
.,..., ...

Algorithms for Search Trees on

Message-Passing Architectures
by

Adrian Colbrook
Eric A. Brewer

Chrysanthos N. Dellarocas
William E. Weihl

September 1991

Abstract

In this paper we describe a new algorithm for maintaining a balanced search tree on a message-passing
MIMD architecture; the algorithm is particularly well suited for implementation on a small number of
processors. We introduce a (2B- 2 , 2B) search tree that uses a linear array of O(log n) processors to
store n entries. Update operations use a bottom-up node-splitting scheme, which performs better than
top-down search tree algorithms. Additionally, for a given cost ratio of computation to communication
the value of B may be varied to maximize performance. Implementations on a parallel-architecture
simulator are described.

Keywords: Balanced search trees, Parallel algorithms, Linear processor array, Message-passing archi­
tectures.

© Massachusetts Institute of Technology 1991

This work was supported in part by the National Science Foundation under grant CCR-8716884, by the
Defense Advanced Research Projects Agency (DARPA) under Contract N00014-89-J-1988, and by an
equipment grant from Digital Equipment Corporation. Adrian Colbrook was supported by a Science and
Engineering Research Council Postdoctoral Fellowship, Eric A. Brewer by a Office of Naval Research
Fellowship, and Chrysanthos N. Dellarocas by a Starr Foundation Fellowship.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

2 1 INTRODUCTION

1 Introduction

We introduce a new balanced search tree algorithm for message-passing architectures. The algorithm

assumes a linear array of processors each with a large local memory; such arrays are easily emulated on

most message-passing MIMD architectures. The algorithm performs updates using a bottom-up node­

splitting scheme and shows improvements in throughput and response time when compared to similar

top-down algorithms [GS78, CT84].

Search trees are widely used for fast implementations of dictionary abstract data types. A dictionary

is a partial mapping from keys to data that supports three operations: insert, delete and search. For

simplicity we will assume that the dictionary stores no data with the keys and so may be viewed as a

set of keys. A number of useful computations can be implemented in terms of dictionary abstract data

types, including symbol tables, priority queues and pattern-matching systems.

The B-tree was originally introduced by Bayer [Bay72]. The B-tree algorithms for sequential ap­

plications were designed to minimize the response time for a single query and the sequential algorithm

for a single search operation on a balanced B-tree has logarithmic complexity. The improvement in the

response time that can be achieved by a parallel algorithm for a single search can at best be logarithmic

in the number of processors [Qui87]. Thus, for parallel systems a more important concern is the system

throughput for a series of search, insertion and deletion operations executing in parallel.

We introduce the (2B- 2 , 2B) 1 search tree, a variation of the B-tree. A (2B- 2 , 2B) search tree (for

B ~ 3) is a tree in which every branch node (except the root) has between 2B-2 and 2B children, and

every path from the root to a leaf has the same length. For example, B=3 gives a (2, 8) tree, B=4 gives

a (4, 16) tree and so on. The root has between 2 and 2B children. Only leaf nodes store key values;

branch nodes store index information used to find the appropriate leaf node. A leaf node stores between

2B- 2 and 2B keys. Each leaf node stores key values within a contiguous range; the ranges of all leaf

nodes partition the set of possible key values and are in ascending order from the leftmost node to the

rightmost. The index information stored at a non-leaf node is simply the lowest key value associated

with each of its children. Thus the set of key values is partitioned at every level in the tree.

A search tree of n entries is implemented on an array of up to log2 n/(B - 2) + 1 processors. Each

processor holds a level of the tree structure in local memory and the last processor stores the actual keys.

Therefore, the memory required to store the search tree increases by a factor of 2B between adjacent

processors down the linear array. Figure 1 shows this configuration for a (2, 8) tree. Processor P1 stores

the leaf nodes of the tree. Operations are invoked by requests entering the array at the top; the replies

these generate leave from the bottom. Each processor communicates only with its immediate neighbors.

1 This is pronounced, "two to the B minus two, two to the B"; or simply "two B".

Requests

,
PH

~

PH-1

• •
PH-2

•
Replies

root node

search tree nodes
(stored in local memory)

. .

• leaf nodes

Figure 1: The processor configuration for a (2, 8) tree of height H.

3

In our new algorithm a dictionary is represented by a modified (2B- 2 , 2B) search tree in which links

are added from each node to its left and right neighbors in the same level. This is similar to the algorithm

developed by Weihl and Wang [WW90, Wan91] for B-trees, which in turn was based on an algorithm

developed by Lehman and Yao [LY81] and modified by Sagiv [Sag86]. In these link method algorithms

[SG88] right links are added to adjacent nodes in a B-tree. In the new algorithm both left and right

links are added between adjacent siblings.

Carey and Thompson [CT84] implemented a 2-3-4 search tree using a linear array of O(log n) pro­

cessors. A 2-3-4 tree is a tree in which each node that is not a leaf has two, three or four children,

and every path from the root to a leaf is the same length. The scheme allows update operations to be

performed using the top-down node-splitting scheme presented by Guibas and Sedgewick [GS78]. Mond

and Raz [MR85] also proposed a top-down strategy for B-trees. A linear array of processors was used

4 2 CONCURRENT SEARCH TREE ALGORITHMS

by Tanaka, Nozaka and Masuyama [TNM80] in their pipelined binary-tree algorithm, and Fisher [Fis84]

proposed a pipeline system that used a pipeline length proportional to the length of the key.

We first implemented a (2B- 2 , 2B) search tree using a top-down node-splitting scheme. We then

implemented the search tree using the bottom-up algorithm. Both of these algorithms have been im­

plemented using Proteus [Del91, Bre91, BDCW91], a multiprocessor simulator developed at MIT. We

measured the throughput and response times for various processor-array lengths, tree-branching factors,

query mixes, message-passing paradigms and one-way message delays. From these measurements we

compared the performance of the algorithms and determined the optimal tree structures. The bottom­

up algorithm has better throughput and response time than the top-down algorithm in every case.

