
rt§L#LL!L, . .. J ·· ·1 . &W9 -"'14U.t; LU.US.JAJI . t 1XJ!9'1l,4l(fa(L .. ,J!\4UJUJ!iLA@Ui.Ai1UIUJ#S:AJl ... #ZUJJR¢k LJlllll

i

'

··~::'.

i
Ii.\
1<-

i ~
I
I

I:. ,,
!

!

~• .
.

.

i .::
I

/ '.

I
i
I
i
I

!

,..

~t9tl

PRELUDE: A System for Portable Parallel
Software

by

William Weihl Eric Brewer Adrian Colbrook
Chrysanthos Dellarocas Wilson Hsieh Anthony Joseph

Carl Waldspurger Paul Wang

October 1991

Abstract

In this paper v1e describe PRELUDE, a programming language and accompanying system support for
writing portable MIMD parallel programs. PRELUDE supports a methodology for designing and orga­
nizing parallel programs that makes them easier to tune for particular architectures and to port to new
architectures. It builds on earlier work on Emerald, Amber, and various Fortran extensions to allow
the programmer to divide programs into architecture-dependent and architecture-independent parts,
and then to change the architecture-dependent parts to port the program to a new machine or to tune
its performance on a single machine. The architecture-dependent parts of a program are specified by
annotations that describe the mapping of a program onto a machine. PRELUDE provides a variety of
mapping mechanisms similar to those in other systems, including remote procedure call, object migra­
tion, and data replication and partitioning. In addition, PRELUDE includes novel migration mechanisms
for computations based on a form of continuation passing. The implementation of object migration in
PRELUDE uses a novel approach based on fixup blocks that is more efficient than previous approaches,
and amortizes the cost of each migration so that the cost per migration drops as the frequency of mi­
grations increases.

The current implementation of PRELUDE is built on top of PROTEUS, a configurable simulator that
provides both fast and accurate simulations of a wide range of MIMD architectures. PROTEUS itself is
a useful tool for developing parallel applications, since it provides powerful non-intrusive debugging and
performance monitoring capabilities that are difficult or impossible to obtain on a real machine. Much
of the testing, debugging, and initial testing of an application can be accomplished using PROTEUS,

typically with less effort than would be required on a real machine. In addition, PROTEUS allows the
programmer to test the scalability and portability of a program, including on a range of machine sizes
and architectures not supported by available machines. We are using PROTEUS to develop our initial
prototype of PRELUDE, and plan to port the implementation of PRELUDE to commercial and research
multiprocessors in the near future.

Keywords: Portability, Performance tuning, Annotations, Computation migration, Data migration.

© Massachusetts Institute of Technology 1991

This work was supported by the National Science Foundation under grant CCR-8716884, by the Defense
Advanced Research Projects Agency (DARPA) under Contract N00014-89-J-1988 and by an equipment
grant from Digital Equipment Corporation. Individual authors were supported by an Office of Naval
Research Graduate Fellowship, a Science and Engineering Research Council Postdoctoral Fellowship, Na­
tional Science Foundation Graduate Fellowships, an IBM Graduate Fellowship and an AT&T Graduate
Fellowship.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

2 1 INTRODUCTION

1 Introduction

A number of MIMD multiprocessors are now commercially available, and new large-scale machines are

being developed. Given the variety of architectures and the cost of developing large programs, there is

a clear need for support for writing high-performance programs that are portable and scalable across a

broad range of MIMD architectures. Even on a single multiprocessor machine, better support is needed

for writing parallel programs that are both correct and efficient.

In this paper we describe PRELUDE, a programming language and accompanying system support

for writing portable MIMD programs. PRELUDE supports a methodology for designing and organizing

parallel programs that makes them easier to tune for a particular architecture or to port to a new

architecture. Ultimately, we expect to integrate the mechanisms we are developing into parallel versions

of existing languages such as C and Fortran. As part of this project, we are also developing debugging

and performance monitoring tools to help the programmer debug and tune programs; these are also

described briefly in this paper.

Multiprocessors differ in a number of characteristics that affect the performance of parallel programs,

including the relative costs of communication, computation, and synchronization; the number of pro­

cessors; the network topology; and the support provided for shared memory. The problem in achieving

reasonable portability is to allow a single program to be mapped onto many different machines without

requiring the programmer to make significant changes to the program for each machine.

Portability is related to the problem of performance tuning. The performance of a program on a

particular machine can depend on many details of the machine, and can be difficult to predict. Thus,

significant tuning may be required to achieve good performance. The mechanisms we propose allow the

programmer to separate the description of the computation to be performed by a program from the

description of how that computation is to be mapped onto a machine, thus making it easier to tune

the performance of a program on a particular machine. This also simplifies porting a program to new

architectures. As described in more detail below, our mechanisms integrate and extend the mapping

mechanisms proposed in previous systems. Our goal is to provide a comprehensive suite of mapping

mechanisms that together give the programmer the flexibility and control needed to map programs

efficiently onto particular machines.

Efficiently mapping a program onto a machine involves choosing an appropriate grain size for tasks;

determining where to place tasks and data; determining when and where to migrate tasks and data;

scheduling tasks; managing communication among tasks; and determining how to cache, replicate and

partition data structures. In a distributed-memory message-passing machine, decisions about the place­

ment of data and tasks have a strong impact on the amount of communication required to run a program.

Since the cost of sending a message in such machines is typically significantly greater than the cost of

3

accessing local memory, placement decisions can make a large difference in the performance of a program.

This is also true in a shared-memory system; a poor job of placement for tasks can result in a large

number of cache misses, which also reduces performance.

