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Abstract 

In this paper v1e describe PRELUDE, a programming language and accompanying system support for 
writing portable MIMD parallel programs. PRELUDE supports a methodology for designing and orga­
nizing parallel programs that makes them easier to tune for particular architectures and to port to new 
architectures. It builds on earlier work on Emerald, Amber, and various Fortran extensions to allow 
the programmer to divide programs into architecture-dependent and architecture-independent parts, 
and then to change the architecture-dependent parts to port the program to a new machine or to tune 
its performance on a single machine. The architecture-dependent parts of a program are specified by 
annotations that describe the mapping of a program onto a machine. PRELUDE provides a variety of 
mapping mechanisms similar to those in other systems, including remote procedure call, object migra­
tion, and data replication and partitioning. In addition, PRELUDE includes novel migration mechanisms 
for computations based on a form of continuation passing. The implementation of object migration in 
PRELUDE uses a novel approach based on fixup blocks that is more efficient than previous approaches, 
and amortizes the cost of each migration so that the cost per migration drops as the frequency of mi­
grations increases. 

The current implementation of PRELUDE is built on top of PROTEUS, a configurable simulator that 
provides both fast and accurate simulations of a wide range of MIMD architectures. PROTEUS itself is 
a useful tool for developing parallel applications, since it provides powerful non-intrusive debugging and 
performance monitoring capabilities that are difficult or impossible to obtain on a real machine. Much 
of the testing, debugging, and initial testing of an application can be accomplished using PROTEUS, 

typically with less effort than would be required on a real machine. In addition, PROTEUS allows the 
programmer to test the scalability and portability of a program, including on a range of machine sizes 
and architectures not supported by available machines. We are using PROTEUS to develop our initial 
prototype of PRELUDE, and plan to port the implementation of PRELUDE to commercial and research 
multiprocessors in the near future. 
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2 1 INTRODUCTION 

1 Introduction 

A number of MIMD multiprocessors are now commercially available, and new large-scale machines are 

being developed. Given the variety of architectures and the cost of developing large programs, there is 

a clear need for support for writing high-performance programs that are portable and scalable across a 

broad range of MIMD architectures. Even on a single multiprocessor machine, better support is needed 

for writing parallel programs that are both correct and efficient. 

In this paper we describe PRELUDE, a programming language and accompanying system support 

for writing portable MIMD programs. PRELUDE supports a methodology for designing and organizing 

parallel programs that makes them easier to tune for a particular architecture or to port to a new 

architecture. Ultimately, we expect to integrate the mechanisms we are developing into parallel versions 

of existing languages such as C and Fortran. As part of this project, we are also developing debugging 

and performance monitoring tools to help the programmer debug and tune programs; these are also 

described briefly in this paper. 

Multiprocessors differ in a number of characteristics that affect the performance of parallel programs, 

including the relative costs of communication, computation, and synchronization; the number of pro­

cessors; the network topology; and the support provided for shared memory. The problem in achieving 

reasonable portability is to allow a single program to be mapped onto many different machines without 

requiring the programmer to make significant changes to the program for each machine. 

Portability is related to the problem of performance tuning. The performance of a program on a 

particular machine can depend on many details of the machine, and can be difficult to predict. Thus, 

significant tuning may be required to achieve good performance. The mechanisms we propose allow the 

programmer to separate the description of the computation to be performed by a program from the 

description of how that computation is to be mapped onto a machine, thus making it easier to tune 

the performance of a program on a particular machine. This also simplifies porting a program to new 

architectures. As described in more detail below, our mechanisms integrate and extend the mapping 

mechanisms proposed in previous systems. Our goal is to provide a comprehensive suite of mapping 

mechanisms that together give the programmer the flexibility and control needed to map programs 

efficiently onto particular machines. 

Efficiently mapping a program onto a machine involves choosing an appropriate grain size for tasks; 

determining where to place tasks and data; determining when and where to migrate tasks and data; 

scheduling tasks; managing communication among tasks; and determining how to cache, replicate and 

partition data structures. In a distributed-memory message-passing machine, decisions about the place­

ment of data and tasks have a strong impact on the amount of communication required to run a program. 

Since the cost of sending a message in such machines is typically significantly greater than the cost of 
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accessing local memory, placement decisions can make a large difference in the performance of a program. 

This is also true in a shared-memory system; a poor job of placement for tasks can result in a large 

number of cache misses, which also reduces performance. 

Existing approaches to managing these issues fall into three classes: those that provide direct, low­

level control; those that completely relegate decisions to the compiler and runtime system; and those that 

allow the programmer to provide directives to the compiler and runtime system, but leave the details 

of decomposing data structures and tasks to the compiler and runtime system. The first approach is 

extremely difficult to use, and leads to programs that are difficult to port, precisely because so many 

architecture-specific decisions are encoded in the program. The second approach is easy to use, but its 

application to date has been limited to relatively small programs with regular communication patterns, 

task sizes, and data structures. For numerical programs with irregular data sets and for symbolic 

programs, purely automatic approaches have not worked well. As a result, we believe that the third 

approach is the most promising. 

PRELUDE provides the programmer with a computational model based on objects and threads that 

abstracts away from the underlying architecture, together with high-level annotations that allow the 

programmer to control the mapping of a program onto a particular machine. Concurrency is expressed 

explicitly in PRELUDE, and the programmer is encouraged to write programs with as much concurrency as 

possible. The PRELUDE compiler and runtime system then generate an appropriate number of physical 

threads for the program to run efficiently on a particular machine. The annotations attached to the 

program are used to describe and control the performance of the program, not its functionality. For 

example, annotations can be used to control the migration of objects and computation between processors 

in distributed memory architectures; such migration can yield a significant reduction in message traffic, 

with a resulting improvement in program performance. Since annotations affect performance but not 

functionality, the annotations attached to a program can be freely changed without introducing errors 

into the program; this makes it easy to experiment with different mappings to determine which provides 

the best performance. This separation of architecture-specific performance-related concerns from the 

rest of a PRELUDE program makes it relatively easy to port a program, or to tune its performance. 