In Section 2 we present the issues that must be addressed by concurrent search tree algorithms and

motivate the development of the new algorithm. Sections 3 and 4 describe the top-down and bottom-up

algorithms. Section 5 describes the Proteus simulator and Section 6 outlines the implementation of the

algorithms using Proteus. Section 7 presents the performance evaluation of both algorithms; Section 8

describes design alternatives for the bottom-up algorithm. Finally, we present our conclusions in Section

9.

2 Concurrent Search Tree Algorithms

The large number of concurrent search tree algorithms presented in the literature prevents a complete

description of each in this paper. Instead, we discuss the common issues that are addressed by all of the

algorithms. Much of this discussion is based upon Wang's analysis of concurrent search tree algorithms

[Wan91].

All concurrent search tree algorithms share the problem of managing contention. Concurrency control

is required to ensure that two or more independent processes accessing a B-tree do not interfere. A

common approach is to associate a read/write lock with every node in the search tree [LSS87]. This

causes data contention as writers block incoming writers and readers, and readers block incoming writers.

The contention is severe when it occurs at higher levels in the search tree, particularly at the root, which

is often termed a root bottleneck.

Similar problems are caused by resource contention. In a shared-memory architecture all of the

processes trying to access the same tree node will access the same memory module on the machine.

Similarly, for message-passing architectures, the processor on which a node resides will receive messages

from every processor trying to access the node. Resource contention is again most serious for the higher

levels in the search tree. Node replication [Wan91] reduces contention but requires a coherence protocol

to maintain consistency.

5

Associated with the contention issue is the problem of process overtaking. This may occur when a

process that holds a lock selects the next node it wishes to access, releases its lock and attempts to acquire

a lock for the next node. A second process may acquire a lock on the next node between the original

process releasing the old lock and acquiring the lock for the next node. The second process can then

update the node in such a fashion as to cause the first process to lock the wrong node when it eventually

acquires the lock. To prevent this kind of process overtaking many algorithms have their operations

use lock coupling to block independent operations. An operation traverses the tree by obtaining the

appropriate lock on the child before releasing the lock it holds on the parent. This technique is used

in the top-down algorithms [GS78, CT84, MR..85, CS90]. The link method algorithms eliminate the

need for lock coupling. If the wrong node is reached at any stage the side links are traversed until the

correct node is found. This reduces the number of locks that must be held concurrently and increases

throughput. However, traversing the links could in theory lead to an increase in the response time.

Linear arrays of processors provide a processor-efficient means of implementing search tree algorithms.

Since each level of the search tree is stored in the local memory of a single processor, the contention

for resources is approximately uniform throughout the structure. Our algorithm uses this structure and

is very simple. The code that implements a level of the structure is replicated on all the processors

in the array, with some minor modifications for the processor storing the leaf nodes. Side links avoid

the need for lock coupling, which results in higher concurrency. The bottom-up algorithm presented in

this paper leads to significant improvements in throughput over the top-down algorithms. In addition,

we show that the response time for the new algorithm is also less than that for top-down algorithms.

Our results show that the bottom-up algorithm described here has the best performance of any of the

implementations of search trees for linear arrays described to date.

3 The Top-Down Algorithm

The top-down algorithm allows insertions, deletions and exact-match searches on a (2B- 2 , 2B) search

tree. The search operation is a simple version of the normal B-tree search operation [Com79]. The insert

and delete operations are based upon the top-down node-splitting scheme introduced by Guibas and

Sedgewick [GS78], in which transformations are applied during a single traversal of the tree. The tree is

traversed from the root downward and transformations are applied between adjacent levels at the same

time.

The insert operation performs node splitting upon encountering a 2B -branch node, other than the

root. A new right brother of the node is created and the branches of the original node are divided,

forming two 2B- 1-branch nodes. Figure 2 shows an example of this transformation applied to a (2, 8)

6 3 THE TOP-DOWN ALGORITHM

tree. This transformation ensures that any future node splitting does not cause upward propagation in

the tree structure; this allows the transformation to be applied in a top-down fashion. This follows by

induction on the depth of the tree, since any transformation is applied to the parent of a node before

being applied to the node itself. Therefore, the parent must have a degree of at most 28 - 1 when a

transformation is applied to the node.

When a delete operation encounters a 28 - 2-branch node, other than the root, one of two deletion

transformations is applied. If a neighboring node has less than or equal to 28 - 1 branches, the node and

its neighbor are merged to form a single node. Otherwise the branches of the node and its neighbor are

redistributed evenly between the two nodes. Figures 3 and 4 show examples of these transformations

applied to a (2, 8) tree. The neighbor relationship used in the deletion algorithm relates a node to its right

brother in the subtree, or in the case of the rightmost node, to its left brother. These transformations

ensure that any future merging of nodes will not cause upward propagation of transformations.

Several B-tree algorithms perform delete restructuring only when a node is empty [Wan91]. These

strategies reduce the probability that the nodes need to be merged, thus reducing the amount of work

required. However, merging nodes when they are one quarter full preserves efficient space utilization,

and bounds the height of the tree and therefore the number of processors required. This is particularly

important for linear array implementations, where efficient space utilization is required and the number

of available processors may be limited.

When the transformations are applied to a root node, the insertion transformation converts a root

node with 28 branches into a double 28 - 1-branch node configuration and a new root node, increasing

the height of the tree. The merging deletion transformation converts a root node with 2 branches into

a new root node formed by the merging of the root's children thus reducing the height of the tree. The

redistribution deletion transformation does not lead to a reduction in the height of the tree.