Existing approaches to managing these issues fall into three classes: those that provide direct, low­

level control; those that completely relegate decisions to the compiler and runtime system; and those that

allow the programmer to provide directives to the compiler and runtime system, but leave the details

of decomposing data structures and tasks to the compiler and runtime system. The first approach is

extremely difficult to use, and leads to programs that are difficult to port, precisely because so many

architecture-specific decisions are encoded in the program. The second approach is easy to use, but its

application to date has been limited to relatively small programs with regular communication patterns,

task sizes, and data structures. For numerical programs with irregular data sets and for symbolic

programs, purely automatic approaches have not worked well. As a result, we believe that the third

approach is the most promising.

PRELUDE provides the programmer with a computational model based on objects and threads that

abstracts away from the underlying architecture, together with high-level annotations that allow the

programmer to control the mapping of a program onto a particular machine. Concurrency is expressed

explicitly in PRELUDE, and the programmer is encouraged to write programs with as much concurrency as

possible. The PRELUDE compiler and runtime system then generate an appropriate number of physical

threads for the program to run efficiently on a particular machine. The annotations attached to the

program are used to describe and control the performance of the program, not its functionality. For

example, annotations can be used to control the migration of objects and computation between processors

in distributed memory architectures; such migration can yield a significant reduction in message traffic,

with a resulting improvement in program performance. Since annotations affect performance but not

functionality, the annotations attached to a program can be freely changed without introducing errors

into the program; this makes it easy to experiment with different mappings to determine which provides

the best performance. This separation of architecture-specific performance-related concerns from the

rest of a PRELUDE program makes it relatively easy to port a program, or to tune its performance.

The PRELUDE runtime system incorporates novel mechanisms for migrating data and computation

in a distributed-memory multiprocessor. We also incorporate flexible mappings of the logical program

threads onto the actual physical threads to produce efficient message passing. Existing systems have

provided reasonable flexibility in mapping data onto parallel machines (via partitioning, replication, and

migration), but have provided only simple mechanisms such as remote procedure calls for mapping logical

threads. As described in more detail in Section 4, PRELUDE is designed to provide flexible control over

the migration of computation, which allows a logical thread to be mapped onto a number of different

4 2 THE PRELUDE LANGUAGE

physical threads as the computation represented by the logical thread migrates around the machine.

In addition, the runtime system supports domain-specific scheduling and load balancing mechanisms

that allow the granularity and distribution of tasks to be chosen adaptively at run time based on the

characteristics of the architecture and the application load.

Parallel programs are difficult to test, debug, and tune. To accompany PRELUDE, we have built

a retargetable simulator, PROTEUS, that provides extremely efficient instruction-level simulation for a

wide range of MIMD multiprocessors. Because of its efficiency, accuracy and flexibility, PROTEUS has

shown itself to be a useful tool for prototyping, testing, and tuning parallel programs. We have built

prototypes of the PRELUDE compiler and runtime system using PROTEUS to evaluate the efficiency of

our mechanisms for a variety of MIMD configurations.

In Section 2 of this paper we describe the PRELUDE language. In Section 3 we describe how the

annotations supported by PRELUDE provide flexible control over the mapping of a program onto a

particular machine, and in Section 4 we discuss the techniques we have developed for implementing the

mappings described by the annotations. In Section 5 we describe PROTEUS and its support for language

development and prototyping. Finally, in Section 6 we conclude with a discussion of the current status

of the project and our plans for future work.

2 The PRELUDE Language

PRELUDE is a statically typed, class-based, object-oriented language with linguistic support for parallel

computing. It is lexically scoped and statement based. PRELUDE'S computational model is based on

two concepts: objects and threads. Objects contain state and reside in the heap. Each thread maintains

a stack and performs sequential computation. Threads can access and modify existing objects, create

new objects, and fork new threads. Mechanisms are provided to allow threads to communicate and

synchronize.

A PRELUDE object can be single-threaded or multi-threaded. A multi-threaded object can have

multiple active threads performing method invocations on it; a single-threaded object can support only

one such thread at a time. Some systems, particularly those based on Actors [Agh86], support only

single-threaded objects. We believe that multi-threaded objects are natural and efficient to use in

many programs, and that to provide adequate generality and expressive power the system should not

restrict the programmer to using single-threaded objects, which forces him to use complex and awkward

program structures to achieve the benefits of multi-threaded objects. At the same time, when the

programmer intends an object to be single-threaded, the source program is simpler if he does not have

to code the required synchronization explicitly using locks; in addition, the required synchronization and

2.1 Asynchronous Invocations 5

scheduling can be implemented more efficiently if the compiler and runtime system know that the object

is single-threaded. Thus, we allow the programmer to indicate explicitly as part of a class definition

that the class's objects are single-threaded; the compiler then automatically generates the necessary

synchronization code.

PRELUDE supports the following constructs for thread creation (variants of the parfor, parbe­

gin and fork constructs have been introduced by other languages including PCF Fortran [For90],

BLAZE [MvR87], Occam [Lim84] and SISAL [MSA +85]):

• The parallel parfor construct is syntactically similar to a sequential for loop. However, each

iteration specified by the parfor loop is executed by a newly created thread in parallel with the

other iterations.

• The parbegin construct specifies a set of sequential code blocks; newly created threads execute

these blocks in parallel with each other.

• The fork construct is used to specify asynchronous invocations of methods and procedures. Asyn­

chronous invocation is described in Section 2.1.

• The pipe construct, described in detail in Section 2.1, is used for ordered asynchronous invocations,

which run in parallel with the calling thread but are run in the order in which the invocations were

made by the caller.

