
LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS{fR-500

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

RANDOMNESS AND
ROBUSTNESS IN

HYPERCUBE COMPUTATION

Mark Joseph Newman

April 1991

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Randomness and Robustness

in Hypercube Computation

Mark Joseph Newman

Submitted to the Department of Mathematics
on July 28, 1989, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis we explore means by which hypercubes can compute despite faulty proces­
sors and links. We also study techniques which enable hypercubes to simulate dynamically
changing networks and data structures.

In chapter two, we investigate strategies for routing permutations on faulty hypercubes.
We assume that each node or edge in the hypercube fails with fixed probability p < 1- {/Tfi.
and that failures are independent of one another. We describe a constant c > 0 and a routing
algorithm which successfully routes messages between working processors in O(log N) steps
on an N-node faulty hypercube, with probability 1- N-c. We also strengthen an algorithm
due to Rabin which uses a redundant encoding of each message into log N pieces which are
routed along node-disjoint paths. A destination can reconstruct the original message as long
as at least log N /2 pieces arrive intact. We show that all messages are reconstructable at
their destinations with high probability, given that each node or edge fails with probability
0(1/ log N) and that ea.ch message has !l(log2 N) bits. This guarantee obtains even if the
components fail during the course of the algorithm.

In chapter three, we develop techniques for reconfiguring hypercubes in the presence of
faults. Again assuming constant probabilities of failure and the independence of faults, we
show that a. faulty hypercube can simulate a. fa.ult-free hypercube of the same size with only
constant delay. We exhibit both deterministic and randomized algorithms for hypercube
reconfiguration. We show that there exists a. constant c' > 0 such that with probability
1 - N-c' the deterministic algorithm finds a. one-to-one embedding with dilation 3 and
O(log N) congestion. We also show that there exists a. constant c'' > 0 such that with
probability 1- N-c" the randomized algorithm finds a.n embedding with constant load and
congestion with dilation 5.

In chapter four, we turn our attention to the embedding of dynamically growing data.
structures in the hypercube. Specifically, we show that a.n arbitrarily growing binary tree
with a. maximum of M nodes can be embedded in an N-node hypercube with load 0(t;f + 1),
congestion 0(f + 1) and dilation 12, with high probability. We also show how to embed a
dynamic M-node binary tree in an N -node butterfly with 0 (t;f + log N) load and dilation
2, with high probability.

Thesis Supervisor: F. Thomson Leighton
Title: Professor of Applied Mathematics

2

Acknowledgements

In my academic career, I have received far more than my fair share of support,

both moral and intellectual. First credit goes to Tom Leighton, who has guided my

development with a loose hand. Tom has always given me nothing but encouragement

and good advice to get me through an often ego-threatening situation. He has also

co-authored all the work appearing herein.

Others from whose effort I have benefited include Johan Hastad (with whom

chapter three was written), Abhiram Ranade and Eric Schwabe (co-authors of chapter

four). For five years I depended on Bill Aiello to help me through difficult proofs, to

exchange neat tricks and to listen to my unintelligible attempts at new ideas. The

proof of lemma 2. 7 is the product of joint work with Bill and Satish Rao. I also

learned much from talking with Ravi Boppana, Tom Cormen, Lance Fortnow, Bruce

Maggs, Seth Malitz, James Park and Peter Shor. Despite a full schedule filled with his

own advisees, Charles Leiserson has always been willing to lend an ear and to suggest

fruitful avenues of attack. David Shmoys and I first met when I was a freshman in

college and he a senior. Since then, he has never neglected an opportunity to teach

me or to steer me in the right direction. It has been my luck that our tenure at MIT

coincided so neatly.

Ron Rivest has made the theory group at the Laboratory for Computer Science

the most dynamic, supportive, and friendly of all the academic environments I have

seen. In addition to befriending all the students she can, Be Hubbard makes sure

that everything anyone needs is right where he needs it. I suspect that this is a much

more difficult job than she lets on. Whenever I had any computing questions, Sally

Bemus came to my aid immediately.

At three vastly different times, Irwin Kaufman, Hilda Singer and Douglas West

returned my mathematical interest with a dedication surpassing any expectation. I

3

was fortunate enough to receive such an extreme amount of attention from each of

them.

I will always remain thankful for the friendship of Bill Aiello, Johan Hastad, Ingrid

Johnson, Karen Parrish, Nir Shavit, David Shmoys and Eva Tardos, which saw me

through these past five years. For the past four years, James Park has been an

exemplary roommate and fellow jazz novitiate. My deepest thanks and love must

be reserved for Gayle Augenbaum, who has always absorbed more complaints and

frustration than is her due. Her warm smile and healing hand have often been the

difference between happiness and unhappiness.

In addition to giving unstintingly of their love, my parents have always encouraged

me to pursue knowledge for no end other than its own. Even though their workdays

were spent teaching others, they never relented in the education of their own children.

Despite nine years of physical separation, I feel as close to my sisters Amy and Nancy

as ever. To have two older sisters is to be spoiled in the best of ways - with affection,

good advice and happy times. Now that they have families of their own, I have the

added benefit of two older brothers, two nieces and a nephew as well. All along, my

uncle Don has been the only relative with whom I can discuss my work. Last, I would

like to thank my uncle Alan for understanding what I care about most and for killing

all the triple word scores he ca.n find.

4

Contents

1 Introduction 8

1.1 Hypercubes 8

1.2 Robustness 10

1.3 Fault-Tolerant Routing 12

1.4 Reconfiguration 14

1.5 Dynamic Load Balancing . 16

2 Routing in the Presence of Faults 18

2.1 Introduction 18

2.1.1 Summary of Results 19

2.1.2 Overview 22

2.2 Fast Routing Around Faults 22

2.2.1 Valiant-Brebner Routing 24

2.2.2 Jump Edges .. 27

2.2.3 Offset Routing 29

2.2.4 The Length of Offset Paths 30

2.2.5 Delay From Other Packets 33

2.3 Information Dispersal Routing . . 40

2.3.1 Routing Along Parallel Paths 41

2.3.2 Fault-Tolerant Encoding of Pieces . 43

2.3.3 Fault-Tolerance via Parallel Paths . 44

2.4 Remarks 46

5

3 Reconfiguration in the

Presence of Faults 47

3.1 Introduction 47

3.1.l Summary of Results 51

3.1.2 Overview 53

3.2 Embeddings for Small p with Dilation 3 . 53

3.2.1 Mapping Dead Nodes to Live Nodes 53

3.2.2 Analysis of the Borrowing 54

3.2.3 Embedding Edges 56

3.3 Embeddings with Dilation 3 for p < 1/2 57

3.3.1 Analyzing Stages 1 and 2 . 58

3.3.2 Analyzing Stages 3 and 4 . 61

3.4 Routing Using Only Live Nodes 63

3.5 An Algorithm for Constant Delay Embedding 66

3.5.1 Assigning Nodes to Live Neighbors 67

3.5.2 Assigning Edges to Paths 70

3.6 Implementing the Constant Delay Embedding 75

3.7 Extensions and Remarks . . . o I 0 0 0 0 o o 0 79

4 Embedding Trees Dynamically 81

4.1 Introduction 81

4.1.1 Summary of Results 82

4.1.2 Overview 84

4.2 The Basic Growth Algorithm 84

4.2.1 Preliminary Scheme . 84

4.2.2 Flip Bits 85

4.3 Embedding in the Butterfly 89

4.3.1 A Level-Balancing Transformation 89

4.3.2 Analysis of Tree Balancing . 90

4.3.3 Effectiveness of Flip Bits .. 93

6

I·
I

I
' .

4.4 An Improved Hypercube Embeddiac 95

4.4.1 Emheddina \Ile hWIJ ad k C... ·. M

4.4.2 Mo4ifJiac .. 1.-.... ,.,.., ., ·. 91

4.4.3 ~1-t.WMla...... 9t

4.5 A Lower Bou1d fm O.ern ialiflic Marai't• HrJ

4.6 R.n:luU • ·. • . • . • 103

\. '

1

Chapter 1

Introduction

1.1 Hypercubes

The hypercube has emerged as one of the most effective and popular network archi­

tectures for large scale parallel computers. The Connection Machine, manufactured

and sold by Thinking Machines Corp., is a hypercube-based machine containing 216

processing elements. Machines based on hypercube architectures have been built by

Intel, Ncube, Caltech and others. It has been predicted that in the not-too-distant

future, hypercube-based machines containing up to a million processors will be avail­

able. Thus, current conditions point to the utility of more advanced methods for

hypercube computation.

Then-dimensional hypercube Hn is a graph with N = 2n nodes and Nn/2 edges.

The nodes of Hn are labeled with n-bit binary strings, and two nodes are linked by

an edge if the associated strings differ in precisely one bit. If the differing bit is in the

ith position (1 ~ i ~ n) then the associated edge is called a dimension i edge. The

neighbor of a node v across the ith dimension will be denoted by v'. Similarly v111'l···'"
will denote the node reached from v by traversing dimensions ii, i 2 , ••• , i1c (that is,

by flipping those bits). We will use n and log N interchangeably. Pictures of labeled

two and three dimensional hypercubes and an unlabeled four dimensional hypercube

appear in figures 1-1 and 1-2.

In hypercube-based machines, the nodes of the graph are replaced by processors

8

101 111

01 11 011

100 110

00 10 000 010

Figure 1-1: Labeled 2- and 3-dimensional hypercubes.

Figure 1-2: A 4-dimensional hypercube.

9

and the edges are replaced by links between the processors. For example, in the

Connection Machine each node of a 12-dimensional hypercube contains a group of 16

processors.

The effectiveness of the hypercube for parallel computation arises from the wealth

of special-purpose algorithms written for it, its support of algorithms written for

shared-memory machines and its ability to simulate a host of other networks. Many

algorithms which run quickly on the hypercube already exist. Further, the hyper­

cube's recursive structure and high connectivity make it likely that fast hypercube

algorithms will continue to be invented in other contexts.

Hypercubes have demonstrated their usefulness as general-purpose computers as

well. Fast routing algorithms ([VB], [Ran], [P]) allow for low-overhead interprocessor

communication. These algorithms enable the hypercube to simulate a parallel random

access machine, or PRAM, with only logarithmic delay. Since any set of messages

are deliverable in O(log N) time, each set of memory accesses can be simulated in

O(log N) time as well, even if the PRAM's processors and memory locations are

spread arbitrarily among the hypercube's processors.

Hypercubes perform even more admirably when simulating special-purpose net­

works. The hypercube can simulate meshes, multidimensional arrays, binary trees,

x-trees, pyramid graphs, butterflies, cube-connected cycles and other networks, all

with constant delay. In many cases, these other networks are actually subgraphs of

the cube. In these instances, the hypercube can simulate the special-purpose network

with no delay at all.

1.2 Robustness

In this thesis we will describe three ways in which the hypercube is robust in a chang­

ing computational environment. Specifically, we show how the hypercube can support

fault-tolerant routing, how the hypercube can be easily reconfigured in the presence

of faults and how the hypercube can handle dynamically changing load requirements.

In the first two cases, the network itself changes due to the accumulation of faulty

10

processors and links. We show how the network can absorb these faulty components

while exhibiting little or no degradation of performance. In the third case, the com­

putation we expect the network to perform changes in accordance with the data in an

unpredictable fashion. We show how the network can distribute the resulting com­

putational load as optimally as if it had been completely specified beforehand. In all

three cases, a probabilistic approach helps us to achieve our results. In some cases,

we prove that these results would be impossible if randomness were not available.

In chapters two and three, we explore fault tolerant properties of the hypercube.

We assume that each node or edge has some constant probability of failure. In chapter

two we exhibit two randomized algorithms for routing permutations on hypercubes

in the presence of faulty components. Both algorithms are based on Valiant and

Brebner's ([VB]) original randomized algorithm for routing permutations on hyper­

cubes. In the first algorithm, we modify the fault-free algorithm so that messages

avoid faults. In the second algorithm, packets are broken into pieces containing re­

dundant information. Since only a constant fraction of the pieces need to get through

to reconstruct the original packet, the algorithm can tolerate the loss of many pieces

due to faults. To route a permutation, neither algorithm takes more than a constant

factor more time than is required to route without faults.

Chapter three is devoted to reconfiguration algorithms. The effect of these al­

gorithms is that the nonfaulty processors of a hypercube with faults simulate the

processors of a completely functioning hypercube. The link connecting two proces­

sors in the completely functioning hypercube appears as a functioning path between

the nodes simulating them in the cube with faults. In chapter three, we describe

reconfiguration algorithms which enable a hypercube with many faults to compute as

efficiently as a hypercube of the same size without faults.

The efficient simulation of dynamically evolving computation structures is the

subject of chapter four. We show that a hypercube can simulate an arbitrarily growing

binary tree with only constant overhead. As the tree evolves, new nodes are assigned

to hypercube processors. Neighbors in the tree are simulated by hypercube processors

only a constant distance apart. For any tree, the randomized algorithm assigns only

11

a constant number of tree nodes to each processor with a probability that can be

made arbitrarily close to 1. Thus both computation and communication overhead

are minimized.

In sections 1.3 - 1.5, we give an overview of the results in each of chapters two,

three and four.

1.3 Fault-Tolerant Routing

Given a network with a large number of components, we must assume that some of

these components will fail. These faults may be introduced when the machine is first

built, or might accumulate over time. We would like the machine to work despite the

faults.

Currently, when a processor or connection in the Connection Machine fails, the

board containing the offending component is removed and replaced with a functional

board. At some point in the future, if and when very large machines are in gen­

eral use, fault-tolerant algorithms may well provide a viable alternative to wholesale

replacement. Such algorithms might enable the machine to correct itself, with no

outside intervention.

Fault-tolerant behavior will be a major focus of our work. Routing in the presence

of faults, which we study in chapter two, requires techniques for either stepping around

faults or coping with messages which run into faults. Attempts have been made on

both of these fronts. We consider a routing algorithm successful if every packet sent

from a working processor to another working processor arrives intact. Of course, this

view presupposes that the higher-level algorithm in effect is also tolerant of faulty

processors. For example, a PRAM algorithm would have to tolerate some pattern of

faults among the PRAM's processors. Such algorithms have yet to be designed.

Throughout chapter two, we assume that there is some fixed probability p (either

a constant or a. function of the number N of nodes in the network) such that each

component of the hypercube fails with probability p. Furthermore, we will assume

that the failure of any given component is independent of the status of other parts

12

of the network. In some cases, this independence assumption may be unreasonable.

Components which share a physical location such as a chip or a board mig_ht have a

greater chance of failing in tandem. In this situation, our results can scale to work

in a hierarchical fashion. We may regard any hypercube as a hypercube whose nodes

are themselves hypercubes (a cross product of hypercubes). Thus we may treat the

chips or boards as nodes in a more coarse-grained hypercube.

Many of our algorithms are randomized as well. These algorithms have access

to a source of randomness and we only guarantee that they achieve desired results

an overwhelmingly large fraction of the time. Specifically, we guarantee that each

algorithm succeeds with probability at least 1 - N-k; i.e. that each fails with a

probability that is an inverse polynomial in N. If we can make the exponent k as

large as we like (perhaps by relaxing constants in the performance we desire), then

we say that the algorithm succeeds with high probability.

In (VB], Valiant and Brebner define a set of paths from sources to destinations

which, with high probability, allow all packets to arrive at their destinations in

O(log N) steps. Two different variations on Valiant and Brebner's ideas allow us

to route in the presence of faults. These variations use different assumptions about

the prevalence of faults, the capability of processors to detect faults in neighboring

components, and the minimum size of the packets that we can route. In the first case,

we assume that faults occur independently and with constant probability p, that each

processor can detect in one time unit whether or not an adjacent node or link has

failed, and that messages have length O(log N). Our idea is for packets to follow close

to the paths defined in [VB], but loosely enough that they can avoid faults as they

encounter them. We show that if each packet avoids faults by taking random steps

away from its Valiant-Brebner path, then with high probability each packet uses a

path with only O(log N) edges and encounters only O(log N) other packets on its

path. This shows that each packet arrives at its destination in O(log N) steps.

We devote the second half of chapter two to our improvements of an idea of Rabin

([R]). In this case, we assume that each edge of the hypercube fails with probability

p = 0(1/ log2 N), that processors remain ignorant of changes in the topology of the

13

network, and that packets have size D(log2 N). Under these assumptions, Rabin

showed that if each packet is split into log N pieces and the pieces are routed to the

packet's original destination by node-disjoint paths, then a constant fraction of each

packet's pieces will arrive intact at the destination. This assumes that each piece

makes no attempt to avoid faults. A piece arrives at the destination if and only if

no faults lie on its path. Coupled with a method for recovering a packet from a

constant fraction of its pieces, this strategy allows us to choose paths as if the faults

were not there. We describe a very simple way to choose the paths-we use log N

paths parallel to the Valiant-Brebner path. We are then able to simplify the proof,

to allow node failures as well, and to increase the allowable failure rates to include

probabilities as high as p = 0(1/n). (Recently, Giladi has reported similar results

([G]).)

1.4 Reconfiguration

Network reconfiguration involves assigning to working components the tasks that

the failed components would otherwise perform. The goal is to leave the network's

processing power undiminished in the eyes of the outside world, except perhaps for

a minor slowdown in speed to allow some components to perform multiple duty.

Alternatively, we can view reconfiguration as the embedding of a fault-free network

H~ of the same size into the working parts of the faulty network Hn. We can show that

even if a constant fraction of the hypercube's processors and links fail, what remains

keeps the original cube's processing power with only a constant factor degradation in

speed, with high probability.

We ma.ke the same probabilistic fault assumptions in chapter three that we made

in chapter two. Each component fails with constant probability and independently

of other components.

Some of our techniques may be of use with other hypercube-related problems. In

particular, there is one simple observation that is used in two forms in section 3.5.

Although the observation has probably been made by others, it is basic enough that

14

we think it worth highlighting as a paradigm for distributed match-making.

We will describe the result in its most basic form. Consider a collection of 8(N)

men and 8(N) women at a dance. Assume that each man has at least f!(X) female

friends and that each woman has at most O(X) male friends. By Hall's marriage

theorem, it is possible to schedule 0(1) rounds of dances so that every man dances

with at least one friend and every woman dances at most 0(1) times. Unfortunately,

the problem of scheduling dance partners requires substantial global coordination.

For our purposes, we focus on a scenario where pairing is accomplished simply by

a man asking a woman to dance. If many men ask a woman to dance at once, she

accepts as many as she can, making sure not to exceed her capacity of C = 0(1)

dances for the evening. If she can only accept some of the men, she prefers the

tallest among them. Each man chooses a friend randomly for each dance (without

knowledge of which women are tired or which women other men are asking) until he

dances. The result (which we call the Dance Hall Theorem-pun intended) is that if

X = f!(log N), and there are f!(log N) dances, then with high probability every man

will dance during the course of the evening. That is, for any lower bound bX on the

number of female friends each man has, any upper bound b' X on the number of male

friends each woman has and any constant k, there is a C such that for sufficiently

large N, with probability 1 - N-k a capacity of C is sufficient.

The Dance Hall Theorem scenario first arises in our analysis when we attempt to

embed the nodes of H~ in the functioning nodes of Hn. The nodes of H~ correspond

to men and the functioning nodes of H n correspond to women. If a man dances with

a woman, then the corresponding node of H~ will be simulated by the corresponding

node of Hn. We need the Dance Hall Theorem to ensure that the load of the em­

bedding is 0(1) (i.e. every woman dances with 0(1) men) and to ensure that the

embedding can be constructed quickly with local control (no global matchmaker).

We also need some other a.s-yet-undescribed properties of the Dance Hall Theorem

schedule to ensure that the hypercube's edges are not overtaxed by the embedding,

but these are more technical in nature and will be dealt with in the main text.

15

1.5 Dynamic Load Balancing

The desire for the optimal use of computational resources is often modelled as an

embedding problem. We construct a graph whose nodes represent the data and pro­

cesses. An edge connects two processes which trade information. To minimize com­

putation time, we would like to divide the processing requirements evenly among the

processors of our network. To minimize communication time, we would like to assign

neighboring processes to processors which are fairly close. These two requirements

may conflict.

For one solution, we might build a network which perfectly mirrors the processes

involved and embed each process in its own processor. There are two problems with

this approach. First, every algorithm would require a different network structure

depending upon how it divided up the work. Worse, the same algorithm might

generate a different process graph for different input data. In this case no foresight

could help in network construction. One (far from unique) example can be found in

the context of branch-and-bound algorithms. The search tree developed during each

run of a branch-and-bound algorithm changes based on which subtrees are cut and

which are chosen for further exploration. We could not hope to build a processor tree

which could handle all potentialities unless it were far larger than any one tree that

might be generated during any particular run.

As a second solution, we might build a network into which all similarly sized trees

can be embedded. A practical network would allow us to embed a tree dynamically.

As we embed the tree, we have no knowledge of which branches will develop many

nodes in the future, and which will cease to exist at all. We must allow sufficient

room for all possibilities.

In chapter four, we demonstrate a randomized algorithm which, with high prob­

ability, embeds an arbitrary dynamic binary tree in a hypercube so that the compu­

tation and communication overhead are both constant. A simplified version of the

algorithm embeds a dynamically growing tree in a butterfly smaller by a logarithmic

factor. Both computation and communication are slowed by only a logarithmic fac-

16

.........

tor,dleb.spffli•&e •. .,....._, •• ,.!tlJtl4J!'.:~-~·····-
> -. ' ""::~;~ -~ . • ' • ~:;',,,·

,:-·.·

IT

Chapter 2

Routing in the Presence of Faults

2.1 Introduction

To successfully simulate shared memory, a parallel network must have the ability to

route information between different origin processors and destination processors at

the same time. Since processors trade information throughout the course of parallel

computations, the overhead due to the transmission of information over the network

shows up as a multiplicative factor in the time to perform many tasks. Thus the

routing question is one of fundamental importance.