A further property of the (28 - 2, 28) tree is worth noting at this point. The insertion and deletion

transformations of some B-tree algorithms [CT84, Com79] are direct inverses. In these algorithms an

application of a transformation immediately followed by its inverse can occur and this can result in

oscillation. For example, in the 2-3-4 tree algorithm described by Guibas and Sedgewick [GS78], an

insertion transformation splits a 4-branch node into two 2-branch nodes. If a deletion operation is

then applied to the original node, the two 2-branch nodes are merged reforming the original 4-branch

node. This allows one transformation per operation. This problem is most severe in higher levels of

the search tree where updates are less frequent. Performing these transformations increases the average

response time and reduces the throughput of the system. A stabilizing (hysteresis) effect occurs in the

(28 - 2 , 28) tree since the insertion transformation leaves each node (except the root) with 2B-l children.

7

Before a deletion transformation may be applied to the node, 2B- 2 children must be removed from it. 2

Therefore, the oscillations encountered in other algorithms cannot occur. The root node exhibits similar

hysteresis behavior. When the tree grows a new root node is created with two children. Each of these

nodes has 2B-l branches. Before the tree can shrink, 2B- 2 children must be removed from one of these

nodes.

The implementation of the top-down algorithm on a reconfigurable system of transputers [Inm86] is

described in Colbrook and Smythe [CS90]. It is worth noting that the Proteus simulator gave comparable

results to those reported by Colbrook and Smythe.

4 The Bottom-Up Algorithm

In the bottom-up algorithm both left and right links are added between adjacent siblings in a (2B- 2
, 2B)

search tree. These links provide an additional method of reaching a node. The intent of this scheme

is to make all nodes in a single level reachable from any other node at that level. If the wrong node

is selected at the level above then the correct node can be found by using the links. This allows for

an efficient solution to the process overtaking problem and permits changes to the tree structure to be

made by a background task.

The algorithm again allows insertions, deletions and exact-match searches on a (2B- 2 , 2B) search

tree. Each of these operations begins by calling a find operation, which traverses the tree from the root

until it reaches the leaf node that may store the specified key. For a search operation the keys stored at

the leaf node are then searched for the specified key and the result is sent to the inquiring process.

An insert operation attempts to add the specified key to the keys stored at the leaf. If the leaf

already stores 2B keys and the specified key is not one of these, then an insertion transformation is

applied causing the leaf node to be split into two 2B- 1-key nodes. The new node becomes the right

brother of the original leaf node. The specified key is then added to the keys stored at the appropriate

node and the insert operation returns. The work required to propagate the split to higher levels is

carried out as a background task. This task adds a pointer to the newly created node at the appropriate

node in the next level. This in turn may cause an insertion transformation: the split is propagated until

a level is reached where no split occurs. Should the root of the tree be split then a new root is created

and the height of the tree increases by one. Figure 5 shows an example of the insertion transformation

applied to a (2, 8) tree.

A delete operation attempts to remove the specified key from the keys stored at the leaf. If the leaf

stores 2B- 2 keys, one of which is the specified key, then one of two transformations is applied to the node

8 5 THE SIMULATOR

and its right neighbor in the tree (or the left neighbor for the rightmost leaf). These transformations

are identical to those used for the top-down algorithm. The delete operation then returns and the

propagation of the transformation to higher levels is again carried out as a background task. In this

case there is no guarantee that the node and its neighbor share the same parent at the higher level, so

the transformation may cause the index values associated with the nodes at a higher level to change.

Transformations and changes to the index values are propagated until no further changes are required

at a higher level. Should the nodes at the level below the root be merged to form a single node then

this node becomes the root and the height of the tree decreases. Figures 6 and 7 show examples of these

transformations applied to a (2, 8) tree.

Since the changes to non-leaf levels caused by a transformation are carried out as a background

task, the find operation must guarantee that the correct leaf node is reached even if the tree traversal is

made between a transformation at a leaf node and the completion of the subsequent transformations and

changes at higher levels. To achieve this we introduce a notion of covers for each node. An index node

has associated with it a value i, the minimum key value that may be stored in the subtree rooted at the

node. A key k is covered by a node x if and only if x 's index label and the index label of x's right neighbor,

y, indicate that the leaf that may store k is a descendant of x. That is, covers(k, x) ¢=> x. i ~ k < y. i.

When xis the rightmost node at a given level, covers(k, x) => x .i ~ k. When a find operation encounters

a non-leaf node that does not cover the specified key, then the level is traversed from the node to either

the left (if x.i > k) or to the right (if y.i ~ k) until the node that covers k is found.

In the case of a deletion transformation that causes two nodes to be merged, the neighbor is not

removed immediately but is flagged as deleted and the links pointing to it from other nodes at the same

level are updated. This allows references to a deleted node to be made by find until the result of the

transformation has propagated to the higher level. When the find operation encounters a deleted node

the traversal immediately begins at the left brother of the deleted node.

5 The Simulator

The Proteus system simulates the events that take place in a parallel machine at the level of individual

machine instructions. The user writes a parallel program using a simple superset of the C programming

language and a set of supported simulator calls. The parts of the user program executed locally on

each processor are written in standard C and translated by the C compiler into machine code for the

computer running the simulation. All nonlocal interactions, such as message passing, are performed by

the supported simulator calls, which correspond to the machine code instructions that perform nonlocal

interactions in real parallel machines.

9

We simulate a multiprocessor configured as a bidirectional ring. Each node consists of a processor,

local memory, and a network chip for routing messages without using processor cycles. The network is

packet switched and uses wormhole routing. We assume that a message fits in one packet. Wormhole

routing (as opposed to store-and-forward) is relevant only for messages that travel more than one hop.

We would expect a store-and-forward network to produce similar throughput results, but have worse

response times. The latter results from the intermediate-node delays on messages to and from the

processor used to send queries to the root node and receive replies from leaf and root nodes.

The one-way delay for a message is the sum of several values: the time to put a message on the

network, the delay across the network, and the delay at the target. We assume a minimum wire delay

of one cycle per (4-byte) word and a minimum switch delay of one cycle per word. Without contention

a five-word message (the typical message size for both algorithms) requires seven cycles to go one hop:

one cycle each for the source processor, the wire, and the target processor for the first word and an

additional cycle for each of the subsequent words. We discuss the effect of longer message delays in

Section 7.