For the parfor, parbegin and fork constructs, PRELUDE supports two types of thread creation: must

and maybe. In must creation, the new thread (or threads) is necessary to ensure correctness; an example

of must creation is an asynchronous call that may deadlock if a separate thread is not forked to perform

the invocation. In maybe creation, the new thread may improve performance, but does not affect

correctness. In PRELUDE, the default is maybe creation. The keyword must is used if creation is

required.

2.1 Asynchronous Invocations

PRELUDE provides three types of invocations: synchronous, unordered asynchronous, and ordered asyn­

chronous. In a synchronous invocation, the calling thread performs the invocation. Unlike synchronous

invocations, an asynchronous invocation conceptually forks a new thread to perform the invocation. The

calling thread does not necessarily wait for the invocation to finish. There are two kinds of asynchronous

calls: unordered and ordered.

Unordered asynchronous invocations avoid the software overhead required to maintain order and are

therefore simpler and faster than ordered invocations. However, unordered invocations often result in

6 2 THE PRELUDE LANGUAGE

programs that are difficult to understand and contain subtle race conditions. In many situations a thread

can run concurrently with a sequence of calls it makes but these calls must be executed sequentially.

Synchronization to achieve this effect can be coded explicitly in the application program, but this leads

to complex and less efficient programs. A mechanism for ordered asynchronous calls leads to programs

that are both simpler to understand and more efficient than ones in which the ordering is enforced by

application-level synchronization. We introduce a new mechanism, pipe objects, to support ordered

asynchronous calls.

2.1.1 Unordered Asynchronous Calls

In an unordered asynchronous call, a new thread is forked without any extra synchronization with other

threads. Therefore, a thread making a sequence of unordered asynchronous calls to the same receiver

object cannot make any assumptions about the order in which the calls are processed. PRELUDE denotes

unordered asynchronous calls by preceding the invocations with the fork keyword. The invocation

returns a promise.

The parameterized class promise [T] refers to a promise for an object of type T. Promises (LS88] are

similar to futures in MultiLisp (Hal85], except that the value of a promise must be explicitly extracted.

(Promises were designed as part of extensions to Argus (LDH+87] for incorporating asynchronous re­

mote procedure calls, as implemented in the Mercury project [LBG+88].) A promise is created by an

asynchronous call. For example, an asynchronous call to a procedure that normally returns a type T

returns the type promise [T] .

A promise, unlike a future, must be claimed explicitly. For a promise[T], the method claim()

returns(T) returns the value of the promise, an object of type T. Promises also provide a method

ready() returns(bool) that indicates whether or not the promise has been filled (and is therefore

ready to be claimed).

For example, the following PRELUDE code represents asynchronous calls of method foo of object x

with arguments corresponding to the values of arg1, arg2,. .. , argN.

y: promise[T1] :=fork x.foo(arg1, arg2,. .. , argN)

fork x.foo(arg1, arg2, ... , argN)

z: Ti := y.claim()

The two calls to foo can be run concurrently, and the result of the first call is obtained by the calling

thread via the call to claim in the third line, which blocks until the result is available.

2.1 Asynchronous Invocations 7

2.1.2 Ordered Asynchronous Calls

In some circumstances, for example in a pipeline, a sequence of invocations must be performed in order,

but can be run in parallel with the calling thread. Previous work by Gifford and Glasser [GG88] and in

the Mercury system [LBG+88] has resulted in the design ofremote invocation mechanisms for distributed

systems in which a sequence of calls between a single sender and a single receiver are run in order, but

asynchronously with respect to the caller. We have adapted these ideas for use in PRELUDE; our design

provides integrated language support for such ordered asynchronous invocations, and also generalizes

the previous work by allowing calls from multiple sending threads to be ordered.

Pipes are special objects used to implement ordered asynchronous calls. The parameterized class

pipe [T] denotes a pipe to an object of type T. A pipe is created by the class method pipe [T] . new.

If x is an object of type T, then invoking pipe[T] .new(x) creates and returns a pipe object of type

pipe [T] that provides a mechanism for ordering asynchronous method invocations to object x. Objects

of type pipe[T] provide all methods provided by type T. However, the return types for these methods

are promises: ifT provides a method foo(T1) returns(T2), then pipe[T] provides a method foo(Ti)

returns (promise [T2]) .

To perform a sequence of ordered asynchronous calls to an object, we merely perform the same

sequence of calls in a synchronous manner to one of its pipes; we refer to such calls as "pipe calls". The

pipe ensures that pipe calls are processed by the target object in the same order that they are sent.

Abstractly, we can view a pipe to object x as a forwarder that queues up all calls sent to it and returns

promises of the appropriate types. Semantically, it sends the queued calls sequentially to x; a call is

sent to x only after x has finished processing the previous queued call. The implementation, described

in more detail in Section 4, uses queues at both the sending and the receiving ends (if the caller and

the target object are on different processors) so that the delay in the interconnection network affects the

computation as little as possible.

A pipe, like any other object, can be passed on to other objects as an argument in a procedure or

method invocation; multiple objects and threads can send ordered asynchronous calls through the same

pipe object. Also, there can be multiple pipe objects associated with the same target object.

If a calling thread is to perform a sequence of ordered asynchronous calls to a receiving object, it

must first obtain a pipe assigned to the receiving object. This can be accomplished either by accessing an

existing pipe object assigned to the receiving object, or by creating a new pipe. To perform the sequence

of ordered asynchronous calls, the calling thread invokes the same sequence of calls synchronously on the

pipe object. For example, suppose two asynchronous method invocations with method names foo and

bar are to be sent to object x:T, and the invocation for foo must occur before the invocation for bar.

