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Abstract 

One of the most critical and yet unsolved problems in phonetic recognition 
is the transformation of the continuous speech signal to a discrete representa­
tion for accessing words in the lexicon. In order to find an efficient description 
of speech for recognition tasks, our research investigates the use of distinctive 
features. Distinctive features are a small set of linguistic units which have the 
potential advantage of enabling us to describe contextual and coarticulatory 
variations in speech more parsimoniously and thus make more effective use of 
available training data. 

To access the usefulness of distinctive features, we focus our inquiry on 
three questions. First, is there a particular spectral representation that will 
yield superior performance over others? Second, how would the extraction and 
use of acoustic attributes affect classification performance when compared to 
the direct use of the spectral representation? Finally, are there performance 
advantages in introducing an intermediate linguistic representation between 
the signal and the lexicon? 

Our investigation lies within the scope of classifying American English vow­
els using a multi-layer perceptron classifier with a single hidden layer. Vowel 
tokens were extracted from the TIMIT corpus. To answer the first question, 
several spectral representations were compared. The combination of the out­
puts from Seneff's Auditory Model outperformed all other representations with 
both clean and noisy conditions, yielding top-choice accuracies of 66% and 54 % 
respectively. To answer the next two questions, classification experiments were 
conducted under six different conditions, which resulted from systematically 
varying three condition variables. These variables specify whether acoustic 
attributes were extracted, whether an intermediate feature-based representa­
tion was introduced, and how the feature values were combined. Potential 
computational and descriptive advantages were shown for acoustic attributes 
and features, respecti_vely. 

Thesis Supervisor: Victor W. Zue 
Title: Principal Research Scientist 
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Chapter 1 

Introduction 

1.1 Problem Statement and Motivation 

Human-machine interaction via speech has always been a dream and a goal 

for many people, since speech is regarded as the most natural and efficient 

means of communication for humans. However, despite active research in the 

field of automatic speech recognition over the decades, the performance of 

current technology in restricted domains such as limited vocabulary, isolated 

word and speaker dependent tasks still falls below human capabilities. One 

of the most critical and yet unsolved problems is the transformation of the 

continuous speech signal into a discrete representation for accessing words in 

the lexicon. To tackle this problem of speech decoding, it is important for us 

to understand how speech can be represented. 

Languages can be described in terms of a small set of abstract linguistic 

units called phonemes [7]. A phoneme is the basic contrastive unit in the 

phonology of a language. Several phonemes concatenated together constitute 

a word. Therefore, words with different phoneme sequences are differentiated 

in a language. For example, the word "hat" consists of the phonemes /h/, /a!/ 
and /t/ and changing the middle phoneme to /i/ results in the word "heat". 

Another example is the word "bow" which consists of the phonemes /b/ and 

/aw/, but inserting the phoneme /r/ in between results in the word "brow". 

Each phoneme is produced by a unique articulatory gesture, and based on sim-
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ilaritie~ and differences in the:c;e articulatory characteristics. phonemes can be 

·~rouped into cla::;se:o and sub-classes )S). In particular. the .\merican English 

language has ~O phonemes. which can be grouped into i·ou·els and consonants. 

The vowels can be further divided into monophthongs and diphthongs. whereas 

the consonants can be categorized into seml-1;owcls. nasals .. stops. frzcatires 

and aff rzcates. 

The acoustic signal produced when a phoneme is pronounced is subjected 

to a wide range of variabilities, since the articulatory movements are con­

tinuous and can vary in uncountably many ways. There are contextual and 

coarticulatory effects. where the realization of a phoneme is dependent upon 

the identities of the neighboring phonemes. For example, the phoneme / s/ in 

·'gas·' is often palatalized to become /s/ in "gas shortage''. Due to the con­

tinuous movement of the articulatory organs under inertia, sharp transitions 

from one phoneme to another may not always be produced. The direction 

of these phonological effects is not always consistent, as can be reflected by 

the absence of palatization of /s/ in a /s/ context in the example ·'tuna fish 

sandwich''. To a certain extent, these phonological effects are imposed by the 

speaker. There are variations across speakers, as well as variations within the 

same speaker. Factors such as dialect, vocal tract shape, speaking style, speak­

ing rate. etc., all play a part in modifying the resultant acoustic outcome of a 

phoneme. In addition, there are environmental factors due to recording equip­

ment and noise. Therefore, the task of classifying a given acoustic segment 

as a phoneme is immensely complicated due to the wide range of variabili­

ties mentioned above, and classification accuracy will be forseeably low, even 

though we may reference a large number of examples of each phoneme in the 

training data. 

In order to account for the physical sound produced more accurately, the 

phone has been used as a descriptive unit. The term allophone is used to 

describe a class of phones which are variants of the same phoneme [25]. For 

instance, the allophone of /t/ in "butter" is realized as a flap, which involves 

11 



Pl,ones can acco11nt for ~ouuJs in d1e speech ,;ignal \·ery precise[y. but there 

is no objecti\·e limit to the number of phones necessary to Jescribe the speech 

signal. In ot. ~- \rnrds. the co\·erage of any arbitrarily selected inventory of 

phones is not complete. This poses some limitations to the use of phones in 

speech recognition. A large im·entory of phones is necessary for reasonable 

acoustic coverage. which naturally demands a vast amount of training data. 

Furthermore. should a new phone be discovered and added to the inventory. 

additional training data and acoustic models will be required. Consequently. 

systems which utilize the phone as a descriptive unit of speech may not achieve 

very high adaptability. 

At this point. we may perhaps generalize the characteristics of a desirable 

inwntory of phonological descriptive units. The inventory should be small 

and capable of describing a broad range of sounds. This demands efficiency in 

capturing phonemic similarities and contrasts due to coarticulation, thereby 

minimizing the amount of redundancy in the description. The description 

should also be robust towards environmental variations such as noise. In ad­

dition. it should be salient in the acoustic signal for easy identification. A 

potentially better alternative to the use of phones is offered by distinctive 

features, which will be described in detail in the following section. 

1.2 Distinctive Features 

The concept of distinctive features is very powerful for analyzing speech. Lin­

guists generally believe that phonemes can be represented by a small set of 

basic linguistic units - distinctive features [2]. A feature is a minimal unit 

which distinguishes a pair of maximally close phonemes. For example, /b/ 

and /p/ are distinguished by the feature [vorcE]. The description corresponds 

directly to contextual variability and coarticulatory phenomena. For instance, 

the vowel in "dwell" is probably underlyingly an /e/ with an exceptionally 

12 



lu\\. second formant. ~incP it i:-; influenced b\· rhe feature ROl.\D. from the ieft 

(·ontext. which refers to the rounding of the lips in pronouncing . w . and the 

feature [u.TER.u: from the right context. which associates with the raising 

of the tongue towards the palatal midline during the articulation of 1 l .. The 

complete set of distinctive features can thus describe all phonemically rele\·ant 

differences occuring with all possible contrasting phoneme pairs. Phonemes 

sharing features in common form natural classes. e.g. nasals. and sounds are 

more often confused in relation to the number of features they share. It is 

believed that around 1.j to 20 distinctive features are sufficient to account for 

phonemes in all languages of the world. 

Distinctive features are linguistically motivated, and manifest themselves 

as their corresponding acoustic correlates in the speech signal. Phonological 

and phonetic research conducted over the past three decades has resulted in a 

wealth of information, albeit incomplete, on the acoustic correlates of distinc­

tive features. Some of the findings and ideas are presented in the following: 

Fant 's ·segmental theory' of speech [6] regards connected speech as seg­

ments - the temporal contrasts are described by manner features, and contin­

uous variations within the segments or across segment boundaries are described 

by place features. A manner feature correlates with the speech wave through 

its production characteristics, for example, the feature [vorcE] is character­

ized by the vocal cord vibrations modulating an air stream, which causes the 

speech wave to have quasi-periodic fine structure in frequency and time. A 

place feature correlates with the speech wave through its articulatory charac­

teristics. For example, the feature [Rou~rn] is realized by protruding the lips 

and drawing them relatively close, resulting in the lowering of the first three 

formants (especially F2 in most cases) in the speech signal. Therefore, it can 

be seen that the acoustic correlates of distinctive features tend to be quite 

localized in the speech signal. Features can co-occur and reinforce other fea­

tures, and in some cases, certain features provide markers that indicate regions 

where properties associated with other features are evident in the sound. For 

13 



example. e\·idence for \ucal-folcl \·ibrat'.on as5ociatecl \\·ith the feature :\·orcE_ 

1l::'ually occur:- in the \·icinity of changes in the '.~co \:30 \ A:\T.U j property. 

Ste\·ens defined the acoustic correlates of distinctive features using a dif­

ferent approach }S~. He observed many examples of a non-monotonic or ··sig­

moidal"' relation between acoustic and articulatory parameters as schematized 

in Figure 1.1. As the articulatory parameter is varied gradually, there are 

ranges where the acoustic parameter is relatively invariant. but as the artic­

ulatory parameter moves through the rapid transition region of the sigmoid. 

the acoustic parameter undergoes a qualitative change. Similar phenomena 

have been observed between auditory and acoustic parameters. He suggested 

that these .:quanta!"" relations play a principal role in shaping the inventory 

of articulatory states and their acoustic consequences that are used to signal 

distinctions in language. The acoustic attributes that occur in the plateau-like 

regions of the relations are the acoustic correlates of the distinctive features. 

In his examples, these acoustic correlates should be described in relational 

terms. This may make distinctive features a purer representation of speech, 

because relational parameters are more likely to be independent of vocal-tract 

size, speaking rate, and phonetic contexts than absolute parameters such as 

frequencies of spectral components. Therefore, Stevens suggested that an ut­

terance in speech may have an underlying representation in terms of distinctive 

features. possibly expressed as a hierarchy of matrices. 

Despite all the information we have about the acoustic correlates of dis­

tinctive features, many questions still exist. The hierarchical structure of dis­

tinctive features is not completely known. The acoustic correlates of some 

features have not been fully understood and characterized. It is also uncer­

tain whether the features should be assigned binary values, and how much 

orthogonality exists between different features. But nevertheless, there are 

reasons to believe that the concept of distinctive features is potentially very 

useful for automatic speech recognition. The compact inventory of features 

enables us to make more effective use of training data. The descriptive power 
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Articulatory Parameter 

Figure 1.1: Schematization of the quantal relation between an acoustic and an 
articulatory parameter 

of features allow us to account for contextual influence more parsimoniously. 

For example, the vowel /u/ occuring in an alveolar context is often fronted to 

become /ii/. So instead of carrying two separate acoustic models for these two 

vowels respectively, we may perhaps simply note that they share most features 

except for [BACK], as a result of context, and therefore the feature [BACK] is 

distinctive. In some cases, coarticulatory effects provide redundant sources of 

information about the adjacent phonemes, and this may contribute to sustain­

ing high recognition performance. Furthermore, distinctive features can serve 

as a powerful data reduction and refinement scheme that can be used to save 

computation, since it may be possible to describe speech by extracting the 

acoustic correlates of distinctive features, instead of using the entire spectral 

representation. 

