and appending the remainder

(sometimes called the checksum) to the original message.

How e�ective the CRC is at detecting errors depends on the code used. PaRC uses

the CRC32 polynomial, x32+x23+x21+x11+x2+1, as its generator polynomial. With

CRC codes, it is possible to prove that certain classes of errors will always be detected.

When checking a packet for errors, this code will always detect an error when there

are only 1, 2, or 3 erroneous bits in a packet, when there are an odd number of errors

in a packet, or when all erroneous bits occur within a span of 32 bits. This last

property means that if all errors in a packet occur within two consecutive PaRC data

words, errors will always be correctly detected. For errors which span more than 32

bits, the probability of an error going undetected is less than 1 in 109. Additionally,

when errors occur on only one of a port's 16 data input lines, this code will always

detect the errors.

Since the CRC involves doing modulo-2 division on polynomials, it is very simple

to compute using only exclusive-or (XOR) gates and registers. To compute the CRC

32 registers are needed. Initially these registers are set to 0. As the message is being

received these registers store the partial result of the division. When the division is

complete they will contain the remainder of the division.

The simplest CRC circuitry operates on one bit of the message at a time. It

consists of a 32 bit shift register where most of the register inputs come directly from

the output of the previous register. Several of the register inputs are computed by

XORing the previous register's output with the output of the most signi�cant register.

59

The locations with XORs correspond to terms in the generator polynomial with non-

zero coe�cients. This implements one step of the division wherein the generator

polynomial is subtracted only if the current MSB is one. This can be expanded to

allow n bits to received at a time, and the results of n potential subtractions to

be computed at once. This results in each register input being the XOR of several

values. PaRC receives 16 bits of data at a time, so the CRC generater was designed

to consume 16 bits per cycle.

One way to check for errors is to see if, after all words are received, the remainder

is 0. It is possible to check for this slightly sooner. During the last two words of the

packet, PaRC compares the input data to the current upper 16 bits of the partial

result. No di�erences will be found i� the remainder will be 0. Since we don't need

to look at the remainder, we can synchronously reset the registers to 0 so that the

CRC can be checked for the next packet.

To generate the CRC we could simply process the message as above, and the

remainder will be the CRC. As in CRC checking, this is modi�ed so that only the

upper 16 registers need to be examined. After we have received the �rst 10 words of

the packet the upper 16 registers will contain the �rst part of the remainder, and the

lower 16 the second. By replacing the current CRC data input (which is meaningless

anyway) with the upper part of the remainder, on the next cycle the lower part of

the remainder will be shifted into the upper 16 registers.

This gives us the �rst (second) part of the CRC in these registers at the same

time the 11th (12th) word of the incoming packet would normally be available. But

we want to be able to use the �rst (second) part of the CRC in place of the 11th

(12th) word. We would like other blocks to be able to simply latch in the CRC word

instead of the incoming data word. To do this we need access to the CRC one cycle

earlier. This is done by sampling the inputs to the upper 16 registers, instead of their

outputs. This value is sent to other blocks which can latch it at the same time they

would latch the 11th (or 12th) word of the packet.3

3The paths where these values are sent to the RDATA block are the longest paths in the input
ports. These paths are about 4ns faster than they need to be for PaRC to run at 50 MHz.

60

The IDLE block checks each incoming word to see if it is identical to one of the

two idle patterns (hex 5555 and 2AAA). If a word is not one of the idle patterns and

it is not part of a packet, then the idle-error signal is asserted.

3.4 Scheduler

Each output port has its own scheduler which tells it which packet should be trans-

mitted next. The major components of the scheduler are shown in Figure 3.5. The

scheduler receives request signals from the input ports and processes them by storing

the requests on a queue. When requests are waiting in the queue, the scheduler in-

forms the transmitter of this by asserting MORE. While MORE is asserted, PacInfo

should contain the information about the packet that should be transmitted next.

After the transmitter begins transmitting a packet, it will assert NEXT. This means

it wants to �nd out about the next packet to be transmitted.

An important goal in the implementation of the scheduler was to make it fast since

time spent scheduling adds to the latency of non-blocked packets. The latency of the

scheduler is one cycle: When the transmitter is waiting for a packet to send, and a

request is made, on the next rising clock edge the transmitter will be able to latch in

the information about that request.

The scheduler receives a request signal from each of the input ports. These signals

have already been synchronized by the input ports so that they will only change at

the beginning of the cycle. Since several input ports may make a request at the same

time, the scheduler must choose between them. For simplicity, the scheduler uses a

�xed priority scheme: The input ports are given a �xed priority (3,2,0,1) and the

request with the highest priority will be selected. This scheme is slightly inequitable

since whenever two ports make concurrent requests, the same port will be chosen

every time. A �xed priority scheme is allowable because we can guarantee that the

lowest priority port cannot be \starved." If its request is ignored in favor of one

from a higher priority port, the request is guaranteed to be chosen before the higher

61

ADin

Din

AD-out

Dout

Latch

REQ
Info

REQUESTS

NEXT

REQ
Count

Packet
Info

Larger

MORE

Num
Reqs

5

ACK-REQ

17 17

5

4

5

4

5

4

5

Q Q

4
A-REQ

INC

DEC

Compare
Queues

Select
Request

Select
Data

Count
In

Count
Out

Mux

Request
Count

INC INCS-FIFO
 (17x5)

4

Figure 3.5: Block Diagram of the Scheduler

priority port can make another request.

A �xed priority scheme was used because of its speed. With this scheme, the

requests need only go through two levels of logic (an inverter and a nand gate) to

select the chosen request. A fairer scheme would have been slower and required either

lengthening PaRC's clock period or pipelining the scheduler (thereby increasing the

latency of non-blocked packets). The slight bene�ts of fairer scheduling were not

worth either of these costs. For simplicity, each scheduler uses the same priority

list. (i.e., Every scheduler would choose port 3 over port 2 if both made requests

at the same time.) Giving each scheduler a di�erent priority list would have helped

to remove some of the unfairness of a �xed priority scheme. Since the scheduling

algorithm is otherwise �rst-come-�rst-served, this unfairness will not have much of

an e�ect on PaRC's performance.

62

Once a request is chosen we need to select the rest of the request information from

the input port that made the request. The chosen request (encoded in unary) is used

as the select inputs to a mux to select the packet information bits from the correct

input port. From these muxes the scheduler gets 2 bits which tell which of the input

port's bu�ers was used to store the packet, and one bit which tells whether or not

the packet is a circuit switch packet. As this is done the selection lines are encoded

into two bits which indicate which input port the packet is stored in. These 5 bits,

which will be stored in the s-�fo, tell all that the transmitter needs to know about

the packet.

At the heart of the scheduler is the S-FIFO and its associated counters. The s-�fo

is a 17 by 5 array of ram cells. One 5 bit request can be stored in each of the 17

locations. Each of these locations has its own separate write line (actually write and

nwrite lines) and read line.

The scheduler maintains two counters as pointers into the s-�fo. The input counter

is a 17 bit unary counter which identi�es the next location to be written. The outputs

of this counter are directly used as the write lines for the ram. Since this counter

always points to the next location to be written, every cycle will do a write of the

next available �fo location. If no request is being made during a cycle then the value

written will be meaningless. When a request is made a correct entry will be written

into the ram and the value of the input counter will be incremented on the next clock

edge; thus preserving the entry.

Since the write of an s-�fo location will not end until after the next cycle begins,

there is a 5 bit latch at the data input of the s-�fo. This holds the s-�fo data input

stable during the high phase of the clock, thus keeping the data stable until well after

the write has ended.

Although there can only be 16 valid entries in the s-�fo at any one time, the s-�fo

has 17 locations. This is because we always do a write of the next location. By having

this extra location we are able to greatly speed up, and simplify, the control of the

s-�fo.

63

The second counter, the output counter, always points to the next request in the

s-�fo. This counter value is used as the read address of the s-�fo, so that the s-�fo

is always reading out the next request. This request information is passed on to the

transmitter as PacInf. Since the transmitter needs this information early in its cycle,

the transmitter will latch in this information at the beginning of any cycle during

which it may want to start reading out a new packet. (This means that PacInf must

be valid in time to be safely latched on a rising clock edge.) After the transmitter has

used this information it will assert NEXT. This will cause the output counter to be

incremented so that the next request will be read. (This is done several cycles before

the new request is actually needed.)

Since we begin to read each s-�fo location before its value is needed, the value can

be read out in plenty of time to be presented to the transmitter. This is not the case,

however, when the s-�fo is empty. When a request is made to an empty s-�fo, the

request would need to be written into the ram, and then read out soon enough for

the transmitter to latch it in at the beginning of the next clock cycle. The s-�fo is

not fast enough to do this; instead we use a cut-through technique. When the s-�fo

is empty, instead of using the value being read from the s-�fo for PacInf, we use the

data that will be written into the s-�fo. This allows the value of PacInf to reach the

transmitter in time. Even when this is done, we still write the request into the s-�fo.

On the cycle after this request is made, we will go back to using the s-�fo output.

The signal MORE is used to tell the transmitter when there are more packets to

be sent. If it is high during a cycle then if PacInf was latched at the beginning of the

cycle a valid request was latched.

To compute MORE the scheduler needs to know how many packets it has in its

s-�fo. A third counter, this one an up-down counter, is used to keep a running total of

the number of packets in the s-�fo. If this counter is greater than 0, or if a request is

being made, then MORE will be asserted on the next clock edge. Instead of this third

counter we could have compared the �rst two counters to see if they were the same.

The extra counter is used because the count is also needed for up-down routing.

64

In up-down routing we need to determine which of ports 0 and 1 (or 2 and 3) have

the shortest queue. This is done by having the scheduler for port 0 (and 2) send its

current queue length to the scheduler for port 1 (3). That port can then compare the

lengths to see which is greater. Schedulers 1 and 3 then send this information to the

four input ports. These schedulers also send an s-�fo count to the control section so

that the s-�fo count can be made visible.

3.5 Transmitter

The transmitter is the component that is responsible for transmitting packets from

the chip. The scheduler gives it information about the next packet to be transmitted.

It must then set up a connection to the packet bu�er containing the packet, tell that

bu�er to begin reading out its data, and send out the data. Between packets, idle

patterns must be transmitted. Figure 3.6 shows an overview of the transmitter.

3.5.1 Outgoing Data

To ensure that the transmitted data is valid for the longest possible time, the 16 bits

of outgoing data come directly from 16 registers. These registers are loaded with

either the data coming from the packet bu�ers, or with an idle pattern. This section

must also produce the clock that accompanies the transmitted data. This is done by

taking ICLK (which also clocks the registers) and putting it through an appropriately

sized inverter. This provides a clock which rises while the data is stable. We must

guarantee that the clock rises at such a time that it will provide su�cient setup and

hold times.

There are a number of problems which limit our ability to maximize the setup

and hold times. One is clock skew. By placing an output port's data registers and

clock inverter in the same area of the chip, the clock skew between them is kept

fairly small.4 A bigger problem is the variation of delays with process, voltage and

4The skew of ICLK is as great as 2.3 ns between some components. But considering only the 16

65

Packet
Counter

16

Packet
Location

MORE

PAC-NEXT

Controller

WAIT

D

Mux

Q

16x4

Data-Out

Clock-Out

DATA

FMEM
Mux-Sel

Start
Info

RelProc
ACK-IN

ACK-out
4

Packet
Info

NEXT

REG 16

SEL

PAC-NEXT

PAC-INFO

16

Transmitter
State

ICLK

Figure 3.6: Overview of the Transmitter

temperature. The worst case delay of an element is almost four times greater than

its best case delay after accounting for these three variations. The variations due to

temperature and voltage are the least important of these. This is because they have

less of an absolute e�ect on the delays than process variations, and because their

changes a�ect the delays of all gates similarly. Process variations can account for

delays varying by about a factor of three. This e�ect is made worse because all gates

are not a�ected the same by process variations. Gates which pull up and those which

pull down are created by di�erent processes. So it is possible, for example, to have

gates with worst case rise times on the same chip as gates with best case fall times.