6 Implementation

The top-down and bottom-up algorithms have been implemented on Proteus. A designated processor,

termed the Server, is used to send queries to and receive replies from the processor storing the root node.

The Server also receives the replies generated by the queries from the processor storing the leaf nodes.

In this section the implementation of the insert, delete and search operations for each of the algorithms

is described. For a tree of H levels, processor Ph (where 1 < h :::; H) is an index processor and processor

P1 is the leaf processor, as shown in Figure 1. Processor Ph (where 1 < h < H) communicates only with

Ph-1 and Ph+l· Processor PH communicates with PH-l and the Server. Processor P1 communicates

with P2 and the Server.

6.1 The Top-Down Algorithm

When processor Ph receives a search{k,x) message (search for key k using node x) it selects y, the

appropriate child of x, and sends the message search{k,y) to processor Ph-l · When processor P1 receives

a search(k,x) message it searches the keys stored in node x for the key k and returns the result to the

Server processor.

During the insert operation processor Ph receives an inserLtransform{k,x) (transform node x, in­

serting key k) message. A transformation is applied if xis a 2B-branch node. In this case a new node

x' with splitting key k' is created, and the message inserLreply{k',x') is sent to processor Ph+l· 0th-

10 6 IMPLEMENTATION

erwise, the message inserLreply{k,nil) is sent to processor Ph+l, where nil is a dummy node value to

indicate that no transformation occurred. Processor Ph then selects the appropriate child y and the

message inserLtransform(k,y) is sent to processor Ph-l· Processor Ph then waits until it receives the

inserLreply(k'', y ~ message from Ph-l whereupon if y' is not nil it adds the new child and splitting key

to the node x (or to x' if appropriate). When processor P1 receives an inserUransform{k,x) message it

determines whether a transformation should be applied and proceeds in the manner of processor Ph. If

the key is not already present it is inserted into the appropriate leaf node. When the Server processor

receives the inserLreply{k',y') messages from processor PH and y is not nil, a new thread is started

on processor PH+ 1 , which becomes the new root processor. Figure 2 shows an example of an insert

operation applied to a (2, 8) tree.

The delete operation proceeds in the style of insert with the appropriate transformation and replies

for updating index information being applied at every stage. However, processor PH-l controls shrinking

(as opposed to PH for growing). Therefore, in the case where a delete_transform message is sent to a

2-branch root node at PH the reply to the Server is delayed until PH-l completes communication with

PH-2·

Examples of delete operations with search key 50 applied to the nodes of a (2, 8) tree are shown

m Figures 3 and 4. Note that the node address included in the delete_reply message indicates the

transformation that has been applied. If the address of the transformed node (X in this case) is included

in the reply this indicates that a merging transformation was applied. A redistribution occurred if the

address of the neighboring node is included.

Thus, the top-down algorithm is a lock-coupling algorithm; processor Ph is locked while a transfor­

mation is applied at processor Ph- l · The reply message causes the lock on Ph to be released and is

mandatory following the sending of a transform message to Ph-l even if no actual transformation oc­

curs. For n update operations on a tree with approximately n entries, the top-down algorithm requires

approximately n log8 n downward messages and the same number of upward messages.

6.2 The Bottom-Up Algorithm

In the implementation of the bottom-up algorithm, two forms of the find{k,x) message are used to

distinguish between the implementation of a search operation (find_search) and the implementations of

the insert and delete operations (find_update). When processor Ph receives a find_search{k,x,f) message,

meaning it should search for key k from node x and parent f, it executes x':=find_node{k,x) with the

following code :

6.2 The Bottom-Up Algorithm

Stage 1: The processor storing W sends an "inserUransform at
node X with key 50" message to the processor storing X.

Stage 2: X is split to form node X' and the processor storing X
sends an inserLreply{69,X') message to the processor storing W.

Stage 3: The processor storing W adds the new splitting key, 69,
and the address of X' to W.

11

Figure 2: An insert operation applied to a (2, 8) tree using the top-down algorithm. The shaded nodes
represent those nodes that are unchanged during a particular stage in the transformation process.

12 6 IMPLEMENTATION

Stage 1: The processor storing W sends an "delete_transform at
node X using neighbor Y with key 50" message to the processor
storing X.

' •. " ~ . ·. . . "
Y!······~······;······:·····"f"····~······:·······:·····--:

' •. ~ .. . "
·_ :;. ·-· ·.: ._"; .. ,,. ·-· ._.;. ,. , :. ,. , .•. ~, .- '"'" ... : -· ,.; ... _, .. •

Stage 2: X and Yare merged and Y is deleted. The processor stor­
ing X sends an delete_reply(45,X) message to the processor storing
w.

Stage 3: The processor storing W removes the entry for Y from
w.

Figure 3: A delete operation applied to a (2, 8) tree using the top-down algorithm and causing merging.

6.2 The Bottom- Up Algorithm

Stage 1: The processor storing W sends an "delete_transform at
node X using neighbor Y with key 50" message to the processor
storing X.

45 51 69

x •••

Stage 2: The children of X and Y are redistributed. The proces­
sor storing X sends an delete_reply(77, Y) message to the processor
storing W.

Stage 3: The processor storing W changes the key value associated
with Y.

13

Figure 4: A delete operation applied to a (2, 8) tree using the top-down algorithm and causing redistri­
bution.

14

find_node = procedure(k:key; x:node) returns (node)

if ex.deleted) then

6 IMPLEMENTATION

if (x.left =nil) then return find_node(k,x.right);

else return find_node(k,x.left);

else if (x.i > k) then return find_node(k,x.left);

else if (x.right =nil) then return(x);

else if (x.right.i <= k) then return find_node(k,x.right);

else return(x);

end find_node

where x.right and x.left are the right and left brothers of x (pointed to by the links at x), and x.deleted

has the value true when x has been deleted. find_node(x, k) returns the node at the same level as x from

which the key k is covered. The node splitting associated with the insertion transformation may cause

traversal along the right link and the node redistribution associated with the deletion transformation

may cause traversal along the left link.