1.3 Decoding Strategies of the Speech Signal 

Our next step is to explore the use of distinctive features in decoding the speech 

signal, where an acoustic representation is mapped to the lexicon. Specifically, 

in this thesis we focus on phonetic classification. One possible method is to in-
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troduce an intermediate representation of lingui~tic features between the -'ign21i 

;rnJ the lexicon. This approach. as illustrated in figure l.2. clearly utfers more 

flexibility than the direct classification of phonemes from the signal. Howe\·er. 

it is not clear whether a set of acoustic attributes is required to bridge the gap 

between the acoustic representation and the phonological representation. Dis­

tinctive features manifest themselves as their acoustic correlates in the speech 

signal, and phonetic contrasts are therefore inherent in the signal. We can­

not as yet clearly characterize acoustic correlates of the various distinctive 

features, but it is very likely that each feature relates to a region in the acous­

tic space. and there is a great deal of overlap among such regions. In other 

words, the acoustic correlates may exhibit varying degrees of prominence in 

the acoustic signal. and some acoustic representations may be more revealing 

than others with regard to the underlying features. ~Ioreover, in the process 

of mapping the acoustic representation to the intermediate feature representa­

tion, it may be constructive to extract some acoustic attributes which enhance 

feature characteristics. Alternatively, since these acoustic attributes are based 

on the distinctive features, the phonological representation may be bypassed 

entirely. Amongst these several approaches to decode the speech signal, which 

have all been included in Figure 1.2, it is not certain which would be the best 

strategy. Therefore, the objective of this thesis is to assess the usefulness of 

distinctive features for phonetic classification, and compare the different meth­

ods of introducing them as an intermediate representation in our classification 

framework. 

1.4 Thesis Overview 

In this thesis, we attempt to address issues related to the use of distinctive 

features for phonetic classification. More formally, we ask three questions. 

First, is there a particular spectral representation that is preferred over others? 

Second, should we use the spectral representation directly for phoneme/feature 
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classification. 0r 5houlcl \\·e instead extract and ttse arnu~t ic att rillut("5 .' fin ally. 

,foe~ the introciu.ction of an intermediate feature-based representation bet\\·een 

the signal and the lexicon offer performance ad\·antages ~ 

To pro\·icle an answer to the first question. we conduct a set of phoneme 

classification experiments using a variety of input representations. This is 

described in Chapter :2. vVe may infer that the representation which gives 

the best performance should also be the most suitable for use in defining and 

quantifying acoustic attributes corresponding to the distinctive features. 

Then in Chapter :3 we proceed to evaluate the different strategies for de­

coding the speech signal. Our experimental paradigm includes the baseline 

approach where the acoustic signal is directly used for phonetic classification. 

Another approach involves extracting acoustic attributes from the signal before 

phonetic classification is done. A third approach introduces an intermediate 

phonological representation between the signal and the lexicon, and the final 

approach includes both attribute extraction and an intermediate representa­

tion. 

Following this, Chapter 4 compares several acoustic representations on the 

basis of their ability to perform acoustic segmentation. Phonemes are the 

smallest unit which are concatenated to form speech. A sequence of phonemes 

may constitute a small structure such as a syllable or a word, or a large struc­

ture like a phrase or a sentence. This sequential phonological description is 

manifested as a segmental acoustic description, and there are clearly overlaps 

from segment to segment. In this respect, a descriptive acoustic representa­

tion should preserve acoustic regularities within a segment which lies between 

acoustic landmarks, as well as transitional acoustic behavior which occurs 

across segment boundaries. 

The final chapter presents a summary of this thesis as well as possible 

extensions for future work. 
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Chapter 2 

Selecting an Acoustic 
Representation 

In the selection of an optimal signal representation for an automatic speech 

recognition system. it is important to bear in mind that the parametric repre­

sentation should preserve all the relevant aspPcts of the speech signal for the 

recognition task in hand and eliminate the irrelevant details. The representa­

tion should also be compact, for the sake of computational economy. 

Historically, short time spectral representations used as input to a recog­

nizer have included those based on the Discrete Fourier Transform, as well as 

those based on the all-pole modelling of speech (Linear Predictive Analysis) 

[28]. Since it is believed that speech is optimized through the evolution of 

language for the characteristics of human hearing, and there is physiological 

and psychoacoustical evidence that the ear performs spectral analysis on the 

speech signal, researchers have built front ends which emulate natural audi­

tory processing [1,3,13]. In some cases, such auditory models have helped 

to improve recognition performance. There are also the mel-frequency rep­

resentations [16], which is an engineering approximation of the ear's critical 

band filtering, and has recently gained popularity in the speech recognition 

community. 

19 



2.1 Previous Work with Comparison of Parame­
tric Representations 

Se\~eral experiments on comparing signal representations ha\·e been reported 

in the past. :\Iermelstein and Davis [16] compared five representations. namely 

the mel-frequency cepstral coefficients ( .VIFCC). the linear frequency cepstral 

coefficients. the linear prediction cepstrum. the linear prediction spectrum. and 

the reflection coefficients. On the task of recognizing monosyllabic words spo­

ken continuously by two speakers, they found that a set of 10 ~!FCC resulted 

in the best performance. suggesting that the mel-frequency cepstra possess 

significant ad vantages over the other representations. 

Hunt and Lefebvre [14:] compared the performance of their psychoacoustically­

motivated auditory model ·vith that of a 20-channel mel-cepstrum. The first 

eight discriminant functions obtained by applying linear discriminant anal­

ysis on the two auditory model outputs were compared with 8 unweighted 

MFCC (Ci to C8 ). Experiments conducted include speaker-dependent and in­

dependent conditions, connected and quasi-isolated word recognition, as well 

as noisy and spectrally tilted speech. The auditory model gave the highest 

performance under all conditions, and is least affected by changes in loudness, 

interfering noise and spectral shaping distortions. 

Later. Hunt and Lefebvre [15] conducted another comparison with the audi­

tory model output, the mel-scale cepstrum with various weighing schemes, cep­

strum coefficients augmented by the 8-cepstrum coefficients, and the IMELDA 

representation which combined between-class covariance information with within­

class covariance information of the mel-scale filter bank outputs to generate a 

set of linear discriminant functions. The tests conducted were similar to those 

in the previous comparison. The IMELDA outperformed all other representa­

tions. 

In summary, these studies generally show that the choice of parametric rep­

resentations is very important to recognition performance, and auditory-based 
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representations generally yield better performance than :-nore co:1\·entiona.l rep­

re5entations. In the comparison of the psychoacoustically-moti\·ated auditory 

model with .\IFCC. howe\·er. different methods of analysis led to different 

results. Therefore. it will be interesting to compare outputs of an auditory 

model with the computationally simpler mel-based representation when the 

experimental conditions are more carefully controlled. 

2.2 Overview of the Comparison Experiments 

This chapter describes a comparative study of six acoustic representations on 

the task of vowel classification using an artificial neural net (AX="") classifier. 

Three of the representations are obtained from the auditory model proposed 

by Seneff [3L30]. Two representations are based on mel-frequency, and the 

remaining one is based on the conventional Fourier transform. Attention is 

focused upon the relative classification performance of the signal representa­

tions. the effect of increasing training data on the robustness of the results, 

and the tolerance of the different representations to additive white noise. 

To strive towards a fair comparison of the various signal representations, 

we restricted the ANN classifier to have the same architecture throughout the 

experiments. All input feature vectors were measured at the same points in the 

speech signal, and the dimensionalities of the input vectors were all identical. 

2.3 Signal Processing 

The speech signal is sampled at 16 kHz and a spectral vector is computed 

once every 5 ms. Three feature vectors, representing the average spectra for 

the initial, middle, and final third of every vowel token, are determined for 

each representation. These vectors attempt to crudely capture the dynamic 

characteristics of vowel articulation. All the acoustic representations result in 

a 40-dimensional feature vector covering a frequency range of slightly over 6 

kHz. 
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Figure 2.1: Block diagram of Seneff's auditory model 

2.3.1 Seneff's Auditory Model 

Seneff's Auditory Model (SA.\f) has three stages [30], as illustrated in Figure 

2.1. Stage I consists of a bank of 40 critical band filters, spaced linearly on a 

Bark frequency scale. The center frequencies of these filters range from 130 to 

6400 Hz, as shown in Figure 2.2. The outputs of this stage, the critical band 

envelopes, are fed into Stage II, which models the transformation from the 

basilar membrane vibration to the the auditory-nerve fiber responses. This 

part of the model incorporates non-linearities such as dynamic range compres­

sion. half-wave rectification, short-term and rapid adaptation, and forward 

masking. The output of this stage represents a probability of firing along the 

auditory-nerve. This will be processed by the envelope detector in Stage III 

to become the mean probability of firing along the auditory nerve, called the 

mean rate response. The other module, the synchrony detector, determines 

the synchronous response of each filter by measuring the extent of dominance 

of information at the filter's characteristic frequency. This output is therefore 

called the synchronous response. Both the mean rate and the synchronous 

responses result in a 40-dimensional feature vector. 
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Since the mean rate response 1. :\IR) and the synchrony response 1. SRJ were 

[ntended to encode complementary acoustic information in the acoustic signal. 

a representation combining the two is also included in our experiments. This 

is done by appending the first 20 principal components [.+] of the :\IR and SR 

to form another -±0-dimensional vector (SA.\I-PC). 

2.3.2 The Mel-frequency Representations 

To obtain the mel-frequency spectral and cepstral coefficients (.\IFSC and 

.\IFC C, respectively), the signal is pre-emphasized via first differencing and 

windowed by a 25.6 ms Hamming window. A 256-point discrete Fourier Trans-
• form ( DFT) is then computed from the windowed waveform. Following .\Ier-

melstein et al [16], these Fourier transform coefficients are later squared. and 

the resultant magnitude squared spectrum is passed through the mel-frequency 

triangular filter-banks described below. The log energy output (in decibels) of 

each filter, Xk, k = 1, 2, ... 40, collectively form the 40-dimensional MFSC vec­

tor. Carrying out a cosine transform on the MFSC according to the following 

equation yields the .\IFCC's, Yi, i = 1, 2, .. , 40. 

40 1 7r 

Yi = I: x k cos r i ( k - - J-l 
k=l 2 40 

Some details about the cosine transform are provided m Appendix A. The 

lowest cepstrum coefficient, C0 , is excluded to reduce sensitivity to overall 

loudness. 

In order to achieve as fair a comparison as possible, the mel-frequency 

triangular filter banks are designed to resemble the critical band filter bank 

of SAM (see Figure 2.3). The filter bank consists of 40 overlapping triangular 

filters spanning the frequency region from 130 to 6400 Hz. Thirteen triangles 

are evenly spread on a linear frequency scale from 130 Hz to 1 kHz, and the 

remaining 27 triangles are evenly distributed on a logarithmic frequency scale 

from 1 kHz to 6.4 kHz, where each subsequent filter is centered at 1.07 times 

the previous filter's center frequency. Since the bandwidths of the triangular 
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Figure 2.3: Design of the mel-frequency triangular filters 

filters increase with the center frequencies, the area of each filter is normalized 

to unit magnitude in order to avoid amplification of the higher frequency 

coefficients through bandpass summation [26]. 

2.3.3 The Discrete Fourier Transform 

To obtain the Fourier Transform representation, a DFT is computed in the 

same manner as described previously. Cepstral smoothing is performed to 

obtain a 256-point DFT, which is then down-sampled to 40 points. This 

processing sequence serves to filter out some non-essential pitch information. 

2.3.4 Noise 

One of the experiments which will be described below investigates the relative 

immunity of each representation to additive white noise. The noisy test tokens 

are constructed by adding white noise to the signal to achieve a peak signal-to-
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Figure 2.4:: vVideband spectrograms showing clean and noisy speech for the 
vowel /a/ 

noise ratio (computed with the maximum energy in a frame of an utterance) 

of 20dB, which corresponds to a signal-to-noise ratio (computed with average 

energies) of slightly below lOdB. Figure 2.4 shows wideband spectrograms of 

one of the test tokens before and after noise corruption, and Figure 2.5 shows 

the corresponding spectra at the midpoint of the vowel token. 