(foo and bar return values of types Ti and T2, respectively.) The following PRELUDE code accomplishes

8 3 MAPPING ANNOTATIONS

this behavior:

p: pipe[T] := pipe[T] .new(x)

y: prornise[T1] .- p.foo(arg1, arg2, ... , argN)

z: prolllise[T2] .- p.bar(arg1, arg2, ... , argM)

The pipe ensures that the call to bar does not start running on x until the call to foo has completed.

The results of the calls can be obtained by the calling thread (or some other thread that obtains the

promises) by claiming the promises returned by the pipe calls.

3 Mapping Annotations

The PRELUDE language allows concurrency to be expressed independent of architecture-specific con­

straints. Annotations specify the architecture-specific implementation details that are usually necessary

to achieve efficient execution. Previous projects have proposed particular mechanisms for mapping pro­

grams onto multiprocessors (e.g., (JHB88, CAL +sg, Ben87, Luc87, Li88, PM83, CA89, MG89]), each of

which is appropriate for particular kinds of applications and particular kinds of machines. For a system to

be effective, we believe that it must support a wide variety of mapping mechanisms efficiently, and must

provide flexible support for the user to choose among the different mechanisms. Thus, PRELUDE sup­

ports a wide range of mapping techniques that have appeared individually in other systems. In addition,

looking at example applications has made it clear that the mapping techniques that have been proposed

so far are inadequate. In particular, existing systems support data mapping via migration, partitioning,

and replication (including caching), and support thread mapping via remote procedure call. For some

applications, migrating a computation is more effective than moving or replicating the data or accessing

it via a series of remote procedure calls. Thus, the design of PRELUDE includes flexible mechanisms for

migrating computations. We also include annotations for specifying scheduling constraints.

Emerald [JHB88] and Amber (CAL +sg] provide mechanisms for specifying object location (locate

object X at node Y), object migration (move object X to node Y) and object-object co-location (attach

object X to object Z). An invocation on an object in Emerald or Amber is always executed at the

location of the object, using remote procedure call if the object is remote. The argument objects of a

remote invocation can also be moved to the site of the invocation by specifying call-by-move parameter

passing. Distributed Smalltalk [Ben87], Sloop (Luc87], Ivy (Li88], DEMOS/MP [PM83], Par [CA89] and

Comandos [MG89] have migration mechanisms similar to those in Emerald and Amber.

In certain situations neither remote procedure call (commonly referred to as function-shipping) nor

object migration (commonly referred to as data-shipping) is sufficient. We provide additional annotations

for computation migration, which can be viewed as a form of continuation-passing. These annotations

3.1 An Example: Continuation Passing 9

allow us to move the execution of code from one processor to another. For example, the programmer

might indicate that when a procedure attempts to invoke a method on a remote object, the execution

of the procedure should be moved to the object's location (so that subsequent invocations on the same

object become local); this corresponds in the implementation to moving the top frame on the calling

thread's stack to the location of the called object. In general, the programmer might indicate that

any portion of the top of the thread's stack should be moved, ranging from a part of the top frame

(representing part but not all of the remaining computation in the currently active procedure at the top

of the stack) to the entire stack (representing the entire remaining computation of the entire thread).

In the rest of this section, we motivate the need for computation migration via an extended example,

and then describe the annotations that appear in PRELUDE. The example also illustrates the benefits

gained by allowing the mapping of a program onto a machine to be changed easily without affecting

the functionality of the program. In the next section, we describe the implementation of the mapping

mechanisms.

3.1 An Example: Continuation Passing

We illustrate our mechanisms with a program to implement a concurrent B-tree, an important data

structure in high-throughput database systems. The goal of our mechanisms is to allow programmers

to write programs in a "shared-memory" programming style (or whatever style makes it easiest to

understand the programs) regardless of the physical machine's actual memory model. The resulting

programs can then be mapped onto machines so that the performance of the program is comparable to

programs with explicit message-passing constructs.

The most efficient concurrent B-tree algorithms known are based on the "link technique,'' which was

introduced by Lehman and Yao [LY81). The underlying data structure in the link technique is similar

to a B+-tree (in which the actual data is stored only in the leaves of the tree), with the modification

that each B-tree node contains a pointer to its right neighbor in the tree. In other words, all the nodes

at a given level of the tree are linked together from left to right. The links act as "forwarding pointers,"

and allow processes traversing down the tree from root to leaf to lock only one node at a time.

The PRELUDE code in Figure 1 shows the outline of an implementation of a B-tree class. The

representation of a BTree is specified by the anchor; it contains a reference to the root node. The class

method new creates a new BTree instance. Four instance methods are provided for each class instance.

The instance method locate is private (and thus is hidden within the scope of the class definition),

while the three instance methods insert, delete and lookup are exported.

Wang has extended the Lehman-Yao algorithm so that a process propagating a merge (as well as a

split) up the tree locks only one or two nodes at a time [Wan91, WW90). Operations in Wang's algorithm

10 3 MAPPING ANNOTATIONS

BTree = class % link method B-tree

slots anchor: Anchor end % a reference to the root of the tree

class exports new

new() returns (BTree)
% class method to create BTree instances

end new
end

instance exports insert, delete, lookup

insert(k: Key, d: Data)
% adds new (Key,Data) pair to the tree

s: Stack[Node] := locate(k)
% update leaf and propagate split if necessary

end insert

delete(k: Key)
% remove entry for Key k and propagate merge if necessary

end delete

lookup(k: Key) returns (Data)
% returns the Data associated with k

end lookup

% private instance method

locate(k: Key) returns (Stack[Node])
% implemented in Figure 2

end locate
end

end BTree

Figure 1: The BTree class.