The additional parameter f of find_search is the address of the parent of x. Each search tree node

(other than the root) maintains the address of its parent so as to direct the propagation of transformations

to higher levels in the search tree. When a find_search message is received, the parent pointer of x is

assigned the value off This propagates the changes made to parents to their children.

Processor Ph then selects y, the appropriate child of x', and sends the message find_search(k,y,x') to

Ph-1· When processor P1 receives a find_search(k,x,f} message it executes x'=find_node(k,x), searches

the keys stored in node x' for the key k, and returns the result to the Server processor.

During an insert or delete operation processor Ph receives a find_update(k,x,f) message. The routine

find_node is again called and the appropriate child y of x' is selected. Processor Ph then sends the

message find_update(k, y, x ') to processor Ph-l · When processor P1 receives a find_update(k, x,J) message

the parent pointer is updated as before and x'=find_node(k,x} is executed. A transformation is then

applied to x' if required and the key k is either added to (for insert) or deleted from (for delete) the

appropriate node. A message indicating completion is then sent to the Server processor.

If an insertion transformation occurred at the leaflevel, processor P1 sends an inserLtransform(k',x',f}

message (insert the new node x' with splitting key k' and parent!) to processor P2 • Processor P2 calls

find_node(f,k'} to determine the node to which x' and k' should be added. If a transformation occurs

as a result of this addition then another inserLtransform message is sent to processor P3 . This pro­

cess continues until a level is reached where no transformation occurs. Should the Server receive an

inserLtransform message from the root processor then a new thread is started on processor PH+l and

PH+1 becomes the new root processor. An example of an inserLtransform message applied to the nodes

15

of a (2, 8) tree is shown in Figure 5. When the search tree is in Stage 2 of Figure 5, a find or find_update

operation sent to X from W with a key value greater than or equal to 69 results in Z being selected by

find_node.

The processing of the transformations for the delete operation proceeds in the style of insert with

the appropriate transformation for updating index information being applied at every stage. Examples

of delete_transform message applied to the nodes of a (2, 8) tree are shown in Figures 6 and 7. Note that

the number of key values included in the delete_transform message indicates the transformation that was

applied at the sender. If only a single key is included then the entry for the child with this key should

be removed at the higher level. If two key values are included then the entry for the child with the first

value should be changed to the second key value. The use of find_node to determine the correct node to

update allows the maintenance of the parent pointers to be carried out in this lazy style.

For n update operations the bottom-up algorithm requires approximately n log8 n downward mes­

sages. However, upward messages only occur following a transformation. In practice this results in

significantly fewer upward messages than in the top-down case as shown by the experimental results

reported in Table 1 in the next section.

7 Relative Performance

This section compares the relative performance of the two algorithms using the results of simulations.

Three sets of simulations measured the throughputs and response times of each algorithm for different

values of the branching factor constant B and various query mixes. A fourth set of simulations then

measured the relative performance of the algorithms under changes to the one-way message delay. Finally,

we compared the performance of the algorithms using synchronous and asynchronous message passing

between the processors.

We conducted a number of sets of simulations for each of the algorithms using a range of values for

the branching constant Bin each case; three sets of results are presented in this paper. B was varied

between 2 (this was not strictly a (28 - 2 , 28) search tree and actually represented the 2-3-4 tree used

by Carey and Thompson [CT84]) and 8 (a 64-256 tree). The size of the processor array was varied for

each case so that only the number of processors required was used. The throughput was measured in

terms of the average number of tree operations that complete for every one hundred thousand machine

cycles and the response time was measured in terms of the average number of machine cycles between

the Server sending a query and receiving the corresponding reply.

The first set of simulations, Test 1, measured the performance of the algorithms when 50,000 insert

operations using random key values were applied to an initially empty tree. For the second and third

16 7 RELATIVE PERFORMANCE

The value of W.i

Stage 1: The processor storing X receives an insert_transform mes­
sage informing it that a new node Z has been generated at the level
below.

z

Stage 2: find_node(75,X) is invoked, which returns node X in this
case. X is split to form node X' and the horizontal links in X
and Y are updated accordingly. The processor storing X sends an
inserUransform{69,X', W) message to the processor storing W.

Stage 3: The processor storing W invokes find_node{69, W}, which
returns node Win this case. The new splitting key, 69, and the
address of X' are added to W. Since no further transformation is
required no additional upward messages are generated.

Figure 5: An inserLtransform operation applied to a (2, 8) tree using the bottom-up algorithm. The
shaded nodes represent those nodes that are unchanged during a particular stage in the transformation
process.

Stage 1: The processor storing X receives a delete_transform{51,X}
message informing it that the entry for key value 51 has been
deleted.

45 69 72 77

••••

Z.deleted is set

Stage 2: find_node{75,X} is invoked, which returns node X in this
case. X and Z are merged and Z is marked as deleted. The hor­
izontal links in X and Y are updated accordingly. The processor
storing X sends a delete_transform{69, W} message to the processor
storing W.

Stage 3: The processor storing W invokes find_node{69, W}, which
returns node W in this case. The entry for splitting key 69 is
removed from W. Since no further transformation is required no
additional upward messages are generated.

17

Figure 6: A delete_transform operation applied to a (2, 8) tree using the bottom-up algorithm and causing
merging.

18 7 RELATIVE PERFORMANCE

Stage 1: The processor storing Xreceives a delete_transform(51,X}
message informing it that the entry for key value 51 has been
deleted.

Stage 2: find_node{51,X} is invoked, and returns node X in this
case. The children of X and Z are redistributed. The processor
storing X sends a delete_transform{69, 75, W} message to the pro­
cessor storing W.

Stage 3: The processor storing W invokes find_node{69, W), which
returns node Win this case. Its splitting key values are updated.
Since no further transformation is required no additional upward
messages are generated.

Figure 7: A delete_transform operation applied to a (2, 8) tree using the bottom-up algorithm and causing
redistribution.