In practice and theory, the store-and-forward model of communication is often

used. In this model, once a node begins transmission of a message unit across a

link, it continues to transmit until the entire message is sent. Treating messages as

inviolable packets allows us to ignore some significant issues of control at the cost of

time. Since time bounds for packet-switched networks are often stated in units of

packet steps, such bounds must be multiplied by the length of the longest message to

produce a bound in bit steps.

Many algorithms have appeared for routing on hypercubes and networks derived

from hypercubes (such as the butterfly). In 1981, Valiant and Brebner ([VB]) pre­

sented an algorithm for routing O(log N)-bit packets on the log N x N-node butterfly

(and hence the N-node cube) which could route permutations from the top level to

18

the bottom in O(log N) packet steps, with high probability.1 Here a permutation

means that the mapping from origins to destinations is bijective. Their algorithm,

which we will review in section 2.2, introduced the paradigm of routing each packet

first to a random intermediate destination and then to its true final destination. The

algorithm routes obliviously: each packet's path is chosen without regard for the

paths of any other packets.

This simple addition of randomness is enough to overcome the proven delays

involved with deterministic routing algorithms. Borodin and Hopcroft ([BH]) showed

that any deterministic oblivious algorithm must necessarily take 0(../N /(log N)312)

bit steps, in the worst case, for any N-node network.

Since Valiant and Brebner's pioneering work, significant improvements have been

made. Pippenger ([P]) showed how to route permutations of a fully loaded log N x N

butterfly in O(log N) steps with high probability. That is, each node in the butterfly

can generate a packet, not only the nodes in the top level. In Pippenger's algorithm,

only a constant number of packets reside in a queue at any time. Ranade ([Ran])

produced an algorithm which routes arbitrary mappings on a fully-loaded butterfly

using combining, again with constant size queues and in O(log N) packet steps with

high probability. Both of these algorithms make fundamental use of the paradigm of

routing to random intermediate destinations.

2.1.1 Summary of Results

In this chapter, we consider the problem of packet routing on a. hypercube with

faults. We assume that every node and link of a hypercube fails independently with

constant probability p. Under this assumption, with probability exponentially close

to 1, a constant fraction of the components of the cube will fail. In the presence

of such a large number of faults, we would like to route packets so that any packet

generated by a working node and sent to a working node arrives safely within the

stated time bound.

1 We use the phrase Q is less than O(g) with high probability to mean "For every k there exists
a constant d independent of N such that the probability that Q exceeds dg is less than N_.,, ."

19

We describe and analyze a randomized packet routing algorithm that adaptively

routes packets around faults as they are encountered in an N-node hypercube that

contains 0(N) randomly located faulty nodes and 0(N log N) randomly located

faulty edges. We assume that each processor can decide if an adjacent node or link

has failed. Also, each processor can choose a random element from a set with as

many as log N elements according to the uniform distribution. We define the prop­

erty of local mutability, a characterization of the connectivity of the network after

some components have failed. There exists a constant c1 such that the hypercube

remains locally routable with probability 1 - N-ci. We prove that, given that the

hypercube is locally routable, the algorithm routes any permutation on the working

processors in O(log N) steps with high probability. That is, under the assumption of

local mutability, we reproduce Valiant and Brebner's results in the presence of faulty

components. Packets which start or end at faulty nodes are eventually determined

to be undeliverable. All the deliverable packets arrive at their destinations provided

that they are not located in the immediate vicinity of a processor at the moment

it fails. The algorithm is fault-tolerant in the sense that no advance knowledge of

the locations of the faults is needed for the path selection, but it is susceptible to

nodes which fail while holding packets. The algorithm is of interest because during

most steps, few processors will fail and almost all deliverable packets will be deliv­

ered. In addition, the algorithm itself is quite simple and is the first adaptive routing

algorithm for which an O(log N) bound on the routing time has been achieved.

Work on adaptive routing for faulty hypercubes is potentially applicable out­

side the setting of fault-tolerance. Except for the algorithm we present, all known

O(log N) packet step routing algorithms for the hypercube are inherently nonadap­

tive. Whereas O(log N) packet steps are also a lower bound on the time to route

(since the diameter of the hypercube is log N), the implied O(log2 N) bit step bound

for O(log N)-size packets is not provably optimal. Recently, we have proven a lower

bound of O(log2 N /log log N) bit steps for all nonadaptive algorithms ([ALN]). Thus,

serious improvement on the upper bound will have to come from an adaptive algo­

rithm.

20

There has been other work on packet routing on faulty hypercubes. Most no­

tably, Rabin ([R]) has devised an elegant scheme called information dispersal routing

wherein each packet to be routed is decomposed into log N pieces. The pieces are

routed in a randomized nonadaptive fashion to their destinations and then recom­

bined to form the original message. A key aspect of the scheme is that the packet

decomposition uses error-correcting codes. Therefore only a constant fraction of the

pieces of any packet need to get through to the destination for the packet to be

reconstructed.

Rabin makes different assumptions about both the nature of fault detection and

the size of the packets. His model assumes no detection of nearby faults is possible.

In his algorithm, each node chooses log N node-disjoint paths on which to send its

pieces without regard for faults they may contain. If a packet encounters a fault, it

is lost. Rabin's scheme is useful only if the original packets represent relatively long

bit streams. Because routing information alone uses 8(1og N) bits, each of the log N

pieces into which a packet is divided must contain O(log N) bits. Thus the original

packets must have length n(log2 N). Additionally, Rabin's analysis depends on the

failure rate p to be O(ljlog2 N) and allows only edge faults. At most 8(N/ log N)

edge faults can be absorbed. Under these conditions, the Rabin algorithm provides a

fully fault-tolerant routing of N packets in O(log N) steps with high probability.

In section 2.3, we show how to achieve Rabin's results with a simpler algorithm

and analysis. Our analysis permits both node and edge faults and requires p to

be 0(1/ log N) so that the routing can absorb up to 8(N) edge faults as well as

e (NI log N) node faults. (A similar result based on Rabin's original algorithm has

recently been discovered by Giladi ([G]).) We also briefly sketch a way to potentially

improve its tolerance to faults in as many as a constant fraction of components by

combining the decomposition scheme with our adaptive algorithm for routing around

faults.

All of chapter two represents joint work with Tom Leighton. In addition, lemma

2. 7 is the result of work with Bill Aiello and Satish Rao.

21

2.1.2 Overview

Section 2.2 contains the O(log N) time adaptive routing algorithm. In section 2.3, we

show how to improve Rabin's fault-tolerant results with a simpler algorithm.

2.2 Fast Routing Around Faults

In this section we examine the problem of routing ~ permutation on a faulty hyper­

cube. We describe a variant of Valiant-Brebner routing on the hypercube that we call

offset routing. The success of the algorithm depends on local mutability, a condition

of the nonfaulty processor's connectivity. We show that with a probability close to 1

a faulty hypercube remains locally routable and that if it does, the routing algorithm

works with high probability.

We make several assumptions about the nature of faults and about the abilities

of the network's processors. Every node and edge of the hypercube is assumed to fail

independently of other components and with a constant probability p < 1 - ef1;2.
Every node is able to detect whether a neighboring node or the link to it is faulty by

simply sending a one bit message and waiting for a response. It does not matter if

the node cannot detect whether the fault lies in the neighbor or the link. We make

the minimal assumptions about the messages themselves. Since routing information

uses E>(log N) bits and must accompany each message, we assume that each packet

contains O(log N) bits.

The idea of the offset routing algorithm is to route around the faulty components.

Say a hypercube node v holds a message from some source and that the route to

the destination dictates that the message be sent to its neighbor vie across the ktl'

dimension. Further assume that the edge (v, vie) has failed. One way to pass the

message on would be to find a dimension i-::/:- k for which all components in the path

(v, vi, vile, vie) are nonfaulty. A picture of this path appears in figure 2-1.

Unfortunately, if some node on the path from source to destination has failed

and paths like that shown in figure 2-1 are used exclusively, the message will not

get through. To allow for the existence of node faults, we make sure that once we

22

v

k
v

ik
v

Figure 2-1: A pa.th of length three a.voiding a faulty edge.

have decided on a path from the source to the destination, the message never resides

in any of the processors along the path until it reaches its destination. The path is

treated as a virtual path. Instead of residing in some node v along the virtual path,

the packet will reside in some neighboring node vi. That is, it will be offset by the

dimension i. H dimension k is to be traversed, some other offset j will be chosen for

which the entire path (vi, vii, viik, vik) is fault-free. Thus, instead of residing in node

vk, the packet will be offset by dimension j. In this fashion, the offset path skirts

around the virtual path but never meets it until the packet reaches its destination.

The offset routing algorithm uses randomness in two different ways. First, ran­

domness is used to select virtual paths from sources to destinations. The virtual

paths we will use are precisely the paths chosen by the Valiant-Brebner algorithm.

Second, the offsets used along the way will be chosen from among those which create

a live path of length three to the next offset node.

In section 2.2.1, we define butterflies and we review the Valiant-Brebner routing

algorithm. We prove some important bounds on the number of messages the algorithm

is likely to rout through small sets of edges. In section 2.2.2, we define another

network, the butterfly with jump edges, which helps us to think about the offset

routing algorithm on the hypercube. In section 2.2.3, we describe the offset routing

23

algorithm explicitly. Section 2.2.4 proves a limit of O(log N) on the length of any

offset path. Finally, section 2.2.5 shows that only O(log N) other messages use any of

the edges of a particular message's path. This proves that the offset routing algorithm

finishes in O(log N) routing steps.

2.2.1 Valiant-Brebner Routing

The virtual paths we will use are those dictated by the Valiant-Brebner routing al­

gorithm. Since that algorithm is viewed more intuitively as a butterfly algorithm,

we will present it that way. First, we review some basic butterfly concepts. Next we

present the Valiant-Brebner routing algorithm. Last, we prove two lemmas about how

uniformly the algorithm uses edges. These lemmas will be useful when we examine

the usage of edges by the offset routing algorithm.

The log N x N-node or log N-dimensional butterfly is obtained from the N-node

hypercube by replacing each node v of the cube by a cycle (v0 , vi, ... , Vn_ 1 , v0). We

replace each edge (v, vi) by a pair of edges (Vi_ 1 , vi) and (vi_ 11 vi) (mod n). We can

visualize the set of nodes {Vi Iv E H n} as sharing a level of the butterfly. We call edges

of the form (vi_1 , vi) straight edges and those of the form (vi-ti vi) cross edges. All

edges connect nodes in adjacent levels (mod n).

Figure 2-2: A three level butterfly. (The top and bottom rows are identified.)

24

All dimension i hypercube edges connect the (i- l)"t level with the ith level. Thus

any hypercube algorithm which only uses one dimension during each step and only

uses consecutive dimensions during consecutive steps can run on the butterfly just

as quickly. Any butterfly algorithm works as well on the hypercube from which the

butterfly was obtained. We may regain this hypercube by collapsing columns of the

butterfly.

The Valiant-Brebner hypercube routing algorithm is also a butterfly routing algo­

rithm. A packet starts at some node v0 and ends at some node w0 • We think of the

column of nodes {Vi} as being shared by the hypercube node v, which assigns each

node in the column a different queue from a set of n queues. If a message traverses

the straight edge (vi-1' vi) in some butterfly step, then it is passed from the node v's

(i - 1)"t queue to its ith queue in the hypercube step. If the message traverses the

cross edge (Vi-i, vi) in some butterfly step, then it is passed from v's (i - 1)•t queue

to vi's ith queue in the hypercube step.

Routing from v0 to w0 is simplified by the fact that there is a unique path of

length n between those two nodes. The ith step in the path connects a node at level

i - 1 with one at level i. H v and w agree in the ith bit, the edge is a straight edge.

If they differ, a cross edge is used. For example, to route from the node (1, 1, 0)0 to

the node (0, 1, 1)o we would use the path (1, 1, 0)0 , (0, 1, O)i, (0, 1, 0)2, (0, 1, 1)o.

In the first phase of the Valiant-Brebner routing algorithm, each node in level 0

first sends its packet to a random node in the same level using the unique path of

length n. In the second phase, the packet is routed along the unique path to its true

destination. In [VB) it was shown that this algorithm takes 0(n) steps to complete

and uses total queue length O(n) at every hypercube node, with high probability.

We will worry about congestion, or the total number of messages using a given

set of edges, in the offset routing schedule. A message can congest an edge only if

its virtual path brings it close to that edge. It will then congest the edge only if

particular choices of offset are made. To bound the congestion, we will first bound

the number of messages whose virtual paths come close to a given set of edges. We

need only the following two bounds on the number of messages traversing small sets

25

of edges via their Valiant-Brebner paths.

Lemma 2.1. Take an arbitrary set of h edges on one level of the n-dimensional

butterfly. Then with high probability the Valiant-Brebner routing scheme routes

only 0(h + n) messages through edges in the set.

Proof. Note that each message can congest at most one edge in the set. The following

analysis applies to the first phase of the routing algorithm. The analysis for the second

phase is almost identical.

Say the edges share level l of the butterfly. Then we can partition the butterfly's

first /levels into N/21 nonintersecting butterflies B1 , B2 , ••. , BN; 21 each built from a

subcube with 21 nodes. For a message to route through one of the h edges, it must

start in the same butterfly as the edge. Say that hi of the edges lie in butterfly Bi.

Because paths are chosen uniformly, each message is equally likely to traverse any of

the edges in a level of Bi. Thus each message starting in butterfly Bi has probability

Pi = hi/21 that it will hit one of the edges in the set.

For a node v, let Xu = 1 if v's packet congests an edge in the set and 0 otherwise.

We wish to bound the value of X = Eu Xu. To do so, we bound the moment

generating function M(.X) = E[e.\X] for positive .X. We can then bound Pr[X > kh] =

Pr[e.\X > e,\kh] ~ e-Akh E[e.\X]. This bound follows directly from Markov's inequality

Pr[Y > b] ~ E[Y]/b for any nonnegative random variable Y and nonnegative bound

b. We will first bound the moment generating functions Mu(.X) = E[e.\X,] We can

then use the fact that, since the Xu are independent, M(.X) =TI Mu(.X).

The moment generating function Mu(.X) will depend on the butterfly Bi to which

v belongs. H v E Bi then Mu(.X) = E[e.\X,] = (~e,\ + 1 - ~). Precisely 21 nodes in

the butterfly sha.re this moment generating function. Thus the moment generating

function M(.X) for X satisfies

M(,\)

26

The inequality between lines two and three follows from the inequality 1 + x :::; ex

for all x.

Thus Pr[X ~ kh] :::; e(e,\-l)he-kh>. = (ee,\-k>.-l)h. Setting A = ln k, this implies

Pr[X ~ kh] :::; (ek(l-Inkl-1)\ a bound which can be made as small as desired by

increasing the constant k.

If h > n, then the probability that more than kh messages pass through the

edges is less than N-O(klnk). Similarly, if h < n, the chance of having more than kn

messages crossing the set is also less than N-O(kln k). •

Lemma 2.2. Take an arbitrary set of O(n3) edges in the n-dimensional butterfly.

With high probability the Valiant-Brebner routing scheme routes only O(n3) message.s

through edges in the set, counting a message once for each time it traverses an edge

in the set (i.e. counting according to multiplicity).

Proof. We will examine each level separately and then sum across levels. Say level

l has e1 edges from the set. By lemma 2.1, for any k there is a c such that there is at

most an N-k chance that more than c(e1 + n) messages traverse the e1 edges from the

set at level/. Summing over all levels, with probability at least 1-nN-lc, the number

of messages crossing edges from the set at any level is no more than c(L:1 e1 + n2). •

2.2.2 Jump Edges

As we mentioned earlier, the second use of randomness involves evading faults which

lie on the virtual path chosen by the Valiant-Brebner routing algorithm. When we

route on the hypercube, we have access to many more edges out of each node than

we do when we route on the butterfly. We can use these edges to route around

faulty components. While bits are changed consecutively by traversing virtual paths,

arbitrary bits are changed during fault avoidance. We create the butterfly with jump

27

•' ,, 1• 1, ,, '• ,, '•

I\ I I I' I'
'' I I I\ I I

· .. ·~· .. ·
I / 1 \ , I

:.~.> :..~ .. ;
I \ ' ' .. I 1 1 \ I '" I 1 I

I ",',I ",•,, ' "..',I "..',; I

:."·~··.:
l~lt~I

, .. , ~

·.·.. :: .. :·.... .· ·:- .. . ,. ... · .. <·

I '",. ' "'., I '" I "' I " I.," I,." I

, "I.. "'l..,...... Y..... .. r f'
" I "' ,.. I "" '" f ,. ., I "

Figure 2-3: Jump edges. These edges form the hypercube connections for the nodes
on each level. The dashed edges are from the underlying butterfly.

edges to accentuate the changing of adjacent bits in the virtual path while allowing

for the changing of arbitrary bits in the offset path.

A jump edge is an edge of the type (v;, vj). Jump edges are not butterfly edges. A

packet traversing such an edge would be sent (in the hypercube) from the jth queue

of v across the edge (v, vi) and deposited in the ph queue of vi. Note that all n jump

edges of the type (v;, v;) ,j varying, are actually manifestations of a single hypercube

edge from v to vi. This means that every hypercube edge is represented n + 2 times

in the butterfly with jump edges: as n different jump edges and 2 cross edges. Figure

2-3 depicts the jump edges for the 3 x 8 butterfly.

If we collapse the levels of the butterfly with jump edges, we regain the hypercube.

Any algorithm we create for the butterfly with jump edges works as well on the

hypercube. We need only be especially careful about congestion, or multiple packets

crossing the same edge. A cross edge or jump edge traversed by a given packet is

actually one out of several appearances of a hypercube edge in the butterfly with

jump edges. Any congestion on another manifestation of the hypercube edge could

slow the packet down. Among other things, we will concern ourself with the total

congestion on a hypercube edge traversed by a packet, not just the congestion on the

particular cross edge or jump edge it traverses.

28

2.2.3 Offset Routing

In the offset routing algorithm, each packet remains fairly close to its Valiant-Brebner

path. A packet's location always differs from where their algorithm would send it by

some offset which is a random dimension. The offset routing algorithm retains the

two-phase structure of Valiant and Brebner's algorithm.

We first describe how packets are routed from level to level in the butterfly with

jump edges. Recall that the path traversed by a packet in the Valiant-Brebner scheme

is its virtual path. In the offset routing algorithm, a packet whose virtual path would

pass through the (k - 1)at level at the node v.1:_ 1 will pass through the level at some

node vL 1 instead. If its virtual path would leave v.1:_ 1 via a straight edge, then the

offset path will traverse three edges of the type (vL 1 , v~_ 1 , v~, t{). It finds such a

path by randomly choosing a dimension j # i and attempting to route across the

appropriate three edges. If the packet encounters a fault in any of the three edges or

the nodes along those three edges, it returns to the node vLu which chooses another

random dimension and tries again. Note that this means that a packet might have to

traverse many more than three edges to pass from one level to the next. If the virtual

path would leave v.1:_ 1 via a cross edge, then the offset path traverses three edges of
. .. ··.1: ·.1:

the type (vl:_ 1, v;/_ 1, v;/ , ~) instead. Note that no matter whether straight edges or

cross edges are used in the virtual path, the node ends with a random offset j from

its virtual location. If necessary, the kth. bit is changed to agree with the kth. bit of

the destination. Figure 2-4 presents an offset path between adjacent levels.

Each packet must choose an initial offset to leave its source and must remove

its final offset to reach its destination. To begin, the message generated by node

v repeatedly chooses a random dimension j and attempts to route across the edge

(v0 , vt;) until it successfully finds an initial offset. Say that the message reaches the

oth. level at the end of the second phase with offset i (i.e. it reaches the node wb).

Then to conclude, the message finds an offset j for which the path (wb, w~, ulo, wo) is

fault-free.

The offset routing algorithm combines Valiant and Brebner's strategy of changing

adjacent bits with a means for avoiding faults. In our analysis, we will make fun-

29

Figure 2-4: A virtual edge between adjacent levels (shown as a dashed line) and a
possible offset path (shaded). In this example, i = 1 and j = 3.

damental use of the property of the distribution of virtual paths proven in lemma

2.2. The even distribution of virtual paths will help to ensure the even distribution

of offset paths over the edges of the hypercube, assuming random offsets are chosen.

2.2.4 The Length of Offset Paths

If a packet is to arrive at its destination within O(log N) steps, certainly the path

it takes must have length O(log N). In Valiant and Brebner's algorithm, the length

of paths is fixed at 2 log N. Offset paths are of variable length, depending on faults

encountered along the way. In this section we describe the condition of local routabil­

ity. We prove that if the hypercube is locally routable, then with high probability all

packets traverse offset paths of length O(log N).

Essentially, a hypercube is locally routable if every node always has ample oppor­

tunity to send a packet to the next level in the butterfly with jump edges. Consider
. . . "k "k

a path (vL 1 ,v~_ 1 ,v~ ,vi). We assume that a message has successfully arrived at

vL 1 and so there are six components-three nodes and three edges-in the path that

must all work properly. If the probability of failure is p < 1 - ff (about 0.11) and

the faults are independent, then each such path has probability p' = 1 - (1 - p)6 < !