can be divided into three phases: the locate phase, which finds the appropriate leaf on which to execute

the operation; the decisive phase, which performs the actual operation on the leaf found in the locate

phase; and the update phase, which propagates any updates to the structure up the tree as needed. The

algorithm uses read-write locks on individual nodes to synchronize concurrent operations. The locate

3.1 An Example: Continuation Passing 11

phase (implemented by the private instance method locate) for an insert or delete method finds,

write-locks, and returns the appropriate leaf as the top element on a stack of the nodes visited at each

level; it is described by the PRELUDE code in Figure 2. In this code the child method of the class Node

returns the appropriate child of the Node instance, while the right..neighbor method returns the right

neighbor. The covers method returns true if and only if the range of keys stored in the subtree rooted

at the Node instance includes its argument.

locate(k: Key) returns (Stack[Node])
n, next : Node
s : Stack[Node] := Stack[Node].empty()

% access root node
anchor.read_lock()
n := anchor.root()
anchor.read_unlock()

% descend to leaf level
n.read_lock()
while -n. is_leaf () do

if n.covers(k)
then next := n.child(k)

s.push(n)
else next := n.right_neighbor()

end
n.read_unlock()
n := next
n.read_lock()

end

% find and write-lock appropriate leaf
n.read_unlock()
n. write_lock()
while -n. covers(k) do

next := n.right_neighbor()
n.write_unlock()
n := next
n. write_lock()

end
s.push(n)
return(s)

end locate

Figure 2: locate method.

The locate method traverses the tree using read-locks, following links to children and to right

neighbors until it reaches a leaf; it then uses write-locks and follows right-links until it finds the leaf

12 3 MAPPING ANNOTATIONS

responsible for storing the desired key. The stack of nodes constructed in locate is used to propagate

updates back up the tree during the update phase. The locate phase for the lookup operation is similar,

except that it read-locks the leaf, and does not keep track of the nodes visited at each level.

One way of achieving high throughput for a concurrent B-tree is to store different nodes of the B-tree

on different processors. To avoid a bottleneck at the root of the tree, it may be necessary to replicate

the root node on several processors (a replicated object). Mapping the data structure in this way allows

operations on different nodes to run concurrently, and also allows operations on the same node to run

concurrently if the node is replicated and the operations only use read-locks. {Algorithms using the link

technique are designed to use write-locks infrequently, so replication is likely to be effective, particularly

for nodes near the root of the tree.)

Given this mapping of the tree's data structure onto a machine, how should a process executing an

operation be mapped onto processors? For the code shown above for the locate phase of an insert

operation, we could choose to run the operation on a single processor, and execute each synchronous

invocation of a method as a remote procedure call (RPC) to the processor that stores the appropri­

ate node (commonly referred to as function-shipping). For example, the invocations of the read_lock,

read_unlock, and child methods could be RPCs. Systems such as Emerald [JHB88] allow the pro­

grammer to choose between this alternative and fetching the data, i.e., moving the B-tree node object

temporarily to the processor executing the B-tree operation (commonly referred to as data-shipping).

Neither function-shipping nor data-shipping, however, leads to very good performance. Using function­

shipping, the number of messages is very high. For example, the locate method shown above makes at

least five invocations to access an interior node of the tree. Each invocation will require two messages,

giving a total of at least ten messages per node accessed. Using data-shipping, the number of messages

could be as few as three per node accessed: two to fetch the node on the first access, and one to send the

node back to the processor that stores it after the last access. However, the amount of data sent in the

messages will be high, since the entire contents of each node must be transferred between processors.

We could rewrite the program above to reduce the number of messages using function-shipping to

two per node accessed. For example, we could rewrite locate to invoke a new method find_successor,

shown in Figure 3, that returns the appropriate successor. If find_successor is invoked using RPC, we

need only two messages for each interior node accessed. Similar restructuring can reduce the number of

messages required to access the anchor and each leaf node to two.

Introducing additional methods and procedures that are called using RPC can improve performance,

but has several problems: the resulting program will often be less clear than the original; the trans­

formations appropriate for one machine may be inappropriate for another; and RPC may require more

communication than necessary.

3.1 An Example: Continuation Passing

find_successor(k: Key) returns (Node) signals (leaf)
next : Node

self. read_lock ()
if self. is_leaf () then signal leaf end
if self. covers (k)

then next := self.child(k)
else next : = self. right_neighbor()

end
self.read_unlock()
return(next)

end find_successor

Figure 3: find_successor method.

13

The code for the B-tree operations could be rewritten to use a "continuation-passing" style of com­

munication so that only one message is required for each node accessed, half as many messages as are

required by the program in Figure 3. The idea is to send a message to the processor that stores a node

when the node is first accessed; that message is processed by calling find_successor, and then sending

a message to the processor that stores the node returned by find__successor. The messages contain

the node to be accessed, the key involved, and the node just accessed. The relationship between this

message-passing program and the relatively simple program in Figure 2 can be understood by viewing

each message as a "continuation" for the locate procedure. After a processor has executed the part of

the locate procedure involved in accessing a B-tree node stored on that processor, it sends a message

asking the processor that stores the next node to execute the "rest" of the procedure. The job of exe­

cuting the procedure is handed from one processor to another until the appropriate leaf node is found,

at which point the operation is executed and a message containing the result is sent back to the original

caller.

Programs written in this kind of "continuation-passing" style can be very efficient on distributed­

memory machines. Indeed, many proponents of Actor-based languages advocate programming in this

style, in part to reduce the amount of communication required [Agh86]. However, such programs are

usually complex and hard to understand. In addition, they are less efficient on shared-memory machines

than programs that use ordinary procedure calls.