19

sets of simulations, Test 2 and Test 3, 1,000 insert operations using random keys were first applied to

an empty search tree followed by 10,000 randomly selected operations. For Test 2 the percentages of

insert, delete and search operations in this random selection were 50%, 30% and 20%, respectively, and

for Test 3 they were 33%, 33% and 34%, respectively. Each time a delete operation was applied the key

value closest to the selected key value was deleted.

The throughputs and response times are shown in Figures 8 and 9. In all cases the throughput

improves for increasing values of B up to 4 (or 5 for Test 2 applied to the bottom-up algorithm). This

peaked response is caused by a trade-off between the number of transformations and the processing time

for searching the key values stored at a node. For low values of B, insert and delete operations cause

more transformations to the tree structure. Transformations increase the average processing time for a

query and leads to a reduction in throughput. For higher values of B the time required to search and

update the keys stored at a node increases. This also increases the average processing time for a query

and leads to a reduction in throughput. Therefore an optimal value for B exists where neither effect

leads to a significant degradation in throughput.

The response times reach a minimum value as B increases and then grows as B continues to increase.

The value of B governs the number of processors in the ring; as B increases the number of processors

decreases since a greater number of key values are stored in each node. For increasing values of B below

this minimum, the improvement in response time is caused by the reduction in the number of inter­

processor hops required for a single query. For increasing values of B greater than the minimum, the

degradation in response time occurs due to the increase in the processing time at a single node. Therefore

there is a trade-off between the computation at a processor and communication between processors to

achieve the optimal response time.

When the two algorithms are compared, the bottom-up algorithm performs better in both throughput

and response time for all cases. The improvement in throughput arises because no lock coupling is

required and upward messages only occur when a transformation is required. The majority of upward

messages in the top-down case merely verify that no transformation took place. The counts of upward

messages required during Test 2 are given in Table 1. The bottom-up algorithm requires significantly

fewer upward messages in all cases, leading to very little contention between messages. The numbers

of downward messages required by the two algorithms are approximately the same and are equal to the

number of upward messages in the top-down case.

20

Throughput
(tree operations per
lOOK machine cycles)

TD3 • .,. •.,.

. - ····· 40 ••
TD2 •••

30--+---

20---+---

10--+---

2 3

7 RELATIVE PERFORMANCE

----- Test 1: Top-Down (TDl)

• - - - - - - - - • Test 1: Bottom-Up (BUI)

·•••••••••••••••••• Test 2: Top-Down (TD2)
................ '°"'"'"°'•"' Test 2: Bottom-Up (BU2)

• • - • - • - • - • Test 3: Top-Down (TD3)
• •• - •• - •• • •• • • Test 3: Bottom-Up (BU3)

4 5 6

B (branching factor constant)

7 8

Figure 8: The throughputs for the search trees.

Response Time
(xlOOO machine cycles)

16----t~~--.,f----~~f----~~<--~~<--~~+--~~-.--

TDl

Test 1: Top-Down (TDI)

• - - • - - • - - • Test 1: Bottom-Up (BUI)

• ••• •• • •• •• • •• • •• •• Test 2: Top-Down (TD2)
........... u u Test 2: Bottom-Up (BU2)

• • • • - • • • • • Test 3: Top-Down (TD3)

• •• • •• -·· - ··- • Test 3: Bottom-Up (BU3)

g~-+-~----~--~~~~1--~~~---1-~~~-+-~~~~+--~~~-t-~

BU2

BU3
6~+-'~~~~~~--t~~~--r~~~---t-~~~-+-~~-=..i---

2 3 4 5 6 7 8

B (branching factor constant)

Figure 9: The response times for the search trees.

21

22 7 RELATIVE PERFORMANCE

Branching constant Top-Down Bottom-Up

B algorithm algorithm

2 65213 2556

3 48805 884

4 37329 345

5 27568 150

6 26143 71

7 19654 36

8 19422 15

Table 1: The numbers of upward messages required during Test 2

As noted earlier, the changes to non-leaflevels caused by transformations in the bottom-up algorithm

are made by a background task. The find operation guarantees that the correct leaf node is reached

independent of whether all the required changes have been made. This may require traversal of the

horizontal links connecting adjacent nodes leading to an increase in processing time. The numbers of

times a horizontal link was traversed during Test 2 are given in Table 2. The number of traversals

increases as the value of B decreases but in all cases the numbers are small when compared with the

total number of operations, which is 11000. The fact that so few horizontal traversals are made partly

accounts for the low response times of the bottom-up algorithm.

Branching constant Horizontal Traversals

2 29

3 19

4 9

5 7

6 5

7 2

8 2

Table 2: The numbers of horizontal traversals required during Test 2

The response time for an individual query is also better in the bottom-up algorithm because trans­

formations at non-leaf levels are conducted after the query has terminated. Transformations propagate

up the tree only as far as necessary, which reduces the contention experienced by later queries.

The effect of variations in the message delay was measured for each algorithm when 10,000 insert

operations using random key values were applied to an (8,32) tree (B=5) using synchronous message

23

passing. As the one-way message delay increased the throughputs of both the top-down and bottom-up

algorithms decreased at approximately the same rate (although the overall percentage change is smaller

for the bottom-up algorithm). The response time for both algorithms increased as the one-way message

delay increased. However, the increase for the bottom-up algorithm was less significant than that for the

top-down algorithm. This difference is caused by the lock coupling and the greater number of upward

messages in the top-down case.

Experiments were conducted using both synchronous and asynchronous message passing between

processors. The synchronous message style is similar to that used in transputer systems [Inm86]. The

synchronous messages have the following protocol. The sender sends a message to the target and waits

for an acknowledgment. The message causes an interrupt at the target. The target processor must

independently issue a receive command. When a receive command is issued, if a message is already

present, the receive routine sends an acknowledgment to the sender and returns the address of the

message. If no message has been received, the receive routine waits for the interrupt and then handles

the message.