2.4 Task and Corpus 

Comparisons of the various signal representations are based on the task of 

classifying 16 American English vowels using tokens excised from the acoustic­

phonetically compact portion of the TIMIT database [19]. It is a classification 

task in that the boundaries of the vowel tokens are provided by the time­

aligned phonetic transcription, and the classifier is only asked to determine 

the most likely label. The 16 vowels include 13 monophthongs /i, 1, e, e, ~' a, 

o, A,:>, u, u, ii,~/ and 3 diphthongs /aY, :>Y, a"'/. No restrictions were imposed 

on the phonetic contexts in which they may appear. The training data consist 

of over 20,000 tokens, excised from 2,500 continuous sentences spoken by 500 

speakers. The testing data consist of nearly 2,000 tokens, excised from 250 
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Figure 2.5: Smoothed DFT spectra of both clean and noisy speech for the 
midpoint of the vowel /a/ 

Training Testing Training Testing 
Speakers (M/F) Speakers (M/F) Tokens Tokens 
500 (357 /143) 50 (33/ 17) 20,519 1,879 

Table 2.1: Corpus used for the experiments 

continuous sentences spoken by 50 new speakers. The size and contents of the 

corpus are s~rnmarized in Table 2.1. 

2.5 The Artificial Neural Network Classifier 

The classifier used for our experiment is an artificial neural network based on 

multi-layer perceptrons (MLP) [29]. The particular MLP architecture for pho­

netic recognition has previously been described in great detail by Leung [21]. 

The MLP is found to have several characteristics which are particularly advan­

tageous for phonetic classification tasks, and in some cases, especially suited 

to our investigation. First of all, unlike a Gaussian classifier, for example, it 

does not make assumptions about the underlying probability distribution of 

the input data. Therefore, the classification performance is not penalized by 
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any im·alid assumptions of the true underlying distributions. 

Second. the \ILP utilizes the training of connection \\·eights to form deci­

sion regions. instead of using specific distance metrics 1 such as the Euclidean 

or Itakura ) lj) to measure similarity. For traditional classifiers which do not 

assume probability distributions. the choice of a distance metric may be critical 

for robustness and performance [18]. Also, the distance metric may pose con­

straints on the input representation of a classifier. For example. discrimination 

by the Euclidean distance relies on differences in energy in the speech signal, 

and may be less suited for representations such as the synchronous response 

of SA.\I which has its energy information normalized. Since the experiments 

reported here involves several different acoustic representations, the .\ILP is 

particularly suitable for our purposes. 

Third, the .:VILP accepts both continuous inputs such as acoustic attributes 

and/or binary inputs like linguistic features. This property, together with the 

two mentioned above, allows us to integrate heterogeneous sources of infor­

mation as an input representation, as in the SAM-PC representation in our 

experiments. 

Fourth, classification by the MLP is done through maximizing the differ­

ences between different classes by focusing on errors made at the decision sur­

faces, i.e. minimizing an error criterion. This is in contrast to the approaches 

which model individual classes independently of others, and may potentially 

be more effective in improving classification performance. 

Fifth, the MLP is capable of forming disjoint decision regions in the multi­

dimensional input space for the same class without supervision. This may be 

especially suitable for modelling the various allophones of a phoneme. 

Finally, the MLP can be used as a hetero-associator to associate pairs 

of patterns. It is capable of mapping the complex speech signal to different 

levels of phonological and/or phonetic representations. Therefore, it can allow 

us to perform phonetic classification experiments as well as feature mapping 

experiments, as described in the next chapter. 
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2.5.1 Network Structure 

The network used in this thesis has one hidden layer. and is illustrated in 

figure ~.6. The number of output units S 0 depends on the number of classes 

to be recognized. In this case, there are 16 output units in our network. cor­

responding to the 16 vowels. The size of the network is determined b.Y the 

number of units in the hidden layer, .V H. The number of input uni ts S1 

depends on the amount of input information available. In our experiments. 

the average spectra corresponding to the initial, middle and final third of the 

vowel token are appended together to form a 120-dimensional feature vector 

and used as input. This is done to implicitly capture the context dependency 

of vowel articulation. The inputs are normalized in amplitude and the connec­

tion weights are center initialized for better learning capabilities [20]. During 

supervised training, the inputs are fed forward through the network and the 

connection weights are updated for each training token to minimize a weighted 

mean squared error criterion. Details of the training and testing algorithm as 

well as previously improved parameters such as the number of hidden units 

that are used here have all been described in [21]. 

2.6 Results 

For each acoustic representation, four separate experiments were conducted 

using 2,000, 4,000, 8,000, and finally 20,000 training tokens. In general, clas­

sification performance improves as more training tokens are utilized. This is 

illustrated in Figure 2.7, in which we display test set accuracies for the six dif­

ferent acoustic representations, using 2,000 and 20,000 training tokens. Each 

data point of test set accuracy is the average of 6 iterations, and the fluctua­

tions between successive iterations are around 1 %. The rest of the statistics 

are included in the Appendix B. For a fully trained network, the classification 

accuracies for different acoustic representations differ by about 5%, with the 

auditory-based representations consistently yielding better results than oth-
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Figure 2.6: Structure of the .Multi-Layer Perceptron Classifier 

ers. According to a significance level of 0.01 using McNemar's test [9], the 

differences in performance of SAM-PC over each of the remaining representa­

tions are statistically significant, but this does not apply to the differences in 

performance between the remaining pairs of representations, as illustrated in 

Table 2.2. 

In order to get some ideas about the robustness of the various representa­

tions, we also determined for each experiment the classification performance 

SAM PC Mean Rate Synchrony MFSC MFCC DFT 
SAM PC SAM PC SAM PC SAM PC SAM PC SAM PC 
Mean Rate same same same 
Synchrony same same 
MFSC same 
MFCC 
DFT 

Table 2.2: Results of McNemar's test on the performance of different acoustic 
representations (significance level = 0.01). 

30 

same 
same 
same 
same 



70 

• SAM PC 

"° • Mean Rate \Cl 

- 65 • Synchrony 

~ • MFSC -(IJ 

El ~ MFCC 
·~ 

. 

~ D DFf i.. 

= 60 C.I 
C.I 

< 
~ ...... r--: = ·..: V'l V'l 
(IJ V'l V'l 
~ 

E-- 55 

50.i.....--
2,000 20,000 

Number of Training Tokens 
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Figure 2.8: Effect of increasing training data on testing accuracies 

on training data. Figure 2.8 shows accuracies on training and testing data as 

a function of the amount of training tokens for the combined auditory repre­

sentation and the popular mel-frequency cepstral coefficients. As the size of 

the training set increases, so does the classification accuracy on testing data. 

This is accompanied. by a corresponding decrease in performance on training 

data. At 20,000 training tokens, the difference between training and testing 

set performance is about 5% for both representations. 

To investigate the relative immunity of the various acoustic representa­

tions to noise degradation, we determine the classification accuracy of the 
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Figure 2.9: Performance of the different representations on noisy speech 

noise-corrupted test set on the networks after they have been fully trained 

on clean tokens. The results with noisy test speech are shown in Figure 2.9, 

together with the corresponding results on the clean test set. The decrease 

in classification accuracy ranges from about 12% (for the combined auditory 

model) to almost 25% (for the DFT). 

2. 7 Discussion 

Our results indicate that, on a fully trained network, acoustic representations 

based on auditory modelling consistently outperform other representations. 

The best among the three auditory-based representations, SAM PC, achieved 

a top-choice accuracy of 66%, which is comparable to those reported in the 

literature. For example, Leung [21] reported a classification accuracy of 64%, 
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with the same netv;ork and the same data set. when synchrony and mean-rate 

responses were used without principal component analysis. 

When the two outputs of SA.\I are used separately. the performance typ­

ically drops by :3--±3, with the mean-rate response performing better than 

the synchrony response. This result is somewhat surprising, since the gen­

eralized synchrony detector ( GSD) in SAM has the property of enhancing 

spectral peaks, whose locations are important for correct vowel identification. 

Apparently the mean-rate response also preserves the necessary acoustic in­

formation for vowel identification. It is also possible that the GSD algorithm 

over-sharpens the peaks in some cases, thus making the network unduely sensi­

tive to amplitude variations at formant locations. Furthermore, the synchrony 

response lacks energy information, and cannot therefore distinguish as well 

between inherently louder vowels such as /a/ and other softer vowels such as 

/u/. 
The MFSC and MFCC representations performed similarly on the fully 

trained network, worse than the auditory-based representations and slightly 

better than the DFT. At first glance, it may appear that the discrepancies 

are small, since the error rate is only increased slightly (from 33% to 38%). 

However, previous research on human and machine identification of vowels, 

independent of context, have shown that the best performance attained is 

around 65% (27]. Looking in this light, the difference in performance becomes 

much more significant. 

One legitimate concern may be that principal component analysis has been 

applied to SAM PC, but not to MFCC. However, the cosine transform used in 

obtaining the MFCC perform a similar function as principal component anal­

ysis. To ensure that a fair comparison has been made, we have also conducted 

experiments in which principal component analysis is used on the MFCC. 

Taking 40 principal components as input yielded an average performance of 

61.2%, which demonstrates that principal component analysis does not further 

improve the performance of the MFCC. 
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Figure 2.10: Effect of Varying the Number of MFCC on Vowel Classification 
Performance 

Another concern may be that too many MFCC have been used. The higher 

order coefficients carry higher frequency spectral information, which is essen­

tial for vowel classification. So, using a large number of MFCC may to a 

certain extent cause classification performance to degrade. To resolve this is­

sue, experiments have been performed where the number of MFCC used for 

the same vowel classification task is gradually increased from 5 to 40. Results 

are graphed in Figure 2.10, which shows classification performance does not 

decrease as more MFCC are used. Therefore, we may conclude that auditory­

based signal representations are preferred, at least within the bounds of our 

experimental conditions. 

As illustrated in Figs 2. 7 and 2.8, the relative performances of the six rep-

35 



resentations remained fairly stable as more training data were used. O\·erall. 

classification accuracy impro\·ed by an average of 97c as the training data 

increased ten-fold. The accuracies on the training set. on the other hand. de­

crease as expected with more training, suggesting that the network began to 

abstract relevant acoustic cues for phonetic distinction, rather than memoriz­

ing individual differences among tokens. The accuracies converge to less than 

2% for DFT and over 53 for SR. If we regard the convergence between accura­

cies on the training and test sets as an indication of the increasing robustness 

of the network, then we can see from Figure 2.8 that for different acoustic 

representations, the robustness is increasing at approximately the same rate. 

With additional training data, we would expect that the test set accuracy can 

continue to improve. However, it is not very likely that relative performances 

will change. 

In the presence of noise, classification performance degraded for all the 

representations. While the relative performances follows the trend of clean 

speech, the differences between different representations varied substantially. 

The degradation of the SAM representations was least severe - about 123, 

whereas the mel-representations showed a drop of 173. The DFT is most 

affected by noise, and its performance degraded by over 243. Figure 2.11 

shows the clean and noisy versions of the same vowel token shown in Figure 2.4. 

The respective spectra at the mid-point of the vowel token are shown in Figure 

2.12. The fact that the SAM representations are more immune to noise can be 

gleaned from comparing Figure 2.11 with Figure 2.4, and comparing Figure 

2.12 with Figure 2.5. Most of the formant information in the noisy signal is 

preserved in the synchrony response, but such information is difficult to detect 

in the DFT. 