The PRELUDE runtime system incorporates novel mechanisms for migrating data and computation 

in a distributed-memory multiprocessor. We also incorporate flexible mappings of the logical program 

threads onto the actual physical threads to produce efficient message passing. Existing systems have 

provided reasonable flexibility in mapping data onto parallel machines (via partitioning, replication, and 

migration), but have provided only simple mechanisms such as remote procedure calls for mapping logical 

threads. As described in more detail in Section 4, PRELUDE is designed to provide flexible control over 

the migration of computation, which allows a logical thread to be mapped onto a number of different 
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physical threads as the computation represented by the logical thread migrates around the machine. 

In addition, the runtime system supports domain-specific scheduling and load balancing mechanisms 

that allow the granularity and distribution of tasks to be chosen adaptively at run time based on the 

characteristics of the architecture and the application load. 

Parallel programs are difficult to test, debug, and tune. To accompany PRELUDE, we have built 

a retargetable simulator, PROTEUS, that provides extremely efficient instruction-level simulation for a 

wide range of MIMD multiprocessors. Because of its efficiency, accuracy and flexibility, PROTEUS has 

shown itself to be a useful tool for prototyping, testing, and tuning parallel programs. We have built 

prototypes of the PRELUDE compiler and runtime system using PROTEUS to evaluate the efficiency of 

our mechanisms for a variety of MIMD configurations. 

In Section 2 of this paper we describe the PRELUDE language. In Section 3 we describe how the 

annotations supported by PRELUDE provide flexible control over the mapping of a program onto a 

particular machine, and in Section 4 we discuss the techniques we have developed for implementing the 

mappings described by the annotations. In Section 5 we describe PROTEUS and its support for language 

development and prototyping. Finally, in Section 6 we conclude with a discussion of the current status 

of the project and our plans for future work. 

2 The PRELUDE Language 

PRELUDE is a statically typed, class-based, object-oriented language with linguistic support for parallel 

computing. It is lexically scoped and statement based. PRELUDE'S computational model is based on 

two concepts: objects and threads. Objects contain state and reside in the heap. Each thread maintains 

a stack and performs sequential computation. Threads can access and modify existing objects, create 

new objects, and fork new threads. Mechanisms are provided to allow threads to communicate and 

synchronize. 

A PRELUDE object can be single-threaded or multi-threaded. A multi-threaded object can have 

multiple active threads performing method invocations on it; a single-threaded object can support only 

one such thread at a time. Some systems, particularly those based on Actors [Agh86], support only 

single-threaded objects. We believe that multi-threaded objects are natural and efficient to use in 

many programs, and that to provide adequate generality and expressive power the system should not 

restrict the programmer to using single-threaded objects, which forces him to use complex and awkward 

program structures to achieve the benefits of multi-threaded objects. At the same time, when the 

programmer intends an object to be single-threaded, the source program is simpler if he does not have 

to code the required synchronization explicitly using locks; in addition, the required synchronization and 
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scheduling can be implemented more efficiently if the compiler and runtime system know that the object 

is single-threaded. Thus, we allow the programmer to indicate explicitly as part of a class definition 

that the class's objects are single-threaded; the compiler then automatically generates the necessary 

synchronization code. 

PRELUDE supports the following constructs for thread creation (variants of the parfor, parbe­

gin and fork constructs have been introduced by other languages including PCF Fortran [For90], 

BLAZE [MvR87], Occam [Lim84] and SISAL [MSA +85]): 

• The parallel parfor construct is syntactically similar to a sequential for loop. However, each 

iteration specified by the parfor loop is executed by a newly created thread in parallel with the 

other iterations. 

• The parbegin construct specifies a set of sequential code blocks; newly created threads execute 

these blocks in parallel with each other. 

• The fork construct is used to specify asynchronous invocations of methods and procedures. Asyn­

chronous invocation is described in Section 2.1. 

• The pipe construct, described in detail in Section 2.1, is used for ordered asynchronous invocations, 

which run in parallel with the calling thread but are run in the order in which the invocations were 

made by the caller. 

For the parfor, parbegin and fork constructs, PRELUDE supports two types of thread creation: must 

and maybe. In must creation, the new thread (or threads) is necessary to ensure correctness; an example 

of must creation is an asynchronous call that may deadlock if a separate thread is not forked to perform 

the invocation. In maybe creation, the new thread may improve performance, but does not affect 

correctness. In PRELUDE, the default is maybe creation. The keyword must is used if creation is 

required. 

2.1 Asynchronous Invocations 

PRELUDE provides three types of invocations: synchronous, unordered asynchronous, and ordered asyn­

chronous. In a synchronous invocation, the calling thread performs the invocation. Unlike synchronous 

invocations, an asynchronous invocation conceptually forks a new thread to perform the invocation. The 

calling thread does not necessarily wait for the invocation to finish. There are two kinds of asynchronous 

calls: unordered and ordered. 

Unordered asynchronous invocations avoid the software overhead required to maintain order and are 

therefore simpler and faster than ordered invocations. However, unordered invocations often result in 
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programs that are difficult to understand and contain subtle race conditions. In many situations a thread 

can run concurrently with a sequence of calls it makes but these calls must be executed sequentially. 

Synchronization to achieve this effect can be coded explicitly in the application program, but this leads 

to complex and less efficient programs. A mechanism for ordered asynchronous calls leads to programs 

that are both simpler to understand and more efficient than ones in which the ordering is enforced by 

application-level synchronization. We introduce a new mechanism, pipe objects, to support ordered 

asynchronous calls. 