The worst case combinations must be considered when determining the true setup

and hold times provided.

single bit registers and the clock inverter in any one output port, the skew between any 2 components
is only 0.4 ns.

66

3.5.2 Transmitter Logic

The control section of the transmitter is made up of logic which counts how much

of the current packet has been sent out, and determines when a new packet can be

begun. A new packet can begin if 1) No packet is currently being sent out. 2) MORE

is high, indicating that there are additional packets waiting to be sent out. 3)WAIT

is low, indicating that the receiver can accept another packet. 4) This output port

has not been turned o� by the controller. 5) If the next packet is a circuit switched

packet, the output port is not currently waiting for an acknowledgment.

To shorten the latency of packets, the transmitter is able to begin sending a packet

(i.e., load the output register with the �rst word of the packet) on the same cycle

it determines that a new packet is allowed to begin. As mentioned previously, to do

this the transmitter must be able to read the �rst word from a packet bu�er in the

same cycle that it �nds out which packet bu�er should be read from. This is done

by latching in PacInf (the signals from the scheduler which tell where the packet is

stored) at the beginning of any cycle during which a new packet might begin. Two

bits of these latched values are sent to the select inputs of multiplexers in each of

the four FMEM blocks.5 This selects the data from one packet bu�er in each FMEM

block. Two more of the bits are used locally as inputs to 4-to-1 multiplexers which

select between the data coming from the four FMEM blocks. In this way data from

any of the 16 packet bu�ers can be selected.

The packet bu�er in which the new packet is stored must be told to start reading

out the rest of its data. To do this the address from the stored PacInf is sent to

PaRC's control section, along with a signal which goes high only when a packet

actually begins. The control section receives this start information from all four

output ports and uses it to generate START signals for the 16 packet bu�ers. While

a packet is being transmitted, the transmitter will assert NEXT for one cycle. This

tells the scheduler to send information about the next packet to be read.

5These signals are the beginning of the longest paths on PaRC so it was important to minimize
their delays. The Q output of the registers are bu�ered and sent to the two most distant FMEM
blocks. The QN outputs of the registers are bu�ered and sent to the two closest FMEM blocks.

67

The RELPROC block of the transmitter can generate or process acknowledgment

signals for circuit switch packets. This block receives the output port's incoming

acknowledgment signal and produces four acknowledgment signals, one for each input

port.6 To be able to produce these acknowledgment signals, when a new circuit switch

packet begins, this block latches in the part of PacInf which tells which input port

the packet came from. When it becomes time to give the acknowledgment, this value

is used to route the acknowledgment to the correct port.

If the PaRC chip has been told to generate acknowledgment signals, then a 2 cycle

acknowledgment pulse will be given shortly after a circuit switched packet begins

to be sent. If it is not supposed to generate the acknowledgment, then it will wait

for an incoming acknowledgment. As soon as this acknowledgment arrives (i.e., as

soon as the incoming acknowledgment line is asserted) the outgoing acknowledgment

pulse begins. The outgoing acknowledgment pulse will end 1 to 2 cycles later. Once

this is done the control section of the transmitter is told that it is no longer waiting

for an acknowledgment; this will allow circuit switched packets to be sent again.

The start of the incoming acknowledgment pulse is used to both start and end the

outgoing acknowledgment pulse. The unsynchronized version is used to start the

outgoing acknowledgment pulse in order to minimize the delay of an acknowledgment

passing through a PaRC chip. The synchronized version is used to end the outgoing

acknowledgment pulse in order to guarantee that an acknowledgment pulse does not

grow too long or too short. If the end of the incoming pulse was used to end the

outgoing pulse then the pulse might get shorter (or longer) each time it passed through

a PaRC chip. Using only the beginning of the pulse guarantees that the length of

each pulse remains within a �xed range.

6When an acknowledgment signal is asserted for an input port, that input port's RELOUT output
will be asserted.

68

3.6 Control Section

The control section performs a number of functions which a�ect the operation of the

entire chip. In particular, it implements the control port which allows a network

control system to control and monitor the performance of PaRC. The control section

also keeps track of any errors that occur and keeps statistics on how the output ports

are being utilized.

CDATA
 In

Write
Regs

CAD

REGS

ERRMOD

STATS

Chip-Errors
12

Link-Errors
8

Transmitter
States

8

RAM
16x24

READ
 CP

8
CDATA
Out

DATA

WRITE
LINES

8

8

Ram-Addr

Ram-Data

4

24

24

Many
Control
Signals

ERROR

Addr

Internal
Values Select

Values
DATA

ADDR

CR_W nWRITE

PASSIVE

Ram-Write

8

6

Figure 3.7: The Control Port

An overview of the control section is shown in Figure 3.7. The REGS block contains

registers which store the values which control the function of PaRC. The WRITE-

REGS section controls the writing of the values in REGS. The ERRMOD block keeps

track of errors that have occurred, and takes any appropriate action. The STATS

block keeps statistics on the use of PaRC's output ports. These statistics are stored

in a 16x24 ram. The READ-CP section handles reads of the control port. The values

69

read may reside in the control port or may come from elsewhere on the chip.

To the user, the control port looks like 64 locations which can be read or written.

The �rst 8 of these are used for setting various values which control the operation of

PaRC. The next 8 are used solely for reading out values about PaRC's current state.

The �nal 48 are used for reading (and writing) the statistic values. See the User's

Guide for details on the use of each speci�c location.

The control port interface is made up of 6 address lines (CAD), an 8 bit bidirec-

tional data bus (CDATA), an output enable for the data bus (C OE), and a write

line (CR W). A location is read when an address is given on CAD, and the output

data bus is enabled. A write is done whenever the write line is brought low. The

address lines should be kept stable during this time. If a speci�c value needs to be

written, the output data bus should be disabled, and the value driven onto the bus.

The WRITE-REGS section controls the writing of the values in REGS. A write

should be done whenever the write line is asserted and the value on the address bus

is less than eight. The incoming write line is inverted and used as a clock to store the

values needed for the write. Whenever the write line is asserted this will store the

data bus, the lower three bits of the address bus, and a bit which tells if the upper

three bits of the address bus were all 0. If the upper three bits are all 0 then the

address is less than eight and a write to the REGS section will be done. The write is

done by producing a one cycle pulse on one of the eight write lines going to the REGS

section. The above data and address values are latched in so that even if the input

lines change after the write begins, a valid write will still be done. This prevents a

bad write from corrupting many values in the REGS block.

The REGS section contains the registers that store the control values. Each of

the eight locations receives its own write line. Five of the eight locations store read-

able/writable values. Some locations use latches with their enable connected to the

write line. Others use registers which are loaded on clock edges in which their write

line is asserted. The registers take up more space than latches, but they are used

because they produce outputs that only change at the beginning of a cycle. The

70

other three locations are write only locations. When a write is done to one of these

locations, some command is executed. One of these locations simply produces a pulse

to clear the error counters. The other two are used to produce pulses about six cycles

long. One is used as a reset command, the other is sent to the data link chips to tell

them to synchronize to the PaRC chip.

The ERRMOD module keeps track of the errors that have occurred. There are 12

two bit counters used to count the number of CRC, IDLE, and ROOM errors that

occur in each input port. These counters start at 0 and are incremented by one each

time an input port signals a particular error. Once they reach their maximum, further

increments will have no e�ect. The counters count using a gray code, which means

that only one bit of the output will change at a time. This is done so that if one of

the counters is read while it is being incremented, a valid value will still be obtained.

The link errors do not use counters, but have just a single bit that says whether or

not a given link error has occurred on a given output port. The error values can be

reset by doing a write to the reset-error-counters command location.

This module also produces PaRC's ERROR output. This output goes high when

any of the error values are non-zero. The gray encoding used by the counters prevents

glitches from appearing on this signal when a counter increments. This module also

produces the PASSIVE signal. When this signal is asserted the input and output

ports will go passive. (i.e., Output ports stop sending; input ports assert WAIT.) As

mentioned earlier, PaRC can go into passive mode when an error is detected. Settings

in the REGS section tell whether all errors, all errors except link gray errors, or no

errors at all will cause PaRC to enter passive mode. PASSIVE is computed from the

error values, synchronized to ICLK, and then sent to the input and output ports.

The READ-CP section handles reads of the control port. Mostly this involves

multiplexing between the data stored in other sections of the control port. Values

can be read from the REGS, ERRMOD, or STATS section of the control port. Some

of the values that can be read come from the input and output ports. For these a

signal is sent to the ports to select what data they send to the control port. The

71

selected data is sent out whenever the C OE signal is low.

There are 16 statistic values, each 24 bits long. When a read is done of a statistic

location, the lower 4 bits of the address are used to determine which value is read; the

upper 2 bits are used to determine which 8 bits of the 24 bit value are returned. Since

the STATS module controls the ram while statistics are being collected, statistics

cannot be read during this time. If they are then the value currently being output

from the ram will be returned, regardless of which location was requested.

3.6.1 Statistics

The STATS section, shown in Figure 3.8, is used to keep statistics on how each

output port is being used. It keeps track of how much time the outputs spend

in the following states: transmitting (XMIT), idling (IDLE), waiting for a circuit

switch acknowledgment (CSWAIT), and waiting for the WAIT signal to be deasserted

(WAIT). These sixteen values (four per output port) are stored in a 16-by-24 ram.

Transmitter
States

RAM
ADDR

Mux
 2:1 4

Mux
 2:1

Mux
 2:1 24

RAM
Write

RAM
DATA
ININC-24REG

 24

Select
Next Ad

NEXT-AD

CAD

RAM
DATA
OUT

Controller AUTO

CDATA

Read-Clear

AUTO-Write

CP-Write

CR_W

SHF

24

24

24

12

Control
Info

Figure 3.8: The Statistics Section

The STATS module can be in one of two modes: AUTO or Read-And-Clear mode.

72

When in AUTO mode the module will collect statistics by repeatedly reading and

updating ram locations based upon the current state of the output ports. When in

Read-And-Clear mode, the ram is under the control of the control port.

When in AUTO mode, the stats module determines the state of an output port,

increments the value corresponding to that state, and then moves on to the next

output port. This update process takes three cycles, so each output port is sampled

every 12th cycle. (Since packets are 12 cycles long, each output port's XMIT statistic

will give a count of the number of packets that port has transmitted.) During the

�rst of the three update cycles the new ram address is latched in. The �rst two bits

of this ram address correspond to the next port to be updated, the second two bits

correspond to the state of that port. The next port to be updated is determined

directly from the previous port. The state of the next port is determined in advance

and stored in a register. This ensures that the next ram address is ready to be latched

in during the �rst cycle of the update.

The new address is sent to the ram and the read of the ram begins. At the end

of the second cycle, the 24 bit value returned from the ram is stored in a register.

During the third cycle the stored ram value goes from the register, through a 24 bit

incrementer and to the data input of the ram. Also during the third cycle the write

pulse is given to the ram. At the beginning of the next cycle (which is the �rst cycle

of a new update) the write pulse will end. The ending of the write pulse is used to

trigger the load of the new ram address. This ensures that the ram address stays

valid until the write has completed.

All of the signals sent to the ram �rst go through 2-to-1 multiplexers. When not

in AUTO mode, these multiplexers allow the ram's input to be controlled through

the control port. The ram's address will be taken from the lower bits of the CAD

bus. The ram's write pulse is generated from the CR W, the control port's write

signal. When a write pulse appears on CR W, it will be passed on to the ram if the

address on CAD is greater than 15. (An address of 16 or more means that a statistic

location is being addressed.) When not in AUTO mode the data input to the ram

73

will normally be given the value 0. This allows ram locations to be initialized when

they are written to. For testing reasons, when not in AUTO mode, the ram data can

also be taken from either the CDATA bus or from the incrementer.