30

that it has a faulty component. For subsequent analysis, we would like it to be the

case that for all pairs Vk-i, i there are at least a constant fraction of offset dimen­

sions j which lead the message on a functioning path (vL 1 , v~_ 1 , v~k, v{k). We would

also like to know that at least a constant fraction of the paths (vL1 , vt1 , v~, v{)

are fault-free for all pairs Vk_ 1,i. To begin the routing, we need that for all nodes

vo, a constant fraction of the edges (v0 , vfi) function properly. To end the routing,

we need that for all pairs v0 , i, a constant fraction of offset dimensions j lead the

message on a functioning path (v~, v;j, vfi, v0). Define the following sets of paths:

P {(; ;; iik ik) . . } P' {(; ;; ;; ;) . . }
vk-1.i = vk-1, vk-1, vk 'vk ' J varymg ' v•-1.i = vk-1, vk-1' vk 'vk ' J varymg '

Qv0 = { (Vo, v~), j varying} and Q 110 ,; = { (vb, v~, v~, vo), j varying}. Fix an tp > 0. If

all possible sets Pv._1 ,;, P~._1 ,;, Q110 and Q110 ,; all have cardinality at least t:Pn we say

the butterfly is locally routable.

Lemma 2.3. Assume that the probability that any component fails is less than

1 - \(f and that all failures occur independently. Then there exists sufficiently small

t:p > 0 and c1 = c1(t:p,p) such that with probability N-c1 the butterfly is locally

routable.

Proof. The set Pv._
1

,; of paths available a.t vL1 are node-disjoint. (The same ar­

gument holds for sets of paths P', Q and Q'.) Thus the faultiness of any path is

independent of other paths in the set.

The probability that fewer than tpn paths Pv._11;,; are fault-free is

The ratio of successive terms is!.i_ = (n-i+~lp-e'l, which is greater than and bounded
ti-1 IJ>

away from 1 for small enough t:11 . Thus the sum is bounded by a constant times the

last term. Let exp2(x) denote 2z. Then the last term tf,,n

_ (n) (l _ p'r"nP1(1-f,,)n
t:pn

< (ne)fpn (1 - p')fpnpl(l-fp)n
(t':pn)fpn

- exp2(t:11 n loge - t:11n log t:11 + t:11n log (1 - p') - tpn logp' + n logp')

- exp2(h(t:,,,p')n + nlogp')

31

We can bound this last expression using the fact that each path has a low prob­

ability of containing a failure. Since p' < ~, log p' = -1 - c2 for some c2 > 0. For

Ep = 0, h(Ep,p) = 0 and the above expression equals N-1-c2 • Since h(Ep,p) is con­

tinuous, there is a Ep > 0 such that the above expression is bounded by N-l-c3 with

c3 > 0. Since there are only O(N log2 N) pairs Vk-l, i, any c 1 < c 3 makes the lemma

true.•

With probability N-c• for some fixed c4 , some node has only faulty neighbors.

Thus we cannot strengthen lemma 2.3. For the remainder of section 2.2, we assume

the butterfly is locally routable. Under this assumption, we will prove that the

algorithm succeeds quickly with high probability.

Lemma 2.4. Say a butterfly has faulty components but is locally routable. With

high probability each message in the offset routing traverses a path of length O(n).

Proof. We will prove that any given message's path is of length 0(n) with high

probability. Since there are only N messages, this will imply the lemma. Assume

that at some point in its route, the packet is at the node vi, where v is the node

it would traverse in the Valiant-Brebner scheme. Assume as well that the packet is

scheduled to traverse dimension k. (If the straight edge is to be used or if the packet

is at the beginning or end of the route, the analysis is identical.) Then if the packet

successfully chooses to jump across dimension j, the path (vL 1 , v~_ 1 , v~\ vlk) must

have no faults. Since the butterfly is locally routable, Epn of the possible paths to

choose are fault-free. If a faulty path is chosen, the packet encounters the fault and

returns to vL1 using no more than six edges. Since a random dimension is chosen at

each step, the probability that a packet takes more than 6b(2n + 2) steps is less than

the probability of at least (b- 1)(2n + 2) heads in a sequence of b(2n + 2) tosses of a

coin with probability Ep of landing tails. This probability is less than

(
b(2n + 2)) (l _ E)(b-1)(2n+2)

2n +2 P

< (
eb(2n + 2))

2
n+

2
{l _ E)(b-1)(2n+2)

2n + 2 P

< (eb(l - Ep)b-1)2n+2

32

Figure 2-5: One packet might delay another packet's progress even if they never cross
paths in the butterfly with jump edges. One hypercube edge is replicated n + 2 times
in the butterfly with jump edges. The two sections of paths shown here intersect in
the hypercube because the darkened edges are actually one edge in the cube.

an inverse polynomial in N for large enough b. •

2.2.5 Delay From Other Packets

Now that we know each message moves a distance of O(log N) during an offset routing

phase, we need to show that its forward movement is delayed by at most O(log N)

other packets. These facts together will bound the packet's time to its destination.

We will show that few other packets choose virtual paths in such a way that they

have a non-zero probability of selecting an offset path which congests a given node's

path. We will then show that even fewer of those actually congest the path when

they use offset paths.

Recall that a cross edge or jump edge traversed by a given packet is actually one

out of several appearances of a hypercube edge in the butterfly with jump edges. Any

congestion on another manifestation of the hypercube edge will slow the packet down.

Therefore we group all n + 2 copies of the edge together and refer to the group as one

hypercube edge.

33

Lemma 2.5. Consider a set E of O(n) hypercube edges and butterfly straight edges.

Let S be the set of butterfly edges such that any packet whose virtual path crosses

an edge in S has a non-zero probability of congesting an edge in E as a butterfly edge

in its offset path. Then with high probability, there are O(n3) packets whose virtual

paths traverse any of the edges in S, counting a packet several times if it traverses

several edges in S.

Proof. If (w1-1, wf) is a butterfly edge traversed by a packet's offset path then the

packet's virtual path must use an edge of the form (wfi, wf~1) for some pair i, j. There

are only n2 such pairs. The same reasoning would hold if the edge in question were

a straight edge. Since IEI = O(n), ISi = O(n3
). By lemma 2.2, only O(n3

) packets

traverse edges in S, with high probability. •

Lemma 2.6. Let T be the set of butterfly edges such that any packet whose virtual

path crosses an edge in T has a non-zero probability of congesting some edge in

E as a jump edge in its offset path. Then with high probability, there are 0(n3)

packets whose virtual paths traverse any of the edges in T, again counting according

to multiplicity.

P f S (I) . . d t db k t L t (i ii ijk jk) roo. ay Wk-liwk-l isaJumpe ge raverse yapac e. e vk_ 1,vk_1,vk ,vk

or (vL 1 , v~_ 1 , v~, vf.) be the path used by the packet when it traverses the jump edge.

Then (w, w1) is either the first or the last edge traversed in the path. If it is the first,

then wk-l = vL1 , wL1 = v~_ 1 and therefore I= j. The edge traversed in the virtual

path would have been (vk_ 1 , vZ) or (vk_ 1 , vk) for some k. There are n choices for v

such that Vk-l = wL1 and n choices for k. Thus there are only O(n2) elements of T

whose traversal in some packet's virtual path gives the packet a non-zero probability

of traversing the edge (w, w1) as a jump edge. The same reasoning holds for use of

the jump edge as a third edge. Again, since IEI = O(n), ITI = O(n3
). By lemma 2.2,

only O(n3) packets traverse edges in T, with high probability. •

Lemmas 2.5 and 2.6 also hold for the set of edges incident to the set of nodes

{ Vk} for some hypercube node v. If we bound the number of packets congesting these

edges then we bound the number of packets ever residing in queues in the node v (the

34

queue size of v).

We would like to bound the number of packets which congest the path p0 of

some message m0 • There are O(n3
) packets with a nonzero probability of congesting

some edge along Po· Focus on one of these packets mr. The packet mr will cause

congestion along the path Po only if an unfortunate pair of offsets i and j are chosen

for it. When the packet traverses from level lr to the level lr + 1, its offset i at the z;h
level is inherited from a choice made by some node in the (/r - 1)"t level. Then the

node at level Zr chooses an offset j which will route the packet mr to the (lr + 1)"t level.

Because any given fault can affect the routes of several different packets, offset choices

made by different packets are dependent. However, the packet mr is guaranteed by

local routability to have <7(r) 2:: fpn choices of offset i available at level lr - 1. One

of those offsets, say i., will be chosen uniformly to route the packet mr to level lr.

Once there, some number Ora of the offsets j will cause the packet mr to cross the

path p0 , if the packet is routed to level lr + 1 using one of those or• offsets. Since

we wish to minimize the probability that such congestion occurs too often, we are

concerned that choices for i. are made which leave too many unfortunate choices of

j. By lemmas 2.5 and 2.6, we know that there exists a constant d such that with high

probability L:r SOra $ dn3 . This follows because summing the ar• is a second way to

count virtual paths traversing edges in S and T, counting a path once for each time

it traverses an edge in S or T. Finally, each CXra is at most n, since there will be a

total of n offsets j from which to choose. In the next technical lemma, we use these

bounds on the ar•• or number of unfortunate choices of offset j, to bound the number

of bad choices of j's left once all packets have had the offsets i chosen for them.

Lemma 2.7. Consider a family of nonnegative integers {arall $ r $ z, 1 $ s <

<7(r)} where O'(r) 2:: Epn for all r, Era Ora$ dn3 and ar• $ n for all pairs r,s. H

exactly one index Sr is chosen uniformly in [1, O'(r)] for each index r then with high

probability L:r CXrar = O(n2
).

Proof. Let Xr = CXrar· A picture of the choice of the Xr appears in figure 2-6.

We wish to bound the value of X = L:r Xr. As in lemma 2.1, we bound the

moment generating function M(A) = E[e,\X] and then we bound Pr[X > bn2
] -

35

• • •
m

z

a11 @ Cll3

a21 Cl22 Cl23

6) a32 Cl33

azl CS) az3

• • •

• • •

• • •

•••

e~n

: a
: la(l) :g

a30'(3)

a
ZO'(Z)

Figure 2-6: The Ora and a possible choice of Xr. Each row represents the choice
for some packet. The entry Ora counts the number of offsets j which, if chosen in
conjunction with the offset i.,, would cause the packet mr to congest the path p0 •

Circled entries represent the selections from each row.

Pr[e>.x > e>.bn
2

] $ c>.bn
3
E[e>.x]. As before, we will first bound the moment generating

functions Mr(A) = E[e>-Xr] = u(r) E:~{ e>-ar•. Again, since the Xr are independent,

M(A) =TI Mr(A).

If we could find Orr$ Or11 and a positive integer h such that 0 $ Orr-h, Or11 +h $ n

then by transfering h units from the smaller Orr to the larger Ory we could only increase

Mr(A) (for positive A). This follows because e>-ar~ - e>.(ar.,-5) = e>.(ars-6)(e>-6 - 1) <

e>-ar11(e>.6 -1) = e>.(arw+o) - e>.ar11. The resultant change in Mr(A), (e>.(ar11+6) _ e>.ar11)­

(e>.ars - e>.(ar~-6>), would be strictly positive. By this reasoning, if Ar = E. Ora is

fixed, we maximize Mr(A) by setting all terms except possibly one equal to either 0

or n. Thus

E[e" r] $ u r
'X { -(

1)(e>.Ar + u(r) - 1) if Ar < n

11(r) U~le>.n + u(r) - r~l) if A,.?: n

FortherestoftheproofwefixA =~·If Ar< nthenMr(~) $ u(r)(e~+u(r)-1)
$ u(r) (1 + ~ + u(r) - 1) $ 1 + f:~l · (The second inequality uses the fact that for

0 $ / $ 1, e'Y $ 1+2/.) If A,.?: n then Mr(~)$ u(r)(~e + u(r)) $ 1 + ~:~f ·

36

In either case the bound is at most 1+ 2eAf < exp(2eAf). Thus M(l) < TI exp(2eAf)
!pn - !pn n - r !pn

2ed

$ N7P. Continuing the reasoning of the first paragraph of the proof, Pr[X > bn2]

2ed

$ e-bn N7P. We can make this probability an arbitrarily large negative power of N

by letting b be a large constant. •

Each packet mr may take several attempts before reaching level Zr + 1 safely. On

each attempt, the packet mr may congest the path Po· The packet always has at

least a tp chance that it will make it to level Zr + 1 on any given attempt. Thus the

number of trials it requires to succeed will be distributed somewhat like the geometric

distribution with parameter tp· For ease of notation, set f3r = O:rsr from the previous

lemma. In each attempt by the packet mr, there are f3r choices of offset which will

produce congestion. The following technical lemma will help bound these multiple

contributions.

Lemma 2.8. Consider a family of nonnegative integers {f3rll $ r $ z} where

'L.r f3r = 0(n 2) and f3r = 0(n) for all r. Let {gr} be a set of random variables

with geometric distributions 9r "' G(tp) (i.e. 9r = a with probability tp{l - cp)a-l)

Then with high probability, 'L.r 9rf3r = O(n2
).

Proof. Order the integers by increasing size /31 $ /32 $... $ f3z. Then since

are all at least as large as f31m, we know that L.z!{-1
f31cn = O(n). We assume that

l .!. J
f3z = O(n), so the sum f3z + L.1c;. 1 f31cn = O(n).

Now with high probability, all sums L.~=l 91cn+r are O(n). We know that

n

L9rf3r $ L(L9lm+r)/3(1c~l)n
r le r=l

Thus, with high probability, 'L.r 9rf3r = O(n2
). •

Theorem 2.9. If we route using offset routing and the hypercube is locally routable,

then with high probability, all packets are delivered in O(log N) steps and all nodes

have total queue size O(log N).

37

Proof. Focus on the path p0 of a particular message m0 • We will show that the

congestion along Po from various sources is 0(n) with high probability.

Lemmas 2.5 and 2.6 bound the number of messages which have the potential to

congest an edge of m0 's path while passing between levels on their own paths. Enu­

merate the packets mi, m2, ... , mz which have a non-zero probability of congesting

Po while traversing an edge from an even level to an odd level in their virtual paths.

A particular packet may appear several times in the enumeration-once for each even

level node along its virtual path from which it might congest an edge of p0 •

The packet mr has at least fpn paths which would successfully route it to the next

level. Arbitrarily designate exactly Epn of these paths as special. For the purposes

of our analysis, we require mr to choose a special path before we allow it to route to

the next level. This can only increase the amount of congestion placed on any edge,

since it increases the number of attempts made by each packet. However, once mr

does choose a special path, we always place it in the last node of the first fault-free

path it found. Thus mr winds up in the same place on the next level as if no special

requirements had been made.

Consider the choice of offsets made by the message mr at even level lr. Let qr be

the number of choices of pairs of offset dimensions (i,j) for the message mr which

would congest an edge in m0 's path. Then L: qr = 0(n 3) by lemmas 2.5 and 2.6. (as

described in the discussion immediately preceding lemma 2.7, L: qr is a second way

to count the number of edges in Sand T according to multiplicity.)

The choice of the dimension i was actually made for mr at level lr - 1. The choice

was made randomly and uniformly from the set of offsets which led to a fault-free

path to level lr. The exact selection of off sets i are dependent from packet to packet

and, for a particular packet, from one level to the next. However, no matter how

we condition on previous events, there are always enough offsets to choose from at

any given moment. Also, the bounds on the probabilities of congesting Po will hold

regardless of previous events. Let i 1 < i 2 < ... < iO'(r), u(r) > t:11 n, be the choices

of offsets at level lr - 1 which lead to a fault-free path to level lr. Let Ctra equal the

number of offsets j such that if mr is routed from level lr - 1 to level lr using offset

38

ia and next to level Zr + 1 using offset j, then congestion results in m0 's path. Then

since La ara = qr, Lra ara = O(n3
). Since the total number of offsets j is n, clearly

O'rs :::; n. Let iar be the offset for mr actually chosen at level Zr - 1. Lemma 2. 7

implies that with high probability Lr O'rar = 0(n2). For convenience of notation, set

At level lr, whether the message mr chooses a path from the set of t:pn special

paths or the set of (1- t:p)n nonspecial paths, it has at most f3r choices which congest

mo's path. Thus whether we condition whether the choice was special or nonspecial,

the probability that message mr will congest m0 's path is bounded by .i!z....
tpn

Now that we have bounded the probability that the packet mr will congest the

path Po during one of its attempts to route to level lr + 1, we can bound the probability

that too many packets actually congest p0 • The number of routing attempts made by

mr is 9r ,..., G(fp). On each attempt, the probability that mr will congest m0 's path

is at most l!z.... Each attempt is an independent trial and the sum of the probabilities
tpn

of congestion in the trials is at most - 1- L9rf3r, which is O(n) by lemma 2.8. By a
(pn

moment generating function argument identical to that in lemma 2.1 and 2.7, with

high probability O(n) attempts actually did congest m0 's path. Since each attempt

involves at most six edges, each attempt can add at most six to the congestion on

m0 's path. Thus with high probability, the total congestion on the path from routing

attempts at even levels is O(n).

Next examine the congestion on p0 from other packets beginning and ending their

paths. For a packet to congest an edge as the first jump edge of its path, it has

to be generated by one of the edge's endpoints. Thus there are at most 0(n) such

packets. Now consider those packets congesting p0 during the ending of their paths.

Each of the three jump edges used to finish off a. path has an endpoint which is at

distance one from the virtual destination. Thus at most O(n) packets exist which

have the potential to congest any given edge as the first, second or third of these jump

edges. Therefore a total of O(n2) packets have a non-zero probability of congesting

some edge of p0 as they finish their routes. An argument along the lines of the one

bounding congestion at even levels shows that congestion from these sources is 0(n)

39

as well.

The same argument bounds congestion from routing attempts at odd levels, and

also bounds congestion on edges incident to any fixed node. •

2.3 Information Dispersal Routing

The offset routing algorithm cannot tolerate faults which occur during a particular

routing phase. If a packet resides in a node as it fails, that packet is irretrievably lost.

Rabin ([Rab]) discovered how to use the technique of information dispersal to route

even in the presence of failing nodes, provided each fault occurs with probability no

more than 0(1/n2
).

In this section we will present a simpler variation of Rabin's algorithm. We also

show how our algorithm handles faults occurring with probability 0(1/n). First, we

will briefly sketch the main ideas of the original routing algorithm. Each packet is

dispersed into n pieces sent along node-disjoint paths to different locations and then

along node-disjoint paths to the final destination.

Since every piece needs to carry i1(n) bits of routing information, the original

packets must necessarily be large. For concreteness we assume that all packets contain

L = S1(n2) bits. Any piece created will contain O(L/n) bits. We also assume that all

links and nodes have the capacity to hold a constant number of the original packets

(and therefore E>(n) pieces).

Rabin proves that with high probability, the number of pieces crossing any node

or link never exceeds its capacity. No piece's progress is ever delayed by a full queue

in the node ahead. This guarantees that each piece can move during every step and

that the entire routing will take no more than 2(n + 1) steps-n + 1 steps for each

piece to arrive at its random intermediate location and another n + 1 to arrive at its

final destination.

As Rabin points out, routing with dispersal of information can tolerate faults if

the dispersal into pieces is done with more redundancy. The pieces may actually be

constructed in such a way that the arrival of half (or some other constant fraction)

40

of them is enough to reconstruct the original message. Rabin shows how to do this

through matrix multiplication. He then proves that if each link has probability 1/n2 of

failure, then with probability 1-2N(4e/n)n/4 all messages will be safely reconstructed

at their destinations.

2.3.l Routing Along Parallel Paths

Our improvement of Rabin's results stems from a more uniform and efficient selection

of paths for the routing of pieces. The n pieces are first sent sent to the neighbors

of the node which generated the packet. These pieces are then routed along parallel

paths to the neighbors of a random intermediate node. From there the pieces are

routed along parallel paths to the neighbors of the intended destination, and from

there to the destination itself. Except for the dispersal of the pieces to the neighbors

of the source and the recovery of the pieces from the neighbors of the destination, the

algorithm can be viewed as a butterfly algorithm. We will use the butterfly for our

analysis. A picture of a set of parallel paths appears in figure 2-7.

If v and ware two hypercube nodes, let 11"i(v, w) be the path from vi to wi used in

one phase of the Valiant-Brebner scheme. Let IT(v,w) = {7ri(v,w)Jl ~ i ~ n} be the

set of all possible such paths. We will first show that if each node v chooses a node

v' uniformly and then routes a different piece along each of the n paths in 11(v, v')

that only 0(n) pieces reside in any node's queue at any time step.

Lemma 2.10. Consider the collection of all paths in the.N sets IT(v,v') (varying

over v), where each hypercube node v bas chosen a node v' randomly and uniformly.

For any node u and any integer 0 ~ j ~ n, with high probability u is the pn node

along only O{n) paths in the collection.

Proof. ff u is the P" node along the path 7r;(v, w) then ui = W1W2 ••• w;v;+i ... Vn·

Separate the two cases in which either i ~ j or i > j. If i ~ j, then it must be

that v;+i ... vn = u;+i ... Un. Precisely 2i nodes satisfy this condition for v. If one of

these nodes chooses aw such that w1 •.• Wi-tWiWi+i ... w; = u1 ... u; for some i ~ j,

then u will be the P" node along exactly one path 11"i(v, w). Otherwise, u will be the

41

Figure 2-7: A path (dashed lines) and its adjacent set of parallel paths (shaded).

Ph node along none of the paths 11"i(v,w), i::::; j. Thus for each of the 2j nodes, the

probability of exactly one such path is j /2j and the probability of no such paths is

1 - j /2j.