2.1.1 Unordered Asynchronous Calls 

In an unordered asynchronous call, a new thread is forked without any extra synchronization with other 

threads. Therefore, a thread making a sequence of unordered asynchronous calls to the same receiver 

object cannot make any assumptions about the order in which the calls are processed. PRELUDE denotes 

unordered asynchronous calls by preceding the invocations with the fork keyword. The invocation 

returns a promise. 

The parameterized class promise [T] refers to a promise for an object of type T. Promises (LS88] are 

similar to futures in MultiLisp (Hal85], except that the value of a promise must be explicitly extracted. 

(Promises were designed as part of extensions to Argus (LDH+87] for incorporating asynchronous re­

mote procedure calls, as implemented in the Mercury project [LBG+88].) A promise is created by an 

asynchronous call. For example, an asynchronous call to a procedure that normally returns a type T 

returns the type promise [T] . 

A promise, unlike a future, must be claimed explicitly. For a promise[T], the method claim() 

returns(T) returns the value of the promise, an object of type T. Promises also provide a method 

ready() returns(bool) that indicates whether or not the promise has been filled (and is therefore 

ready to be claimed). 

For example, the following PRELUDE code represents asynchronous calls of method foo of object x 

with arguments corresponding to the values of arg1, arg2,. .. , argN. 

y: promise[T1] :=fork x.foo(arg1, arg2,. .. , argN) 

fork x.foo(arg1, arg2, ... , argN) 

z: Ti := y.claim() 

The two calls to foo can be run concurrently, and the result of the first call is obtained by the calling 

thread via the call to claim in the third line, which blocks until the result is available. 
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2.1.2 Ordered Asynchronous Calls 

In some circumstances, for example in a pipeline, a sequence of invocations must be performed in order, 

but can be run in parallel with the calling thread. Previous work by Gifford and Glasser [GG88] and in 

the Mercury system [LBG+88] has resulted in the design ofremote invocation mechanisms for distributed 

systems in which a sequence of calls between a single sender and a single receiver are run in order, but 

asynchronously with respect to the caller. We have adapted these ideas for use in PRELUDE; our design 

provides integrated language support for such ordered asynchronous invocations, and also generalizes 

the previous work by allowing calls from multiple sending threads to be ordered. 

Pipes are special objects used to implement ordered asynchronous calls. The parameterized class 

pipe [T] denotes a pipe to an object of type T. A pipe is created by the class method pipe [T] . new. 

If x is an object of type T, then invoking pipe[T] .new(x) creates and returns a pipe object of type 

pipe [T] that provides a mechanism for ordering asynchronous method invocations to object x. Objects 

of type pipe[T] provide all methods provided by type T. However, the return types for these methods 

are promises: ifT provides a method foo(T1) returns(T2), then pipe[T] provides a method foo(Ti) 

returns (promise [T2] ) . 

To perform a sequence of ordered asynchronous calls to an object, we merely perform the same 

sequence of calls in a synchronous manner to one of its pipes; we refer to such calls as "pipe calls". The 

pipe ensures that pipe calls are processed by the target object in the same order that they are sent. 

Abstractly, we can view a pipe to object x as a forwarder that queues up all calls sent to it and returns 

promises of the appropriate types. Semantically, it sends the queued calls sequentially to x; a call is 

sent to x only after x has finished processing the previous queued call. The implementation, described 

in more detail in Section 4, uses queues at both the sending and the receiving ends (if the caller and 

the target object are on different processors) so that the delay in the interconnection network affects the 

computation as little as possible. 

A pipe, like any other object, can be passed on to other objects as an argument in a procedure or 

method invocation; multiple objects and threads can send ordered asynchronous calls through the same 

pipe object. Also, there can be multiple pipe objects associated with the same target object. 

If a calling thread is to perform a sequence of ordered asynchronous calls to a receiving object, it 

must first obtain a pipe assigned to the receiving object. This can be accomplished either by accessing an 

existing pipe object assigned to the receiving object, or by creating a new pipe. To perform the sequence 

of ordered asynchronous calls, the calling thread invokes the same sequence of calls synchronously on the 

pipe object. For example, suppose two asynchronous method invocations with method names foo and 

bar are to be sent to object x:T, and the invocation for foo must occur before the invocation for bar. 

(foo and bar return values of types Ti and T2, respectively.) The following PRELUDE code accomplishes 
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this behavior: 

p: pipe[T] := pipe[T] .new(x) 

y: prornise[T1] .- p.foo(arg1, arg2, ... , argN) 

z: prolllise[T2] .- p.bar(arg1, arg2, ... , argM) 

The pipe ensures that the call to bar does not start running on x until the call to foo has completed. 

The results of the calls can be obtained by the calling thread (or some other thread that obtains the 

promises) by claiming the promises returned by the pipe calls. 

3 Mapping Annotations 

The PRELUDE language allows concurrency to be expressed independent of architecture-specific con­

straints. Annotations specify the architecture-specific implementation details that are usually necessary 

to achieve efficient execution. Previous projects have proposed particular mechanisms for mapping pro­

grams onto multiprocessors (e.g., (JHB88, CAL +sg, Ben87, Luc87, Li88, PM83, CA89, MG89]), each of 

which is appropriate for particular kinds of applications and particular kinds of machines. For a system to 

be effective, we believe that it must support a wide variety of mapping mechanisms efficiently, and must 

provide flexible support for the user to choose among the different mechanisms. Thus, PRELUDE sup­

ports a wide range of mapping techniques that have appeared individually in other systems. In addition, 

looking at example applications has made it clear that the mapping techniques that have been proposed 

so far are inadequate. In particular, existing systems support data mapping via migration, partitioning, 

and replication (including caching), and support thread mapping via remote procedure call. For some 

applications, migrating a computation is more effective than moving or replicating the data or accessing 

it via a series of remote procedure calls. Thus, the design of PRELUDE includes flexible mechanisms for 

migrating computations. We also include annotations for specifying scheduling constraints. 

