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Abstract

We present a method for verifying real-time constraints in a distributed, coarse-grain data
ow

environment starting with a program which has already been allocated onto a machine. The

user speci�es the timing of each module together with real-time constraints; and we verify

the constraints. To deduce program's timing, the user speci�es all possible behaviors of each

data
ow module and assigns timing costs to each module's behavior. We use the behavior

and timing of individual modules to derive a data independent timing model for the entire

program. User speci�able constraints include conditional constraints and constraints through

non-deterministic paths. An event-driven veri�cation veri�es constraints. We justify the need

for an event-driven veri�cation, describe design issues, and o�er a tagging scheme for sharing

state among multiple veri�cations.
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Chapter 1

Introduction

Many computerized systems are subject to strict time constraints. Control systems in the oil

logging industry, automated manufacture, space exploration, as well as defense, call for fast,

time-bound response. If a delay in response beyond the speci�ed time-bound would lead to

a system failure (with often dire consequences), the system is classi�ed as a hard real time

system.

1.1 Real-Time Software

The needs of these hard real-time systems di�er from the common needs addressed by the

standard computing environments. Most programming languages abstract functional behavior

from timing considerations. Most operating systems and network protocols o�er a few time

bound services.

This lack of high-level support has lead to many ad hoc approaches. Many time-critical

systems have been implemented at assembly level. Higher level implementations have been

tested on speci�c prototypes with common input cases. Others have been subjected to stochastic

simulations insensitive to small populations and unstable operating conditions { the essentials

of worst case veri�cation. Not surprisingly, such solutions have led to high development costs

and unexpected failures.

In contrast, an optimal real-time system should provide a user with programming ease and

predictability. The system should accept a high-level speci�cation of real time requirements

and verify their feasibility.

Investigated speci�cation approaches vary from integrated program speci�cations as in real-

time languages, to isolated timing speci�cations. Of the programming languages, the best
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known is Ada which allows speci�cation of relative constraints. More thorough treatment of

real time concepts can be found in research languages such as LUSTRE [12], a synchronous, real

time data
ow language. Other approaches range from use of static typing to specify relative

and absolute time predicates [13] to the extension of temporal logic to model states and events

through clock ticks [14].

Veri�cation e�orts vary with the nature of timing constraints. Relative timing constraints

enforce sequencing of events within an execution and can be veri�ed without knowledge of

machine speeds. Absolute timing constraints place absolute bounds on execution latencies and

require knowledge of hardware timing. They are typical of hard real time systems.

Research in veri�cation of relative time constraints has met with much success. Formal

speci�cations such as those based in temporal logic can be used to prove liveness and precedence

relations.

Veri�cation of absolute constraints has generated attention at two di�erent levels, at the low

machine level and at the high speci�cation level. At machine level, commercial projects have

successfully bound system latencies. Masscomp's Real Time Unix [23], for instance, binds sys-

tem response times through �xed priority scheduling for predictable schedules, through memory

locking for processing free of paging and swapping, and through kernel preemption for bound

delay of real time processes due to outside system requests.

At higher level, few of the formal speci�cation methods have succeeded in providing a

clean interface to the low machine level veri�cation. One of the more successful approaches

in this respect has been Jahanian and Mok's real time logic (RTL) [11]. Their logic relies on

safety assertions, maximum delays along each module, for deadline speci�cation. As long as all

assertions are met by the underlying machine, an absolute constraint is feasible. Such assertions

hide synchronization and contention costs and correspond to worst case analysis of individual

latencies as explored by Leinbaugh and Yamini [5].

More accurate latency bounds can be achieved through direct simulation. However, as

Stankovic [1] points out, this approach must tackle the complexity barrier. For all but the

simplest programs, accuracy must be sacri�ced to lower the cost of computing the simulation.
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1.2 Distributed Real-Time Software

The design of a real-time system is further complicated by the frequent use of multiple pro-

cessors, which may be necessary for several reasons. First, the computing power of a single

processor may not be enough to meet hard real time constraints. Second, an application may

require di�erent processor types. And third, acquired data may need to be processed at di�erent

locations.

As a result, an optimal real time system should provide speci�cation and veri�cation meth-

ods within a distributed, heterogeneous environment. This requirement heightens the need for

modular timing speci�cations. It further introduces the need for veri�able real-time communi-

cation and its speci�cations.

1.3 Resource Allocation

A further complication in the design of a hard real time system is the need for an optimized,

predictable resource allocation method. A predictable allocation schedule is essential to absolute

constraint veri�cation. While easy to achieve, predictability has not been required of many

existing schedulers [23].

A reasonably optimized allocation method is essential to meeting absolute constraints. In

an optimal real-time system, one would like an automated allocator to arrive at an optimal

allocation schedule. Such an allocator would be NP complete even for the much simpler case

of two identical processors executing independent tasks with no communication overhead [9].

As a result, all practical scheduling algorithms within a multiple processor environment rely

on heuristics. The most common approach is a back-tracking branch and bound search within

a simulation. Simpli�ed versions include heuristic transformation of a program graph onto a

multiple processor graph, and an independent allocation of computation paths beginning with

the most critical path. Several con
icting goals in these approaches are the minimization of

complexity, the preservation of a global program view, and the consideration of all relevant

time costs.
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1.4 Synopsis

In this thesis, we attempt to develop a technique for dealing with real time constraints in the

context of a device control and data acquisition system for oil well logging. We narrow our

attention to periodic programs and start with an existing software architecture, the Stream

Machine [17]. We augment and simplify the computational model to achieve a simple timing

speci�cation. We analyze constraints and check feasibility within an allocation scheme.

The content of this thesis tracks the progress of its project. Chapter one introduces the

issues and complexity in real time systems and points out related work. Chapter two presents

initial thoughts and goals behind this project. Chapter three describes the targeted applica-

tions and the inherited programming environment, the Stream Machine. Chapter four presents

a speci�cation method for the envisioned real-time costs in our computational model. It out-

lines our approach towards real-time speci�cation and implements this approach. Chapter �ve

presents a speci�cation method for the envisioned real-time constraints. Chapter six o�ers a

veri�cation method for the developed constraint speci�cations. It outlines the initial assump-

tions, and describes and optimizes our veri�er. Finally, Chapter seven of the thesis, draws

results and lessons from the project and suggests areas of further work.
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Chapter 2

Project's Background

2.1 Motivation

The motivation for this work came from the increasing need for feedback control in acquisition

of oil well data. On site acquisition and interpretation of oil well data is the main service of the

Schlumberger Wireline Testing and Service Companies. Schlumberger acquires and interprets

data for clients throughout the world. All acquisition is done with tools and computational

resources contained within a highly customized vehicle, the Schlumberger truck. Upon request,

the regional Schlumberger branch dispatches a truck to a well site, lowers appropriate sensory

tools into the well and acquires data through attached on board computers.

It is essential that well data acquisition be fast and reliable. The acquisition of data halts

the production of oil within a well. As a result, the acquisition must be fast in order to minimize

the lost revenue and operational expense of an idle well. The malfunction of the sensory tools

lowered into the well or of the computational environment can cause delay and loss or damage

of expensive tools. As a result, the acquisition must be highly reliable. Finally, the acquired

data must be accurate and relevant to further interpretation.

The relevance, accuracy, and reliability of the acquisition process can be enhanced through

real-time feedback to the sensory tools. Real-time feedback can increase the accuracy of acquired

data as the tool adjusts its speed, resolution, and other parameters based on feedback data.

Similarly, real-time feedback can improve relevance of acquired data as the tool zooms in on

critical regions of the well and reacts quickly to any aberrations. Finally, real-time feedback

can improve reliability through real time monitoring of tool conditions and prompt recovery of

an endangered tool.
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2.2 The Problem

2.2.1 Feedback

Our process of generating feedback consists of three stages. In stage one, we acquire data

from a periodic source. In stage two, we feed the acquired data to an application program

and compute feedback data. Finally in stage three, we forward feedback data to its target.

Figure 2.1 illustrates the feedback process.

Figure 2.1: The Three Stages of a Feedback Process.

Figure 2.2 illustrates the feedback process within our present domain. In our present domain,

the periodic source of data is a sensory tool lowered into an oil well. Data acquired by the tool's

downhole processor propagates up the well hole into the Schlumberger truck. On board the

truck, the data is accepted by a dedicated acquisition processor. The acquisition processor

communicates with an on board workstation via shared memory. Two on board workstations

may cooperate in computing feedback data. The target of feedback data is, again, a sensory

tool within the well.

We expect our domain to evolve as feedback requirements increase with new sensory tools

and as technology progresses. Speci�cally, we expect to see more computing power on the

Schlumberger truck. Multiple and specialized processors and coprocessors will absorb the in-

creased computational load. As the temperature and pressure resistance of VLSI circuits in-

creases, we also expect to see part of the computing stage shifting from the truck into the well.

A processor within the sensory tool will reduce the data bandwidth between the tool and the

truck and shift low-computation feedback control into the tool.
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Figure 2.2: Resources Utilized by a Feedback Process within our Domain.

2.2.2 Real-Time

The relevance of feedback information varies with time. For example, a feedback directive to

recover a tool becomes irrelevant once the tool has been lost. Similarly, a feedback adjustment

of a measurement technique becomes irrelevant once the measurement conditions have changed.

To achieve our aims, we must

1. constrain the latency of each feedback process, and

2. guarantee to meet imposed constraints.

To guarantee imposed constraints, we must implement each feedback process and verify that

our implementation meets the imposed constraints. To implement a feedback process, we must

assign resources to each of the three stages of a feedback process and write the application

program of stage 2.

One way to verify a feedback latency constraint is to run and time our feedback process

implementation. If the process completes within the constrained time, the constraint has been

met. However, this meeting of a constraint does not re
ect on future invocations of this im-

plementation. For one, the latency of each invocation may be data dependent. Di�erent input
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data may require di�erent computation and propagate through the feedback process at di�erent

speed. To guarantee a constraint, we would need to run and time our implementation for all

possible input values - an unlikely prospect.

Moreover, the individual latencies within an implementation may vary. The latency through

a communication channel, for instance, may depend on the instantaneous contention for that

channel. The latency of code execution may depend on the momentary number of system call

interrupts. While all individual latencies within a feedback process must have a �nite upper

bound to guarantee a real-time constraint, a single run of the feedback process is unlikely to

capture the worst case scenario.

2.3 Goals

The goal of this project is to design a prototype veri�cation system for real-time feedback

processes in the Schlumberger oil well logging context. We start with the present feedback

process model - the Stream Machine. The goal of our system is to integrate into this model

1. speci�cation of implementation's timing,

2. speci�cation or implementation's real-time constraints, and

3. veri�cation of implementation's constraints.
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Chapter 3

Project's Environment

This project builds on top of an existing application domain and an existing feedback process

model. The following chapter describes both the application, the Schlumberger well acquisition

software, and the model, the Stream Machine. Moreover, the chapter gives examples, extracts

their characteristics, and formulates a representative problem used through the remainder of

this thesis.

3.1 Stream Machine (SM)

The computational model employed on the Schlumberger trucks is the Stream Machine (SM).

The SM imlements a computational model on top of a distributed computer network. An in-

stance of an SM implementation consists of a program description, a machine description, and

an allocation description. An SM program consists of bu�ered communicating sequential pro-

cesses. A machine consists of distributed hardware resources such as those on the Schlumberger

truck. And an allocation maps program components - processes and streams, onto the machine

resources - the hardware.

3.1.1 Program

A program consists of a set of processes, or modules, and a set of streams. Modules communicate

via tokens along streams. Each module interleaves a �nite number of suspending and executing

states. Suspended, a module awaits a token along a given input stream. Alternately, a module

may await a token along one of several input streams, thus introducing nondeterminism. On the

token's arrival, a module consumes the arrived token, and executes. While executing, a module

may produce token(s) along any of its output streams. Each stream accepts tokens from exactly
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one producer module and forwards these tokens to one or more consumer modules. Tokens are

guaranteed to reach consumer modules in the order in which they were generated.

Figure 3.1 shows a high-level representation of a module. This module has two input

streams, 1 and 3, and two output streams, 2 and 4.

Figure 3.1: A Box and Arrow Representation of an SM Module, M.

Figure 3.2: A Finite State Representation of an SM Module, M.

Figure 3.2 gives a more detailed view of this module. It shows its internal �nite state

behavior. In its initial state, this module awaits a token along stream s1. It consumes the

arrived token along stream s1 and executes producing one token along stream s2. When done

executing, the module awaits a token along stream s3. It consumes the arrived token along

stream s3 and executes. During this execution, the module may produce a token along stream

s4 and, eventually, return to its initial state. Alternately, the module may produce no tokens

and return to its third state, awaiting a token along stream s3.
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Through the rest of this thesis, we will represent program modules either with �nite state

diagrams such as that of Figure 3.2, or, more abstractly, with box and arrow diagrams such as

that of Figure 3.1.

Assumptions

In order to simplify our speci�cation, we restrict the original Stream Machine model. The

Stream Machine model, as described in [17], is a model of bu�ered communicating sequential

processes (CSP). Stream reads and writes are interspersed throughout each module leading to

many module states. In each state, a module is either executing with interspersed stream writes

or waiting to read from one of its input streams. Figure 3.2 showed an example of possible

module states.

We narrow this model by constraining each program module to have only two states - one

await state and one execute state. This constraint takes us from a CSP model to a coarse-grain

data
ow model. Here each module waits to read from all of its input streams at once. It then

executes with interspersed stream writes.

Figure 3.3 reformulates the module of Figure 3.2 into two coarse-grain data
ow modules.

This conversion splits the original CSP module along each await state. Note that arrows

indicating control 
ow in Figure 3.2 have now turned into streams. They have become streams

5, 6, and 7. These new streams enforce the original 
ow of control between what have now

become two modules.

We retain a nondeterministic merge module present in the original CSP model as our means

of introducing nondeterminism.

Unlike in the original CSP model, in the data
ow model, a module cannot merge tokens

from several input streams onto a single output stream in a deterministic order. A standard

mechanism for merging tokens in a given order is to specify the desired order along a special

input stream, the Select stream. The merge module awaits a token along the Select stream and

then, based on the token's value, awaits a token along one of its input streams. A data
ow mod-

ule with a single await state cannot achieve this behavior. It cannot decide which input stream

to read next based on the value read along another input stream. We complete our coarse-grain

data
ow model by adding a special module which allows this behavior - the deterministic merge

module.