For asynchronous messages the sender sends a message to the target and does not wait for an

acknowledgment. The message causes an interrupt at the target and is stored in a buffer of waiting

messages. The messages in this buffer are serviced in a FIFO order. When the target processor issues a

receive command a waiting message is removed from the buffer. If no messages have been received the

receive routine waits for the interrupt. Using asynchronous message as opposed to synchronous messages

for the bottom-up algorithm leads to improvements in both throughput and response time as the need for

synchronization between adjacent processors is removed and the number of messages between processors

decreases. However, the top-down algorithm is implicitly synchronous since the parent processor always

waits for the reply from its son. Thus moving from synchronous to asynchronous message passing does

not affect performance in this case.

8 Design Alternatives

In the B-tree algorithms described in [WW90, Wan91, LY81] the rightmost node examined at each level

is pushed onto a stack during the downward traversal of the search tree. This stack is included in

the find_update message. If a transformation occurs, the contents of the stack are used to provide an

indication of the node to be updated at a given level in the tree. This is only an indication as subsequent

transformations may have occurred between the original downward traversal and the propagation of

transformations. The message length for update operations and transformations is O(log n), since the

stack size, and hence the message size, is proportional to the height of the tree.

24 8 DESIGN ALTERNATIVES

The alternative technique used in the algorithm described here maintains a pointer to the parent

node at each node (other than the root) in the search tree. These pointers are used to give a similar

indication of the node to be updated following a transformation. A question arises as to how the pointers

should be maintained as transformations at level h cause inconsistencies in some of the parent pointers in

level h-1. We investigated several solutions and compared their performance to that of the stack-based

method.

The approach described in Section 5.2 includes the address of the parent node in every find message

sent to a child regardless of whether a change is required. We have termed this a conservative pointer­

based approach. The address is then assigned to the parent pointer of the child. This leads to a

shorter average message length than the stack-based method (0(1) compared to O(log n)), and proved

to be simpler to implement. In addition, since the original downward traversal will have updated the

parent pointers of all the nodes accessed, the indication given by the pointer-based approach will always

be at least as good as that given by the stack-based method. In cases where changes to the parent

pointers occur between the original downward traversal and the propagation of the transformations, the

indication given by the pointer-based approach is better than that given by the stack-based method.

Although the differences in performance are marginal, for long processor arrays, where the messages in

the stack-based method are significantly longer, the pointer-based approach has superior performance.

In systems where messages are divided into small packets before transmission across the network, the

address-based approach may lead to fewer packets, therefore reducing network latency and contention

and improving performance.

Two alternative techniques for maintaining the parent pointers were investigated. Maintaining a list

of the inconsistent children at level hand notifying these nodes of the change to their parent pointer when

they are next accessed proves to be a costly solution. Checks have to be made before sending a message

and after receiving a message to determine whether changes are required. Alternatively, a new message

type may be introduced that is sent by processor Ph to processor Ph- l following a transformation at

Ph. The message simply notifies Ph-l of the required changes to the parent pointers. Although this

approach has shorter messages than the conservative pointer-based approach, it leads to an increase in

the total number of messages. Both these alternatives exhibit poorer performance than the stack-based

and the conservative pointer-based approaches.

Several different algorithms can be used during the execution of the find operation to ensure the

required leaf node is reached in the bottom-up algorithm. The small number of horizontal traversals

given in Table 2 for the bottom-up algorithm suggests that choosing the wrong node during a downward

traversal is a very infrequent event. A possible optimization of the algorithm is to assume that the

correct node is always chosen and to only execute the find_node routine given in Section 6.2 at the leaf

25

level. If the wrong node is chosen at a branch level then the downward traversal will descend to either

the leftmost or rightmost node in the subtree of which the chosen node is the root - leftmost if the chosen

node has a key value greater than the search key and rightmost if the chosen node has a key value less

than the search key. This gives about a 10% improvement in response time over the find_node algorithm

given in Section 6.2. The throughputs are approximately the same; the execution of find_node at the

leaf level prevents any improvement. However, an optimization can be made so that find_node is called

at every level only when the wrong node may have been selected. If the leftmost or rightmost child is

selected as the next node then find_node is called and any required horizontal traversals are made. This

leads to similar improvements in response time over the algorithm given in Section 6.2.

9 Conclusions

We have shown that a (2B- 2
, 2B) search tree of n entries can be implemented on a linear array of up to

[log2 n/(B - 2)] + 1 processors, where each processor stores a level of the tree structure. Such a linear

array may be physically mapped onto processors in two or three dimensions on the majority of available

architectures. Updates can be performed on the tree using both top-down and bottom-up algorithms.

The top-down node-splitting algorithm uses lock coupling to apply transformations during a single

traversal of the tree structure. However, processors are required to wait for replies most of which merely

verify that no transformation occurred.

The introduction of side links between adjacent nodes at the same level eliminates the need for

lock coupling and permits a bottom-up algorithm to be used. This algorithm allows the transformations

resulting from changes to the tree structure to be performed asynchronously from the leaf nodes upwards,

while guaranteeing the correctness of other operations concurrently executing on the data structure. The

use of parent pointers to give an indication of the node to be up dated at a higher level leads to improved

performance when compared to the stack-based technique used in other B-tree algorithms.

In a series of simulations conducted for both algorithms, the bottom-up approach gives significantly

better query throughput and response time. The number of upward messages (and hence the contention)

between adjacent processors in the linear array is significantly less for the bottom-up algorithm. Fur­

thermore, the bottom-up algorithm shows increasingly superior performance relative to the top-down

algorithm as the one-way message delay between adjacent processors increases. Improved performance

is also achieved for the bottom-up algorithm when asynchronous as opposed to synchronous message

passing is used.

The bottom-up algorithm for the (2B- 2 , 2B) search tree has been shown to provide a highly efficient

and flexible implementation of dictionary abstract data types on message-passing MIMD architectures.