PRELUDE allows a programmer to write a single program that naturally expresses an algorithm and

then to choose how to map it onto a machine by writing annotations that indicate how data and threads

should be located and moved. Thus, the programmer can easily change the mapping simply by changing

the annotations, and can easily experiment with different mappings to determine which gives the best

performance. For example, to map the concurrent B-tree program described above onto a distributed-

14 3 MAPPING ANNOTATIONS

memory using machine using continuation-passing style messages, a move annotation can added to the

code of Figure 2 as follows:

locate(k: Key) returns (Stack[Node]) move

The move annotation instructs the PRELUDE system that each call in the body of the locate method

should be called by passing a continuation. A call within the method is compiled so that the call is

executed using ordinary stack-based mechanisms when it is on the same processor as the caller. When

it is on another processor, however, the system constructs a message containing the top frame of the

local stack and sends it to the processor to run the call. When the called method completes, the locate

method continues running on that processor.

3.2 Annotations in PRELUDE

The ability to express continuation-passing in PRELUDE through simple annotations promotes portable

programming styles. In other object-oriented languages the movement of computation would have to be

explicitly encoded in the methods; at every point where a continuation should be passed, a new method

must be written to represent the continuation. In addition to the move annotation, PRELUDE provides

annotations for controlling parameter passing, resource management and the movement and placement

of objects. In this section, we describe other PRELUDE annotations.

3.2.1 Computation Migration

Our current prototype supports migration of single stack frames, representing the remaining computation

of the currently active routine in a thread. Single-frame migration is accomplished by attaching a move

annotation to the header of a routine or to individual calls in the body of the routine. Attaching the

annotation to a particular call indicates that if the call involves a remote object at runtime, the frame

for the routine should be moved to the location of the remote object. Attaching the annotation to the

header of a routine, as in the B-tree example above, is equivalent to attaching it to every invocation in

the body of the routine; it indicates that any call in the body of the routine to a method on a remote

object should move the routine's stack frame to the location of the remote object.

In addition to single-frame migration, we are also designing mechanisms and annotations to support

migration of partial and multiple frames. This will give the programmer significantly more flexible

control over the mapping of the computation represented by logical threads in a program onto physical

threads and messages in a machine.

3.2 Annotations in PRELUDE 15

3.2.2 Object Migration

We provide several kinds of annotations to control the location and movement of objects. First, the

migration of arguments to invocations can be controlled via annotations. In an object-oriented system

the natural parameter-passing method is call-by-object-reference [LG86, GR83). In a message-passing

architecture such semantics can potentially cause additional remote invocations for parameter access.

However, PRELUDE objects are mobile. Therefore, additional remote references can be avoided by moving

argument objects to the site of the remote invocation. Whether this is worthwhile depends upon the

argument object size, the number of invocations of the arguments required, and the costs of mobility and

local invocation. Annotations similar to those in Emerald may be used to specify call-by-move parameter

passing. In this case the parameter object is migrated to the site of the remote invocation.

In addition to call-by-move parameter passing we also provide annotations to describe the movement

and placement of objects. Objects can be initially located at a given processor and later moved to other

processors. We can also specify object-object co-location using the move to annotation. If X and Y are

objects then move X to Y results in object X being moved to the same processor as object Y.

We are currently exploring additional annotations, based on ideas in the Munin system [BCZ90) and

on directives for data placement in Fortran D [F+9Q), to provide control over replication and partitioning

of data. We plan to experiment with these kinds of annotations to understand how they interact with

annotations for controlling the migration of objects and computations, and then to build a prototype to

explore the problems involved in constructing an integrated system that supports all of these mechanisms

efficiently.

3.2.3 Resource Management

In order to develop high-performance concurrent applications, programmers must be able to exert control

over resource-management at the application level. We are developing new dynamic resource manage­

ment mechanisms for a variety of parallel program structures on both shared-memory and distributed­

memory multiprocessors.

Our resource management framework is based on a new abstract priority mechanism that encapsu­

lates resource rights. This is related to earlier work with allocation mechanisms that was motivated by

microeconomics [WHH+92]. It is coupled with a stable, scalable, hierarchical propagation mechanism

that efficiently disseminates information about resource usage and availability. Together, these mech­

anisms provide an efficient substrate that supports both load balancing and programs that adaptively

vary their granularity based on application loads and machine configurations. For example, a task's

priority, together with information about loads on various processing resources, can be used by a task

management package to make dynamic cost-benefit decisions about whether to fork a subtask or run

16 4 IMPLEMENTATION

it inline. The same information can also be used to decide where tasks should be created and exe­

cuted. Annotations are used to express the priority of tasks to enable the runtime system to make the

cost-benefit decisions.

3.3 Summary

A useful system for mapping parallel programs onto parallel machines should provide the program­

mer with a comprehensive suite of mapping mechanisms. PRELUDE has been designed to integrate

mechanisms provided individually in previous systems. In addition, we have designed new mechanisms

for controlling the migration of computations. As illustrated by the B-tree example above, these new

mechanisms give the programmer important additional expressive power. We are experimenting with

our prototype implementation to evaluate the effectiveness of this suite of mapping mechanisms and to

understand what additional mechanisms or changes to these mechanisms are needed.

4 Implementation

In this section we discuss the implementation of the annotations and mapping mechanisms described

above. We begin by outlining our current implementation of single-frame migration for computations.

Then we discuss our implementation of object migration, which uses a novel approach based on fixup

blocks to achieve better performance than previous approaches. Finally, we discuss the implementation

of pipes, and in particular how it interacts with object migration.