The deterministic merge module determines the order in which tokens merge onto an
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Figure 3.3: A CSP Module, M, Converted into Two Data
ow Modules, M1 and M2.

output stream based on values along the Select stream. Compare the simplest merge module

with the simplest deterministic merge module (Figure 3.4). Say one token arrives along each

input stream sometimes during the program. In case of the merge module, the order in which

the two input tokens will merge onto the output stream is not known. It depends on the relative

arrival time of the two input tokens. Whichever input token arrives �rst will merge �rst. In

case of the deterministic merge module the order is known regardless of tokens' arrival time.

The order is determined by tokens along a third input stream, the Select stream. Tokens along

this stream identify the input stream from which to merge next.

3.1.2 Machine

A machine consists of a set of processors and a set of channels. Both, the processors and

the channels are heterogeneous. Processor performance is described by the processor's rate

of instruction execution, and by the processor's contention protocol. Channel performance is

described by the channel's rate of packet propagation, it's latency of propagating a packet, the

size(s) of a packet, and the channel's contention protocol. Again, we represent processors and
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Figure 3.4: Comparison of a Merge Module and a Deterministic Merge Module.

channels with box and arrow diagrams such as that of Figure 3.5. The machine in Figure 3.5

consists of two processors, P1 and P2, communicating via a bidirectional channel, C. Each

box is a processor; each multi- directional arrow is a channel.

Figure 3.5: A box and arrow representation of a simple SM machine.

3.1.3 Allocation

Figure 3.6: A Box and Arrow Representation of an SM Allocation.

An allocation allocates machine resources to program components. We limit our attention to

static allocations. Each module is assigned to one processor. Each stream is assigned to a set

of processors and channels. We represent allocations with labeled box and arrow diagrams such

as that of Figure 3.6. In Figure 3.6, the modules and streams of Figure 3.3 have been allocated
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onto the machine of Figure 3.5.

Since machine resources are heterogeneous, the performance of each program component

depends on its allocation. For modules, the latency of each execution state depends on the

processor allocation of that module. Moreover, since specialized processors optimize certain

computations, module's execution latencies do not scale with processor's rate of instruction

execution. Consider a vector processor, for instance; although its optimal rate of instruction

execution may be ten times that of a general processor, a module of scalar code will not execute

ten times faster. As a result, the number of high level instructions within a module is insu�cient

to predict module performance under di�erent allocations.

For streams, the propagation latency of each token along a stream depends on the channel

and processor allocations of that stream. Each channel and processor may accept packets of

limited length. The latency of a token thus becomes the latency of its packets. Moreover, the

time to propagate a token along a channel may vary with each channel. The time to dispatch an

arrived or departing packet may vary with each processor. For simplicity's sake, we will assume

in all further discussion that each token maps onto exactly one packet. This assumption simply

removes a multiplication factor from our discussion.

Aside from individual components' performance, the performance of the entire program also

depends on an allocation. It depends on the speci�c allocations to each resource and on the

scheduling method along each resource. Multiple allocations to a resource may cause contention,

degrading the program's performance. The resource's scheduling method can moderate this

performance degradation by favoring time-critical tasks.

Allocation Constraints

The process of allocating a program onto a machine is limited by three types of constraints:

program topology constraints, machine capacity constraints, and dedicated resource constraints.

All three types of constraints must be satis�ed in order for a program to execute to completion

and produced desired results.

Program Topology Constraints These constraints insure that communicating processes

will be able to communicate. To achieve this, any two modules which communicate via a stream

must be allocated onto a single processor or onto two processors connected by a sequence of

channels and intermediate processors.
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Machine Capacity Constraints These constraints insure that the limits of each machine

component are not exceeded. To achieve this, the load on each processor must not exceed the

capacity of that processor. The load on each channel must not exceed the capacity of that

channel.

The load on a processor can be determined by scaling all module execution latencies and

all packet forwarding latencies along the processor by their frequencies. Similarly, the load on

a channel can be determined by scaling all packet propagation latencies along the channel by

their frequencies. Finding these frequencies is part of an implementation speci�cation, one of

the major goals of our project.

Dedicated Resource Constraints These constraints limit the set of available mappings.

They limit the allocation of a given module to certain processors. This limitation is necessary for

modules which explicitly make use of certain resources. For instance, a module which displays

data on the user's screen must have access to that screen. A module which retrieves data from

a sensory tool must have access to that tool.

Real-Time Constraints

The above three constraints guarantee that an allocated program will run to completion and

produce desired results. They do not, however, address the real-time behavior of produced

results. To address timing properties, we must further constrain an allocation. We place a

time limit on the propagation of certain tokens from the creation of token(s) by the source

module(s) to the arrival of the corresponding feedback token(s) to the target module(s). A

data independent speci�cation of this propagation process is the major component of a real-time

constraint speci�cation, another major goal of our project.

3.2 Examples

Many programs with real-time constraints are currently in use or under consideration by

Schlumberger, with many more anticipated in the future. We give two realistic examples.

For future reference, we further develop a sample example encompassing the characteristics of

the previous two.
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3.2.1 Tool Arm Attachment

The �rst example is that of anchoring the arm of a tool, the SAT1 tool, to the wall of a well.

This example has been extensively analyzed in [18]. The tool consists of a tester with geophones

for measuring seismic vibration and an arm for locking the tool into the borehole. There is a

pressure sensor on the arm for detecting when the arm is pressing against the borehole well

(Figure 3.7).

The movement from the center of the well towards a wall of the well is controlled by feedback

from an application program outside the well. The program responds to two streams of data

from the tool:

Distance Stream The distance stream sends up tokens describing the distance of the arm tip

from the center of the well.

Pressure Stream The pressure stream sends up tokens describing the pressure on the tip of

the arm.

Figure 3.8 shows our implementation diagram for the SAT program. Here, the Extension

module accepts a token from the Distance stream and decides whether the arm has overex-

tended. If so, the module forwards a token to the Merge module. Another module, the

Anchorage module, accepts a token from the Pressure stream and decides whether the arm

has anchored to a wall. If so, the module forwards a token to the Merge module.

A Merge module awaits a value along either one of its two input streams. When the Merge

module receives a token along the Anchored? stream, it turns o� power to the anchored tool

and informs the Extension and Anchorage modules. When the Merge module receives a token

along the OverExtended? stream, it turns o� power to the overextended tool and informs the

Extension and Anchorage modules.

Notice that, in its await state, the Merge module awaits a token along any one of multiple

streams. As a result, the Merge module introduces nondeterminism into our program. It is a

nondeterministic merge module.

There are two timing constraints on this program:

� Given a token on the Pressure stream, the corresponding token on the PowerOff, if any,

must arrive back within a time limit su�cient to prevent damage to the arm from pressing

against the wall.

1Mark of Schlumberger
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Figure 3.7: An Overextended Arm and an Anchored Arm.

Figure 3.8: SAT Program Diagram.
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� Given a token on the Distance stream, the corresponding token on the PowerOff stream,

if any, must arrive back within a time limit su�cient to prevent damage to the arm from

overextension.

3.2.2 SLT-L Measurement

A second example of a real-time program is that of acquiring data with the SLT-L2 tool. This

tool, again, consists of a tester lowered into the well. The tester measures the time required

for a sound wave to move a certain distance through the rock formation. The measurement is

made by using a transmitter to generate a brief sound and a receiver to detect the arrival of

sound as it propagates through the formation. The receiver measures the signal's amplitude

within a time window that begins after the sound is generated.

Figure 3.9 shows a sound wave in response to sound impulse at stimulus time. The sound

wave propagates to the receiver transit time after its generation by the transmitter. The

sound wave is measured within a sliding gate time window. The sliding gate window is

o�set from the stimulus time by a variable time o�set.

The quality of the measurement is, again, maintained by feedback from an application

program outside the well. The software modules respond to two streams of data from the tool:

Maximum Response Amplitude Stream The amplitude stream sends up tokens describ-

ing the maximum amplitude of the response signal.

Signal Transit Time Stream The transit time stream sends up tokens describing the o�set

of the maximum amplitude response from the stimulus.

Figure 3.10 gives an implementation of the SLT-L program. The Tool module in this

program is allocated onto the tool processor of Figure 2.2. It provides a periodic source of

input data and is the target of feedback data. The Controller module is allocated onto the

acquisition processor of Figure 2.2. It accepts a packet of data from the tool, separates it into

the maximum signal amplitude and the signal transit time, and forwards these to stream 2 and

stream 3 respectively. The Controller module also accepts feedback data from streams 6 and

7 and forwards these to the tool.

The remaining three modules of Figure 3.10 implement the feedback computation process.

The AmplitudeToGain module adjusts receiving �lter's gain based on the maximum detected

2Mark of Schlumberger.
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Figure 3.9: SLT-L Sound Wave.

Figure 3.10: SLT-L Program Diagram.
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amplitude of the signal. The TransitToStartTime module adjust the starting time of the

sliding gate window based on the transit time of the previous signal. In addition, the ToUser

module processes four consecutive transit time measurements and outputs the result to the

user.
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Figure 3.11: Diagram of an Optimized SLT-L Program.

In order to relax the real time constraint on feedback propagation, we present an optimized

implementation of the SLT-L program (Figure 3.11). In this implementation, The feedback

data is computed in one of four ways corresponding to di�erent transmitter/receiver pairs. The

Selector module interleaves between the four di�erent ways to compute feedback. In any one

cycle, it forwards the maximum signal amplitude to the next AmplitudeToGain module. It

also forwards the signal transit time to the corresponding TransitToStartTime module. In

addition, all TransitToStartTime modules forward the computed start time to the ToUser

modules. The ToUser modules process four consecutive measurements and forward the result

to the user.

This implementation is identical to that of Barstow in [16]. The implementation overlaps

the computation of four feedback values. The four-way interleaving of feedback computation
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lessens the real time feedback constraint. Each amplitude and transit time measurement can

be used to adjust the gain and start time of the fourth next measurement instead of the very

next one. There are two resulting timing constraints on the optimized SLT-L program:

� Given a token on the maximum response amplitude stream, stream 1, the corresponding

token on the �lter gain stream, stream 27, must arrive back in time to adjust the gain of

the collecting �lter for the fourth next measurement.

� Given a token on the transit time stream, stream 2, the corresponding token on the sliding

gate start time stream, stream 28, must arrive back in time to adjust the start time for

the fourth next measurement.

3.2.3 Sample Program

Figure 3.12: SAMPLE Program.

Finally we present an arti�cial example program, SAMPLE, that is characteristic of our domain

and will be used throughout this thesis. Figure 3.12 shows the program diagram of SAMPLE.

In this section, we give an informal description of SAMPLE's behavior. A detailed description

will follow in Table 4.3.

SAMPLE acquires data with a hypothetical tool. As before, the tool is a tester lowered into

a well. SAMPLE monitors the performance of the tool, initiating tool recovery if necessary. At
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the same time, SAMPLE analyses acquired data. Similarly to the SLT-L program, SAMPLE

adjusts tool's measurement parameters based on analyzed data. Moreover, SAMPLE forwards

analyzed data for further analysis, storage, and immediate display.

More speci�cally, SAMPLE provides two types of feedback to the tool through the Acquisition

module. A periodic feedback signal from the parameter adjusting segment of SAMPLE controls

the tool behavior. An emergency feedback signal from the performance monitoring segment of

SAMPLE recovers the tool in case of abnormality.

Figure 3.13: The Segment of SAMPLE Program Responsible for Performance Monitoring and

Possible Tool Recovery.

Figure 3.13 shows the segment of SAMPLE program responsible for performance monitor-

ing and possible tool recovery. Two modules, Monitor1 and Monitor2, monitor two separate

aspects of the tool's performance. Each of these modules evaluates acquired data for certain

abnormal conditions and noti�es the MonitorMerge module of detected abnormalities. Based

on input from both modules, the MonitorMerge module decides whether to generate an emer-

gency tool recovery signal. Because of Monitor1's long latency, each Monitor module only

evaluates every other data. The MonitorSelect module intermittently forwards data to the

Monitor1 module and to the Monitor2 module. Correspondingly, the MonitorMerge module

intermittently merges data from the Monitor1 module or from the Monitor2 module.

To illustrate the content of a module, Figure 3.14 shows a possible code routine which

comprises the body of the Monitor1 module. We will return to this routine in the next chapter.

Figure 3.15 shows the segment of SAMPLE program responsible for adjustment of tool's

29



data = read(#11);

if (data <= 42)

write(#12, ``OK'');

else

i = 0;

while (data > 42) and (i < 100)

data = data + old-data[i];

i = i + 1;

write(#12, data/i);

update-old-data(data, old-data);

Figure 3.14: Source Code for SAMPLE's Monitor1 Module.

Figure 3.15: The Segment of SAMPLE Program Responsible for Adjustment of Tool's Mea-

surement Parameters.
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measurement parameters. The ModelSelect module evaluates incoming data. Depending on

data value, the ModelSelect module forwards either one token to the oil model or two tokens

to the sand model for further evaluation. Simultaneously, the ModelSelect module informs

the ModelMerge module of its model choice along stream 8. Within the oil model, data 
ows

from the Oil1 module to the Oil2 module. The Oil2 module sends evaluated data to the

ModelMerge module and update information to the preceding Oil1 module. Within the sand

model, two tokens invoke the Sand module. After each invocation, the Sand module forwards a

token to the ModelMerge module. The ModelMerge module merges incoming tokens from the

two models in the order speci�ed by the ModelSelect module's directives.

Figure 3.15 illustrates a common use of deterministic merge modules. The ModelMerge

module - a deterministic merge module, acts together with the ModelSelectmodule to preserve

FIFO (�rst-in-�rst-out) ordering of tokens through the subgraph. The two modules preserve

the FIFO ordering of multiple tokens entering two di�erent paths, the oil model path and the

sand model path. The ModelSelect module informs the ModelMerge module of the order in

which it injects tokens into the subgraph. The ModelMerge module merges the outgoing tokens

in the order speci�ed by the ModelSelect module.

Stream Machine code for the ModelSelect and the ModelMerge modules (Figure 3.2.3)

illustrates this behavior. The code shows that the choice of the second input stream to the

ModelMerge module is dependent on the value along the �rst input stream, the select stream.

It illustrates that, while other modules consume a static set of input tokens, a deterministic

merge module selects the remainder of its input set based on the value of the token along its

select stream.