Emerald [JHB88] and Amber (CAL +sg] provide mechanisms for specifying object location (locate 

object X at node Y), object migration (move object X to node Y) and object-object co-location (attach 

object X to object Z). An invocation on an object in Emerald or Amber is always executed at the 

location of the object, using remote procedure call if the object is remote. The argument objects of a 

remote invocation can also be moved to the site of the invocation by specifying call-by-move parameter 

passing. Distributed Smalltalk [Ben87], Sloop (Luc87], Ivy (Li88], DEMOS/MP [PM83], Par [CA89] and 

Comandos [MG89] have migration mechanisms similar to those in Emerald and Amber. 

In certain situations neither remote procedure call (commonly referred to as function-shipping) nor 

object migration (commonly referred to as data-shipping) is sufficient. We provide additional annotations 

for computation migration, which can be viewed as a form of continuation-passing. These annotations 
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allow us to move the execution of code from one processor to another. For example, the programmer 

might indicate that when a procedure attempts to invoke a method on a remote object, the execution 

of the procedure should be moved to the object's location (so that subsequent invocations on the same 

object become local); this corresponds in the implementation to moving the top frame on the calling 

thread's stack to the location of the called object. In general, the programmer might indicate that 

any portion of the top of the thread's stack should be moved, ranging from a part of the top frame 

(representing part but not all of the remaining computation in the currently active procedure at the top 

of the stack) to the entire stack (representing the entire remaining computation of the entire thread). 

In the rest of this section, we motivate the need for computation migration via an extended example, 

and then describe the annotations that appear in PRELUDE. The example also illustrates the benefits 

gained by allowing the mapping of a program onto a machine to be changed easily without affecting 

the functionality of the program. In the next section, we describe the implementation of the mapping 

mechanisms. 

3.1 An Example: Continuation Passing 

We illustrate our mechanisms with a program to implement a concurrent B-tree, an important data 

structure in high-throughput database systems. The goal of our mechanisms is to allow programmers 

to write programs in a "shared-memory" programming style (or whatever style makes it easiest to 

understand the programs) regardless of the physical machine's actual memory model. The resulting 

programs can then be mapped onto machines so that the performance of the program is comparable to 

programs with explicit message-passing constructs. 

The most efficient concurrent B-tree algorithms known are based on the "link technique,'' which was 

introduced by Lehman and Yao [LY81). The underlying data structure in the link technique is similar 

to a B+-tree (in which the actual data is stored only in the leaves of the tree), with the modification 

that each B-tree node contains a pointer to its right neighbor in the tree. In other words, all the nodes 

at a given level of the tree are linked together from left to right. The links act as "forwarding pointers," 

and allow processes traversing down the tree from root to leaf to lock only one node at a time. 

The PRELUDE code in Figure 1 shows the outline of an implementation of a B-tree class. The 

representation of a BTree is specified by the anchor; it contains a reference to the root node. The class 

method new creates a new BTree instance. Four instance methods are provided for each class instance. 

The instance method locate is private (and thus is hidden within the scope of the class definition), 

while the three instance methods insert, delete and lookup are exported. 

Wang has extended the Lehman-Yao algorithm so that a process propagating a merge (as well as a 

split) up the tree locks only one or two nodes at a time [Wan91, WW90). Operations in Wang's algorithm 
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BTree = class % link method B-tree 

slots anchor: Anchor end % a reference to the root of the tree 

class exports new 

new() returns (BTree) 
% class method to create BTree instances 

end new 
end 

instance exports insert, delete, lookup 

insert(k: Key, d: Data) 
% adds new (Key,Data) pair to the tree 

s: Stack[Node] := locate(k) 
% update leaf and propagate split if necessary 

end insert 

delete(k: Key) 
% remove entry for Key k and propagate merge if necessary 

end delete 

lookup(k: Key) returns (Data) 
% returns the Data associated with k 

end lookup 

% private instance method 

locate(k: Key) returns (Stack[Node]) 
% implemented in Figure 2 

end locate 
end 

end BTree 

Figure 1: The BTree class. 

can be divided into three phases: the locate phase, which finds the appropriate leaf on which to execute 

the operation; the decisive phase, which performs the actual operation on the leaf found in the locate 

phase; and the update phase, which propagates any updates to the structure up the tree as needed. The 

algorithm uses read-write locks on individual nodes to synchronize concurrent operations. The locate 
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phase (implemented by the private instance method locate) for an insert or delete method finds, 

write-locks, and returns the appropriate leaf as the top element on a stack of the nodes visited at each 

level; it is described by the PRELUDE code in Figure 2. In this code the child method of the class Node 

returns the appropriate child of the Node instance, while the right..neighbor method returns the right 

neighbor. The covers method returns true if and only if the range of keys stored in the subtree rooted 

at the Node instance includes its argument. 

locate(k: Key) returns (Stack[Node]) 
n, next : Node 
s : Stack[Node] := Stack[Node].empty() 

% access root node 
anchor.read_lock() 
n := anchor.root() 
anchor.read_unlock() 

% descend to leaf level 
n.read_lock() 
while -n. is_leaf () do 

if n.covers(k) 
then next := n.child(k) 

s.push(n) 
else next := n.right_neighbor() 

end 
n.read_unlock() 
n := next 
n.read_lock() 

end 

% find and write-lock appropriate leaf 
n.read_unlock() 
n. write_lock() 
while -n. covers(k) do 

next := n.right_neighbor() 
n.write_unlock() 
n := next 
n. write_lock() 

end 
s.push(n) 
return(s) 

end locate 

Figure 2: locate method. 

