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Abstract 

In this thesis we explore means by which hypercubes can compute despite faulty proces­
sors and links. We also study techniques which enable hypercubes to simulate dynamically 
changing networks and data structures. 

In chapter two, we investigate strategies for routing permutations on faulty hypercubes. 
We assume that each node or edge in the hypercube fails with fixed probability p < 1- {/Tfi. 
and that failures are independent of one another. We describe a constant c > 0 and a routing 
algorithm which successfully routes messages between working processors in O(log N) steps 
on an N-node faulty hypercube, with probability 1- N-c. We also strengthen an algorithm 
due to Rabin which uses a redundant encoding of each message into log N pieces which are 
routed along node-disjoint paths. A destination can reconstruct the original message as long 
as at least log N /2 pieces arrive intact. We show that all messages are reconstructable at 
their destinations with high probability, given that each node or edge fails with probability 
0(1/ log N) and that ea.ch message has !l(log2 N) bits. This guarantee obtains even if the 
components fail during the course of the algorithm. 

In chapter three, we develop techniques for reconfiguring hypercubes in the presence of 
faults. Again assuming constant probabilities of failure and the independence of faults, we 
show that a. faulty hypercube can simulate a. fa.ult-free hypercube of the same size with only 
constant delay. We exhibit both deterministic and randomized algorithms for hypercube 
reconfiguration. We show that there exists a. constant c' > 0 such that with probability 
1 - N-c' the deterministic algorithm finds a. one-to-one embedding with dilation 3 and 
O(log N) congestion. We also show that there exists a. constant c'' > 0 such that with 
probability 1- N-c" the randomized algorithm finds a.n embedding with constant load and 
congestion with dilation 5. 

In chapter four, we turn our attention to the embedding of dynamically growing data. 
structures in the hypercube. Specifically, we show that a.n arbitrarily growing binary tree 
with a. maximum of M nodes can be embedded in an N-node hypercube with load 0( t;f + 1 ), 
congestion 0( f + 1) and dilation 12, with high probability. We also show how to embed a 
dynamic M-node binary tree in an N -node butterfly with 0 ( t;f + log N) load and dilation 
2, with high probability. 

Thesis Supervisor: F. Thomson Leighton 
Title: Professor of Applied Mathematics 
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Chapter 1 

Introduction 

1.1 Hypercubes 

The hypercube has emerged as one of the most effective and popular network archi­

tectures for large scale parallel computers. The Connection Machine, manufactured 

and sold by Thinking Machines Corp., is a hypercube-based machine containing 216 

processing elements. Machines based on hypercube architectures have been built by 

Intel, Ncube, Caltech and others. It has been predicted that in the not-too-distant 

future, hypercube-based machines containing up to a million processors will be avail­

able. Thus, current conditions point to the utility of more advanced methods for 

hypercube computation. 

Then-dimensional hypercube Hn is a graph with N = 2n nodes and Nn/2 edges. 

The nodes of Hn are labeled with n-bit binary strings, and two nodes are linked by 

an edge if the associated strings differ in precisely one bit. If the differing bit is in the 

ith position (1 ~ i ~ n) then the associated edge is called a dimension i edge. The 

neighbor of a node v across the ith dimension will be denoted by v'. Similarly v111'l···'" 
will denote the node reached from v by traversing dimensions ii, i 2 , ••• , i1c (that is, 

by flipping those bits). We will use n and log N interchangeably. Pictures of labeled 

two and three dimensional hypercubes and an unlabeled four dimensional hypercube 

appear in figures 1-1 and 1-2. 

In hypercube-based machines, the nodes of the graph are replaced by processors 

8 



101 111 

01 11 011 

100 110 

00 10 000 010 

Figure 1-1: Labeled 2- and 3-dimensional hypercubes. 

Figure 1-2: A 4-dimensional hypercube. 
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and the edges are replaced by links between the processors. For example, in the 

Connection Machine each node of a 12-dimensional hypercube contains a group of 16 

processors. 

The effectiveness of the hypercube for parallel computation arises from the wealth 

of special-purpose algorithms written for it, its support of algorithms written for 

shared-memory machines and its ability to simulate a host of other networks. Many 

algorithms which run quickly on the hypercube already exist. Further, the hyper­

cube's recursive structure and high connectivity make it likely that fast hypercube 

algorithms will continue to be invented in other contexts. 

Hypercubes have demonstrated their usefulness as general-purpose computers as 

well. Fast routing algorithms ([VB], [Ran], [P]) allow for low-overhead interprocessor 

communication. These algorithms enable the hypercube to simulate a parallel random 

access machine, or PRAM, with only logarithmic delay. Since any set of messages 

are deliverable in O(log N) time, each set of memory accesses can be simulated in 

O(log N) time as well, even if the PRAM's processors and memory locations are 

spread arbitrarily among the hypercube's processors. 

Hypercubes perform even more admirably when simulating special-purpose net­

works. The hypercube can simulate meshes, multidimensional arrays, binary trees, 

x-trees, pyramid graphs, butterflies, cube-connected cycles and other networks, all 

with constant delay. In many cases, these other networks are actually subgraphs of 

the cube. In these instances, the hypercube can simulate the special-purpose network 

with no delay at all. 

1.2 Robustness 

In this thesis we will describe three ways in which the hypercube is robust in a chang­

ing computational environment. Specifically, we show how the hypercube can support 

fault-tolerant routing, how the hypercube can be easily reconfigured in the presence 

of faults and how the hypercube can handle dynamically changing load requirements. 

In the first two cases, the network itself changes due to the accumulation of faulty 
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processors and links. We show how the network can absorb these faulty components 

while exhibiting little or no degradation of performance. In the third case, the com­

putation we expect the network to perform changes in accordance with the data in an 

unpredictable fashion. We show how the network can distribute the resulting com­

putational load as optimally as if it had been completely specified beforehand. In all 

three cases, a probabilistic approach helps us to achieve our results. In some cases, 

we prove that these results would be impossible if randomness were not available. 

In chapters two and three, we explore fault tolerant properties of the hypercube. 

We assume that each node or edge has some constant probability of failure. In chapter 

two we exhibit two randomized algorithms for routing permutations on hypercubes 

in the presence of faulty components. Both algorithms are based on Valiant and 

Brebner's ([VB]) original randomized algorithm for routing permutations on hyper­

cubes. In the first algorithm, we modify the fault-free algorithm so that messages 

avoid faults. In the second algorithm, packets are broken into pieces containing re­

dundant information. Since only a constant fraction of the pieces need to get through 

to reconstruct the original packet, the algorithm can tolerate the loss of many pieces 

due to faults. To route a permutation, neither algorithm takes more than a constant 

factor more time than is required to route without faults. 

Chapter three is devoted to reconfiguration algorithms. The effect of these al­

gorithms is that the nonfaulty processors of a hypercube with faults simulate the 

processors of a completely functioning hypercube. The link connecting two proces­

sors in the completely functioning hypercube appears as a functioning path between 

the nodes simulating them in the cube with faults. In chapter three, we describe 

reconfiguration algorithms which enable a hypercube with many faults to compute as 

efficiently as a hypercube of the same size without faults. 

The efficient simulation of dynamically evolving computation structures is the 

subject of chapter four. We show that a hypercube can simulate an arbitrarily growing 

binary tree with only constant overhead. As the tree evolves, new nodes are assigned 

to hypercube processors. Neighbors in the tree are simulated by hypercube processors 

only a constant distance apart. For any tree, the randomized algorithm assigns only 
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a constant number of tree nodes to each processor with a probability that can be 

made arbitrarily close to 1. Thus both computation and communication overhead 

are minimized. 

In sections 1.3 - 1.5, we give an overview of the results in each of chapters two, 

three and four. 

1.3 Fault-Tolerant Routing 

Given a network with a large number of components, we must assume that some of 

these components will fail. These faults may be introduced when the machine is first 

built, or might accumulate over time. We would like the machine to work despite the 

faults. 

Currently, when a processor or connection in the Connection Machine fails, the 

board containing the offending component is removed and replaced with a functional 

board. At some point in the future, if and when very large machines are in gen­

eral use, fault-tolerant algorithms may well provide a viable alternative to wholesale 

replacement. Such algorithms might enable the machine to correct itself, with no 

outside intervention. 

Fault-tolerant behavior will be a major focus of our work. Routing in the presence 

of faults, which we study in chapter two, requires techniques for either stepping around 

faults or coping with messages which run into faults. Attempts have been made on 

both of these fronts. We consider a routing algorithm successful if every packet sent 

from a working processor to another working processor arrives intact. Of course, this 

view presupposes that the higher-level algorithm in effect is also tolerant of faulty 

processors. For example, a PRAM algorithm would have to tolerate some pattern of 

faults among the PRAM's processors. Such algorithms have yet to be designed. 

Throughout chapter two, we assume that there is some fixed probability p (either 

a constant or a. function of the number N of nodes in the network) such that each 

component of the hypercube fails with probability p. Furthermore, we will assume 

that the failure of any given component is independent of the status of other parts 
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of the network. In some cases, this independence assumption may be unreasonable. 

Components which share a physical location such as a chip or a board mig_ht have a 

greater chance of failing in tandem. In this situation, our results can scale to work 

in a hierarchical fashion. We may regard any hypercube as a hypercube whose nodes 

are themselves hypercubes (a cross product of hypercubes). Thus we may treat the 

chips or boards as nodes in a more coarse-grained hypercube. 

Many of our algorithms are randomized as well. These algorithms have access 

to a source of randomness and we only guarantee that they achieve desired results 

an overwhelmingly large fraction of the time. Specifically, we guarantee that each 

algorithm succeeds with probability at least 1 - N-k; i.e. that each fails with a 

probability that is an inverse polynomial in N. If we can make the exponent k as 

large as we like (perhaps by relaxing constants in the performance we desire), then 

we say that the algorithm succeeds with high probability. 

In (VB], Valiant and Brebner define a set of paths from sources to destinations 

which, with high probability, allow all packets to arrive at their destinations in 

O(log N) steps. Two different variations on Valiant and Brebner's ideas allow us 

to route in the presence of faults. These variations use different assumptions about 

the prevalence of faults, the capability of processors to detect faults in neighboring 

components, and the minimum size of the packets that we can route. In the first case, 

we assume that faults occur independently and with constant probability p, that each 

processor can detect in one time unit whether or not an adjacent node or link has 

failed, and that messages have length O(log N). Our idea is for packets to follow close 

to the paths defined in [VB], but loosely enough that they can avoid faults as they 

encounter them. We show that if each packet avoids faults by taking random steps 

away from its Valiant-Brebner path, then with high probability each packet uses a 

path with only O(log N) edges and encounters only O(log N) other packets on its 

path. This shows that each packet arrives at its destination in O(log N) steps. 

We devote the second half of chapter two to our improvements of an idea of Rabin 

([R]). In this case, we assume that each edge of the hypercube fails with probability 

p = 0(1/ log2 N), that processors remain ignorant of changes in the topology of the 
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network, and that packets have size D(log2 N). Under these assumptions, Rabin 

showed that if each packet is split into log N pieces and the pieces are routed to the 

packet's original destination by node-disjoint paths, then a constant fraction of each 

packet's pieces will arrive intact at the destination. This assumes that each piece 

makes no attempt to avoid faults. A piece arrives at the destination if and only if 

no faults lie on its path. Coupled with a method for recovering a packet from a 

constant fraction of its pieces, this strategy allows us to choose paths as if the faults 

were not there. We describe a very simple way to choose the paths-we use log N 

paths parallel to the Valiant-Brebner path. We are then able to simplify the proof, 

to allow node failures as well, and to increase the allowable failure rates to include 

probabilities as high as p = 0(1/n). (Recently, Giladi has reported similar results 

([G]).) 

1.4 Reconfiguration 

Network reconfiguration involves assigning to working components the tasks that 

the failed components would otherwise perform. The goal is to leave the network's 

processing power undiminished in the eyes of the outside world, except perhaps for 

a minor slowdown in speed to allow some components to perform multiple duty. 

Alternatively, we can view reconfiguration as the embedding of a fault-free network 

H~ of the same size into the working parts of the faulty network Hn. We can show that 

even if a constant fraction of the hypercube's processors and links fail, what remains 

keeps the original cube's processing power with only a constant factor degradation in 

speed, with high probability. 

We ma.ke the same probabilistic fault assumptions in chapter three that we made 

in chapter two. Each component fails with constant probability and independently 

of other components. 

Some of our techniques may be of use with other hypercube-related problems. In 

particular, there is one simple observation that is used in two forms in section 3.5. 

Although the observation has probably been made by others, it is basic enough that 
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we think it worth highlighting as a paradigm for distributed match-making. 

We will describe the result in its most basic form. Consider a collection of 8(N) 

men and 8(N) women at a dance. Assume that each man has at least f!(X) female 

friends and that each woman has at most O(X) male friends. By Hall's marriage 

theorem, it is possible to schedule 0(1) rounds of dances so that every man dances 

with at least one friend and every woman dances at most 0(1) times. Unfortunately, 

the problem of scheduling dance partners requires substantial global coordination. 

For our purposes, we focus on a scenario where pairing is accomplished simply by 

a man asking a woman to dance. If many men ask a woman to dance at once, she 

accepts as many as she can, making sure not to exceed her capacity of C = 0(1) 

dances for the evening. If she can only accept some of the men, she prefers the 

tallest among them. Each man chooses a friend randomly for each dance (without 

knowledge of which women are tired or which women other men are asking) until he 

dances. The result (which we call the Dance Hall Theorem-pun intended) is that if 

X = f!(log N), and there are f!(log N) dances, then with high probability every man 

will dance during the course of the evening. That is, for any lower bound bX on the 

number of female friends each man has, any upper bound b' X on the number of male 

friends each woman has and any constant k, there is a C such that for sufficiently 

large N, with probability 1 - N-k a capacity of C is sufficient. 

The Dance Hall Theorem scenario first arises in our analysis when we attempt to 

embed the nodes of H~ in the functioning nodes of Hn. The nodes of H~ correspond 

to men and the functioning nodes of H n correspond to women. If a man dances with 

a woman, then the corresponding node of H~ will be simulated by the corresponding 

node of Hn. We need the Dance Hall Theorem to ensure that the load of the em­

bedding is 0(1) (i.e. every woman dances with 0(1) men) and to ensure that the 

embedding can be constructed quickly with local control (no global matchmaker). 

We also need some other a.s-yet-undescribed properties of the Dance Hall Theorem 

schedule to ensure that the hypercube's edges are not overtaxed by the embedding, 

but these are more technical in nature and will be dealt with in the main text. 
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1.5 Dynamic Load Balancing 

The desire for the optimal use of computational resources is often modelled as an 

embedding problem. We construct a graph whose nodes represent the data and pro­

cesses. An edge connects two processes which trade information. To minimize com­

putation time, we would like to divide the processing requirements evenly among the 

processors of our network. To minimize communication time, we would like to assign 

neighboring processes to processors which are fairly close. These two requirements 

may conflict. 

For one solution, we might build a network which perfectly mirrors the processes 

involved and embed each process in its own processor. There are two problems with 

this approach. First, every algorithm would require a different network structure 

depending upon how it divided up the work. Worse, the same algorithm might 

generate a different process graph for different input data. In this case no foresight 

could help in network construction. One (far from unique) example can be found in 

the context of branch-and-bound algorithms. The search tree developed during each 

run of a branch-and-bound algorithm changes based on which subtrees are cut and 

which are chosen for further exploration. We could not hope to build a processor tree 

which could handle all potentialities unless it were far larger than any one tree that 

might be generated during any particular run. 

As a second solution, we might build a network into which all similarly sized trees 

can be embedded. A practical network would allow us to embed a tree dynamically. 

As we embed the tree, we have no knowledge of which branches will develop many 

nodes in the future, and which will cease to exist at all. We must allow sufficient 

room for all possibilities. 

In chapter four, we demonstrate a randomized algorithm which, with high prob­

ability, embeds an arbitrary dynamic binary tree in a hypercube so that the compu­

tation and communication overhead are both constant. A simplified version of the 

algorithm embeds a dynamically growing tree in a butterfly smaller by a logarithmic 

factor. Both computation and communication are slowed by only a logarithmic fac-
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Chapter 2 

Routing in the Presence of Faults 

2.1 Introduction 

To successfully simulate shared memory, a parallel network must have the ability to 

route information between different origin processors and destination processors at 

the same time. Since processors trade information throughout the course of parallel 

computations, the overhead due to the transmission of information over the network 

shows up as a multiplicative factor in the time to perform many tasks. Thus the 

routing question is one of fundamental importance. 

In practice and theory, the store-and-forward model of communication is often 

used. In this model, once a node begins transmission of a message unit across a 

link, it continues to transmit until the entire message is sent. Treating messages as 

inviolable packets allows us to ignore some significant issues of control at the cost of 

time. Since time bounds for packet-switched networks are often stated in units of 

packet steps, such bounds must be multiplied by the length of the longest message to 

produce a bound in bit steps. 

Many algorithms have appeared for routing on hypercubes and networks derived 

from hypercubes (such as the butterfly). In 1981, Valiant and Brebner ([VB]) pre­

sented an algorithm for routing O(log N)-bit packets on the log N x N-node butterfly 

(and hence the N-node cube) which could route permutations from the top level to 
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the bottom in O(log N) packet steps, with high probability.1 Here a permutation 

means that the mapping from origins to destinations is bijective. Their algorithm, 

which we will review in section 2.2, introduced the paradigm of routing each packet 

first to a random intermediate destination and then to its true final destination. The 

algorithm routes obliviously: each packet's path is chosen without regard for the 

paths of any other packets. 

This simple addition of randomness is enough to overcome the proven delays 

involved with deterministic routing algorithms. Borodin and Hopcroft ([BH]) showed 

that any deterministic oblivious algorithm must necessarily take 0( ../N /(log N)312) 

bit steps, in the worst case, for any N-node network. 

Since Valiant and Brebner's pioneering work, significant improvements have been 

made. Pippenger ([P]) showed how to route permutations of a fully loaded log N x N 

butterfly in O(log N) steps with high probability. That is, each node in the butterfly 

can generate a packet, not only the nodes in the top level. In Pippenger's algorithm, 

only a constant number of packets reside in a queue at any time. Ranade ([Ran]) 

produced an algorithm which routes arbitrary mappings on a fully-loaded butterfly 

using combining, again with constant size queues and in O(log N) packet steps with 

high probability. Both of these algorithms make fundamental use of the paradigm of 

routing to random intermediate destinations. 

2.1.1 Summary of Results 

In this chapter, we consider the problem of packet routing on a. hypercube with 

faults. We assume that every node and link of a hypercube fails independently with 

constant probability p. Under this assumption, with probability exponentially close 

to 1, a constant fraction of the components of the cube will fail. In the presence 

of such a large number of faults, we would like to route packets so that any packet 

generated by a working node and sent to a working node arrives safely within the 

stated time bound. 

1 We use the phrase Q is less than O(g) with high probability to mean "For every k there exists 
a constant d independent of N such that the probability that Q exceeds dg is less than N_.,, ." 
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We describe and analyze a randomized packet routing algorithm that adaptively 

routes packets around faults as they are encountered in an N-node hypercube that 

contains 0(N) randomly located faulty nodes and 0(N log N) randomly located 

faulty edges. We assume that each processor can decide if an adjacent node or link 

has failed. Also, each processor can choose a random element from a set with as 

many as log N elements according to the uniform distribution. We define the prop­

erty of local mutability, a characterization of the connectivity of the network after 

some components have failed. There exists a constant c1 such that the hypercube 

remains locally routable with probability 1 - N-ci. We prove that, given that the 

hypercube is locally routable, the algorithm routes any permutation on the working 

processors in O(log N) steps with high probability. That is, under the assumption of 

local mutability, we reproduce Valiant and Brebner's results in the presence of faulty 

components. Packets which start or end at faulty nodes are eventually determined 

to be undeliverable. All the deliverable packets arrive at their destinations provided 

that they are not located in the immediate vicinity of a processor at the moment 

it fails. The algorithm is fault-tolerant in the sense that no advance knowledge of 

the locations of the faults is needed for the path selection, but it is susceptible to 

nodes which fail while holding packets. The algorithm is of interest because during 

most steps, few processors will fail and almost all deliverable packets will be deliv­

ered. In addition, the algorithm itself is quite simple and is the first adaptive routing 

algorithm for which an O(log N) bound on the routing time has been achieved. 