In addition, both the ModelMergemodule and the MonitorMergemodule forward all output

to the Process module for further processing. The Process module sends data to the Display

module for immediate display and to the Record module for long term storage.

We constrain both types of feedback in SAMPLE - tool recovery feedback and parameter

adjusting feedback. Here, we o�er an informal description of these constraints. A formal

speci�cation will follow in Figures 5.5 and 5.6.

First, we constrain tool recovery feedback - the time it takes the monitoring segment of

SAMPLE to generate a recovery signal. This constraint is conditional on SAMPLE's detection

of abnormal conditions. Under normal tool conditions, a recovery signal will, of course, not be

generated. Since each of the two performance monitoring modules receives only every other
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ModelSelect:

data = ...;

if (data == ...)

write(#8,OilModel);

write(#4,data);

else

write(#8,'SandModel);

write(#9,data);

OilModelMerger:

if (read(#8) == 'OilModel)

write(#16, read(#6)); %merge from oil model

else

write(#16, read(#10)); %merge from sand model

Figure 3.16: Sample Code for the ModelSelect and ModelMerge Modules.

data, they will both detect abnormal conditions after two cycles. As a result, we constrain the

time it takes to generate a recovery signal to be no more than two cycles. Say, for instance,

that the tool's sampling cycle takes 150 time units. Then the time it takes two successive

tokens along stream 2 to propagate through the performance monitoring segment of SAMPLE

(Figure 3.13) and generate a recovery signal along stream 1 must be less than 300 time units.

Second, we constrain parameter adjusting feedback - the time it takes the parameter adjust-

ing segment of SAMPLE to adjust tool's parameters. This time varies depending on detected

formation. An oil rich formation requires di�erent adjustments then a sandy formation. In

either case, we constrain SAMPLE to generate adjustment parameters before the tool's next

cycle. We assume the tool's sampling cycle to be, again, 150 time units. Then the time before

one initial token along stream 2 propagates through the oil or the sand model (Figure 3.15.)

and produces one token along stream 1 must be no more than 150 time units.

3.2.4 Program and Constraint Characteristics

We have looked at three di�erent programs in this section: the SAT, the SLT-L, and SAMPLE.

From these, we can draw several conclusions about the programs in our domain. First, all

three programs contained cyclic paths. These paths were used to provide feedback. Second, all

three programs received periodic data from a tool. Finally, the behavior and timing of all three

programs depended heavily on input data.
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Yet another characteristic of our programs was balanced 
ow of data. Because of limited

bu�er sizes, tokens could not accumulate inde�nitely along any one arc. Moreover, because of

our FIFO model, tokens could not be discarded upon bu�er over
ow. As a result, the arrival

of tokens along the input arcs of a module had to be balanced and consumed steadily. The

MonitorMerge module of Figure 3.12 illustrated. The module awaited one token along stream

12 for every one token along stream 14.

For each of the three programs we have discussed, we have described real-time constraints

which bind the program. Real-time constraints in all three programs also shared several ma-

jor characteristics. First, constraints were absolute, numeric limits, as opposed to relative,

precedence limits. They were often dictated by feedback control rates. In general, constraints

speci�ed propagation delay from an initial point to a �nal point through many possible com-

putation paths.

In addition, the constraints we saw ranged from hard to very soft. A signal to retrieve a

malfunctioned multi-million dollar tool was an example of a hard signal. Any chance of missing

the constraint limit was a clear failure. In contrast, a high rate signal to adjust tool speed was

an example of a soft signal. An unlikely, random chance of missing the constraint limit was

acceptable.

Also, constraints could be conditional on branching decisions within the computation. For

instance, in our SAT example, the user constrained a critical path of unguaranteed existence,

the path from the Pressure stream to the PowerOff stream. Given a token on the Pressure

stream, a corresponding token on the PowerOff stream is conditional on the PowerOff branch

of the Merge module.

3.2.5 Sample Machine

Having looked at several programs, we next look at a sample machine. Figure 3.17 shows the

diagram of a sample machine. Tables 3.2 and 3.1 give the machine's heterogeneous channel and

processor parameters. This machine is similar to the wireline acquisition machine of Figure 2.2.

It, too, has

� two workstations, Workstation1 and Workstation2, (of uneven capacity)

� an uphole tool processor, the Acquisition processor, connected to one of the two work-

stations, and
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� a downhole processor, the DownHole processor, connected to the uphole processor.

This sample machine is typical in its lack of homogeneity. It is composed of diverse pro-

cessors with varying hardware (speed) and system level parameters (multitasking, interprocess

communication, scheduling method : : :). Channels connecting individual processors are equally

diverse. Channel hardware (speed, latency) and system level parameters (broadcast, one way

communication, : : :) vary.

Figure 3.17: Sample Machine.

Processor Parameters

Available

# Name Capacity

1 DownHole 100%

2 Acquisition 100%

3 Workstation1 80%

4 Workstation2 100%

Table 3.1: Parameters for Sample Machine Processors.

3.2.6 Sample Allocation

We conclude our examples with a sample allocation of our sample program onto our sample

machine. Figure 3.18 illustrates. It shows the allocation of individual program modules to

processors. Program's streams have been allocated so as to connect each producer module with

all of its consumer modules. As we see from the �gure, the number of processes and streams

greatly exceeds the number of processors and channels, leading to resource contention.

Any allocation of the sample program onto the sample machine is constrained by three
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Channel Parameters

Packet Propagate Direction

# Name Latency From To

1 SignalUp 4 1{2

2 SignalDown 4 2{1

3 SharedMemoryUp 0 2{3

4 SharedMemoryDown 0 3{2

5 TruckNetwork 10 5,6{5,6

Table 3.2: Parameters for Sample Machine Channels.

dedicated resource constraints. First, the Tool module must be allocated to the Downhole pro-

cessor. (Conversely, no module other than the Tool module may be allocated to the Downhole

processor.) Second, the Acquisitionmodule must be allocated to the Acquisition processor.

And third, the Display module must be allocated onto the Workstation2 processor.

It is easy to see that our sample allocation satis�es dedicated resource constraints. The Tool

and the Acquisitionmodules are the sole occupants of their dedicated resources, the Downhole

and the Acquisition processors. And the Display module has been correctly allocated to

Workstation2. The allocation also satis�es topology constraints. All communicating modules

are able to communicate via connecting channels and processors. To satisfy machine capacity

constraints, we need to determine the maximum load on each processor and channel. This

information will easily follow from our veri�cation of real-time constraints in chapter 6. In

the remainder of this thesis, we will consider whether this allocation satis�es sample program's

real-time constraints.

3.3 Summary

Before attempting a speci�cation of timing costs and constraints, we must gain a practical

understanding of our domain. This chapter attempted just that. In doing so, it hinted at

several problematic areas.

First, this chapter illustrated the degree to which program's timing depends on input values.

In the SAMPLE program, for example, the time to update tool's parameters depended on the

formation surrounding the tool. Di�erent calculations were called for in an oily or sandy

formation. Even the existence of timing constraints was conditional on input. SAMPLE's
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Figure 3.18: Sample Allocation of Program onto Machine.

recovery signal would not be generated without an abnormal status data from the tool.

In addition, allocation a�ected program's timing. First, the speed of program's modules

and streams depended on their assigned processors and channels. Some modules, such as the

Tool module in SAMPLE, would not run at all under some assignments. Thankfully, we do

not attempt to allocate program's resources in this work. However, our timing veri�cations will

have to be allocation dependent.

More seriously, allocation onto limited number of resources indicated timing costs due to

contention. In our sample allocation, for instance, eight di�erent modules competed for one

processor. With several modules activated concurrently, the contention time could easily exceed

the execution time of a module.
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Chapter 4

Timing Speci�cation

Having described our domain, we proceed to address the �rst goal of this project as outlined

in Chapter 2 (page 15) - a timing speci�cation of a feedback process. Our goal is to to specify

enough timing information in order to verify real-time constraints.

At present, our description of a feedback process consists of program's instructions and

its allocation. Take our SAMPLE program. We are given a number of modules and streams

(Figure 3.12), together with the source code of each module and with SAMPLE's processor and

channel mappings (Figure 3.18).

We are asked to verify whether a constraint is met. Take the simplest constraint through

a single module such as SAMPLE's Monitor1 module. Figure 3.14 showed the source code for

this module. Say we constrain the time from the arrival of a token along stream 11 to the

creation of one token along stream 12 to be less than x time units. How do we verify this

constraint?

Excluding all other costs, the simple time to execute Monitor1's instructions up to and

including the generation of a token along stream 12 is not constant. The time varies with the

input value read on stream 11. But our imposed constraint must be met for any input value.

Fortunately, we can derive an upper bound. We can derive the maximum possible time to

execute instructions up to and including the generation of a token along stream 12. It is the

time to execute Monitor1's most time demanding instruction trace on Workstation1 up to

and including a \write(#12,: : :)" instruction. This is the instruction trace resulting from 100

iterations of Monitor1's while loop.

In order to verify the feasibility of generating one token along stream 12 within x time units

of an arrived token along stream 11, we have speci�ed the longest execution time separating the
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two events. The speci�cation amounted to listing the maximum time for the Monitor1 module

to generate a token. In order to verify the feasibility of a constraint through multiple modules,

we will need to specify execution times, independent of data values, along all intermediate

modules and streams.

We will not tackle timing costs caused by contention in this chapter. Since other timing

costs are una�ected by contention, we will postpone discussion of contention until the following

chapter. Our aim, by the end of this chapter, will be to specify enough information in order to

verify real-time constraints in a contention free program.

We approach our speci�cation design with several goals.

1. Data Independence: Most importantly, we wish to avoid data dependent speci�cation.

To draw on data values of tokens would be to return to the code-level description of each

module and to veri�cation through repeated program execution. Instead, our goal is to

statically isolate all possible time events and associated timing costs.

2. Separation of Program and Machine: We wish to preserve the Stream Machine's

clean separation of program and machine description. Program behavior speci�cation

should draw purely on a program; the associated timing speci�cation should draw on an

allocated program.

3. Modularity: We wish to preserve the modularity of the Stream Machine description.

Our program speci�cation should specify behavior and associated timing at component

level.

Our �rst goal is to describe the behavior of a feedback process. We would like to isolate all

actions which take time. In case of a stream, the action is clear: it is the propagation of a token

along that stream. In case of a module, time consuming actions become less obvious. At each

invocation, a module may output tokens along di�erent streams at di�erent times. Its output

may depend on its input values as well as on its periodicity. In case of the deterministic merge

module, even the invocation time is conditional on which streams the selector stream selects

for input. Somehow, we must abstract module's behavior to capture all possible timing costs.

Having described all actions which take time, we will then move on to assign timing costs to

each action and, �nally, to simulate timing and behavior of the entire program.

38



4.1 Abstracting Behavior of a Module

In each module's invocation, several actions characterize the advancement of time. Take the

general module of Figure 4.1. The module is invoked at the moment it accumulates all awaited

tokens along streams s1 though sm. It consumes its input tokens and executes for some time.

At certain times past its invocation, the module outputs tokens along streams s0
1
through s0n.

Figure 4.1: Sample Module.

Simple Modules

We start our exploration of behavior with the simplest possible module. This module awaits

one token along one input stream and executes outputting one token along one output stream.

SAMPLE's Monitor1 module is an example. Monitor1 consumes one token along stream 11

and then executes outputting one token along stream 12. Referring to the general module of

Figure 4.1, our description simply lists the one input and the one output stream, indicating

execution by an arrow (\!"):

s1 ! s0
1
: (4.1)

In case of the Monitor1 module:

s11 ! s12:

A simple extension of our description allows for one token along each of multiple input

streams and each of multiple output streams. An example of this timing behavior is SAMPLE's

Oil2 module. Oil2 consumes one token along stream 5 and then executes outputting one token

along stream 6 and one token along stream 7. Our extended description simply list all input

streams and all output streams, again indicating execution by an arrow (\!"):

s1^s2^ : : :sm ! s0
1
^s0

2
^ : : :s0n: (4.2)
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In case of the Oil2 module:

s5 ! s6^s7:

Finally, a module may await multiple tokens along any one input stream and produce

multiple tokens along any one output stream. An example is SAMPLE's Sand module which

consumes two tokens along stream 9. In our description, we include multiple tokens along a

stream by adding an optional coe�cient, c, in front of that stream:

c1s1^c2s2^ : : : cmsm ! c0
1
s0
1
^c0

2
s0
2
^ : : : c0ns

0

n: (4.3)

In case of the Sand module:

2s9 ! s10:

Selector Modules

The �rst di�culty arises with data dependent modules. These modules behave di�erently

depending on values of input tokens. They select their behavior based on values. Take the

MonitorMergemodule which consumes one token along stream 12 and another one along stream

14. Depending on the values of these tokens, MonitorMerge does or does not generate a token

along stream 17. As our ultimate goal is a data independent veri�cation, we cannot incorporate

token's values into our description. Instead, we describe all possible behaviors, making no choice

among them:

c1s1^c2s2^ : : : cmsm ! c0
1;1s

0

1
^c0

1;2s
0

2
^ : : : c0

1;ns
0

n

! c0
2;1s

0

1
^c0

2;2s
0

2
^ : : : c0

2;ns
0

n

! : : : (4.4)

In case of the MonitorMerge module:

s12^s14 ! s17

! :

We will refer to the description of Equation 4.4 as a behavior statement. A behavior

statement states how a module will behave for a given input set of tokens.
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Merge Modules

Yet another variation on Equation 4.2 captures the behavior of merge modules. In its simplest

form, merge modules merge the values along two input streams onto a single output stream.

SAMPLE's Process module is an example. Process awaits one token along stream 16 or one

token along stream 17. Whenever a token along either stream arrives, Process consumes the

token and executes, generating one token along stream 15. The behavior of the Processmodule

can be described by two statements:

s16 ! s15

s17 ! s15:

In general, the behavior of a merge module can be described by multiple statements which

share the same output sets:

c1;1s1^c1;2s2^ : : : c1;msm ! c0
1;1s

0

1
^c0

1;2s
0

2
^ : : : c0

1;ns
0

n

! c0
2;1s

0

1
^c0

2;2s
0

2
^ : : : c0

2;ns
0

n

! : : :

c2;1s1^c2;2s2^ : : : c2;msm ! c0
1;1s

0

1
^c0

1;2s
0

2
^ : : : c0

1;ns
0

n

! c0
2;1s

0

1
^c0

2;2s
0

2
^ : : : c0

2;ns
0

n

! : : :

: : : ! : : : (4.5)

Deterministic Merge Modules

We next consider several ways to model the behavior of a deterministic merge module. We have

already seen the deterministic merge module's role in preserving FIFO ordering in Section 3.2.3.