The locate method traverses the tree using read-locks, following links to children and to right 

neighbors until it reaches a leaf; it then uses write-locks and follows right-links until it finds the leaf 
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responsible for storing the desired key. The stack of nodes constructed in locate is used to propagate 

updates back up the tree during the update phase. The locate phase for the lookup operation is similar, 

except that it read-locks the leaf, and does not keep track of the nodes visited at each level. 

One way of achieving high throughput for a concurrent B-tree is to store different nodes of the B-tree 

on different processors. To avoid a bottleneck at the root of the tree, it may be necessary to replicate 

the root node on several processors (a replicated object). Mapping the data structure in this way allows 

operations on different nodes to run concurrently, and also allows operations on the same node to run 

concurrently if the node is replicated and the operations only use read-locks. {Algorithms using the link 

technique are designed to use write-locks infrequently, so replication is likely to be effective, particularly 

for nodes near the root of the tree.) 

Given this mapping of the tree's data structure onto a machine, how should a process executing an 

operation be mapped onto processors? For the code shown above for the locate phase of an insert 

operation, we could choose to run the operation on a single processor, and execute each synchronous 

invocation of a method as a remote procedure call (RPC) to the processor that stores the appropri­

ate node (commonly referred to as function-shipping). For example, the invocations of the read_lock, 

read_unlock, and child methods could be RPCs. Systems such as Emerald [JHB88] allow the pro­

grammer to choose between this alternative and fetching the data, i.e., moving the B-tree node object 

temporarily to the processor executing the B-tree operation (commonly referred to as data-shipping). 

Neither function-shipping nor data-shipping, however, leads to very good performance. Using function­

shipping, the number of messages is very high. For example, the locate method shown above makes at 

least five invocations to access an interior node of the tree. Each invocation will require two messages, 

giving a total of at least ten messages per node accessed. Using data-shipping, the number of messages 

could be as few as three per node accessed: two to fetch the node on the first access, and one to send the 

node back to the processor that stores it after the last access. However, the amount of data sent in the 

messages will be high, since the entire contents of each node must be transferred between processors. 

We could rewrite the program above to reduce the number of messages using function-shipping to 

two per node accessed. For example, we could rewrite locate to invoke a new method find_successor, 

shown in Figure 3, that returns the appropriate successor. If find_successor is invoked using RPC, we 

need only two messages for each interior node accessed. Similar restructuring can reduce the number of 

messages required to access the anchor and each leaf node to two. 

Introducing additional methods and procedures that are called using RPC can improve performance, 

but has several problems: the resulting program will often be less clear than the original; the trans­

formations appropriate for one machine may be inappropriate for another; and RPC may require more 

communication than necessary. 
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find_successor(k: Key) returns (Node) signals (leaf) 
next : Node 

self. read_lock () 
if self. is_leaf () then signal leaf end 
if self. covers (k) 

then next := self.child(k) 
else next : = self. right_neighbor() 

end 
self.read_unlock() 
return(next) 

end find_successor 

Figure 3: find_successor method. 
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The code for the B-tree operations could be rewritten to use a "continuation-passing" style of com­

munication so that only one message is required for each node accessed, half as many messages as are 

required by the program in Figure 3. The idea is to send a message to the processor that stores a node 

when the node is first accessed; that message is processed by calling find_successor, and then sending 

a message to the processor that stores the node returned by find__successor. The messages contain 

the node to be accessed, the key involved, and the node just accessed. The relationship between this 

message-passing program and the relatively simple program in Figure 2 can be understood by viewing 

each message as a "continuation" for the locate procedure. After a processor has executed the part of 

the locate procedure involved in accessing a B-tree node stored on that processor, it sends a message 

asking the processor that stores the next node to execute the "rest" of the procedure. The job of exe­

cuting the procedure is handed from one processor to another until the appropriate leaf node is found, 

at which point the operation is executed and a message containing the result is sent back to the original 

caller. 

Programs written in this kind of "continuation-passing" style can be very efficient on distributed­

memory machines. Indeed, many proponents of Actor-based languages advocate programming in this 

style, in part to reduce the amount of communication required [Agh86]. However, such programs are 

usually complex and hard to understand. In addition, they are less efficient on shared-memory machines 

than programs that use ordinary procedure calls. 

PRELUDE allows a programmer to write a single program that naturally expresses an algorithm and 

then to choose how to map it onto a machine by writing annotations that indicate how data and threads 

should be located and moved. Thus, the programmer can easily change the mapping simply by changing 

the annotations, and can easily experiment with different mappings to determine which gives the best 

performance. For example, to map the concurrent B-tree program described above onto a distributed-
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memory using machine using continuation-passing style messages, a move annotation can added to the 

code of Figure 2 as follows: 

locate(k: Key) returns (Stack[Node]) move 

The move annotation instructs the PRELUDE system that each call in the body of the locate method 

should be called by passing a continuation. A call within the method is compiled so that the call is 

executed using ordinary stack-based mechanisms when it is on the same processor as the caller. When 

it is on another processor, however, the system constructs a message containing the top frame of the 

local stack and sends it to the processor to run the call. When the called method completes, the locate 

method continues running on that processor. 

3.2 Annotations in PRELUDE 

The ability to express continuation-passing in PRELUDE through simple annotations promotes portable 

programming styles. In other object-oriented languages the movement of computation would have to be 

explicitly encoded in the methods; at every point where a continuation should be passed, a new method 

must be written to represent the continuation. In addition to the move annotation, PRELUDE provides 

annotations for controlling parameter passing, resource management and the movement and placement 

of objects. In this section, we describe other PRELUDE annotations. 