Work on adaptive routing for faulty hypercubes is potentially applicable out­

side the setting of fault-tolerance. Except for the algorithm we present, all known 

O(log N) packet step routing algorithms for the hypercube are inherently nonadap­

tive. Whereas O(log N) packet steps are also a lower bound on the time to route 

(since the diameter of the hypercube is log N), the implied O(log2 N) bit step bound 

for O(log N)-size packets is not provably optimal. Recently, we have proven a lower 

bound of O(log2 N /log log N) bit steps for all nonadaptive algorithms ([ALN]). Thus, 

serious improvement on the upper bound will have to come from an adaptive algo­

rithm. 
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There has been other work on packet routing on faulty hypercubes. Most no­

tably, Rabin ([R]) has devised an elegant scheme called information dispersal routing 

wherein each packet to be routed is decomposed into log N pieces. The pieces are 

routed in a randomized nonadaptive fashion to their destinations and then recom­

bined to form the original message. A key aspect of the scheme is that the packet 

decomposition uses error-correcting codes. Therefore only a constant fraction of the 

pieces of any packet need to get through to the destination for the packet to be 

reconstructed. 

Rabin makes different assumptions about both the nature of fault detection and 

the size of the packets. His model assumes no detection of nearby faults is possible. 

In his algorithm, each node chooses log N node-disjoint paths on which to send its 

pieces without regard for faults they may contain. If a packet encounters a fault, it 

is lost. Rabin's scheme is useful only if the original packets represent relatively long 

bit streams. Because routing information alone uses 8(1og N) bits, each of the log N 

pieces into which a packet is divided must contain O(log N) bits. Thus the original 

packets must have length n(log2 N). Additionally, Rabin's analysis depends on the 

failure rate p to be O(ljlog2 N) and allows only edge faults. At most 8(N/ log N) 

edge faults can be absorbed. Under these conditions, the Rabin algorithm provides a 

fully fault-tolerant routing of N packets in O(log N) steps with high probability. 

In section 2.3, we show how to achieve Rabin's results with a simpler algorithm 

and analysis. Our analysis permits both node and edge faults and requires p to 

be 0(1/ log N) so that the routing can absorb up to 8(N) edge faults as well as 

e (NI log N) node faults. (A similar result based on Rabin's original algorithm has 

recently been discovered by Giladi ([G]).) We also briefly sketch a way to potentially 

improve its tolerance to faults in as many as a constant fraction of components by 

combining the decomposition scheme with our adaptive algorithm for routing around 

faults. 

All of chapter two represents joint work with Tom Leighton. In addition, lemma 

2. 7 is the result of work with Bill Aiello and Satish Rao. 
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2.1.2 Overview 

Section 2.2 contains the O(log N) time adaptive routing algorithm. In section 2.3, we 

show how to improve Rabin's fault-tolerant results with a simpler algorithm. 

2.2 Fast Routing Around Faults 

In this section we examine the problem of routing ~ permutation on a faulty hyper­

cube. We describe a variant of Valiant-Brebner routing on the hypercube that we call 

offset routing. The success of the algorithm depends on local mutability, a condition 

of the nonfaulty processor's connectivity. We show that with a probability close to 1 

a faulty hypercube remains locally routable and that if it does, the routing algorithm 

works with high probability. 

We make several assumptions about the nature of faults and about the abilities 

of the network's processors. Every node and edge of the hypercube is assumed to fail 

independently of other components and with a constant probability p < 1 - ef1;2. 
Every node is able to detect whether a neighboring node or the link to it is faulty by 

simply sending a one bit message and waiting for a response. It does not matter if 

the node cannot detect whether the fault lies in the neighbor or the link. We make 

the minimal assumptions about the messages themselves. Since routing information 

uses E>(log N) bits and must accompany each message, we assume that each packet 

contains O(log N) bits. 

The idea of the offset routing algorithm is to route around the faulty components. 

Say a hypercube node v holds a message from some source and that the route to 

the destination dictates that the message be sent to its neighbor vie across the ktl' 

dimension. Further assume that the edge ( v, vie) has failed. One way to pass the 

message on would be to find a dimension i-::/:- k for which all components in the path 

( v, vi, vile, vie) are nonfaulty. A picture of this path appears in figure 2-1. 

Unfortunately, if some node on the path from source to destination has failed 

and paths like that shown in figure 2-1 are used exclusively, the message will not 

get through. To allow for the existence of node faults, we make sure that once we 
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Figure 2-1: A pa.th of length three a.voiding a faulty edge. 

have decided on a path from the source to the destination, the message never resides 

in any of the processors along the path until it reaches its destination. The path is 

treated as a virtual path. Instead of residing in some node v along the virtual path, 

the packet will reside in some neighboring node vi. That is, it will be offset by the 

dimension i. H dimension k is to be traversed, some other offset j will be chosen for 

which the entire path (vi, vii, viik, vik) is fault-free. Thus, instead of residing in node 

vk, the packet will be offset by dimension j. In this fashion, the offset path skirts 

around the virtual path but never meets it until the packet reaches its destination. 

The offset routing algorithm uses randomness in two different ways. First, ran­

domness is used to select virtual paths from sources to destinations. The virtual 

paths we will use are precisely the paths chosen by the Valiant-Brebner algorithm. 

Second, the offsets used along the way will be chosen from among those which create 

a live path of length three to the next offset node. 

In section 2.2.1, we define butterflies and we review the Valiant-Brebner routing 

algorithm. We prove some important bounds on the number of messages the algorithm 

is likely to rout through small sets of edges. In section 2.2.2, we define another 

network, the butterfly with jump edges, which helps us to think about the offset 

routing algorithm on the hypercube. In section 2.2.3, we describe the offset routing 
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algorithm explicitly. Section 2.2.4 proves a limit of O(log N) on the length of any 

offset path. Finally, section 2.2.5 shows that only O(log N) other messages use any of 

the edges of a particular message's path. This proves that the offset routing algorithm 

finishes in O(log N) routing steps. 

2.2.1 Valiant-Brebner Routing 

The virtual paths we will use are those dictated by the Valiant-Brebner routing al­

gorithm. Since that algorithm is viewed more intuitively as a butterfly algorithm, 

we will present it that way. First, we review some basic butterfly concepts. Next we 

present the Valiant-Brebner routing algorithm. Last, we prove two lemmas about how 

uniformly the algorithm uses edges. These lemmas will be useful when we examine 

the usage of edges by the offset routing algorithm. 

The log N x N-node or log N-dimensional butterfly is obtained from the N-node 

hypercube by replacing each node v of the cube by a cycle ( v0 , vi, ... , Vn_ 1 , v0 ). We 

replace each edge ( v, vi) by a pair of edges ( Vi_ 1 , vi) and ( vi_ 11 vi) (mod n ). We can 

visualize the set of nodes {Vi Iv E H n} as sharing a level of the butterfly. We call edges 

of the form (vi_1 , vi) straight edges and those of the form (vi-ti vi) cross edges. All 

edges connect nodes in adjacent levels (mod n). 

Figure 2-2: A three level butterfly. (The top and bottom rows are identified.) 
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All dimension i hypercube edges connect the (i- l)"t level with the ith level. Thus 

any hypercube algorithm which only uses one dimension during each step and only 

uses consecutive dimensions during consecutive steps can run on the butterfly just 

as quickly. Any butterfly algorithm works as well on the hypercube from which the 

butterfly was obtained. We may regain this hypercube by collapsing columns of the 

butterfly. 

The Valiant-Brebner hypercube routing algorithm is also a butterfly routing algo­

rithm. A packet starts at some node v0 and ends at some node w0 • We think of the 

column of nodes {Vi} as being shared by the hypercube node v, which assigns each 

node in the column a different queue from a set of n queues. If a message traverses 

the straight edge (vi-1' vi) in some butterfly step, then it is passed from the node v's 

( i - 1 )"t queue to its ith queue in the hypercube step. If the message traverses the 

cross edge ( Vi-i, vi) in some butterfly step, then it is passed from v's ( i - 1 )•t queue 

to vi's ith queue in the hypercube step. 

Routing from v0 to w0 is simplified by the fact that there is a unique path of 

length n between those two nodes. The ith step in the path connects a node at level 

i - 1 with one at level i. H v and w agree in the ith bit, the edge is a straight edge. 

If they differ, a cross edge is used. For example, to route from the node (1, 1, 0)0 to 

the node (0, 1, 1 )o we would use the path (1, 1, 0)0 , (0, 1, O)i, (0, 1, 0)2, (0, 1, 1 )o. 

In the first phase of the Valiant-Brebner routing algorithm, each node in level 0 

first sends its packet to a random node in the same level using the unique path of 

length n. In the second phase, the packet is routed along the unique path to its true 

destination. In [VB) it was shown that this algorithm takes 0( n) steps to complete 

and uses total queue length O(n) at every hypercube node, with high probability. 

We will worry about congestion, or the total number of messages using a given 

set of edges, in the offset routing schedule. A message can congest an edge only if 

its virtual path brings it close to that edge. It will then congest the edge only if 

particular choices of offset are made. To bound the congestion, we will first bound 

the number of messages whose virtual paths come close to a given set of edges. We 

need only the following two bounds on the number of messages traversing small sets 
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of edges via their Valiant-Brebner paths. 

Lemma 2.1. Take an arbitrary set of h edges on one level of the n-dimensional 

butterfly. Then with high probability the Valiant-Brebner routing scheme routes 

only 0( h + n) messages through edges in the set. 

Proof. Note that each message can congest at most one edge in the set. The following 

analysis applies to the first phase of the routing algorithm. The analysis for the second 

phase is almost identical. 

Say the edges share level l of the butterfly. Then we can partition the butterfly's 

first /levels into N/21 nonintersecting butterflies B1 , B2 , ••. , BN; 21 each built from a 

subcube with 21 nodes. For a message to route through one of the h edges, it must 

start in the same butterfly as the edge. Say that hi of the edges lie in butterfly Bi. 

Because paths are chosen uniformly, each message is equally likely to traverse any of 

the edges in a level of Bi. Thus each message starting in butterfly Bi has probability 

Pi = hi/21 that it will hit one of the edges in the set. 

For a node v, let Xu = 1 if v's packet congests an edge in the set and 0 otherwise. 

We wish to bound the value of X = Eu Xu. To do so, we bound the moment 

generating function M(.X) = E[e.\X] for positive .X. We can then bound Pr[X > kh] = 

Pr[e.\X > e,\kh] ~ e-Akh E[e.\X]. This bound follows directly from Markov's inequality 

Pr[Y > b] ~ E[Y]/b for any nonnegative random variable Y and nonnegative bound 

b. We will first bound the moment generating functions Mu(.X) = E[e.\X,] We can 

then use the fact that, since the Xu are independent, M(.X) =TI Mu(.X). 

The moment generating function Mu(.X) will depend on the butterfly Bi to which 

v belongs. H v E Bi then Mu(.X) = E[e.\X,] = ( ~e,\ + 1 - ~ ). Precisely 21 nodes in 

the butterfly sha.re this moment generating function. Thus the moment generating 

function M(.X) for X satisfies 

M(,\) 
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The inequality between lines two and three follows from the inequality 1 + x :::; ex 

for all x. 

Thus Pr[X ~ kh] :::; e(e,\-l)he-kh>. = ( ee,\-k>.-l )h. Setting A = ln k, this implies 

Pr[X ~ kh] :::; (ek(l-Inkl-1)\ a bound which can be made as small as desired by 

increasing the constant k. 

If h > n, then the probability that more than kh messages pass through the 

edges is less than N-O(klnk). Similarly, if h < n, the chance of having more than kn 

messages crossing the set is also less than N-O(kln k). • 

Lemma 2.2. Take an arbitrary set of O(n3 ) edges in the n-dimensional butterfly. 

With high probability the Valiant-Brebner routing scheme routes only O(n3 ) message.s 

through edges in the set, counting a message once for each time it traverses an edge 

in the set (i.e. counting according to multiplicity). 

Proof. We will examine each level separately and then sum across levels. Say level 

l has e1 edges from the set. By lemma 2.1, for any k there is a c such that there is at 

most an N-k chance that more than c( e1 + n) messages traverse the e1 edges from the 

set at level/. Summing over all levels, with probability at least 1-nN-lc, the number 

of messages crossing edges from the set at any level is no more than c(L:1 e1 + n2). • 

2.2.2 Jump Edges 

As we mentioned earlier, the second use of randomness involves evading faults which 

lie on the virtual path chosen by the Valiant-Brebner routing algorithm. When we 

route on the hypercube, we have access to many more edges out of each node than 

we do when we route on the butterfly. We can use these edges to route around 

faulty components. While bits are changed consecutively by traversing virtual paths, 

arbitrary bits are changed during fault avoidance. We create the butterfly with jump 
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Figure 2-3: Jump edges. These edges form the hypercube connections for the nodes 
on each level. The dashed edges are from the underlying butterfly. 

edges to accentuate the changing of adjacent bits in the virtual path while allowing 

for the changing of arbitrary bits in the offset path. 

A jump edge is an edge of the type (v;, vj). Jump edges are not butterfly edges. A 

packet traversing such an edge would be sent (in the hypercube) from the jth queue 

of v across the edge (v, vi) and deposited in the ph queue of vi. Note that all n jump 

edges of the type ( v;, v;) ,j varying, are actually manifestations of a single hypercube 

edge from v to vi. This means that every hypercube edge is represented n + 2 times 

in the butterfly with jump edges: as n different jump edges and 2 cross edges. Figure 

2-3 depicts the jump edges for the 3 x 8 butterfly. 

If we collapse the levels of the butterfly with jump edges, we regain the hypercube. 

Any algorithm we create for the butterfly with jump edges works as well on the 

hypercube. We need only be especially careful about congestion, or multiple packets 

crossing the same edge. A cross edge or jump edge traversed by a given packet is 

actually one out of several appearances of a hypercube edge in the butterfly with 

jump edges. Any congestion on another manifestation of the hypercube edge could 

slow the packet down. Among other things, we will concern ourself with the total 

congestion on a hypercube edge traversed by a packet, not just the congestion on the 

particular cross edge or jump edge it traverses. 
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2.2.3 Offset Routing 

In the offset routing algorithm, each packet remains fairly close to its Valiant-Brebner 

path. A packet's location always differs from where their algorithm would send it by 

some offset which is a random dimension. The offset routing algorithm retains the 

two-phase structure of Valiant and Brebner's algorithm. 

We first describe how packets are routed from level to level in the butterfly with 

jump edges. Recall that the path traversed by a packet in the Valiant-Brebner scheme 

is its virtual path. In the offset routing algorithm, a packet whose virtual path would 

pass through the ( k - 1 )at level at the node v.1:_ 1 will pass through the level at some 

node vL 1 instead. If its virtual path would leave v.1:_ 1 via a straight edge, then the 

offset path will traverse three edges of the type ( vL 1 , v~_ 1 , v~, t{). It finds such a 

path by randomly choosing a dimension j # i and attempting to route across the 

appropriate three edges. If the packet encounters a fault in any of the three edges or 

the nodes along those three edges, it returns to the node vLu which chooses another 

random dimension and tries again. Note that this means that a packet might have to 

traverse many more than three edges to pass from one level to the next. If the virtual 

path would leave v.1:_ 1 via a cross edge, then the offset path traverses three edges of 
. .. ··.1: ·.1: 

the type ( vl:_ 1, v;/_ 1, v;/ , ~ ) instead. Note that no matter whether straight edges or 

cross edges are used in the virtual path, the node ends with a random offset j from 

its virtual location. If necessary, the kth. bit is changed to agree with the kth. bit of 

the destination. Figure 2-4 presents an offset path between adjacent levels. 

Each packet must choose an initial offset to leave its source and must remove 

its final offset to reach its destination. To begin, the message generated by node 

v repeatedly chooses a random dimension j and attempts to route across the edge 

( v0 , vt;) until it successfully finds an initial offset. Say that the message reaches the 

oth. level at the end of the second phase with offset i (i.e. it reaches the node wb). 

Then to conclude, the message finds an offset j for which the path ( wb, w~, ulo, wo) is 

fault-free. 

The offset routing algorithm combines Valiant and Brebner's strategy of changing 

adjacent bits with a means for avoiding faults. In our analysis, we will make fun-
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Figure 2-4: A virtual edge between adjacent levels (shown as a dashed line) and a 
possible offset path (shaded). In this example, i = 1 and j = 3. 

damental use of the property of the distribution of virtual paths proven in lemma 

2.2. The even distribution of virtual paths will help to ensure the even distribution 

of offset paths over the edges of the hypercube, assuming random offsets are chosen. 

2.2.4 The Length of Offset Paths 

If a packet is to arrive at its destination within O(log N) steps, certainly the path 

it takes must have length O(log N). In Valiant and Brebner's algorithm, the length 

of paths is fixed at 2 log N. Offset paths are of variable length, depending on faults 

encountered along the way. In this section we describe the condition of local routabil­

ity. We prove that if the hypercube is locally routable, then with high probability all 

packets traverse offset paths of length O(log N). 

Essentially, a hypercube is locally routable if every node always has ample oppor­

tunity to send a packet to the next level in the butterfly with jump edges. Consider 
. . . "k "k 

a path (vL 1 ,v~_ 1 ,v~ ,vi). We assume that a message has successfully arrived at 

vL 1 and so there are six components-three nodes and three edges-in the path that 

must all work properly. If the probability of failure is p < 1 - ff (about 0.11) and 

the faults are independent, then each such path has probability p' = 1 - (1 - p )6 < ! 
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that it has a faulty component. For subsequent analysis, we would like it to be the 

case that for all pairs Vk-i, i there are at least a constant fraction of offset dimen­

sions j which lead the message on a functioning path ( vL 1 , v~_ 1 , v~k, v{k). We would 

also like to know that at least a constant fraction of the paths ( vL1 , vt1 , v~, v{) 

are fault-free for all pairs Vk_ 1,i. To begin the routing, we need that for all nodes 

vo, a constant fraction of the edges ( v0 , vfi) function properly. To end the routing, 

we need that for all pairs v0 , i, a constant fraction of offset dimensions j lead the 

message on a functioning path ( v~, v;j, vfi, v0). Define the following sets of paths: 

P {( ; ;; iik ik) . . } P' {( ; ;; ;; ;) . . } 
vk-1.i = vk-1, vk-1, vk 'vk ' J varymg ' v•-1.i = vk-1, vk-1' vk 'vk ' J varymg ' 

Qv0 = { (Vo, v~), j varying} and Q 110 ,; = { (vb, v~, v~, vo), j varying}. Fix an tp > 0. If 

all possible sets Pv._1 ,;, P~._1 ,;, Q110 and Q110 ,; all have cardinality at least t:Pn we say 

the butterfly is locally routable. 

Lemma 2.3. Assume that the probability that any component fails is less than 

1 - \(f and that all failures occur independently. Then there exists sufficiently small 

t:p > 0 and c1 = c1(t:p,p) such that with probability N-c1 the butterfly is locally 

routable. 

Proof. The set Pv._
1

,; of paths available a.t vL1 are node-disjoint. (The same ar­

gument holds for sets of paths P', Q and Q'.) Thus the faultiness of any path is 

independent of other paths in the set. 

The probability that fewer than tpn paths Pv._11;,; are fault-free is 

The ratio of successive terms is ....!.i_ = (n-i+~lp-e'l, which is greater than and bounded 
ti-1 IJ> 

away from 1 for small enough t:11 . Thus the sum is bounded by a constant times the 

last term. Let exp2( x) denote 2z. Then the last term tf,,n 

_ ( n ) (l _ p'r"nP1(1-f,,)n 
t:pn 

< ( ne )fpn ( 1 - p')fpnpl(l-fp)n 
( t':pn )fpn 

- exp2(t:11 n loge - t:11n log t:11 + t:11n log (1 - p') - tpn logp' + n logp') 

- exp2(h(t:,,,p')n + nlogp') 
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We can bound this last expression using the fact that each path has a low prob­

ability of containing a failure. Since p' < ~, log p' = -1 - c2 for some c2 > 0. For 

Ep = 0, h(Ep,p) = 0 and the above expression equals N-1-c2 • Since h(Ep,p) is con­

tinuous, there is a Ep > 0 such that the above expression is bounded by N-l-c3 with 

c3 > 0. Since there are only O(N log2 N) pairs Vk-l, i, any c 1 < c 3 makes the lemma 

true.• 

With probability N-c• for some fixed c4 , some node has only faulty neighbors. 

Thus we cannot strengthen lemma 2.3. For the remainder of section 2.2, we assume 

the butterfly is locally routable. Under this assumption, we will prove that the 

algorithm succeeds quickly with high probability. 