In the model subgraph in Figure 3.15, the selector module ModelSelect together with the

deterministic merge module ModelMerge maintained the FIFO ordering of tokens entering and

exiting the subgraph. To correctly model the behavior of the sample program, we too must

preserve this ordering in our speci�cation of modules' behavior.

We start our speci�cation of the deterministic merge module ModelMerge from our speci�-

cation of a simple merge module (Equation 4.5):

s6^s8 ! s16
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s10^s8 ! s16:

Here, an input token on stream 8 matches either an input token on stream 6 or an input

token on stream 10, depending on which of the two arrives �rst. The select/merge pair's FIFO

synchronization is simply ignored.

Speculative A slight improvement lets us specify every possible synchronization along our

select/merge pair. Since we do not know which set of input tokens a selector token will name,

we specify all possibilities. We separate di�erent possibilities with a \j":

statement1

j statement2

j : : : (4.6)

Within this notation, speci�cation of the ModelMerge module becomes:

s6^s8!s16

j s10^s8!s16

The arrival of one token along stream 6 and one token along stream 8 does or does not �re an

invocation of the module depending on which of the possible statements we consider.

An obvious disadvantage of this approach is that the behavior of all but one statement is

unrealistic. Take the case where the ModelSelect module has generated one token each along

streams 4 and 8. Choosing ModelMergemodule's �rst statement, s6^s8!s16, correctly portrays

the module's behavior and preserves the select/merge pair's FIFO synchronization. However,

choosing ModelMergemodule's second statement, s10^s8!s16 leads to infeasible behavior. The

choice leaves two unconsumed tokens, one along stream 6 and one along stream 8, forever.

Acknowledged We can assert FIFO ordering through an explicit addition of acknowledgment

streams to select/merge pairs. Figure 4.2 illustrates on our oil model example. With an added

acknowledgment stream, stream 18, the speci�cation of ModelSelect's actions becomes:

s3^s18 ! s4^s8

! 2s9^s8
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Figure 4.2: The Model Segment of SAMPLE with an Explicit Acknowledgment Stream.

Speci�cation of ModelMerge's actions becomes:

s6^s8 ! s16^s18

s10^s8 ! s16^s18

This solution is not optimal. It limits parallelism and lowers execution speed by sequential-

izing entry into each select/merge pair.

However, in feedback control programs, such as SLT-L (Section 3.2.2), select/merge pairs

are commonly used for generality rather than synchronization. In fact, this is the case in our

sample program. Here the tool cycle time exceeds the propagation time along either branch of

the model segment1. As a result, FIFO ordering through this select/merge pair is guaranteed

and no acknowledgment is necessary. Because within our application domain explicit FIFO

enforcement is often unnecessary, we leave implementation of the alternative tagged approach

below for further work.

Tagged A more satisfying approach is the explicit treatment of select/merge pairs. Here we

capture the alignment of the select module's and the deterministic merge module's actions.

On each invocation of the select module, we tag the generated selector stream token with its

output set selection. The corresponding merge module checks the tag of its input token along

the selector stream in order to select the remainder of its input set.

We describe the select module as:

c1s1^c2s2^ : : : cmsm ! s0
1
^c0

1;2s
0

2
^ : : : c0

1;ns
0

n; s
0

1
= Tag

1

1It must in order for feedback to a�ect the next measurement - a constraint imposed in section 3.2.3
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! s0
1
^c0

2;2s
0

2
^ : : : c0

2;ns
0

n; s
0

1
= Tag

2

! : : : (4.7)

Here, tokens along selector stream, s0
1
, are assigned a tag designating the select module's choice.

Correspondingly, the merge module selects its input set according to the supplied tag:

If s1 == Tag
1
; s1^c2s2^ : : : cmsm ! c0

1;1s
0

1
^c0

1;2s
0

2
^ : : : c0

1;ns
0

n

! c0
2;1s

0

1
^c0

2;2s
0

2
^ : : : c0

2;ns
0

n

! : : :

If s1 == Tag
2
; : : : ! : : : (4.8)

Like the speculative approach, this solution does not modify the original program. In

addition, it is always correct, preserving the intended FIFO synchronization. Table 4.2 shows

the tagged behavior speci�cation of our ModelSelect and ModelMerge pair.

However, the introduction of tags into our description is worrisome. At �rst glance, it

seems that we have violated our main goal - a data independent speci�cation. Tokens along the

selector stream clearly carry values from the select module to the merge module. The timing

behavior of the merge module depends on the tag value along its selector stream. Are we back

to veri�cation through repeated execution for each possible input value? Not quite. Unlike

data values, tags do not directly a�ect evaluation, instead, they align. They align actions of

the merge module with those of the select module. Through a �nite number of choices, tags

describe all valid alignments of those two modules' actions.

Deterministic Merge Modules Summary We have seen two satisfactory ways to express

the behavior of deterministic merge modules - through the addition of acknowledgment streams

and through tagging. Tables 4.1 and 4.2 show SAMPLE modules' behavior speci�cations under

the two schemes.

State Dependent Modules

In our assumption, we have restricted the Stream Machine modules to two states; each module

is either reading its input streams or executing, irrespective of the module's history. This

restriction simpli�ed our speci�cation at the cost of lowered performance and expressiveness.
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Execution that might have preceded otherwise is postponed until all input streams have been

read. And, more importantly, information regarding periodic behavior of a module is lost.

Periodicity played a role in the timing of two of our three illustrative programs. Successive

cycles of the SAMPLE program invoked one of two monitoring calculations. In the SLT-L

program, successive cycles interleaved among four computations adjusting the tool's parameters.

We illustrate consequences of neglected periodic behavior on SAMPLE's monitor subpro-

gram (Figure 3.13). At this point our best approximation of the MonitorSelect module's

behavior is:

s3 ! s11

! s13:

This speci�cation states that on each invocation, the MonitorSelect module generates either

one token along stream 11 or one token along stream 13. The speci�cation does not capture

the periodic interleaving of output to streams 11 and 13.

As a result, the subsequent input set speci�cation of module MonitorMerge, s12^s14, is

unrealistic. The speci�cation of the MonitorSelect module does not guarantee a balanced

arrival of tokens at streams 12 and 14. The MonitorMerge module may produce no output and

accumulate an over
ow of tokens along one of its two input streams. Clearly, this is not the

behavior we wished to specify.

To recapture the periodic behavior of modules, we can relax the \statelessness" assumption

and allow multiple module states. By convention, we use state 1 as the initial state:

state x: statementx

next state: state y: (4.9)

For instance, the timing actions of the MonitorSelect module become:

state 1: s3 ! s11

next state: state 2

state 2: s3 ! s13

next state: state 1
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It is interesting to note that we have not reverted to a CSP model. Our deterministic �nite

automata of module speci�cations allow for periodic states. They do not allow for data depen-

dent states. By attaching next state to individual output sets, rather than sets of statements, we

could easily reclaim a CSP model. However, none of the sample programs of Chapter 3 indicate

a need for this additional source of nondeterminism - a nondeterministic �nite automaton.

SAMPLE Modules' Time Critical Actions

Module State Statement Next State

Tool - s1! -

Acquisition s2!s3
- s16!s1 -

s17!s1
ModelSelect - s3^s18!s4^s8 -

!2s9^s8
Oil1 - s4!s5 -

s7!

Oil2 - s5!s6^s7 -

Sand - 2s9!s10 -

ModelMerge - s6^s8!s16^s18 -

s10^s8!s16^s18
MonitorSelect 1 s3!s11 2

2 s3!s13 1

Monitor1 - s11!s12 -

Monitor2 - s13!s14 -

MonitorMerge - s12^s14!s17 -

!

Process - s16!s15 -

s17!s15
Record - s15! -

Display - s15! -

Table 4.1: Speci�cation of SAMPLE Modules' Behavior Using Acknowledgment Streams for

Deterministic Merge Modules.

Generalization of Merge Modules

Finally, we can expand the speci�cation of merge modules to allow di�erent behavior for dif-

ferent input sets:

c1;1s1^c1;2s2^ : : : c1;msm ! c0
1;1;1s

0

1
^c0

1;1;2s
0

2
^ : : : c0

1;1;ns
0

n

! c0
1;1;2;1s

0

1
^c0

1;2;2s
0

2
^ : : : c0

1;2;ns
0

n
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SAMPLE Modules' Time Critical Actions

Module State Statement Next State

Tool - s1! -

Acquisition s2!s3
- s16!s1 -

s17!s1
ModelSelect - s3!s4^s8, s8 = Tag1 -

!2s9^s8, s8 = Tag2
Oil1 - s4!s5 -

s7!

Oil2 - s5!s6^s7 -

Sand - 2s9!s10 -

ModelMerge - If s8 == Tag1, s8^s6!s16 -

If s8 == Tag2, s8^s10!s16
MonitorSelect 1 s3!s11 2

2 s3!s13 1

Monitor1 - s11!s12 -

Monitor2 - s13!s14 -

MonitorMerge - s12^s14!s17 -

!

Process - s16!s15 -

s17!s15
Record - s15! -

Display - s15! -

Table 4.2: Speci�cation of SAMPLE Modules' Behavior Using Tagging for Deterministic Merge

Modules.
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state 1: statements1

next state: state i1:

: : :

state s: statementss

next state: state is:

Where

1 � i � s

and where

statement � c1s1^c2s2^ : : : cmsm ! c0
1;1s

0

1
^c0

1;2s
0

2
^ : : : c0

1;ns
0

n

! c0
2;1s

0

1
^c0

2;2s
0

2
^ : : : c0

2;ns
0

n

! : : :

Figure 4.3: Our Speci�cation of Module's Time Critical Actions.

! : : :

c2;1s1^c2;2s2^ : : : c2;msm ! c0
2;1;1s

0

1
^c0

2;1;2s
0

2
^ : : : c0

2;1;ns
0

n

! c0
2;2;1s

0

1
^c0

2;2;2s
0

2
^ : : : c0

2;2;ns
0

n

! : : :

... (4.10)

This generalized speci�cation of merge modules does more then merge streams nondetermin-

istically. A useful analogy is a set of guarded CSP commands. Each command has a di�erent

test, its input set; and potentially a di�erent body, its output set. Since they share the same

module, commands are sequentially ordered - no two can execute concurrently. Also, since they

share the same module, commands can share variables. Moreover, since they share the same set

of potential output streams, commands can nondeterministically merge tokens onto the same

stream.

Module's Abstract Behavior Summary

In this section, we have speci�ed all actions within a module invocation which take time.

Table 4.1 summarizes our speci�cation. We have captured the time of invocation, by listing all

awaited input tokens. We have indicated execution time with an arrow \!". We have included

points in time when a module generates an output token by listing all output tokens.

48



We have extended our original speci�cation of one input set, and a single evaluation thread

(an arrow and an output set) to include:

1. multiple output sets due to data dependent modules,

2. multiple input sets due to merge modules,

3. explicit acknowledgment streams due to deterministic merge modules,

4. state dependent speci�cations due to periodic modules, and �nally

5. multiple independent statements due to guarded commands.

Table 4.1 illustrates our �nal speci�cation of SAMPLE modules' abstract behavior (Figure 3.12).

Of these extensions, the most drastic one was that of multiple output sets. In order to

achieve data independent speci�cation, we have replaced data dependent computation with

a nondeterministic selection of data independent computation. At a module level, the intro-

duced nondeterminicity was su�cient to model all responses to an input set. However, at the

inter-module level, some combinations of modules' responses may be unrealistic. Consider two

modules whose actions are aligned. Depending on program's input values, the two modules

either both act one way or another. A nondeterministic speci�cation of module's actions will

not express the alignment of their actions. We leave the problem of inter-module alignment for

future work2.

4.2 Module's Timing Speci�cation

In order to complete our timing speci�cation of a feedback process, we must extend module's

behavior with timing speci�cation. We must assign a timing cost to each action:

1. to the time when a module is invoked,

2. to the time during which a module executes, and

3. to the time when a module generates a token.

Three issues complicate description of timing costs:

2The reader may have noticed that tags used to align actions of a select module with those of deterministic

merge module could be used to explicitly align actions of any two modules.
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1. timing costs due to contention,

2. data dependent timing costs, and

3. allocation dependent timing costs.

The �rst obstacle are costs due to contention. We cannot specify how long it will take for an

invoked module to acquire a processor; how many times during its invocation a module will be

preempted; or how many arriving tokens will interrupt its execution. The second obstacle are

data dependent costs. The duration of module's execution and, relatedly, the time at which it

outputs a token, may depend on the values of input tokens. And �nally, aside from contention

and data dependence, module's execution also depends on its allocation. As we have discussed

in Section 3.1.3, the time to execute module's high level instructions varies non-linearly with

the assigned processor.

In assigning timing costs, we will postpone consideration of contention and related runtime

costs until the next chapter. We will, however, have to somehow abstract away data dependence

and take into account program's allocation.

4.2.1 Simple Timing

As before, we start our timing cost assignment with the simplest module. This module awaits

one token along one input stream and executes outputting one token along one output stream.

SAMPLE's Monitor2module allocated to the Workstation2 processor is an example. Monitor2

is invoked when one token arrives along stream 13. Ignoring all contention costs, Monitor2 then

executes for exactly 30 time units. This is the time it takes to execute Monitor2's instructions

on Workstation2. In case of Monitor2, the trace of instructions to execute is constant; it is

independent of any data values along stream 13 or internal to Monitor2. Ignoring contention

costs again, Monitor2 generates one token along stream 14 exactly 10 time units past invocation.

It then continues to execute for the remaining 20 time units, updating its internal state. One

way to incorporate this information into our speci�cation of Monitor2's actions is as follows:

s13
30
! s14[10]:

Here, we have taken the time of invocation as our point of reference. We have speci�ed

Monitor2's execution latency above its execution arrow. And we have indicated the time

from Monitor2's invocation to generation of one token along stream 14, next to stream 14.
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In general terms, we have expanded speci�cation of the simplest module from:

s1 ! s0
1
; (4.11)

to:

s1
L
! s0

1
[l]; (4.12)

where L is the time from invocation to completion, and l is the time from invocation to gener-

ation of one token along stream s0
1
.