The 24 bit incrementer is built out of six submodules which are 4-bit incrementers.

Each 4-bit incrementer takes in 4 bits of data and a carry-in signal. They each produce

a \group carry" signal and 4 bits of the result. The group carry output is asserted

i� all four of the data inputs to that submodule are ones. The carry-in to each

submodule is asserted if all the submodules before this one have their group-carry

asserted. (Additionally all carry-inputs can be forced high for testing purposes.)

When carry-in is asserted a submodule will increment its data input, otherwise it

will output it unchanged. The longest path through this incrementer is only 4 gates.

The value going to the incrementer comes from a register which is loaded on ICLK.

The time from the rising edge of ICLK until the incrementer's output is stable is less

than 12.5 ns (assuming worst case process, temperature and voltage). This needs to

be fast in order to meet the data setup time for the ram. The write pulse going to

the ram begins based on the same rising clock edge which loads the incrementer's

register. This write pulse will end one cycle later.

When collecting statistics, the statistic values must be sampled and reset regularly,

or they may over
ow. If the incrementer over
ows it simply wraps around to 0. Since

values are 24 bits long and can be incremented only on every 12th cycle, over
ow

could occur after 224 � 12 cycles. At 50MHz, this is approximately every 4 seconds.

To make it easier to read the statistics before they over
ow, PaRC can produce a

Statistics-Half-Full (SHF) signal. When statistics are being collected, this signal will

be asserted when a stats location is written with a value that is more than half the

maximum value. When the network control system sees this signal asserted it can

stop statistic collection and read out the statistic values. It can then reset the values

and restart statistic collection.

74

3.7 Other Details

This section describes several other important characteristics of the implementation

of PaRC.

3.7.1 Single Packet Latency

Minimizing the single packet latency was an important goal of this design. The

latency of this design is approximately 100ns. To measure this time we will calculate

the delay from when the incoming clock rises (with the �rst word of the packet on the

input data bus) until the �rst word of the packet is on the output data bus and the

outgoing clock rises. The time from XCLK going high until the new-packet signal is

set up at the synchronizer input is under 14 ns. When this signal is detected by the

�rst stage of the synchronizer depends on how the incoming XCLK is aligned with

ICLK. This may take up to one cycle. One cycle after this the request signal will be

generated, and one cycle later the MORE signal will go high, telling the output port

that a packet is waiting to be sent. One cycle later the output registers will be loaded,

and the �rst word of data will be placed on the output bus. Half way into the next

cycle (when ICLK falls) the rising output clock will be generated, and will appear

outside the chip within 5 ns. Summing up these times gives us 31
2
ICLK cycles, plus

19 ns, plus 0 to 1 cycles at the synchronizer input. This is less than 4 1

2
to 5 1

2
cycles,

which is equivalent to 100 � 10 ns when PaRC is running at 50MHz.

3.7.2 Critical Paths

The design goal was for PaRC to be able to run at 50 MHz. This meant that all

register to register paths would have to be under 20 ns. When determining if a path

meets the 20ns limit, there are two factors that must be taken into account. The �rst

is the actual delay of the logic, the second is time lost due to clock skew. Since a

single clock driver is driving the clock signal to all gates on the chip, the clock will

arrive at di�erent locations at di�erent times. If the clock going into the register at

75

the end of a path arrives before the clock going into the register at the beginning,

then the di�erence in the clock arrival times (i.e., clock skew) must be subtracted

from the 20ns limit. Approximate clock skews are not known until after layout, but

the skews are usually under 2 ns. When the chip was being designed all paths were

kept under 18ns. This was to allow margin for clock skew, or for any delays that

might have been longer then originally predicted.

The longest paths in PaRC are the paths used to set up the multiplexers in the

FMEMs. When a new packet is begun in an output port, a packet's address is latched

into registers at the beginning of a cycle. The outputs of two of these registers are sent

to all four FMEMs to control the multiplexers which send data to the output port. In

each FMEM these signals are bu�ered and used as the select input to the multiplexers.

Once the select inputs are available, these multiplexers select the appropriate data

and send it to the output port. The output port then uses additional multiplexers

to choose between the data coming from the four ports. The chosen data then goes

into a register. The length of these paths was kept under 18 ns. This was done

by using some extra hardware to speed up the �rst part of the paths (i.e., the part

that produces the mux select signals). Speeding up the �rst part of a path was more

economical since it consists of only a few signals, whereas the second part consists of

a bus of 16 signals.

Although these paths go through several blocks, each path ends in the same block

it began in. This means that the beginning and ending of a path will be in the same

area of the chip. For this reason we expected the clock skew on these paths to be

small. This turned out to be the case. After layout was done, all critical paths on

the chip were under 171
2
ns, even after accounting for clock skew.

3.7.3 Clock Frequency Di�erences

This design does put some constraints on how closely the clock frequencies of two

adjoining stages must be matched. One such constraint occurs in the reading and

writing of packet bu�ers. A packet can be read out of a packet bu�er while it is still

76

being written in. ICLK, which is used to read out the packet, must not be too much

faster than the XCLK which is used to write the packet. If it were, we could try to

read part of a packet before it was written.

From the time the �rst word is received, it takes just under 12 XCLK cycles for

the last word to be written into the packet bu�er. From the time the �rst word is

received, it will be over 2 ICLK cycles before a transmitter begins to read that packet.

Reading out the last word will not begin for another 11 cycles. So to guarantee that

the last word is written before it is read, the time for 13 ICLK cycles must be more

than the time for 12 XCLK cycles. In other words, the XCLK period must be at most

13/12 = 1.08 as long as the ICLK period.7 There are a number of other interactions

between ICLK and XCLK that put constraints on their relative timings, but the

constraint described above is the most restrictive.

7This analysis uses conservative timing numbers. Doing a more precise analysis shows that XCLK
can be as much as 1.13 times as long as ICLK.

77

Chapter 4

Test Vectors

4.1 The Need for Test Vectors

After chips are fabricated it is necessary to test them to determine if they were

fabricated correctly. A set of fabrication tests is needed to check if the logic on the

chip functions as the circuit design says it should. This is not the same as testing to

see if the design is correct. That is a very di�erent question. Testing to see if the

design is correct would involve comparing the high level speci�cations of the chip to

how the design actually functions. But for these fabrication tests the speci�cations of

the design are irrelevant. This test must compare the actual silicon to the silicon that

was speci�ed by the design (regardless of whether or not that design is \correct").

This test is done by producing a series of vectors which tell what inputs should

be applied to the chip, and what results the chip should produce. Automated testing

equipment will cycle through these vectors in order. On each cycle it will read the

test vector, apply the appropriate inputs, and check to see if the chip outputs match

the predicted outputs. If the actual outputs do not match the expected outputs then

the vector is said to fail. The job of producing these vectors is known as test vector

generation.

There are two goals of test vector generation. The �rst is to make sure that vectors

will fail only if the chip is defective. This goal is non trivial because there is more

variance in the actual operation of the chip, than in its simulation. Consider the

78

simple case where a data input is changed shortly before a clock input is changed. In

the simulation this may work �ne because the data always arrives before the clock.

However, when the test is actually run there will be some uncertainty (about �4 ns)
in when the tester actually sends any given signal to the chip. If the data is skewed

late and the clock is skewed early, the data may not arrive in time and the vector will

fail even though the chip is not defective. There are also large uncertainties in the

delays inside the chip due to process variation. For both these cases, we must ensure

that vectors will produce the same results whenever the delays fall anywhere within

the allowable range. A number of methods are available to help ensure that this goal

is met. For example, we can run simulations where some inputs are changed earlier

or later than they should be. This imitates the skew that could be introduced by the

tester, and could point out problems that tester skew could create. By using these

and other tests on the test vectors, we can be fairly con�dent that a test vector will

fail only if the chip is defective.

The second goal is to construct the vectors such that if there is a defect anywhere

on the chip, then some vector will fail. This is a much harder goal to meet. This is

di�cult both because of the large amount of logic on the chip, and because some of

that logic is hard to control directly. We must also try to use as few test vectors as

possible since we can only use a limited number of them. (LSI Logic, for example,

recommends limiting the number of test vectors to 16,000. If signi�cantly more are

needed, they can be added for an additional charge.) It is for these reasons that the

job of test vector generation can be so time consuming.

4.2 Testing for Defects

To check for defects in the chip we need to have a model of what defects may do to

the operation of the chip. A useful model is the \stuck at" model. In this model

a defect is assumed to cause a node on the chip to always be zero or to always be

one. The goal of test vector generation is to produce vectors that will �nd any single

stuck-at-zero or stuck-at-one fault. Of course other types of faults are possible; for

79

example two signals might be unintentionally connected. Also, it is possible to have

more than one stuck-at fault on the same chip. Although we detect any single stuck-

at fault, this does not guarantee that we will detect a problem if two faults occur.

However if we can detect any single stuck-at fault, it is very probable that we will

detect any type of fault or number of faults that might occur.

To detect a given stuck at fault, we must present inputs such that if that fault

exists the output values will di�er from what they would be if the fault did not exist.

Let's �rst look at the simple example of testing a 2 input nand gate. We want to

1

0

1

0

1

0

1

1

0

1

1

0

Stuck-at-1

Stuck-at-1

Stuck-at-1

Stuck-at-0

Stuck-at-0

Stuck-at-0

Stuck-at-0

Stuck-at-0

A) Test 1

B) Test 2

C) Test 3

D) Test 4

Figure 4.1: Testing a NAND gate

check both its inputs and its outputs for any stuck-at faults. For a 2 input NAND

gate there are only four possible input sets. Figure 4.1 shows the four possible tests

and what faults each test would detect. Part A of the �gure shows the test where ones

are applied to both inputs; the result should be a zero. If either input were stuck at

zero, then the output would be a one, so the vector would fail. Similarly if the output

80

were stuck at one, then the result would be incorrect and the test would fail. Thus

this test checks for stuck-at-zero faults on each input, and a stuck-at-one fault on the

output. Part B of the �gure shows zeros applied to both inputs with the expected

result being a one. This test checks only for a stuck-at-zero in the output. Even if

one of the inputs was stuck at one, the output of the gate would not be a�ected. Part

C shows the test where a one is applied to the �rst input, a zero to the second, and

a one is expected at the output. If the second input was stuck at one, both inputs

would be one, so a zero would be produced and the test would fail. If the output

was stuck at zero the test would also fail. The �rst input is not tested; even if it had

an incorrect value (zero instead of one), the output would not have changed. The

�nal test, shown in part D, is similar to the previous test except that the inputs are

reversed.

If we wanted to create a set of test vectors for this NAND gate, we would not have

to include all four tests. We need only the minimal set of tests such that all faults

are checked for. In this example tests A, C and D form such a set. Test B is not

needed since it only detects output-stuck-at-1 faults, which two other tests also check

for. Carefully choosing the tests can reduce the number needed; this is especially

true with gates with many inputs. For example an n-input NAND gate can be tested

using only n+ 1 of the 2n possible inputs combinations.

Figure 4.2: A NAND-OR circuit

In the above example we assumed that the output of the NAND gate was directly

visible, but this is not always the case. Consider the case shown in Figure 4.2 where

the output of the NAND gate is put into an OR gate. Now there are further con-

straints on our test of the NAND gate. If the top input to the OR gate is one, then

81

the output of this circuit will always be one. Any attempted tests of the NAND gate

will be useless, since the NAND gate will have no e�ect on the output of the circuit.