If i > j, then vi+l ... Vi-l ViVi+l ... Vn = Uj+l •.. Un for some i > j. Precisely

(n - j)2j nodes satisfy this condition. All reasoning is the same as in the previous

case, except now w must be chosen so that w1 ... Wj = u1 ... ui. Thus the probability

that u is the Ph node along exactly one such path is 1/2j. The probability that no

path 11"i(v,w), i > j crosses u in this fashion is 1-1/2j.

We now need only consider the sum of 2j 0-1 random variables each with proba­

bility fI of equalling 1 and (n - j)2j 0-1 random variables each with probability 2
1
1

of equalling 1. Call this sum X. Then the moment generating function M(A) for X

satisfies M(A)

(

· · 21 (1 1)(n-j)2J
- Le>. + 1 - L) -:-e>. + 1 - -:-

21 2J 2' 2J

(
(e>. - l)j)

21
((e>. - l))(n-j)

21

1 + 2) 1 + 2)

42

Pr[X 2'.: bn] ~ (eb(I-lnb)- 1r, an inverse polynomial whose exponent can be made as

small as desired by increasing the constant b. •

The ith piece created from v's packet is sent to vi, along the path 11"i(v, w) to wi

and then to w. By lemma 2.10, at no time do more than bn pieces cross a given

hypercube node, with high probability. Since the packets traversing any link all come

from one of the link's endpoints, no more than 2bn pieces cross the link during any

step of the routing. If all links and nodes have the capacity to hold 2b original packets,

then with high probability no buffering is necessary and no piece waits in a queue.

This analysis assumes that each node routes its packet to a random destination.

If we use two phases as in the Valiant-Brebner scheme, the results extend to arbitrary

permutation routings:

Theorem 2.11. If all packets are divided into n pieces which are routed along parallel

paths in both phases of the routing algorithm, then for an arbitrary permutation, with

high probability the two-phase routing takes 2(n + 1) steps. No piece waits at any

time.•

2.3.2 Fault-Tolerant Encoding of Pieces

By giving the pieces more structure, we can make the information dispersal fault­

tolerant. We partition each packet F into n O(L/n)-bit pieces, but in such a way

that if any m = n/2 of the pieces arrive at the destination, the original packet may

be reconstructed.

Matrix multiplication is used to encode and decode the pieces. We need an n x m

matrix A every m rows of which are linearly independent. We use the Hilbert matrix

Aii = 1/(xi + Y;), where Xi #xi' 'Vi# i', Y; #Yi' 'Vj # j' and xi+ Y; # 0 Vi,j. For

all these distinctness conditions to hold we need a large field. We will use the field

GF(2s), withs~ loglogN = logn.

Let A' be the matrix formed by rows ii, i 2 , ••• , im of A. Then

IA'I = Ilk<l(xi,, - x11)(yk - yr)
Ilk,1(Xi,, +YI)

43

Using this identity and Cramer's rule, we can invert any m rows of A in O(m2s2)

steps.

To take advantage of the Hilbert matrix A we block the bits of the message F

into a matrix over the field GF{2a). Write F = b1 ... b1, where l = L/ s and each bi is

ans-bit byte interpreted as an element of GF(26
). Group the bi's into l/m columns

of m bytes each, and call this matrix B. Each source u computes F1 , ... , Fn as the

rows of the matrix product AB:

Given m pieces {rows Fi), the destination w can reconstruct B (i.e. the packet F)

since the corresponding m rows of A are linearly independent. The destination just

inverts the matrix containing those m rows.

Note that it takes O{m2 l/m) = O(nl) word operations to multiply these matrices,

or O(nls logs) bit operations. The routing itself will take only O(nls) bit operations,

so there exists a logs = log log log N gap between the complexity of the encoding and

the routing stages of the protocol.

2.3.3 Fault-Tolerance via Parallel Paths

If we encode the original packet in the pieces via Rabin's matrix multiplication, then

we can bound the probability that v's packet is lost by the probability that some n/2

of its pieces run into faulty components. But if that many pieces are lost, then at

least n/4 are lost during one of the two phases of the routing algorithm. Assume they

are lost in the first phase; the reasoning for phase 2 is identical. There are at most

(2n + 3)n different components (nodes or links) encountered by pieces from v during

the first phase. We need the following bound on the number of intersections between

the routes of different pieces.

Lemma 2.12. For any hypercube node u # v, w, no more than.two paths in II(v, w)

44

cross u.

Proof. Count the nodes along the path 7l'i(v, w) starting with vi as the oth node.

Say that the kth node along 7l'i(v, w) is the same as the /th node along 7l'J(v, w) for

. < . Th i i i i i j - _ _j j j j h q1 • ff ---1. I z)· en w 1w 2 ... wkvk+i···vn = w 1'W2 ... w 1v1+1 ••. vn, were vq = Vq 1 qr q

and similarly for wt.
There are four cases. If k, l ~ j then v] = vj, a contradiction. Similarly, if k, l ~ i

then wf = wt, a contradiction. If k < i, l > j or if l < i, k > j then it must be true

that wi = vi, Wj = Vj and wh = vh for i < h < j. Thus all 1l'h(v, w) with i < h < j

are precluded from crossing u (otherwise Wh = vh, a contradiction). Therefore three

paths cannot all cross u. •

Since no component's failure will affect more than two pieces, it must be true that

at least n/8 of the (2n + 3)n components have failed. Only in a small fraction of fault

patterns will so many failures occur in such a small set of components.

Theorem 2.13. For any constant k > 0 there is a sufficiently large constant b > 0

such that if each component of the hypercube fails independently with probability

1/bn before or during some permutation routing, then with probability 1 - N-k the

routing will be successfully completed. That is, a given packet will arrive at its

destination iff both its origin and destination do not fail.

Proof. Whether or not the ith component fails gives rise to a 0-1 random vari­

able whose moment generating function is Mi(,\) = (~ e..\ + (1 - ~)). The moment

generating function for the sum of these random variables is M(,\)

<
(

e,\ - 1) (2n+3)n

1 + bn

Thus we can bound the probability that more than n/8 of the components fail by

exp((eA-1>pn+3) - ..\
8
n). Setting ,\ = ln 1~, we see that the probability of so many

failures is no more than (et (16 I b) tr. The exponent of this inverse polynomial in N

can be made as low as desired by increasing the constant b. •

45

2.4 Remarks

Offset routing and information dispersal are complementary techniques. By com­

bining this simplified variant of information dispersal with offset routing, still better

results are possible. The combined routing algorithm tolerates the failure of a con­

stant fraction of the hypercube's components during the course of the routing of a

single permutation. To send a packet, the node first disperses pieces to a well defined

set of n nodes at distance three (instead of neighbors). The packets are then routed

along parallel offset paths to the symmetric set of n nodes close to the destination.

Finally, the pieces are combined at the destination. If each node or link fails inde­

pendently of other components and if in the case it fails it does so at a random time

during the routing then this combined algorithm tolerates the failure of a constant

fraction of the hypercube's components.

46

Chapter 3

Reconfiguration in the

Presence of Faults

3.1 Introduction

In this chapter, we continue our investigation of the tolerance of the hypercube to

randomly distributed faults. The techniques we develop assume a long-run view.

Given that faults have accumulated in a hypercube over time, each component inde­

pendently faulty with probability p, we would like to be able to program the machine

while ignoring whatever faults exist. We show how to use the functioning parts of a

hypercube with faults to simulate a hypercube without faults at a surprisingly low

cost. More precisely, we show how to embed a hypercube in the functioning part of

a hypercube with faults so that features such as locality are preserved.

Before we can state our results formally and assess their value, we first must de­

scribe the constraints, assumptions and objectives of network reconfiguration and/or

simulation in the presence of faults. We divide the discussion into six general topic

areas: preservation of locality, load balancing, message traffic, simulation overhead,

algorithms for implementation, and modelling of faults.

An embedding of a network G1 into another network G2 is a map </> : G1 1-+ G2

that maps each node of G1 to a node of G2 and each edge of G1 to a path in G2

between the images of its endpoints.

47

We call the pattern of faults F. That is, we include each component of Hn in F

independently and with probability p. Therefore the functional part of the hypercube

is Hn - F. An embedding of Hm into Hn - Fis a map ¢>: Hm 1-+ Hn - F that maps

nodes of Hm to functioning nodes of Hn and edges of Hm to functioning paths of Hn.

The precise definition of functioning nodes and paths will vary, although the general

interpretation is straightforward.

Preservation of locality. Because communication in hypercube-based machines

is mostly local, and because communication is a dominant factor in measuring the

performance of a parallel machine, it is crucial that a good embedding of Hm in

Hn - F preserve locality. In other words, neighboring processors in Hm should be

mapped to nearby processors in Hn - F. In order to quantify this notion, we say

that an embedding has dilation D if for each edge e in Hm, the path ¢>(e) has length

at most D in Hn - F. Of course, it is most desirable to find embeddings with small

dilation. At the very least, the dilation of an embedding </> is a lower bound on the

time required for Hn - F to simulate a single step of Hm if the computation of each

node v E Hm is performed by </>(v) in Hn - F.

The notion of dilation can also be extended to paths. We will describe natural

embeddings of Hn-l in Hn - F for which nodes separated by distanced in Hn-l are

mapped to nodes separated by distance d + 2 in Hn - F. These embeddings have

dilation 3.

Balancing the load. We will consider embeddings which allow several nodes of

Hm to be mapped to a single node of Hn - F. Mappings that are one-to-one are the

most desirable since then each processor of H n - F only has to simulate the action

of a single processor of Hm. In general, we define the max load of an embedding to

be the maximum number of processors of Hm mapped to any single node of Hn - F.

One algorithm we describe discovers embeddings with max load 1 (i.e. one-to-one

mappings) while the other finds embeddings with constant max load.

In addition to having small max load, it is desirable to use as many of the func­

tioning cells of Hn - F as possible. The use of live cells is partly described by the

max load. To further characterize this quantity, we define the expansion of an em-

48

bedding to be the ratio of the size of the largest one-to-one hypercube we could hope

to embed in Hn - F to the size of the hypercube that we do embed. Since the size of

a hypercube is always a power of two, the expansion is

We focus on embeddings of Hn-l in Hn - F for p < ~· Such embeddings have

expansion one, which is the best possible.

Message traffic. In addition to balancing the processing load among the func­

tioning processors, it is desirable to balance the message routing load among the wires.

In particular, it would not be good if many paths { ¢>(e) le E H m} traversed a single

wire of Hn - F since local communication along these paths would require the use

of the same wire. To formalize this notion we say that an embedding has congestion

C if every edge of Hn - Fis contained in at most C paths of {ef>(e)le E Hm}· We

consider embeddings with congestion as much as 0(log N) and as little as 0(1).

Congestion is a lower bound on the time required for the functioning part of Hn

to simulate Hm if messages traversing e in Hm are routed along ef>(e) in Hn - F. For

some specific applications, however, we can do better. For example, hypercubes are

often used to simulate bounded-degree networks such as arrays and trees. In such

applications, only a constant number of wires incident to any node are used in any

parallel step of Hm. Hence, the effective congestion in the corresponding embedding

may be much less than it seems at first. To capture this notion, we say that an

embedding has induced congestion I if every edge of Hn - Fis contained in at most I

paths of {ef>(e)le E Hm} for which the edges e E Hm are node-disjoint. The two main

algorithms in this chapter find embeddings with constant induced congestion. Such

embeddings are particularly useful for simulating trees, arrays, normal hypercube

algorithms and other structures with bounded processor degrees.

Simulation overhead. One obvious use of a hypercube with faults is to simulate

a hypercube without faults. This can always be done given enough slowdown and

duplication of resources, but the goal is to make the simulation as efficient as possible.

The key factors influencing the efficiency of the simulation are dilation, max load and

49

congestion. By achieving good bounds on these vai;.ies, we show that any step of

a hypercube Hn can be simulated by 0(1) steps of Hn - F. In addition, we use

the notion of induced congestion to show that a hypercube with faults can simulate

trees, arrays and other bounded-degree networks of the same size with only constant

slowdown.

Algorithms for implementation. In addition to proving that there is an ef­

ficient embedding of Hm in Hn - F, it is desirable to develop an efficient algorithm

for finding the embedding. Ideally, the algorithm would be deterministic, fast, easy

to implement, and decentralized (i.e., using only local control). In fact, we describe

such algorithms in sections 3.2 and 3.3 We also describe a fast, local probabilistic

algorithm in section 3.5.

Modelling of faults. In general, we might consider three types of faults in

Hn. The most serious fault would be one that completely destroys a node and all

wires incident to it. We call such faults total. A less serious fault would be one that

destroys just the computational portion of a node, and leaves the communication (i.e.

switching or routing) portion of the node intact as well as the incident wires. We call

such faults partial. (Note that it does not make sense to consider a fault that destroys

just the communication portion of the node. The computation portion would then

also be useless since it would be disconnected from the rest of the network.) Last,

faults could occur in individual wires.

In our model, no malicious faults occur. Any node can determine if a neighboring

node or link has failed by probing the link in 0(1) time.

Along with the type of fault, the distribution of faults must also be specified. As

with routing in chapter two, we consider a model in which faults occur independently

among components with probability p. We restrict our attention to the situation

where p < !, although the methods can be extended for larger p. In addition, we

consider the case in which the number of faults is smaller than a constant fraction

of the total number of nodes. The assumption concerning independence of faults is

crucial to our analysis, but the methods can also be applied in a hierarchical setting

where entire subcubes of nodes may fail at once. Such extensions might be useful in

50

a practical setting where the actual machine may consist of a collection of boards,

each of which consists of a collection of chips, and so on.

The material we present is philosophically related to previous work in fault tol­

erance of arrays in the context of wafer-scale integration ([Gr],[GG],[LL1],[LL2]), al­

though the techniques and results are quite different. For example, constant dilation

reconfiguration is not possible for arrays and trees. There has been relatively little

previous work on the fault-tolerant reconfiguration of hypercubes (to our knowledge).

An exception is the work of Becker and Simon ([BS]), who consider fault-free sub­

cubes of a hypercube containing worst case faults. The constraint that the embedded

cube be a subcube (i.e., dilation 1) is very restrictive, as is the assumption that faults

are located in a worst case fashion. Hence, the techniques and results of [BS] are quite

different from those presented here. Another exception is the work of Dolev, Halpern,

Simons and Strong ([DHSS]) who also study worst case bounds. Their model of com­

munication also differs from ours in that they assume that after the faults occur, the

new connections must be chosen from a predetermined set of routings.

3.1.1 Summary of Results

At first, we consider an N-node hypercube containing random partial processor faults.

We describe algorithm 3.1, an algorithm for embedding an N/2-node hypercube in

the functioning processors.

Theorem 3.3. Algorithm 3.1 is a local, deterministic O(log N) step algorithm. If

the nodes of Hn fail independently and partially with probability p :5 t then with

probability at least 15/16 algorithm 3.1 constructs a one-to-one embedding of Hn-1

into Hn - F with dilation 3, congestion 2 log N, and induced congestion 2.

Next we improve this algorithm so that it embeds an N/2-node hypercube in

the functioning processors with the same performance with probability 1 - N-cu

provided that processors are faulty with probability p < 1/2, for sufficiently large N.

The algorithm for finding the embedding is deterministic, easy to implement, runs in

O(log N) parallel steps, and uses only local control. As a result, we extend the results

51

of Bhatt, Chung, Leighton and Rosenberg [BCLR] and others to be fault-tolerant.

In particular, we show that a hypercube with partial processor faults can simulate

any binary tree or mesh of the same size with only constant factor slowdown. The

most surprising (and potentially most useful) feature of the embedding is the degree

to which it preserves locality.

Next, we extend the results to handle total faults. We describe an embedding for

which the dilation is 7, the max load is 1, the congestion is O(log N), and the induced

congestion is O(log N /log log N) with high probability (for sufficiently large N). The

algorithm for achieving these results is probabilistic, runs in O(log N) steps, and uses

only local control.

Finally, we address the issue of congestion. We demonstrate a probabilistic al­

gorithm which with high probability finds an embedding in a hypercube containing

totally faulty processors for which the dilation is 5, the max load is 0(1), and the

congestion is 0 (1).

Theorem 3.22. Foreachp < 1-~ (about .16) there is an O(logN) step algorithm

such that if each of the nodes of an N -node hypercube fails with probability p then

with probability 1 - N-ci~ the algorithm finds an embedded fully functioning N-node

cube with constant load, dilation and congestion. The paths which simulate the edges

of the cube only use live nodes.

As a consequence, a faulty hypercube can simulate a functioning hypercube of the

same size with constant delay.

These last two algorithms actually work in a semi-worst case setting. As long as

a constant fraction of each node's neighbors remain alive and a constant fraction of a

specified set of paths for each node have no faults along them, the good embeddings

exist.

Chapter three is the result of joint work with Johan Hastad and Tom Leighton.

52

3 .1. 2 Overview

In section 3.2, we consider only partial faults which occur with probability p :::; 1/4.

We extend the algorithm to handle failure probabilities up to 1/2 in section 3.3. A

probabilistic algorithm for reconfiguring with total faults appears in section 3.4 and

section 3.5 contains a probabilistic algorithm achieving constant delay reconfiguration

with total faults. In section 3.6 we describe a way to implement the algorithms of

section 3.5 so that they run in O(log2 N log log N) time. In section 3.7 we extend our

results to the cases where the probability of failure is very low and also to the case

where edge faults occur.

3.2 Embeddings for Small p with Dilation 3

In this section we consider the less severe model of partial faults where it is possible to

use the faulty processors as switches and to route through them. We assume that the

probabi).ity that any given processor fails is less than or equal to 1/4 and we present an

algorithm which with probability 15/16 constructs a one-to-one embedding of Hn-l

in Hn with dilation 3, congestion 2n (= 2logN) and induced congestion 2.

3.2.1 Mapping Dead Nodes to Live Nodes

Let Hn-l be the subhypercube on N/2 = 2n-l nodes induced by the nodes with first

coordinate zero. For each node v in Hn, let v' be the node with first coordinate

different from v's whose coordinates otherwise agree with those of v (i.e. v's neighbor

across the first dimension). Also, for a node y = (yi, Y2, ... , Yn-1) in Hn-1, let y be

the node in Hn with coordinates (0, Yi, Y2, ... , Yn-d·

Given some pattern of failure for the nodes in Hn, say a node v E Hn-1 is rich

if both v and v' are live and poor if both v and v' are dead. If every node in Hn-1
were not poor, we could easily embed H n-l in H n - F by mapping (Y1, ... , Yn-1) to

whichever of {(O, yi, ... , Yn-i), (1, yi, ... , Yn-l)} were alive. Unfortunately, there will

be a constant fraction of poor nodes in Hn-l with very high probability since each

53

v' w'

v w

Figure 3-1: Borrowing from a neighbor. Dead nodes are shown as white. The arrow
points from the simulated node to the simulating node.

node in f/n-l is poor with probability p2 .1

We handle the existence of poor nodes by mapping each poor node v to a neigh­

boring rich node w. At most one vis mapped to a given node w. Hence v can borrow

w'. In this fashion we will be able to embed Hn-l in Hn - F much as if there were

no poor nodes at all. At step k algorithm 3.1, shown in figure 3-2, will attempt to

assign v to vk+1, if v and vk+1 are as yet unassigned.

for k +- 2 to n for all nodes v
if v is poor and unassigned and vk is rich and unassigned assign v to vk

Figure 3-2: Algorithm 3.1.

3.2.2 Analysis of the Borrowing

If processors fail with probability less than or equal to 1/4, algorithm 3.1 will construct

an embedding with probability at lea.st 15/16. We show this by proving two simple

1 We use the phrase Q is more than O(g) with very high probability to mean "There exist constants
k and d independent of N such that the probability that Q does not exceed dg is less than 2-A:N ."

54

lemmas. First we will prove a lemma which will be of crucial importance to the later

analysis.

Lemma 3.1. At step k - 1, what has happened to v is independent of what bas

happened to any node which differs from v in at least one of the last n- k coordinates.

Proof. At step i, nodes that affect each other have all coordinates identical except

the ith coordinate. Thus at step k -1, if we divide the nodes into groups each having

identical last n - k coordinates, all previous communication has taken place within

the groups. Thus nodes in different groups cannot affect each other. •

Lemma 3.2. The probability that a given node v is poor and unassigned after the

ith step is at most (2p)ip2 •

Proof. For each node v let Pi = Pr[v is poor and unassigned after step i] and Qi =

Pr(v is rich and unassigned after step i]. Then p0 = p2 and Qo = (1 - p)2 • A node v

will be poor and unassigned after step i + 1 if and only if it was poor and unassigned

after step i and the node it requested in step i + 1 was not rich and unassigned. A

similar statement holds for whether a node is rich and unassigned after step i + 1.

Thus, since these probabilities are independent,

Qi+i = Qi(l - Pi)

Pi+i = Pi(l - Qi)

Subtracting the two equations yields Qi+i - Pi+i =Qi - Pi, which is natural since the

surplus of rich nodes over poor nodes is constant. Thus the difference is Qi - Pi =
Qo - Po = 1 - 2p, or Qi = 1 - 2p +Pi· Therefore Pi+t = Pi(2p - Pi) ~ (2p)pi and so

Pi ~ (2p)'Po = (2p)iP2
• •

The probability that an individual node is poor and unassigned at the end of the

algorithm is less than {1/2)"-1 (1/16) = 1/8N. Thus the probability that some node

is poor and unassigned is no more than (N/2)(1/8N) = 1/16.