4.2.2 Data Dependent Timing

4.12 does not describe modules with data dependent timing. Take SAMPLE's Monitor1module

allocated to the Workstation1 processor. Much like Monitor2, Monitor1 awaits one token

along stream 11 and executes outputting one token along stream 12. However, Monitor1's

trace of instructions varies from invocation to invocation. The instructions to execute depend

on the data value along input stream 12. The time to execute them varies from 50 to 130 time

units. Correspondingly, the time to generate one output token along stream 12 varies from 40

to 90 time units.

Since our goal is a data independent timing speci�cation, we cannot specify the relation

between data values and timing. Instead, we incorporate Monitor1's data dependent timing

into 4.12 by replacing exact latencies with ranges of latencies. In case of Monitor1:

s11
50�130
! s12[40� 90]:

In general terms:

s1
R
! s0

1
[r]; (4.13)

where R is the time range from invocation to completion, and r is the time range from invocation

to generation of one token along stream s0
1
.

4.2.3 General Timing

A minor expansion lets us specify multiple ranges for multiple tokens along each output stream.

Take SAMPLE's ModelSelect module. ModelSelect may generate two tokens along stream 9:

s3^s18 ! s4^s8

! 2s9^s8
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The �rst token along stream 9 will be generated 5 to 12 time units past invocation, the following

token along stream 9 will be generated 10 to 15 time units past invocation:

s3^s18 ! s4[10� 15]^s8[10� 15]

! 2s9[5� 12; 10� 15]^s8[10� 15]

We simply list time ranges from module invocation to token generation for the two successive

tokens along stream 9. We guarantee monotonic generation times for successive tokens along

a stream. That is, the generation time of the second token along stream 9 is guaranteed to

exceed the generation time of the �rst token.

Figure 4.4: Sample Allocated Module.

In general, given a module and its allocation (Figure 4.4), we expand a statement:

c1s1^ : : : cmsm ! c0
1;1s

0

1
^ : : : c0

1;ns
0

n

! c0
2;1s

0

1
^ : : : c0

2;ns
0

n

! : : :

into:

c1s1^ : : : cmsm
R1

! c1;1s
0

1
[r1;1;1; r1;1;2; : : :r1;1;c1;1 ]^ : : : c1;ns

0

n[r1;n;1; r1;n;2; : : :r1;n;c1;n ]

R2

! c2;1s
0

1
[r2;1;1; r2;1;2; : : :r2;1;c2;1 ]^ : : : c2;ns

0

n[r2;n;1; r2;n;2; : : :r2;n;c2;n ]

...

Rx

! : : : (4.14)

We indicate the range of latencies from module invocation to completion by associating a

range Ri with the ith execution arrow. We expand each ci;j coe�cient along an output stream
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state 1: statements1

next state: state i1:

: : :

state s: statementss

next state: state is:

Where

1 � i; j � s;

and where

statement

� c1s1^ : : : cmsm
R1

! c1;1s
0

1
[r1;1;1; r1;1;2; : : :r1;1;c1;1 ]^ : : : c1;ns

0

n[r1;n;1; r1;n;2; : : :r1;n;c1;n ]
R2

! c2;1s
0

1
[r2;1;1; r2;1;2; : : :r2;1;c2;1 ]^ : : : c2;ns

0

n[r2;n;1; r2;n;2; : : :r2;n;c2;n ]
...

: : :
Rx

! : : :

Figure 4.5: Our Final Timing Speci�cation.

s0j into an array of ci;j latency ranges along stream s0j . The nth latency range, ri;j;n, speci�es the

range of latencies from module invocation to the generation of the nth token along the output

stream s0j .

4.2.4 Module's Timing Summary

In this section, we have assigned timing costs to module's actions. Ignoring contention overhead,

we speci�ed how long it takes to execute module's instructions. The speci�ed time depended on

module's allocation. We incorporated data dependent execution by specifying a range rather

than a constant time cost. Table 4.3 illustrates our timing speci�cation on our sample program

of Figure 3.12.

The reader may have found the derivation of a range, a minimum and a maximum of

module's latencies, worrisome. We can obtain a contention free latency, by running a module,

alone, on its allocated processor. We can run all branches of each conditional test to obtain the

minimum and the maximum latencies. But what about loops? Note that in order to have a

�nite maximum latency, a module must have a limit on the number of possible iterations. Else,

the maximum latency is in�nity and no constraints can be met.
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SAMPLE Modules' Timing Speci�cation

Module State Statement Next State

Tool - s1
0
! -

Acquisition s2
5
!s3[5]

- s16
5
!s1[5] -

s17
5
!s1[5]

ModelSelect - s3
15�20
! s4[15]^s8[15] -

15�20
! 2s9[5� 12; 10� 15]^s8[10� 15]

Oil1 - s4
10
!s5[10] -

s7
5
!

Oil2 - s5
5
!s6[5]^s7[5] -

Sand - 2s9
10
!s10[7] -

ModelMerge - s6^s8
20
!s16[20] -

s10^s8
20
!s16[20]

MonitorSelect 1 s3
10
!s11[10] 2

2 s3
10
!s13[10] 1

Monitor1 - s11
50�130
! s12[40� 90] -

Monitor2 - s13
30
!s14[10] -

MonitorMerge - s12^s14
10
!s17[10] -
10
!

Process - s16
5
!s15[5] -

s17
5
!s15[5]

Record - s15
5
! -

Display - s15
5
! -

Table 4.3: Behavior and Timing Speci�cations for Our Sample Modules.
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4.3 Program's Execution Model

Having described the behavior and timing of each module, we are ready to describe the behavior

and timing of the entire program. Starting from some initial state, we are ready to simulate

the program's abstract behavior through time. For now, our simulation will ignore resource

contention costs. In our illustrations, we will assume that each one of SAMPLE's modules has

been reassigned to its own processor or each one SAMPLE's streams has been reassigned to its

own, fully pipelined channel.

Figure 4.6 illustrates the desired outcome of our simulator. In its initial state, at time

0, the simulator �nds one token along stream 2 and one along stream 18. In Figure 4.6, we

watch SAMPLE step through time. At each point in time, the simulator displays a snapshot

of SAMPLE's program graph, highlights invoked modules, and display tokens along streams.

Whenever the simulator encounters several possible behaviors, as at time 19, it forks a separate

simulation for each possibility.

In this section, we will describe a simple simulator of abstract program behavior. The

purpose of this description is to provide a simple execution model for SM programs. The

reader should be aware that no attempt has been made at optimization, only at clarity and

simplicity.

The simulator starts with a static description of the program and its allocation. It creates

runtime structures to maintain dynamic state of the simulation. Starting from initial state, the

simulator then simulates successive events in time, updating its dynamic state with each event.

4.3.1 Static Description

The simulator is initially presented with a static description of the program. This description

embodies all the information which we have accumulated about a program and its allocation.

For the program, the simulator maintains the program graph: the name of every module and

every stream and their interconnection (Section 3.1). In addition, for each module, the sim-

ulator maintains its abstract behavior and its timing under the allocation (Section 4.1). For

each stream, the simulator maintains token's propagation latency along that stream under the

allocation. Since the simulation is free of resource contention, the simulator need not know

about the underlying machine.

As an example of a static description, consider again our allocated SAMPLE program.
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Figure 4.6: Part of Feedback Constraint Veri�cation.
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Its static description will consist of the program graph of Figure 3.12, together with streams'

latencies under SAMPLE's allocation (Figure 3.18 and Table 3.2), and modules' behavior and

timing under SAMPLE's allocation (Table 4.3).

4.3.2 Runtime State

So far, we have outlined the static structures which correspond to our problem description. In

addition the veri�er must maintain several runtime structures to simulate the passage of time

and to accumulate results.

Token

The most obvious runtime state is the token. As the veri�cation progresses, new tokens are

created, travel along streams, queue at destination modules, and eventually are consumed.

Each of these tokens identi�es its stream and its destination module. In addition, each token

is stamped with its creation time, the time it was created by the producer module, and later

on by its arrival time, the time at which it arrived at the consumer module.

Module

The remainder of runtime state is associated with individual modules. To illustrate, Figure 4.7

shows the runtime state associated with the ModelMerge module.

First, each module must maintain input queue(s) for arriving input tokens. As input tokens

arrive at modules, they must wait for the remainder of module's input set to arrive. Until then,

these tokens must remain queued somewhere. Our simulator associates one token queue with

each input stream. In Figure 4.7, the simulator associated one token queue with input streams

6, 8, and 10 of the ModelMerge module.

Second, at any point in time, each multi-state module must be aware of its current state.

As a new invocation propels the module into its next state, the simulator must update module's

state to re
ect this change. In Figure 4.7, the ModelMerge module is in state 1 - its only state.

Finally, we must insure that previous invocation runs to completion before another one is

�red. We insure this by recording the active invocation of each module. Only if there is no

active invocation, can a new invocation �re. If another invocation is active, any new invocation

must queue on an invocation queue.
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Figure 4.7: A runtime state of the ModelMerge module.

4.3.3 Event-Driven Simulation

Having outlined all static and dynamic structures manipulated by our simulator, we are ready

to examine the simulation process. The simulation process is event driven. A central event

queue maintains a time ordered listing of all pending events.

We will illustrate the simulator's steps on the simulation outlined in Figure 4.6. Figure 4.8

shows successive steps through the event queue as the veri�cation progresses. All successive

event queues at one point in time are boxed. Within each box, successive event queues are

separated by an arrow. For example, three successive event-queues correspond to time 0. This

is because three events occur at time 0.

Each event in Figure 4.8 is described on one line of text. So, for instance, the initial event

queue contains two events: the \0 create-token s2" event and the \0 create-token s18" event.

The time of each event is written �rst, followed by the type of the event and its body. For

instance, the very �rst event's time is 0; its type is create-token; and its body is s2.

Notice that in Figure 4.6, the state of the program at time 0 re
ects the state after the last

event at time 0 has been handled. This is the case up to time 19. Figure 4.8 stops at time 19,

after two separate veri�cations have been forked.

The overall control 
ow of the simulation is simple. Starting from some initial state, the

simulator loops inde�nitely, handling the next event in the time-ordered event queue. At each

iteration, it dequeues one event from the event queue and, based on the type of that event,

dispatches to the appropriate event handler.

We have already seen one type of an event, the create-token event, above. We now look at
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Figure 4.8: Events for Part of Feedback Constraint Veri�cation.
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the three di�erent types of events in our simulator and describe the handling of each event type.

The two more obvious event types are creation and arrival of a token. Anytime a token is

created, we must transport the token across a stream to its destination modules. Anytime a

token arrives at its destination module, we queue the token and try to �re the module. However,

we cannot �re a module invocation before the previous invocation completes. A third event

type, invocation completion, informs us when a current invocation terminates.

Token Creation

A �rst type of an event is the create-token event. This event creates a token for each destination

module along a stream and transports the newly created tokens to their destination modules.

In our simple veri�er, we assume that the token need not contend for any resources on its way

through the stream. As a result, the time to traverse the stream is constant for each token. We

compute each token's arrival time at its destination module and enqueue an arrive-token event

at the newly computed arrival time.

Take, for instance, the very �rst event in the simulation of Figure 4.6: \0 create-token s2".

To handle this event, the create-token event handler �rst �nds that the only destination module

for a token along stream 2 is the Acquisition module and that the time to traverse stream

2 and reach the Acquisition module is 4. The event handler creates a token whose creation

time is 0, whose destination module is the Acquisition module and whose arrival time is 4

(i.e. 0 + 4). Finally, the event handler enqueues an arrive-token event at time 4. This is the

state of the second event queue at time 0.

Token Arrival

A second type of an event is the arrive-token event. Once a token traverses a stream, or arrives,

it enqueues onto that stream's input queue. Its arrival triggers an attempt to �re its destination

module.

This is the case at time 4 when a token along stream 2 arrives at the Acquisition module.

First, the token enqueues onto Acquisition module's token queue for stream 2. Next, the

event handler checks whether Acquisition module is ready to �re.

To check whether a module is ready to �re, we compare module's speci�cation in its current

state against the contents of input stream queues. We look for a statement whose full input set

is queued. In case of generalized merge modules, we may �nd more than one statement. This
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is because the arrival of a single token can complete more than one input set. In such case,

since our programming model does not specify which statement should �re, we fork a separate

simulation for each satis�ed statement.

To check whether the Acquisition module is ready to �re at time 4, for instance, we look

Acquisition module's statements in state 1:

s2 ! s3

s16 ! s1

s17 ! s1

We �nd that the statement s2!s3 has a full input set queued. Since only one statement is

ready to �re, we need not fork multiple simulations.

Finally, for each statement with complete input set, we dequeue the oldest input tokens and

fork one simulation for each possible output set. In case of statement s2!s3, we dequeue the

newly arrived input token from stream 2's queue. Since the statement contains only one output

set, !s3, we need not fork multiple simulations.

We next check for an active invocation. If an invocation is currently active, we queue

the output set on the invocation queue. Otherwise, we �re the output set. In case of the

Acquisition module, we �nd that no invocation is currently active, and we �re the output set

!s3.

To �re an output set, the event handler assigns the output set to the active invocation

variable and queues events which immediately result from this invocation. The veri�er queues

one invocation completion event for the output set and one token creation event for each token

within the output set. In queueing these events, the veri�er assumes that the invocation will

run to completion without interruption. This assumption means that the invocation will not

be preempted and that the processing of newly arrived tokens during invocation will not delay

the invocation. As a result of this assumption, the time to create tokens and to complete this

invocation is constant.

To �re the output set !s3 of the Acquisition module, the event handler �rst assigns this

output set to be the active invocation of the Acquisition module. Next, the event handler

queues one complete-invocation event and one create-token event on the event queue. It queues

a complete-invocation event at time 9. And it queues one create-token event token for the only

output token in the output set, along stream 3, also at time 9.
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For another example of a successful attempt to �re, consider the arrival of a token along

stream 3 at time 19. The arrive-token event handler queues the token on stream 3's input

queue and attempts to �re the ModelSelectmodule. The event handler �nds the ModelSelect

module in state 1 - its only state. It �nds one statement whose input set is ready:

s3
15�20
! s4[15]^s8[15]

15�20
! s9[5� 12; 10� 15]^s8[10� 15]

The event handler forks two separate simulations - one for each output set. Since the ModelSelect

module is inactive, both simulations �re their output set. Figure 4.8 shows the state of the

event queue in each forked simulation right after the fork.