If the top input to the OR gate is zero, then the output of the circuit will be the

same as the output of the NAND gate. So to test the NAND gate, we must do the

three tests chosen above while the upper input to the OR gate is zero. This is easy

to do if the top input to the OR gate is directly controllable, it takes more e�ort if it

is produced by other logic. When a change in a gate's output will cause a change in

the output of the chip, we say that the output is observable. In general, whenever a

gate is tested we must make certain that its output is observable.

When circuits also include memory elements, the task of checking for faults be-

comes even more di�cult. When the input to a gate is in
uenced by the state of a

register, then all tests of that gate are in
uenced by the previous test vectors. Before

doing a test of that gate we will have to load the register with a speci�c value. This

may take just one vector, or it may require many. If the output of a gate goes to a

register, it becomes more di�cult to ensure that when the gate is tested, its output

is observable. If the output of the register goes directly o� chip, then for the gate's

output to be observable, we must simply make sure that the register is loaded during

the cycle in which the test is done. A fault in the gate would then show up as an

incorrect output one cycle later. Usually, however, the register does not go directly

o� chip, but instead feeds other logic. So to test a gate, we must also control the rest

of the chip both before and after the fault is tested for. The chip must be manipu-

lated such that if the gate has a fault, a changed gate output value will work its way

through the logic and registers, and eventually cause a changed chip output. Again,

this changed chip output may happen shortly after the faulty gate is tested, or it may

occur many cycles later.

4.3 Test Vectors for PaRC

There are a number of problem circuits that are encountered when generating test

vectors. This section will illustrate some of these by choosing some components in

82

PaRC and showing how they were tested.

For many of the gates in PaRC devising tests is quite easy. Consider testing the

data inputs of a memory cell in a packet bu�er. If we store a packet that has a one in

that location, and then later read it out, that location's data lines have been tested

for stuck-at-zero faults.1 Later a packet can be stored that has a zero in that location.

Reading it out will complete the test for stuck-at-one faults.

Just by receiving and sending a few packets, much of the logic in the input and

output ports is tested. This is because much of the logic is used every time a packet

is received and sent. Circuitry that is used less often will take more time to test. For

example, testing the ram cells in the scheduler's memory will take longer than testing

packet memory because a write to a scheduler's memory is done only 1=12 as often

as a write to a packet memory.

Circuitry with many more inputs than outputs can be di�cult to test, even if it is

used often. Consider the comparators in the scheduler which are used for Up/Down

routing. These comparators take as input the number of packets this scheduler has,

and the number that its partner has. It produces only a single output which says

which one is less than the other. Since there are so many inputs that give the same

result, it is easy for a fault to have no e�ect on many input patterns. In fact there

are gates that will have an a�ect on only one of the many possible input patterns.

To test this component it was necessary to examine each gate in the comparator and

make a list of what input values would detect the faults that could occur on that

gate. This was then used to create a list of input patterns that would together detect

all faults. By carefully choosing a subset of these patterns, only eleven tests were

needed to cover all faults. The input to this comparator is the number of requests in

each of two scheduler queues. So for each of the eleven tests, packets had to be sent

to, or released from, the two output ports so that each port contained exactly the

1For this test a packet may be written into a bu�er, held for a long time and then read out. If
there is a fault on the data input line the wrong value would be written into the ram, and this wrong
value would later be read out. This is a simple example of a fault not being observed until many
cycles after it occurred. If the packet is never read out of memory, then the fault would remain
unobserved.

83

number of requests needed. Since this could take many cycles, the testing of the two

Up/Down comparators took approximately 500 test vectors.

In the previous examples, the circuitry could be tested without adding any addi-

tional hardware. Sometimes more control over the component is needed, so testing

hardware must be added. One way to add hardware for testing is by placing multi-

plexers at the inputs (and/or outputs) of a component. The multiplexers will choose

between the normal inputs for the component, and special inputs used only for testing.

A variant of this was used for testing the statistic memory. The ram's output could

already be observed through normal control port operations. Similarly it's address

and write line could be controlled through the control port. Circuitry was added to

allow the ram's data input to get its value from the CDATA input bus instead of from

the incrementer. The CDATA bus is only 8 bits wide, while the ram is 24 bits wide.

Four extra inputs were used to give a total of 12 bits of data for the ram. The 24 bit

ram data input was then formed by using two copies of these 12 bits. This provided

enough
exibility to completely and easily test the ram.

It is often advantageous to include testing circuitry when a component is designed.

The 24 bit incrementer in the statistics section is one example. To test this without

any additional hardware would have taken an inordinate number of cycles. By de-

signing the incrementer to allow all carry-inputs to be forced high, testing was made

much more e�cient. Testing of the incrementer was also simpli�ed by making use of

the ability to load the ram with a value from from the CDATA bus.

Sometimes it is actually impossible to test for some faults without additional hard-

ware. This is the case when some logic must work correctly in order to prevent a race

condition. Consider a register which is occasionally disabled in order to prevent a

race condition. (This occurs in the select-port section of the input port.) The enable

signal could be stuck in such a way that the register was always enabled. This fault

is not easy to detect because under test conditions the race may always be \won"

by the appropriate signal. But this is no guarantee that the same will be true when

the chip is in actual use. To test the enable input the output of the register must

84

be made observable. This will make it possible to see when the register is loaded.

One way to make the signal visible is to make it a chip output, but this could waste

many outputs. In PaRC a number of hard-to-see signals were wired into a tree of

EXCLUSIVE-OR gates whose result is sent o� chip. Such a tree has the property

that if a single tree input changes, then the output of the tree will also change. So

if any one of the inputs to the tree has the wrong value, the output of the tree will

be inverted, so the fault will be detected. We will have no information about which

input to the tree caused the fault, but this is not a problem since we have no intention

to try to debug the internals of a faulty chip.

Another place where additional hardware must be added is in the scheduler. When

a request arrives in a scheduler it is written into the scheduler's s-�fo. If the s-�fo

is currently empty, the request must be sent directly to the transmitter. The s-�fo

write is still done, and after a short delay the written data will appear at the output

of the s-�fo. The data sent to the transmitter is selected by a multiplexer which can

choose either the data coming out of the s-�fo, or the data going into the s-�fo. Since

the test vectors run much slower than the chip will operate, when a write is done to

an empty s-�fo the two inputs to the multiplexer will become the same before the

multiplexer's output is used. Yet the test vectors must somehow guarantee that the

multiplexer is selecting data from the correct input. This is done by adding a chip

input (nTESTMODE) that can force the scheduler input (but not the mux input)

to a known state. We can use this to cause the multiplexer inputs to di�er while in

cut-through mode, thus allowing the multiplexer to be tested. This input is used only

for testing and must be tied high during normal use.

Lastly, there was part of a component that could not be e�ciently tested even if

a moderate amount of additional hardware was added. This was the clear inputs in

the schedulers' 17 bit unary counters. Each of these counters contains 17 registers,

and only one register in a counter may be high at a time. To test the clear inputs to

each register we would need to reset the counter while each register had the one high

bit, and make sure that each reset took place correctly. Since these counters are only

incremented once per packet, this would have taken several thousand vectors. Instead

85

some extra circuitry was added (just two gates) so that even if a single register's clear

input is stuck, the counter will be correctly reset anyway.

The process of test vector generation for PaRC was time consuming since �rst the

entire chip had to be examined to determine what needed to be done to test each gate.

Then test vectors had to be created that tested all the gates. These test vectors had

to conform to certain limitations so that the test equipment will be able to perform

the tests correctly. The test vectors themselves also had to be tested to ensure that

they would not fail on a correctly fabricated chip. All total, some 13,000 test vectors

were generated for PaRC.

86

Chapter 5

Conclusions

5.1 Future Work

The design of the PaRC chips described in this document has been completed, and

working chips have been received. In the future it may be desirable to build another

version of PaRC to take advantage of improvements in technology. There are several

modi�cations to PaRC that any future versions should consider.

One change would be to implement PaRC in a BiCMOS technology instead of

CMOS. A BiCMOS chip has a CMOS core of gates, with bipolar gates on the periph-

ery. The bipolar gates are faster than CMOS, and would be used mostly for input and

output functions.1 By using bipolar for receiving and sending data we could output

data at a higher frequency than PaRC currently can. This might allow us to move

the functionality of the Data Link Chip onto the PaRC chip. For each PaRC chip

used this would save the board space used by four DLCs, as well as the TTL/ECL

level converters that are currently needed between PaRC and the DLCs. Since data

is being sent out at a higher frequency we would be able to provide a much higher

bandwidth per port. We would also have the option of keeping the same bandwidth

per port but either reducing the number of pins or increasing the number of ports.

A future version of PaRC might include a retry mechanism. A retry mechanism

1Bipolar technology is not used for the entire array because it has signi�cant power and density
disadvantages.

87

means that when an error is detected in a packet, the receiver would ask the sender

to send it again. So instead of merely detecting errors, PaRC would try to correct

them. The disadvantage of providing retry is that packets must be kept around until

the sender is sure that the receiver has received it correctly. This takes away bu�er

space that could be used for storing incoming packets. Given a limited amount of

space for bu�ering, this would reduce the throughput of the chip. We did consider

including retry in PaRC. However, the links being designed were expected to be as

reliable as a backplane; so the gains from having retry did not seem worth the costs.

Any future versions of PaRC would probably be done in a smaller geometry process

which would allow more gates per die. This would allow more packet bu�ering to be

added, so including retry would not have much of an e�ect on throughput.

A �nal possible change would be incorporating additional routing paradigms. The

current paradigms work very well when the network can be divided into a small

number of stages such that a message will only pass through a given stage once.

In these networks messages tend to pass through only O(log n) switches. Butter
y

networks and fat trees are two examples of this. Networks where messages make

many more hops, such as in a mesh, do not �t this structure well. PaRC can only be

used to implement very small networks of this type. There are a number of ways the

routing mechanism could be extended to support this. One is to allow each PaRC to

be given an ID equal in length to the routing data. Each port would look at certain

bits of a packet's routing data, compare it to the same bits in the ID, and choose

the output port based on how they compare. This would give enough
exibility to

support other networks, such as a multidimensional mesh.

5.2 Summary

Even without these changes, PaRC is a very powerful building block for constructing

networks. We designed PaRC to be able to be used in a large variety of high perfor-

mance networks. There are a number of features of PaRC that make this possible.

88

PaRC can be used to implement networks with both high throughput and low la-

tency. Each port of PaRC provides 800 Mbits/second of bandwidth, and much of

that bandwidth is usable. Also, when a packet comes into PaRC and its output port

is available, the latency of that packet will be at most 5 1

2
cycles (110 ns).

A number of aspects of the design contribute to achieving this performance. In

particular, the design of the packet bu�ers and scheduler help tremendously. The

packet bu�ers do not constrain packets which arrived via the same port to be sent

out in the same order in which they arrived. In addition, the packet bu�ers allow

many bu�ers from the same port to be read simultaneously. These properties greatly

reduce the amount of blocking that occurs since an output port will never be blocked

because another output port is using resources that it needs. In order to e�ectively use

the large number of independent packet bu�ers, the scheduler uses a �fo of requests.

This provides a very fast scheduler; the scheduler can process a request on the same

cycle the request is made. The bu�ers and schedulers allow a packet to be read out

before the entire packet has been received. This virtual cut through is essential in

minimizing the latency of packets. Using scheduler �fos also provides a very equitable

scheduling strategy, coming very close to a �rst-in-�rst-out ordering.

The interface also helps to make e�ective use of the bandwidth. The interface does

not need a dedicated line to indicate when packets begin. Given a �xed interconnec-

tion bandwidth, this increases the bandwidth available for data. Also the interface

protocol does not require idle time between packets; so if packets are available, they

will be sent out continuously. Of course engineering PaRC to run at a high speed, 50

MHz, helps by giving each port a high raw bandwidth.