3.2.1 Computation Migration 

Our current prototype supports migration of single stack frames, representing the remaining computation 

of the currently active routine in a thread. Single-frame migration is accomplished by attaching a move 

annotation to the header of a routine or to individual calls in the body of the routine. Attaching the 

annotation to a particular call indicates that if the call involves a remote object at runtime, the frame 

for the routine should be moved to the location of the remote object. Attaching the annotation to the 

header of a routine, as in the B-tree example above, is equivalent to attaching it to every invocation in 

the body of the routine; it indicates that any call in the body of the routine to a method on a remote 

object should move the routine's stack frame to the location of the remote object. 

In addition to single-frame migration, we are also designing mechanisms and annotations to support 

migration of partial and multiple frames. This will give the programmer significantly more flexible 

control over the mapping of the computation represented by logical threads in a program onto physical 

threads and messages in a machine. 
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3.2.2 Object Migration 

We provide several kinds of annotations to control the location and movement of objects. First, the 

migration of arguments to invocations can be controlled via annotations. In an object-oriented system 

the natural parameter-passing method is call-by-object-reference [LG86, GR83). In a message-passing 

architecture such semantics can potentially cause additional remote invocations for parameter access. 

However, PRELUDE objects are mobile. Therefore, additional remote references can be avoided by moving 

argument objects to the site of the remote invocation. Whether this is worthwhile depends upon the 

argument object size, the number of invocations of the arguments required, and the costs of mobility and 

local invocation. Annotations similar to those in Emerald may be used to specify call-by-move parameter 

passing. In this case the parameter object is migrated to the site of the remote invocation. 

In addition to call-by-move parameter passing we also provide annotations to describe the movement 

and placement of objects. Objects can be initially located at a given processor and later moved to other 

processors. We can also specify object-object co-location using the move to annotation. If X and Y are 

objects then move X to Y results in object X being moved to the same processor as object Y. 

We are currently exploring additional annotations, based on ideas in the Munin system [BCZ90) and 

on directives for data placement in Fortran D [F+9Q), to provide control over replication and partitioning 

of data. We plan to experiment with these kinds of annotations to understand how they interact with 

annotations for controlling the migration of objects and computations, and then to build a prototype to 

explore the problems involved in constructing an integrated system that supports all of these mechanisms 

efficiently. 

3.2.3 Resource Management 

In order to develop high-performance concurrent applications, programmers must be able to exert control 

over resource-management at the application level. We are developing new dynamic resource manage­

ment mechanisms for a variety of parallel program structures on both shared-memory and distributed­

memory multiprocessors. 

Our resource management framework is based on a new abstract priority mechanism that encapsu­

lates resource rights. This is related to earlier work with allocation mechanisms that was motivated by 

microeconomics [WHH+92]. It is coupled with a stable, scalable, hierarchical propagation mechanism 

that efficiently disseminates information about resource usage and availability. Together, these mech­

anisms provide an efficient substrate that supports both load balancing and programs that adaptively 

vary their granularity based on application loads and machine configurations. For example, a task's 

priority, together with information about loads on various processing resources, can be used by a task 

management package to make dynamic cost-benefit decisions about whether to fork a subtask or run 
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it inline. The same information can also be used to decide where tasks should be created and exe­

cuted. Annotations are used to express the priority of tasks to enable the runtime system to make the 

cost-benefit decisions. 

3.3 Summary 

A useful system for mapping parallel programs onto parallel machines should provide the program­

mer with a comprehensive suite of mapping mechanisms. PRELUDE has been designed to integrate 

mechanisms provided individually in previous systems. In addition, we have designed new mechanisms 

for controlling the migration of computations. As illustrated by the B-tree example above, these new 

mechanisms give the programmer important additional expressive power. We are experimenting with 

our prototype implementation to evaluate the effectiveness of this suite of mapping mechanisms and to 

understand what additional mechanisms or changes to these mechanisms are needed. 

4 Implementation 

In this section we discuss the implementation of the annotations and mapping mechanisms described 

above. We begin by outlining our current implementation of single-frame migration for computations. 

Then we discuss our implementation of object migration, which uses a novel approach based on fixup 

blocks to achieve better performance than previous approaches. Finally, we discuss the implementation 

of pipes, and in particular how it interacts with object migration. 

4.1 Computation Migration 

Our current implementation of the PRELUDE compiler, which is targeted to the PROTEUS simulator, 

generates C code. As a result, we do not have control over the generated assembly code. Therefore, we 

treat continuation-passing as an intermediate-language transformation, where we simply create a new 

method that encap;ulates the continuation. Although this is not as efficient (particularly in terms of the 

size of the generated code) as implementing continuation-passing at a lower level, it allows us to explore 

the benefits of different continuation-passing annotations. 

For a given continuation-passing invocation, we compute the live variables at the invocation; we 

generate a new method that takes these variables as arguments and represents the execution of the 

rest of the stack frame. At the point of call, the new method is called if the called object is non-local; 

otherwise, execution continues locally. Later versions of the PRELUDE compiler will generate assembly 

language directly. We will then implement continuation-passing by sending the relevant portions of the 
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stack frame and the program counter, which should lead to improved performance and smaller object 

code. 

To date we have implemented migration of single stack frames. However, the programmer may wish 

to migrate multiple or partial stack frames. For example, in the B-tree implementation the leaf node 

returned by the locate method will have an update method applied to it (either insert or delete). 

It may be beneficial to migrate the top two frames on the stack; that for the locate method and that 

for the update method. We are currently designing annotations and the compiler mechanisms needed to 

implement migration of partial and multiple frames. 

4.2 Object Migration 

Object migration provides a mechanism to improve performance by improving load balance and re­

ducing communication costs. Migration mechanisms are traditionally expensive and usually reduce the 

performance of threads even when they do not migrate. In PRELUDE, we follow the philosophy used in 

Emerald [JHB88]: the ability to migrate should have little or no effect on the performance of threads 

that do not migrate. 