Invocation Completion

A third type of an event is the complete-invocation event. Once an invocation completes, the

module becomes idle and available for new invocations. We empty module's active invocation

variable and check whether any invocation is waiting on the invocation queue.

For instance, at time 9, the Acquisition module completes its invocation. We reset its

active invocation to empty and check its invocation queue. We �nd that no invocation is

waiting to �re and return control to the main loop.

4.3.4 Program's Execution Model Summary

In this section, we have presented an execution model for program's timing based on the abstract

behavior and timing speci�cation of individual modules. we have described this execution

model in terms of a simple simulator. We have outlined its structure and illustrated its event

handling. We will return to this simulator in Chapter 6 where we will extend it in order to

verify constraints. At that time, we will outline issues of interest in our design of a realistic

simulator.

4.4 Summary

In this chapter, we have introduced a data independent speci�cation of program's behavior and

timing. First, we speci�ed all possible behaviors of each module. Next, we assigned timing
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costs to each module's behavior. At the end, we used the behavior and timing of individual

modules to derive a data independent execution model for the entire program.
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Chapter 5

Constraint Speci�cation

Having speci�ed program's timing, we focus our attention on our second goal - constraint

speci�cation. So far, our notion of a constraint is very informal. We talk of constraints under

some circumstances, through some subgraphs. In this chapter, we will try to formalize this

notion.

We will refer heavily to the program execution model of Section 4.3. Figures 5.1 and 5.2

show how we can use the execution model to verify a simple constraint. In Figure 5.1, we drop

one token onto stream 17 at time 0. In Figure 5.2, we watch SAMPLE step through time. We

can end the propagation whenever all awaited tokens arrive at their destination. The awaited

tokens are those tokens whose arrival time has been constrained. We refer to them as the

constrained tokens. In Figure 5.2, we have ended the propagation when one constrained token

along stream 1 arrived at the Tool module. Comparing that constrained token's arrival time

against some imposed deadline will tell us whether a constraint has been met.

As Figures 5.1 and 5.2 illustrate, we can verify a simple constraint without any formal spec-

i�cation. We can simply visually track all tokens of interest through each step of a simulation.

In the next few sections, we will get away from this cumbersome approach.

5.1 Simple Constraints

We start by extracting that information which identi�es a simple constraint. Consider again

the constraint of Figure 5.1. Here, we have dropped one token onto stream 17 at time 0. Then

we stepped through time until one token along stream 1 arrived at the Tool module. We

stopped our simulation at that point. The information we provided to the simulator could be
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Figure 5.1: Initializing a Simulation.

summarized as:

s17[0] ! s1Tool:

Our summary simply lists the stream we dropped a token onto and the time at which we

dropped it; together with the input stream and the module at which we awaited arrival of a

�nal token. An arrow, indicating propagation of tokens, separated the dropped initial token

from the awaited �nal token.

We can generalize our summary to any initial token along stream s at time t and to any

�nal token along input stream s' of destination module M :

s[t] ! s0M : (5.1)

To con�rm or reject a constraint, we must compare the arrival time of an awaited token

against the imposed deadline. Say, in Figure 5.2, we imposed a deadline of 10 time units on the

arrival of one token along input stream 1 of the Tool module. The simulator's �nal time, 10,

would meet this deadline. We can easily incorporate the imposed deadline into the constraint's

speci�cation:

s17[0] ! s1Tool[10]:

Similarly, we can incorporate a deadline into the general speci�cation of 5.1:

s[t] ! s0M [d]: (5.2)
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Figure 5.2: Simple Simulation.
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Here, we constrain the arrival time of a token along input stream s' of module M to be less

than some deadline d.

A simple extension of 5.2 lets us drop multiple tokens along a stream at di�erent times.

An example of such a constraint is the tool recovery constraint. A recovery signal can only be

generated after two tool cycles. So to observe a recovery token along stream 1, we must drop

two successive tokens onto stream 2 one cycle time, or 150 time units, apart:

s2[0; 150] ! s1Tool[300]:

In general, we can drop n tokens onto a stream at times t1 through tn:

s[t1 : : : tn] ! s0M [d]: (5.3)

By convention, we drop the �rst token at time 0.

An analogous extension lets us constrain arrival times of multiple tokens at an input stream

s' to module M :

s[t1 : : : tn] ! s0M [d1 : : : dm]: (5.4)

Here, we constrain m successive tokens to arrive within m monotonically increasing deadlines

d1 through dm.

Finally, the reader may have noticed that both of SAMPLE's constraints, the feedback

constraint and the tool recovery constraint, will need to drop initial tokens along multiple

streams. This is so because stream 18, the acknowledgment stream, must have a token in order

to enable SAMPLE's ModelSelect/ModelMerge pair (Section 4.1). We can extend our tool

recovery constraint to drop an additional token along stream 18 as follows:

s2[0; 150]^s18[0] ! s1Tool[300]:

In general, we can extend 5.4 to drop initial tokens along multiple streams:

s1[t1;1 : : : t1;n1 ]^s2[t2;1 : : : t2;n2 ]^ : : :

! s0M [d1 : : :dm]: (5.5)

Analogously, we can constrain arrival times of tokens at multiple destinations:

s1[t1;1 : : : t1;n1 ]^s2[t2;1 : : : t2;n2 ]^ : : :

! s0
1M1

[d1;1 : : : d1;m1
]^s0

2M2
[d2;1 : : :d2;m2

]^ : : : : (5.6)
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5.2 Conditional Constraints

Di�culty arises as constrained paths encounter selector modules. Selector module, such as the

MonitorMerge module, �re one of several output sets depending on data values. In case of the

MonitorMerge module, input set s12^s14 enables one of two output sets, !s17 or !. Having

�lled MonitorMerge's input set, the simulator forks a separate simulation for each output set.

This may not be the correct behavior with respect to a given program constraint. For each

invocation of the MonitorMergemodule, a given constraint may constrain propagation of tokens

through one or through both output sets. A constraint which constrains propagation through

both output sets is insensitive to the data dependent actions of the MonitorMerge module.

Such constraint must be met no matter which output set the MonitorMerge module selects.

An example of such a constraint is SAMPLE's feedback constraint. Using 5.6, we specify

SAMPLE's feedback constraint as:

s2[0]^s18[0] ! s1Tool[150]:

Consider the trace of feedback constraint's veri�cation. We drop one token onto streams 2 and

18 at time 0. In Figure 4.6, we watched them propagate. When a token arrived at input stream

3 of the ModelSelect module, it enables one of two threads: !s4^s8 or !2s9^s8. Since we

wished to constrain a feedback signal through both the oil and the sand model, we forked two

simulations.

In contrast, a constraint which constrains propagation through only one of module's several

output sets is conditional on the data dependent actions of that module. We call such a

constraint a conditional constraint. SAMPLE's tool recovery constraint (Section 3.2.3) is a

conditional constraint. It is conditional on the MonitorMerge module's selecting thread !s17.

To verify such a constraint, we need to inform our veri�er which output set to pursue.

As Figure 4.6 illustrated, we can straightforwardly extend our simulator to verify conditional

constraints. We simply have the user inform the simulator which threads to pursue further.

But how do we specify conditional constraints independent of simulation?

First, we can declare the selection of all output sets to be the default. Whenever we do not

explicitly state otherwise, the simulator will pursue all available evaluation threads. Under this

default assumption, 5.6 su�ces to specify SAMPLE's feedback constraint:

s2[0]^s18[0] ! s1Tool[150]:
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The selection of all threads along the ModelSelect module has become implicit.

But we still need to express conditional constraints such as the tool recovery constraint.

Speci�cally, we need to express the fact that the tool recovery constraint applies only in case

the MonitorMerge module selects to output a token along stream 17. One approach is to

incorporate MonitorMerge module's selection into the simulation. We simply rede�ne the

actions the MonitorMerge module for the purposes of the tool recovery constraint. We narrow

the choice of evaluation threads within its �rst invocation to !s17:

state 1: s12^s14 ! s17

next state: state 2

state 2: s12^s14 ! s17

!

next state: state 2:

As we wished, the simulator will now verify the tool recovery constraint only for the case where

the MonitorMerge module selects to output a token along stream 17.

Our corrected speci�cation of the tool recovery constraint becomes:

s2[0; 150]^s18[0] ! s1Tool[300]:

and

MonitorMerge state 1: s12^s14 ! s17

Module next state: state 2

Timing

Specification state 2: s12^s14 ! s17

!

next state: state 2:

To extrapolate, we can specify any conditional constraint by rede�ning the actions of some

selector modules. For successive invocations of these modules, we narrow the choice of output

sets, using states.

5.3 Nondeterministically Merging Constraints

The simulator of Figure 4.6 still cannot verify some constraints. It cannot verify those con-

straints which propagate through nondeterministic merge modules. When a constrained token
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propagates through a nondeterministic merge module, it may merge onto the same stream as

other unconstrained tokens and lose its identity.

Unfortunately, both of SAMPLE's constraints, the tool recovery constraint and the feedback

constraint, propagate through a nondeterministic merge module - the Acquisition module.

Take the tool recovery constraint. To verify this constraint, we drop two tokens onto stream

2 at times 0 and 150; and one token onto stream 18 at time 0. We then watch these tokens

propagate through our timing speci�cations. Figure 5.3 shows four snapshots of our simulation.

We want to end this propagation when a recovery token has propagated through SAMPLE's

monitor segment (Figure 3.13) and reached the Tool module along stream 1. Unfortunately,

two feedback tokens, having propagated through SAMPLE's model segment (Figure 3.15), will

also reach Tool module along stream 1.

As Figure 5.3 illustrates, our simulator gives us no indication which of the three tokens has

arrived. Since we cannot tell which of the three tokens has reached the Tool module, we cannot

tell whether to end our simulation. If the arrived token is the awaited recovery token, then we

would like to end our simulation and compare x against the imposed deadline. On the other

hand, if the arrived token is one of the two feedback tokens, then we would like to continue our

simulation, awaiting a recovery token. We must somehow identify the arrived token.

Our dilemma was brought about by the Acquisition module. This module has nonde-

terministically merged two feedback tokens from SAMPLE's model segment and one recovery

token from SAMPLE's monitor segment onto stream 1. Once on stream 1, these tokens became

indistinguishable. To recover the identity of these tokens, we can tag them, much like airport

luggage, as they enter the Acquisition module.

Figure 5.4 demonstrates our modi�ed simulation. Here, when a token reaches the Acquisition

module, the module updates the incoming empty tag to indicate token's origin. It speci�es that

the token along its output stream, stream 1, was initiated by one token along its input stream

16 or input stream 17. Consequently the tokens arrive, tagged and identi�ed, at the Tool

module.

In general, we can extend our simulator to update token's tag each time it invokes a non-

deterministic merge module, merging that token onto a shared stream1. By looking at the tag,

the user will then be able to identify each token. In case of the tool recovery constraint the

1Note that not all invocations of the nondeterministic merge module Acquisitionmerge tokens onto a shared

stream.
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Figure 5.3: Tool Recovery Constraint Simulation.
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Figure 5.4: Modi�ed Tool Recovery Constraint Simulation: Displayed Next to Each Token is

the Token's Tag.
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user will know whether a recovery token or a feedback token has reached the Tool module.

But how do we specify constraints through nondeterministic merge modules independent

of simulation? As we have just seen, in the presence of nondeterministic merge modules, the

simulator cannot end simulation whenever some token arrives at the �nal destination. Instead,

it must await a token with the desired tag.

To specify a constraint through a nondeterministic merge module then, we must specify

the tag of the awaited �nal token. In general, each tag will consist of a partially ordered set.

Each element within the set speci�es: a nondeterministic merge module, the set of tagged input

tokens which invoked that module, and the shared output stream.

The speci�cation of the tool recovery constraint, for instance, becomes:

s2[0; 150]^s18[0] ! s1Tool[300fAcquisition : s17!s1g]:

and

MonitorMerge state 1: s12^s14 ! s17

Module next state: state 2

Timing

Specification state 2: s12^s14 ! s17

!

next state: state 2:

Here, the constrained token along input stream 1 of the Tool module is tagged. Its tag speci�es

that the token was once merged onto a shared stream, stream 1, by the Acquisition module.

That invocation consumed one token along input stream s17.

In general, we can expand the speci�cation of any simple constraint (Equation 5.6) to include

tags:

s1[t1;1 � � � t1;n1 ]^s2[t2;1 � � � t2;n2 ]^ � � �

! s0
1M1

[d1;1ftag1;1g � � �d1;m1
ftag1;m1

g]^s0
2M2

[d2;1ftag2;1g � � �d2;m2
ftag2;m2

g]^ � � � : (5.7)

5.4 Summary

In this section, we have speci�ed real-time constraints through feedback processes. Using our

simple simulator, we �rst showed how to verify a constraint by stepping through a simulation.

Based on this interaction, we extracted information which de�ned the constraint. Figures 5.6

and 5.5 show the �nal speci�cation of SAMPLE's feedback and tool recovery constraints.
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s2[0; 150]^s18[0] ! s1Tool[300fAcquisition : s17!s1g]:

and
MonitorMerge state 1: s12^s14 ! s17
Module next state: state 2

Timing

Specification state 2: s12^s14 ! s17
!

next state: state 2:

Figure 5.5: Final Speci�cation of SAMPLE's Tool Recovery Constraint.

s2[0]^s18[0] ! s1Tool[150fAcquisition : s16!s1g]:

and
MonitorMerge state 1: s12^s14 !

Module next state: state 2

Timing

Specification state 2: s12^s14 ! s17
!

next state: state 2:

Figure 5.6: Final Speci�cation of SAMPLE's Feedback Constraint.

With our constraint speci�cation, we are now ready to verify contention free constraints. We

are ready to take program's constraint speci�cation together with program's timing speci�cation

and verify that constraint. In the next Chapter, we will extend our simulator of Section 4.3

into a constraint veri�er and explore in greater detail the design decisions behind this veri�er.
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Chapter 6

Veri�cation

Having �nished speci�cation, we are ready to tackle our last goal - veri�cation of constraints. In

the previous chapter, we have used the simulator of Section 4.3 to informally verify constraints.

We will �rst extend this simulator to accept and to verify constraints. We will then discuss

issues which we faced in our more realistic implementation. We will reevaluate the need for an

event-driven veri�cation and conclude with a description of a tagging scheme which we used to

avoid duplication of work by multiple veri�cations.