PaRC provides a great deal of
exibility for the interconnection networks built out

of it. Much of this
exibility comes from its routing mechanisms. Many types of

networks can be built out of PaRC. Networks with up to 215 distinctly addressed

nodes are supported. The basic mechanism allows routing to be based on any two

bits of a packet's routing information. Routing can also be in
uenced by which

port the packet used to enter the chip. For networks which have several paths to a

89

destination, PaRC allows routing decisions to be based upon congestion. This can

help to even out the
ow of messages. The butter
y and the fat tree are just two

examples of the types of networks which can be built out of PaRC.

Interconnection
exibility is also provided in ways other than routing. PaRC uses

an asynchronous clocking scheme, wherein it assumes that each input port operates

and receives data asynchronously from the rest of the chip. This allows PaRC to be

used in a machine regardless of whether a synchronous clock is available. This, along

with PaRC's
ow control mechanism, allows the use of a wide variety of link lengths.

Lastly, PaRC provides a statistics facility so that we are able to determine how well

a network is performing.

PaRC also provides a high degree of reliability. PaRC includes 32 bits of CRC

error checking in every packet. This is used to ensure that messages have not been

corrupted. PaRC also checks for errors when packets are not being received. This

helps to prevent packets from being unknowingly lost if a start of packet indicator

is missed. Checking for errors when packets are not being received also helps by

detecting problems as soon as they occur. This may allow us to stop the use of a bad

connection before any data has been lost.

PaRC is also able to provide a fast acknowledgment that a packet has been received.

By using circuit switched packets when an acknowledgment is needed, we can provide

an acknowledgment more quickly than by other methods. (When an acknowledgment

is being sent back to the sender, it takes under 15ns to pass through a PaRC chip.)

This method also reduces tra�c since no extra packets need to be sent to provide the

acknowledgment.

The PaRC chips described in this report have been fabricated by LSI Logic, and

have successfully run the test vectors. Several Monsoon processor boards have been

built, each incorporating a single PaRC chip which operates at full speed for receiving

and sending tokens. PaRC has been tested in these boards and so far no problems

have been found. Early in 1991 4x4 switch boards built using a PaRC chip will be

available. These will allow larger versions of Monsoon to be built.

90

Appendix A

PaRC User's Guide

A.1 Introduction

PaRC is a 4 by 4 packet routing switch which has been designed and fabricated as a

CMOS gate array. PaRC receives packets via one of its four input ports, stores the

packet in an on-chip bu�er, and eventually transmits the packet via one of its four

output ports. Each input port operates asynchronously and has enough bu�ering to

store four packets. PaRC can operate at speeds up to 50 MHz, giving each port a raw

bandwidth of up to 800 Mbits per second. The bu�ering and scheduling algorithms

implemented in PaRC allow PaRC to make e�ective use of this bandwidth, while

providing a low latency (as low as 51
2
cycles). The routing mechanism in PaRC allows

it to be used in a wide variety of networks. In addition, PaRC provides a mechanism

whereby a processor can quickly receive an acknowledgment when a packet it sent

has been received. This user's guide will �rst give an overview of the chip, and then

describe the details of the function of the chip. It will not describe the details of the

implementation, except where such details are necessary to understand the behavior

of the chip. Also, this document will only give a sketch of why PaRC functions as it

does. For more information on this, and on the implementation, see the body of this

document.

These are the components which make up PaRC, along with their primary function:

� 4 input ports: receive packets

� 16 packet bu�ers (4 per input port): store 1 packet per bu�er

� 4 output ports: each made up of:

91

{ transmitter: transmit packets

{ scheduler: determine which packet should be sent next

� 1 control port: used to control the operation of PaRC

The input port is the section of PaRC that receives incoming packets. Each input

port has 4 packet bu�ers associated with it. When the input port detects the begin-

ning of an incoming packet, it chooses an empty bu�er and writes the packet into

that bu�er. As it does this it checks the packet for errors by the use of a CRC code.

It must also determine which output port the packet should go to, and inform that

output port's scheduler that a packet is waiting and where it is being stored. The

input port must also generate a
ow control signal, so that it does not receive more

packets than it has room for.

Each packet bu�er can store exactly one packet. For performance reasons a bu�er

must have several characteristics. It must be able to begin reading out a packet while

that packet is still being written into the bu�er. This helps decrease the latency of

packets. Also, it is important that each bu�er can be read by any output port at

any time, regardless of which other bu�ers are currently being read. This will greatly

decrease blocking in PaRC and thus improve both throughput and latency.

Each output port consists of a scheduler and a transmitter. The scheduler keeps

track of all the packets which wish to use the output port and chooses which packet

will be transmitted next. If two or more of the waiting packets were received via

the same input port, the scheduler guarantees that they are transmitted in the same

order in which they arrived. When the transmitter is ready to send a packet, it �rst

�nds out from the scheduler where the next packet is being stored. The transmitter

then reads the packet out of a packet bu�er and transmits it to the next stage of the

network. If the packet is one which requires an acknowledgment (such packets are

called circuit switched packets), the transmitter must also keep track of the packet's

input port and begin to look for an acknowledgment that the packet has reached its

destination. When this acknowledgment arrives, the transmitter must pass back an

acknowledgment through the packet's input port.

The control section has two main functions. One function is to keep statistics on

the performance of the network. The other is to act as an interface to the network

control system. This interface can be used to control and monitor the performance

of PaRC. In particular, the control section contains a series of registers each bit of

which controls di�erent aspects of PaRC. These bits will be referred to throughout

92

this guide, however the details of the reading and writing of these registers will be

described only in the section on the control port.

A.2 Input Port

A.2.1 Input Data Bus

An input port is responsible for receiving packets into PaRC. It receives packets over

a 16 bit data bus called, for input port x, DINx.[15..0]. It also receives a clock, called

XCLKx, which is used to clock in the data on DINx. The rising edge of this clock

must occur while the data is stable. The input port will be operate based on this

incoming clock. Each port's XCLK is assumed to be asynchronous from the other

XCLKs and from ICLK, PaRC's main clock. However, each XCLK must have a

frequency close to ICLK's (within 10%).

A PaRC packet is 192 bits long, made up of 12 16-bit words. The �rst 16 bit word

is a header. The header contains all the information needed for routing the packet.

The next 9 words are data and the �nal 2 words normally contain the CRC value

which is used for error checking. Packets cannot be interrupted or canceled. Therefore

once the �rst word of a packet is received, the next 11 words will be received on the

following cycles.

WORD USE WORD USE

0 Header 6 Data word 5

1 Data word 0 7 Data word 6

2 Data word 1 8 Data word 7

3 Data word 2 9 Data word 8

4 Data word 3 10 CRC word 0

5 Data word 4 11 CRC word 1

PaRC Packet Format

During each cycle the input port will receive a word on its DINx bus, and it must

decide whether or not this word is part of a packet. This is done by using bit 15 as a

93

start-of-packet (SOP) bit. If the input port is not currently receiving a packet, and if

the new word has 0 in its start-of-packet bit, then this word is not part of a packet;

it is an idle word.

When a word arrives where this bit is 1, that word is taken to be the �rst word of

a packet. Since packets cannot be interrupted, the next 11 words must be the rest of

the packet, and can use bit 15 as a data bit. Once the packet ends, the input port

begins to look at the start-of-packet bit again. There is no need for an idle word

between packets; a new packet may begin immediately after the previous one has

completed.

When an input port is not receiving a packet, it should be receiving one of two idle

patterns: x5555 and x2AAA. (Note that bit 15 of each of these words is a 0.) If the

input port receives a word that is not the start of a new packet (i.e., bit 15 is a 0.),

but is not an idle pattern either, then an idle error (IDLERRx) occurs. The control

port is informed that this error has occurred, and the input port continues operating,

treating the word as an idle word. Checking for idle patterns can be disabled by

setting the CHK-IDLE bit [bit 4 of the STATUS1 register] in the control port to 0.1

Idle patterns are used to allow the input port to catch almost all transmission

errors. Here are the possible transmission errors, and how they will be detected:

� Error occurs inside of packet (i.e., any bit except SOP bit). This will cause a

CRC error.

� Error turns SOP bit from 1 to 0. This will cause an idle error.

� Error occurs in bits 0-14 of idle pattern. This will give an idle error.

� Error occurs in bit 15 of idle pattern (i.e., turns SOP bit from 0 to 1.) This

will create a packet which will cause a CRC error.

This makes it very unlikely that an undetected error will occur. And when errors

do occur, it will be easy to pinpoint their location since we can tell where the error

�rst appeared.

In addition to the start-of-packet bit, the header also has two other uses. Bits

13..0 are used as a routing address to determine which port the packet will be sent

1Only one idlerr is asserted for each burst of bad idle words. This may be more meaningful than
counting each individual error, especially since the idle-error counter only counts up to three.

94

to. This provides 214 distinct routing addresses. The section on routing describes

how these bits are used. Bit 14 is used as a \circuit switch" indicator. If this bit

is 1 then then the packet is treated as a circuit switched packet (CSP). Optionally,

the circuit switch feature can be turned o� by setting the ALLOW-CSW bit [bit 0 of

the STATUS2 register] in the control port to 0; when this is done no packets will be

treated as circuit switched packets. Bit 14 can also be used as an additional bit of

the routing address. Usually this is only done when ALLOW-CSW has been set to 0.

Header Format

Bit 15 Bit 14 Bits [13..0]

1 CSP/ROUTE-DATA.14 ROUTE-DATA.[13..0]

Also, it is possible to \turn o�" an input port. This should be done, for example,

before a link talking to an input port is replaced or resynchronized. Each input port

has a nSTOP bit in the control section. When this bit is 1, packets are received

normally. When it is set to 0, the packet currently being received (if any) will be

accepted normally, but no more packets will be accepted until the bit is returned to

1. The nSTOP bits are found in the nSTOP register of the control section. Bit x of

nSTOP.[3..0] is the stop bit for input port x.

Each input port only has enough bu�ers to store four packets. The
ow control

mechanism should prevent packets from arriving when there are no bu�ers for them

(see Section A.2.5). If a packet arrives when there is no room for it the control port

is noti�ed that a room error (ROOMERRx) occurred. The input port will read in

the rest of the packet normally and then simply discard it.

A.2.2 CRC

Error checking is done on packets by use of a Cyclic Redundancy Code (CRC). PaRC

uses a 32 bit checksumand accumulates values using the CRC32 polynomial.2 As they

are received, the header and the 9 data words are accumulated to give a checksum.

This checksum is the 32 bits that should appear in the �nal two words of the packet:

CRC0 and CRC1. CRC0[15..0] are bits [31..16] of the checksum. CRC1[15..0] are

bits [15..0] of the checksum.

2The polynomial used is x32 + x
23 + x

21 + x
11 + x

2 + 1.

95

With CRC codes, it is possible to prove that certain classes of errors will always be

detected. When checking a packet for errors, the CRC32 code used will always detect

an error when there are only 1, 2, or 3 erroneous bits in a packet, when there are

an odd number of errors in a packet, or when all erroneous bits occur within a span

of 32 bits. This last property means that if all errors in a packet occur within two

consecutive PaRC data words, errors will always be correctly detected. For errors

which span more than 32 bits, the probability of an error going undetected is less

than 1 in 109. Additionally, when errors occur on only one of a port's 16 data input

lines, this code will always detect the errors.

When a packet arrives, the input port will check to see if the CRC is correct. If

input port x detects an error then a CRC error (CRCERRORx) occurs. When this

happens the input port noti�es the control section, but continues operating normally.

CRC checking can be shut o� by setting the CHECK-CRC bit [bit 1 of the STATUS1

register] in the control port to 0. PaRC can also be told to generate the CRC; this is

done by setting the GEN-CRC bit [bit 0 of the STATUS2 register] in the control port

to 1. When this is done the input port will ignore the last two words of incoming

packets and replace them with the correct CRC words. Note again that the two

words which would otherwise have been the CRC are ignored; an input port will not

begin to look for a new packet until after these two dummywords have been received.