Lemma 2.4. Say a butterfly has faulty components but is locally routable. With 

high probability each message in the offset routing traverses a path of length O(n). 

Proof. We will prove that any given message's path is of length 0( n) with high 

probability. Since there are only N messages, this will imply the lemma. Assume 

that at some point in its route, the packet is at the node vi, where v is the node 

it would traverse in the Valiant-Brebner scheme. Assume as well that the packet is 

scheduled to traverse dimension k. (If the straight edge is to be used or if the packet 

is at the beginning or end of the route, the analysis is identical.) Then if the packet 

successfully chooses to jump across dimension j, the path (vL 1 , v~_ 1 , v~\ vlk) must 

have no faults. Since the butterfly is locally routable, Epn of the possible paths to 

choose are fault-free. If a faulty path is chosen, the packet encounters the fault and 

returns to vL1 using no more than six edges. Since a random dimension is chosen at 

each step, the probability that a packet takes more than 6b(2n + 2) steps is less than 

the probability of at least (b- 1)(2n + 2) heads in a sequence of b(2n + 2) tosses of a 

coin with probability Ep of landing tails. This probability is less than 

(
b(2n + 2)) (l _ E )(b-1)(2n+2) 

2n +2 P 

< (
eb(2n + 2))

2
n+

2 
{l _ E )(b-1)(2n+2) 

2n + 2 P 

< (eb(l - Ep)b-1)2n+2 
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Figure 2-5: One packet might delay another packet's progress even if they never cross 
paths in the butterfly with jump edges. One hypercube edge is replicated n + 2 times 
in the butterfly with jump edges. The two sections of paths shown here intersect in 
the hypercube because the darkened edges are actually one edge in the cube. 

an inverse polynomial in N for large enough b. • 

2.2.5 Delay From Other Packets 

Now that we know each message moves a distance of O(log N) during an offset routing 

phase, we need to show that its forward movement is delayed by at most O(log N) 

other packets. These facts together will bound the packet's time to its destination. 

We will show that few other packets choose virtual paths in such a way that they 

have a non-zero probability of selecting an offset path which congests a given node's 

path. We will then show that even fewer of those actually congest the path when 

they use offset paths. 

Recall that a cross edge or jump edge traversed by a given packet is actually one 

out of several appearances of a hypercube edge in the butterfly with jump edges. Any 

congestion on another manifestation of the hypercube edge will slow the packet down. 

Therefore we group all n + 2 copies of the edge together and refer to the group as one 

hypercube edge. 
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Lemma 2.5. Consider a set E of O(n) hypercube edges and butterfly straight edges. 

Let S be the set of butterfly edges such that any packet whose virtual path crosses 

an edge in S has a non-zero probability of congesting an edge in E as a butterfly edge 

in its offset path. Then with high probability, there are O(n3 ) packets whose virtual 

paths traverse any of the edges in S, counting a packet several times if it traverses 

several edges in S. 

Proof. If ( w1-1, wf) is a butterfly edge traversed by a packet's offset path then the 

packet's virtual path must use an edge of the form ( wfi, wf~1 ) for some pair i, j. There 

are only n2 such pairs. The same reasoning would hold if the edge in question were 

a straight edge. Since IEI = O(n), ISi = O(n3
). By lemma 2.2, only O(n3

) packets 

traverse edges in S, with high probability. • 

Lemma 2.6. Let T be the set of butterfly edges such that any packet whose virtual 

path crosses an edge in T has a non-zero probability of congesting some edge in 

E as a jump edge in its offset path. Then with high probability, there are 0( n3 ) 

packets whose virtual paths traverse any of the edges in T, again counting according 

to multiplicity. 

P f S ( I ) . . d t db k t L t ( i ii ijk jk) roo. ay Wk-liwk-l isaJumpe ge raverse yapac e. e vk_ 1,vk_1,vk ,vk 

or ( vL 1 , v~_ 1 , v~, vf.) be the path used by the packet when it traverses the jump edge. 

Then ( w, w1) is either the first or the last edge traversed in the path. If it is the first, 

then wk-l = vL1 , wL1 = v~_ 1 and therefore I= j. The edge traversed in the virtual 

path would have been (vk_ 1 , vZ) or (vk_ 1 , vk) for some k. There are n choices for v 

such that Vk-l = wL1 and n choices for k. Thus there are only O(n2 ) elements of T 

whose traversal in some packet's virtual path gives the packet a non-zero probability 

of traversing the edge ( w, w1) as a jump edge. The same reasoning holds for use of 

the jump edge as a third edge. Again, since IEI = O(n), ITI = O(n3
). By lemma 2.2, 

only O(n3 ) packets traverse edges in T, with high probability. • 

Lemmas 2.5 and 2.6 also hold for the set of edges incident to the set of nodes 

{ Vk} for some hypercube node v. If we bound the number of packets congesting these 

edges then we bound the number of packets ever residing in queues in the node v (the 
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queue size of v). 

We would like to bound the number of packets which congest the path p0 of 

some message m0 • There are O(n3
) packets with a nonzero probability of congesting 

some edge along Po· Focus on one of these packets mr. The packet mr will cause 

congestion along the path Po only if an unfortunate pair of offsets i and j are chosen 

for it. When the packet traverses from level lr to the level lr + 1, its offset i at the z;h 
level is inherited from a choice made by some node in the (/r - 1 )"t level. Then the 

node at level Zr chooses an offset j which will route the packet mr to the ( lr + 1 )"t level. 

Because any given fault can affect the routes of several different packets, offset choices 

made by different packets are dependent. However, the packet mr is guaranteed by 

local routability to have <7( r) 2:: fpn choices of offset i available at level lr - 1. One 

of those offsets, say i., will be chosen uniformly to route the packet mr to level lr. 

Once there, some number Ora of the offsets j will cause the packet mr to cross the 

path p0 , if the packet is routed to level lr + 1 using one of those or• offsets. Since 

we wish to minimize the probability that such congestion occurs too often, we are 

concerned that choices for i. are made which leave too many unfortunate choices of 

j. By lemmas 2.5 and 2.6, we know that there exists a constant d such that with high 

probability L:r SOra $ dn3 . This follows because summing the ar• is a second way to 

count virtual paths traversing edges in S and T, counting a path once for each time 

it traverses an edge in S or T. Finally, each CXra is at most n, since there will be a 

total of n offsets j from which to choose. In the next technical lemma, we use these 

bounds on the ar•• or number of unfortunate choices of offset j, to bound the number 

of bad choices of j's left once all packets have had the offsets i chosen for them. 

Lemma 2.7. Consider a family of nonnegative integers {arall $ r $ z, 1 $ s < 

<7(r)} where O'(r) 2:: Epn for all r, Era Ora$ dn3 and ar• $ n for all pairs r,s. H 

exactly one index Sr is chosen uniformly in [1, O'(r)] for each index r then with high 

probability L:r CXrar = O(n2
). 

Proof. Let Xr = CXrar· A picture of the choice of the Xr appears in figure 2-6. 

We wish to bound the value of X = L:r Xr. As in lemma 2.1, we bound the 

moment generating function M(A) = E[e,\X] and then we bound Pr[X > bn2
] -
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Figure 2-6: The Ora and a possible choice of Xr. Each row represents the choice 
for some packet. The entry Ora counts the number of offsets j which, if chosen in 
conjunction with the offset i.,, would cause the packet mr to congest the path p0 • 

Circled entries represent the selections from each row. 

Pr[e>.x > e>.bn
2

] $ c>.bn
3 
E[e>.x]. As before, we will first bound the moment generating 

functions Mr(A) = E[e>-Xr] = u(r) E:~{ e>-ar•. Again, since the Xr are independent, 

M(A) =TI Mr( A). 

If we could find Orr$ Or11 and a positive integer h such that 0 $ Orr-h, Or11 +h $ n 

then by transfering h units from the smaller Orr to the larger Ory we could only increase 

Mr(A) (for positive A). This follows because e>-ar~ - e>.(ar.,-5) = e>.(ars-6)(e>-6 - 1) < 

e>-ar11(e>.6 -1) = e>.(arw+o) - e>.ar11. The resultant change in Mr(A), (e>.(ar11+6) _ e>.ar11 )­

( e>.ars - e>.(ar~-6>), would be strictly positive. By this reasoning, if Ar = E. Ora is 

fixed, we maximize Mr(A) by setting all terms except possibly one equal to either 0 

or n. Thus 

E[e" r] $ u r 
'X { -(

1 )(e>.Ar + u(r) - 1) if Ar < n 

11(r) U~le>.n + u(r) - r~l) if A,.?: n 

FortherestoftheproofwefixA =~·If Ar< nthenMr(~) $ u(r)(e~+u(r)-1) 
$ u(r) (1 + ~ + u(r) - 1) $ 1 + f:~l · (The second inequality uses the fact that for 

0 $ / $ 1, e'Y $ 1+2/.) If A,.?: n then Mr(~)$ u(r)(~e + u(r)) $ 1 + ~:~f · 
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In either case the bound is at most 1+ 2eAf < exp( 2eAf ). Thus M(l) < TI exp(2eAf) 
!pn - !pn n - r !pn 

2ed 

$ N7P. Continuing the reasoning of the first paragraph of the proof, Pr[X > bn2] 

2ed 

$ e-bn N7P. We can make this probability an arbitrarily large negative power of N 

by letting b be a large constant. • 

Each packet mr may take several attempts before reaching level Zr + 1 safely. On 

each attempt, the packet mr may congest the path Po· The packet always has at 

least a tp chance that it will make it to level Zr + 1 on any given attempt. Thus the 

number of trials it requires to succeed will be distributed somewhat like the geometric 

distribution with parameter tp· For ease of notation, set f3r = O:rsr from the previous 

lemma. In each attempt by the packet mr, there are f3r choices of offset which will 

produce congestion. The following technical lemma will help bound these multiple 

contributions. 

Lemma 2.8. Consider a family of nonnegative integers {f3rll $ r $ z} where 

'L.r f3r = 0( n 2 ) and f3r = 0( n) for all r. Let {gr} be a set of random variables 

with geometric distributions 9r "' G( tp) (i.e. 9r = a with probability tp{l - cp)a-l) 

Then with high probability, 'L.r 9rf3r = O(n2
). 

Proof. Order the integers by increasing size /31 $ /32 $ ... $ f3z. Then since 

are all at least as large as f31m, we know that L.z!{-1 
f31cn = O(n). We assume that 

l .!. J 
f3z = O(n), so the sum f3z + L.1c;. 1 f31cn = O(n). 

Now with high probability, all sums L.~=l 91cn+r are O(n). We know that 

n 

L9rf3r $ L(L9lm+r)/3(1c~l)n 
r le r=l 

Thus, with high probability, 'L.r 9rf3r = O(n2
). • 

Theorem 2.9. If we route using offset routing and the hypercube is locally routable, 

then with high probability, all packets are delivered in O(log N) steps and all nodes 

have total queue size O(log N). 
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Proof. Focus on the path p0 of a particular message m0 • We will show that the 

congestion along Po from various sources is 0( n) with high probability. 

Lemmas 2.5 and 2.6 bound the number of messages which have the potential to 

congest an edge of m0 's path while passing between levels on their own paths. Enu­

merate the packets mi, m2, ... , mz which have a non-zero probability of congesting 

Po while traversing an edge from an even level to an odd level in their virtual paths. 

A particular packet may appear several times in the enumeration-once for each even 

level node along its virtual path from which it might congest an edge of p0 • 

The packet mr has at least fpn paths which would successfully route it to the next 

level. Arbitrarily designate exactly Epn of these paths as special. For the purposes 

of our analysis, we require mr to choose a special path before we allow it to route to 

the next level. This can only increase the amount of congestion placed on any edge, 

since it increases the number of attempts made by each packet. However, once mr 

does choose a special path, we always place it in the last node of the first fault-free 

path it found. Thus mr winds up in the same place on the next level as if no special 

requirements had been made. 

Consider the choice of offsets made by the message mr at even level lr. Let qr be 

the number of choices of pairs of offset dimensions (i,j) for the message mr which 

would congest an edge in m0 's path. Then L: qr = 0( n 3 ) by lemmas 2.5 and 2.6. (as 

described in the discussion immediately preceding lemma 2.7, L: qr is a second way 

to count the number of edges in Sand T according to multiplicity.) 

The choice of the dimension i was actually made for mr at level lr - 1. The choice 

was made randomly and uniformly from the set of offsets which led to a fault-free 

path to level lr. The exact selection of off sets i are dependent from packet to packet 

and, for a particular packet, from one level to the next. However, no matter how 

we condition on previous events, there are always enough offsets to choose from at 

any given moment. Also, the bounds on the probabilities of congesting Po will hold 

regardless of previous events. Let i 1 < i 2 < ... < iO'(r), u(r) > t:11 n, be the choices 

of offsets at level lr - 1 which lead to a fault-free path to level lr. Let Ctra equal the 

number of offsets j such that if mr is routed from level lr - 1 to level lr using offset 
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ia and next to level Zr + 1 using offset j, then congestion results in m0 's path. Then 

since La ara = qr, Lra ara = O(n3
). Since the total number of offsets j is n, clearly 

O'rs :::; n. Let iar be the offset for mr actually chosen at level Zr - 1. Lemma 2. 7 

implies that with high probability Lr O'rar = 0( n2). For convenience of notation, set 

At level lr, whether the message mr chooses a path from the set of t:pn special 

paths or the set of (1- t:p)n nonspecial paths, it has at most f3r choices which congest 

mo's path. Thus whether we condition whether the choice was special or nonspecial, 

the probability that message mr will congest m0 's path is bounded by .i!z.... 
tpn 

Now that we have bounded the probability that the packet mr will congest the 

path Po during one of its attempts to route to level lr + 1, we can bound the probability 

that too many packets actually congest p0 • The number of routing attempts made by 

mr is 9r ,..., G( fp). On each attempt, the probability that mr will congest m0 's path 

is at most l!z.... Each attempt is an independent trial and the sum of the probabilities 
tpn 

of congestion in the trials is at most - 1- L9rf3r, which is O(n) by lemma 2.8. By a 
(pn 

moment generating function argument identical to that in lemma 2.1 and 2.7, with 

high probability O(n) attempts actually did congest m0 's path. Since each attempt 

involves at most six edges, each attempt can add at most six to the congestion on 

m0 's path. Thus with high probability, the total congestion on the path from routing 

attempts at even levels is O(n). 

Next examine the congestion on p0 from other packets beginning and ending their 

paths. For a packet to congest an edge as the first jump edge of its path, it has 

to be generated by one of the edge's endpoints. Thus there are at most 0( n) such 

packets. Now consider those packets congesting p0 during the ending of their paths. 

Each of the three jump edges used to finish off a. path has an endpoint which is at 

distance one from the virtual destination. Thus at most O(n) packets exist which 

have the potential to congest any given edge as the first, second or third of these jump 

edges. Therefore a total of O(n2 ) packets have a non-zero probability of congesting 

some edge of p0 as they finish their routes. An argument along the lines of the one 

bounding congestion at even levels shows that congestion from these sources is 0( n) 
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as well. 

The same argument bounds congestion from routing attempts at odd levels, and 

also bounds congestion on edges incident to any fixed node. • 

2.3 Information Dispersal Routing 

The offset routing algorithm cannot tolerate faults which occur during a particular 

routing phase. If a packet resides in a node as it fails, that packet is irretrievably lost. 

Rabin ([Rab]) discovered how to use the technique of information dispersal to route 

even in the presence of failing nodes, provided each fault occurs with probability no 

more than 0(1/n2
). 

In this section we will present a simpler variation of Rabin's algorithm. We also 

show how our algorithm handles faults occurring with probability 0(1/n). First, we 

will briefly sketch the main ideas of the original routing algorithm. Each packet is 

dispersed into n pieces sent along node-disjoint paths to different locations and then 

along node-disjoint paths to the final destination. 

Since every piece needs to carry i1(n) bits of routing information, the original 

packets must necessarily be large. For concreteness we assume that all packets contain 

L = S1(n2 ) bits. Any piece created will contain O(L/n) bits. We also assume that all 

links and nodes have the capacity to hold a constant number of the original packets 

(and therefore E>(n) pieces). 

Rabin proves that with high probability, the number of pieces crossing any node 

or link never exceeds its capacity. No piece's progress is ever delayed by a full queue 

in the node ahead. This guarantees that each piece can move during every step and 

that the entire routing will take no more than 2( n + 1) steps-n + 1 steps for each 

piece to arrive at its random intermediate location and another n + 1 to arrive at its 

final destination. 

As Rabin points out, routing with dispersal of information can tolerate faults if 

the dispersal into pieces is done with more redundancy. The pieces may actually be 

constructed in such a way that the arrival of half (or some other constant fraction) 
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of them is enough to reconstruct the original message. Rabin shows how to do this 

through matrix multiplication. He then proves that if each link has probability 1/n2 of 

failure, then with probability 1-2N(4e/n)n/4 all messages will be safely reconstructed 

at their destinations. 

2.3.l Routing Along Parallel Paths 

Our improvement of Rabin's results stems from a more uniform and efficient selection 

of paths for the routing of pieces. The n pieces are first sent sent to the neighbors 

of the node which generated the packet. These pieces are then routed along parallel 

paths to the neighbors of a random intermediate node. From there the pieces are 

routed along parallel paths to the neighbors of the intended destination, and from 

there to the destination itself. Except for the dispersal of the pieces to the neighbors 

of the source and the recovery of the pieces from the neighbors of the destination, the 

algorithm can be viewed as a butterfly algorithm. We will use the butterfly for our 

analysis. A picture of a set of parallel paths appears in figure 2-7. 

If v and ware two hypercube nodes, let 11"i(v, w) be the path from vi to wi used in 

one phase of the Valiant-Brebner scheme. Let IT(v,w) = {7ri(v,w)Jl ~ i ~ n} be the 

set of all possible such paths. We will first show that if each node v chooses a node 

v' uniformly and then routes a different piece along each of the n paths in 11( v, v') 

that only 0( n) pieces reside in any node's queue at any time step. 

Lemma 2.10. Consider the collection of all paths in the.N sets IT(v,v') (varying 

over v ), where each hypercube node v bas chosen a node v' randomly and uniformly. 

For any node u and any integer 0 ~ j ~ n, with high probability u is the pn node 

along only O{n) paths in the collection. 

Proof. ff u is the P" node along the path 7r;(v, w) then ui = W1W2 ••• w;v;+i ... Vn· 

Separate the two cases in which either i ~ j or i > j. If i ~ j, then it must be 

that v;+i ... vn = u;+i ... Un. Precisely 2i nodes satisfy this condition for v. If one of 

these nodes chooses aw such that w1 •.• Wi-tWiWi+i ... w; = u1 ... u; for some i ~ j, 

then u will be the P" node along exactly one path 11"i(v, w). Otherwise, u will be the 
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Figure 2-7: A path (dashed lines) and its adjacent set of parallel paths (shaded). 

Ph node along none of the paths 11"i(v,w), i::::; j. Thus for each of the 2j nodes, the 

probability of exactly one such path is j /2j and the probability of no such paths is 

1 - j /2j. 

If i > j, then vi+l ... Vi-l ViVi+l ... Vn = Uj+l •.. Un for some i > j. Precisely 

( n - j)2j nodes satisfy this condition. All reasoning is the same as in the previous 

case, except now w must be chosen so that w1 ... Wj = u1 ... ui. Thus the probability 

that u is the Ph node along exactly one such path is 1/2j. The probability that no 

path 11"i(v,w), i > j crosses u in this fashion is 1-1/2j. 

We now need only consider the sum of 2j 0-1 random variables each with proba­

bility fI of equalling 1 and (n - j)2j 0-1 random variables each with probability 2
1
1 

of equalling 1. Call this sum X. Then the moment generating function M(A) for X 

satisfies M(A) 

( 

· · 21 ( 1 1 )(n-j)2J 
- Le>. + 1 - L) -:-e>. + 1 - -:-

21 2J 2' 2J 

( 
(e>. - l)j)

21 
( (e>. - l))(n-j)

21 

1 + 2) 1 + 2) 
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Pr[X 2'.: bn] ~ (eb(I-lnb)- 1r, an inverse polynomial whose exponent can be made as 

small as desired by increasing the constant b. • 

The ith piece created from v's packet is sent to vi, along the path 11"i( v, w) to wi 

and then to w. By lemma 2.10, at no time do more than bn pieces cross a given 

hypercube node, with high probability. Since the packets traversing any link all come 

from one of the link's endpoints, no more than 2bn pieces cross the link during any 

step of the routing. If all links and nodes have the capacity to hold 2b original packets, 

then with high probability no buffering is necessary and no piece waits in a queue. 