6.1 Veri�cation

We need to make several minor changes to the structure and control 
ow of our simulator in

order to verify constraints. First, our veri�er must accept a constraint speci�cation and initialize

its state accordingly. Second, the veri�er must tag tokens as they pass through nondeterministic

merge modules in order to identify their path. And �nally, each time a token arrives, the veri�er

must check whether the arrival satis�es a constraint.

6.1.1 Static Description

The simulator was initially presented with a static description of the program. This description

embodied all the information which we have accumulated about a program and its allocation.

We now extend this description to include constraints. The veri�er is presented with a formal

speci�cation of the constraint it is to verify (Chapter 5).
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6.1.2 Runtime State

The veri�er also needs two additional runtime structures to simulate the passage of time and to

accumulate results. First, at initialization, the veri�er must create a place to record the arrival

times of constrained �nal tokens. As the veri�cation begins, the arrival times of constrained

tokens are empty. As the veri�cation progresses, the arrival times slowly �ll in.

Second, the veri�er must append the description of each token with a tag. Each token must

carry a tag describing its path through nondeterministic merge modules (Section 5.3). Each

time a module �res, its output tokens must inherit the tags of all input tokens. In addition,

each time a nondeterministic merge module �res, its output tokens must extend their tag as we

saw in Section 5.3.

6.1.3 Veri�cation

The overall control 
ow of the veri�cation is somewhat more complex than that of the simulator.

The veri�cation �rst initializes the veri�er based on the constraint. It then loops handling the

next event. Whenever a new token arrives, the veri�er checks whether the constraint has been

met. The following sections describe the two new components of this veri�cation: initialization

and constraint testing, together with any changes to simulator's individual event handlers.

Initialization

To initialize a veri�cation, we create places to record the arrival times of constrained �nal tokens.

We replace the speci�cations of rede�ned modules. And �nally, we enqueue create-token events

for all initial tokens.

For instance, consider initialization of the feedback constraint veri�cation. Figure 5.6 gave

a formal speci�cation of the feedback constraint. First, we create a place to record the arrival

time of one token along stream 1 at module Tool whose tag is Acquisition : s16!s1.

Next, we replace the MonitorMerge module's original speci�cation:

s12^s14 ! s17

!

with
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state 1: s12^s14 ! s17

next state: state 2

state 2: s12^s14 ! s17

!

next state: state 2:

Finally, we enqueue two events to create feedback constraint's two initial tokens - one along

stream s2 at time 0 and another along stream s18 also at time 0. The type of these events

is create-token signifying that a token is to be created at time 0 along the speci�ed streams.

These two events form the initial event queue in Figure 4.8:

0 create-token s2

0 create-token s18

Constraint Testing

The original simulator stepped through time inde�nitely, simulating the timing behavior of a

program. Our veri�er, on the other hand, should terminate when all of constraint's �nal tokens

have arrived. Each time a token arrives at its destination, the veri�er checks whether it is a

�nal token. In terms of our three event handlers - token creation, token arrival, and invocation

completion - the veri�er extends the token arrival handler to do this check.

The new token arrival handler compares the newly arrived token against constraint's �nal

tokens which have not arrived yet. It looks for �nal tokens along the same stream, with the

same destination module, and with the same tag. If the event handler does �nd such a �nal

token, it records its arrival time.

Take, for instance, the feedback constraint veri�cation. In one fork of this veri�cation, a

token arrival event is scheduled at time 80 along stream 1 at module Tool with tagAcquisition :

s16!s1. The token arrival handler compares this stream, destination module, and tag against

that of constraint's �nal token and �nds the two match. It records the arrival time of this �nal

token to be 80.

As the veri�cation progresses, the arrival times of constraint's �nal tokens �ll in. Once

all arrival times have been �lled, the veri�er terminates the simulation and checks whether all

deadlines exceed arrival times. In case of the feedback constraint, both forks of the veri�er

terminate successfully, having met the imposed deadline.
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6.1.4 Implementation Summary

In this section, we have extended the simulator of Section 4.3 in order to verify constraints. We

have initialized our simulation based on its constraint, tagged tokens through nondeterministic

merge modules, and terminated each simulation once all �nal tokens arrived. Clearly, the

veri�er we outlined in this section is neither e�cient nor adequate. In the next section, we will

discuss issues of interest in our design of a realistic veri�er.

6.2 Extensions and Issues

The simple veri�er outlined in the previous section leaves much to be desired. For one, it does

not handle resource contention. In this section, we will outline further extensions to the veri�er.

And justify some of the decisions made in our implementation.

6.2.1 Contention

Our veri�er of Section 4.3 ignored most contention costs. The veri�er acknowledged that

several potential invocations could contend for one module. However, once running a module

invocation was guaranteed to complete without interruption. Our attempted justi�cation for

this guarantee pointed to non-overlapping allocation. We allocated each stream to a separate

channel and and each module to a separate processor.

Unfortunately, even with non-overlapping allocation, a module invocation is not guaranteed

to run without interruption. Each arriving token may have to interrupt the processor and raise

module's completion time.

Moreover, a realistic veri�er will need to handle overlapping allocations. SAMPLE's allo-

cation is an example (Figure 3.18). With multiple allocations, each processor and each channel

must be treated as a resource with waiting queues and general allocation methods. Additional

events must handle processor and channel deallocation.

6.2.2 Initial Tokens

Our timing constraint speci�cation from Chapter 5 gave no guideline as to what our set of

initial tokens should be. It is important to realize that we cannot simply drop those initial

tokens which, through program's behavior, will eventually generate �nal constrained tokens.
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Any tokens that could a�ect the timing of �nal constrained tokens must be considered. Other

tokens could a�ect timing through contention for shared resources or shared modules.

In general, �nding a su�cient set of initial tokens must be left to the user. For periodic

programs however, the set of periodically injected initial tokens could be de�ned as part of the

program's behavior speci�cation. We leave this de�nition for further work.

6.2.3 Regeneration

In the previous chapter, we implicitly assumed a single regeneration stage given one set of

constrained input tokens. In other words, we assumed that the propagation of a single set

of constraint's initial tokens through the constrained program de�ned the steady state of that

program. It followed that the state of the program before propagation was equivalent to the one

following the propagation. Under this assumption, a single propagation of constraint's initial

tokens was representative of all, since all propagations were identical.

This assumption can be easily checked and relaxed. Following a propagation, we check for

any unconsumed tokens within the program graph. For periodic programs with complete set

of initial tokens, the only unconsumed tokens should be initialization tokens, such as the token

along SAMPLE's acknowledgment stream1. If any other tokens remain then the veri�cation

should be repeated until a steady state is reached.

An example of a constraint which must be repeated is SAMPLE's feedback constraint:

s2[0]^s18[0] ! s1Tool[300fAcquisition : s16!s1g]:

One propagation of this constraint's input tokens leaves an unconsumed token along stream 12.

Within a second propagation, the MonitorMergemodule consumes this token together with one

along stream 14. The feedback constraint is met only if both propagations meet the imposed

deadline.

6.2.4 Constant Latency

Our simple veri�er substituted the maximum possible latency for each latency range. This

substitution was not realistic. In addition to data dependent ranges of Table 4.3, parameters

such as broadcast channel contention point to latency distributions rather than latency con-

stants. The veri�er assumed that by using the maximum possible latencies along the way, it

1It might be useful to specially identify initialization tokens in constraint speci�cation.
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would �nd the maximum possible latency through the entire constrained path. Unfortunately,

this assumption breaks down in the presence of contention for shared resources or for shared

modules.

We illustrates the fallacy of this assumption on the simple program of Figure 6.1. The

timing behavior of the three modules in Figure 6.1 is:

M1 behavior: s1
3
! s3[3]

M2 behavior: s2
2�4
! s4[2� 4]

M3 behavior: s3
10
! s5[10]

s4
10
! s5[10]

Assume, for simplicity, that all channels have zero latency and each module is allocated to

a separate processor. The imposed constraint is:

s1[0]^s2[0] ! s5Mdestination[15fM3 : s3!s5g]:

Figures 6.1 and 6.2 show the inadequacy of veri�cation based on maximum latencies. Using

the maximum latencies along modules, we �nd that the constrained �nal token arrives at time

13, well within the deadline. Using the minimum latencies instead, we see that the constrained

�nal token will not arrive until time 22.

One solution would be for our veri�er to fork one veri�cation for each permutation of

overlapping ranges. This could be very costly. A much less computationally intensive solution

is to enforce as many maximum latencies as possible at runtime. Whether we need to or not,

we promise to wait until the maximum latency. In case of module M2, for instance, we promise

to generate a token and terminate at time 4. This is the approach we adopt in this chapter. A

more desirable solution would be to �nd a bound on the introduced deviation from maximum

latency.

6.3 Alternative to Event-Driven Veri�cation

Our veri�er was event driven. The advantage of this approach was accurate simulation of state

at each point in time. For each decision, the simulator presented an accurate snapshot of

computation state at the time of the decision. The disadvantage of this approach was the cost.

To step through events sequentially in time, we had to maintain and sort an event queue.
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Figure 6.1: Veri�cation Using Maximum Latencies.

Figure 6.2: Veri�cation Using Minimum Latencies.

An alternate approach would be to eliminate the event queue. Instead of queueing each

new event and handling events in order, we could handle events recursively - regardless of their

time. We will refer to this modi�ed veri�er as the unordered veri�er. For instance, the new

token creation handler would not return control to a main loop. Instead of enqueueing an

arrive-token event at a later time, it would invoke the token arrival handler right away. Control

would return to the top level only when a sequence of events terminated.

Figure 6.3 illustrates on a veri�cation of the feedback constraint. It shows the order in which

events are handled by our modi�ed veri�er. We see that events up to time 149 are handled

before an event at time 0. Surprisingly, the unordered handling of events did not e�ect the

correctness of this veri�cation. All events and their times are identical to those of Figure 4.8.

This is not always the case. In the next few sections, we will look at ways in which the

absence of event ordering could compromise the correctness of our veri�cation. Not surprisingly,

we will �nd that any source of nondeterminism in our programming model cannot be simulated

correctly by an unordered veri�er. In addition, contention costs can, at best, be bound.
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Figure 6.3: Part of a Unordered Veri�cation of the Feedback Constraint.
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6.3.1 Nondeterminism

First, we look at ways in which nondeterminism in our programming model could compromise

the correctness of our veri�cation. There are three sources of nondeterminism in Stream Ma-

chine programs. All three originate from nondeterministic merge modules and their extension,

the generalized merge modules (Section 4.1). In terms of our abstract behavior speci�cation, all

three originate from the presence of multiple statements. Next, we examine each of the three

sources of nondeterminism and consider how the presence of each a�ects the correctness of an

unordered veri�cation.

Multiple Statements

The �rst source of nondeterminism is caused simply by the presence of multiple statements.

Take the simplest set of two statements:

s1 ! s3

s2 ! s4

The order in which individual statements are invoked depends on the order in which tokens

arrive along input streams. That is, the order of invocations is time dependent or nondeter-

ministic.

Time dependent order of invocations compromises the behavior of multi-state modules in

an unordered veri�cation. As later input tokens are handled �rst, they may �re the wrong

statement �rst and wrongly propel the module into its next state.

Consider a module with the following behavior:

state : 1 s1 ! s3

s2 ! s3

nextstate : 2

state : 2 s2 ! s4

nextstate : 2

Say that one token arrives along stream 1 and sometimes later one token arrives along stream 2.

Figure 6.4 illustrates. From the module's timing behavior, the arrival of a token along stream

1 will �re statement s1!s3 and transfer the module into state 2. Later in state 2, the arrival

of a token along stream 2 will �re the statement s2!s4.
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Consider what happens if we handle the arrival of a token along stream 2 �rst (Figure 6.5).

The arrival of a token along stream 2 will wrongly invoke the s2!s3 statement and wrongly

transfer the module into state 2. Later on in state 2, a token will arrive along stream 1 and

remain queued forever. Clearly, the module's behavior will be compromised.

Figure 6.4: Correct Veri�cation.

Figure 6.5: Unordered Veri�cation.

Shared Output Stream

A second source of nondeterminism is caused by the sharing of a common output stream

by several statements. The simplest merge module:

s1 ! s3

s2 ! s3

in Figure 3.4 illustrated. The order in which tokens are merged onto the output stream depends

on the order in which tokens arrive along input streams Left and Right. The order of tokens

along the output stream is therefore nondeterministic.

Two di�culties arise as a result of misordered handling of tokens along shared output

streams. The handling of tagged tokens and the timing of successive modules' invocations are

compromised.

Tagging First, the behavior of tagged constraints is compromised. To illustrate, consider the

program:
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M1 behavior: s1
100
! s3[100]

M2 behavior: s2
10
! s4[10]

M3 behavior: s3
10
! s5[10]

s4
10
! s5[10]

M4 behavior: s5^s6
10
! s7[10]

M5 behavior: s7
10
!

The imposed constraint is:

s6[0]^s1[0]^s2[0] ! s7M5[20fM3 : s4!s5g]:

Figure 6.6 shows the progress of this veri�cation. Since tokens arrive at stream 5 unordered, the

invocation of module M4 may consume the wrong token. As a result, the imposed constraint

will go unmet.

Figure 6.6: Unordered Veri�cation.

Invocation Times Even if constrained �nal tokens do not contain tags, the timing of our

program may be compromised. This is because module invocations may consume wrong tokens

and, as a result, �re at the wrong time. Figure 6.6 illustrated this. Module M4 consumed the

wrong token along stream 5 and, as a result, �red at time 110 instead of 20. It is important

to notice that invocation times in our unordered veri�cation are guaranteed to equal or exceed

the correct invocation times. Constraints will not be compromised because of these incorrect

invocation times, although they may go needlessly unmet.
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Overlapping Input Streams

A �nal source of nondeterminism is caused by the sharing of a common input stream by

several statements. Take the case:

s1^s2 ! s3

s1 ! s4

Depending on the time at which an input token arrives at stream 1, its arrival can complete

one or both input sets. The number of input sets it completes is nondeterministic.

The time dependent number of completed input sets can cause incorrect behavior. To

illustrate, consider the module:

s1^s2 ! s3

s2 ! s3

As before, say one token arrives along stream 1 and sometimes later one token arrives along

stream 2. If we handle arriving tokens in order, the �rst token will queue onto the input queue

of stream 1. The second token along stream 2 will complete both input sets. Which input set

will actually �re is nondeterministic and our veri�er will fork a separate veri�cation for each

case (Figure 6.7).