Also, the value of the CRC control bits are used by a packet only as it arrives. If, for

example, GEN-CRC is 0 while the packet is being received, but later changes to 1, a

CRC will not be generated for the packet.

PaRC may also be con�gured to use only one 16 bit CRC word. This is done by

setting the CRC2 bit [bit 2 of the STATUS1 register] to 0. If this is done the �rst 11

words of the packet are used for generating the checksum. The next word is expected

to be bits [31..15] of the generated checksum. PaRC can check or generate CRCs in

this mode, based on the GEN-CRC and CHECK-CRC bits described above. This is

available to provide some error checking in the event that more data needs to be put

into each PaRC packet. Use of the CRC1 and CHECK-CRC bits allows PaRC to be

con�gured to have packets with 9, 10 or 11 words of data (with 2, 1, or 0 words of

CRC, respectively).3

Normally only zero or one of GEN-CRC and CHECK-CRC need be set. If both are

set PaRC will generate a CRC and check this generated CRC. An error (CRCERR)

would be found only if there were a serious problem (e.g., setup/hold time violation

3Additionally, bits in the header which are not used for routing could be used as data bits.

96

or a defective chip).

A.2.3 Routing

When a packet arrives, the input port must decide which of the 4 output ports should

transmit the packet. This is where the 14 (or 15) ROUTE-DATA bits from the header

are used. Each PaRC chip can be made to look at di�erent bits of ROUTE-DATA.

This allows networks of size 214 = 16K to be supported (32K if no circuit switched

packets are needed).

The control section of PaRC contains an 8 bit register called RINF. This controls

which bits of the header are used in determining the destination of a packet. The

destination is a two bit number which designates one of the 4 output ports (numbered

0 to 3). Each bit of this destination is determined separately. The 4 higher order bits

of RINF control the selection of the higher order bit of the destination. The 4 lower

bits of RINF control how the lower bit of the destination is selected.

Normally each of the 4 bit values within RINF designates one location in the

header, and the bits from the designated locations are concatenated to form the

destination. If RINF[7:4]=x and RINF[3:0]=y then the bit 1 of the destination is

ROUTE-DATA.x and bit 0 is ROUTE-DATA.y. For example: if RINF = x10, then

the lower two bits of the header are used as the routing address.

There are 2 RINF values that are treated di�erently: E and F. A RINF value of F

does not select bit 15 of the header (it is always 1 anyway), but instead selects a bit

from the input port's location. F in the upper part of RINF means use the upper bit

of the input port's location, while F in the lower bit means use the lower bit of that

port's location. This allows routing to be in
uenced by which port a packet arrived

in. For example, in port 2 (= b10) an F in the upper nibble of RINF means the upper

bit of the destination is always 1. An F in the lower nibble means the lower bit of

the destination is always 0.

The value E is only treated specially when it appears in the lower part of RINF.

E means that \UP/DOWN" routing is being done. In this mode, the upper bit of

the destination is chosen �rst. This narrows down the possible output ports to two.

The destination is then set to the port (among the two possibilities) with the shortest

request queue. (Actually, since there is some delay, it is sent to the port which had

the shortest queue 2 or 3 cycles ago).

97

When the value E appears in the upper part of RINF, it is treated normally; i.e.,

it causes ROUTE-DATA.14 to be used as the upper bit of the destination. When this

is done Circuit Switching would usually be disabled, as bit 14 is also used to indicate

a circuit switched packet.

Also, the value of RINF should not be changed while packets are being received,

as this may cause unpredictable results. To change this value while the network is

in use, you must �rst guarantee that no packets are being sent to the input ports.

This may be done by asserting all of the WAIT signals, or by temporarily stopping

the output ports that are sending packets to this port. [See below for information on

how to do these.]

The following table summarize this information, and the next table gives some

examples.

ROUTING INFO

8 bits (X,Y): 4 bits each for upper and lower bits

X == get upper routing bit from Xth bit of header.

Y == get lower routing bit from Yth bit of header.

Exceptions:

X == xF: set upper bit to be the upper bit of that port's location.

Y == xF: set lower bit to be the lower bit of that port's location.

Y == xE: Choose between ports 0 and 1 (if upper bit is 0; else 2 and 3)

based on which output port has fewer packets waiting to use it.

98

RINF Examples

RINF Function (where X,Y are not one of the special values)

10 Routes based on lowest two bits.

XY Routes packets based on bits X,Y.

XX Routes packets to port 3 or 0 based on bit X. [= 4x2 routing]

FF Sends packets out same port they came in.

FY Acts as two parallel 2x2 routers: [= 2*(2x2) routing]

Packets coming in on upper ports(3,2) go out one of

the upper ports. The value of bit Y determines which one.

(Likewise for lower ports).

XE Does up/down routing

Based on bit X choose between upper or lower ports.

Then choose the output port with the shortest queue.

FE Acts as two parallel 2x2 \equalizers:"

Packets from upper ports sent to the upper port with shortest queue.

Packets from lower ports sent to the lower port with shortest queue.

A.2.4 Bu�er Use

There are four packet bu�ers associated with each input port. When PaRC is reset

each of these bu�ers is marked as empty. When the input port begins to write a

packet into one of these bu�ers, it is marked as full. When that packet is mostly read

out, it is marked as empty, and a new packet can then be stored in that location.

The state of these bu�ers may be determined by reading locations C and D in the

control port. These locations are called BIU20 and BIU31. BIU20 gives the Bu�er-

In-Use information for the bu�ers in ports 2 and 0. Each bit corresponds to one of

the bu�ers and is high i� that bu�er is in use.

BIU20

bit bit

7 6 5 4 3 2 1 0

BIU2.3 BIU2.2 BIU2.1 BIU2.0 BIU0.3 BIU0.2 BIU0.1 BIU0.0

99

BIU31

bit bit

7 6 5 4 3 2 1 0

BIU3.3 BIU3.2 BIU3.1 BIU3.0 BIU1.3 BIU1.2 BIU1.1 BIU1.0

where,

BIUX.Y = BUFFER-IN-USE bit for bu�er Y of port X, and is high i� that bu�er

is in use.

A.2.5 Flow Control

Flow control is needed on a connection (also called \link") to prevent packets from

arriving when there are no bu�ers available to hold them. In PaRC, input port x

produces the signal WAITx which must be sent \backwards" from each input port

to the transmitter which sends data to that input port. When an input port brings

its WAIT signal high, the transmitter which is sending packets to it should not send

any new packets until the cycle after WAIT goes back low.

There are 2 modes for determining WAIT: Normal mode, and LWAIT mode. The

normal way that WAIT is produced is that it is high only when all four of an input

port's bu�ers are in use. This is the ideal signal since it will make optimal use of an

input port's bu�ers. However this mode will work correctly only if the connection

between the transmitter and the input port is not too long. If the transit time between

transmitter and input port is too long, the WAIT signal will not be received in time

to stop the next packet from being sent.

In order for WAIT to go high in time to stop the next packet from being sent, the

following must be true.:

Tstop�next�packet > Tdata�transit + Tproduce�wait + Twait�transit

where,

Tstop�next�packet = Time from when word 0 is sent (i.e., when DOUT.16, the clock

generated by the output port, rises) to when the received WAIT must go high

in order to guarantee that the next packet will not be sent. (In PaRC this is 9

cycles.)

100

Tdata�transit = Time from when word 0 is sent to when it is received at the input

port.

Tproduce�wait = Time from when word 0 is received by the input port to WAIT goes

high. (15 ns)

Twait�transit = Time from when WAIT is sent by the input port to when it arrives

at the output port.4

From this we calculate that when 2 PaRCs are communicating, normal mode can

only be used if the transit time from the transmitter's DOUT to the input port's DIN

plus the transit time from the input port's WAIT to the receiver's INFI pin is less

than 8 cycles. This mode should be used wherever possible since it will provide more

e�cient utilization of bu�ers than will LWAIT.

For longer connections, we need WAIT to go high sooner. This is done by entering

LWAIT mode by setting the USE-LW bit (bit 2 of the STATUS2 register) in the

control section. WAITx will now be high whenever there are only 0 or 1 bu�ers

available in input port x. So when an input port raises WAIT, it can still safely

receive one more packet. This allows us to add over 11 cycles to the Tstop�next�packet

time given above. This will allow links much longer than we expect to use.

The disadvantage of using LWAIT is that it allows available bu�ers to remain

unused. This can happen at two times:

� When the number of available bu�ers drops from 2 to 1. WAIT may go high in

time to stop the next packet, thus leaving one of the bu�ers unused.5

� When the number of available bu�ers rises from 0 to 1. There is now an available

bu�er, but it will not be used until a second bu�er becomes available.

The generation of WAIT in LWAIT mode can be modi�ed to attempt to avoid

these situations by setting FANCY-LW (bit 3 of the STATUS1 register) to 1 (while

keeping USE-LW at 1). When this is done the generation of WAIT is a�ected in the

following ways:

4
Tdata�transit may not be the same as Twait�transit. If a DLC (Data Link Chip) is used between

two PaRCs then Tdata�transit will be longer since the data must be latched in by the DLC chip and
serialized, while the WAIT signal can be passed on untouched.

5This will tend to happen on links which are just long enough to require the use of LWAIT.

101

� When the number of available bu�ers drops from 2 to 1, the rising edge of WAIT

will be delayed for 2 cycles.

� When the number of available bu�ers rises from 0 to 1, WAIT will go low for

approximately 2 cycles.

Both of these will allow the transmitter to send a packet (if it has one) into the

fourth, previously unused, bu�er. When WAIT �rst goes high, the �rst change should

delay the rise of WAIT long enough to allow the transmitter time to send a packet

into the fourth bu�er.6 With the second change, when all bu�ers are full and a packet

leaves, WAIT will go low for a short time, thereby allowing a new packet to be sent

to take its place. For both of these modi�cations, there is only a small window of

time when a packet will be able to be sent into the only empty bu�er. If no packet

needs to be sent during that time, then the bu�er will remain empty. So the fourth

bu�er will be most e�ectively used during times of heavier tra�c, and that is exactly

when it is needed most.

The FANCY-LW bit has no e�ect when LWAIT is 0. It is expected that when

using LWAIT, FANCY-LW will always be used. Only in the very rare cases when

there are extremely long links would it need to be turned o�.

Occasionally it is useful to force the input ports to assert WAIT. For example, if

we wanted to turn o� the input ports of a PaRC we should �rst assert all WAITs so

that the transmitters talking to those input ports will stop sending packets. When

the WAIT-ALL bit in the control port [bit 3 of the STATUS2 register] is set to

1, all WAITs will be forced high. Also, all WAITs may be forced high if the chip

enters \Passive Mode" after encountering an error. This will be described in the

documentation on the control section.

A.3 Output Port

Output ports are made up of 2 components: a scheduler and a transmitter. The

scheduler is responsible for determining which packet should be sent next. The trans-

mitter is responsible for transmitting that packet.

6This is done at the expense of removing two cycles from the allowable round-trip link transit
time.

102

A.3.1 Scheduler

The job of the scheduler is to tell the transmitter which packet is to be transmitted

next. It does this by maintaining a FIFO queue of packets which want to use its

output port. When the transmitter wants to send another packet, the scheduler will

tell it which bu�er the packet is stored in and whether or not that packet is a circuit

switched packet. Since the queue is FIFO, packets going to the same port will be sent

o� the chip in the same order in which they arrived, even if they arrived via di�erent

input ports. However, packets which arrived on di�erent ports within 2-3 cycles of

each other may be transmitted in any order.

Each scheduler keeps a running count of how many packets are in its queue. The

lower four bits of these counters may be examined by reading locations E and F in the

control port. These locations are called SI20 and SI31. SI20 gives this information

for the schedulers in ports 2 and 0; SI31 for ports 3 and 1.