Object migration mechanisms fall into two classes: those that depend on location independence 

of names, and those that translate location-dependent names during migration. Location-independent 

naming essentially requires a global naming scheme, either through a global address space [CAL+ 89, Li88] 

or though higher-level naming mechanisms, which use some form of indirection [PM83, MG89]. On 

architectures with shared memory, PRELUDE can exploit the global address space to avoid translation. 

For architectures without a global address space, PRELUDE must use either a high-level naming scheme 

or translate names during migration. We have chosen the latter, since even though translation increases 

the cost of migration and message-passing, it significantly improves the performance of threads that 

access local data [JHB88]. 

Translation of addresses in objects is straightforward in PRELUDE; the translation of addresses in 

thread stacks is more challenging. A stack may have frames from several different objects; thus, stack 

migration in PRELUDE is designed around the migration of individual frames, and a single stack may 

be spread across several processors. We use stub frames to handle transitions between processors. The 

stub frames use messages to move arguments and return values between processors. 

A useful invariant for performance is the assumption that an executing frame and the object whose 

method it represents always reside on the same processor. This allows methods to access the object's 

data directly using pointers, which increases performance. During migration (across processors), these 

pointers must be found and translated. We are also investigating an alternative technique for the case of 

large objects, where co-location may be expensive. This relies upon the introduction of invalid addresses 
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for migrated instance variable references and corresponding traps that perform remote accesses. 

A second invariant is that objects only migrate when all of their active methods are at migration 

points. This allows a method to assume that its object will not migrate between migration points, which 

leads to higher performance. Migration points are generally associated with invocation boundaries, so 

methods must check for migration upon return from an invocation. 

To avoid the migration checks at migration points, we have developed a novel approach based on a 

mechanism called a fixup block. A fixup block is a short piece of code (generated by the compiler) that 

performs the translation for a particular frame; every migration point has a corresponding fixup block. 

After an object migrates, its active methods, which must be at migration points, resume execution in the 

fixup block instead of at the instruction following the migration point. The block performs any needed 

translations and then jumps to the instruction following the migration point. Thus, the migration check 

is avoided except when an object migrates. Note that fixup blocks are generated automatically and are 

completely hidden from the user. 

To use fixup blocks to translate addresses when objects migrate, we need to be able to find the active 

methods for a migrating object when the object migrates, so that the return program counters can be 

set to point to the appropriate fixup blocks. There are (at least) two ways to find the active methods: 

scan the stacks of all threads, or keep track of the threads (and stack frames) with active methods in 

each object. Keeping track of the active methods imposes a significant cost even when objects do not 

migrate, which violates our design goals. Scanning the stacks at migration time imposes a cost only 

when an object migrates, but the cost could be significant (proportional to the total number of frames 

on all stacks). 

The following technique allows the stacks to be scanned for active methods more lazily. This spreads 

the cost out over subsequent computation that occurs after the migration, rather than incurring it all 

when the migration occurs. In addition, it allows the cost of scanning the stacks to be amortized over 

several migrations; if another object migrates before the stack scans have been completed, the unscanned 

frames will only be scanned once even though more than one object has migrated. The idea is to change 

the top frame on each stack so it resumes at its fixup block; after performing any necessary translations, 

that fixup block changes the return program counter for the previous frame on the stack so it will resume 

at its fixup block when the top frame returns. The cost when an object migrates is proportional to the 

number of threads, not the total number of stack frames, and if several objects migrate before a frame 

is scanned, the frame will be translated only once. 
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4.3 Pipes 

This section describes our implementation of pipe objects. A pipe is made up of two objects, a head 

and a tail. Typically the head of a pipe will be located on the same processor as the thread making 

calls on the pipe, and the tail will be located on the same processor as the target object of the pipe. (If 

either the calling thread or the target object migrates, the corresponding end of the pipe should also be 

moved.) The head and tail objects both contain queues of pending invocations; buffering invocations 

at both ends of the pipe allows the communication delay of the interconnection network to be largely 

hidden from the computations using the pipe. 

To preserve the order of the invocations sent from the head to the tail we adopt one of two approaches 

depending upon the underlying network architecture. In networks that do not preserve message order we 

simply use sequence numbers in the messages for the invocations. In networks where the message order 

between processors is maintained, we can avoid the sequence numbers and the associated overhead of 

maintaining them and checking them. This is done as follows. As long as neither the head nor the tail of 

a pipe migrates, invocations can be streamed from the head to the tail and enqueued at the tail as they 

are received, and order will be preserved. If the head migrates, we send a special marker message from 

the old head to the tail after the last message; the tail waits until the marker has been received before 

accepting messages from the new head. Similarly, if the tail migrates, the old tail forwards messages 

received from the head to the new tail, and informs the head that the tail has migrated. The head 

then sends a marker to the old tail and starts sending messages to the new tail, which delays accepting 

messages from the head until the marker is forwarded from the old tail. 

5 Support for Prototyping 

Critical to the success of PRELUDE as a vehicle for studying languages and runtime systems is the ability 

to experiment on a wide variety of MIMD architectures. To facilitate such experiments we have built 

a retargetable simulator, PROTEUS [Del91, Bre91, BDCW91], that simulates MIMD architectures and 

provides support for sophisticated data collection and display. 