If we handle arrived tokens out of order, the module will behave incorrectly (Figure 6.8).

A token along stream 2 will complete only one input set and �re. Later on a token will arrive

and queue inde�nitely onto the input queue of stream 1.

Summary of Nondeterminism in Unordered Veri�cation

In this section, we have identi�ed modules for which an unordered veri�cation is not feasi-

ble. All such modules behave nondeterministically. As events are handled out of order, their

nondeterministic behavior is compromised.

6.3.2 Contention

An additional phenomenon compromises the correctness of an unordered veri�cation - con-

tention. In case of module contention, the veri�er must be able to tell whether another invo-

cation is occupying a module. In case of resource contention, the veri�er must be able to tell
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Figure 6.7: Correct Veri�cation.

Figure 6.8: Unordered Veri�cation.

whether another consumer is occupying the resource. But as events are handled unordered, the

veri�er does not have an accurate snapshot of the program's current state.

Module Contention

Our programming model dictates that each module have at most one invocation at any given

time. An event driven veri�er maintained this constraint by setting the current allocation

variable while a module was invoked. An unordered veri�er can maintain the same constraint

by recording the most recent completion time for each module. If another invocation �res before

the completion time, its invocation latency will be increased by the remaining completion time

of the previous invocation. This procedure will guarantee at most one invocation of each module

at a time.

But it will not guarantee the correct order of invocations. As we have seen, the presence

of nondeterministic modules will compromise the invocation order. Figure 6.6 also illustrates

this. Since the arrival of tokens along streams 3 and 4 will be handled out of order, the two

invocations of module M4 will be switched. The invocation s4!s5 will incorrectly have to wait

for the invocation s3!s5 to complete.
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Resource Contention

The order and time of consumers' allocations will not be preserved. In our event driven veri�er,

each consumer must compete with all other consumers at that time for a resource. To allocate

a processor or a channel, we must know exactly which consumers have arrived. Without this

knowledge, we will not be able to compute the correct time when a consumer will acquire its

resource.

This problem is more serious than that of module contention. In the absence of nondeter-

minism, we could compute the time it takes an invocation to acquire a module. But we cannot

compute the time it takes an invocation to acquire a processor.

Fortunately, in the absence of nondeterminism, we can compute a time which equals or

exceeds the correct time to acquire a resource. To do that, we look at all consumers which will

ever compete for a given resource. We accumulate these by simulating the program's behavior

independent of time. For each consumer, we can then make the unrealistic assumption that

it acquires the module last. This assumption is guaranteed to equal or exceed the correct

invocation time2.

Summary of Contention in Unordered Veri�cation

To conclude, in the absence of nondeterministic modules, a unordered veri�er can handle con-

tention costs. It can compute the exact time it takes an invocation to acquire a module. And,

by accumulating all consumers for each resource �rst, the veri�er can place an upper bound on

the time it takes a each consumer to acquire that resource. However, constraints met by the

program may not be veri�ed because of unrealistically high upper bounds.

6.3.3 Alternative Summary

In this section, we have looked at ways in which unordered event handling might produce

incorrect results. We saw the presence of nondeterministic modules compromised the timing,

and even behavior of an unordered veri�er. Even in the absence nondeterministic modules, we

saw that resource contention costs could only be bound.

2We can tighten the assumption by eliminating all consumers which are guaranteed to follow a given consumer.
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6.4 Tagged Veri�cation to Avoid Duplication of Veri�cation

In this section, we address the overhead of multiple simulations. The event-driven veri�er copied

all runtime state (Section 4.3) each time it forked multiple veri�cations. We will look at an

alternative way to manage multiple veri�cations.

As we saw in Section 4.3, the event-driven veri�er forked multiple veri�cations in two places.

Whenever the veri�er �red a statement with multiple output sets, it forked one simulation for

each output set. Each output set represented di�erent timing behavior. To validate a constraint,

each possible timing behavior had to be veri�ed.

In addition, generalized merge modules could cause the veri�er to fork multiple veri�cations.

Say the arrival of one token completed several input sets. Which input set should consume the

token? The programming model did not specify. Without an accurate knowledge of the Stream

Machine implementation that is being veri�ed, the veri�er had to fork multiple veri�cations -

one for each completed input set.

The forking of multiple veri�cations may lead to redundancy. Consider again our sample

program with each module and each stream allocated to a separate processor or channel. Fig-

ure 4.6 showed the veri�er forking two simulations as a result of ModelSelectmodule's multiple

output sets:

s3^s18 ! s4^s8

! 2s9^s8

Figure 4.8 showed the outstanding events at each point in time. Notice that two identical events

appear in each forked veri�cation: the complete-invocation event and the create-token event for

MonitorSelect and its output token along stream 11. As a result, each of the two veri�cations

goes on to verify an identical monitor subgraph of SAMPLE.

This duplication of work arises because our veri�er needlessly copies the entire runtime state

when forking. As a result, events whose behavior and timing do not depend on the fork will be

veri�ed multiple times.

An alternate approach is to share state among multiple veri�cations. Figure 6.9 illustrates.

Instead of duplicating the entire runtime state, the veri�er tags each piece of runtime state. In

Figure 6.9, tag tag1 identi�es all runtime state which is belongs to the !s4^s8 branch. Tag

tag2 identi�es all runtime state which belongs to the !2s9^s8 branch. Note that there are two
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distinct invocations of the ModelSelect module - one for each branch. On the other hand, a

single invocation of the Monitor1 module is shared by both branches.

Figure 6.10 shows the single shared event queue at each point in time up to the fork.

Comparing Figure 6.10 to Figure 4.8, we see that the tagged veri�er simply tagged all events

when it forked two veri�cations. It tagged events unique to the !s4^s8 branch with tag tag1,

events unique to the !2s9^s8 branch with tag tag2, and events shared by both branches with

both tags.

A natural question to ask is what does the next step of Figure 6.10 look like. Ignoring tags,

we know how the simple veri�er of Sections 4.3 and 6.1 would behave. But how do tags a�ect

this behavior?

6.4.1 Tagged Veri�er

In this section, we outline changes made to the simple veri�er in order to handle tags.

Tagged State

As we have seen in Figure 6.10, the tagged veri�er tags each piece of runtime state with the

veri�cations to which that state belongs. Each token carries a tag identifying the veri�cation(s)

to which that token belongs. We will call this tag the veri�cations-tag to di�erentiate it from

the tag described in Section 5.3. The tag described in Section 5.3 identi�es the origin of a

token which has passed through nondeterministic merge modules. It has no relation to the

veri�cation-tag.

All initial tokens start out as part of the same veri�cation. As a result, they all share the

same initial veri�cation tag.

Each module carries a list of tagged current states. Since each veri�cation has to be in some

module state, each module carries as many tagged current states as there are veri�cations.

Each module also carries a list of tagged current invocations - one for each veri�cation which

is currently invoking that module.

Finally, as we saw in Figure 6.10, each event carries a veri�cation-tag identifying the veri�-

cation(s) within which that event is pending.
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Figure 6.9: Part of Tagged Feedback Constraint Veri�cation.
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Figure 6.10: Events for Part of Tagged Feedback Constraint Veri�cation.
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Event Handling

Simple Events Each event is now part of some veri�cation(s) speci�ed by its veri�cation

tag. Consequently, each event should only consider runtime state which corresponds to its

veri�cation(s). Take the remaining events at time 19 after the fork in Figure 6.10 - the invocation

completion of the MonitorSelect module, the creation of a token along its output stream 11,

and eventually its arrival at the Monitor1module. All three events are part of two veri�cations,

the tag1 veri�cation and the tag2 veri�cation. The tagged event handler handles these events

the same way as the individual untagged event handlers for veri�cation tag1 and for veri�cation

tag2 would have. Figures 6.11 and 6.12 show the state of our veri�er and of its event queue

before after these three events - right after the fork at time 19 and at the end of time 19.

Figure 6.11: Part of Tagged Feedback Constraint Veri�cation.

To complete invocation of the MonitorSelectmodule, the event handler empties the current

invocation variable for veri�cations tag1 and tag2. It also checks whether a new invocation is

queued to run in veri�cation tag1 or in veri�cation tag2. Since both veri�cations have an empty

invocation queue, the event handler returns control to the main loop. The creation of a token

along stream 11 triggers an 'arrive-token event. Since the token was created in veri�cations

tag1 and tag2, the token arrives at Monitor1 in veri�cations tag1 and tag2. The arrival of a

token along stream 11 invokes the Monitor1 module in veri�cations tag1 and tag2. This is the

state of our veri�er at time 31 in Figure 6.11.

A more illustrative point occurs at time 41. Figures 6.13 and 6.14 illustrate. A token arrives

at the input stream 10 of the ModelMerge module in veri�cation tag2. At this point two tokens
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Figure 6.12: Events for Part of Tagged Feedback Constraint Veri�cation.

are queued at the input stream 8 - one in veri�cation tag1 and one in veri�cation tag2. In

veri�cation tag2, a complete input set is present and an invocation of the ModelMerge module

is �red. The input token along stream 8 in veri�cation tag1 stays intact.

Multiple Forks In the previous section, we have seen how tagged state is handled. But what

happens when the tagged event handler encounters another fork?

This happens in the veri�cation of the recovery constraint (Figure 5.4). At time 150 a

second initial token is injected into stream 2. At time 169, the ModelSelect module forks for

the second time. The module forks within two veri�cations - the tag1 veri�cation and the tag2

veri�cation. As a result, the forking event handler sees all state marked tag1 or tag2. As was

the case in the �rst fork, the event handler labels all (visible) state as belonging to one or both

forks.

For instance, a �nal token along stream 1 was part of a single veri�cation - tag2. After the

fork, this token becomes part of two veri�cations - tag2-tag3 and tag2-tag4.

In our example in (Figure 5.4), all state is visible to the forking event handler. In general,

this need not be the case. Had a nested fork occurred inside veri�cation tag1, all state inside
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Figure 6.13: Part of Tagged Feedback Constraint Veri�cation.

Figure 6.14: Events for Part of Tagged Feedback Constraint Veri�cation.
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Figure 6.15: Part of Tagged Feedback Constraint Veri�cation.
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veri�cation tag2 would have remained una�ected. The �nal token along stream 1 marked tag2

would have remained marked tag2.

6.4.2 Modi�ed Tagged Veri�er

Unfortunately, the tagged veri�er described so far in this section does not reduce the cost of

forking multiple veri�cations. Just like the simple veri�er, the tagged veri�er touches each piece

of runtime state when forking. The simple veri�er touched each piece in order to copy it. The

tagged veri�er touches each piece in order to extend its tag if necessary.

A modi�ed version of the tagged veri�er can signi�cantly lower the cost of forking multiple

veri�cations. The original tagged veri�er tagged each piece of runtime state with the identity

of all veri�cation branches in which it existed. A modi�ed version tags each piece of runtime

state with the identity of all veri�cation branches in which it does not exist.

This modi�cation eliminates the need to touch each piece of runtime state when forking.

Since each existing piece of runtime state will exist in both branches of the fork, its tag does

not change. Only the immediate outcome of each branch must be tagged to indicate that it

does not exist in its sibling branch.

6.4.3 Tagged Veri�cation Summary

We have outlined the implementation of a tagged event-driven veri�er. Unlike the simple event-

driven veri�er of Section 4.3, this veri�er does not needlessly duplicate veri�cations at each fork.

Instead, it tags each piece of runtime state as belonging (or in case of the modi�ed version not

belonging) to certain veri�cation branches. As a result, the tagged veri�er avoids verifying the

same subgraph multiple times.

We have implemented the modi�ed tagged veri�er as part of this work. Further work is

needed to evaluate its usefulness for various types of programs. The tagged veri�er avoids the

cost of copying runtime state and needlessly duplicating work at each fork. However, in return

it incurs the cost of tag manipulation at each event.
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Chapter 7

Conclusion

At the beginning of this project, we were presented with a distributed programming environ-

ment for control and data acquisition in the wireline industry. We were told of a need to

guarantee a speci�c program response within a strict time bound. We narrowed our problem

by concentrating on a speci�c program allocation.

One possible way to guarantee such response is by running the program for a set of input

values which cover all possible response times. We rejected this approach for several reasons.

First, our domain might not guarantee repeatable response times. Certain latencies might vary

within a range. Second, access to the exact runtime environment - a wireline truck - is limited

during the program development stage. Third, the control 
ow of our programs is expected to

reach complexity level at which selection of su�cient input values is no trivial. And fourth, the

expected granularity of our timing costs is high enough to make simulation feasible.

As a result, we opted for simulation. We cleari�ed our notion of a program to a point where

we could simulate all possible timing costs. And we clari�ed our notion of a program response

to a point where we could verify whether a particular program response will take place within

a strict time bound. As with most projects, much remains to be accomplished. The following

two sections o�er our ideas for improvements and future directions.

7.1 Improvements

We see two major areas for improvement, both in our program speci�cation.
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7.1.1 Linking Behavior of Modules

To achieve data independence, our module behavior speci�cation abstracted away values along

tokens. We could no longer tell which values along input tokens produced each set of output

tokens. Similarly, we could not tell which values along input tokens lead to each possible latency

of an output token or an invocation. At the level of a module, this abstraction succeeded in

describing all possible timings and behaviors of that module.

However, at the program level this abstraction removed useful information. Our execution

model was unaware of any correlation between modules' timings and behaviors. It simulated

every, potentially infeasible, permutation of modules' possible timings and behaviors. As a

result, a constraint could be falsely rejected if some infeasible permutation of modules' possible

timings and behaviors could not meet the constraint.

Any future work should specify alignment between individual modules' timings and be-

haviors. As we suggested in our summary to Section 4.1, users could enforce such alignment

through tags.

7.1.2 Speci�cation of Periodic Input

We relied on constraint speci�cation to describe the initial state of a veri�cation through an

input set. As we discussed in Section 6.2.2, selection of a su�cient initial set is a�ected by

contention costs and so depends on a particular allocation. In retrospect, a cleaner approach

would have been to specify periodic input as part of modules' behavior and timing speci�cation.

7.2 Future Directions

We focused our interest in this project on a single known program allocation. A natural

expansion of our work would be the development of an allocator. Our veri�er could be utilized

by a heuristic driven allocator. Development of proper heuristics which take into account real-

time constraints in our domain is an important �eld for further research.
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