We believe that training with clean speech and testing with noisy speech 

is a fair experimental paradigm since the noise level of test speech is often 

unknown in practice, but the environment for recording training speech can 

always be controlled. 
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Figure 2.11: Synchrony spectrograms showing clean and noisy speech for the 
vowel /a/ 

2.8 Chapter Summary 

In this chapter, we reported the results of a set of vowel classification exper­

iments that compare the relative merits of six acoustic representations. We 

found that, for clean testing tokens, the auditory based representations hold a 

small but consistent advantage over the other representations. This advantage 

is magnified greatly when the testing tokens are corrupted by noise. In the 

following chapter, we will be pursuing other issues related to the acoustic to 

lexical transformation. Specifically, we would like to determine whether one 

should use the signal representation directly, or attempt to extract acoustic 

attributes that may better signify phonetic contrasts. We will also explore 

the possibility of introducing distinctive features as an intermediate lexical 

representation. The auditory models will be used for all of these experiments. 

37 



~ --~ 
E---z 
0 
~ 

~ 

!.I r1 ~ !J r I 

~ Q I \ ,, 
I ~ \ ) \ 1.1_ ' ' E-- 1J \ r' I \ \ . \ 

' 1\/\ -I \ z I \ , v 1 r 
I.I 0 i.l I \ I 

~ 
~··1 \ ~ ~ ~ 

~ I I 

Clean Speech Noisy Speech 

Figure 2.12: Synchrony spectra showing clean and noisy speech for the mid­
point of the vowel /a/ 

38 

,, 

.>-{·\ 





Chapter 3 

Attribute Extraction and 
Distinctive Features 

In this chapter, we continue our study by focusing on the two remaining ques­

tions: "Should we use spectral representation directly for phoneme/feature 

classification, or should we extract and use acoustic attributes instead?" Fur­

thermore, does the introduction of an intermediate feature-based representa­

tion between the signal and lexicon offer performance advantages?" We have 

chosen to answer these questions by performing a set of phoneme classifica­

tion experiments in which conditional variables are systematically varied. The 

usefulness of one condition over another is inferred from the performance of 

the classifier. 

3.1 Experimental Paradigm 

We have mentioned in Chapter 1 (Figure 1.2) that it is uncertain how we 

should utilize distinctive features in our speech decoding strategy. We can ex­

tract acoustic attributes based on distinctive features, and use the attributes 

to replace the direct use of the spectral representation. We can also implement 

an intermediate phonological representation between the signal and the lexi­

con based on distinctive features. It is not clear which method we should use, 

or whether we should use both. Algorithms need to be designed for extracting 

acoustic attributes, for mapping the acoustics to the intermediate phonological 
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representation. as well as bridging the gap between the intermediate represen­

tation and the lexicon. In this chapter. we describe an experimental paradigm 

designed to compare the various possible pathv.rays of speech decoding. Three 

experimental parameters were systematically varied. resulting in six different 

conditions, as depicted in Figure 3.1. These three parameters specify whether 

the acoustic attributes are extracted, whether an intermediate distinctive fea­

ture representation is used, and how the feature values are combined for vowel 

classification. 

In some conditions (cf. conditions A, E, and F ), the spectral vectors were 

used directly, whereas in others (cf. conditions B, c, and D ), each vowel token 

was represented by a set of automatically-extracted acoustic attributes. In 

still other conditions (cf. conditions c, D, E, and F), an intermediate represen­

tation based on distinctive features was introduced. The feature values were 

either used directly for vowel identification through one bit quantization (i.e. 

transforming them into a binary representation) followed by table look-up (cf. 

conditions c and E), or were fed to another MLP for further classification 

(cf. conditions D and F). Our experiments were again conducted using an 

MLP classifier for speaker independent vowel classification. Taken as a whole, 

these experiments will enable us to answer the questions that we posed earlier. 

For example, we can assess the usefulness of extracting acoustic attributes by 

comparing the classification performance of conditions A versus B, D versus F 

or c versus E. Each of these three pairs show the contrast between using the 

spectral representation directly and extracting and using acoustic attributes. 

To assess the usefulness of incorporating an intermediate feature-based repre­

sentation, we can compare conditions B versus c, or B versus D. These results 

should be corroborated by comparing conditions A versus E and A versus F 

respectively. As for assessing the effectiveness of feature classification, we can 

compare conditions c versus D, and E versus F, and it is expected that the two 

comparisons should yield similar observations. 
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Figure 3.1: Experimental paradigm comparing direct phonetic classification 
with attribute extraction, and the use of linguistic features. 

41 



Training 1 Testing 
Speakers (.\I/F) I Speakers (.\I/fl 
.soo 13.51/1-±3) l .so (:3:3/li) 

Training ·1· festing I 

Tokens , Tokens J 
is . .s.ss l i.01:2 I 

Table :3.1: Corpus used for the experiments 

3.2 Task and Corpus 

The task chosen for our experiments is the classification of 13 monophthong 

vowels in American English - /i. 1, e, E, re, a, o, A,::>, u, u, ii and~/. The diph­

thongs are excluded here because their dynamic nature may render distinctive 

feature specification ambiguous. Consequently, there are fewer training and 

testing tokens compared with our previous corpus (cf. Table 3.1). 

Following the conventions set forth by others [37], we characterized the 13 

vowels in terms of 6 distinctive features. The feature values for these vowels 

are summarized in Table 3.2. 

1 I e E re a ;) 0 A u ~ u u 
HIGH + + - - - - - - - + - + + 
TENSE + - + - - - - + - + - - + 
LOW - - - - + + + - - - - - -
BACK - - - - - + + + + + + + -

ROUND - - - - - - + + - + + + + 
RETROFLEX - - - - - - - - - - + - -

Table 3.2: The Set of Distinctive Features used to characterize 13 vowels 

3.2.1 Spectral Representation 

The spectral representation is obtained from Seneff's auditory model, since 

its representations have been found to be superior to others during our previ­

ous study [23]. While the combined mean rate and synchrony representation 

(SAM-PC) gave the best performance, it may not be an appropriate choice for 
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our present work. since the heterogeneous nature of the representation poses 

difficulties in acoustic attribute extraction. As a result. we ha\·e selected the 

next best representation - the mean rate response (.\IR). This representation 

consists of -l:O spectral coefficients spaced half bark apart and computed e\·­

ery .j ms. A 120-dimension feature vector is obtained by appending the three 

average vectors representing the input token. 

3.2.2 Acoustic Attributes 

Each vowel token is characterized either directly by a set of spectral coeffi­

cients. or indirectly by a set of automatically derived acoustic attributes. In 

the latter case, the attributes that we extract are intended to correspond to 

the acoustic correlates of distinctive features. However, we are confronted 

with several problems. First, we do not as yet possess a full understanding 

of these correlates for each feature. Even in cases where these correlates have 

been proposed, they are typically described in terms of parameters such as for­

mant frequencies, which are obtained through heuristic methods and can lead 

to catastrophic measurement errors. Besides, we must somehow capture the 

variabilities of these features across speakers and phonetic environments. For 

these reasons, we have adopted a more statistical and data-driven approach. 

In this approach, a general property detector is proposed, and the specific nu­

merical values of its free parameters are determined from training data using 

an optimization criterion proposed by Phillips [38]. In our case, the general 

property detectors chosen are the spectral center of gravity and its amplitude. 

This class of detectors may carry formant information, and can be easily com­

puted from a given spectral representation. As discussed previously, the mean 

rate response is used. 

The process of attribute extraction is as follows. First, speaker normal­

ization is done by shifting the spectrum down linearly on the bark scale by 

the median pitch [32]. Then, for each distinctive feature, the training tokens 

are divided into two classes: [+feature] and [-feature]. The lower and upper 
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frequency edges \or ··free parameters .. ) of the spectral center of gra\·ity are 

chosen so that the resultant measurement can maximize the fisher's Discrimi-

nant Criterion (FDC) between the classes [+feature] and [-feature]. The FDC 

is defined as the ratio of the difference in class means and the total within-class 

scatter of the samples. It is given by the following formula: [5] 

where x. y are the lower and upper frequency edges used to comoute the spec­

tral center of gravity, m 1 ( x, y) and m 2 ( x, y) are the means of centers of gravity 

for the classes [+feature] and [-feature] respectively, and s1 (x,y) 2 and s 2(x,y) 2 

are the variances of centers of gravity for the classes [+feature] and [-feature] 

respectively. 

For the features [BACK], [TE.'.'rSE], [ROUND], and [RETROFLEX] only one at­

tribute per feature is used. For [HIGH] and [1ow], we found it necessary to 

include two attributes per feature, using the two sets of optimized free parame­

ters giving the highest and the second highest FDC. These 8 frequency values, 

together with their corresponding amplitudes, make up 16 attributes for each 

third of a vowel token. Therefore, performing acoustic attribute extraction 

has the effect of reducing the input dimensions from 120 to 48. The specific 

attributes used are included in Appendix C. 

3.3 Classification Procedures 

The classifier used for our experiments here is again the MLP with a single 

hidden layer with 32 hidden units. As can be seen from Figure 3.1, some of the 

MLP's classify the input directly into one of 13 vowels and therefore possess 13 

output units. The others map the input into an intermediate representation of 

distinctive features. In this case, the output consists of six units, each corre­

sponding to some probability measure of the accurate mapping of a distinctive 

feature. 
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Figure 3.2: Performance of the six classification pathways in our experimental 
paradigm 

The structures of all the above networks are similar to that used in the 

signal representation experiments. Each has a single hidden layer with 32 

hidden units. Once again, input normalization and center initialization have 

been used [20]. 

3.4 Results 

The results of our experiments are summarized in Figure 3.2, plotted as vowel 

classification accuracy for each of the conditions shown in Figure 3.1. The 

values in this figure represent the average of 6 iterations; performance variation 

among iterations of the same experiment amounts to about 1 %. 

Comparing the results for conditions A and B, we found no statistically sig­

nificant difference in performance, according to McNemar's test, as we replace 

the spectral representation by the acoustic attributes (see Table 3.3). This 

result is further corroborated by the comparison between conditions c and E, 

and D and F. 

Figure 3.2 shows a 4-5% deterioration in performance when one simply 

maps the feature values to a binary representation for table look-up (i.e., com-
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paring conditions A to E and B to c ). This deterioration is statistically sig­

nificant (Table 3.3). \\"e can also examine the accuracies of binary feature 

assignment for each feature. and the results are shown in Figure :3.3. The 

accuracy for individual features ranges from 873 for [ROL':-iD] and [TE~sE] to 

983 for [RETROFLEX], and there is again little difference between the results 

using the mean rate response and using acoustic attributes. It is perhaps not 

surprising that table look-up using binary feature values results in lower per­

formance, since it would require that all of the features be identified correctly. 

12 

110 

• Mean Rate 
0 Acoustic Attributes 

rj. 

;:: 100 

~ 
= "' 90 "' < 
Oil = a. 80 c. .. 

:I: .. 70 .. 
= 
~ 60 

50 
HIGH LOW BACK TENSE ROUND RETilOFLEX Ail. 

Distinctive Feature 

Figure 3.3: Distinctive Features Mapping Accuracies for the Mean Rate Re­
sponse and Acoustic Attributes 

However, when we use a second MLP to classify the features into vowels, a 

considerable improvement ( > 4 3) is obtained to the extent that the resulting 

accuracy shows no significant difference from other conditions (cf. conditions 

A and F, and conditions B and D ). 