This analysis assumes that each node routes its packet to a random destination. 

If we use two phases as in the Valiant-Brebner scheme, the results extend to arbitrary 

permutation routings: 

Theorem 2.11. If all packets are divided into n pieces which are routed along parallel 

paths in both phases of the routing algorithm, then for an arbitrary permutation, with 

high probability the two-phase routing takes 2(n + 1) steps. No piece waits at any 

time.• 

2.3.2 Fault-Tolerant Encoding of Pieces 

By giving the pieces more structure, we can make the information dispersal fault­

tolerant. We partition each packet F into n O(L/n)-bit pieces, but in such a way 

that if any m = n/2 of the pieces arrive at the destination, the original packet may 

be reconstructed. 

Matrix multiplication is used to encode and decode the pieces. We need an n x m 

matrix A every m rows of which are linearly independent. We use the Hilbert matrix 

Aii = 1/(xi + Y;), where Xi #xi' 'Vi# i', Y; #Yi' 'Vj # j' and xi+ Y; # 0 Vi,j. For 

all these distinctness conditions to hold we need a large field. We will use the field 

GF(2s), withs~ loglogN = logn. 

Let A' be the matrix formed by rows ii, i 2 , ••• , im of A. Then 

IA'I = Ilk<l(xi,, - x11 )(yk - yr) 
Ilk,1(Xi,, +YI) 
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Using this identity and Cramer's rule, we can invert any m rows of A in O(m2s2 ) 

steps. 

To take advantage of the Hilbert matrix A we block the bits of the message F 

into a matrix over the field GF{2a). Write F = b1 ... b1, where l = L/ s and each bi is 

ans-bit byte interpreted as an element of GF(26
). Group the bi's into l/m columns 

of m bytes each, and call this matrix B. Each source u computes F1 , ... , Fn as the 

rows of the matrix product AB: 

Given m pieces {rows Fi), the destination w can reconstruct B (i.e. the packet F) 

since the corresponding m rows of A are linearly independent. The destination just 

inverts the matrix containing those m rows. 

Note that it takes O{m2 l/m) = O(nl) word operations to multiply these matrices, 

or O(nls logs) bit operations. The routing itself will take only O(nls) bit operations, 

so there exists a logs = log log log N gap between the complexity of the encoding and 

the routing stages of the protocol. 

2.3.3 Fault-Tolerance via Parallel Paths 

If we encode the original packet in the pieces via Rabin's matrix multiplication, then 

we can bound the probability that v's packet is lost by the probability that some n/2 

of its pieces run into faulty components. But if that many pieces are lost, then at 

least n/4 are lost during one of the two phases of the routing algorithm. Assume they 

are lost in the first phase; the reasoning for phase 2 is identical. There are at most 

(2n + 3)n different components (nodes or links) encountered by pieces from v during 

the first phase. We need the following bound on the number of intersections between 

the routes of different pieces. 

Lemma 2.12. For any hypercube node u # v, w, no more than.two paths in II(v, w) 
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cross u. 

Proof. Count the nodes along the path 7l'i( v, w) starting with vi as the oth node. 

Say that the kth node along 7l'i( v, w) is the same as the /th node along 7l'J( v, w) for 

. < . Th i i i i i j - _ _j j j j h q1 • ff ---1. I z )· en w 1w 2 ... wkvk+i···vn = w 1'W2 ... w 1v1+1 ••. vn, were vq = Vq 1 qr q 

and similarly for wt. 
There are four cases. If k, l ~ j then v] = vj, a contradiction. Similarly, if k, l ~ i 

then wf = wt, a contradiction. If k < i, l > j or if l < i, k > j then it must be true 

that wi = vi, Wj = Vj and wh = vh for i < h < j. Thus all 1l'h(v, w) with i < h < j 

are precluded from crossing u (otherwise Wh = vh, a contradiction). Therefore three 

paths cannot all cross u. • 

Since no component's failure will affect more than two pieces, it must be true that 

at least n/8 of the (2n + 3)n components have failed. Only in a small fraction of fault 

patterns will so many failures occur in such a small set of components. 

Theorem 2.13. For any constant k > 0 there is a sufficiently large constant b > 0 

such that if each component of the hypercube fails independently with probability 

1/bn before or during some permutation routing, then with probability 1 - N-k the 

routing will be successfully completed. That is, a given packet will arrive at its 

destination iff both its origin and destination do not fail. 

Proof. Whether or not the ith component fails gives rise to a 0-1 random vari­

able whose moment generating function is Mi(,\) = ( ~ e..\ + (1 - ~)). The moment 

generating function for the sum of these random variables is M(,\) 

< 
( 

e,\ - 1) (2n+3)n 

1 + bn 

Thus we can bound the probability that more than n/8 of the components fail by 

exp((eA-1>pn+3) - ..\
8
n). Setting ,\ = ln 1~, we see that the probability of so many 

failures is no more than (et ( 16 I b) tr. The exponent of this inverse polynomial in N 

can be made as low as desired by increasing the constant b. • 
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2.4 Remarks 

Offset routing and information dispersal are complementary techniques. By com­

bining this simplified variant of information dispersal with offset routing, still better 

results are possible. The combined routing algorithm tolerates the failure of a con­

stant fraction of the hypercube's components during the course of the routing of a 

single permutation. To send a packet, the node first disperses pieces to a well defined 

set of n nodes at distance three (instead of neighbors). The packets are then routed 

along parallel offset paths to the symmetric set of n nodes close to the destination. 

Finally, the pieces are combined at the destination. If each node or link fails inde­

pendently of other components and if in the case it fails it does so at a random time 

during the routing then this combined algorithm tolerates the failure of a constant 

fraction of the hypercube's components. 
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Chapter 3 

Reconfiguration in the 

Presence of Faults 

3.1 Introduction 

In this chapter, we continue our investigation of the tolerance of the hypercube to 

randomly distributed faults. The techniques we develop assume a long-run view. 

Given that faults have accumulated in a hypercube over time, each component inde­

pendently faulty with probability p, we would like to be able to program the machine 

while ignoring whatever faults exist. We show how to use the functioning parts of a 

hypercube with faults to simulate a hypercube without faults at a surprisingly low 

cost. More precisely, we show how to embed a hypercube in the functioning part of 

a hypercube with faults so that features such as locality are preserved. 

Before we can state our results formally and assess their value, we first must de­

scribe the constraints, assumptions and objectives of network reconfiguration and/or 

simulation in the presence of faults. We divide the discussion into six general topic 

areas: preservation of locality, load balancing, message traffic, simulation overhead, 

algorithms for implementation, and modelling of faults. 

An embedding of a network G1 into another network G2 is a map </> : G1 1-+ G2 

that maps each node of G1 to a node of G2 and each edge of G1 to a path in G2 

between the images of its endpoints. 
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We call the pattern of faults F. That is, we include each component of Hn in F 

independently and with probability p. Therefore the functional part of the hypercube 

is Hn - F. An embedding of Hm into Hn - Fis a map ¢>: Hm 1-+ Hn - F that maps 

nodes of Hm to functioning nodes of Hn and edges of Hm to functioning paths of Hn. 

The precise definition of functioning nodes and paths will vary, although the general 

interpretation is straightforward. 

Preservation of locality. Because communication in hypercube-based machines 

is mostly local, and because communication is a dominant factor in measuring the 

performance of a parallel machine, it is crucial that a good embedding of Hm in 

Hn - F preserve locality. In other words, neighboring processors in Hm should be 

mapped to nearby processors in Hn - F. In order to quantify this notion, we say 

that an embedding has dilation D if for each edge e in Hm, the path ¢>(e) has length 

at most D in Hn - F. Of course, it is most desirable to find embeddings with small 

dilation. At the very least, the dilation of an embedding </> is a lower bound on the 

time required for Hn - F to simulate a single step of Hm if the computation of each 

node v E Hm is performed by </>(v) in Hn - F. 

The notion of dilation can also be extended to paths. We will describe natural 

embeddings of Hn-l in Hn - F for which nodes separated by distanced in Hn-l are 

mapped to nodes separated by distance d + 2 in Hn - F. These embeddings have 

dilation 3. 

Balancing the load. We will consider embeddings which allow several nodes of 

Hm to be mapped to a single node of Hn - F. Mappings that are one-to-one are the 

most desirable since then each processor of H n - F only has to simulate the action 

of a single processor of Hm. In general, we define the max load of an embedding to 

be the maximum number of processors of Hm mapped to any single node of Hn - F. 

One algorithm we describe discovers embeddings with max load 1 (i.e. one-to-one 

mappings) while the other finds embeddings with constant max load. 

In addition to having small max load, it is desirable to use as many of the func­

tioning cells of Hn - F as possible. The use of live cells is partly described by the 

max load. To further characterize this quantity, we define the expansion of an em-
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bedding to be the ratio of the size of the largest one-to-one hypercube we could hope 

to embed in Hn - F to the size of the hypercube that we do embed. Since the size of 

a hypercube is always a power of two, the expansion is 

We focus on embeddings of Hn-l in Hn - F for p < ~· Such embeddings have 

expansion one, which is the best possible. 

Message traffic. In addition to balancing the processing load among the func­

tioning processors, it is desirable to balance the message routing load among the wires. 

In particular, it would not be good if many paths { ¢>( e) le E H m} traversed a single 

wire of Hn - F since local communication along these paths would require the use 

of the same wire. To formalize this notion we say that an embedding has congestion 

C if every edge of Hn - Fis contained in at most C paths of {ef>(e)le E Hm}· We 

consider embeddings with congestion as much as 0(log N) and as little as 0(1 ). 

Congestion is a lower bound on the time required for the functioning part of Hn 

to simulate Hm if messages traversing e in Hm are routed along ef>(e) in Hn - F. For 

some specific applications, however, we can do better. For example, hypercubes are 

often used to simulate bounded-degree networks such as arrays and trees. In such 

applications, only a constant number of wires incident to any node are used in any 

parallel step of Hm. Hence, the effective congestion in the corresponding embedding 

may be much less than it seems at first. To capture this notion, we say that an 

embedding has induced congestion I if every edge of Hn - Fis contained in at most I 

paths of {ef>(e)le E Hm} for which the edges e E Hm are node-disjoint. The two main 

algorithms in this chapter find embeddings with constant induced congestion. Such 

embeddings are particularly useful for simulating trees, arrays, normal hypercube 

algorithms and other structures with bounded processor degrees. 

Simulation overhead. One obvious use of a hypercube with faults is to simulate 

a hypercube without faults. This can always be done given enough slowdown and 

duplication of resources, but the goal is to make the simulation as efficient as possible. 

The key factors influencing the efficiency of the simulation are dilation, max load and 
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congestion. By achieving good bounds on these vai;.ies, we show that any step of 

a hypercube Hn can be simulated by 0(1) steps of Hn - F. In addition, we use 

the notion of induced congestion to show that a hypercube with faults can simulate 

trees, arrays and other bounded-degree networks of the same size with only constant 

slowdown. 

Algorithms for implementation. In addition to proving that there is an ef­

ficient embedding of Hm in Hn - F, it is desirable to develop an efficient algorithm 

for finding the embedding. Ideally, the algorithm would be deterministic, fast, easy 

to implement, and decentralized (i.e., using only local control). In fact, we describe 

such algorithms in sections 3.2 and 3.3 We also describe a fast, local probabilistic 

algorithm in section 3.5. 

Modelling of faults. In general, we might consider three types of faults in 

Hn. The most serious fault would be one that completely destroys a node and all 

wires incident to it. We call such faults total. A less serious fault would be one that 

destroys just the computational portion of a node, and leaves the communication (i.e. 

switching or routing) portion of the node intact as well as the incident wires. We call 

such faults partial. (Note that it does not make sense to consider a fault that destroys 

just the communication portion of the node. The computation portion would then 

also be useless since it would be disconnected from the rest of the network.) Last, 

faults could occur in individual wires. 

In our model, no malicious faults occur. Any node can determine if a neighboring 

node or link has failed by probing the link in 0( 1) time. 

Along with the type of fault, the distribution of faults must also be specified. As 

with routing in chapter two, we consider a model in which faults occur independently 

among components with probability p. We restrict our attention to the situation 

where p < !, although the methods can be extended for larger p. In addition, we 

consider the case in which the number of faults is smaller than a constant fraction 

of the total number of nodes. The assumption concerning independence of faults is 

crucial to our analysis, but the methods can also be applied in a hierarchical setting 

where entire subcubes of nodes may fail at once. Such extensions might be useful in 
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a practical setting where the actual machine may consist of a collection of boards, 

each of which consists of a collection of chips, and so on. 

The material we present is philosophically related to previous work in fault tol­

erance of arrays in the context of wafer-scale integration ([Gr],[GG],[LL1],[LL2]), al­

though the techniques and results are quite different. For example, constant dilation 

reconfiguration is not possible for arrays and trees. There has been relatively little 

previous work on the fault-tolerant reconfiguration of hypercubes (to our knowledge). 

An exception is the work of Becker and Simon ([BS]), who consider fault-free sub­

cubes of a hypercube containing worst case faults. The constraint that the embedded 

cube be a subcube (i.e., dilation 1) is very restrictive, as is the assumption that faults 

are located in a worst case fashion. Hence, the techniques and results of [BS] are quite 

different from those presented here. Another exception is the work of Dolev, Halpern, 

Simons and Strong ([DHSS]) who also study worst case bounds. Their model of com­

munication also differs from ours in that they assume that after the faults occur, the 

new connections must be chosen from a predetermined set of routings. 

3.1.1 Summary of Results 

At first, we consider an N-node hypercube containing random partial processor faults. 

We describe algorithm 3.1, an algorithm for embedding an N/2-node hypercube in 

the functioning processors. 

Theorem 3.3. Algorithm 3.1 is a local, deterministic O(log N) step algorithm. If 

the nodes of Hn fail independently and partially with probability p :5 t then with 

probability at least 15/16 algorithm 3.1 constructs a one-to-one embedding of Hn-1 

into Hn - F with dilation 3, congestion 2 log N, and induced congestion 2. 

Next we improve this algorithm so that it embeds an N/2-node hypercube in 

the functioning processors with the same performance with probability 1 - N-cu 

provided that processors are faulty with probability p < 1/2, for sufficiently large N. 

The algorithm for finding the embedding is deterministic, easy to implement, runs in 

O(log N) parallel steps, and uses only local control. As a result, we extend the results 
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of Bhatt, Chung, Leighton and Rosenberg [BCLR] and others to be fault-tolerant. 

In particular, we show that a hypercube with partial processor faults can simulate 

any binary tree or mesh of the same size with only constant factor slowdown. The 

most surprising (and potentially most useful) feature of the embedding is the degree 

to which it preserves locality. 

Next, we extend the results to handle total faults. We describe an embedding for 

which the dilation is 7, the max load is 1, the congestion is O(log N), and the induced 

congestion is O(log N /log log N) with high probability (for sufficiently large N). The 

algorithm for achieving these results is probabilistic, runs in O(log N) steps, and uses 

only local control. 

Finally, we address the issue of congestion. We demonstrate a probabilistic al­

gorithm which with high probability finds an embedding in a hypercube containing 

totally faulty processors for which the dilation is 5, the max load is 0(1), and the 

congestion is 0 ( 1). 

Theorem 3.22. Foreachp < 1-~ (about .16) there is an O(logN) step algorithm 

such that if each of the nodes of an N -node hypercube fails with probability p then 

with probability 1 - N-ci~ the algorithm finds an embedded fully functioning N-node 

cube with constant load, dilation and congestion. The paths which simulate the edges 

of the cube only use live nodes. 

As a consequence, a faulty hypercube can simulate a functioning hypercube of the 

same size with constant delay. 

These last two algorithms actually work in a semi-worst case setting. As long as 

a constant fraction of each node's neighbors remain alive and a constant fraction of a 

specified set of paths for each node have no faults along them, the good embeddings 

exist. 

Chapter three is the result of joint work with Johan Hastad and Tom Leighton. 
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3 .1. 2 Overview 

In section 3.2, we consider only partial faults which occur with probability p :::; 1/4. 

We extend the algorithm to handle failure probabilities up to 1/2 in section 3.3. A 

probabilistic algorithm for reconfiguring with total faults appears in section 3.4 and 

section 3.5 contains a probabilistic algorithm achieving constant delay reconfiguration 

with total faults. In section 3.6 we describe a way to implement the algorithms of 

section 3.5 so that they run in O(log2 N log log N) time. In section 3.7 we extend our 

results to the cases where the probability of failure is very low and also to the case 

where edge faults occur. 

3.2 Embeddings for Small p with Dilation 3 

In this section we consider the less severe model of partial faults where it is possible to 

use the faulty processors as switches and to route through them. We assume that the 

probabi).ity that any given processor fails is less than or equal to 1/4 and we present an 

algorithm which with probability 15/16 constructs a one-to-one embedding of Hn-l 

in Hn with dilation 3, congestion 2n (= 2logN) and induced congestion 2. 

3.2.1 Mapping Dead Nodes to Live Nodes 

Let Hn-l be the subhypercube on N/2 = 2n-l nodes induced by the nodes with first 

coordinate zero. For each node v in Hn, let v' be the node with first coordinate 

different from v's whose coordinates otherwise agree with those of v (i.e. v's neighbor 

across the first dimension). Also, for a node y = (yi, Y2, ... , Yn-1) in Hn-1, let y be 

the node in Hn with coordinates (0, Yi, Y2, ... , Yn-d· 

Given some pattern of failure for the nodes in Hn, say a node v E Hn-1 is rich 

if both v and v' are live and poor if both v and v' are dead. If every node in Hn-1 
were not poor, we could easily embed H n-l in H n - F by mapping (Y1, ... , Yn-1) to 

whichever of {(O, yi, ... , Yn-i), (1, yi, ... , Yn-l)} were alive. Unfortunately, there will 

be a constant fraction of poor nodes in Hn-l with very high probability since each 
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v' w' 

v w 

Figure 3-1: Borrowing from a neighbor. Dead nodes are shown as white. The arrow 
points from the simulated node to the simulating node. 

node in f/n-l is poor with probability p2 .1 

We handle the existence of poor nodes by mapping each poor node v to a neigh­

boring rich node w. At most one vis mapped to a given node w. Hence v can borrow 

w'. In this fashion we will be able to embed Hn-l in Hn - F much as if there were 

no poor nodes at all. At step k algorithm 3.1, shown in figure 3-2, will attempt to 

assign v to vk+1, if v and vk+1 are as yet unassigned. 

for k +- 2 to n for all nodes v 
if v is poor and unassigned and vk is rich and unassigned assign v to vk 

Figure 3-2: Algorithm 3.1. 

3.2.2 Analysis of the Borrowing 

If processors fail with probability less than or equal to 1/4, algorithm 3.1 will construct 

an embedding with probability at lea.st 15/16. We show this by proving two simple 

1 We use the phrase Q is more than O(g) with very high probability to mean "There exist constants 
k and d independent of N such that the probability that Q does not exceed dg is less than 2-A:N ." 
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lemmas. First we will prove a lemma which will be of crucial importance to the later 

analysis. 

Lemma 3.1. At step k - 1, what has happened to v is independent of what bas 

happened to any node which differs from v in at least one of the last n- k coordinates. 

Proof. At step i, nodes that affect each other have all coordinates identical except 

the ith coordinate. Thus at step k -1, if we divide the nodes into groups each having 

identical last n - k coordinates, all previous communication has taken place within 

the groups. Thus nodes in different groups cannot affect each other. • 

Lemma 3.2. The probability that a given node v is poor and unassigned after the 

ith step is at most (2p)ip2 • 

Proof. For each node v let Pi = Pr[v is poor and unassigned after step i] and Qi = 

Pr(v is rich and unassigned after step i]. Then p0 = p2 and Qo = (1 - p)2 • A node v 

will be poor and unassigned after step i + 1 if and only if it was poor and unassigned 

after step i and the node it requested in step i + 1 was not rich and unassigned. A 

similar statement holds for whether a node is rich and unassigned after step i + 1. 