26 REFERENCES

For a given cost ratio of computation to communication the value of B may be varied to maximize

performance. The algorithm also introduces a stabilizing hysteresis behavior that is not present in many

other balanced-tree algorithms. The bottom-up algorithm described here has the best performance of

any of the implementations of search trees for linear arrays described to date.

10 Acknowledgments

We thank Anant Agarwal, Wilson Hsieh, Anthony Joseph and Sharon Perl for their comments and

suggestions on this work.

References

[Bay72] R. Bayer. Symmetric Binary B-trees: Data Structure and Maintenance Algorithms. Acta
Informatica, 1:290-306, 1972.

[BDCW91] E.A. Brewer, C.N. Dellarocas, A. Colbrook, and W.E. Weihl. PROTEUS: A high­
performance parallel-architecture simulator. Technical Report MIT/LCS/TR-516, MIT Lab­
oratory for Computer Science, 1991.

[Bre91] E.A. Brewer. Aspects of a high-performance parallel-architecture simulator. Master's thesis,
MIT Laboratory for Computer Science, 1991.

[Com79] D. Comer. The ubiquitous B-tree. Computer Surveys, 11(2):121-137, 1979.

[CS90] A. Colbrook and C. Smythe. Efficient implementation of search trees on parallel distributed
memory architectures. IEE Proceedings Part E, 137:394-400, 1990.

[CT84] M.J. Carey and C.D. Thompson. An efficient implementation of search trees on ~gn+l]
processors. IEEE Transactions on Computers, 33(11):1038-1041, 1984.

[Del91] C.N. Dellarocas. A high-performance retargetable simulator for parallel architectures. Mas­
ter's thesis, MIT Laboratory for Computer Science, 1991.

[Fis84] A.L. Fisher. Dictionary machines with a small number of processors. In Proceedings of the
11th Annual International Symposium on Computer Architecture, pages 151-156, 1984.

[GS78] L.J. Guibas and R. Sedgewick. A dichromatic framework for balancing trees. In Proceedings
of the 19th Annual IEEE Computer Society Symposium on the Foundations of Computer
Science, pages 8-21, 1978.

[Inm86] Inmos. Transputer Reference Manual. Prentice Hall, London, 1986.

[LSS87] V. Lanin, D. Shasha, and J. Schmidt. An analytical model for the performance of concurrent
B-tree algorithms. Technical report, Ultracomputer Laboratory, New York University, 1987.

[LY81] P.L. Lehman and S.B. Yao. Efficient locking for concurrent operations on B-trees. ACM
Transactions on Database Systems, 6(4):650-670, 1981.

[MR85] Y. Mond and Y. Raz. Concurrency control in B+-trees using preparatory operations. In
Proceedings of the 11th International Conference on Very Large Data Bases, pages 331-334,
1985.

REFERENCES 27

[Qui87] M.J. Quinn. Designing efficient algorithms for parallel computers. McGraw-Hill, New York,
1987.

[Sag86] Y. Sagiv. Concurrent operations on B-trees with overtaking. Journal of Computer and
System Sciences, 33(2):275-296, 1986.

[SG88] D. Shasha and N. Goodman. Concurrent search tree algorithms. ACM Transactions on
Database Systems, 13(1):53-90, 1988.

[TNM80] Y. Tanaka, Y. Nozaka, and A. Masuyama. Pipeline searching and sorting modules as com­
ponents of a data flow database computer. In Proceedings of the International Federation
for Information Processing, pages 427-432. North-Holland, 1980.

[Wan91] P. Wang. An in-depth analysis of concurrent B-tree algorithms. Master's thesis, MIT
Laboratory for Computer Science, 1991.

[WW90] W.E. Weihl and P. Wang. Multi-version memory: Software cache management for concurrent
B-trees. In Proceedings of the 2nd IEEE Symposium on Parallel and Distributed Processing,
pages 650-655, 1990.

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRl.BUTION I AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
-

MIT/LCS/TR 517
N00014-89-J-1988

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL la. NAME OF MONITORING ORGANIZATION
(If applicable)

Office of Naval Research/Dept. of Navy MIT Lab for Computer Science

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program
Cambridge, MA. 02139 Arlington, VA 22217

aa. NAME OF FUNDING I SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION
DAEPA/DOD

(If applicable)

3c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
1400 Wilson Blvd. ELEMENT NO. NO. NO. ACCESSION NO.

Arlington, VA 22217

11. TITLE (Include Security Classdicarion)

Algorithms for Search Trees on Message-Passing Architectures

12. PERSONAL AUTHO~~ Eric A, Brewer, Chrysanthos N. Dellarocas, William E, Weihl Adrian Co rook,
J

13a. TYPE OF REPORT I, 3b. TIME COVERED 14. DA TE OF REPORT (Year, Month, Day) l15 PAGE COUNT

Technical FROM TO September 1991 27

16. SUPPLEMENTARY NOTATION

17. COSA Tl CODES 18. SUBJECT TERMS (Continue on rever;e if neceSSdry and identify by block number)

FIELD GROUP SUB-GROUP
Balanced search trees, parallel algo:r;ithms i linear processor

array, message~passing architectures,

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

In this paper we describe a new algorithm for maintaining a balanced search tree on a message-passing
MIMD architecture; the algorithm is particularly well suited for implementation on a small number of
processors. We introduce a (2B- 2 , 2B) search tree that uses a linear array of O(log n) processors to
store n entries. Update operations use a bottom-up node-splitting scheme, which performs better than
top-down search tree algorithms. Additionally, for a given cost ratio of computation to communication
the value of B may be varied to maximize performance. Implementations on a parallel-architecture

simulator are described.

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

f3l UNCLASSIFIED/UNLIMITED D SAME AS RPT. 0 DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL

Carol Nicolora
DO FORM 1473, 84 MAR

22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

(617)
83 APR ed1t1on may be used until exhausted.

All other editions are obsolete

253-5894

SECURITY CLASSIFICATION OF THIS PAGE

RUS. G.,_t Priming Offi .. : 1966-007-0'7

Unclassified