SI20

bit bit

7 6 5 4 3 2 1 0

SI2.3 SI2.2 SI2.1 SI2.0 SI0.3 SI0.2 SI0.1 SI0.0

SI31

bit bit

7 6 5 4 3 2 1 0

SI3.3 SI3.2 SI3.1 SI3.0 SI1.3 SI1.2 SI1.1 SI1.0

where,

SIx.[3..0] are the lower 4 bits of the scheduler counter for output port x.

This count is also used in UP/DOWN routing. On each cycle the count for output

port 3 is compared to that of output port 2. If output port 2 has fewer waiting

packets, then packets that want to go to an upper port will be sent to output port

2; else they will be sent to output port 3. A similar comparison is done for output

ports 1 and 0.

103

A.3.2 Transmitter

The transmitter of output port x sends out its data over a 16 bit bus which is called

DOUTx.[15..0]. It also generates an output clock called DOUTx.16. This clock is

generated from the falling edge of ICLK and rises when the data on the DOUT bus

is stable.

The format of packets on this bus is identical to the packet description given in

the discussion of the input port. Whenever the transmitter is not sending a packet, it

will generate an idle pattern. Normally the idle pattern will alternate between x5555

and x2AAA. But if the TOG-IDLE bit [bit 5 of the STATUS1 register] is set to 0,

only the idle pattern x5555 will be used.

Output port x receives the
ow control signal INFIx.1 (also called WAITINx).

When this signal goes high the transmitter will not begin to send any new packets.

(Any packets already being sent will continue normally.) Since PaRC must synchro-

nize this signal, a packet may still start during the 2 to 3 cycles after it is brought

high. Similarly, no packets will be begun during the 2 to 3 cycles after this signal

goes low.

Circuit Switched Packets

If the sender of a packet wants to be informed when the packet has arrived, the

sender can designate the packet a circuit switched packet. Circuit switched packets

are sent through the network in the same manner as normal packets. The di�erence

is that as a circuit switched packet passes through a switch, the transmitter keeps

a \back pointer" to where the packet came from. These back pointers can then be

used to send an acknowledgment to the packet's sender. When a transmitter sends

a circuit switched packet, it enters circuit switch mode (CSmode) and remembers

which input port the packet arrived through. It then begins to watch its INFI0.x

input (also called RELIN.x) for an acknowledgment signal, which is indicated by an

active high pulse. This input is driven by the RELOUT signal of the input port

this transmitter is sending to. When this acknowledgment arrives, the transmitter

exits CSmode and sends out an acknowledgment signal on the RELOUT line of the

remembered port. (This acknowledgment is also a single high pulse.) While waiting

for an acknowledgment, a transmitter can continue to send out normal packets. But if

a second circuit switched packet needs to be sent out during this time, the transmitter

104

will generate idles until the �rst circuit switched packet's acknowledgment is received.

The next circuit switched packet can then be sent.

The transmitter can be set up to generate an acknowledgment, instead of waiting

for one. This is done by setting the GEN-ACK bit [bit 1 of the STATUS2 register] to

1. When this is done, the transmitter will generate the appropriate acknowledgment

as soon as it starts to transmit a circuit switched packet.7 Note that the ALLOW-

CSW bit is not used in the output port. If a packet is determined to be a circuit

switched packet when it arrives, it will be treated as such, even if ALLOW-CSW is

later set to 0.

Other Details

On each cycle each transmitter characterizes the use of its output link during that

cycle. A link is considered to be in one of four states:

Idle: No packets being sent, or waiting to be sent.

Xmit: A packet is being sent.

CSWait: No packet is being sent because we are waiting for an

acknowledgment, and a circuit switched packet is to be sent next.

Wait: No packet is being sent, but one would be sent if WAIT were low.

This information is called XINF and is used by the control port for keeping statis-

tics. These values can be obtained by reading location 7 of the control port. This

location gives the following values:

XINF

bit bit

7..6 5..4 3..2 1..0

XINF3.[1..0] XINF2.[1..0] XINF1.[1..0] XINF0.[1..0]

where,

XINFx.[1..0] = the XINF value for output port x.

7It is expected that this bit will be set for the next-to-last stage of the network, and the �nal
stage will have ALLOW-CSW set to 0. This will cause the acknowledgment to be generated when
the packet leaves the next-to-last stage of the network. The acknowledgment can be generated at
that time because once a packet is sent to the last stage of the network, no new packets will be able
to get in front of it.

105

Encoding of XINF

XINF Meaning

00 WAIT

01 CSWAIT

10 IDLE

11 XMIT

Also, it is possible to turn o� an output port. When this is done, the transmitter

will complete any packet it was in the process of sending, but will not start to send

any more packets. Packets can still be routed to this port, but the packets will not

be transmitted until the port is turned back on. To turn o� an output port, its bit in

the nSTOP register [location 1 in the control section] must be set to 0. The nSTOP

bit for output port x is bit (x+ 4) of the nSTOP register.

A.3.3 ICLK

ICLK is the clock which PaRC uses as its main clock. ICLK may be running at

any frequency up to 50MHz. ICLK is assumed to be asynchronous to the incoming

XCLKs. But the frequencies of each XCLK must be close to that of ICLK. Each

XCLK is assumed to have a period that di�ers from ICLK's period by no more

than 10%. ICLK is used both as the main internal clock and also to generate the

DOUTx.16 clock that is output by each transmitter.

A.4 Control Section

The control section performs a number of functions which a�ect the operation of the

entire chip. In particular, it implements the control port which allows a network

control system to control and monitor the performance of PaRC. The control section

also keeps statistics on how the output ports are being utilized. To the user, the

control port looks like 64 locations which can be read or written.

106

A.4.1 Reset

PaRC can be brought into a known state by resetting it. This can be done either by

a pin reset or by a reset command. A pin reset is done by bringing the nRESET line

low. A reset command is done by writing any value to location 5 of the control port.

When PaRC is reset all packets currently stored, being received, or being transmitted

will be lost. Once the reset ends, each input port will be ready to receive new packets,

and will have 4 available bu�ers to store them in. During reset, each output port will

begin to send an idle pattern. After the reset ends, the output port will be in the idle

state and will have no packets waiting to use the port. The only values which may

be retained during a reset are in the control port. If statistics were being gathered

while the reset occurred, then the statistics values are no longer valid; otherwise these

values will be retained during a reset. When a command reset is done, the values in

the writable control registers (locations 0-4), and the error counters will be retained.

During a pin reset these values will be reset to their default state.

The nRESET input is asynchronous; when this line is brought low the reset will

begin to take e�ect almost immediately. It should be held low for at least 4 cycles. The

reset can be considered over, and PaRC full ready for use, two cycles after nRESET

goes back high. When a reset command is given the reset will begin several cycles

later, and will last for 6 cycles. The reset can be considered complete 12 cycles after

the command was given.

A.4.2 Control Locations

The last 48 locations are used solely for statistics and will be described later. The

�rst 16 locations are used for a variety of purposes. Most of these locations have

already been mentioned. The following table summarizes these locations:

107

PaRC Registers 0 - F

Location Default Register

(hex) Type Value (hex) Name

0 RW 10 RINF

1 RW FF nSTOP

2 RW 00 STAT INFO

3 RW 3E STATUS1

4 RW 01 STATUS2

5 C - PaRC Reset

6 C - Error Reset

7 R/C - XINF/Sync-Link cmd

8 R 00 CRC Error

9 R 00 IDLE Error

A R 00 ROOM Error

B R 00 LINK Error

C R - BIU20

D R - BIU31

E R - SI20

F R - SI31

Where Type means:

RW = Can read and write this value.

R = Can only read this value.

C = \Command Location" Doing a write to this location causes a

command to be executed. The value written is ignored.

The default value is the value the register is loaded with when a pin reset is done.

Errors

Previous sections have described how CRC, Idle, and Room errors are detected by

an input port. When one of these errors occurs, the control port increments the

108

appropriate error counter. For each error type there is a two bit error count for each

of the four ports. When one of the CRC, Idle, or Room error locations are read, the

four error counts for that error will be output. These three error locations can be

interpreted as follows:

ERROR Counters

bit bit

7 6 5 4 3 2 1 0

P3EC1 P3EC0 P2EC1 P2EC0 P1EC1 P1EC0 P0EC1 P0EC0

where:

PnEC1 PnEC0 errors from port n

0 0 no errors

0 1 1 error

1 1 2 errors

1 0 3 or more errors

The only other errors that can occur are link errors. Each output port may be

directly connected to another input port. However, when PaRCs on di�erent boards

communicate, data-link-chips (DLCs) will often be used. A link transmitter will

receive an output port's data, multiplex it onto fewer wires, and transmit the data

between boards. A link receiver will receive the data, demultiplex it, and present it to

an input port. Each link transmitter can generate two types of errors called link-error

and link-gray. (Produced by the link chip outputs TSYNCERR and TGRAYERR.)

The PaRC chip receives information about these errors on the inputs LINKERR.[3..0]

and LINKGRAY.[3..0]. The ith bit of each of these buses should come from the link

chip connected to the ith transmitter. A rising edge on one of these inputs is used to

indicate an error.

For each of the link and gray errors, the control port only has a one bit counter.

(Once a link chip produces an error, it will not signal another error of that type until

it has been reset.) This bit is 0 if no such error has occurred, and 1 if the error has

occurred. These bits can be examined by reading the LINK-ERROR location. The

value produced can be interpreted as follows:

109

Link Error Information

bit bit

7 6 5 4

LinkGray.3 LinkGray.2 LinkGray.1 LinkGray.0

Link Error Information

bit bit

3 2 1 0

LinkErr.3 LinkErr.2 LinkErr.1 LinkErr.0

where,

LinkGray.x = 1 if there has been a gray error from link chip x.

0 if there has not been a gray error from link chip x.

LinkErr.x = 1 if there has been a link error from link chip x.

0 if there has not been a link error from link chip x.

A PaRC chip can be made to ignore gray errors. This is done by using the CHK-

GRAY bit (bit 4 of the STATUS2 register). When this bit is set to 0, any gray errors

will be ignored.

PaRC produces an ERROR output. This bit will go high whenever an error has

been detected, and it will stay high until the error counters are reset. When ERROR

goes high, the four error locations should be read to determine what type of error

occurred. Note that if an error occurs while we are not checking for that type of error

(e.g., a Gray error while CHK-GRAY is 0), then ERROR will not go high.

When the control port is informed of an error it may put the chip into \Passive

Mode." When in passive mode, output ports will not begin to transmit any more

packets, and all input ports will assert WAIT.8 Whether or not passive mode is entered

depends upon the value of the PASS-ERR and PASS-GRAY bits (bits 6 and 5 of the

STATUS2 register). If a Gray error has occurred and both PASS-ERR and PASS-

GRAY are 1, then the chip will be put into passive mode. If any other type of error has

8Passive mode is entered in an attempt to minimize the data lost. For some errors it may prevent
any data from being lost at all.

110

occurred and PASS-ERR is high then the chip will go into passive mode.9 The chip

will remain in passive mode until either the error counters are reset, or PASS-ERR

and PASS-GRAY are changed such that passive mode is no longer indicated.

Command Locations

There are three locations which are used for issuing commands to PaRC. These loca-

tions are called command locations. When a write is done to one of these locations,

PaRC will perform a certain command. For command locations, the command is

executed whenever the location is written to; the value written is ignored. The �rst

of these locations is the PaRC reset command (location 5), and has already been

described. The second is the error reset command (location 6). When this command

is given all the error counters will be reset. The �nal one is the sync-link command at

location 7. Writing this location will cause the synclink output to go high for 6 cycles.