Thus, since these probabilities are independent, 

Qi+i = Qi(l - Pi) 

Pi+i = Pi(l - Qi) 

Subtracting the two equations yields Qi+i - Pi+i =Qi - Pi, which is natural since the 

surplus of rich nodes over poor nodes is constant. Thus the difference is Qi - Pi = 
Qo - Po = 1 - 2p, or Qi = 1 - 2p +Pi· Therefore Pi+t = Pi(2p - Pi) ~ (2p)pi and so 

Pi ~ (2p)'Po = (2p)iP2
• • 

The probability that an individual node is poor and unassigned at the end of the 

algorithm is less than {1/2)"-1 (1/16) = 1/8N. Thus the probability that some node 

is poor and unassigned is no more than (N/2)(1/8N) = 1/16. 
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qxy) 
</Kz) 

y z 

Figure 3-3: Mapping an edge to a path. The heavy edges form the path chosen to 
simulate the edge between the two simulated nodes at bottom. 

3.2.3 Embedding Edges 

If the algorithm successfully assigns each poor node to a rich node call the assignment 

'lj;. Embed Hn-1 in Hn with the embedding</> which maps nodes in Hn-l to nodes in 

Hn by 

y 

(y)' 

'lj;(y)' 

if y E Hn - F 

if (y)' E Hn - F but y E F 

otherwise 

and maps edges in Hn-l to paths in Hn by 

(</>(y), </>(z)) if </>(y) = y,</>(z) = z 
</>: (y, z) ..._. (</>(y), </>(y)', y, </>(z)) if </>(y)-:/: y,</>(z) = z 

(</>(y), (y)', (z)', </>(z)) if </>(y) # y,</>(z) # z 

Although the mapping of the edges looks complicated, every edge simply maps to a 

shortest path between the corresponding nodes. Figure 3-3 depicts an instance of the 

third possibility. Since in all cases the length of the path is at most 3 the embedding 

has dilation 3. 

To check the congestion, observe that a given edge is used on a given path </>( (y, z)) 

only when one of its endpoints is </>(y), y, or (z)'. Checking cases shows that no edge 
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could lie on three paths corresponding to node-disjoint edges. Thus, since we can 

partition the edges of the hypercube into n matchings, the congestion can be no 

worse than 2n. By this argument it also follows that the induced congestion of the 

embedding is at most 2. 

Theorem 3.3. Algorithm 3.1 is a local, deterministic O(log N) step algorithm. If 

the nodes of Hn fail independently and partially with probability p $ 1/ 4 then with 

probability at least 15/16 algorithm 3.1 constructs a one-to-one embedding of Hn-l 

into Hn - F with dilation 3, congestion 2 log N, and induced congestion 2. 

3.3 Embeddings with Dilation 3 for p < 1/2 

In this section we extend the algorithm of section 2 so that it can handle independent 

faults with probabilities exceeding 1/4 but less than 1/2. This is best possible in the 

sense that if p ~ 1/2, then more than half of the nodes will fail with probability at 

least 1/2. In that case it would be impossible to achieve a one-to-one embedding of 

Hn-1 in Hn - F. 

Call a node v E Hn-l a topnode if v is dead but v' is alive. We now handle the 

existence of poor nodes by mapping each poor node v to a neighboring node w which 

is either rich or a topnode. If w is a topnode, we make sure that w has a rich neighbor 

u so that w can borrow u'. We call this process pushing a topnode. 

Algorithm 3.2, shown in figure 3-5, will carry out the program outlined above in 

4 stages. The only additional feature is that poor nodes without enough topnode 

neighbors will be treated separately. 

Observe that conflicts can only occur during stage 4, and can be easily resolved 

by having the node with lower index win. 

Lemma 3.4. Assume that nodes fail independently with probability p < 1/2 and 

that N is sufficiently large. Then there is a constant c5 > 0 such that after algorithm 

3.2 terminates, with probapility l-N-c5 : (i) every poor node is assigned to a neighbor 

which is either a topnode or a rich node, and (ii) every topnode which has been 

assigned to a poor node is pushed to a rich neighbor. 
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u' 

v' 

v w 

Figure 3-4: Pushing a topnode. Dead nodes are shown as white. The arrows point 
from the simulated nodes to the simulating nodes. 

3.3.1 Analyzing Stages 1 and 2 

Stages 1 and 2 comprise a "first pass" to assign poor nodes. In stage 1, those poor 

nodes with few top node neighbors are given first crack at assignments, since these 

nodes will have much less ability to push neighboring topnodes later In stage 4. 

Stage 2 replicates algorithm 3.1. We expect that the vast majority of nodes will find 

assignments during this stage. 

Let f be a small positive constant depending on p and let d = d( t:, p) and c = c( f, p) 

be suitable positive constants depending only on f and p. Throughout the argument 

we will assume that N is sufficiently large. The neighborhood of a point is the set of 

points at distance 1 from the point, and a sphere denotes a sphere in the Hamming 

metric. 

Lemma 3.5. For f < p(l - p)/4./2. there is a positive integer constant d = d(t:,p) 

such that for sufli.ciently large N, with probability 1 - 1/ N no sphere of radius 6 

contains more than d nodes processed in stage 1. 

Proof. Take any sphere of radius 6 and any d points in this sphere. The union 

of their neighborhoods is of size at least dn - <fl > dn/2. (N = 2n is assumed to 

be sufficiently large and any two neighborhoods do not have more than 2 points in 
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Stage 1: 
for every poor node v which has fewer than rn topnodes as neighbors 
across dimensions > rn do 

fork+- 2 ton 
if vk is rich and unmarked, mark it v 

Stage 2: 
for k +- 2 to rn for all nodes v 

if v is poor and unassigned and vk is rich and unassigned assign v to vk 

Stage 3: 
for every node v which was processed in stage 1 

assign v to the node which was marked v 
for every node w assigned to a marked node during stage 2 

w becomes unassigned 
Stage 4: 

for all unassigned poor nodes v do 
for k +- m + 1 to n 

if vk is an unpushed topnode and there is an unassigned rich node 
vki for some j > e: log N 

assign v to vk and push vk to vki 

Figure 3-5: Algorithm 3.2. 

common). By assumption, at most 2dm nodes in this neighbor set can be topnodes. 

Since the probability that an individual node is a topnode is p(l - p) the probability 

of having exactly i topnodes in a set of size dn/2 is 

Pi = Cf) (p(l - p))i(l - p(l - p))~-i 

Observe that Pi+t/Pi ~ v'2 for i ~ p(l - p)dn/2\1'2. Using this and the fact that any 

Pi is less than 1 we get 

2d<n 2d<n L Pi < L P2d<n2 i-22dsn 

i=O i=O 

< 4p2d<n 

2d p(l~dn 
< 4 J2 <n- 2 p p(12~dn ;,. 

< 4 exp( -c6dn) 

The probability that fewer than 2dm nodes in a set a.re topnodes decreases as we 

make the set larger than dn/2. Thus this bound holds no matter what the actual size 
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of the union of the neighborhoods may be. Since there are at most N possible spheres 

and at most (n;) ways of choosing d points, the lemma follows for large enough d. • 

Next we show that stage 1 has a good probability of success for the nodes to which 

it is applied. 

Lemma 3.6. The probability that there exists a node which bas fewer than 2rn 

neighbors across dimensions greater than m which are either rich or topnodes is 

bounded by N-cr for sufficiently small<::> 0 and c7 > 0. 

Proof. This proof uses reasoning similar to that of the proof of lemma 2.3. Choose 

1:
1 > 0 such that ( 1 - t:') log p = -1 - cs for cs > 0. The probability of having fewer 

than 8 log N neighbors across dimensions greater than 1:' log N which are either rich 

or topnodes is 

.S~N ((1-t:'llogN)(l-p)ip(l-t')IogN-i. 

We can compare consecutive terms to show that this sum is bounded by a constant 

times the last term. The last term is 

(
(1 - €)log N) (l _ p )8IogN p(l-t'-.S)Iog N 

8logN 

< ((1 - t:') log N).SiogN (l )8logN (1-(1-.S)logN 
('5lo!N )81ogN - p p 

- exp2(81oge(l - t:')logN -8log8logN 

+8 log N log ( 1 - p) - 8 log N log p + ( 1 - 1:') log N log p) 

- exp2 ( h ( 8, p) log N + ( 1 - t:') log N log p) 

For 8 = 0, h(8,p) = 0 and the above expression is N-1
-1:3. Since h(8,p) is 

continuous, there is a 8 > 0 such that the above expression is bounded by N-1-cr 

with c7 > 0. Finally set E = min{ t:', 8/2} and observe that decreasing E
1 to E can 

only decrease the probability of having at most 8 log N topnode neighbors across 

dimensions ~ E
1 log N. • 

By lemma 3.6, with probability 1-N-cr any node processed in stage 1 must have 

at least m rich neighbors. The only way it could fail to mark one of these is if they 

were all marked by other nodes. This is impossible since by len:una 3.5 there is only 
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a constant number of nodes processed during stage 1 within distance 6. Thus each 

node participating in stage 1 successfully marks a rich node. 

Let us next analyze stage 2. Note that stage 2 is independent of stage 1. By lemma 

3.2, after stage 2 the probability that an individual node is poor and unassigned is 

< N-c9 while the probability that it is rich and unassigned is > (1 - 2p). 

Let a E {O, l}m and let Ha be the (1 - €)n dimensional hypercube which has the 

ith coordinate a;, i = 1, ... , m. Observe that by lemma 3.1 the status of nodes in an 

individual hypercube are independent during stage 2. 

Lemma 3. 7. There is a constant d = d(p) such that the probability that there is a 

sphere of radius 4 in any Ha which contains more than d unassigned poor nodes after 

stage 2 is less than 1 / N. 

Proof. There are N ways to choose a sphere over all Ha's and at most (~
4

) ways of 

choosing d points in each sphere. The probability that these d nodes are poor and 

unassigned is N-dc" and the lemma follows for sufficiently large d. • 

3.3.2 Analyzing Stages 3 and 4 

Stages 3 and 4 are responsible for assigning those nodes which remain unassigned after 

stage 2. In stage 3, nodes assigned in stage 1 negate some of stage 2's assignments. 

Bumped nodes find new assignments in stage 4. 

Lemma 3.8. With high probability, after stage 3 there are only 2d unassigned poor 

nodes in any sphere of radius 4 in any Ha. 

Proof. This follows from lemmas 3.5 and 3.7. The only additional unassigned poor 

nodes come from the nodes whose assignments are stolen in stage 3. But since the 

thief is at distance two, lemma 3.5 bounds the number of poor nodes subject to theft 

in any sphere of radius 4. • 

To prove lemma 3.4 observe finally that stage 4 only works inside an individual 

Ha. Fix a poor unassigned node at the beginning of stage 4. It has m topnode 

neighbors. The probability that each individual topnode neighbor does not have m 
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rich unassigned neighbors is N-cio. Thus with probability 1 - ~ each unassigned 

poor node has ~n topnode neighbors with m unassigned rich neighbors each. Stage 3 

reduces the number of rich neighbors to each topnode only by a constant. By lemma 

3.8 we know that during stage 4 only 2d other unassigned poor nodes can interfere. 

Therefore stage 4 is successful and lemma 3.4 follows. • 

If the algorithm successfully assigns each poor node to a rich node or topnode and 

each pushed topnode to a rich node, call the assignment 1/J. Embed Hn-l in Hn - F 

with the embedding ¢>which maps nodes in Hn-l to nodes in Hn - F by 

ii if ii E Hn - F 

¢> : Y ~ (ii)' if (ii)' E Hn - F, ii E F and y is not pushed 

1/J(ii)' otherwise 

and maps edges in Hn-l to paths in Hn - F precisely as discussed in section 2. 

Theorem 3.9. Algorithm 3.2 is a local, deterministic algorithm. For any p < ! there 

is a sufficiently small constant c11 > 0 such that if the nodes of Hn fail independently 

and partially with probability p, for sufficiently large N the following is true with 

probability 1 - N-cu. Algorithm 3.2 takes O(log N) steps and constructs a one­

to-one embedding of Hn-l into Hn - F with dilation 3 and congestion 2 log N. The 

embedding has the property that if a constant degree network C is embedded in H11 _ 1 

then the induced embedding in H,,, - F has constant congestion. 

The only part of the theorem which we have not yet checked is the number of steps 

stage 4 takes. Figure 3-6 gives a more detailed description of the implementation of 

stage 4. First, each unassigned poor node is tentatively assigned to a constant number 

of topnode neighbors. Each topnode chosen attempts to tentatively assign itself to 

one of its unassigned rich neighbors. Each poor node then finds a topnode to which 

it is tentatively assigned which successfully was assigned to a rich node. 

Since by lemma 3.8 there are few unassigned poor nodes in any small sphere and 

we know that most topnodes will have many rich neighbors, the above procedure will 

assign every unassigned poor node to a topnode with high probability. 
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for all poor nodes v unassigned after stage 3 do 
for k +- rn + 1 to n 

if vk is an unassigned topnode 
assign v to vk unless v is already assigned to 8d neighbors 

for all assigned topnodes u do 
for k +- m + 1 to n 

if uk is an unassigned rich node assign u to uk and stop 
for all poor nodes v unassigned after stage 3 do 

for k +- m + 1 to n 
if vk was assigned to v and succeeded in being assigned to a rich node w 

push Vk to w and assign v to vk 

Figure 3-6: Stage 4. 

3.4 Routing Using Only Live Nodes 

If we consider total faults instead of partial faults, algorithm 3.2 fails in several places. 

In fact, any path in the embedding which does not consist of only a single edge has at 

least one dead node internal to it. In order to handle total faults we will replace the 

paths of length 3 in Hn - F which constitute the edges of the embedded hypercube 

with paths of length 7 which use only live nodes. 

In the remainder of the chapter we will use probabilistic algorithms. To guarantee 

the performance of these algorithms, we will need to know that certain assumptions 

about the distribution of faults hold true. These assumptions are stated in several 

lemmas (for example, lemmas 3.10 and 3.11). Given that these distribution assump­

tions hold (which they do except with inverse polynomial probability), the algorithms 

work with high probability. The errors arising during particular executions of the al­

gorithms are thus in some sense independent of the existence of unusual fault patterns. 

First we establish that all nodes have a reasonably large number of live neighbors. 

Lemma 3.10. There exists a c12 > 0 such that for any node v, the set Nv of live 

neighbors of v has cardinality at least m with probability 1 - N-cn. 

Proof. A calculation almost identical to the one in the proof of lemma 3.6. • 

With probability close to 1, all pairs of nodes are connected by many paths each 
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Figure 3-7: A live path pii. The darkened path simulates an edge ( u, v). 

of which contains only live nodes. 

Lemma 3.11. Suppose every node fails with probability p < 1/2. Then with prob­

ability 1 - N-ci 2 there are O(n2 ) live paths of length at most 7 between any points u 

and v within Hamming distance 3, where we choose c12 as in lemma 3.10. 

Proof. We will prove only the case where the distance is 3; the other cases are 

similar. Let P = ( u, w1, w2, v) be a path of length 3 between u and v. The paths we 

will consider are of the type pii = ( u, ui, uii, w~i, w;i, vii, vi, v ). Let Nu be the set of 

dimensions k for which uk is live and similarly for Nv. Take the larger of the two sets 

{Piili E Nu,j E Nv,i < j} and {Piili E Nu,j E Nv,i > j}. By lemma 3.10 this set 

has cardinality t:2n2 /2. The interior 4 nodes of these paths are disjoint for different 

pairs i,j (if we discard i,j where either i or j is a dimension used along P) and the 

outer 4 nodes are all alive. Thus with high probability O(n2 ) of these paths use only 

live nodes. • 

Once we have established the existence of live paths it is a simple matter to find 

them algorithmically. However, if we look for them deterministically it is difficult to 

bound the congestion. A random algorithm which uniformly chooses a random live 

path for each pair of nodes is easier to analyze. Before we show how well the random 

algorithm performs, we prove a simple lemma about balls and boxes. 
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Lemma 3.12. If each of a balls is placed randomly and uniformly into one of f3 

boxes, then with probability 1 - ( ae/ /31 ft there are fewer than / balls placed in the 

first box. 

Proof. The probability that there are more than I balls in the first box is no more 

than (a) (l)"'I < ~(l)"'I = (2-)"'1 .!.. • 
')' {3 - -y! {3 {3 -y! 

Theorem 3.13. If we uniformly choose a random live path between each pair of 

chosen nodes at the end of algorithm 3.2, then with high probability the resulting 

embedding will have congestion O(log N) and induced congestion O(log N/ log log N). 

Proof. The estimates will follow from lemma 3.12. The balls correspond to the edges 

of the paths of the embedding and the boxes are the edges of Hn. The paths which 

potentially share a given edge can be separated into classes. We assign a path to a 

class depending on which position in the associated live path the edge would occupy 

if the live path were actually routed through the edge. We will then show that with 

high probability the congestion due to the live paths associated with any one class is 

O(n). Since there will be only four classes, the result will follow. 

Fix an edge (s, t). Given a path P, put P in class r if (s, t) is the rth edge along 

pii (reading from the closest end) for some pair (i,j). There are four cases we need 

consider. 

r = 1: Then s = u. Since there are at most n - 1 paths beginning at u, there are 

only n - 1 paths of this sort even in the worst case. 

r = 2: Then ( s, t) = ( ui, uii). There are n - l possible values for u, each an endpoint 

of at most n- l paths P. Since there are at least (m)2/2 choices for (i,j) for each of 

these O(n2) paths, lenuna 3.12 applies to show that the probability that more than 

O(log N/ log log N) of these paths are actually chosen to go through (s, t) is at most 

O(N-1c). 

r = 3: Then ( s, t) = ( uii, w~i). If Wt E H~-t' then the path P was embedded for the 

edge ( u, Wt). Thus only one path of this type exists for each pair ( i, j). If Wt E H:_ t, 
then the path P was embedded for an edge incident to w~. Thus only n - 1 paths of 

this type exist for each pair ( i, j). Therefore the total number of paths P in this class 
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is no more than n3 for any edge (s, t). Again the probability that any one of these 

paths will actually be chosen to go through ( s, t) is no more than 2 / ( rn) 2 • By lemma 

3.12 the probability that more than O(log N) of these paths are chosen that way is 

at most O(N-/t:). 

r = 4: Then (s,t) = (w~j,w;i). There are two cases. If both w1 ,w2 E H:_ 1 , then 

P was embedded for ( w~, w~). Thus only one path of this type exists for each pair 

(i,j). If W1 E H~_ 1 ,w2 E H:_ 1 , then P was embedded for an edge incident to w 1. 

Thus only n - 1 paths of this type exist for each pair (i,j). The rest of the analysis 

is identical to that of the previous case. 

Thus the probability that the congestion is more than O(log N) is at most O(N-/t:) x 

N log N/2 = O(N-k+1 log N). 

To prove the induced congestion is O(log N flog log N), note that only one path 

from class 1 can contribute to the induced congestion. Note also that classes 3 and 

4 have only O(n2 ) paths in them which can contribute to the induced congestion, 

since the original edges could not have been adjacent. Thus the analysis for induced 

congestion due to classes 3 and 4 reduces to that of case 2 above. • 

3.5 An Algorithm for Constant Delay Embedding 

In section 3.4 we resorted to probabilistic means to find fault-free communication 

paths. We will use probabilistic methods again in this section, together with a more 

uniform view of the nodes of the cube. We allow the max load to rise to a constant, 

and in return we achieve constant congestion. 

To achieve a constant delay embedding, we need the load, dilation and congestion 

to all be constant. The embedding we will find will have a load and congestion which 

depend strongly on the probability of failure - clearly the more nodes that fail, the 

more nodes that have to be simulated by any one processor. However, the dilation 

will always remain five, and each processor will be simulated by one of its neighbors, 

provided that p < 1 - '15 (about .16). 

In order to simplify the analysis, each node (live or dead) finds a neighbor to 
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simulate it. We first assign nodes to live neighbors so that no node simulates more 

than a constant number of its neighbors. Then each pair of nodes simulating neighbors 

finds a live path between them of length five so that no more than a constant number 

of these paths congest any edge. We will use two similar algorithms to accomplish 

these two tasks. 

3.5.1 Assigning Nodes to Live Neighbors 

Let Ap and Sp be constants (to be determined later) which depend only upon the 

probability p of failure. Call a node unsaturated if it is live and if it has been assigned 

to simulate fewer than AP of its neighbors. Otherwise, it is saturated. 

The assignment algorithm proceeds in rounds. During a round, a previously unsat­

urated node might be picked by enough unassigned nodes so as to exceed its capacity 

AP. In such a case, we require the node to accept enough of the simulation requests 

to saturate it. Algorithm 3.3 performs the first phase. 

for i = 1 to spn 

for each unassigned node w 
w picks one of its neighbors uniformly 

each unsaturated node v agrees to simulate as many nodes as it can 
without exceeding its capacity 
all excess nodes remain unassigned 

Figure 3-8: Algorithm 3.3. 