55

qxy)
</Kz)

y z

Figure 3-3: Mapping an edge to a path. The heavy edges form the path chosen to
simulate the edge between the two simulated nodes at bottom.

3.2.3 Embedding Edges

If the algorithm successfully assigns each poor node to a rich node call the assignment

'lj;. Embed Hn-1 in Hn with the embedding</> which maps nodes in Hn-l to nodes in

Hn by

y

(y)'

'lj;(y)'

if y E Hn - F

if (y)' E Hn - F but y E F

otherwise

and maps edges in Hn-l to paths in Hn by

(</>(y), </>(z)) if </>(y) = y,</>(z) = z
</>: (y, z) ..._. (</>(y), </>(y)', y, </>(z)) if </>(y)-:/: y,</>(z) = z

(</>(y), (y)', (z)', </>(z)) if </>(y) # y,</>(z) # z

Although the mapping of the edges looks complicated, every edge simply maps to a

shortest path between the corresponding nodes. Figure 3-3 depicts an instance of the

third possibility. Since in all cases the length of the path is at most 3 the embedding

has dilation 3.

To check the congestion, observe that a given edge is used on a given path </>((y, z))

only when one of its endpoints is </>(y), y, or (z)'. Checking cases shows that no edge

56

could lie on three paths corresponding to node-disjoint edges. Thus, since we can

partition the edges of the hypercube into n matchings, the congestion can be no

worse than 2n. By this argument it also follows that the induced congestion of the

embedding is at most 2.

Theorem 3.3. Algorithm 3.1 is a local, deterministic O(log N) step algorithm. If

the nodes of Hn fail independently and partially with probability p $ 1/ 4 then with

probability at least 15/16 algorithm 3.1 constructs a one-to-one embedding of Hn-l

into Hn - F with dilation 3, congestion 2 log N, and induced congestion 2.

3.3 Embeddings with Dilation 3 for p < 1/2

In this section we extend the algorithm of section 2 so that it can handle independent

faults with probabilities exceeding 1/4 but less than 1/2. This is best possible in the

sense that if p ~ 1/2, then more than half of the nodes will fail with probability at

least 1/2. In that case it would be impossible to achieve a one-to-one embedding of

Hn-1 in Hn - F.

Call a node v E Hn-l a topnode if v is dead but v' is alive. We now handle the

existence of poor nodes by mapping each poor node v to a neighboring node w which

is either rich or a topnode. If w is a topnode, we make sure that w has a rich neighbor

u so that w can borrow u'. We call this process pushing a topnode.

Algorithm 3.2, shown in figure 3-5, will carry out the program outlined above in

4 stages. The only additional feature is that poor nodes without enough topnode

neighbors will be treated separately.

Observe that conflicts can only occur during stage 4, and can be easily resolved

by having the node with lower index win.

Lemma 3.4. Assume that nodes fail independently with probability p < 1/2 and

that N is sufficiently large. Then there is a constant c5 > 0 such that after algorithm

3.2 terminates, with probapility l-N-c5 : (i) every poor node is assigned to a neighbor

which is either a topnode or a rich node, and (ii) every topnode which has been

assigned to a poor node is pushed to a rich neighbor.

57

u'

v'

v w

Figure 3-4: Pushing a topnode. Dead nodes are shown as white. The arrows point
from the simulated nodes to the simulating nodes.

3.3.1 Analyzing Stages 1 and 2

Stages 1 and 2 comprise a "first pass" to assign poor nodes. In stage 1, those poor

nodes with few top node neighbors are given first crack at assignments, since these

nodes will have much less ability to push neighboring topnodes later In stage 4.

Stage 2 replicates algorithm 3.1. We expect that the vast majority of nodes will find

assignments during this stage.

Let f be a small positive constant depending on p and let d = d(t:, p) and c = c(f, p)

be suitable positive constants depending only on f and p. Throughout the argument

we will assume that N is sufficiently large. The neighborhood of a point is the set of

points at distance 1 from the point, and a sphere denotes a sphere in the Hamming

metric.

Lemma 3.5. For f < p(l - p)/4./2. there is a positive integer constant d = d(t:,p)

such that for sufli.ciently large N, with probability 1 - 1/ N no sphere of radius 6

contains more than d nodes processed in stage 1.

Proof. Take any sphere of radius 6 and any d points in this sphere. The union

of their neighborhoods is of size at least dn - <fl > dn/2. (N = 2n is assumed to

be sufficiently large and any two neighborhoods do not have more than 2 points in

58

Stage 1:
for every poor node v which has fewer than rn topnodes as neighbors
across dimensions > rn do

fork+- 2 ton
if vk is rich and unmarked, mark it v

Stage 2:
for k +- 2 to rn for all nodes v

if v is poor and unassigned and vk is rich and unassigned assign v to vk

Stage 3:
for every node v which was processed in stage 1

assign v to the node which was marked v
for every node w assigned to a marked node during stage 2

w becomes unassigned
Stage 4:

for all unassigned poor nodes v do
for k +- m + 1 to n

if vk is an unpushed topnode and there is an unassigned rich node
vki for some j > e: log N

assign v to vk and push vk to vki

Figure 3-5: Algorithm 3.2.

common). By assumption, at most 2dm nodes in this neighbor set can be topnodes.

Since the probability that an individual node is a topnode is p(l - p) the probability

of having exactly i topnodes in a set of size dn/2 is

Pi = Cf) (p(l - p))i(l - p(l - p))~-i

Observe that Pi+t/Pi ~ v'2 for i ~ p(l - p)dn/2\1'2. Using this and the fact that any

Pi is less than 1 we get

2d<n 2d<n L Pi < L P2d<n2 i-22dsn

i=O i=O

< 4p2d<n

2d p(l~dn
< 4 J2 <n- 2 p p(12~dn ;,.

< 4 exp(-c6dn)

The probability that fewer than 2dm nodes in a set a.re topnodes decreases as we

make the set larger than dn/2. Thus this bound holds no matter what the actual size

59

of the union of the neighborhoods may be. Since there are at most N possible spheres

and at most (n;) ways of choosing d points, the lemma follows for large enough d. •

Next we show that stage 1 has a good probability of success for the nodes to which

it is applied.

Lemma 3.6. The probability that there exists a node which bas fewer than 2rn

neighbors across dimensions greater than m which are either rich or topnodes is

bounded by N-cr for sufficiently small<::> 0 and c7 > 0.

Proof. This proof uses reasoning similar to that of the proof of lemma 2.3. Choose

1:
1 > 0 such that (1 - t:') log p = -1 - cs for cs > 0. The probability of having fewer

than 8 log N neighbors across dimensions greater than 1:' log N which are either rich

or topnodes is

.S~N ((1-t:'llogN)(l-p)ip(l-t')IogN-i.

We can compare consecutive terms to show that this sum is bounded by a constant

times the last term. The last term is

(
(1 - €)log N) (l _ p)8IogN p(l-t'-.S)Iog N

8logN

< ((1 - t:') log N).SiogN (l)8logN (1-(1-.S)logN
('5lo!N)81ogN - p p

- exp2(81oge(l - t:')logN -8log8logN

+8 log N log (1 - p) - 8 log N log p + (1 - 1:') log N log p)

- exp2 (h (8, p) log N + (1 - t:') log N log p)

For 8 = 0, h(8,p) = 0 and the above expression is N-1
-1:3. Since h(8,p) is

continuous, there is a 8 > 0 such that the above expression is bounded by N-1-cr

with c7 > 0. Finally set E = min{ t:', 8/2} and observe that decreasing E
1 to E can

only decrease the probability of having at most 8 log N topnode neighbors across

dimensions ~ E
1 log N. •

By lemma 3.6, with probability 1-N-cr any node processed in stage 1 must have

at least m rich neighbors. The only way it could fail to mark one of these is if they

were all marked by other nodes. This is impossible since by len:una 3.5 there is only

60

a constant number of nodes processed during stage 1 within distance 6. Thus each

node participating in stage 1 successfully marks a rich node.

Let us next analyze stage 2. Note that stage 2 is independent of stage 1. By lemma

3.2, after stage 2 the probability that an individual node is poor and unassigned is

< N-c9 while the probability that it is rich and unassigned is > (1 - 2p).

Let a E {O, l}m and let Ha be the (1 - €)n dimensional hypercube which has the

ith coordinate a;, i = 1, ... , m. Observe that by lemma 3.1 the status of nodes in an

individual hypercube are independent during stage 2.

Lemma 3. 7. There is a constant d = d(p) such that the probability that there is a

sphere of radius 4 in any Ha which contains more than d unassigned poor nodes after

stage 2 is less than 1 / N.

Proof. There are N ways to choose a sphere over all Ha's and at most (~
4

) ways of

choosing d points in each sphere. The probability that these d nodes are poor and

unassigned is N-dc" and the lemma follows for sufficiently large d. •

3.3.2 Analyzing Stages 3 and 4

Stages 3 and 4 are responsible for assigning those nodes which remain unassigned after

stage 2. In stage 3, nodes assigned in stage 1 negate some of stage 2's assignments.

Bumped nodes find new assignments in stage 4.

Lemma 3.8. With high probability, after stage 3 there are only 2d unassigned poor

nodes in any sphere of radius 4 in any Ha.

Proof. This follows from lemmas 3.5 and 3.7. The only additional unassigned poor

nodes come from the nodes whose assignments are stolen in stage 3. But since the

thief is at distance two, lemma 3.5 bounds the number of poor nodes subject to theft

in any sphere of radius 4. •

To prove lemma 3.4 observe finally that stage 4 only works inside an individual

Ha. Fix a poor unassigned node at the beginning of stage 4. It has m topnode

neighbors. The probability that each individual topnode neighbor does not have m

61

rich unassigned neighbors is N-cio. Thus with probability 1 - ~ each unassigned

poor node has ~n topnode neighbors with m unassigned rich neighbors each. Stage 3

reduces the number of rich neighbors to each topnode only by a constant. By lemma

3.8 we know that during stage 4 only 2d other unassigned poor nodes can interfere.

Therefore stage 4 is successful and lemma 3.4 follows. •

If the algorithm successfully assigns each poor node to a rich node or topnode and

each pushed topnode to a rich node, call the assignment 1/J. Embed Hn-l in Hn - F

with the embedding ¢>which maps nodes in Hn-l to nodes in Hn - F by

ii if ii E Hn - F

¢> : Y ~ (ii)' if (ii)' E Hn - F, ii E F and y is not pushed

1/J(ii)' otherwise

and maps edges in Hn-l to paths in Hn - F precisely as discussed in section 2.

Theorem 3.9. Algorithm 3.2 is a local, deterministic algorithm. For any p < ! there

is a sufficiently small constant c11 > 0 such that if the nodes of Hn fail independently

and partially with probability p, for sufficiently large N the following is true with

probability 1 - N-cu. Algorithm 3.2 takes O(log N) steps and constructs a one­

to-one embedding of Hn-l into Hn - F with dilation 3 and congestion 2 log N. The

embedding has the property that if a constant degree network C is embedded in H11 _ 1

then the induced embedding in H,,, - F has constant congestion.

The only part of the theorem which we have not yet checked is the number of steps

stage 4 takes. Figure 3-6 gives a more detailed description of the implementation of

stage 4. First, each unassigned poor node is tentatively assigned to a constant number

of topnode neighbors. Each topnode chosen attempts to tentatively assign itself to

one of its unassigned rich neighbors. Each poor node then finds a topnode to which

it is tentatively assigned which successfully was assigned to a rich node.

Since by lemma 3.8 there are few unassigned poor nodes in any small sphere and

we know that most topnodes will have many rich neighbors, the above procedure will

assign every unassigned poor node to a topnode with high probability.

62

for all poor nodes v unassigned after stage 3 do
for k +- rn + 1 to n

if vk is an unassigned topnode
assign v to vk unless v is already assigned to 8d neighbors

for all assigned topnodes u do
for k +- m + 1 to n

if uk is an unassigned rich node assign u to uk and stop
for all poor nodes v unassigned after stage 3 do

for k +- m + 1 to n
if vk was assigned to v and succeeded in being assigned to a rich node w

push Vk to w and assign v to vk

Figure 3-6: Stage 4.

3.4 Routing Using Only Live Nodes

If we consider total faults instead of partial faults, algorithm 3.2 fails in several places.

In fact, any path in the embedding which does not consist of only a single edge has at

least one dead node internal to it. In order to handle total faults we will replace the

paths of length 3 in Hn - F which constitute the edges of the embedded hypercube

with paths of length 7 which use only live nodes.

In the remainder of the chapter we will use probabilistic algorithms. To guarantee

the performance of these algorithms, we will need to know that certain assumptions

about the distribution of faults hold true. These assumptions are stated in several

lemmas (for example, lemmas 3.10 and 3.11). Given that these distribution assump­

tions hold (which they do except with inverse polynomial probability), the algorithms

work with high probability. The errors arising during particular executions of the al­

gorithms are thus in some sense independent of the existence of unusual fault patterns.

First we establish that all nodes have a reasonably large number of live neighbors.

Lemma 3.10. There exists a c12 > 0 such that for any node v, the set Nv of live

neighbors of v has cardinality at least m with probability 1 - N-cn.

Proof. A calculation almost identical to the one in the proof of lemma 3.6. •

With probability close to 1, all pairs of nodes are connected by many paths each

63

Figure 3-7: A live path pii. The darkened path simulates an edge (u, v).

of which contains only live nodes.

Lemma 3.11. Suppose every node fails with probability p < 1/2. Then with prob­

ability 1 - N-ci 2 there are O(n2) live paths of length at most 7 between any points u

and v within Hamming distance 3, where we choose c12 as in lemma 3.10.

Proof. We will prove only the case where the distance is 3; the other cases are

similar. Let P = (u, w1, w2, v) be a path of length 3 between u and v. The paths we

will consider are of the type pii = (u, ui, uii, w~i, w;i, vii, vi, v). Let Nu be the set of

dimensions k for which uk is live and similarly for Nv. Take the larger of the two sets

{Piili E Nu,j E Nv,i < j} and {Piili E Nu,j E Nv,i > j}. By lemma 3.10 this set

has cardinality t:2n2 /2. The interior 4 nodes of these paths are disjoint for different

pairs i,j (if we discard i,j where either i or j is a dimension used along P) and the

outer 4 nodes are all alive. Thus with high probability O(n2) of these paths use only

live nodes. •

Once we have established the existence of live paths it is a simple matter to find

them algorithmically. However, if we look for them deterministically it is difficult to

bound the congestion. A random algorithm which uniformly chooses a random live

path for each pair of nodes is easier to analyze. Before we show how well the random

algorithm performs, we prove a simple lemma about balls and boxes.

64

Lemma 3.12. If each of a balls is placed randomly and uniformly into one of f3

boxes, then with probability 1 - (ae/ /31 ft there are fewer than / balls placed in the

first box.

Proof. The probability that there are more than I balls in the first box is no more

than (a) (l)"'I < ~(l)"'I = (2-)"'1 .!.. •
')' {3 - -y! {3 {3 -y!

Theorem 3.13. If we uniformly choose a random live path between each pair of

chosen nodes at the end of algorithm 3.2, then with high probability the resulting

embedding will have congestion O(log N) and induced congestion O(log N/ log log N).

Proof. The estimates will follow from lemma 3.12. The balls correspond to the edges

of the paths of the embedding and the boxes are the edges of Hn. The paths which

potentially share a given edge can be separated into classes. We assign a path to a

class depending on which position in the associated live path the edge would occupy

if the live path were actually routed through the edge. We will then show that with

high probability the congestion due to the live paths associated with any one class is

O(n). Since there will be only four classes, the result will follow.

Fix an edge (s, t). Given a path P, put P in class r if (s, t) is the rth edge along

pii (reading from the closest end) for some pair (i,j). There are four cases we need

consider.

r = 1: Then s = u. Since there are at most n - 1 paths beginning at u, there are

only n - 1 paths of this sort even in the worst case.

r = 2: Then (s, t) = (ui, uii). There are n - l possible values for u, each an endpoint

of at most n- l paths P. Since there are at least (m)2/2 choices for (i,j) for each of

these O(n2) paths, lenuna 3.12 applies to show that the probability that more than

O(log N/ log log N) of these paths are actually chosen to go through (s, t) is at most

O(N-1c).

r = 3: Then (s, t) = (uii, w~i). If Wt E H~-t' then the path P was embedded for the

edge (u, Wt). Thus only one path of this type exists for each pair (i, j). If Wt E H:_ t,
then the path P was embedded for an edge incident to w~. Thus only n - 1 paths of

this type exist for each pair (i, j). Therefore the total number of paths P in this class

65

is no more than n3 for any edge (s, t). Again the probability that any one of these

paths will actually be chosen to go through (s, t) is no more than 2 / (rn) 2 • By lemma

3.12 the probability that more than O(log N) of these paths are chosen that way is

at most O(N-/t:).

r = 4: Then (s,t) = (w~j,w;i). There are two cases. If both w1 ,w2 E H:_ 1 , then

P was embedded for (w~, w~). Thus only one path of this type exists for each pair

(i,j). If W1 E H~_ 1 ,w2 E H:_ 1 , then P was embedded for an edge incident to w 1.

Thus only n - 1 paths of this type exist for each pair (i,j). The rest of the analysis

is identical to that of the previous case.

Thus the probability that the congestion is more than O(log N) is at most O(N-/t:) x

N log N/2 = O(N-k+1 log N).

To prove the induced congestion is O(log N flog log N), note that only one path

from class 1 can contribute to the induced congestion. Note also that classes 3 and

4 have only O(n2) paths in them which can contribute to the induced congestion,

since the original edges could not have been adjacent. Thus the analysis for induced

congestion due to classes 3 and 4 reduces to that of case 2 above. •

3.5 An Algorithm for Constant Delay Embedding

In section 3.4 we resorted to probabilistic means to find fault-free communication

paths. We will use probabilistic methods again in this section, together with a more

uniform view of the nodes of the cube. We allow the max load to rise to a constant,

and in return we achieve constant congestion.

To achieve a constant delay embedding, we need the load, dilation and congestion

to all be constant. The embedding we will find will have a load and congestion which

depend strongly on the probability of failure - clearly the more nodes that fail, the

more nodes that have to be simulated by any one processor. However, the dilation

will always remain five, and each processor will be simulated by one of its neighbors,

provided that p < 1 - '15 (about .16).

In order to simplify the analysis, each node (live or dead) finds a neighbor to

66

simulate it. We first assign nodes to live neighbors so that no node simulates more

than a constant number of its neighbors. Then each pair of nodes simulating neighbors

finds a live path between them of length five so that no more than a constant number

of these paths congest any edge. We will use two similar algorithms to accomplish

these two tasks.

3.5.1 Assigning Nodes to Live Neighbors

Let Ap and Sp be constants (to be determined later) which depend only upon the

probability p of failure. Call a node unsaturated if it is live and if it has been assigned

to simulate fewer than AP of its neighbors. Otherwise, it is saturated.

The assignment algorithm proceeds in rounds. During a round, a previously unsat­

urated node might be picked by enough unassigned nodes so as to exceed its capacity

AP. In such a case, we require the node to accept enough of the simulation requests

to saturate it. Algorithm 3.3 performs the first phase.

for i = 1 to spn

for each unassigned node w
w picks one of its neighbors uniformly

each unsaturated node v agrees to simulate as many nodes as it can
without exceeding its capacity
all excess nodes remain unassigned

Figure 3-8: Algorithm 3.3.

Since the algorithm never assigns a saturated node to simulate another node, no

node simulates more than Ap nodes. Thus, a constant load embedding results.

To facilitate our proofs, we will first formulate a sequential algorithm similar

to algorithm 3.3. We will prove that this new algorithm assigns to each node a

neighboring node to simulate it. We will then show that, except for a small proportion

of executions, the algorithms behave the same.

In each round of algorithm 3.4, unassigned nodes act sequentially. Each node

chooses a neighbor to simulate it only after all lower ordered nodes have chosen. We

67

for i = 1 to spn

for unassigned nodes w in arbitrary order
if w has fewer than avn unsaturated neighbors

arbitrarily dedicate enough (saturated) neighbors
w picks one of its neighbors uniformly
if the chosen node is unsaturated or dedicated

w is assigned to that node
else w remains unassigned

Figure 3-9: Algorithm 3.4.

would like to ensure that all nodes have a large number of choices that will result in a

successful assignment. Let av depend only upon the probability p. If some node w has

fewer than avn unsaturated neighbors to choose from during its turn, we designate

an arbitrary set of saturated neighbors as dedicated to w during its turn. If w chooses

a dedicated node during that particular turn, the dedicated node agrees to simulate

w even though it is saturated. We dedicate enough nodes so that w has at least apn

neighbors which, if chosen, will agree to simulate it.

We will show below that with high probability no nodes are ever dedicated during

algorithm 3.4. In that case, the result is the same whether unassigned nodes choose

sequentially or in parallel. Thus we will show that algorithms 3.3 and 3.4 produce

the same output.

The following lemma proves that algorithm 3.4 terminates quickly.

Lemma 3.14. With high probability all nodes have been assigned after svn steps of

algorithm 3.4, for sufficiently large Sp.

Proof. Because each node always has at least avn neighbors which will simulate it if

chosen, the probability that a given node is assigned during some step is at least ap,

regardless of what has occurred in previous steps. Thus the probability that a node

remains unassigned after svn steps is no more than (1 - ap)'P". This quantity is less

than N-k as long as Sp > k/ av. •

Lemma 3.15. For p < 1 - -YS, there exists an fp and a constant c13 > 0 such that

68

with probability at least 1 - N-ci3 ea.ch node bas at least fpn live neighbors.