4.1 Computation Migration

Our current implementation of the PRELUDE compiler, which is targeted to the PROTEUS simulator,

generates C code. As a result, we do not have control over the generated assembly code. Therefore, we

treat continuation-passing as an intermediate-language transformation, where we simply create a new

method that encap;ulates the continuation. Although this is not as efficient (particularly in terms of the

size of the generated code) as implementing continuation-passing at a lower level, it allows us to explore

the benefits of different continuation-passing annotations.

For a given continuation-passing invocation, we compute the live variables at the invocation; we

generate a new method that takes these variables as arguments and represents the execution of the

rest of the stack frame. At the point of call, the new method is called if the called object is non-local;

otherwise, execution continues locally. Later versions of the PRELUDE compiler will generate assembly

language directly. We will then implement continuation-passing by sending the relevant portions of the

4.2 Object Migration 17

stack frame and the program counter, which should lead to improved performance and smaller object

code.

To date we have implemented migration of single stack frames. However, the programmer may wish

to migrate multiple or partial stack frames. For example, in the B-tree implementation the leaf node

returned by the locate method will have an update method applied to it (either insert or delete).

It may be beneficial to migrate the top two frames on the stack; that for the locate method and that

for the update method. We are currently designing annotations and the compiler mechanisms needed to

implement migration of partial and multiple frames.

4.2 Object Migration

Object migration provides a mechanism to improve performance by improving load balance and re­

ducing communication costs. Migration mechanisms are traditionally expensive and usually reduce the

performance of threads even when they do not migrate. In PRELUDE, we follow the philosophy used in

Emerald [JHB88]: the ability to migrate should have little or no effect on the performance of threads

that do not migrate.

Object migration mechanisms fall into two classes: those that depend on location independence

of names, and those that translate location-dependent names during migration. Location-independent

naming essentially requires a global naming scheme, either through a global address space [CAL+ 89, Li88]

or though higher-level naming mechanisms, which use some form of indirection [PM83, MG89]. On

architectures with shared memory, PRELUDE can exploit the global address space to avoid translation.

For architectures without a global address space, PRELUDE must use either a high-level naming scheme

or translate names during migration. We have chosen the latter, since even though translation increases

the cost of migration and message-passing, it significantly improves the performance of threads that

access local data [JHB88].

Translation of addresses in objects is straightforward in PRELUDE; the translation of addresses in

thread stacks is more challenging. A stack may have frames from several different objects; thus, stack

migration in PRELUDE is designed around the migration of individual frames, and a single stack may

be spread across several processors. We use stub frames to handle transitions between processors. The

stub frames use messages to move arguments and return values between processors.

A useful invariant for performance is the assumption that an executing frame and the object whose

method it represents always reside on the same processor. This allows methods to access the object's

data directly using pointers, which increases performance. During migration (across processors), these

pointers must be found and translated. We are also investigating an alternative technique for the case of

large objects, where co-location may be expensive. This relies upon the introduction of invalid addresses

18 4 IMPLEMENTATION

for migrated instance variable references and corresponding traps that perform remote accesses.

A second invariant is that objects only migrate when all of their active methods are at migration

points. This allows a method to assume that its object will not migrate between migration points, which

leads to higher performance. Migration points are generally associated with invocation boundaries, so

methods must check for migration upon return from an invocation.

To avoid the migration checks at migration points, we have developed a novel approach based on a

mechanism called a fixup block. A fixup block is a short piece of code (generated by the compiler) that

performs the translation for a particular frame; every migration point has a corresponding fixup block.

After an object migrates, its active methods, which must be at migration points, resume execution in the

fixup block instead of at the instruction following the migration point. The block performs any needed

translations and then jumps to the instruction following the migration point. Thus, the migration check

is avoided except when an object migrates. Note that fixup blocks are generated automatically and are

completely hidden from the user.

To use fixup blocks to translate addresses when objects migrate, we need to be able to find the active

methods for a migrating object when the object migrates, so that the return program counters can be

set to point to the appropriate fixup blocks. There are (at least) two ways to find the active methods:

scan the stacks of all threads, or keep track of the threads (and stack frames) with active methods in

each object. Keeping track of the active methods imposes a significant cost even when objects do not

migrate, which violates our design goals. Scanning the stacks at migration time imposes a cost only

when an object migrates, but the cost could be significant (proportional to the total number of frames

on all stacks).

The following technique allows the stacks to be scanned for active methods more lazily. This spreads

the cost out over subsequent computation that occurs after the migration, rather than incurring it all

when the migration occurs. In addition, it allows the cost of scanning the stacks to be amortized over

several migrations; if another object migrates before the stack scans have been completed, the unscanned

frames will only be scanned once even though more than one object has migrated. The idea is to change

the top frame on each stack so it resumes at its fixup block; after performing any necessary translations,

that fixup block changes the return program counter for the previous frame on the stack so it will resume

at its fixup block when the top frame returns. The cost when an object migrates is proportional to the

number of threads, not the total number of stack frames, and if several objects migrate before a frame

is scanned, the frame will be translated only once.

4.3 Pipes 19

4.3 Pipes

This section describes our implementation of pipe objects. A pipe is made up of two objects, a head

and a tail. Typically the head of a pipe will be located on the same processor as the thread making

calls on the pipe, and the tail will be located on the same processor as the target object of the pipe. (If

either the calling thread or the target object migrates, the corresponding end of the pipe should also be

moved.) The head and tail objects both contain queues of pending invocations; buffering invocations

at both ends of the pipe allows the communication delay of the interconnection network to be largely

hidden from the computations using the pipe.