Since the algorithm never assigns a saturated node to simulate another node, no 

node simulates more than Ap nodes. Thus, a constant load embedding results. 

To facilitate our proofs, we will first formulate a sequential algorithm similar 

to algorithm 3.3. We will prove that this new algorithm assigns to each node a 

neighboring node to simulate it. We will then show that, except for a small proportion 

of executions, the algorithms behave the same. 

In each round of algorithm 3.4, unassigned nodes act sequentially. Each node 

chooses a neighbor to simulate it only after all lower ordered nodes have chosen. We 
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for i = 1 to spn 

for unassigned nodes w in arbitrary order 
if w has fewer than avn unsaturated neighbors 

arbitrarily dedicate enough (saturated) neighbors 
w picks one of its neighbors uniformly 
if the chosen node is unsaturated or dedicated 

w is assigned to that node 
else w remains unassigned 

Figure 3-9: Algorithm 3.4. 

would like to ensure that all nodes have a large number of choices that will result in a 

successful assignment. Let av depend only upon the probability p. If some node w has 

fewer than avn unsaturated neighbors to choose from during its turn, we designate 

an arbitrary set of saturated neighbors as dedicated to w during its turn. If w chooses 

a dedicated node during that particular turn, the dedicated node agrees to simulate 

w even though it is saturated. We dedicate enough nodes so that w has at least apn 

neighbors which, if chosen, will agree to simulate it. 

We will show below that with high probability no nodes are ever dedicated during 

algorithm 3.4. In that case, the result is the same whether unassigned nodes choose 

sequentially or in parallel. Thus we will show that algorithms 3.3 and 3.4 produce 

the same output. 

The following lemma proves that algorithm 3.4 terminates quickly. 

Lemma 3.14. With high probability all nodes have been assigned after svn steps of 

algorithm 3.4, for sufficiently large Sp. 

Proof. Because each node always has at least avn neighbors which will simulate it if 

chosen, the probability that a given node is assigned during some step is at least ap, 

regardless of what has occurred in previous steps. Thus the probability that a node 

remains unassigned after svn steps is no more than (1 - ap)'P". This quantity is less 

than N-k as long as Sp > k/ av. • 

Lemma 3.15. For p < 1 - -YS, there exists an fp and a constant c13 > 0 such that 
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with probability at least 1 - N-ci3 ea.ch node bas at least fpn live neighbors. 

Proof. The probability that a node has fewer than m live neighbors equals 

Since the ratio of consecutive terms is always greater than (1 - p)/p, this sum is 

bounded by a constant times its last term. That term is 

The second term in the product can be made less than N-1-ca for some c14 by taking 

f small enough. The first term in the product can be made less than Nca/2 by taking 

c small enough as well. The probability that some node has too few neighbors is 

bounded by the sum of the probabilities for the individual nodes. This multiplies 

the above bound by N. Thus for any f below both of these thresholds, the theorem 

applies. • 

The following two lemmas show that with high probability algorithm 3.4 never 

dedicates saturated nodes. Thus with high probability algorithms 3.3 and 3.4 behave 

identically. This proves that algorithm 3.3 assigns all nodes with high probability. 

Similar reasoning proves the Dance Hall Theorem described in the introduction. 

Lemma 3.16. Given a failure rate p, assume that every node bas at least tpn live 

neighbors. Then with bish probability a given node v never has fewer than aPn 

unsa.tura.ted neighbors available during a.lgorithm 3.4, for ap = ~· 

Proof. For v to have fewer than apn unsaturated neighbors at some point during 

algorithm 3.4, at lea.st (tp-ap)n = apn of v's neighbors must have become saturated 

during the course of the algorithm. 

Each node always has at least apn neighbors (including dedicated nodes) to which 

it might be assigned during any step. Further, if it is assigned, it is equally likely to 

be assigned to any one of those neighbors. Thus no node has a probability greater 

than 1/apn that it will be assigned to any given neighbor, no matter what other 

assignments have been made previously. 
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To saturate apn of v's neighbors, there must be at least Apapn nodes at Hamming 

distance two from v each of which is assigned to a neighbor of v. There are no more 

than n2 nodes which might be assigned to some node in v's neighborhood. Each 

one of these nodes has at most two neighbors of v to which it might be assigned. 

Although the probabilities of such selections are dependent, the probability a given 

node is assigned to a neighbor of v is at most 2/ apn, no matter what choices the other 

nodes made. The probability that at least apn of v's neighbors become saturated is 

thus no more than 

( 

n2 ) (-2 )Apapn $ (~)Apapn 
Apapn aPn APap 

For AP large enough, this quantity is an inverse polynomial in N. • 

Lemma 3.16 implies that with high probability algorithms 3.3 and 3.4 behave 

identically. We know that algorithm 3.4 successfully assigns each node to a neighbor 

with high probability and that algorithm 3.3 never assigns more than AP nodes to 

any node. We conclude that algorithm 3.3 achieves a constant load embedding with 

high probability. 

3.5.2 Assigning Edges to Paths 

Once we've assigned simulating nodes, we need to find paths to simulate the edges 

in the hypercube. Say that vb simulates v and vkb' simulates vk. Then to simulate 

the edge (v, vk), the nodes vb and vkb' choose a path between them of the form 

P(v vk b b' r) - (vb vbr vr vrk vrkb' vkb') To avoid ambiguity we will refer to the ' '' , - ' ' ' ' ' . ' 
choice of r as if it were made by v and vk even though vb and vkb' actually choose. 

For two adjacent nodes v and vk, let S( v, vk, b, b') be the set of dimensions r -:/=- k 

for which P(v, vk, b, b', r) is a live path. Because p < 1 - V(S, there is a chance 

( 1 - p )4 = s > ! that any given path P( v, vk, b, b', r) is live. Note that the paths 

P( v, vk, b, I/, r) ( r -:/=- k) are node-disjoint for a fixed choice of v, vk, b and b'. Thus the 

probability that any one of them is live is independent of the other paths. 

Lemma 3.17. With high probability, for all quadruples (v, vk, b, II), IS(v, vk, b, b')I > 

T/pn for some constant T/p· 
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v 

Figure 3-10: A choice of live path. 

rkb' v 

kb' v 

Proof. Same as lemma 3.15, except that there are N log3 N different quadruples. • 

With high probability, we know that all pairs of neighbors have many paths from 

which to choose. What remains is for them to decide in a systematic but local fashion 

how to choose from among these paths without congesting any edge too much. In 

the rest of this section, we explore a way to choose paths in this manner. 

Take a node v simulated by its neighbor vb and consider the set E11 ,b of edges 

{(vbr, vr)}. There are 2n2 nodes w (all of the form w = vrt or w = vbrt) which (like 

v) might potentially use one of the edges in the set a.s a second edge along a path. 

Any node which actually does must be simulated by its neighbor across dimension b. 

The next lemma bounds the number of such nodes. 

Lemma 3.18. For sufficiently large bp and with high probability, of the 2n2 nodes 

at distance 0 or 2 from either v or vb, no more than bpn of them are simulated by 

neighbors a.cross dimension b. 

Proof. As noted before, each node has a probability no more than 1 / apn of borrowing 

across any given dimension, regardless of the choices made by other nodes. The 

probability that many nodes choose across the same dimension is no more than 
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Of course, the actual probabilities depend on the particular 8pn-size subset we con­

sider and on the relative order in which the nodes of the subset successfully found 

neighbors to simulate them. Then any node's probabilities are conditioned upon 

other nodes' previous choices. No matter how these choices are made, however, the 

stated probabilities are upper bounds on the actual probabilities since when each 

node chooses it always has at least apn choices. 

For sufficiently large 8P, this is smaller than an inverse polynomial in N. • 

Each of the at most 8Pn nodes (except for v and vb) can use at most two edges 

in the set Ev,b as a second edge along some path. To use an edge as a second edge, 

such a node would have to be a neighbor of one of the nodes incident to the edge. If 

w is of the form w = vrt, then w is adjacent to vr and vt and no other node incident 

to an edge in Ev,b· Similar reasoning applies to nodes w which satisfy w = vbrt. 

Trivially, each of v and vb can use no more than n edges of Ev,b as a second edge 

along some path. ff we sum over all edges in Ev,b the number of nodes which can use 

each edge as a second edge counting according to multiplicity, the total will be no 

more than (28p + 2)n. Therefore no more than 7],,n/4 of these edges will have more 

than {p = 4(28,, + 2)/TJ,, of those 8,,n nodes potentially using them as second edges. 

Let S' ( v, b) = { r I more than {p nodes can send a path through the edge ( vbr, vr)}. 

Then IS'(v, b)I ~ 7],,n/4. 

Let T(v,vk,b,b') = S(v,vk,b,b') - S'(v,b) - S'(vk,b'). Then for each adjacent 

pair of nodes v and vk, IT(v,vk,b,b')I > TJ,,n/2. The sets T(v,vk,b,b') will be crucial 

for our reasoning. The probability that a pair successfully choose a path between 

them is lower bounded by the probability that they successfully choose the path from 

T( v, vk, b, b'). 

Note that among the edges in all the paths represented by the sets T( v, vk, b, b'), 

there are now only a logarithmic number of quadruples ( w, wi, c, c') which might 

potentially congest any given edge. We've already limited the number of paths for 

which the edge is the second edge along the path. If the edge is the first edge along 

the path, then one of the edge's endpoints is the simulating node. Each endpoint 

simulates only a constant number of nodes, and each simulated node contributes 
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exactly n paths. If the edge is the third edge along the path, then the path is 

simulating an edge at Hamming distance one from the edge considered. There are 

exactly n edges of this type. The cases in which the edge is the fourth or fifth edge 

along the path are identical to the first two cases. Thus each edge can be potentially 

congested by no more than µpn = ( 4Ap + 2/p + 1 )n paths. 

We can now describe algorithm 3.5, which assigns paths to simulate edges. During 

algorithm 3.5, each edge will decide whether or not to accept some path routed 

through it. Because the other edges in the path simultaneously decide whether or 

not to accept the path, it is possible that some might accept it while others reject it. 

If this happens, we assume that an accepting edge counts the path as contributing 

to its load anyway. Call an edge saturated if it has accepted exactly BP paths routed 

through it. Otherwise, call it unsaturated. Order the pairs ( v, vk) lexicographically. 

As before, in any round an edge accepts an arbitrary set of pairs which try to route 

through it until it reaches its capacity. 

for i = 1 to s~n 
for each unassigned adjacent pair of nodes ( v, vk) 

( v, vk) pick a path between them uniformly 
each unsaturated edge agrees to as many paths routed through as it can 
without exceeding its capacity, deciding conflicts arbitrarily 
all excess pairs remain unassigned 

Figure 3-11: Algorithm 3.5. 

Parallelling what we did before, we will present algorithm 3.6, a sequential ver­

sion of algorithm 3.5. We will show that this modified algorithm terminates having 

assigned paths between every pair of nodes simulating neighbors, with high proba­

bility. Maintaining the parallel with what we proved earlier in this section, we will 

then show that the two algorithms perform indistinguishably, with high probability. 

At any time when the pair (v, vk) attempt to choose a path between them during 

algorithm 3.6, let U(v, vk, b, ll) be the subset of T(v, vk, b, b') consisting of dimensions 

r for which all of the edges along P( v, vk, b, ll, r) are unsaturated. Define the ded-
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ication of a path containing a saturated edge in a fashion similar to the dedication 

of saturated neighbors before. We dedicate paths to the pair ( v, vk) whenever (3pn 

choices for a simulating path do not exist. 

for i = 1 to s~n 
for all unassigned pairs ( v, vk) in arbitrary order 

if IU(v, vk, b, b')I < /3pn 
dedicate enough r E T( v, vk, b, ll) 

( v, vk) pick a path bet ween them uniformly 
if the chosen path is unsaturated or dedicated 

( v, vk) is assigned to the path 
else ( v, vk) remains unassigned 

Figure 3-12: Algorithm 3.6. 

Lemma 3.19. For a suitably large choice of the constant s~, with high probability 

all pairs of nodes searching for an assignment to a path have been assigned one after 

s~n steps of algorithm 3.6. 

Proof. Each pair is successfully assigned with probability at least /3p during any step. 

The rest of the proof is identical to that of lemma 3.14. • 

We now show that with high probability algorithm 3.6 never adds dedicated paths 

with saturated edges to any U( v, vie, b, 11). Thus with high prob,ibility algorithms 3.5 

and 3.6 behave identically. This proves that algorithm 3.5 assigns all necessary paths 

with high probability. 

Lemma 3.20. With high probability no set U(v, vie, b, b') ever has cardinality less 

than /3pn at the beginning of some step of algorithm 3.6, given /3p = T/p/4. 

Proof. There are at most µpn pairs which have a non-zero probability of congesting 

a given edge on some path represented by an r E T( v, vie, b, 11). Thus at most 5µpn 2 

pairs have non-zero probability of congesting any of those edges, counting according to 

multiplicity. For a path to leave U(v, vie, b, 11) one of its edges must become saturated. 

For (17p/2-/3p)n = /3pn paths to become unavailable, Bp/3pn pairs must choose a path 

crossing an edge on some path represented by an r E T(v, vie, b, b'). 
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The probability that a pair chooses any particular path is at most 1//3pn, no matter 

what other choices are made. Thus if there are qw,w' paths that a particular pair 

( w, wi) might choose which contain an edge on some path in T( v, vk, b, II), then the 

probability that ( w, wi) chooses such a path is at most qw,wi //3pn, and L:w,w.1 qw,w.1 ~ 

5µpn 2
. 

By a moment generating function argument similar to those in lemmas 2.1 and 2.7 

and in theorem 2.13, the probability that more than /3pn paths become unavailable 

is therefore no more than O(N-k) for arbitrary k. • 

With high probability 0( n) steps are sufficient to select all paths. Since we have 

guaranteed that the paths have constant congestion, this proves the following theorem. 

Theorem 3.21. For each p < 1 - ~ (about .16) there exists an fp and an T/p 

such that with probability 1 - N-ci~, at least fpn neighbors of every node are live 

and IS( v, vk, b, b')I 2'.: T/pn for all quadruples ( v, vk, b, b'). Given these facts hold, there 

is an O(log N) step algorithm which with high probability finds an embedded fully 

functioning N-node cube in Hn - F with constant load, dilation and congestion. The 

paths which simulate the edges of the cube only use live nodes. 

3.6 Implementing the Constant Delay Embedding 

As given so far, the algorithms of the previous section are far from implementable. 

Each node needs to know information about which nodes have decided to simulate 

which other nodes, which paths it may route through, whether or not certain tentative 

assignments have been finalized, and so forth. In this section we will show how such 

information might be exchanged in polylogarithmic time per step. This implies that 

the embedding of the previous section is obtainable in polylogarithmic time. 

Focus on any particular node v. Because v might be faulty, one of its neighbors 

must choose a simulating node for it. Arbitrarily, we will use the lexicographically 

smallest labelled live neighbor to simulate v during the course of algorithm 3.3. First, 

the neighbors must agree on which one of them is the lowest. During any step of 
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algorithm 3.3, that neighbor of v must inform all the other neighbors which one 

of them v selected during that step. Both of these operations are trivial once we 

understand how a node's neighbors can communicate even with faults. 

Each node vi broadcasts to v's other neighbors by first broadcasting to all of its 

neighbors. Then each node vij passes the information to its unique other neighbor 

which is also a neighbor of v, the node vj. A picture of this type of broadcasting 

appears in figure 3-13. 

v .. 

Figure 3-13: Broadcasting to other neighbors. 

We only care if the message gets through to the other neighbors of v which are live. 

The broadcast we have described sends the messages through a set of intermediary 

nodes, several of which are likely to be faulty. Thus if each node broadcasts just once, 

we might expect that several nodes will not receive the information they need. We 

remedy this problem by allowing each node to broadcast its information and then 

repeating the broadcast twice more. With probability 1 - N-cie, every neighbor of v 

is informed of the activity of all of v's other neighbors. We prove this scheme works 

by showing that with probability 1 - N-cie, for every node v of the hypercube, every 

live pair vi and vi of v's neighbors are connected by a live path consisting of two or 

three broadcasts. 

Lemma 3.22. With probability 1 - N-cie, between every pair of live neighbors 
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vi, vi of every node v there is a live path of the form (vi, vik, vk, vki, vi) or of the form 

(vi vik vk vkl v' vli vi) 
' ' ' ' ' ' . 

Proof. Consider a node v and a neighbor vi. The neighbor vi successfully broadcasts 

to another neighbor vk exactly when both vk and the intermediary node vik are both 

live. Since the probability of failure is no more than 1 - ~' the probability that 

one or both of these nodes are dead is no more than 1 - if.5. Further, none of these 

pairs { vk, vik} share a common node. Thus there is a p > 0 and a c17 > 0 such that 

with probability 1 - N-ci 7 pn of the pairs will be live, for all neighbors vi of v. 

Next take two disjoint sets S1 and S2 each containing pn neighbors of a given 

node v and consider the set T(Si, S2) = {vk11vk E S1, v1 E S2 and vk1 is live}. Since 

there are p2n 2 pairs of nodes vk, v1 which satisfy the first two requirements and each 

pair has a constant probability that it satisfies the last requirement (independent of 

other nodes), with high probability the set T(Si, S2 ) is nonempty. There are no more 

than N 2 ways to choose the sets S1 and S2 for any given node v. Thus with high 

probability the set T(Si, S2) is nonempty for all choices of S1 and S2. Since there are 

only N choices for v, with high probability for each node v and each choice of S1 and 

S2 , the set T(§1 , S2 ) is nonempty. 

With probability 1 - N-cis (for any 0 < c16 < c17), the conclusions of the first 

two paragraphs hold. For a given node v, let Vi = { vklv'k and vk are both live} and 

V2 = {vklvik and vk are both live}. Then if IVi n V21 'f= 0, a the path of length four 

connects vi and vi. If I Vi n Vi I = 0 then vi and vi are connected by a path of length 

six.• 

Before algorithm 3.5 can route the simulating paths, each node must know which 

nodes simulate the neighbors of the nodes it simulates. At the end of algorithm 3.3 

each live node knows which nodes simulate each of its neighbors. At least pn neighbors 

of every node are live. For every pair of neighbors v and vlc, we only need some live 

neighbor of v to communicate with some live neighbor of vlc. Each neighbor vi of v 

attempts to route along the path vi, vii, viik, vi" to each neighbor vik of v". We are 

only interested in the (pn )2 paths which begin and end at live nodes. Each of these 
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paths intersects at most one other and with high probability one of the (pn )2 /2 node­

disjoint paths will be nonfaulty. Since there are only a polynomial number of pairs of 

neighbors, each with only a polynomial number of possible sets of live neighbors, this 

communication will be possible with high probability. A series of three broadcasts by 

all nodes will accomplish the task in O(log3 N) steps. 

Finally, we will describe how to implement a slight variant of algorithm 3.5. As­

sume that v has an even number of l's in its bit-vector representation. To avoid 

confusion, to find a simulating path for the edge ( v, vk), only the node vb simulat­

ing v will actually choose a path. Say that during a step of the algorithm, instead 

of choosing a random dimension in U ( v, vk, b, b'), vb chooses a random dimension 

from { 1, 2, ... , n}. Then we know ( 1) the probability that vb chooses any partic­

ular r E U( v, vk, b, b') does not increase, (2) all sets U( v, vk, b, ll) have cardinality 

/3v log N with at least the same probability as in algorithm 3.5 and (3) each node vb 

has probability at least /3p of choosing an r E U( v, vk, b, b'). 

During any step of this modified algorithm, all of the nodes that have chosen 

an r E U( v, vk, b, b') succeed with at least the probability stated in the analysis of 

algorithm 3.5. All other nodes may or may not find an unsaturated path and may 

or may not encounter too much congestion. With high probability, if we run the 

modified algorithm 2//3v times as long as algorithm 3.5, each node vb will choose an 

r E U( v, vk, b, b') at least as many times as it did in algorithm 3.5. Thus, even if 

nodes never find simulating paths except when they choose an r E U ( v, vk, b, b'), all 

nodes will find the necessary paths at least as successfully as before. 