Proof. The probability that a node has fewer than m live neighbors equals

Since the ratio of consecutive terms is always greater than (1 - p)/p, this sum is

bounded by a constant times its last term. That term is

The second term in the product can be made less than N-1-ca for some c14 by taking

f small enough. The first term in the product can be made less than Nca/2 by taking

c small enough as well. The probability that some node has too few neighbors is

bounded by the sum of the probabilities for the individual nodes. This multiplies

the above bound by N. Thus for any f below both of these thresholds, the theorem

applies. •

The following two lemmas show that with high probability algorithm 3.4 never

dedicates saturated nodes. Thus with high probability algorithms 3.3 and 3.4 behave

identically. This proves that algorithm 3.3 assigns all nodes with high probability.

Similar reasoning proves the Dance Hall Theorem described in the introduction.

Lemma 3.16. Given a failure rate p, assume that every node bas at least tpn live

neighbors. Then with bish probability a given node v never has fewer than aPn

unsa.tura.ted neighbors available during a.lgorithm 3.4, for ap = ~·

Proof. For v to have fewer than apn unsaturated neighbors at some point during

algorithm 3.4, at lea.st (tp-ap)n = apn of v's neighbors must have become saturated

during the course of the algorithm.

Each node always has at least apn neighbors (including dedicated nodes) to which

it might be assigned during any step. Further, if it is assigned, it is equally likely to

be assigned to any one of those neighbors. Thus no node has a probability greater

than 1/apn that it will be assigned to any given neighbor, no matter what other

assignments have been made previously.

69

To saturate apn of v's neighbors, there must be at least Apapn nodes at Hamming

distance two from v each of which is assigned to a neighbor of v. There are no more

than n2 nodes which might be assigned to some node in v's neighborhood. Each

one of these nodes has at most two neighbors of v to which it might be assigned.

Although the probabilities of such selections are dependent, the probability a given

node is assigned to a neighbor of v is at most 2/ apn, no matter what choices the other

nodes made. The probability that at least apn of v's neighbors become saturated is

thus no more than

(

n2) (-2)Apapn $ (~)Apapn
Apapn aPn APap

For AP large enough, this quantity is an inverse polynomial in N. •

Lemma 3.16 implies that with high probability algorithms 3.3 and 3.4 behave

identically. We know that algorithm 3.4 successfully assigns each node to a neighbor

with high probability and that algorithm 3.3 never assigns more than AP nodes to

any node. We conclude that algorithm 3.3 achieves a constant load embedding with

high probability.

3.5.2 Assigning Edges to Paths

Once we've assigned simulating nodes, we need to find paths to simulate the edges

in the hypercube. Say that vb simulates v and vkb' simulates vk. Then to simulate

the edge (v, vk), the nodes vb and vkb' choose a path between them of the form

P(v vk b b' r) - (vb vbr vr vrk vrkb' vkb') To avoid ambiguity we will refer to the ' '' , - ' ' ' ' ' . '
choice of r as if it were made by v and vk even though vb and vkb' actually choose.

For two adjacent nodes v and vk, let S(v, vk, b, b') be the set of dimensions r -:/=- k

for which P(v, vk, b, b', r) is a live path. Because p < 1 - V(S, there is a chance

(1 - p)4 = s > ! that any given path P(v, vk, b, b', r) is live. Note that the paths

P(v, vk, b, I/, r) (r -:/=- k) are node-disjoint for a fixed choice of v, vk, b and b'. Thus the

probability that any one of them is live is independent of the other paths.

Lemma 3.17. With high probability, for all quadruples (v, vk, b, II), IS(v, vk, b, b')I >

T/pn for some constant T/p·

70

v

Figure 3-10: A choice of live path.

rkb' v

kb' v

Proof. Same as lemma 3.15, except that there are N log3 N different quadruples. •

With high probability, we know that all pairs of neighbors have many paths from

which to choose. What remains is for them to decide in a systematic but local fashion

how to choose from among these paths without congesting any edge too much. In

the rest of this section, we explore a way to choose paths in this manner.

Take a node v simulated by its neighbor vb and consider the set E11 ,b of edges

{(vbr, vr)}. There are 2n2 nodes w (all of the form w = vrt or w = vbrt) which (like

v) might potentially use one of the edges in the set a.s a second edge along a path.

Any node which actually does must be simulated by its neighbor across dimension b.

The next lemma bounds the number of such nodes.

Lemma 3.18. For sufficiently large bp and with high probability, of the 2n2 nodes

at distance 0 or 2 from either v or vb, no more than bpn of them are simulated by

neighbors a.cross dimension b.

Proof. As noted before, each node has a probability no more than 1 / apn of borrowing

across any given dimension, regardless of the choices made by other nodes. The

probability that many nodes choose across the same dimension is no more than

71

Of course, the actual probabilities depend on the particular 8pn-size subset we con­

sider and on the relative order in which the nodes of the subset successfully found

neighbors to simulate them. Then any node's probabilities are conditioned upon

other nodes' previous choices. No matter how these choices are made, however, the

stated probabilities are upper bounds on the actual probabilities since when each

node chooses it always has at least apn choices.

For sufficiently large 8P, this is smaller than an inverse polynomial in N. •

Each of the at most 8Pn nodes (except for v and vb) can use at most two edges

in the set Ev,b as a second edge along some path. To use an edge as a second edge,

such a node would have to be a neighbor of one of the nodes incident to the edge. If

w is of the form w = vrt, then w is adjacent to vr and vt and no other node incident

to an edge in Ev,b· Similar reasoning applies to nodes w which satisfy w = vbrt.

Trivially, each of v and vb can use no more than n edges of Ev,b as a second edge

along some path. ff we sum over all edges in Ev,b the number of nodes which can use

each edge as a second edge counting according to multiplicity, the total will be no

more than (28p + 2)n. Therefore no more than 7],,n/4 of these edges will have more

than {p = 4(28,, + 2)/TJ,, of those 8,,n nodes potentially using them as second edges.

Let S' (v, b) = { r I more than {p nodes can send a path through the edge (vbr, vr)}.

Then IS'(v, b)I ~ 7],,n/4.

Let T(v,vk,b,b') = S(v,vk,b,b') - S'(v,b) - S'(vk,b'). Then for each adjacent

pair of nodes v and vk, IT(v,vk,b,b')I > TJ,,n/2. The sets T(v,vk,b,b') will be crucial

for our reasoning. The probability that a pair successfully choose a path between

them is lower bounded by the probability that they successfully choose the path from

T(v, vk, b, b').

Note that among the edges in all the paths represented by the sets T(v, vk, b, b'),

there are now only a logarithmic number of quadruples (w, wi, c, c') which might

potentially congest any given edge. We've already limited the number of paths for

which the edge is the second edge along the path. If the edge is the first edge along

the path, then one of the edge's endpoints is the simulating node. Each endpoint

simulates only a constant number of nodes, and each simulated node contributes

72

exactly n paths. If the edge is the third edge along the path, then the path is

simulating an edge at Hamming distance one from the edge considered. There are

exactly n edges of this type. The cases in which the edge is the fourth or fifth edge

along the path are identical to the first two cases. Thus each edge can be potentially

congested by no more than µpn = (4Ap + 2/p + 1)n paths.

We can now describe algorithm 3.5, which assigns paths to simulate edges. During

algorithm 3.5, each edge will decide whether or not to accept some path routed

through it. Because the other edges in the path simultaneously decide whether or

not to accept the path, it is possible that some might accept it while others reject it.

If this happens, we assume that an accepting edge counts the path as contributing

to its load anyway. Call an edge saturated if it has accepted exactly BP paths routed

through it. Otherwise, call it unsaturated. Order the pairs (v, vk) lexicographically.

As before, in any round an edge accepts an arbitrary set of pairs which try to route

through it until it reaches its capacity.

for i = 1 to s~n
for each unassigned adjacent pair of nodes (v, vk)

(v, vk) pick a path between them uniformly
each unsaturated edge agrees to as many paths routed through as it can
without exceeding its capacity, deciding conflicts arbitrarily
all excess pairs remain unassigned

Figure 3-11: Algorithm 3.5.

Parallelling what we did before, we will present algorithm 3.6, a sequential ver­

sion of algorithm 3.5. We will show that this modified algorithm terminates having

assigned paths between every pair of nodes simulating neighbors, with high proba­

bility. Maintaining the parallel with what we proved earlier in this section, we will

then show that the two algorithms perform indistinguishably, with high probability.

At any time when the pair (v, vk) attempt to choose a path between them during

algorithm 3.6, let U(v, vk, b, ll) be the subset of T(v, vk, b, b') consisting of dimensions

r for which all of the edges along P(v, vk, b, ll, r) are unsaturated. Define the ded-

73

ication of a path containing a saturated edge in a fashion similar to the dedication

of saturated neighbors before. We dedicate paths to the pair (v, vk) whenever (3pn

choices for a simulating path do not exist.

for i = 1 to s~n
for all unassigned pairs (v, vk) in arbitrary order

if IU(v, vk, b, b')I < /3pn
dedicate enough r E T(v, vk, b, ll)

(v, vk) pick a path bet ween them uniformly
if the chosen path is unsaturated or dedicated

(v, vk) is assigned to the path
else (v, vk) remains unassigned

Figure 3-12: Algorithm 3.6.

Lemma 3.19. For a suitably large choice of the constant s~, with high probability

all pairs of nodes searching for an assignment to a path have been assigned one after

s~n steps of algorithm 3.6.

Proof. Each pair is successfully assigned with probability at least /3p during any step.

The rest of the proof is identical to that of lemma 3.14. •

We now show that with high probability algorithm 3.6 never adds dedicated paths

with saturated edges to any U(v, vie, b, 11). Thus with high prob,ibility algorithms 3.5

and 3.6 behave identically. This proves that algorithm 3.5 assigns all necessary paths

with high probability.

Lemma 3.20. With high probability no set U(v, vie, b, b') ever has cardinality less

than /3pn at the beginning of some step of algorithm 3.6, given /3p = T/p/4.

Proof. There are at most µpn pairs which have a non-zero probability of congesting

a given edge on some path represented by an r E T(v, vie, b, 11). Thus at most 5µpn 2

pairs have non-zero probability of congesting any of those edges, counting according to

multiplicity. For a path to leave U(v, vie, b, 11) one of its edges must become saturated.

For (17p/2-/3p)n = /3pn paths to become unavailable, Bp/3pn pairs must choose a path

crossing an edge on some path represented by an r E T(v, vie, b, b').

74

The probability that a pair chooses any particular path is at most 1//3pn, no matter

what other choices are made. Thus if there are qw,w' paths that a particular pair

(w, wi) might choose which contain an edge on some path in T(v, vk, b, II), then the

probability that (w, wi) chooses such a path is at most qw,wi //3pn, and L:w,w.1 qw,w.1 ~

5µpn 2
.

By a moment generating function argument similar to those in lemmas 2.1 and 2.7

and in theorem 2.13, the probability that more than /3pn paths become unavailable

is therefore no more than O(N-k) for arbitrary k. •

With high probability 0(n) steps are sufficient to select all paths. Since we have

guaranteed that the paths have constant congestion, this proves the following theorem.

Theorem 3.21. For each p < 1 - ~ (about .16) there exists an fp and an T/p

such that with probability 1 - N-ci~, at least fpn neighbors of every node are live

and IS(v, vk, b, b')I 2'.: T/pn for all quadruples (v, vk, b, b'). Given these facts hold, there

is an O(log N) step algorithm which with high probability finds an embedded fully

functioning N-node cube in Hn - F with constant load, dilation and congestion. The

paths which simulate the edges of the cube only use live nodes.

3.6 Implementing the Constant Delay Embedding

As given so far, the algorithms of the previous section are far from implementable.

Each node needs to know information about which nodes have decided to simulate

which other nodes, which paths it may route through, whether or not certain tentative

assignments have been finalized, and so forth. In this section we will show how such

information might be exchanged in polylogarithmic time per step. This implies that

the embedding of the previous section is obtainable in polylogarithmic time.

Focus on any particular node v. Because v might be faulty, one of its neighbors

must choose a simulating node for it. Arbitrarily, we will use the lexicographically

smallest labelled live neighbor to simulate v during the course of algorithm 3.3. First,

the neighbors must agree on which one of them is the lowest. During any step of

75

algorithm 3.3, that neighbor of v must inform all the other neighbors which one

of them v selected during that step. Both of these operations are trivial once we

understand how a node's neighbors can communicate even with faults.

Each node vi broadcasts to v's other neighbors by first broadcasting to all of its

neighbors. Then each node vij passes the information to its unique other neighbor

which is also a neighbor of v, the node vj. A picture of this type of broadcasting

appears in figure 3-13.

v ..

Figure 3-13: Broadcasting to other neighbors.

We only care if the message gets through to the other neighbors of v which are live.

The broadcast we have described sends the messages through a set of intermediary

nodes, several of which are likely to be faulty. Thus if each node broadcasts just once,

we might expect that several nodes will not receive the information they need. We

remedy this problem by allowing each node to broadcast its information and then

repeating the broadcast twice more. With probability 1 - N-cie, every neighbor of v

is informed of the activity of all of v's other neighbors. We prove this scheme works

by showing that with probability 1 - N-cie, for every node v of the hypercube, every

live pair vi and vi of v's neighbors are connected by a live path consisting of two or

three broadcasts.

Lemma 3.22. With probability 1 - N-cie, between every pair of live neighbors

76

vi, vi of every node v there is a live path of the form (vi, vik, vk, vki, vi) or of the form

(vi vik vk vkl v' vli vi)
' ' ' ' ' ' .

Proof. Consider a node v and a neighbor vi. The neighbor vi successfully broadcasts

to another neighbor vk exactly when both vk and the intermediary node vik are both

live. Since the probability of failure is no more than 1 - ~' the probability that

one or both of these nodes are dead is no more than 1 - if.5. Further, none of these

pairs { vk, vik} share a common node. Thus there is a p > 0 and a c17 > 0 such that

with probability 1 - N-ci 7 pn of the pairs will be live, for all neighbors vi of v.

Next take two disjoint sets S1 and S2 each containing pn neighbors of a given

node v and consider the set T(Si, S2) = {vk11vk E S1, v1 E S2 and vk1 is live}. Since

there are p2n 2 pairs of nodes vk, v1 which satisfy the first two requirements and each

pair has a constant probability that it satisfies the last requirement (independent of

other nodes), with high probability the set T(Si, S2) is nonempty. There are no more

than N 2 ways to choose the sets S1 and S2 for any given node v. Thus with high

probability the set T(Si, S2) is nonempty for all choices of S1 and S2. Since there are

only N choices for v, with high probability for each node v and each choice of S1 and

S2 , the set T(§1 , S2) is nonempty.

With probability 1 - N-cis (for any 0 < c16 < c17), the conclusions of the first

two paragraphs hold. For a given node v, let Vi = { vklv'k and vk are both live} and

V2 = {vklvik and vk are both live}. Then if IVi n V21 'f= 0, a the path of length four

connects vi and vi. If I Vi n Vi I = 0 then vi and vi are connected by a path of length

six.•

Before algorithm 3.5 can route the simulating paths, each node must know which

nodes simulate the neighbors of the nodes it simulates. At the end of algorithm 3.3

each live node knows which nodes simulate each of its neighbors. At least pn neighbors

of every node are live. For every pair of neighbors v and vlc, we only need some live

neighbor of v to communicate with some live neighbor of vlc. Each neighbor vi of v

attempts to route along the path vi, vii, viik, vi" to each neighbor vik of v". We are

only interested in the (pn)2 paths which begin and end at live nodes. Each of these

77

paths intersects at most one other and with high probability one of the (pn)2 /2 node­

disjoint paths will be nonfaulty. Since there are only a polynomial number of pairs of

neighbors, each with only a polynomial number of possible sets of live neighbors, this

communication will be possible with high probability. A series of three broadcasts by

all nodes will accomplish the task in O(log3 N) steps.

Finally, we will describe how to implement a slight variant of algorithm 3.5. As­

sume that v has an even number of l's in its bit-vector representation. To avoid

confusion, to find a simulating path for the edge (v, vk), only the node vb simulat­

ing v will actually choose a path. Say that during a step of the algorithm, instead

of choosing a random dimension in U (v, vk, b, b'), vb chooses a random dimension

from { 1, 2, ... , n}. Then we know (1) the probability that vb chooses any partic­

ular r E U(v, vk, b, b') does not increase, (2) all sets U(v, vk, b, ll) have cardinality

/3v log N with at least the same probability as in algorithm 3.5 and (3) each node vb

has probability at least /3p of choosing an r E U(v, vk, b, b').

During any step of this modified algorithm, all of the nodes that have chosen

an r E U(v, vk, b, b') succeed with at least the probability stated in the analysis of

algorithm 3.5. All other nodes may or may not find an unsaturated path and may

or may not encounter too much congestion. With high probability, if we run the

modified algorithm 2//3v times as long as algorithm 3.5, each node vb will choose an

r E U(v, vk, b, b') at least as many times as it did in algorithm 3.5. Thus, even if

nodes never find simulating paths except when they choose an r E U (v, vk, b, b'), all

nodes will find the necessary paths at least as successfully as before.

Each node that chooses a path attempts to route a message describing the path

along the path. Any node along the path can send messages back if it detects too

much congestion along one of its edges. If the message comes back, the even node

knows that it was unsuccessful. Otherwise, both the even node and the odd node

which is the message's destination know which path to use in the future.

78

3. 7 Extensions and Remarks

As mentioned in the introduction, edge faults are easily handled once node faults are

understood. Say each edge fails with probability Pe, each node fails with probability

Pn and the failure of any component is independent of the failure of other components.

Then all results still follow with little change. Specifically, as long as Pn +Pe - PnPe <

1- .y]° (about .13), the algorithms of sections 3.5 and 3.6 work with high probability.

The only addition to our reasoning is that when one node tries to communicate with

a neighbor node, it is unsuccessful not only if the neighbor is faulty but also if the

link between them has failed.

This work extends to the case in which pis small; that is, if p < N° for 0 > a > -1.

In this case, faults are so far between that the results of the second section can be

strengthened. The deterministic algorithm 3.1 achieves a constant delay embedding

with high probability. This result follows directly from the following fact.

Lemma 3.23. If faults occur with probability p for small p then with high probability

no sphere of radius 14 contains more than a constant number of faults.

Proof. Say p < N°. Then the probability that m nodes out of any given n14 nodes

are faulty is no more than

(:

4

) Ncrm < Ncrmn 14m N

There are at most N such spheres to consider. If m > -1/a, the total probability

that some sphere contains m faults is an inverse polynomial whose exponent can be

diminished by increasing m. •

Each simulating node only needs to distribute its connections among the dilation

7 fault-free paths discovered in section 3.4.

Last, a word about the practicality of the results of this chapter. We have made

little attempt to optimize constants since we need large constants to obtain the full

breadth of our results. However, in practice the full strength of these theorems will

probably be unnecessary. We cannot expect half the processors in a network to fail as

a normal occurrance. We are optimistic that when the number of faults is moderate,

79

our "'kai•= wil ._. ... 111B~w .f(Jf,:·~··~ llfttlll ... ~••illtk ·
....... ' ,L • •· 1.:~~··· .· • .

··,";'

'(. '

....

• ~,,.:

I

Chapter 4

Embedding Trees Dynamically

4.1 Introduction

Achieving high performance on a parallel computer requires the satisfaction of two

potentially conflicting requirements. First, the computational load posed by the

program should be evenly shared among all processors (load balancing). Second,

processes communicating frequently should be placed on processors that are close

(communication locality).

This problem has been studied abstractly as the problem of embedding a pro­

cess graph G in a processor graph H ([BCHLR], [BCLR], [BI], [CJ, [GHR], [HJ],

[KLMRR]). The vertices of G are processes comprising the parallel program, with

edges representing communication between processes. The vertices of H are proces­

sors, and the edges represent communication channels. For many computations, it is

possible to predict G before execution. In such cases it is useful to map the vertices

of G into those of H so as to minimize load, dilation and congestion.

This chapter focuses on embedding arbitrary binary trees into the butterfly and hy­

percube networks. Trees arise naturally in many computations: divide-and-conquer

algorithms, branch-and-bound search ([KZ]), functional expression evaluation, and

image understanding (quad/oct trees). In [BCLR], Bhatt et al. showed that every

N-node binary tree could be embedded in an N-processor hypercube such that each

processor received a single tree node, and the maximum dilation was 0(1). Embed-

81

ding trees into butterfly networks is harder, because the butterfly is much sparser

than the hypercube. In (BCHLR], Bhatt et al. showed how to embed the complete

binary tree with N nodes in a butterfly network with N processors with constant

dilation and load. The problem of embedding arbitrary trees into butterfly networks

was left open.

Tree structured computations are often dynamic. As the computation progresses,

the tree may grow or shrink, in a manner which may be impossible to predict before­

hand. In (BC], Bhatt and Cai propose a dynamic version of the embedding problem.

They consider a process graph which is a binary tree that can grow during execution.

At each step any node of the tree that does not have two children can request to

spawn a child. The dynamic embedding problem is harder than the static one since

newly spawned children must be allocated to processors incrementally, without mak­

ing assumptions about how the tree will grow in the future. Further, the placement

decision must itself be implemented within the network in a distributed manner with­

out accessing global information. The paradigm proposed by Bhatt and Cai disallows

process migration; i.e. once a process is placed on a particular processor, it cannot be

moved subsequently. Obviously, allowing migration can potentially give better load

balancing/ dilation but can also be extremely expensive in practice.