3.4.1 Significance Testing 

Table 3.3 shows the result of McNemar's test comparing different conditions in 

the paradigm with the significance level of 0.001. The entries in the table may 
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either show the better condition. or indicate that the two conditions are the 

same. Essentially. there is no significant deterioration in performance as we 

replace the spectral representation with attributes. no significant deterioration 

in performance as we incorporate an intermediate feature-based representation. 

but significant deterioration if the feature values are quantized and then used 

for table-lookup. 

A B c D E F 
A same A same A same 
B B same B same 
c D same F 
D D same 
E F 
F 

Table 3.3: Results of McNemar's test comparmg the six conditions m our 
paradigm (significance-level = 0.001) 

3.5 Discussion 

Our investigation on the use of acoustic attributes is partly motivated by the 

belief that these attributes can enhance phonetic contrasts by focusing upon 

relevant information in the signal, thereby leading to improved phonetic clas­

sification performance when only a finite amount of training data is available. 

The acoustic attributes that we have chosen are intuitively reasonable and 

easy to measure. But they are by no means optimum, since we did not set 

out to design the best set of attributes for enhancing vowel contrasts. Nev­

ertheless, their use has led to performance comparable to the direct use of 

spectral information. With an improved understanding of the relationship be­

tween distinctive features and their acoustic correlates, and a little more care 

in the design and extraction of these attributes, it is conceivable that better 

classification accuracy can be obtained. 
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Figure 3.4: Network complexities of the various classification conditions in our 
experimental paradigm 

Another advantage of using acoustic attributes is savings on run-time com­

putations through reduction of input dimensions. Figure 3.4 compares the 

complexities, measured as the number of connections in the artificial neu­

ral network, for each condition in our experimental paradigm. With a small 

amount of preprocessing for computing the attributes, the use of acoustic at­

tributes can save about half of the computations required by the direct use of 

spectral representation. 

One potential source of discrepancy m our experiments has to do with 

pitch normalization. No pitch normalization was performed on the mean-rate 

response, whereas a pitch-normalized spectral center of gravity measure was 

used as acoustic attributes. Pitch normalization in attribute extraction was 

thought to be desirable since it can eliminate singularities that complicate the 

search for a maximum FDC value in the optimization process as illustrated 

in Figure 3.5, which plots the FDC score on the z-axis, and the lower and 

upper frequency edges x and y on the x- and y- axes respectively. The fre­

quency edges yielding the highest FDC score are selected as the "optimized" 

free parameters, as illustrated in Figure 3.5. The global maximum is easy to 
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Figure 3.5: Choosing lower and upper frequency edges for the spectral center 
of gravity to represent the feature BACK 

find in this case since the three-dimensional surface is smooth. However, if 

pitch normalization has not been included in our attribute extraction process, 

"spikes" may appear on the three-dimensional surface. These spikes have high 

FDC values regardless of the contour of the surface, i.e. they may be located 

at local minima. Therefore, we have chosen to include pitch normalization in 

our optimization process. We have conducted further experiments where pitch 

normalization is included in the conditions A, E and F, and the performance 

improvement obtained is below 1.5% in each ca.se. According to McNemar's 

test with a significance level of 0.001, the difference in performance is not 

statistically significant. Therefore, any performance advantages that may be 

brought about by speaker normalization is not an issue. 

To introduce a set of linguistically motivated distinctive features as an 

intermediate representation for phonetic classification, we first transform the 

acoustic representations into a set of features, and then map the features into 

vowel labels. While one may argue that such a two-step process is inherently 

sub-optimal, we nevertheless were able to obtain comparable performance, 

corroborating the findings of Leung [21]. Such an intermediate representation 

can offer us a great deal of flexibility in describing contextual variations. For 

example, all vowels sharing the feature [+RO u ND] will affect the acoustic prop­

erties of neighboring consonants in predictable ways, which can be described 
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more parsimoniously. By describing context dependencies this way. we can 

also make use of training data more effectively by collapsing all available data 

along a given feature dimension. 

Figure :J.:3 shows that performance on some features is worse than others. 

presumably due to inadequacies in the attributes that we use. For example, 

performance on the feature [TE:.'SE] should be improved by incorporating seg­

ment duration as an additional attribute. vVhen a second classifier is used to 

map the feature values into vowel labels, a 4-5% accuracy increase is realized 

such that the performance is again comparable to cases without this interme­

diate feature representation. This result suggests that the acoustic-phonetic 

information is preserved in the aggregate of the features, and that the subse­

quent performance recovery may be a consequence of the redundant nature of 

distinctive features, as well as the ability of the second classifier to capture 

various contextual effects. 

3.6 Error Analyses 

In order to compare the different experimental conditions in our paradigm 

more thoroughly, the classification errors made in a typical iteration of each 

condition A, B, D and F are tabulated in confusion matrices shown in Tables 

D.l to D.4 of Appendix D respectively. The rows correspond to the stimulus 

to the network - the first entry of each row holds the transcription label of 

the input token, and the last entry is the total number of test tokens carrying 

that transcription. The columns correspond to the response of the network -

the first entry of each column represents the vowel label assigned to the input 

token as a result of classification, and the last entry is the total number of test 

tokens being assigned that label. Each of the remaining entries is a percentage 

of vowel tokens. For example, in Table D.l, the fifth row and the sixth column 

together show that out of the 158 /e/ vowels in the testing data, 16.5% have 

been mislabelled as /1/, and there were a total of 230 test vowels labelled by 
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the classifier as / 1/. 

3.6.1 Mutual Information 

To measure the performance of each condition. we compute the mutual infor­

mation between the random variable X of the transcription labels, and the 

random variable Y of the vowel labels produced by the network [2L8]. The 

mutual information measures the average reduction of uncertainty in X after 

observing Y. and is given by the equation : 

J(X; Y) = H(X) - H(X/Y) (3.1) 

where I(X; Y) is the mutual information between random variables X and Y, 

H(X) is the entropy of X which measures its average uncertainty, 

H(X) = - L Px(x)logPx(x) (3.2) 
x 

and H ( X / Y) is the conditional entropy which measures the uncertainty in X 

having observed Y. given by 

H(X/Y) = - L Pxy(x, y)logPx1Y(x/y) (3.3) 
xy 

In the above equations, Px ( x) is the probability distribution of X, PxlY ( x /y) 

is the conditional probability distribution of X given Y and Pxy ( xy) is the 

joint probability of X and Y. 

The mutual information is computed using the statistics from each confu­

sion matrix, and the result is tabulated in Figure 3.6. 

The mutual information for conditions c and E are not computed because 

some tokens have ambiguous feature assignments which do not match any 

feature set of the 13 vowels in our vocabulary. An example of an ambigu­

ous feature vector is ([-HIGH], [-Low], [-BACK], [-TENSE], [-ROUND] and [+ 

RETROFLEX]. This feature vector originates from a test vowel l~I, but with 
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Figure 3.6: Mutual information computed from the confusion matrices of con­
ditions A, B, D and F in the experimental paradigm 
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the two features '.B.-\Cl< an<l :Rol-\"Dj mapped incorrectly. .-\cro5s the re­

maining conditions. we obtain comparable mutual information values from 

the respective confusion matrices. which show that there is no loss of informa­

tion caused by extracting acoustic attributes or implementing an intermediate 

feature-based representation. 

3.6.2 Utility of Feature Classification 

In this subsection, we will address the usefulness of incorporating a second 

.VILP in the classification pathway, ( c.f. conditions c and D. and conditions 

E and F). The first .VILP in conditions c and E delivered a set of ambiguous 

features for over .j9Q of the test tokens, and therefore no vowel label could be 

assigned to the tokens by table lookup . .Mistakes made in a typical iteration 

of the table-lookup procedure may be found from the confusion matrices in 

Tables D.5 and D.6 included in appendix D. For example, in both conditions c 

and E, a very prominent ambiguous feature vector is (001010) corresponding to 

the features (-HIGH, -LOW, +BACK, -TE~SE, +ROUND, -RETROFLEX). This 

error occurs for a variety of input tokens, and most frequently for the phonemes 

/-:J/ and /o/, which should have correct feature values of (011010) and (001110) 

respectively. Another example is the ambiguous feature vector (100010), which 

tends to occur to the phonemes /1/ and /ii/ which should have correct feature 

values of (100000) and (100110) respectively. One of the causes of failure in 

the table-lookup procedure lies in the fact that it puts equal weighing for all 

the features characterizing a phoneme, whereas in actuality, a phoneme can 

be identified by accurate classification of some of the features. For instance, 

the vowel /u/ is often fronted when surrounded in alveolar context to form the 

vowel /ii/. Consequently, the feature [+BACK] is relatively unimportant in the 

identification of the vowel. The more crucial features are perhaps [+HIGH], 

[+TENSE] and [+ROUND]. In other words, in order to correctly classify the 

vowel /u/ from a set of feature outputs, we should weigh [+HIGH], [+TENSE] 

and [+ROUND] much heavier than [+BACK]. In addition, this set of weights 
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should only apply to ,lu/. and every other phoneme should have its own specific 

:-;et of weights. 

The second .\ILP classifier is better able to handle this problem. The con­

nection weights have been trained so that when the feature set of a test token 

is fed forward in the network. some features are weighted more heavily than 

others. Therefore, conditions D and F are able to assign a vowel label to all 

the ambiguous feature sets which occur in conditions c and E . .\foreover. the 

second classifier is also able · o correct some of the the classification errors, 

although at other times, it may alter an originally correct decision. In the it­

eration of condition D, out of the 970 feature errors made by the first classifier, 

the second classifier corrected 189 but confused 160 originally correct features, 

resulting in 941 feature errors after the second classifier. In condition F, out 

of the 956 feature errors produced by the first classifier, the second classifier 

corrected 148 but confused 154 originally correct features, resulting in 962 fea­

ture errors after the second classifier. Despite an increase of 6 feature errors in 

the latter case, the second MLP classifier was able to recover the performance 

from 59.9% of the table-lookup procedure to 63. l %, which indirectly shows 

that some features are more important than others in the recognition of differ­

ent phonemes and performance would not be affected as much if the feature 

mapping mistakes were made on the less crucial features or if the errors are 

correlated. For each vowel, we can compare its proper feature assignment from 

Table 3.2 with the quantized feature mapping output from the network. The 

number of features different between the proper feature set and the mapped 

feature set ranges from 0 (all features mapped correctly) to 6 (all features 

mapped incorrectly). The cumulative percentage of tokens is plotted against 

the number of binary features different, as shown in Figures 3.7 and 3.8. We 

can see from these plots that over 95% of the confusions occur between vowels 

that have two or fewer features different. Furthermore, comparing conditions 

c with D and E with F, we can see that there is an increase in the number of 

tokens with all features mapped correctly, and a slight decrease in the number 
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Figure 3. 7: Performance of conditions c and D in terms of the number of 
features different between network outputs and transcription labels 

of tokens with one or two binary features different, suggesting that the sec­

ond classifier mostly corrects near-misses. For example, in conditions c and 

E where the table lookup method is used, some of the vowel tokens of /ii/ 
adjacent to the semivowel /1/ are often classified as /u/, while others adjacent 

to the semivowel /y / are often classified by as /i/. Other examples include 

misclassifying /e/ or /1/, as /e/ or /i/, and misclassifying a nasalized /re/ as 

/e/. In these cases, the mistakes made are quite often corrected by the second 

MLP. 

3. 7 Chapter Summary 

In this chapter, we have described a methodology to extract a reasonable set of 

acoustic attributes which attempts to capture the relevant aspects of the acous-
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Chapter 4 

Signal Representation for 
Acoustic Segmentation 

This chapter is a brief extension of the work reported in Chapter 2, where 

we make further comparisons ')f several acoustic representations based on seg­

mentation. Our attention is focused upon delineating the acoustic signal into 

segments, where each segment correspond to an individual acoustic event. 