PROTEUS simulates MIMD multiprocessors in which independent processor nodes are connected via 

an interconnection medium. The interconnection medium can be either a bus, a direct network such as 

a k-ary n-cube, or an indirect network such as a butterfly. Each processor node consists of a processor, 

a network module, a cache module, and memory. Conceptually, the processor is a generic sequential 

processor extended with instructions for network access and cache coherence. The network module 

interfaces the processor with the interconnection medium. The cache module, which is optional, handles 

cache coherence and works with the network module for remote memory accesses. 
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The modules can be refined or replaced to provide more accurate simulation of a particular archi­

tecture. It is also useful to have multiple implementations of a module that provide different perfor­

mance/ accuracy tradeoffs. For example, for k-ary n-cubes, we use two implementations: one that is very 

accurate and simulates each packet hop by hop, and a second that uses an analytical model to compute 

the arrival time at the target. Although the model version is clearly less accurate, it is also an order of 

magnitude faster. When network accuracy is less important, such as during development, we use the 

model version to exploit the higher performance. 

PROTEUS applications and modules are written in an extended version of C. Thus, our runtime 

system is written in C and the PRELUDE compiler generates C as its output. We then link the PROTEUS 

engine, the runtime system, and the compiled PRELUDE application into an executable that simulates 

the application on the specified architecture. The compiler and runtime system are designed so that 

they should be relatively easy to port to a machine with a C compiler; we plan to port them to nCUBE 

and Intel machines in the near future. 

Since the combination of PRELUDE and PROTEUS is intended as a base for studying language and 

runtime-system issues, extensive support for debugging and monitoring is an important requirement. 

PROTEUS provides nonintrusive monitoring and debugging: users can add monitoring code that does 

not affect the behavior or timing of the simulation. It also provides repeatability: users can rerun 

simulations to pinpoint bugs. Real multiprocessors generally provide neither of these abilities. 

Nonintrusive monitoring, combined with repeatability, greatly simplifies the development of concur­

rent programs. Real multiprocessor systems suffer from the probe effect: the addition of monitoring 

code may cause the monitored effect to disappear [Gai86]. This prevents programmers from collecting 

additional data for debugging. PROTEUS allows users to add arbitrary monitoring or debugging code 

without changing the behavior of the simulation. 

N onintrusive monitoring is only useful if the platform ensures repeatability: the whole point of nonin­

trusive monitoring is to allow repeatability in the presence of additional code. Nondeterministic systems, 

such as multiprocessors, rarely provide any form of repeatability; some bugs may occur only once every 

thousand (or more) executions, which makes it nearly impossible to track them down. Repeatability is 

perhaps the single most important feature of PROTEUS; its presence provides a debugging environment 

that is generally not available on real multiprocessors. 

The PRELUDE/PROTEUS combination has been designed to work well with sequential debuggers. 

This extends the power of advanced sequential debuggers to the parallel development arena. Further­

more, PROTEUS provides an internal debugging mode that allows users to examine the state of threads, 

processors, locks, and memory. Using a sequential debugger such as dbx [Lin90] together with PROTEUS 

results in a very effective development environment. 
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While we designed PROTEUS initially as a substrate for experimenting with prototype language, 

compiler, and runtime system mechanisms, it has become clear that a simulator such as PROTEUS 

can also be a useful tool for developing parallel applications. The monitoring capabilities provided by 

PROTEUS can make debugging and initial performance tuning significantly easier than on a real machine. 

Also, PROTEUS can be run on uniprocessor workstations so that the time required on expensive and 

scarce multiprocessors is less. In addition, the ability of an application program to scale to large machine 

sizes (perhaps beyond the range provided by available machines) or to be ported effectively to a range 

of machines can be investigated fairly easily. 

6 Conclusions 

The current PRELUDE implementation supports only single-frame migration for computations. We 

are currently designing and implementing mechanisms and annotations for multiple- and partial-frame 

migration. In addition, we are studying how to add annotations for data replication and partitioning, 

based on ideas in Munin [BCZ90] and in Fortran D [F+9Q]. 

The implementation of object migration in PRELUDE uses a novel approach based on fixup blocks. 

Fixup blocks eliminate the need to check at each migration point whether an object has migrated. 

Instead, at migration time the stack for each thread is modified so that frames resume at a fixup 

block, which does the appropriate checks and address translations. A further optimization allows the 

modifications to the stacks to be spread out over time as each frame returns to its caller, which reduces 

the cost per migration as the frequency of migrations increases. 

PRELUDE is currently implemented on top of PROTEUS, a configurable simulator that provides both 

fast and accurate simulations of a wide range of MIMD architectures. PROTEUS itself is a useful tool 

for developing parallel applications, since it provides powerful non-intrusive debugging and performance 

monitoring capabilities that are difficult or impossible to obtain on a real machine. Much of the testing, 

debugging, and initial testing of an application can be accomplished using PROTEUS, typically with less 

effort than would be required on a real machine. In addition, PROTEUS allows the programmer to test 

the scalability and portability of a program, including a range of machine sizes and architectures not 

supported by available machines. We are using PROTEUS to develop our initial prototype of PRELUDE, 

and plan to port the implementation of PRELUDE to commercial and research multiprocessors in the 

near future. We have also used PROTEUS for a number of algorithmic and architectural studies. 

PRELUDE allows the programmer to write programs using an abstract model of computation that is 

independent of any particular underlying architecture. A program can then be mapped onto a particular 

machine by attaching annotations to it that describe the mapping. Our goal in PRELUDE is to provide 
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a comprehensive suite of mapping mechanisms that give the programmer sufficient power to implement 

a wide range of parallel programs efficiently on a wide variety of MIMD architectures. To this end, 

we have included many mapping mechanisms that have appeared in other systems, including remote 

procedure call, object migration, and data replication and partitioning. In addition, however, PRELUDE 

include novel migration mechanisms for computations based on a form of continuation passing. We 

are experimenting with our current implementation to evaluate the effectiveness of our current suite of 

mapping mechanisms and to understand what other mechanisms or changes to our current mechanisms 

are needed. 
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