Bhatt and Cai present ((BC]) a randomized algorithm for dynamically growing

trees with M vertices on an N processor binary hypercube. Each child process is

placed no farther than a distance O(log log N) from its parent. Further, with high

probability (independent of the tree shape) the algorithm only assigns O(M/ N + 1)

vertices to each processor. The congestion of the embedding was not determined but

is probably on the order of log N.

4.1.1 Summary of Results

We consider the problem of growing trees on butterfly and hypercube networks. Our

framework is identical to that of Bhatt and Cai ([BC]), although our growth algo­

rithms are substantially simpler and have provably better performance. We begin by

describing a level-by-level strategy for embedding a binary tree in a butterfly. Mod-

82

ifications to this scheme form the basis of all our embedding algorithms. The first

modification we introduce is the use of random flip bits, which randomize the loca­

tions of tree nodes within a level of the butterfly. Analysis of the behavior of these

flip bits is sufficient to prove our first result.

Theorem 4.1. An arbitrary binary tree T with M vertices can be dynamically

grown on an N processor hypercube with dilation 1 such that with high probability

the maximum load per processor is O(M/N + logN).

Note that this is optimal to within a constant factor whenever the tree T is large

(i.e., M ~ NlogN). For these large trees, it gives an optimal O(M/N) load as

in [BC] while improving dilation from O(log log N) to 1. Next we present another

modification of the scheme involving level balancing - in effect, we stretch certain

paths within the tree so that the number of tree nodes assigned to a.ny level of the

butterfly is balanced. This modification leads to our next result, this time for a

butterfly.

Theorem 4.10. An arbitrary binary tree T with M vertices can be dynamically

grown on an N processor butterfly network with dilation 2 such that with high prob­

ability the maximum load per processor is at most O(M/N + logN)

Again, this is optimal to within a constant factor when M ~ N log N. This result

is a substantial improvement over previous work since not even good static embed­

dings of arbitrary binary trees were known. Finally, we take advantage of an embed­

ding of the butterfly into the hypercube which embeds entire levels of the butterfly

to subcubes of the hypercube in order to develop a scheme for local redistribution of

load within levels. This leads to an embedding algorithm for the hypercube which

simultaneously optimizes maximum load and dilation. In addition, the congestion of

the embedding is optimal if M = O(N).

Theorem 4.14. An arbitrary tree T with M vertices can be grown on a N processor

hypercube with constant dilation such that with high probability the maximum load

is O(M/N + 1) and the congestion is O(M/N + 1).

It should be noted that although our theorems are phrased m terms of trees

83

which only grow, these embedding algorithms are also effective for dynamic trees

which can both grow and shrink at their leaves. Consider a binary tree T which

grows and shrinks. At each stage in the tree's evolution, the probability space of

possible embeddings of the current form of the tree T' is equivalent to the space of

embeddings which would have occured had we simply grown the tree T' using the

same algorithm. Therefore the same results hold for each step in the tree's evolution

(assuming, of course, that the total number of steps in the tree's evolution is bounded

by a polynomial in N).

We also prove a lower bound for deterministic embedding algorithms for hyper­

cubes which shows that any deterministic algorithm which balances load must nec­

essarily have dilation n(JIOg"N). It follows that any embedding algorithm which

simultaneously optimizes load and dilation (to within constant factors) must be ran­

domized. This consequence also holds for the butterfly, since it is a subgraph of the

hypercube.

Tom Leighton, Abhiram Ranade and Eric Schwabe coauthored all the work ap­

pearing in chapter four.

4.1.2 Overview

The basic embedding algorithm is presented in section 4.2 along with the introduction

of flip bits and the proof of theorem 4.1. The level-balancing scheme is introduced

and analyzed in section 4.3, along with a proof of theorem 4.10. Improvements to the

hypercube embedding algorithm and proof of theorem 4.14 are given in section 4.4.

Section 4.5 states and proves the lower bound for deterministic algorithms.

4.2 The Basic Growth Algorithm

4.2.1 Preliminary Scheme

We begin with a level-by-level strategy for growing a tree on an N-node butterfly

network. For this chapter, we set n so that N = n2". That is, the N-node butterfly

84

has n levels.

In the cases where we are ultimately interested in an embedding in a hypercube,

we will first embed the tree in a butterfly, and then consider some embedding of

the butterfly in the hypercube. We place the root of the tree on processor 00 in

the butterfly. This processor is connected to two processors in level 1, on which we

place the children of the root. These processors are in turn connected to 4 level 2

processors, which will in turn receive the children of the root's children, and so on.

This strategy enables us to grow any n level binary tree with dilation 1, and with at

most one tree vertex per butterfly processor. Trees with greater height are wrapped

around; i.e. level n vertices are placed in butterfly level 0, and so on. The set of tree

vertices which are mapped to level i of then level butterfly consists of those vertices

in levels i, i + n, i + 2n ... and so on; we refer to this as the ith level set of the tree.

There are two issues we need to consider:

1. Evenly distributing tree vertices within the processors in each level. We would

like the vertices belonging to level set i to be evenly distributed among the

processors in the ith level of the butterfly; i.e. to guarantee that no single

processor in level i receives too many vertices.

2. Evenly distributing tree vertices among different butterfly levels. For example,

when mapping a. complete binary tree of height h, level h - 1 mod n of the

butterfly would receive the leaves of the tree, or about half the total number of

vertices. Ideally, we would like the vertices to be divided evenly among all the

levels of the butterfly.

We will defer our consideration of the second issue until section 4.3. First, a.

modification of the basic scheme helps us achieve balance within a level.

4.2.2 Flip Bits

A random flip bit is generated at each vertex of the tree to decide where its children

will be spawned. Consider a vertex v of the tree that has been placed on some

85

processor p in level i of the butterfly. This node is connected to processors q and r in

level i + 1 mod n, which will receive the children of v. The flip bit chosen for vertex v

decides whether the left child of v will be placed on q or on r. The right child is then

placed on the other processor. Note of course that it is not necessary that v have two

children - the bit only determines where the children will be placed if they are ever

spawned.

In section 4.3 we will show that this ensures even distribution within each level.

Intuitively, each vertex is effectively placed using a random path determined by the

flip bits chosen along its ancestors. For now, this modified scheme is sufficient to

prove the rem 4.1.

Theorem 4.1. An arbitrary binary tree T with M vertices can be grown dynamically

on an N processor hypercube with dilation 1 such that with high probability the

maximum load per processor is O(M/N + logN).

Theorem 4.1 follows directly from the following lemma.

Lemma 4.2. An arbitrary tree T with M vertices can be grown in a butterfly net­

work of N processors such that each column in the butterfly receives no more than

0(M /2n + n) vertices with high probability.

Suppose this lemma were true. Then by simulating the N = n2n-node butterfly by

a 2n-node hypercube, where each node of the hypercube simulates an entire column

of the butterfly, we have an embedding algorithm for the hypercube which achieves

dilation 1 and load 0(M / N + log N) with high probability. Thus this lemma is

sufficient to prove theorem 4.1.

The general idea behind the proof of lemma 4.2 is that a large number of vertices

will be placed in the same column in the butterfly only if the Hip bits on the paths

leading to these vertices are chosen in a specific (unlikely) manner.

A stagnant path pis a maximal path v(l), v(2), ... , v(l) in T with v(l) towards

the root such that all v(i) are placed in the same column v of the butterfly. Let the

leader of p be the nth ancestor of v(l), and the trace of p be the set of n + /-1 vertices

between the leader (inclusive) and v(l) (exclusive). H v(l) is in the first n levels of

86

the tree, then the leader of the path is defined to be the root of the tree.

Notice that there is a unique path in the butterfly from the leader of a stagnant

path p to vertex v(l). Thus, given the column in which the leader lies, and the column

in which the path p lies, we can completely determine the flip bits chosen along the

trace of the path. The next observation is that the traces of distinct stagnant paths

mapped to the same column are distinct; i.e. the information gained from one trace

is different from that obtained in the other.

Lemma 4.3. Let p and p' be two distinct stagnant paths placed in the same column

of the butterfly. Then their traces are vertex disjoint in the tree.

Proof. Contrary to the lemma, suppose the lowest point in the tree at which the

traces intersect is vertex u. At vertex u, the two traces are mapped to the same

column of the butterfly. Likewise, the two stagnant paths are mapped to the same

column. The two children of u are mapped to different columns of the butterfly,

however, and therefore the traces must reconverge in some butterfly column between

the children of u and the beginnings of the two stagnant paths. However, the two

paths cannot meet again in any column until they have traversed all n levels of the

butterfly. Since the two stagnant paths are at a distance less than n from u, the traces

cannot reconverge in the butterfly before reaching them, and we have a contradiction .

•
Lemma 4.4. For any column v of the butterfly, there is at most one stagnant pa.th

mapped to v such that v(l) is in the first n levels of the tree.

Proof. This lemma follows immediately from lemma 4.3 by noting that any two such

paths will have the same leader (the root of the tree). •

Proof. (of Lemma 4.2) We shall count the number of different settings of the flip

bits that give rise to some column having at least C = k(M /2n + n) tree vertices.

This can be done as follows:

1. Choose the column: 2n choices.

2. Choose the number of stagnant paths: C choices.

87

3. Choose the endpoint of each path: (~), where C0 is the number of stagnant

paths. Define {3 = C / C0 •

4. Choose the length of the paths: (c~;o) choices.

5. Choose the flip bits at all vertices in T except those in the Co traces. The total

number of flip bits is M, and the length of the jth trace is n +Ii - 1, except

for the possible case when one stagnant path has v1 in the first n levels of the

tree, in which case the length of its trace is Ii - 1. Thus the total number of

bits this step fixes is: M - L;(n + lj - 1) + n = M - (C0(n - 1) + C) + n. Thus

the total number of choices is 2M-(Co(n-l)+C)+n.

First we claim that the above choices completely determine all the flip bits. To

see this, consider the trace with its leader belonging to the smallest level in T, of all

traces. Clearly, the last step of the above procedure fixes the position of the leader.

This fixes all the bits in the trace, since the endpoint and the length of the trace are

known. The bits for the other traces are similarly determined.

The total number of ways of choosing all the bits is 2M. Thus the probability that

some column gets more than C vertices is at most

<

<

<

22nc (~) (ch;o)2M-(Co(n-1)+C) /2M

22nc (M(C6fo)e2
) Co 2-(Co(n-l)+C)

22nc (2e2 M(C+Co))Co
CJ2n2d

22nc (2z2 11(~t1)) co

To go from the first line to the second we have used the inequality (;) $ (ne/ry.

Choosing Tr: > 10e2 , and noting that /3({3 + 1) $ 5(21312), we can simplify the above

expression to:

22nc(~)Co

< 22nc2-c;2

< 2-C/4

< 2-kn/4

88

B(T)

1

Figure 4-1: Level balancing a tree, n=6. The numerical labels indicate the stretch
counts chosen at those nodes. White nodes indicate dummy vertices.

< N-k/s

•
4.3 Embedding in the Butterfly

In this section we introduce a modification to the embedding algorithm which insures

that with high probability the nodes of the binary tree are distributed evenly among

the levels of the butterfly. We then prove that the flip bits described in the previous

section are sufficient to distribute the tree nodes evenly within each level.

4.3.1 A Level-Balancing Transformation

We transform the tree T being grown by selectively inserting dummy vertices into

some of its edges during the growth. Even if some level originally has a dispropor­

tionately large number of vertices, the newly introduced vertices help to even the

distribution of the tree vertices among the levels.

The n-way level balancing transformation is as follows. Define a vertex of T to

89

be distinguished if it lies in level i = 0 (mod n/3). 1 For each distinguished vertex v

in T we pick a random number S(v) between 0 and n/3 called the stretch count. We

insert a single dummy vertex in each of the edges that connect v to its descendants

in levels i + 1 through i + S(v). Figure 4-1 illustrates the transformation. Note

that this transformation can be applied as the tree grows. Each node only needs to

know what level of the tree T it belongs to, and the stretch count generated at its

nearest distinguished ancestor. This is sufficient information to decide whether or not

a dummy vertex is inserted when a child is spawned.

The new tree B(T) that results is grown on the butterfly using the procedure

described in section 4.2.2. This gives a dilation 1 embed.ding for B(T). This corre­

sponds to a dilation 2 embedding of T, since some of the edges in T were replaced by

two edges in B(T).

4.3.2 Analysis of Tree Balancing

We show that the n-way level balancing transformation of section 4.3.1 is sufficient

to evenly distribute the tree vertices among the levels in the butterfly. In particular,

we show that for any tree T, no level set in B(T) will contain a disproportionately

large number of vertices. Since level i of the butterfly receives vertices from the ith

level-set of B(T), this implies that tree vertices are uniformly distributed. among the

butterfly levels.

Lemma 4.5. For an arbitrary tree T, then-way level-balancing transformation gives

a tree B(T) such that the total number of vertices in the ith level-set of B(T) is at

most O(M/n + 2n) with high probability.

vVe will prove the following slightly modified (but equivalent) version. Define the

ith level set triple of a tree to be the set of vertices from level sets i, i + n/3 and

i + 2n/3. Define a partition of Tinto 3 zones as follows (Figure 4-2). Zone 0 consists

of vertices in levels kn through kn + n/3 - 1. Zone 1 consists of vertices in levels

1 In what follows we may make references like "(mod z)" or "contribution of z messages" when
z may not be integral. Rounding these quantities to integers does not affect the correctness of the
proof. For ease of exposition, we shall not consider the issue.

90

------------------------------------ ---------------------------·------·· 0
zone 0

n/3

Figure 4-2: Subdivision into Zones, and a forest f;.

kn+ n/3 through kn + 2n/3 - 1. Zone 2 consists of vertices in levels kn + 2n/3

through (k + 1)n - 1. Each zone consists of a number of trees of maximum height

n/3. We will show that no level set triple of B(T) will receive more than O(M/n)

vertices from any zone of T, with high probability. Lemma 4.5 follows because there

are only 3 zones, and since the number of vertices in a level set triple upper bounds

the number of vertices in a level set.

The key observation is that each zone can be partitioned into a set of forests

f 1 , f 2 , ••• , fa that contribute independently to level set triple i, for any i. We illustrate

the partitioning for zone 1. Each f; consists of all trees from zone 1 between levels

kn+ n/3 and kn+ 2n/3 - 1 that have a common ancestor r; at level kn, for some

fixed k. Other zones are partitioned similarly.

Lemma 4.6. Let X; denote the number of zone 1 vertices from a forest f; placed

in level set triple i of B(T). Then all variables X; are mutually independent, and

E(X;) = 3M;/n, where M; is the number of vertices inf;.

Proof. Let variable }j denote the level set triple into which the roots of the trees

in fj are placed. By definition, these roots are all placed in the level set triple given

by the level set triple of r; plus S(r;), mod n/3. Since the stretch counts of the r;'s

are uniformly selected from (0, n/3] and are mutually independent, it follows that the

91

}j's are also uniformly selected from [O, n/3] and are mututally independent. Since

X1 is completely determined by }j and the stretch counts chosen at the roots of trees

in fj, it follows that the X1 are mutually independent, and that E(X1) = 3M1/n. •

Similarly, this lemma holds for any other zone of the tree T, except for the first

section of zone 0, which contains the vertices in levels 0 ... n/3 - 1. However, this

segment of the tree contains at most 2n/3 -1 nodes, which will be mapped one-to-one

to nodes of the butterfly.

Proof. (of Lemma 4.5) The Xi are independent random variables. Clearly, no Xi

can contribute more than 22n/3 vertices, since the forest is part of a tree of height no

more than 2n/3. The mean of each X1 is 3Mj/n, where Mi is the number of vertices

in f1; therefore the mean of X(= L:Xi) is at most L:Mi::;; 3M/n. We have by the

independence of the Xj that for any t, E[etX]

= fli E[etX,]

- fli L:" Pr[Xi = .\]et-'

As in lemma 2.7, the expectation is maximized when only the events (Xi= OJ and

[Xi = 22n/3
] have positive probability. Suppose there were some value x, not equal to

0 or 22n/3 , such that Pr[Xi = x] = 8 > 0. Then by the convexity of etX;, changing

Pr[Xi = x] to 0 and setting Pr[Xi = x - 1] = Pr[Xi = x + 1] = 8/2 would increase

the expectation of etX;. It follows that in order to maximize the expectation, the two

endpoints of the interval must be the only events with positive probability. If we use

Markov's inequality to put an upper bound on Pr[Xi = 22n/3] then

E[etX] ::;; Jf ((1 _ 3~:3n) + 3~:3n et2ap)

II (l 3Mi/n (t22n/3 _ l))
- . + 22n/3 e

'
< II (3Mif n (t22n/3 _ l))

. exp 22n/3 e
'

< (3M /n (t22n/3 _ l))
exp 22n/3 e

Again using Markov's inequality, we obtain for any constant b, Pr[X 2: 3bM/n]

= Pr[etX 2: e3bMt/n]

92

exp(3M (e122n/3 -1))
< ajin73

e36Mt/n

This quantity is minimized at t = lnb/22n/3 • At this value of t, and as long as

1\1 2: n222n/3
, this quantity is smaller than N-k for some constant k which can be

made as large as desired by choosing b sufficiently large. •

4.3.3 Effectiveness of Flip Bits

\Ve now show that, given the effectiveness of the level-balancing algorithm, the flip

bits suffice to distribute the tree nodes within the levels of the butterfly.

Lemma 4.7. Let Wi denote the total number of vertices in level set i in an arbitrary

binary tree T. When T is grown on a butterfly with n levels, no processor from any

level i receives more than 0 ("'i /2n + n) vertices with high probability, for all i.

In other words, whenever Wi > n2n, each of the 2n processors in level i will receive

roughly the same number of tree vertices.

The key to the proof is the observation that the vertices placed on a processor

can be attributed to a large number of mutually independent sources. To see this,

partition T into subtrees Ti, T2 , ••• where each subtree is rooted at some vertex in

level kn + i and consists of all the descendants of the that vertex between levels

kn+ i + 1 and kn+ i + n (figure 4-3).

Lemma 4.8. At most one level n vertex from each subtree Tj will be placed on any

processor p on level i of the butterfiy. The probability of a vertex from Tj being placed

on processor p is w; /2n, where w; denotes the number of vertices in level n of tree Tj.

Further the contributions of the different subtrees top are mutually independent.

Proof. Any tree T; can have at most 2" vertices at level n, and the growth algorithm

guarantees that these will be placed on distinct processors within a single level. Thus

we know that at most one vertex from a tree T; will be placed on a given processor

p in level i of the butterfly.

It follows from the above that the number of vertices from T; placed on p is a

random variable with value either 0 or 1. The probability that any given vertex from

93

Figure 4-3: The tree T and its partition, i = 1, n = 2.

level n of Ti will be placed on p is 1/2n, so the expectation of this random variable

is wi/2n. Since the value of the random variable can only be 0 or 1, wi/2n must be

the probability that it is 1. Thus the probability of a vertex from Ti being placed on

pis w3/2n.

The independence between different subtrees follows because the flip bits in each

subtree are picked independently. •

To complete the proof of lemma 4. 7, we need the following lemma, due to Hoeff ding

([HJ).

Lemma 4.9. {Hoeffding} If we have L independent Bernoulli trials with respective

probabilities p1, ... ,pL, with Lp = E Pi, and m ~ Lp+ 1 is an integer, the probability

of at least m successess is at most B(m, L,p), where B(m, L,p):::; (Lpe/m)m.

Proof. (of Lemma 4. 7) The number of vertices placed at a processor is the sum of

independent random variables corresponding to each tree Ti. The expected number

of vertices is E w i /2n = Wi /2n. The probability that some processor receives more

than k(n + W3/2n) vertices is at most (using lemma 4.9):

(
k(n + W·/2n))-(kn+kw,;2n)
... _ _..1-._...... < (k/e)-kn

eW;/2n

Thus the probability that one of the 2n processors in any of the n levels receives more

94

than k(Wj /2n + n) vertices is at most

for some constant k1. •

Theorem 4.10. An arbitrary binary tree T witb M vertices can be grown dynami­

cally on an N processor butterfly network with dilation 2 sucb that with high prob­

ability the maximum load per processor is at most O(M/N +log N).

Proof. By lemma 4.5, with high probability we have Wi = O(M /n + 2n) for all i,

and by lemma 4.7 , with high probability no processor in level i will receive more

than 0(n + Wif 2n) vertices. Thus with high probability, fewer than O(log N + M / N)

vertices are mapped to any processor. •

4.4 An Improved Hypercube Embedding

The butterfly can be embedded in the hypercube with dilation 2 such that each level

of the butterfly is a subcube of the hypercube. Therefore we can have the hypercube

simulate any embedding algorithm for the butterfly, with a unique 2n-node subcube

simulating each level. We will take advantage of this by using a scheme which has each

level (subcube) receiving only O(M/n + 2n) tree nodes, and developing a method for

local distribution within these subcubes which will reduce the load on each indvidual

processor while guaranteeing low congestion. We begin with some preliminaries.

4.4.1 Embedding the Butterfly and Star Covers

Let G(x) be the Grey code value of the binary string x, defined by G(xtogn ... xi) =

X1ognlx1ognEBX1ogn-1 I· .. Jx2EBx1. For any bit string x, G(x) and G((x+l) mod n) differ

in exactly one bit position. For an integer i, let bin(i) be the binary representation of

i. The embedding which maps butterfly processor v1 to node G(bin(l))Jbin(v) of the

hypercube has dilation 2 and maps each level of the butterfly to a distinct 2n-node

subcube of the hypercube. Also note that within each level /, if v and vie differ in

95

exactly one bit, then there is a hypercube edge between the embedded locations of

the nodes v1 and vt.