Such an event, or group of events, can eventually be mapped into phonemes. 

The vowel classification experiments reported in Chapter 2 use vowel tokens 

which have been excised from the original speech signal using a time-aligned 

phonetic transcription. Since phonetic recognition involves not only phonetic 

classification, but segmentation as well, we should also investigate the appro­

priateness of signal representations for this second task. 

For this part of our investigation, we use an automatic procedure for acous­

tic segmentation previously developed by Glass [10], where acoustic events are 

embedded in a multi-level structure called a dendrogram. This method of 

segmentation has an advantage over others based on single-level descriptions, 

since it is capable of distinguishing fine to coarse acoustic changes in an ut­

terance. Furthermore, dendrogram segmentation uses relative measures in the 

acoustic signal, which makes it more robust and largely independent of effects 

such as speaker characteristics and background noise. Previously, dendrogram 

segmentation has been used in conjunction with auditory models, where the 
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onsets and offsets of sounds tend to be sharpened : 11 . .3:3]. In the following sec­

tions we will report experiments that have been conducted to compare different 

acoustic representations for dendrogram segmentation. 

4.1 Signal Representations 

The three spectral representations compared here include one from the Sen­

eff's auditory model (the mean rate response), one mel-frequency represen­

tation (MFSC), and the smoothed DFT. Processing sequences of these three 

representations have previously been described in detail in Chapter 2. Seg­

mentation for each representation was done using an array of feature vectors 

as input. 

4.2 Acoustic Segmentation Algorithm 

The algorithm used to establish acoustic segments is developed by Glass [11]. 

It aims to divide the acoustic signal into segments which are acoustically homo­

geneous. The procedure starts by measuring the similarity between each frame 

and its neighboring frames (10 ms away), using a distance metric. An associ­

ation is then established between a given frame and its more similar neighbor, 

from left to right along the time axis. When the association switches from 

past to future, an acoustic boundary is marked. 

The above procedure will divide a given utterance into many small seg­

ments. Such segments are used as "seed regions" and the average spectrum 

for each region is computed. Two regions are merged to form a new single re­

gion if they are more similar to each other than to the other neighboring region. 

This is done repetitively, with increasing distances between adjacent regions, 

until ·he entire utterance is described by a single region. The complete pro­

cess for an utterance can be displayed in a dendrogram by plotting the distance 

between merged regions versus time, as illustrated in Figure 4.1. Boundaries 

closer to the bottom of the dendrogram describe finer acoustic transitions, 
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Figure 4.1: A dendrogram computed with a Euclidean distance metric. 

whereas those nearer the top describe more abrupt acoustic transitions. 

One way to assess the effectiveness of the segmentation procedure is to 

search through the multi-level dendrogram for a path that best matches the 

time-aligned phonetic transcription. As an example, the best matching path is 

highlighted in white in Figure 4.1. In the alignment between the dendrogram 

boundaries with the phone boundaries in the transcription, three kinds of 

errors can anse. In the first case, the acoustic region can be mapped into 

a phone, with some time differences between corresponding boundaries. The 

second case is the deletion of a phonetic boundary in the dendrogram path, and 

the third is the insertion of an extra acoustic boundary in the dendrogram path. 

To search for the best path in the dendrogram [11], each possible pathway is 

scored with the sum of these three kinds of error. The best matching pathway 

is defined as the one yielding minimum error. 

4.3 Distance Metrics 

As was mentioned in the previous section, the algorithm for dendrogram seg­

mentation utilizes two distance metrics - the association distance for generating 
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the seed regions. and the region distance required by the merging procedure. 

In our experiments. the association and region distance metrics are kept the 

same. and the Euclidean distance is used. Since it has been noted that the 

Euclidean metric over-emphasizes the total gain in the region. and minimizes 

the importance of spectral shape [39], a normalized Euclidean distance has 

also been included in our experiments. Specfically, the Euclidean distance 

between two vectors i and y. is divided by the normalized dot product. 

- -
_VormalizationFactor = ll;ll.ll~ll 

It is easy to visualize that this normalizing factor is close to one if i and 

y have very similar spectral shapes, but much smaller if the spectral shapes 

are very different. In the former case, the resulting distance is essentially the 

same as the Euclidean distance, but in the latter case, the resulting distance 

is magnified significantly. 

4.4 Description of Experiment 

Comparison is based on segmenting 500 utterances from 100 speakers of the 

TI:VIIT corpus. These sentences contain 19,155 phones. For each acoustic 

representation, two dendrograms are constructed for every sentence - one uses 

the Euclidean distance and the other employs the normalized Euclidean metric. 

The insertion and deletion are then tabulated individually. The overall results 

are summarized in Figure 4.2. 

4.5 Discussion 

The mean rate response with normalized Euclidean distance and the MFSC 

with Euclidean distance performed comparably well with dendrogram segmen­

tation, and better than the DFT. Normalizing the distance metric did not have 

much effect on the DFT, and yet it increased the amount of insertions of the 

MFSC (from 5.3% to 8.3%), and reduced both insertion and deletion rates of 
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the mean rate response (by 0.1~7c and 0.:3YC: respecti\-ely). Closer examination 

of the magnitudes of the spectral vectors sheds some light on these discrep­

ancies. The mean rate coefficients all lie within the range of 0 to I. and the 

normalized Euclidean distance works quite well at capturing the effect of spec­

tral shape similarity. The magnitudes of the DFT are relatively much larger 

(mostly well below -100 dB), which means that the normalization factor. or 

cosine of the angle between i and fj, tends to be close to 1 regardless of spectral 

shape similarities. The normalized Euclidean distance does not work well for 

the MFSC at all because the ~1FSC coefficients typically varies between -40 

dB and 60 dB, which complicates the normalization factor with a sign change. 

It is deduced that for the sake of comparison, a better-suited normalization 

factor for the Euclidean distance metric may be [12]: 

. . 1 (x-x)·(y-y) 
cVormalzzatzon Factor = 2 * ( 1 + E + JI.I - ill llY' - :Yll) 

where i and fj denote the mean of i and y respectively, and Eis a small additive 

constant to ensure that the normalization factor is positive. 

This normalization factor should range from 0 to 1 with increasing simi­

larity in the spectral shapes between i and Y. 
Based on our present results, we may tentatively conclude that the MFSC 

and the mean rate response perform equally well, and they both performed 

better than the DFT. However, the results are highly dependent on the dis­

tance metric used. 

4.6 Chapter Summary 

In this chapter, we have reported preliminary experimental results on the 

comparison of three acoustic representations for dendrogram segmentation -

the mean rate response from Seneff's auditory model, the MFSC and the DFT. 

The insertion and deletion rates are tabulated in each case and it is found that 

the mean rate with a normalized Euclidean distance metric and the MFSC 
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Chapter 5 

Conclusions and Future Work 

5.1 Summary and Conclusions 

In this thesis, we have made an initial attempt to assess the usefulness of 

distinctive features for phonetic recognition. Distinctive features are a com­

pact inventory of linguistically-motivated units which can be used to concisely 

describe the many variations in speech such as contextual and coarticulatory 

phenomena. Therefore, they can potentially serve as powerful data reduc­

tion and refinement schemes in tasks of automatic speech recognition, where 

problems such as variations in speech and sparse training data prevail. 

In order to exploit the advantages of distinctive features in the task of 

speech decoding, we need to first determine how these features are related 

to the speech signal. Distinctive features manifest themselves as their acous­

tic correlates in the speech signal, but the nature and characteristics of these 

acoustic correlates, as well as how they can be captured in the speech sig­

nal, are not well understood. In an attempt to extract acoustic attributes 

which bear some information on the acoustic correlates, it is crucial to select 

an appropriate acoustic representation. This will involve comparing acous­

tic representations and choosing the best one. The procedure by which this 

comparison can be done, however, is not clear. One can start with a set of 

defined attributes and then decide which acoustic representation will give the 

best feature extraction results. Alternatively, one can begin with an acoustic 
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representation belie\·ed to be superior to other representations. and then at­

tempt to define and quantify some acoustic attributes. There is no apparent 

reason for choosing one of these two approaches over the other. In this thesis. 

the latter approach is adopted. 

Chapter 2 describes a comparative study of acoustic representations for 

vowel classification using the multi-layer perceptron. The representations 

compared include those originating from Seneff's auditory model, the mel­

frequency representations and the Discrete Fourier Transform. The combined 

outputs of Seneff's auditory model (SA:.if PC) gave the highest classification 

performance with both clean and noisy test data. The next best representa­

tion was the mean rate response, followed by the synchronous response, the 

mel-frequency representations (MFSC and .\1FCC) and the Discrete Fourier 

Transform (DFT), in that order. Under the assumption that the acoustic 

representation yielding the best vowel classification performance should be 

most appropriate to be used for characterizing and quantifying the distinctive 

features for vowels, we should select SAM PC for our further experiments. 

However, SAM PC is heterogeneous in nature since half of the representa­

tion corresponds to a rotated synchrony spectrum and the other half a rotated 

mean rate spectrum, attribute extraction can be more conveniently done using 

a spectral representation. Therefore, the mean rate response, which was the 

second best representation, was chosen for our further studies. 

Chapter 3 describes different methods of incorporating distinctive features 

into the speech decoding framework. Acoustic attributes which are feature­

based have been used in place of the spectral representation. In addition, 

attempts have been made to map the acoustics into an intermediate phono­

logical representation of distinctive features, which are in turn combined to 

yield vowels either by table lookup or feature classification. In other words, 

the overall experiment compares six vowel classification methods, which result 

from varying three conditional variables, namely, whether acoustic attributes 

are extracted, whether an intermediate phonological representation was m-
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traduced. and whether feature classification is performed. The measurements 

used as acoustic attributes are based on the spectral center of gravity. the 

frequency edges of which are optimized for feature distinction in rnwels. Our 

experimental results show that attribute extraction serves as a useful data 

reduction and refinement scheme. It can reduce the input dimensions approx­

imately by a factor of two. and bring about subsequent computational savings 

by · !-ie same proportion, without any significant loss in vowel classification 

performance. \Ve are also able to implement the intermediate phonological 

representation of features without significant deterioration in performance. 

The thesis has focused on the task of vowel classification. where the left 

and right boundaries of a vowel token have been given through a hand-labelled 

procedure. In order to automate this process, the problem of segmentation of 

speech is important. Chapter 4 addresses this issue by comparing the relative 

merits of three acoustic representations in dendrogram segmentation. Den­

drogram segmentation aims at constructing a multi-level representation that 

enables us to capture gradual and abrupt changes through a single hierar­

chical structure. The acoustic representations studied include the mean rate 

response, the :'.\1FSC and the DFT. vVe found that using a different acoustic 

representation demands adopting a suitable distance metric, and therefore fair 

comparison is not easy to achieve. Nevertheless, the mean rate and the MFSC 

seem to work comparably well, and better than the DFT, within the context 

of our experiments. 

5.2 Future Work 

5.2.1 Improvement with an Intermediate Representa­
tion 

The paradigm that we have been exploring involves an intermediate represen­

tation of acoustic units (acoustic attributes) or/ and phonological units (dis­

tinctive features) between the signal and the lexicon, as opposed to the direct 

67 



classification of phonemes from the signal which has no intermediate repre­

~entation at all. These two experimental pathways are illustrated in Figure 

.) .1. 