Each node that chooses a path attempts to route a message describing the path 

along the path. Any node along the path can send messages back if it detects too 

much congestion along one of its edges. If the message comes back, the even node 

knows that it was unsuccessful. Otherwise, both the even node and the odd node 

which is the message's destination know which path to use in the future. 
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3. 7 Extensions and Remarks 

As mentioned in the introduction, edge faults are easily handled once node faults are 

understood. Say each edge fails with probability Pe, each node fails with probability 

Pn and the failure of any component is independent of the failure of other components. 

Then all results still follow with little change. Specifically, as long as Pn +Pe - PnPe < 

1- .y]° (about .13), the algorithms of sections 3.5 and 3.6 work with high probability. 

The only addition to our reasoning is that when one node tries to communicate with 

a neighbor node, it is unsuccessful not only if the neighbor is faulty but also if the 

link between them has failed. 

This work extends to the case in which pis small; that is, if p < N° for 0 > a > -1. 

In this case, faults are so far between that the results of the second section can be 

strengthened. The deterministic algorithm 3.1 achieves a constant delay embedding 

with high probability. This result follows directly from the following fact. 

Lemma 3.23. If faults occur with probability p for small p then with high probability 

no sphere of radius 14 contains more than a constant number of faults. 

Proof. Say p < N°. Then the probability that m nodes out of any given n14 nodes 

are faulty is no more than 

( :

4

) Ncrm < Ncrmn 14m N 

There are at most N such spheres to consider. If m > -1/a, the total probability 

that some sphere contains m faults is an inverse polynomial whose exponent can be 

diminished by increasing m. • 

Each simulating node only needs to distribute its connections among the dilation 

7 fault-free paths discovered in section 3.4. 

Last, a word about the practicality of the results of this chapter. We have made 

little attempt to optimize constants since we need large constants to obtain the full 

breadth of our results. However, in practice the full strength of these theorems will 

probably be unnecessary. We cannot expect half the processors in a network to fail as 

a normal occurrance. We are optimistic that when the number of faults is moderate, 
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Chapter 4 

Embedding Trees Dynamically 

4.1 Introduction 

Achieving high performance on a parallel computer requires the satisfaction of two 

potentially conflicting requirements. First, the computational load posed by the 

program should be evenly shared among all processors (load balancing). Second, 

processes communicating frequently should be placed on processors that are close 

(communication locality). 

This problem has been studied abstractly as the problem of embedding a pro­

cess graph G in a processor graph H ([BCHLR], [BCLR], [BI], [CJ, [GHR], [HJ], 

[KLMRR]). The vertices of G are processes comprising the parallel program, with 

edges representing communication between processes. The vertices of H are proces­

sors, and the edges represent communication channels. For many computations, it is 

possible to predict G before execution. In such cases it is useful to map the vertices 

of G into those of H so as to minimize load, dilation and congestion. 

This chapter focuses on embedding arbitrary binary trees into the butterfly and hy­

percube networks. Trees arise naturally in many computations: divide-and-conquer 

algorithms, branch-and-bound search ([KZ]), functional expression evaluation, and 

image understanding (quad/oct trees). In [BCLR], Bhatt et al. showed that every 

N-node binary tree could be embedded in an N-processor hypercube such that each 

processor received a single tree node, and the maximum dilation was 0( 1 ). Embed-
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ding trees into butterfly networks is harder, because the butterfly is much sparser 

than the hypercube. In (BCHLR], Bhatt et al. showed how to embed the complete 

binary tree with N nodes in a butterfly network with N processors with constant 

dilation and load. The problem of embedding arbitrary trees into butterfly networks 

was left open. 

Tree structured computations are often dynamic. As the computation progresses, 

the tree may grow or shrink, in a manner which may be impossible to predict before­

hand. In (BC], Bhatt and Cai propose a dynamic version of the embedding problem. 

They consider a process graph which is a binary tree that can grow during execution. 

At each step any node of the tree that does not have two children can request to 

spawn a child. The dynamic embedding problem is harder than the static one since 

newly spawned children must be allocated to processors incrementally, without mak­

ing assumptions about how the tree will grow in the future. Further, the placement 

decision must itself be implemented within the network in a distributed manner with­

out accessing global information. The paradigm proposed by Bhatt and Cai disallows 

process migration; i.e. once a process is placed on a particular processor, it cannot be 

moved subsequently. Obviously, allowing migration can potentially give better load 

balancing/ dilation but can also be extremely expensive in practice. 

Bhatt and Cai present ((BC]) a randomized algorithm for dynamically growing 

trees with M vertices on an N processor binary hypercube. Each child process is 

placed no farther than a distance O(log log N) from its parent. Further, with high 

probability (independent of the tree shape) the algorithm only assigns O(M/ N + 1) 

vertices to each processor. The congestion of the embedding was not determined but 

is probably on the order of log N. 

4.1.1 Summary of Results 

We consider the problem of growing trees on butterfly and hypercube networks. Our 

framework is identical to that of Bhatt and Cai ([BC]), although our growth algo­

rithms are substantially simpler and have provably better performance. We begin by 

describing a level-by-level strategy for embedding a binary tree in a butterfly. Mod-
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ifications to this scheme form the basis of all our embedding algorithms. The first 

modification we introduce is the use of random flip bits, which randomize the loca­

tions of tree nodes within a level of the butterfly. Analysis of the behavior of these 

flip bits is sufficient to prove our first result. 

Theorem 4.1. An arbitrary binary tree T with M vertices can be dynamically 

grown on an N processor hypercube with dilation 1 such that with high probability 

the maximum load per processor is O(M/N + logN). 

Note that this is optimal to within a constant factor whenever the tree T is large 

(i.e., M ~ NlogN). For these large trees, it gives an optimal O(M/N) load as 

in [BC] while improving dilation from O(log log N) to 1. Next we present another 

modification of the scheme involving level balancing - in effect, we stretch certain 

paths within the tree so that the number of tree nodes assigned to a.ny level of the 

butterfly is balanced. This modification leads to our next result, this time for a 

butterfly. 

Theorem 4.10. An arbitrary binary tree T with M vertices can be dynamically 

grown on an N processor butterfly network with dilation 2 such that with high prob­

ability the maximum load per processor is at most O(M/N + logN) 

Again, this is optimal to within a constant factor when M ~ N log N. This result 

is a substantial improvement over previous work since not even good static embed­

dings of arbitrary binary trees were known. Finally, we take advantage of an embed­

ding of the butterfly into the hypercube which embeds entire levels of the butterfly 

to subcubes of the hypercube in order to develop a scheme for local redistribution of 

load within levels. This leads to an embedding algorithm for the hypercube which 

simultaneously optimizes maximum load and dilation. In addition, the congestion of 

the embedding is optimal if M = O(N). 

Theorem 4.14. An arbitrary tree T with M vertices can be grown on a N processor 

hypercube with constant dilation such that with high probability the maximum load 

is O(M/N + 1) and the congestion is O(M/N + 1). 

It should be noted that although our theorems are phrased m terms of trees 
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which only grow, these embedding algorithms are also effective for dynamic trees 

which can both grow and shrink at their leaves. Consider a binary tree T which 

grows and shrinks. At each stage in the tree's evolution, the probability space of 

possible embeddings of the current form of the tree T' is equivalent to the space of 

embeddings which would have occured had we simply grown the tree T' using the 

same algorithm. Therefore the same results hold for each step in the tree's evolution 

(assuming, of course, that the total number of steps in the tree's evolution is bounded 

by a polynomial in N). 

We also prove a lower bound for deterministic embedding algorithms for hyper­

cubes which shows that any deterministic algorithm which balances load must nec­

essarily have dilation n( JIOg"N). It follows that any embedding algorithm which 

simultaneously optimizes load and dilation (to within constant factors) must be ran­

domized. This consequence also holds for the butterfly, since it is a subgraph of the 

hypercube. 

Tom Leighton, Abhiram Ranade and Eric Schwabe coauthored all the work ap­

pearing in chapter four. 

4.1.2 Overview 

The basic embedding algorithm is presented in section 4.2 along with the introduction 

of flip bits and the proof of theorem 4.1. The level-balancing scheme is introduced 

and analyzed in section 4.3, along with a proof of theorem 4.10. Improvements to the 

hypercube embedding algorithm and proof of theorem 4.14 are given in section 4.4. 

Section 4.5 states and proves the lower bound for deterministic algorithms. 

4.2 The Basic Growth Algorithm 

4.2.1 Preliminary Scheme 

We begin with a level-by-level strategy for growing a tree on an N-node butterfly 

network. For this chapter, we set n so that N = n2". That is, the N-node butterfly 
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has n levels. 

In the cases where we are ultimately interested in an embedding in a hypercube, 

we will first embed the tree in a butterfly, and then consider some embedding of 

the butterfly in the hypercube. We place the root of the tree on processor 00 in 

the butterfly. This processor is connected to two processors in level 1, on which we 

place the children of the root. These processors are in turn connected to 4 level 2 

processors, which will in turn receive the children of the root's children, and so on. 

This strategy enables us to grow any n level binary tree with dilation 1, and with at 

most one tree vertex per butterfly processor. Trees with greater height are wrapped 

around; i.e. level n vertices are placed in butterfly level 0, and so on. The set of tree 

vertices which are mapped to level i of then level butterfly consists of those vertices 

in levels i, i + n, i + 2n ... and so on; we refer to this as the ith level set of the tree. 

There are two issues we need to consider: 

1. Evenly distributing tree vertices within the processors in each level. We would 

like the vertices belonging to level set i to be evenly distributed among the 

processors in the ith level of the butterfly; i.e. to guarantee that no single 

processor in level i receives too many vertices. 

2. Evenly distributing tree vertices among different butterfly levels. For example, 

when mapping a. complete binary tree of height h, level h - 1 mod n of the 

butterfly would receive the leaves of the tree, or about half the total number of 

vertices. Ideally, we would like the vertices to be divided evenly among all the 

levels of the butterfly. 

We will defer our consideration of the second issue until section 4.3. First, a. 

modification of the basic scheme helps us achieve balance within a level. 

4.2.2 Flip Bits 

A random flip bit is generated at each vertex of the tree to decide where its children 

will be spawned. Consider a vertex v of the tree that has been placed on some 
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processor p in level i of the butterfly. This node is connected to processors q and r in 

level i + 1 mod n, which will receive the children of v. The flip bit chosen for vertex v 

decides whether the left child of v will be placed on q or on r. The right child is then 

placed on the other processor. Note of course that it is not necessary that v have two 

children - the bit only determines where the children will be placed if they are ever 

spawned. 

In section 4.3 we will show that this ensures even distribution within each level. 

Intuitively, each vertex is effectively placed using a random path determined by the 

flip bits chosen along its ancestors. For now, this modified scheme is sufficient to 

prove the rem 4.1. 

Theorem 4.1. An arbitrary binary tree T with M vertices can be grown dynamically 

on an N processor hypercube with dilation 1 such that with high probability the 

maximum load per processor is O(M/N + logN). 

Theorem 4.1 follows directly from the following lemma. 

Lemma 4.2. An arbitrary tree T with M vertices can be grown in a butterfly net­

work of N processors such that each column in the butterfly receives no more than 

0( M /2n + n) vertices with high probability. 

Suppose this lemma were true. Then by simulating the N = n2n-node butterfly by 

a 2n-node hypercube, where each node of the hypercube simulates an entire column 

of the butterfly, we have an embedding algorithm for the hypercube which achieves 

dilation 1 and load 0( M / N + log N) with high probability. Thus this lemma is 

sufficient to prove theorem 4.1. 

The general idea behind the proof of lemma 4.2 is that a large number of vertices 

will be placed in the same column in the butterfly only if the Hip bits on the paths 

leading to these vertices are chosen in a specific (unlikely) manner. 

A stagnant path pis a maximal path v(l), v(2), ... , v(l) in T with v(l) towards 

the root such that all v( i) are placed in the same column v of the butterfly. Let the 

leader of p be the nth ancestor of v(l ), and the trace of p be the set of n + /-1 vertices 

between the leader (inclusive) and v(l) (exclusive). H v(l) is in the first n levels of 
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the tree, then the leader of the path is defined to be the root of the tree. 

Notice that there is a unique path in the butterfly from the leader of a stagnant 

path p to vertex v(l). Thus, given the column in which the leader lies, and the column 

in which the path p lies, we can completely determine the flip bits chosen along the 

trace of the path. The next observation is that the traces of distinct stagnant paths 

mapped to the same column are distinct; i.e. the information gained from one trace 

is different from that obtained in the other. 

Lemma 4.3. Let p and p' be two distinct stagnant paths placed in the same column 

of the butterfly. Then their traces are vertex disjoint in the tree. 

Proof. Contrary to the lemma, suppose the lowest point in the tree at which the 

traces intersect is vertex u. At vertex u, the two traces are mapped to the same 

column of the butterfly. Likewise, the two stagnant paths are mapped to the same 

column. The two children of u are mapped to different columns of the butterfly, 

however, and therefore the traces must reconverge in some butterfly column between 

the children of u and the beginnings of the two stagnant paths. However, the two 

paths cannot meet again in any column until they have traversed all n levels of the 

butterfly. Since the two stagnant paths are at a distance less than n from u, the traces 

cannot reconverge in the butterfly before reaching them, and we have a contradiction . 

• 
Lemma 4.4. For any column v of the butterfly, there is at most one stagnant pa.th 

mapped to v such that v(l) is in the first n levels of the tree. 

Proof. This lemma follows immediately from lemma 4.3 by noting that any two such 

paths will have the same leader (the root of the tree). • 

Proof. (of Lemma 4.2) We shall count the number of different settings of the flip 

bits that give rise to some column having at least C = k(M /2n + n) tree vertices. 

This can be done as follows: 

1. Choose the column: 2n choices. 

2. Choose the number of stagnant paths: C choices. 
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3. Choose the endpoint of each path: (~), where C0 is the number of stagnant 

paths. Define {3 = C / C0 • 

4. Choose the length of the paths: (c~;o) choices. 

5. Choose the flip bits at all vertices in T except those in the Co traces. The total 

number of flip bits is M, and the length of the jth trace is n +Ii - 1, except 

for the possible case when one stagnant path has v1 in the first n levels of the 

tree, in which case the length of its trace is Ii - 1. Thus the total number of 

bits this step fixes is: M - L;(n + lj - 1) + n = M - (C0(n - 1) + C) + n. Thus 

the total number of choices is 2M-(Co(n-l)+C)+n. 

First we claim that the above choices completely determine all the flip bits. To 

see this, consider the trace with its leader belonging to the smallest level in T, of all 

traces. Clearly, the last step of the above procedure fixes the position of the leader. 

This fixes all the bits in the trace, since the endpoint and the length of the trace are 

known. The bits for the other traces are similarly determined. 

The total number of ways of choosing all the bits is 2M. Thus the probability that 

some column gets more than C vertices is at most 

< 

< 

< 

22nc (~) (ch;o )2M-(Co(n-1)+C) /2M 

22nc ( M(C6fo)e2
) Co 2-(Co(n-l)+C) 

22nc (2e2 M(C+Co))Co 
CJ2n2d 

22nc ( 2z2 11(~t1)) co 

To go from the first line to the second we have used the inequality (;) $ (ne/ry. 

Choosing Tr: > 10e2 , and noting that /3({3 + 1) $ 5(21312 ), we can simplify the above 

expression to: 

22nc(~)Co 

< 22nc2-c;2 

< 2-C/4 

< 2-kn/4 
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B(T) 

1 

Figure 4-1: Level balancing a tree, n=6. The numerical labels indicate the stretch 
counts chosen at those nodes. White nodes indicate dummy vertices. 

< N-k/s 

• 
4.3 Embedding in the Butterfly 

In this section we introduce a modification to the embedding algorithm which insures 

that with high probability the nodes of the binary tree are distributed evenly among 

the levels of the butterfly. We then prove that the flip bits described in the previous 

section are sufficient to distribute the tree nodes evenly within each level. 

4.3.1 A Level-Balancing Transformation 

We transform the tree T being grown by selectively inserting dummy vertices into 

some of its edges during the growth. Even if some level originally has a dispropor­

tionately large number of vertices, the newly introduced vertices help to even the 

distribution of the tree vertices among the levels. 

The n-way level balancing transformation is as follows. Define a vertex of T to 
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be distinguished if it lies in level i = 0 (mod n/3). 1 For each distinguished vertex v 

in T we pick a random number S(v) between 0 and n/3 called the stretch count. We 

insert a single dummy vertex in each of the edges that connect v to its descendants 

in levels i + 1 through i + S( v ). Figure 4-1 illustrates the transformation. Note 

that this transformation can be applied as the tree grows. Each node only needs to 

know what level of the tree T it belongs to, and the stretch count generated at its 

nearest distinguished ancestor. This is sufficient information to decide whether or not 

a dummy vertex is inserted when a child is spawned. 

The new tree B(T) that results is grown on the butterfly using the procedure 

described in section 4.2.2. This gives a dilation 1 embed.ding for B(T). This corre­

sponds to a dilation 2 embedding of T, since some of the edges in T were replaced by 

two edges in B(T). 

4.3.2 Analysis of Tree Balancing 

We show that the n-way level balancing transformation of section 4.3.1 is sufficient 

to evenly distribute the tree vertices among the levels in the butterfly. In particular, 

we show that for any tree T, no level set in B(T) will contain a disproportionately 

large number of vertices. Since level i of the butterfly receives vertices from the ith 

level-set of B(T), this implies that tree vertices are uniformly distributed. among the 

butterfly levels. 

Lemma 4.5. For an arbitrary tree T, then-way level-balancing transformation gives 

a tree B(T) such that the total number of vertices in the ith level-set of B(T) is at 

most O(M/n + 2n) with high probability. 

vVe will prove the following slightly modified (but equivalent) version. Define the 

ith level set triple of a tree to be the set of vertices from level sets i, i + n/3 and 

i + 2n/3. Define a partition of Tinto 3 zones as follows (Figure 4-2). Zone 0 consists 

of vertices in levels kn through kn + n/3 - 1. Zone 1 consists of vertices in levels 

1 In what follows we may make references like "(mod z)" or "contribution of z messages" when 
z may not be integral. Rounding these quantities to integers does not affect the correctness of the 
proof. For ease of exposition, we shall not consider the issue. 
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------------------------------------ ---------------------------·------·· 0 
zone 0 

n/3 

Figure 4-2: Subdivision into Zones, and a forest f;. 

kn+ n/3 through kn + 2n/3 - 1. Zone 2 consists of vertices in levels kn + 2n/3 

through ( k + 1 )n - 1. Each zone consists of a number of trees of maximum height 

n/3. We will show that no level set triple of B(T) will receive more than O(M/n) 

vertices from any zone of T, with high probability. Lemma 4.5 follows because there 

are only 3 zones, and since the number of vertices in a level set triple upper bounds 

the number of vertices in a level set. 

The key observation is that each zone can be partitioned into a set of forests 

f 1 , f 2 , ••• , fa that contribute independently to level set triple i, for any i. We illustrate 

the partitioning for zone 1. Each f; consists of all trees from zone 1 between levels 

kn+ n/3 and kn+ 2n/3 - 1 that have a common ancestor r; at level kn, for some 

fixed k. Other zones are partitioned similarly. 

Lemma 4.6. Let X; denote the number of zone 1 vertices from a forest f; placed 

in level set triple i of B(T). Then all variables X; are mutually independent, and 

E(X;) = 3M;/n, where M; is the number of vertices inf;. 

Proof. Let variable }j denote the level set triple into which the roots of the trees 

in fj are placed. By definition, these roots are all placed in the level set triple given 

by the level set triple of r; plus S(r;), mod n/3. Since the stretch counts of the r;'s 

are uniformly selected from (0, n/3] and are mutually independent, it follows that the 
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}j's are also uniformly selected from [O, n/3] and are mututally independent. Since 

X1 is completely determined by }j and the stretch counts chosen at the roots of trees 

in fj, it follows that the X1 are mutually independent, and that E(X1) = 3M1/n. • 

Similarly, this lemma holds for any other zone of the tree T, except for the first 

section of zone 0, which contains the vertices in levels 0 ... n/3 - 1. However, this 

segment of the tree contains at most 2n/3 -1 nodes, which will be mapped one-to-one 

to nodes of the butterfly. 