For any node x of a 2n-node hypercube, we define the full star centered at x to be

the set of nodes consisting of x along with the n nodes adjacent to x. The existence

of perfect one-error-correcting codes implies that when n = 2m - 1 for some integer m

there exists a collection of 2n /n + 1 full stars such that every node of the hypercube

belongs to precisely one star in the collection.

Suppose n is not of this form. Consider the largest n' such that n' s n and n' is of

the form n' = 2m - 1; then n' ~ n/2. We can partition the hypercube into subcubes

of 2n' nodes, and cover each of these with full stars. This star cover perfectly covers

the nodes of the 2n-node hypercube. Each star in the star cover consists of a node x

and some subset of 8(n) (in this case at least ~) of its neighbors.

Choose a star cover for a 2n-node hypercube, and duplicate this cover in each

subcube of the N(= n2n)-node hypercube which corresponds to a level of the butterfly.

This collection of stars yields a star cover of the N-node hypercube; call it C.

4.4.2 Modifying the Embedding Algorithm

Our discussion of the hypercube algorithm has two parts:

1. We describe a modified algorithm for embedding on the butterfly which, when

simulated on a hypercube, maps at most O(M/2n + n) tree nodes to any star

in the cover C, with high probability.

2. We show how to deterministically redistribute the load within a star of the

hypercube among its nodes in such a way that each node receives O(M/N +
1) tree nodes, the dilation remains constant and the resulting congestion is

O(M/N + 1).

We begin by showing how to modify the butterfly embedding algorithm given in

the previous section so that when it is simulated on the hypercube, the amount of

load assigned to any star in the cover C is balanced.

96

We will modify our embedding algorithm as follows. Use the embedding algorithm

from the previous section, but where previously we placed the children of a tree node

v E B(T) which was embedded in level 1 into level 1+1, choosing their locations by

a random flip bit, we will now place the first child of v into level 1 + 2, using a pair

of flip bits to determine its position within the level, and placing the second child (if

it exists) at the location in that level determined by complementing both flip bits. It

is clear that this will increase dilation by a factor of two.

Since we are embedding the level-balanced tree B(T), we know that, with high

probability, each level-set of the tree contains O(M/n + 2n) nodes. As in lemma 4.6,

we observe that the vertices placed in a single star come from many independent

sources.

Partition B(T) into subtrees T1 , T2 .•• in such a way that the root of each subtree

is embedded at level 1+2 in the butterfly (or level 1+1 if n is odd) and each subtree

contains the descendants of its root down to the nodes embedded at level I in the

butterfly.

Lemma 4.11. Consider an arbitrary star Sin C, contained in level I of the butter­

fly. Then at most two vertices from each subtree can be placed on processors in S.

Furthermore, the contributions of each subtree to S are mutually independent.

Proof. Any subtree can have at most 2n/2 vertices placed in level 1 of the butterfly,

and these will necessarily be placed at distinct locations within the level. Suppose

that three vertices from the same subtree were mapped to the star S. Since the flip

bits are chosen in pairs, any pair of these vertices must be mapped to locations which

differ in an even number of bits; since they are all mapped to the same star, any pair

of them must differ in exactly two bit positions. Consider the paths to each of these

three vertices from their lowest common ancestor; call this vertex x. Clearly, two of

the vertices must be descendants of one child of x, and one must be a descendant of

the other. The vertex (call it y) which is the lone descendant of one of the children

of x now differs from both of the other two vertices in two bit positions which are

not corrected elsewhere in the tree. However, at some point the paths of the other

two vertices diverge (since they are placed on different processors in level /), and y's

97

path cannot duplicate the flip bits on both paths simultaneously. Therefore y differs

from one of the other two vertices in at least four bit positions, contradicting the

supposition that all three vertices were in the same star in level l. Therefore at most

two vertices from the same subtree can be placed in the star S.

The independence between different subtrees follows from the fact that the flip

bits are picked independently in each subtree. •

Lemma 4.12. We can embed an arbitrary binary tree T with M nodes into an N­

node hypercube such that, with high probability, no star in the cover C receives more

than O(M/2n + n) tree nodes.

Proof. Consider an arbitrary star S in level l from the cover C. Let Xi be the

number of tree nodes from subtree Ti which are assigned to processors in S. The Xi

are independent random variables, each with maximum value 2 (from lemma 4.11) and

mean 0(min/2n), where mi is the number of leaves of the subtree Ti. It follows that

the mean of X = L:: Xi is 0(mn/2n), where m is the number of tree nodes embedded

into level i of the butterfly. But since we are balancing levels by embedding the tree

B(T), we have m = O(M/n + 2n), so that the mean of Xis less than c18 (M/2n + n)

for some constant c18 > 0. By the same argument as in the proof of lemma 4.5, we

can bound the expectation of the random variable etX by

Again as in lemma 4.5, we obtain for any constant b,

Pr[X 2: ~(M/2n + n)]

_ Pr[etX 2: e(tbc18 /2)(M/2n+n)]

< exp((cts/2)(M /2n+n)(e2 ' -1))
ecbe11 /2(M/2ll+n)

This value is minimized at t = lnb/2, at which point this quantity is smaller than

N-lc for k which can be made as large as desired by choosing b sufficiently large. •

98

4.4.3 Redistributing Load Within Stars

With high probability, each star in the cover has at most O(M/2n + n) tree nodes

assigned to its 8(n) nodes. We would like to redistribute the O(M/2n + n) load

on each star evenly among the 8(n) nodes of the star, using the hypercube edges

connecting butterfly nodes within the same level, so that two conditions hold:

1. Each node gets at most 0 (M / N + 1) load.

2. We can choose paths of constant length between the redistributed locations of

adjacent tree nodes so that the congestion on any hypercube edge is at most

O(M/N+l).

If these two conditions can be achieved by a redistribution scheme which runs

dynamically as the tree is embedded then, with high probability, the embedding

algorithm achieves load O(M/N + 1), dilation 0(1), and congestion O(M/N + 1) -

simultaneously optimizing load and dilation to within constant factors. In addition,

the congestion will be optimal if M = O(N).

Place an O(M/ N + 1) upper limit (with appropriate choice of constant depending

on the constant in lemma 4.12 and the number of elements in each star) on the number

of tree nodes which can be assigned to a single node. All additional load is sent to

some other node in the star which has room. It is clear that we have sufficient capacity

over each star to handle the load, and that we will still have constant dilation. In

addition we will have maximum load 0(M / N + 1) at each node of the hypercube. Note

that this is not allowing process migration-each tree node is redistributed before it is

embedded into the hypercube. Once the node's redistributed location is determined,

it is embedded there permanently.

Suppose we redistribute one tree node from node v' to node vi in the star centered

at v in the hypercube (load coming from or going to the center is redistributed

directly). This load is passed along the path v' ~ v'i ~ vi rather than through the

center of the star.

99

Lemma 4.13. If all load being redistributed among points of stars is follows patbs

of the form vi -+ vii -+ vi rather than paths through the centers of stars, then the

resulting congestion due to this redistribution is O(M/N + 1).

Proof. For each star in the cover, consider the corresponding extended star, which

consists of the star centered at v, plus all vertices vii such that both vi and vi are in

the star. The edges in the extended star consist precisely of those paths along which

load can be redistributed in the star centered at v. The redistribution within that star

can add at most congestion 0(M / N + 1) to any of the edges in the extended star. All

that remains is to observe that any edge in the hypercube is in at most two extended

stars. Thus the total congestion it receives from redistribution is 0(M / N + 1). •

Let l be the level of the butterfly to which u is mapped; then v is mapped to level

l + 2. Furthermore, their positions within their respective butterfly levels differ in at

most two bit positions (before redistribution). We consider here the case where both

u and v are both initially mapped and redistributed to some point of a star rather

than the center. When one or both of them is mapped to the center of a star, the

argument is even simpler.

Let x and y be the centers of the stars to which u and v, respectively, are mapped.

Let p and q be the dimensions within the star to which u is mapped and redistributed,

and likewise r ands for v. Let f 1,f2 be the flip bits selected when v is embedded as a

child of u. We then define the path from u, which is redistributed to xq in level l, and

v, which is redistributed to y6 in level l + 2, as follows (this procedure is illustrated

in figure 4-4):

1. Move from level l to level 1 + 1 to level 1 + 2 along the edges determined by the

flip bits 11 ,J2.

2. Flip the bits in positions p, then q, in effect undoing the redistribution of u

which was performed in level 1. We are now at yr, the original location of v

before redistribution.

100

I
I

x I

------------------<b._- ------------------------ ·.· ----------------- I+ 1
q

•·• -------- 1+2

p

Figure 4-4: The path chosen between redistributed node locations. The dashed lines
indicate the path determined by the flip bits, before redistribution. The first pair
of directed edges also show this choice of flip bits. The second pair undoes the
redistribution at level 1. The last pair balances the load at level 1 + 2.

3. Flip the bits in positions s, then r. This takes us to y", the redistributed location

of v in its star in level 1 + 2.

In order to show that the congestion is 0(M / N + 1) in this case, it suffices to show

two things. First, that the congestion along each edge of the butterfly is O(M/N + 1).

Second, that the congestion along each hypercube edge connecting nodes within a

butterfly level is O(M / N + 1). From these two facts it follows that the total congestion

is O(M/ N + 1).

Consider an arbitrary butterfly edge. There are at most two nodes of the butterfly

which, when choosing the paths to their descendants, can use that edge. Since after

redistribution each of these nodes has load 0(M / N + 1), the congestion along the

edge being considered can also be at most 0(M / N + 1).

The congestion on hypercube edges connecting butterfly nodes within a level has

two sources: (1) the redistribution of the nodes embedded to that level, and (2)

undoing the redistribution of the parents of the nodes embedded to that level.

It follows directly from lemma 4.13 that the total congestion from the first source

does not exceed O(M/N + 1). We can break up the congestion derived from the

101

second source into four sets, according to the flip bits chosen along the paths from

the parents of the nodes in the level we are considering. Each fixed setting of flip

bits determines a bijective map of the nodes, and therefore the jump edges, from

two levels above to the current level. The congestion on any edge from undoing

the redistribution of parents equals the congestion on its preimage from the original

redistribution. The congestion in each set is therefore 0(M / N + 1), and so the total

congestion derived from undoing the redistributions is also O(M/N + 1). It follows

that the entire congestion on any edge is O(M/N + 1).

Theorem 4.14. An arbitrary tree T with M vertices can be grown on a N processor

hypercube with constant dilation such that with high probability the maximum load

is O(M/N + 1) and the congestion is O(M/N + 1).

4.5 A Lower Bound for Deterministic Algorithms

In this section, we prove that any deterministic algorithm for dynamically embedding

an M-node tree in an N-node hypercube (M ~ N) which maintains maximum load

a~ must have not only maximum but average dilation n(yTOgN / a2). It follows

that any deterministic embedding algorithm which achieves 0(M / N + 1) load must

necessarily result in embeddings with dilation n(y10gN) for some trees. Thus any

embedding algorithm which simultaneously optimizes maximum load and dilation (to

within constant factors) must be randomized.

Theorem 4.15. Any deterministic algorithm for dynamically embedding trees in an

N-node hypercube which achieves load aM / N for a tree with M (~ N) nodes must

have average edge length n(yTOg'N/a2
).

Proof. Let aM / N be the load maintained by the embedding algorithm when embed­

ding an M-node tree. Define the size of a node in the hypercube to be the number

of 1 's in the n-bit string associated with the node. Partition the hypercube into 6a

blocks, each block corresponding to some range of node sizes and containing N/6a

nodes. Since there are at most 0(N / yTOg'N) nodes of any size, each block must

102

contain at least f2(yrogN/ a) sizes. This means that any two nodes which are in

non-adjacent blocks are at distance n(yTOgN /a) from each other.

Choose an arbitrary M ~ N, and grow a path of M/2 nodes, starting at the root.

At this point, some block must contain M /12a tree nodes; choose such a block. We

will continue growing the tree from the M/12a nodes in the chosen block. Grow paths

from each of these tree nodes simultaneously, stopping each path's growth when it

reaches a hypercube node which is neither in the chosen block nor in a block adjacent

to it. The total number of nodes in the chosen block and adjacent blocks is at most

N/2a; since the algorithm maintains load aM/N, this set of nodes contains at most

(aM/N)(N/2a) = M/2 tree nodes. It follows that the total length of the M/12a

paths grown is at most M /2. This verifies that the tree being considered has at most

M nodes.

Now we can calculate the average edge length. Since each of the M/12a paths

connects a node in the chosen block to a node in some non-adjacent block, the total

edge length in these paths is at least (M/12a) x n(yTOgN/a) = f2(My'fOgN/a 2
).

Since the entire tree contains at most M edges, it follows that the average edge length

of the embedding is n(Y10iN / a2
). •

4.6 Remarks

The embedding in section 4.4 achieves dilation at most 12. One edge of T corresponds

to at most two edges of B(T), each of which corresponds to two butterfly edges. In

the embedding of the butterfly into the hypercube each butterfly edge corresponds to

two edges of the hypercube. The redistribution algorithm adds at most four edges to

the resulting path for a total of 12 hypercube edges. By combining the techniques of

section 4.4 with those of section 4.2, we can reduce this to 6 or 7 with no increase in

load or congestion.

It is also likely that we can improve the bound on congestion to 0(M / N log N + 1)

for hypercube embeddings by combining the techniques in section 4.4 with those of

section 4.2. We suspect that this bound is tight for all on-line algorithms, but we

103

can prove a bound of D.(M / N log N + 1) only for deterministic on-line algorithms.

Any M-node binary tree can be embedded off-line in an N-node hypercube with load

0(M / N + 1) and constant dilation and congestion.

Although we have not worked out the details, we suspect that our embedding

algorithms also work for trees that can shrink from the top as well as grow and shrink

from the bottom, and that they can be made to work for arbitrary trees of small

degree. We also expect that our techniques will prove useful for finding embeddings

in other networks, such as the shuffle-exchange graph.

104

Bibliography

[ALN]

[BS]

W. Aiello, T. Leighton, and M. Newman, "Routing on the Hypercube in

O(log N) Bit Steps," typescript, 1989.

B. Becker and H.U. Simon, "How Robust is then-Cube?," Proc. 27th Ann.

IEEE Symp. on Foundations of Computer Science, Oct. 1986, pp. 283 -

291.

[BC] S. Bhatt and J.-Y. Cai, "Take a Walk, Grow a Tree," Proc. 29th Ann.

IEEE Symp. on Foundations of Computer Science, Oct. 1988, pp. 469 -

478.

[BCHLR] S. N. Bhatt, F. R. K. Chung, J. W. Hong, F. T. Leighton, and A. L.

Rosenberg, "Optimal Simulations by Butterfly Networks," Proc. 20th Ann.

ACM Symp. on the Theory of Computing, May 1988, pp. 192 - 204.

[BCLR] S. Bhatt, F. Chung, T. Leighton, and A. Rosenberg, "Optimal Simula­

tion of Tree Machines," Proc. 27th Ann. IEEE Symp. on Foundations of

Computer Science, Oct. 1986, pp. 274 - 282.

[BH] A. Borodin and J.E. Hopcroft, "Routing, Merging and Sorting on Parallel

Models of Computation," Proc. 14th Ann. ACM Symp. on the Theory of

Computing, May 1982, pp. 338 - 344.

[BI] S. N. Bhatt and I. Ipsen, "How to Embed Trees in Hypercubes," Technical

Report 443, Yale University, 1985.

105

[CJ

[DHSS]

[GHR]

M. Y. Chan. "Dilation-2 Embeddings of Grids into Hypercubes," Technical

Report UTDCS 1-88, The University of Texas at Dallas, 1988.

D. Dolev, J. Halpern, B. Simons, and R. Strong "A New Look at Fault

Tolerant Network Routing," Proc. 15th Ann. ACM Symp. on the Theory

of Computing, Apr. 1984, pp. 526 - 535.

D. S. Greenberg, L. S. Heath, and A. L. Rosenberg, "Optimal Embed­

dings of the FFT Graph in the Hypercube," typescript, University of Mas­

sachusetts, 1987.

[Gi] Giladi, typescript, 1989.

[Gr] J. Greene, "Configuration of VLSI Arrays in the Presence of Defects,"

Ph.D. dissertation, Stanford University, Stanford, CA, 1983.

[GG] J. Greene and A. Carnal, "Area and Delay Penalties for Restructurable

VLSI Arrays," JACM, Vol. 31, No. 4, Oct 1984, 694 - 717.

[HJ W. Hoeffding, "On the Distribution of the Number of Successes in Inde­

pendent Trials," Annals of Mathematical Statistics, Vol 27, 1956, pp. 713

- 721.

[HJ] C. T. Ho and S. L. Johnsson, "Embedding Generalized Pyramids in Hy­

percubes," Technical Report, Yale University, 1988.

[HLNl]

[HLN2]

J. Hastad, T. Leighton and M. Newman, "Reconfiguring a Hypercube in

the Presence of Faults," Proc. 19th Ann. ACM Symp. on the Theory of

Computing, May 1987, pp. 274 - 284.

J. Hastad, T. Leighton and M. Newman, "Fast Computation with Faulty

Hypercubes," Proc. of the 21 ~t Ann. ACM Symp. on the Theory of Com­

puting, May 1989, pp. 251 - 263.

106

[KLMRR] R. Koch, T. Leighton, B. Maggs, S. Rao and A. Rosenberg, "Work­

Preserving Emulations of Fixed-Connection Networks," Proc. 2pt Ann.

ACM Symp. on the Theory of Computing, May 1989, pp. 227 - 240.

[KZ] R.M. Karp and Y. Zhang, "A Randomized Parallel Branch-and-bound

Procedure," Proc. 20th Ann. ACM Symp. on the Theory of Computing,

May, 1988, pp. 290 - 300.

[LLl] F.T. Leighton and C.E. Leiserson, "A Survey of Algorithms for Integrat­

ing Wafer-Scale Systolic Arrays," Wafer Scale Integration, edited by G.

Saucier and J. Trilhe, IFIP, 1986, pp. 177 - 195.

[LL2] F.T. Leighton and C.E. Leiserson, "Wafer-Scale Integration of Systolic

Arrays," IEEE Transactions on Computers, Vol. C-34, No. 5, May 1985,

pp. 448 - 461.

[P] N. Pippenger, "Parallel Communication with Limited Buffers," Proc. 25th

Ann. Symp. on the Foundations of Computer Science, Oct. 1984, pp. 127

- 136.

[Rab] M. 0. Rabin, "Efficient Dispersal of Information For Security, Load Bal­

ancing and Fault Tolerance," JACM, to appear.

[Ran]

[LNRS]

[VB]

A. Ranade, "How to Emulate Shared Memory," Proc. 28th Ann. Symp. on

the Foundations of Computer Science, Oct. 1987, pp. 185 - 194.

T. Leighton, M. Newman, A. Ranade and E. Schwabe, "Dynamic Tree

Embeddings in Butterflies and Hypercubes," Proc. First Ann. ACM Symp.

on Parallel Algorithms and Architectures, June 1989, pp. 224 - 234.

L. G. Valiant and G. J. Brebner, "Universal Schemes For Parallel Compu­

tation," Proc. 13th Ann. ACM Symp. on the Theory of Computing, May

1981, pp. 263 - 277.

107

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFlCATION 1 b. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl!JUTION I AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
-

MIT/LCS/TR 500 N00014-87-K-825

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL la. NAME OF MONITORING ORGANIZATION
(If applicable)

Office of Naval Research/Dept. of Navy MIT Lab for Computer Science

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

Ba. NAME OF FUNDING I SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA/DOD

Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd.
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

Arlington, VA 22217

11 . TITLE (Include Security Classification)

R~ _and Rcili.:us .. t.neB.s_ ..in ..li..'llle...r:.c..uhe- _Cmnout.a..tion
12. PERSONAL AUTHOR(S)

Mci...r..k ,l_aseo_h Ne..ID11'll
13a. TYPE OF REPORT l13b. TIME COVERED 14. DA TE OF REPORT (Year, Month, Day) r 5. PAGE COUNT

Technical FROM TO Au_r:.il 1..9..9.l .lfil
16. SUPPLEMENTARY NOTATION

17. COSA fl CODES 18. SUBJECT TERMS (Continue on reverse if necess.Jry and identify by block number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

In this thesis we explore means by which hypercubes can compute despite faulty processors
and links. We also study techniques which enable hypercubes to simulate dynamically changing
networks and data structures.

In chapter two, we investigate strategies for routing permutations on faulty hypercubes. We
assume that each node or edge in the hypercube fails with constant probability and that failures
are independent of one another. We describe a routing algorithm which successfully routes
messages between working processors in O(log N) steps on an N-node faulty hypercube with
high probability.

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

~ UNCLASSIFIED/UNLIMITED D SAME AS RPT. 0 DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Carol Nicolora (617) 253-5894

DD FORM 1473, B4MAR 83 APR ed1t1on may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

•US. G.._t Printing Offim: 1~-047

Unclassified

19 a.
In chapter three, we develop techniques for reconfiguring hypercubes in the presence of

faults. Again assuming constant probabilities of failure and the independence of faults, we show
that a faulty hypercube can simulate a fault-free hypercube of the same size with only constant
delay. We exhibit both deterministic and randomized algorithms for hypercube reconfiguration.

In chapter four, we tum our attention to the embedding of dynamically growing data
structures in the hypercube. Among several results, we show that an arbitrarily growing binary
tree with a maximum of M nodes can be embedded in an N-node hypercube with load O(M/N +
log N) and dilation 2 with high probability.