Spectral 
Representation 

x 

pectra/ s 
Re pr esentation 

x 
Feature 

Extraction 

Path I 

Phoneme 

Classifier I 
u 

Path II 

Distinctive 
Features Phoneme 

Classifier II 
y z 

Figure 5.1: Phoneme classification with and without an intermediate repre­
sentation. 

From an information theoretic point of view, where we assume that all 

probabilities are known, or that infinite training data is available, information 

is lost as more processing is done. This notion is captured by the Data Pro­

cessmg Theorem [8]. Referring to path II in Figure 5.1, the theorem states 

that: 

If x, y and z form a "Markov Sequence", i.e. the processed output z depends 

on x only through y, or Pr(zjx,y) = Pr(zjy), for all z and all possible x and 

y, then 

I(X; Z) :s; I(X; Y) 

Proof: 
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because 

. Pr(zjy) 
I(X: ZIY) = L Pr(xyz)log P (-I = 0 

xyz r "'x,y) 

\vhere x.y and z are .\Iarkov 

. .\lso 

I(X; YZ) = I(X: Z) + I(X; YjZ) 2: I(X; Z) 

So processing will bring about loss of information. Processing may put 

information in a more useful form, but usually at the price of losing some 

of the data. Therefore, according to information theory, it may seem that if 

we are given all probabilities and allowed to optimize the classifier in path I, 

then the single layer pathway (path I) should at least perform as well as the 

double layer pathway (path II) which involves an intermediate representation. 

In other words, I(X; U) 2: I(X; Z). 

However, from a speech recognition viewpoint, we are constantly faced 

with the problem of sparse training data which is insufficient for us to capture 

the many variations in speech. As a result, we do not have a good idea of 

how to go about optimizing the phoneme classifier in path I. Furthermore, 

in our experiments, we have constrained classifier I and classifier II to be 

similar in structure - both are multi-layer perceptrons - which means that 

any optimization that can be done has to be of a particular form. Therefore 

the data processing theorem may not be applicable in our circumstances. In 

fact, if we consider one of the conditions in the experimental paradigm in 

Chapter 3, where we employed a three-layer MLP for feature mapping and 

another one for feature classification, the two-step pathway can be considered 

as comparable to using a five-layer MLP to perform vowel classification directly 

from the signal. A five-layer MLP probably requires more training data than 
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a three-layer .\ILP (as in path Ai for direct rnwel classification. but it is 

conceivable that the additional layers may be more capable of generalizing 

the acoustics. Therefore it is not certain whether the t·wo-step classification 

process is inherently sub-optimal to the single-step classification process. 

The data processing theorem. however, does shed some light on the follow­

ing aspect. If mapping the acoustic signal into an intermediate representation 

(path II of Figure 5.1) is a less severe decision procedure than direct vowel 

classification (path I), i.e. l(X; Y) 2: l(X; U), and if further processing in­

troduces information loss, then it may perhaps be advantageous to bypass the 

feature classification process through representing the lexicon in terms of dis­

tinctive features. This, of course, will lead to a whole new series of problems 

which are beyond the scope of this thesis. 

The following is a sketch of several directions in which the work in this 

thesis can be extended. The suggestions, however, are by no means exhaustive. 

5.2.2 Extracting Acoustic Attributes 

The spectral center of gravity measurement used in our Chapter 3 experiments 

was chosen because it seems to be a reasonable attribute which carries some 

kind of formant information. There is certainly room for improvement here. 

Duration of a vowel token can be included, since it is a good acoustic correlate 

for the feature [TENSE]. The feature [ROUND] tends to lower the second formant 

of a vowel towards the first formant, which results in a prominent spectral 

peak in the low frequency region. Another example which is more applicable 

to consonants is the concentration of energy within certain frequency bands, 

such as the concentration of frication energy above 4kHz for alveolar fricatives 

like /s/ and /z/, as opposed to palatals like /s/ and /z/, whose frication energy 

goes well below the 4kHz cutoff. Aside from looking at different frequency 

bands, dynamics in the time domain are also important. The diphthongs are 

highly characterized by their longer duration and formant movement - the 

upward movement of the second formant from [+BACK] to [-BACK] as in 'aY / 
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and ,'eY/. or contrarily. the downward movement of the second formant from 

:-'--8.~CK] to [-'-ROl"\D] as in /a"-/. 

Besides. in the extraction of acoustic attributes based on distincti\·e fea­

tures. it is important that we distinguish using features that are produced from 

using features that are intended. This problem mainly stems from the effects of 

contextual variation and coarticulation. These effects may exist to the extent 

that the identity of the phoneme is changed. For example, the vowel in ·'dwell" 

is probably intended to be an /e/ which is [-HIGH]. [-Low] and [-BACK], but is 

often produced like an /A/ which is [-HIGH], [-LOW] and [+BACK], and some­

times even /1/ which is [+HIGH] and [-BACK]. Due to the existence of such 

discrepancies. special care is required in the association of extracted attributes 

with certain features. Another example is provided by the [BACK] vowel /u/ 
which is fronted to from /ii/ in alveolar contexts as in "Tuesday". In this case, 

attention should be paid to the context and the vowel /ii/ should be trained 

as [-BACK] rather than [+BACK]. We may also weigh [-HIGH] and [-Low] as 

more likely to be produced than [+BACK] in the identification of ju/ or /ii/. 
It is believed that using features that are produced is more advantageous than 

using those that are intended, simply because under many circumstances, the 

latter cannot be objectively defined. 

5.2.3 Feature Classification 

\Ve have already seen from our experiments in Chapter 3 that in the process 

of combining features to give the vowel, using a table lookup procedure led to 

a significant performance deterioration, but performing feature classification 

by an MLP does not. The table lookup procedure puts equal emphasis on 

all features, but the feature classfication procedure does not. This implies 

that weights should be assigned to individual features for vowel or phoneme 

classification. It also seems that this set of weights should vary from vowel to 

vowel, or more generally, from phoneme to phoneme. For example, the features 

[+HIGH], [+BACK], [+ROUND] and [+TENSE] tend to be more important for 
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characterizing the rnwel /U than the feature :RETROfLL\:::. On the other 

hand. the feature :RETROFLEX~ is more indicative of the vowel /3'"/ than other 

features. 

There is also some evidence that the distinctive features show hierarchy in 

their structure [36] . .\Ianner features, such as [NASAL], [vorcEj, [sTRIDE:\"T]. 

may be more "'fundamental'' or higher in the hierarchy than place features 

since it is possible to identify them reliably simply by observing the speech 

waveform and without utilizing any contextual information. For example. 

in consonants - /t/. /d/, /s/, /z/ and /n/ are all [ALVEOLAR], which has, 

as its acoustic correlates, a second formant centered just below 2 kHz, and 

major concentration of energy above 4kHz in frication or burst. If we were to 

determine whether a consonant is [co RON AL], and this consonant neighbors 

an unstressed vowel, the formant transitions in the vowel cannot be used as 

a robust cue. But before we start searching for the energy concentration in 

the frication or the burst, we would need to identify whether the consonant 

is [NASAL], because the consonant /n/ has neither a burst nor frication. This 

example serves to illustrate that there is some sort of hierarchy in the features 

concerning consonants. As for vowels, it seems that the features [HIGH], [Low] 

and [BACK] can be more readily identified from the vowel formants and are 

therefore considered as more fundamental than [ROUND] and [TENSE]. [-BACK] 

vowels are never [+ROUND], and among the [+BACK] vowels, [ROUND] and 

[TENSE] are not distinctive, since knowledge of these two features cannot enable 

us to resolve between /a/ and/ A/. The feature [RETROFLEX] is unique because 

its acoustic correlate - lowering of the third formant - is quite robust even with 

contextual variations. Our feature mapping experiments have also yielded 

the highest accuracy for this feature. Furthermore, [RETROFLEX] in a vowel 

strongly indicates that the vowel is [-HIGH] and [- Low]. This redundancy 

between features can probably be exploited in attribute extraction, since for 

some features like [TENSE], [+FEATURE] may be easier to detect in the acoustic 

signal than [-FEATURE], or vice versa. 
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The geometry of distincti\·e features has yet to be determined. Performance 

improvement may perhaps be achieved by reliable extraction of the features 

high in the hierarchy. or the features that are more likely to be produced than 

others within a particular context. 

5.2.4 Acoustic Segmentation 

The preliminary experiments on dendrogram segmentation have shown that 

the ability to capture acoustic landmarks is sensitive to the choice of the 

distance metric for different acoustic representations. A better distance metric 

is required in order to conduct a fair comparison among different acoustic 

representations. In addition, it may also be interesting to find out whether 

certain acoustic representations can preserve acoustic regularities better than 

others in the presence of noise. 
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Appendix A 

The Mel-frequency Cosine 
Transform 

This appendix attempts to provide a brief explanation of the cosine transform 

employed in obtaining the mel-frequency cepstral coefficients (~1FCC) from 

the mel-frequency spectral coefficients (MFSC). The idea of the computation 

is to treat the .\1FSC as the Discrete Fourier Transform of the :VIFCC. 

As has been mentioned in Chapter 2, the ~1FSC are obtained from per­

forming bandpass summation on the power spectrum of a windowed speech 

signal through a series of 40 overlapping triangular filters. The log energy 

output of each filter together form the .'.\1FSC - denoted by Xk, k = 1, 2, 3 .. .40. 

In order to treat this as the Discrete Fourier Transform of a real speech signal, 

we have to impose even symmetry by folding the spectrum about an edge, as 

illustrated in Figure A.l 1 

Therefore, we can see that X1 = X 0 , X2 = X_ 1 , X 3 = X_ 2 , etc., and the 

symmetry lies about the axis of k = t. In other words, if we shift our reference 

origin to k = t, our spectrum becomes even symmetric in that X0 .5 = X_0_5 , 

Xl.5 = X_i.5 , X 2.5 = X_2.5 , etc., and we will be able to obtain a real signal by 

performing an 80-point Inverse Discrete Fourier Transform (IDFT). 

1This method of imposing even symmetry will preserve the maximum number of degrees 
of freedom when one does the inverse transform, i.e. in this case, we can use an 80-point 
IDFT. But if, for example, we re-label the indices fork to range between 0 to 39, the even 
symmetry so created corresponds to a 78-point IDFT. 

74 



j-

MFSC 

... 

' ~ ., 

r_;:..:: . ~l 

c.i;r:~ .. ». 
'>i~·-~-,~Y. ~ 

" "'''";\ 
.; .et;"' .... 

.r:·}l 'r,~ "'f ,...., .;... {~ -~,... ( 
~;;"'., ~ 

£.IP:'? 

IH!f::c:':l. 

1 .... 3. .. 
ll.0='·-1. 

' . ' ~ ., ,-; -- '" 

,. 