Proof. (of Lemma 4.5) The Xi are independent random variables. Clearly, no Xi 

can contribute more than 22n/3 vertices, since the forest is part of a tree of height no 

more than 2n/3. The mean of each X1 is 3Mj/n, where Mi is the number of vertices 

in f1; therefore the mean of X(= L:Xi) is at most L:Mi::;; 3M/n. We have by the 

independence of the Xj that for any t, E[etX] 

= fli E[etX,] 

- fli L:" Pr[Xi = .\]et-' 

As in lemma 2.7, the expectation is maximized when only the events (Xi= OJ and 

[Xi = 22n/3
] have positive probability. Suppose there were some value x, not equal to 

0 or 22n/3 , such that Pr[ Xi = x] = 8 > 0. Then by the convexity of etX;, changing 

Pr[Xi = x] to 0 and setting Pr[Xi = x - 1] = Pr[Xi = x + 1] = 8/2 would increase 

the expectation of etX;. It follows that in order to maximize the expectation, the two 

endpoints of the interval must be the only events with positive probability. If we use 

Markov's inequality to put an upper bound on Pr[Xi = 22n/3] then 

E[etX] ::;; Jf ( ( 1 _ 3~:3n) + 3~:3n et2ap) 

II (l 3Mi/n ( t22n/3 _ l)) 
- . + 22n/3 e 

' 
< II (3Mif n ( t22n/3 _ l)) 

. exp 22n/3 e 
' 

< (3M /n ( t22n/3 _ l)) 
exp 22n/3 e 

Again using Markov's inequality, we obtain for any constant b, Pr[X 2: 3bM/n] 

= Pr[etX 2: e3bMt/n] 
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exp( 3M (e122n/3 -1)) 
< ajin73 

e36Mt/n 

This quantity is minimized at t = lnb/22n/3 • At this value of t, and as long as 

1\1 2: n222n/3
, this quantity is smaller than N-k for some constant k which can be 

made as large as desired by choosing b sufficiently large. • 

4.3.3 Effectiveness of Flip Bits 

\Ve now show that, given the effectiveness of the level-balancing algorithm, the flip 

bits suffice to distribute the tree nodes within the levels of the butterfly. 

Lemma 4.7. Let Wi denote the total number of vertices in level set i in an arbitrary 

binary tree T. When T is grown on a butterfly with n levels, no processor from any 

level i receives more than 0 ( "'i /2n + n) vertices with high probability, for all i. 

In other words, whenever Wi > n2n, each of the 2n processors in level i will receive 

roughly the same number of tree vertices. 

The key to the proof is the observation that the vertices placed on a processor 

can be attributed to a large number of mutually independent sources. To see this, 

partition T into subtrees Ti, T2 , ••• where each subtree is rooted at some vertex in 

level kn + i and consists of all the descendants of the that vertex between levels 

kn+ i + 1 and kn+ i + n (figure 4-3). 

Lemma 4.8. At most one level n vertex from each subtree Tj will be placed on any 

processor p on level i of the butterfiy. The probability of a vertex from Tj being placed 

on processor p is w; /2n, where w; denotes the number of vertices in level n of tree Tj. 

Further the contributions of the different subtrees top are mutually independent. 

Proof. Any tree T; can have at most 2" vertices at level n, and the growth algorithm 

guarantees that these will be placed on distinct processors within a single level. Thus 

we know that at most one vertex from a tree T; will be placed on a given processor 

p in level i of the butterfly. 

It follows from the above that the number of vertices from T; placed on p is a 

random variable with value either 0 or 1. The probability that any given vertex from 
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Figure 4-3: The tree T and its partition, i = 1, n = 2. 

level n of Ti will be placed on p is 1/2n, so the expectation of this random variable 

is wi/2n. Since the value of the random variable can only be 0 or 1, wi/2n must be 

the probability that it is 1. Thus the probability of a vertex from Ti being placed on 

pis w3/2n. 

The independence between different subtrees follows because the flip bits in each 

subtree are picked independently. • 

To complete the proof of lemma 4. 7, we need the following lemma, due to Hoeff ding 

([HJ). 

Lemma 4.9. {Hoeffding} If we have L independent Bernoulli trials with respective 

probabilities p1, ... ,pL, with Lp = E Pi, and m ~ Lp+ 1 is an integer, the probability 

of at least m successess is at most B(m, L,p), where B(m, L,p):::; (Lpe/m)m. 

Proof. (of Lemma 4. 7) The number of vertices placed at a processor is the sum of 

independent random variables corresponding to each tree Ti. The expected number 

of vertices is E w i /2n = Wi /2n. The probability that some processor receives more 

than k(n + W3/2n) vertices is at most (using lemma 4.9): 

( 
k(n + W·/2n) )-(kn+kw,;2n) 
_..._ _ _..1-._...... < (k/e)-kn 

eW;/2n 

Thus the probability that one of the 2n processors in any of the n levels receives more 
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than k( Wj /2n + n) vertices is at most 

for some constant k1. • 

Theorem 4.10. An arbitrary binary tree T witb M vertices can be grown dynami­

cally on an N processor butterfly network with dilation 2 sucb that with high prob­

ability the maximum load per processor is at most O(M/N +log N). 

Proof. By lemma 4.5, with high probability we have Wi = O(M /n + 2n) for all i, 

and by lemma 4.7 , with high probability no processor in level i will receive more 

than 0( n + Wif 2n) vertices. Thus with high probability, fewer than O(log N + M / N) 

vertices are mapped to any processor. • 

4.4 An Improved Hypercube Embedding 

The butterfly can be embedded in the hypercube with dilation 2 such that each level 

of the butterfly is a subcube of the hypercube. Therefore we can have the hypercube 

simulate any embedding algorithm for the butterfly, with a unique 2n-node subcube 

simulating each level. We will take advantage of this by using a scheme which has each 

level (subcube) receiving only O(M/n + 2n) tree nodes, and developing a method for 

local distribution within these subcubes which will reduce the load on each indvidual 

processor while guaranteeing low congestion. We begin with some preliminaries. 

4.4.1 Embedding the Butterfly and Star Covers 

Let G(x) be the Grey code value of the binary string x, defined by G(xtogn ... xi) = 

X1ognlx1ognEBX1ogn-1 I· .. Jx2EBx1. For any bit string x, G(x) and G((x+l) mod n) differ 

in exactly one bit position. For an integer i, let bin( i) be the binary representation of 

i. The embedding which maps butterfly processor v1 to node G(bin(l))Jbin(v) of the 

hypercube has dilation 2 and maps each level of the butterfly to a distinct 2n-node 

subcube of the hypercube. Also note that within each level /, if v and vie differ in 
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exactly one bit, then there is a hypercube edge between the embedded locations of 

the nodes v1 and vt. 

For any node x of a 2n-node hypercube, we define the full star centered at x to be 

the set of nodes consisting of x along with the n nodes adjacent to x. The existence 

of perfect one-error-correcting codes implies that when n = 2m - 1 for some integer m 

there exists a collection of 2n /n + 1 full stars such that every node of the hypercube 

belongs to precisely one star in the collection. 

Suppose n is not of this form. Consider the largest n' such that n' s n and n' is of 

the form n' = 2m - 1; then n' ~ n/2. We can partition the hypercube into subcubes 

of 2n' nodes, and cover each of these with full stars. This star cover perfectly covers 

the nodes of the 2n-node hypercube. Each star in the star cover consists of a node x 

and some subset of 8( n) (in this case at least ~) of its neighbors. 

Choose a star cover for a 2n-node hypercube, and duplicate this cover in each 

subcube of the N( = n2n )-node hypercube which corresponds to a level of the butterfly. 

This collection of stars yields a star cover of the N-node hypercube; call it C. 

4.4.2 Modifying the Embedding Algorithm 

Our discussion of the hypercube algorithm has two parts: 

1. We describe a modified algorithm for embedding on the butterfly which, when 

simulated on a hypercube, maps at most O(M/2n + n) tree nodes to any star 

in the cover C, with high probability. 

2. We show how to deterministically redistribute the load within a star of the 

hypercube among its nodes in such a way that each node receives O(M/N + 
1) tree nodes, the dilation remains constant and the resulting congestion is 

O(M/N + 1). 

We begin by showing how to modify the butterfly embedding algorithm given in 

the previous section so that when it is simulated on the hypercube, the amount of 

load assigned to any star in the cover C is balanced. 
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We will modify our embedding algorithm as follows. Use the embedding algorithm 

from the previous section, but where previously we placed the children of a tree node 

v E B(T) which was embedded in level 1 into level 1+1, choosing their locations by 

a random flip bit, we will now place the first child of v into level 1 + 2, using a pair 

of flip bits to determine its position within the level, and placing the second child (if 

it exists) at the location in that level determined by complementing both flip bits. It 

is clear that this will increase dilation by a factor of two. 

Since we are embedding the level-balanced tree B(T), we know that, with high 

probability, each level-set of the tree contains O(M/n + 2n) nodes. As in lemma 4.6, 

we observe that the vertices placed in a single star come from many independent 

sources. 

Partition B(T) into subtrees T1 , T2 .•• in such a way that the root of each subtree 

is embedded at level 1+2 in the butterfly (or level 1+1 if n is odd) and each subtree 

contains the descendants of its root down to the nodes embedded at level I in the 

butterfly. 

Lemma 4.11. Consider an arbitrary star Sin C, contained in level I of the butter­

fly. Then at most two vertices from each subtree can be placed on processors in S. 

Furthermore, the contributions of each subtree to S are mutually independent. 

Proof. Any subtree can have at most 2n/2 vertices placed in level 1 of the butterfly, 

and these will necessarily be placed at distinct locations within the level. Suppose 

that three vertices from the same subtree were mapped to the star S. Since the flip 

bits are chosen in pairs, any pair of these vertices must be mapped to locations which 

differ in an even number of bits; since they are all mapped to the same star, any pair 

of them must differ in exactly two bit positions. Consider the paths to each of these 

three vertices from their lowest common ancestor; call this vertex x. Clearly, two of 

the vertices must be descendants of one child of x, and one must be a descendant of 

the other. The vertex (call it y) which is the lone descendant of one of the children 

of x now differs from both of the other two vertices in two bit positions which are 

not corrected elsewhere in the tree. However, at some point the paths of the other 

two vertices diverge (since they are placed on different processors in level /), and y's 
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path cannot duplicate the flip bits on both paths simultaneously. Therefore y differs 

from one of the other two vertices in at least four bit positions, contradicting the 

supposition that all three vertices were in the same star in level l. Therefore at most 

two vertices from the same subtree can be placed in the star S. 

The independence between different subtrees follows from the fact that the flip 

bits are picked independently in each subtree. • 

Lemma 4.12. We can embed an arbitrary binary tree T with M nodes into an N­

node hypercube such that, with high probability, no star in the cover C receives more 

than O(M/2n + n) tree nodes. 

Proof. Consider an arbitrary star S in level l from the cover C. Let Xi be the 

number of tree nodes from subtree Ti which are assigned to processors in S. The Xi 

are independent random variables, each with maximum value 2 (from lemma 4.11) and 

mean 0(min/2n), where mi is the number of leaves of the subtree Ti. It follows that 

the mean of X = L:: Xi is 0( mn/2n ), where m is the number of tree nodes embedded 

into level i of the butterfly. But since we are balancing levels by embedding the tree 

B(T), we have m = O(M/n + 2n), so that the mean of Xis less than c18 (M/2n + n) 

for some constant c18 > 0. By the same argument as in the proof of lemma 4.5, we 

can bound the expectation of the random variable etX by 

Again as in lemma 4.5, we obtain for any constant b, 

Pr[X 2: ~(M/2n + n)] 

_ Pr[etX 2: e(tbc18 /2)(M/2n+n)] 

< exp((cts/2)(M /2n+n )(e2 ' -1)) 
ecbe11 /2(M/2ll+n) 

This value is minimized at t = lnb/2, at which point this quantity is smaller than 

N-lc for k which can be made as large as desired by choosing b sufficiently large. • 
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4.4.3 Redistributing Load Within Stars 

With high probability, each star in the cover has at most O(M/2n + n) tree nodes 

assigned to its 8(n) nodes. We would like to redistribute the O(M/2n + n) load 

on each star evenly among the 8(n) nodes of the star, using the hypercube edges 

connecting butterfly nodes within the same level, so that two conditions hold: 

1. Each node gets at most 0 ( M / N + 1) load. 

2. We can choose paths of constant length between the redistributed locations of 

adjacent tree nodes so that the congestion on any hypercube edge is at most 

O(M/N+l). 

If these two conditions can be achieved by a redistribution scheme which runs 

dynamically as the tree is embedded then, with high probability, the embedding 

algorithm achieves load O(M/N + 1), dilation 0(1), and congestion O(M/N + 1) -

simultaneously optimizing load and dilation to within constant factors. In addition, 

the congestion will be optimal if M = O(N). 

Place an O(M/ N + 1) upper limit (with appropriate choice of constant depending 

on the constant in lemma 4.12 and the number of elements in each star) on the number 

of tree nodes which can be assigned to a single node. All additional load is sent to 

some other node in the star which has room. It is clear that we have sufficient capacity 

over each star to handle the load, and that we will still have constant dilation. In 

addition we will have maximum load 0( M / N + 1) at each node of the hypercube. Note 

that this is not allowing process migration-each tree node is redistributed before it is 

embedded into the hypercube. Once the node's redistributed location is determined, 

it is embedded there permanently. 

Suppose we redistribute one tree node from node v' to node vi in the star centered 

at v in the hypercube (load coming from or going to the center is redistributed 

directly). This load is passed along the path v' ~ v'i ~ vi rather than through the 

center of the star. 
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Lemma 4.13. If all load being redistributed among points of stars is follows patbs 

of the form vi -+ vii -+ vi rather than paths through the centers of stars, then the 

resulting congestion due to this redistribution is O(M/N + 1). 

Proof. For each star in the cover, consider the corresponding extended star, which 

consists of the star centered at v, plus all vertices vii such that both vi and vi are in 

the star. The edges in the extended star consist precisely of those paths along which 

load can be redistributed in the star centered at v. The redistribution within that star 

can add at most congestion 0( M / N + 1) to any of the edges in the extended star. All 

that remains is to observe that any edge in the hypercube is in at most two extended 

stars. Thus the total congestion it receives from redistribution is 0( M / N + 1 ). • 

Let l be the level of the butterfly to which u is mapped; then v is mapped to level 

l + 2. Furthermore, their positions within their respective butterfly levels differ in at 

most two bit positions (before redistribution). We consider here the case where both 

u and v are both initially mapped and redistributed to some point of a star rather 

than the center. When one or both of them is mapped to the center of a star, the 

argument is even simpler. 

Let x and y be the centers of the stars to which u and v, respectively, are mapped. 

Let p and q be the dimensions within the star to which u is mapped and redistributed, 

and likewise r ands for v. Let f 1,f2 be the flip bits selected when v is embedded as a 

child of u. We then define the path from u, which is redistributed to xq in level l, and 

v, which is redistributed to y6 in level l + 2, as follows (this procedure is illustrated 

in figure 4-4): 

1. Move from level l to level 1 + 1 to level 1 + 2 along the edges determined by the 

flip bits 11 ,J2. 

2. Flip the bits in positions p, then q, in effect undoing the redistribution of u 

which was performed in level 1. We are now at yr, the original location of v 

before redistribution. 
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Figure 4-4: The path chosen between redistributed node locations. The dashed lines 
indicate the path determined by the flip bits, before redistribution. The first pair 
of directed edges also show this choice of flip bits. The second pair undoes the 
redistribution at level 1. The last pair balances the load at level 1 + 2. 

3. Flip the bits in positions s, then r. This takes us to y", the redistributed location 

of v in its star in level 1 + 2. 

In order to show that the congestion is 0( M / N + 1) in this case, it suffices to show 

two things. First, that the congestion along each edge of the butterfly is O(M/N + 1). 

Second, that the congestion along each hypercube edge connecting nodes within a 

butterfly level is O(M / N + 1 ). From these two facts it follows that the total congestion 

is O(M/ N + 1). 

Consider an arbitrary butterfly edge. There are at most two nodes of the butterfly 

which, when choosing the paths to their descendants, can use that edge. Since after 

redistribution each of these nodes has load 0( M / N + 1), the congestion along the 

edge being considered can also be at most 0( M / N + 1). 

The congestion on hypercube edges connecting butterfly nodes within a level has 

two sources: (1) the redistribution of the nodes embedded to that level, and (2) 

undoing the redistribution of the parents of the nodes embedded to that level. 

It follows directly from lemma 4.13 that the total congestion from the first source 

does not exceed O(M/N + 1). We can break up the congestion derived from the 
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second source into four sets, according to the flip bits chosen along the paths from 

the parents of the nodes in the level we are considering. Each fixed setting of flip 

bits determines a bijective map of the nodes, and therefore the jump edges, from 

two levels above to the current level. The congestion on any edge from undoing 

the redistribution of parents equals the congestion on its preimage from the original 

redistribution. The congestion in each set is therefore 0( M / N + 1 ), and so the total 

congestion derived from undoing the redistributions is also O(M/N + 1). It follows 

that the entire congestion on any edge is O(M/N + 1). 

Theorem 4.14. An arbitrary tree T with M vertices can be grown on a N processor 

hypercube with constant dilation such that with high probability the maximum load 

is O(M/N + 1) and the congestion is O(M/N + 1). 

4.5 A Lower Bound for Deterministic Algorithms 

In this section, we prove that any deterministic algorithm for dynamically embedding 

an M-node tree in an N-node hypercube (M ~ N) which maintains maximum load 

a~ must have not only maximum but average dilation n( yTOgN / a2). It follows 

that any deterministic embedding algorithm which achieves 0( M / N + 1) load must 

necessarily result in embeddings with dilation n( y10gN) for some trees. Thus any 

embedding algorithm which simultaneously optimizes maximum load and dilation (to 

within constant factors) must be randomized. 

Theorem 4.15. Any deterministic algorithm for dynamically embedding trees in an 

N-node hypercube which achieves load aM / N for a tree with M (~ N) nodes must 

have average edge length n(yTOg'N/a2
). 

Proof. Let aM / N be the load maintained by the embedding algorithm when embed­

ding an M-node tree. Define the size of a node in the hypercube to be the number 

of 1 's in the n-bit string associated with the node. Partition the hypercube into 6a 

blocks, each block corresponding to some range of node sizes and containing N/6a 

nodes. Since there are at most 0( N / yTOg'N) nodes of any size, each block must 
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contain at least f2( yrogN/ a) sizes. This means that any two nodes which are in 

non-adjacent blocks are at distance n( yTOgN /a) from each other. 

Choose an arbitrary M ~ N, and grow a path of M/2 nodes, starting at the root. 

At this point, some block must contain M /12a tree nodes; choose such a block. We 

will continue growing the tree from the M/12a nodes in the chosen block. Grow paths 

from each of these tree nodes simultaneously, stopping each path's growth when it 

reaches a hypercube node which is neither in the chosen block nor in a block adjacent 

to it. The total number of nodes in the chosen block and adjacent blocks is at most 

N/2a; since the algorithm maintains load aM/N, this set of nodes contains at most 

(aM/N)(N/2a) = M/2 tree nodes. It follows that the total length of the M/12a 

paths grown is at most M /2. This verifies that the tree being considered has at most 

M nodes. 

Now we can calculate the average edge length. Since each of the M/12a paths 

connects a node in the chosen block to a node in some non-adjacent block, the total 

edge length in these paths is at least (M/12a) x n(yTOgN/a) = f2(My'fOgN/a 2
). 

Since the entire tree contains at most M edges, it follows that the average edge length 

of the embedding is n( Y10iN / a2
). • 

4.6 Remarks 

The embedding in section 4.4 achieves dilation at most 12. One edge of T corresponds 

to at most two edges of B(T), each of which corresponds to two butterfly edges. In 

the embedding of the butterfly into the hypercube each butterfly edge corresponds to 

two edges of the hypercube. The redistribution algorithm adds at most four edges to 

the resulting path for a total of 12 hypercube edges. By combining the techniques of 

section 4.4 with those of section 4.2, we can reduce this to 6 or 7 with no increase in 

load or congestion. 

It is also likely that we can improve the bound on congestion to 0( M / N log N + 1) 

for hypercube embeddings by combining the techniques in section 4.4 with those of 

section 4.2. We suspect that this bound is tight for all on-line algorithms, but we 
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can prove a bound of D.(M / N log N + 1) only for deterministic on-line algorithms. 

Any M-node binary tree can be embedded off-line in an N-node hypercube with load 

0( M / N + 1) and constant dilation and congestion. 

Although we have not worked out the details, we suspect that our embedding 

algorithms also work for trees that can shrink from the top as well as grow and shrink 

from the bottom, and that they can be made to work for arbitrary trees of small 

degree. We also expect that our techniques will prove useful for finding embeddings 

in other networks, such as the shuffle-exchange graph. 
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