This output will be used to resynchronize the DLC transmitters that are receiving

data from PaRC. Note that location 7 is also used to read the XINF value. When

a read is done the XINF value will be returned, when a write is done the synclink

command is given. Writing this location will have no e�ect on the XINF values.

Status Registers

The bits of the Status registers (locations 3, 4) have been described throughout this

document. The following tables summarize the use of these registers.

9Gray errors indicate a non-fatal errors in the link chip, which means that the data being trans-
mitted is still correct. By treating Gray errors specially, we have the
exibility to continue operating
after a Gray error, but go passive on all other errors.

111

Status1 register

Bit Default Register meaning if bit is high

0 0 Gen-CRC Generate CRC for incoming packets.

1 1 Use-CRC Check CRCs in incoming packets.

2 1 CRC2 Use 2 word CRCs.

3 1 Fancy-LW Use Fancy LWAIT modi�cations to LWAIT.

4 1 Chk-Idle Check incoming idle patterns.

5 1 Tog-Idle Toggle output idle patterns.

Status2 register

Bit Default Register meaning if bit is high

0 1 Allow-CSW Allow Circuit Switched packets.

1 0 Gen-Ack Generate an ack when a CSP is transmitted.

2 0 Use-LW Generate WAIT using the LWAIT de�nition.

3 0 Wait-All Assert all WAIT outputs.

4 0 Chk-Gray Check for Gray errors from the links.

5 0 Pass-Gray Allow passive mode to be entered on Gray errors.

6 0 Pass-Err Enter passive mode when an error is detected.

A.4.3 Statistics

The statistics section is used to obtain information on how the output ports (and

hence their associated links) are being utilized. For each output port we keep track

of four statistics, based on the current state of the output port. The value of the

XINF signal is used to characterize the state of the output port. As described ear-

lier, these four states are: transmitting (XMIT), idling (IDLE), waiting for a circuit

switch acknowledgment (CSWAIT), and waiting for the WAIT signal to be deasserted

(WAIT). The statistic values will give us an indication of how much time the output

ports spend in each state.

The statistics section compiles these statistics, and stores them in a 16x24 ram.

They can be read out through the control port. The STAT-INFO register is used to

112

control the statistics generation. STAT-INFO is a 4 bit register. Two of these bits

are only used for testing and must be set to a speci�ed value10:

STAT INFO

bit bit

3 2 1 0

Mask-SHF 0 0 Stat-Mode

The statistics section can be in one of two modes. When the Stat-Mode bit is 0,

it is in Read-and-Clear mode. During this mode the statistic values can be read or

they can be reset to 0. Since statistics are 24 bit values, and the control port bus is

only 8 bits wide, it takes 3 reads to receive an entire statistics value. When reading a

statistics value the upper two bits of the address determine whether the lower, middle

or upper byte of the statistic is read. The next two bits determine which port the

statistic will apply to. The last two bits determine which of that port's statistics is

read.

Each location can be identi�ed as SCpsb. The p identi�es the port number (0-3),

s identi�es the state (X,I,C,W), and b identi�es the byte (L,M,U). The Lower byte

is bits [7..0] of the value, the Middle is bits [15..8], and the upper is [23..16]. The

following table shows how each byte may be accessed.

10Bit 2 is used for testing the incrementer. If it is high, the incrementer will increment each nibble
of its input. If Bit 1 is high, the statistics section will stay in Read-and-Clear mode. However, instead
of clearing locations, writes to the ram will store either the value coming from the incrementer (if
bit 0 is high), or a value obtained from the control port's data bus (if bit 0 is low).

113

Location Value Location Value Location Value

10 SC0XL 20 SC0XM 30 SC0XU

11 SC0IL 21 SC0IM 31 SC0IU

12 SC0CL 22 SC0CM 32 SC0CU

13 SC0WL 23 SC0WM 33 SC0WU

14 SC1XL 24 SC1XM 34 SC1XU

15 SC1IL 25 SC1IM 35 SC1IU

16 SC1CL 26 SC1CM 36 SC1CU

17 SC1WL 27 SC1WM 37 SC1WU

18 SC2XL 28 SC2XM 38 SC2XU

19 SC2IL 29 SC2IM 39 SC2IU

1A SC2CL 2A SC2CM 3A SC2CU

1B SC2WL 2B SC2WM 3B SC2WU

1C SC3XL 2C SC3XM 3C SC3XU

1D SC3IL 2D SC3IM 3D SC3IU

1E SC3CL 2E SC3CM 3E SC3CU

1F SC3WL 2F SC3WM 3F SC3WU

Statistic Locations

When the statistics section is in Read-and-Clear mode, doing a write to any statistic

location will reset all 24 bits of that statistic to 0. (The value written is ignored.)

When the Stat-Mode bit is set to 1, the statistics section enters AUTO mode, and

begins to compile statistics. The statistics section determines the state of an output

port by looking at XINF. It then reads that state's statistic value from statistic

memory, increments it, and writes the new value back into memory. This process

takes three cycles, after which it is repeated for the next output port. Since there

are 4 output ports, each one is sampled every 12 cycles. Since the packet length is

also 12 cycles, each port's XMIT statistic gives a count of the number of packets that

were transmitted by that port.

In normal use the statistics will be put into Read-and-Clear mode and 16 writes

will be done to reset all locations. Then the statistics section will be put into AUTO

114

mode to collect statistics. It will later be returned to Read-and-Clear mode so that

all statistics can be read. Values can then be reset to 0, and statistic collection can

be begin again.

When collecting statistics, the statistic values must be sampled and reset regularly,

or they may over
ow. Since values are 24 bits long and can be incremented only

on every 12th cycle, over
ow could occur after 224 � 12 cycles. At 50MHz, this is

approximately every 4 seconds. To make it easier to read the statistics before they

over
ow, PaRC can produce a Statistics-Half-Full (SHF) signal. This signals goes

high when a statistic value that is being incremented is more than 223 (i.e., more

than half of its maximum value). It will drop back low when any one of the statistics

values are reset. This signal is only produced when the Mask-SHF bit (bit 3 of the

STAT-INFO register) is 0. If Mask-SHF is set to 1, SHF will always be 0.

A.4.4 Control Port Interface

The control port consists of 64 locations which can be read and/or written via a

simple protocol. It is implemented using several signals:

CAD.[5..0]: The address being operated upon.

CR W: The write line (active low)

CDATA.[7..0]: Bidirectional data bus

C OE: Output enable (active low) for CDATA bus

CDATA is the bidirectional bus on which data is sent to and from the control port.

When C OE goes high the CDATA bus will be tristated within time �cdata�z. A read

is done whenever C OE is low, and CAD has a stable value. If CAD is changed after

C OE is brought low, then after time �read CDATA will have the correct value. The

value of �read depends on the location being read and is listed in the chart below.

If C OE is brought low as, or after, CAD is stabilized then the time until CDATA

has the correct value is the maximum of �read after CAD is stable, and �cdata�en after

C OE goes low.

Remember that the 48 statistic locations can only be read while in Read-and-

Clear mode. An attempt to read or clear a statistic location while statistics are being

115

collected will be ignored.11 Also, remember that the values from the error locations

(8,9,A,B) and the info locations (7,C,D,E,F) simply re
ect the current internal state

of PaRC. As such they may change (asynchronously) while they are being read.

Writes are done by asserting the address on CAD, the data on CDATA, and then

pulsing CR W low. Write pulses must last at least time �wp�min, and be separated by

time �wp�recover . The address must be set up �addr�setup before the write pulse begins

and held until �addr�hold after it ends. The data must be set up �data�setup before, and

held �data�hold after the beginning of the write pulse. When a write is done, it will

take 2 or 3 cycles from the beginning of the write pulse for the write to complete.

When a write is issued, it will occur regardless of the value of C OE. So if a write

is being done to a command location, it is not necessary to bring C OE high and

drive the CDATA bus.

11Reading a statistic location while statistics are being collected will actually return a portion of
that statistic location which the statistics section is currently incrementing.

116

Control Port Timing

CDATA Timing *1

�cdata�z 15 ns Time from C OE rises until CDATA bus is high-Z.

�cdata�en 15 ns Time from C OE falls low until CDATA bus is stable.

Read Timing *1

�read�cntrl 30 ns Read time for Control registers (locations 0,1,2,3,4).

�read�error 30 ns *2 Read time for Error registers (locations 8,9,A,B).

�read�stats 30 ns *2 Read time for Info locations (locations 7,C,D,E,F).

�read�info 40 ns Read time for STATS locations.

Write Timing

�addr�setup 10 ns Time addr should be stable before CR W goes low.

�addr�hold 10 ns Time addr should be stable after CR W goes high.

�data�setup 10 ns Time data should be stable before CR W goes low.

�data�hold 10 ns Time data should be stable after CR W goes low.

�wr�recover 4cycles Minimum time between start of write pulses.

�wp�min 1cyc.+10ns Minimum pulse width on write line.

NOTES:

*1 = These times assume an output loading of 35pf or less on the CDATA bus. If

the loading is greater the delay will be longer.

*2 = These values merely re
ect the current internal state of PaRC; as such they

may change (asynchronously) while they are being read.

117

Bibliography

[1] Arvind, K. Ekanadham, and D. E. Culler. The Price of Asynchronous Parallelism:
An Analysis of Data
ow Architectures. In CONPAR 88, Manchester, England,
1988.

[2] G. A. Boughton. Data Link Chip. Internal Memo, Computation Structures
Group, Massachusetts Institute of Technology, Cambridge MA, March 1989.

[3] W. J. Dally. Virtual Channel Flow Control. In Proceedings of the 17th Interna-

tional Symposium on Computer Architecture, Seattle, Washington, May 1990.

[4] G. L. Frazier and Y. Tamir. The Design and Implementation of a Multi-Queue
Bu�er for VLSI Communication Switches. In Proceedings of the IEEE Confer-

ence on Computer Design: VLSI in Computers and Processors, Cambridge, MA,
October 1989.

[5] G. Grafe and J. E. Hoch. The Epsilon-2 Multiprocessor System. To appear in
Journal of Parallel and Distributed Computing, December, 1990.

[6] C. F. Joerg. Design of a Packet Switched Routing Chip for the Data
ow Su-
percomputer. Bachelor's thesis, Dept. of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge MA, May 1987.

[7] C.E. Leiserson. Fat Trees: Universal Networks for Hardware-E�cient Supercom-
puting. In IEEE Transactions on Computers, vol. C-34, No. 10. October 1985.

[8] R. S. Nikhil. Id Nouveau Reference Manual, Part I: Syntax. Technical Report,
Computation Structures Group, Massachusetts Institute of Technology, Cam-
bridge MA, April 1987.

[9] G. M. Papadopoulos. Implementation of a General Purpose Data
ow Multi-
processor. PhD thesis, Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge MA, August 1988.

[10] G. M. Papadopoulos and D. E. Culler. Monsoon: An Explicit Token Store Ar-
chitecture. In Proceedings of the 17th International Symposium on Computer

Architecture, Seattle, Washington, May 1990.

118

[11] M. C. Pease, The Indirect Binary n-Cube Microprocessor Array. IEEE Trans.

on Computers vol. C-32, No. 12, Dec. 1983

[12] C. L. Seitz. The Cosmic Cube. Communications of the ACM, vol. 28, No. 1.
January 1985.

[13] K. M. Steele. Implementation of an I-Structure Memory Controller. Technical
Report LCS/TR-471, MIT, January 1990.

[14] A. S. Tanenbaum. Computer Networks. Prentice-Hall Inc., Englewood NJ, 1988

[15] Thinking Machines Corporation. Connection Machine Model CM-2 Technical
Summary. Thinking Machines Technical Report HA87-4, Cambridge, MA, April
1987.

[16] S. G. Younis. The Clock Distribution System of the Multiprocessor Emulation
Facility. Technical Report LCS/TR-366, MIT, June 1986.

119