• k 

. ' .. , .... 
,:,6Iit :jf,)J~1 

1q .d'r~ttt ·1)< ·::·:sdw 

- ....... ~.-t.alfioi/li..,_.,,.....,i.WjUiii.WiWi&A..w4illliQ..wl_..iM..Ml~...tiililii1i&1....,..WilZ~:.;;....;;;.;;;-4.-.il .f mc·11 

k :nissdo 

i_ ..... / 

Figule. A. l: Impoaing even symmetry oa the tpedrwB of MFSC by folding 
a.bout an edp .noiJ&up:; ttn011uun:s '!.'taiaoo w-0 il 1faiJw 

75 °~ 



The IDFT equation for an :SO-point DFT is: 

( . .\. l J 

Shifting our reference origin to k = ~· \Ve have 

k'=79.S 

.r [ n] = L X k' e1 ;~ k' n 

k'=0.5 

k'=39.S k'=79.S 
"'"""' 2 ,,. k I "'"""' 2 ,,. k I = ~ Xk'e180 n + ~ Xk'e180 n 

k'=0.5 k'=40.5 

k'=39.5 k'=-0.S 

L xk'ei~Zk'n + L xk'ei~Zk'n 
k'=0.5 k'=-39.5 

k'=39.S k'=39.S 
"'"""' ·2"k' "'"""' ·2"k' ~ .J(k,eJ 80 n + ~ .J(k,e-J 80 n 

k'=0.5 k'=O.S 

k'=39.5 7r 

L Xk'cos(-k'n) 
k'=0.5 40 

(A.2) 

where we have the property of even symmetry. Finally, recall that k ranges 

from 1 to 40 whereas k' ranges from 0.5 to 39.5, so substituting variables, we 

obtain: 

x[n] 
k=40 7r 1 L Xkcos[-(k - ;--)n] 
k=l 40 2 

(A.3) 

which is our cosine transform equation. 
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Appendix B 

Detailed Statistics on Relative 
Vowel Classification 
Performances 

As was mentioned in Chapter 2, the six acoustic representations are compared 

by conducting vowel classification experiments. There are a total of four sepa­

rate experiments where the number of training tokens is increased from 2,000, 

to 4,000, 8,000 and finally 20,000. Figure B.l displays the average test set ac­

curacies over six iterations of each experiment. The fluctuation in performance 

between successive iterations lie around 1 %. 
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Appendix C 

Acoustic Attributes 

This appendix lists the set of acoustic attributes used in the experiments re­

ported in Chapter 3. An acoustic attribute for a given feature includes the 

frequency and amplitude of a spectral center of gravity, which is computed 

between an optimized pair of lower and upper frequency edges. The pair of 

free parameters is individually optimized for each third of the vowel token, so 

as to implicitly capture the dynamics of articulation. In the following tables, 

a frequency edge is expressed as a coefficient index in the mean rate response. 

Since these coefficients are spaced a half-Bark apart, dividing the coefficient 

index by two gives the correspond frequency in Barks. 

The features [HIGH] and [Low] use two attributes each. In Table C.l, the 

first row displays the set of free parameters giving the maximum separation 

between the classes [+HIGH] and [-HIGH] measured with the FDC score, and 

the second row displays the free parameters giving the second highest FDC 

score. Similarly, the feature [Low] also has two sets of free parameters. The 

remaining features - [BACK], [TENSE], [ROUND] and [RETROFLEX] use only one 

attribute per feature. 
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Initial third of token Jfiddle third of token Final third of token 
lower edge upper edge lower edge upper edge lower edge upper edge 

High 0 14 0 16 0 17 
High 8 33 8 32 9 34 
Low 0 14 0 14 0 l .S 
Low 8 30 9 32 8 34 
Back 12 30 13 29 12 30 
Tense 0 17 0 20 0 21 
Round 0 36 0 36 12 30 
Retroflex 19 34 19 34 19 37 

Table C.l: Acoustic attributes with optimized free parameters 
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I e :e l E I 0 u a ::> T A u u 

e 6.S 4 I 8 11 0 0 1 0 :3 1 0 0 
:e 4 63 0 1.3 I 1 0 6 ·) 0 :3 0 0 
l .j 1 87 0 4 0 0 0 0 0 0 2 0 
E 8 10 1 46 16 2 0 1 1 7 I 0 0 
I 7 4 9 10 61 0 1 0 0 2 1 2 2 

0 :3 3 0 6 1 61 :3 1 8 2 12 0 0 
u 0 0 I 4 11 4 44 0 4 I 0 19 0 
a 0 3 0 1 0 

., 
0 74 12 1 I 0 0 

::> 0 0 0 0 1 11 0 22 63 1 1 0 1 
T 1 1 0 0 2 0 0 1 0 91 0 2 0 
A 0 9 0 10 7 2 1 14 4 3 48 0 2 
u 1 2 14 1 8 0 11 0 0 2 0 59 0 
u 0 3 0 0 38 13 6 0 9 0 16 0 16 

Total 140 142 277 149 230 91 29 186 130 109 108 67 14 

Table D .1: Confusion Matrix for Condition A - Classification of the Mean-Rate 
Response into Vowels 

e :e 1 E I 0 u a ;) T A u u 
e 65 2 8 7 16 0 0 1 0 0 1 0 0 
:e 1 73 0 10 6 0 0 3 0 1 6 0 0 
1 5 0 85 0 6 0 0 0 0 0 0 3 0 
E 8 16 2 44 18 1 0 2 0 4 5 0 0 
I 4 4 7 8 69 0 0 0 0 3 2 1 0 
0 2 2 0 5 3 55 5 1 10 3 13 0 1 
u 0 0 0 0 15 7 41 0 7 7 4 19 0 
a 0 2 0 2 0 1 0 77 8 1 8 0 0 
;) 1 0 0 1 0 12 0 30 53 1 2 0 1 
T 0 1 0 0 5 0 0 1 0 85 1 6 0 
A 0 9 0 20 5 1 0 16 3 3 43 0 0 
u 1 2 16 0 14 2 10 0 0 8 0 46 0 
u 0 0 .0 6 38 13 3 0 9 6 22 3 0 

Total 129 158 269 147 267 84 26 203 107 104 117 58 3 

Table D.2: Confusion Matrix for Condition B - Classification of Attributes 
into Vowels 
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i I e re l E I 0 u a J 3' A u u 

I 71 ·) - 4 1:3 0 0 0 0 0 l 0 0 e ' 
re ·) -., ,_ l 16 4 0 0 :3 0 1 ·) 0 0 

I - 0 s- 0 6 0 0 0 0 0 0 2 0 l I .J 

E 10 14 1 H 11 1 0 1 0 4 8 0 0 
I 7 4 9 8 63 1 0 0 0 4 1 ·) 1 
0 2 1 0 :3 2 62 2 2 10 4 11 0 0 
u 0 0 0 0 4 11 41 0 4 4 4 26 I 

a 0 2 0 1 0 2 0 77 10 1 I 0 0 
J l 0 0 0 1 13 0 26 55 1 3 0 1 
3'" 0 0 0 2 4 0 1 1 0 81 1 4 0 
A 0 9 0 16 7 2 0 l.j ·) 2 47 0 1 
u 1 0 22 0 14 2 12 0 0 5 0 42 1 
u 0 3 0 6 :38 9 6 0 6 6 19 :3 3 

Total 1.54 149 274 143 243 99 26 190 110 103 116 .j5 10 

Table D.3: Confusion ;\tlatrix for Condition D - Classification of Attributes 
into Features and then to Vowels 

e re l E I 0 u a ;) 3'" A u u 
e 67 4 6 7 15 0 0 0 0 0 1 0 0 
re 2 -') 

1- 1 15 4 1 0 2 0 0 3 0 0 
1 7 0 84 0 6 0 0 0 0 0 0 2 0 
E 8 13 1 41 23 0 0 1 0 3 10 0 0 
I 10 4 8 8 64 0 0 0 0 3 1 3 0 
0 2 3 0 3 1 56 3 2 11 4 14 1 0 
u 0 0 0 0 11 11 44 0 4 4 4 19 4 
a 0 3 0 1 0 1 0 69 14 1 10 0 0 
;) 0 1 0 0 0 11 0 22 62 2 2 0 0 
3'" 1 1 0 4 2 0 1 1 0 82 2 5 0 
A 0 9 0 16 9 4 0 13 2 5 38 1 2 
u 1 1 19 1 6 0 14 0 0 2 0 54 0 
u 0 3 0 3 44 13 6 0 6 3 16 0 6 

Total 149 159 267 143 255 85 31 171 128 98 114 67 5 

Table D.4: Confusion Matrix for Condition F - Classification of the Mean-Rate 
Response into Features and then into Vowels 

83 

Total 
lJj 

137 I 
266 I 
158 I 

218 
99 
·r _, 

I 

167 
140 
82 I 

I 

128 
8:3 

32 

Total 
135 
137 
266 
158 
218 
99 
27 
167 
140 
82 
128 
83 
32 



.. 
Total : e re l E I 0 u a J T A u u 

e -- 0 1-3 19 8 0 0 0 0 0 1 0 0 1:3.5 .JI 

re 0 .±.) 1 -W - 0 0 :3 0 0 3 0 0 1 :37 I 

' .} 0 89 0 .j 0 0 0 0 0 0 1 0 :266 l 

E 5 9 ;3 .)8 11 0 0 1 0 0 9 0 0 1-')8 

I 2 1 15 17 ,53 0 0 0 0 1 1 1 1 218 
0 1 1 0 7 0 -·) 

0- 2 4 4 0 16 0 0 99 
u 0 0 4 0 0 7 41 0 0 0 4 22 I r _, 
a 0 1 0 1 0 1 0 75 10 0 9 0 0 167 
J 1 0 0 0 0 9 1 27 46 0 6 0 0 1-W 
T 0 0 1 :2 1 0 0 1 0 70 '"' 1 2 82 I 

A 1 6 0 23 .j 0 0 15 2 2 43 0 0 128 
u 1 0 29 4 8 1 12 0 0 2 0 ;34 1 83 
u 0 0 0 13 34 6 9 0 3 0 13 3 0 32 

Total 106 91 320 256 190 70 27 192 88 63 129 41 8 

Table D.5: Confusion Matrix for Path c - Classification of Attributes into 
Features followed by table-lookup 

I 

I 

I 

e re 1 E I 0 u a J T A u u Total 
e 61 2 10 17 7 0 0 0 0 0 1 0 0 
re 1 52 1 32 1 1 0 7 0 0 3 0 0 
1 6 0 88 1 3 0 0 0 0 0 0 2 0 
E 7 8 2 54 11 0 0 1 0 1 10 0 0 
I 6 2 13 17 49 0 0 0 0 2 2 3 0 
0 1 1 0 5 0 48 2 2 6 0 14 1 1 
u 0 0 0 0 11 11 44 0 4 4 0 19 0 
a 0 2 0 1 0 1 0 75 14 1 5 0 0 
J 0 0 0 0 0 8 0 24 56 0 2 0 0 
T 1 1 0 4 1 0 1 0 0 74 4 4 0 
A 0 5 0 17 5 0 0 16 3 3 38 1 1 
u 0 1 23 1 2 0 12 0 0 0 0 53 1 
u 0 3 0 3 34 9 6 0 6 0 12 0 3 

Total 125 106 300 227 165 67 28 193 115 74 106 65 3 

Table D.6: Confusion Matrix for Path E - Classification of the Mean Rate 
Response into Features followed by table-lookup 

84 

1:35 
137 
266 
158 
218 
99 
27 
167 
140 
82 
128 
83 
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19a To access the usefulness of distinctive features. we focus our inquiry on 
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ad vantages in introducing an intermediate linguistic representation between 
the signal and the lexicon? 

Our investigation lies within the scope of classifying American English vow­
els using a multi-layer perceptron classifier with a single hidden layer. Vowel 
tokens were extracted from the TIMIT corpus. To answer the first question, 
several spectral representations were compared. The combination of the out­
puts from Seneff's Auditory .\1odel outperformed all other representations with 
both clean and noisy conditions, yielding top-choice accuracies of 66% and 543 
respectively. To answer the next two questions, classification experiments were 
conducted under six different conditions, which resulted from systematically 
varying three condition variables. These variables specify whether acoustic 
attributes were extracted. whether an intermediate feature-based representa­
tion was introduced, and how the feature values were combined. Potential 
computational and descriptive advantages were shown for acoustic attributes 
and features. respectively. 