To preserve the order of the invocations sent from the head to the tail we adopt one of two approaches

depending upon the underlying network architecture. In networks that do not preserve message order we

simply use sequence numbers in the messages for the invocations. In networks where the message order

between processors is maintained, we can avoid the sequence numbers and the associated overhead of

maintaining them and checking them. This is done as follows. As long as neither the head nor the tail of

a pipe migrates, invocations can be streamed from the head to the tail and enqueued at the tail as they

are received, and order will be preserved. If the head migrates, we send a special marker message from

the old head to the tail after the last message; the tail waits until the marker has been received before

accepting messages from the new head. Similarly, if the tail migrates, the old tail forwards messages

received from the head to the new tail, and informs the head that the tail has migrated. The head

then sends a marker to the old tail and starts sending messages to the new tail, which delays accepting

messages from the head until the marker is forwarded from the old tail.

5 Support for Prototyping

Critical to the success of PRELUDE as a vehicle for studying languages and runtime systems is the ability

to experiment on a wide variety of MIMD architectures. To facilitate such experiments we have built

a retargetable simulator, PROTEUS [Del91, Bre91, BDCW91], that simulates MIMD architectures and

provides support for sophisticated data collection and display.

PROTEUS simulates MIMD multiprocessors in which independent processor nodes are connected via

an interconnection medium. The interconnection medium can be either a bus, a direct network such as

a k-ary n-cube, or an indirect network such as a butterfly. Each processor node consists of a processor,

a network module, a cache module, and memory. Conceptually, the processor is a generic sequential

processor extended with instructions for network access and cache coherence. The network module

interfaces the processor with the interconnection medium. The cache module, which is optional, handles

cache coherence and works with the network module for remote memory accesses.

20 5 SUPPORT FOR PROTOTYPING

The modules can be refined or replaced to provide more accurate simulation of a particular archi­

tecture. It is also useful to have multiple implementations of a module that provide different perfor­

mance/ accuracy tradeoffs. For example, for k-ary n-cubes, we use two implementations: one that is very

accurate and simulates each packet hop by hop, and a second that uses an analytical model to compute

the arrival time at the target. Although the model version is clearly less accurate, it is also an order of

magnitude faster. When network accuracy is less important, such as during development, we use the

model version to exploit the higher performance.

PROTEUS applications and modules are written in an extended version of C. Thus, our runtime

system is written in C and the PRELUDE compiler generates C as its output. We then link the PROTEUS

engine, the runtime system, and the compiled PRELUDE application into an executable that simulates

the application on the specified architecture. The compiler and runtime system are designed so that

they should be relatively easy to port to a machine with a C compiler; we plan to port them to nCUBE

and Intel machines in the near future.

Since the combination of PRELUDE and PROTEUS is intended as a base for studying language and

runtime-system issues, extensive support for debugging and monitoring is an important requirement.

PROTEUS provides nonintrusive monitoring and debugging: users can add monitoring code that does

not affect the behavior or timing of the simulation. It also provides repeatability: users can rerun

simulations to pinpoint bugs. Real multiprocessors generally provide neither of these abilities.

Nonintrusive monitoring, combined with repeatability, greatly simplifies the development of concur­

rent programs. Real multiprocessor systems suffer from the probe effect: the addition of monitoring

code may cause the monitored effect to disappear [Gai86]. This prevents programmers from collecting

additional data for debugging. PROTEUS allows users to add arbitrary monitoring or debugging code

without changing the behavior of the simulation.

N onintrusive monitoring is only useful if the platform ensures repeatability: the whole point of nonin­

trusive monitoring is to allow repeatability in the presence of additional code. Nondeterministic systems,

such as multiprocessors, rarely provide any form of repeatability; some bugs may occur only once every

thousand (or more) executions, which makes it nearly impossible to track them down. Repeatability is

perhaps the single most important feature of PROTEUS; its presence provides a debugging environment

that is generally not available on real multiprocessors.

The PRELUDE/PROTEUS combination has been designed to work well with sequential debuggers.

This extends the power of advanced sequential debuggers to the parallel development arena. Further­

more, PROTEUS provides an internal debugging mode that allows users to examine the state of threads,

processors, locks, and memory. Using a sequential debugger such as dbx [Lin90] together with PROTEUS

results in a very effective development environment.

21

While we designed PROTEUS initially as a substrate for experimenting with prototype language,

compiler, and runtime system mechanisms, it has become clear that a simulator such as PROTEUS

can also be a useful tool for developing parallel applications. The monitoring capabilities provided by

PROTEUS can make debugging and initial performance tuning significantly easier than on a real machine.

Also, PROTEUS can be run on uniprocessor workstations so that the time required on expensive and

scarce multiprocessors is less. In addition, the ability of an application program to scale to large machine

sizes (perhaps beyond the range provided by available machines) or to be ported effectively to a range

of machines can be investigated fairly easily.

6 Conclusions

The current PRELUDE implementation supports only single-frame migration for computations. We

are currently designing and implementing mechanisms and annotations for multiple- and partial-frame

migration. In addition, we are studying how to add annotations for data replication and partitioning,

based on ideas in Munin [BCZ90] and in Fortran D [F+9Q].

The implementation of object migration in PRELUDE uses a novel approach based on fixup blocks.

Fixup blocks eliminate the need to check at each migration point whether an object has migrated.

Instead, at migration time the stack for each thread is modified so that frames resume at a fixup

block, which does the appropriate checks and address translations. A further optimization allows the

modifications to the stacks to be spread out over time as each frame returns to its caller, which reduces

the cost per migration as the frequency of migrations increases.

PRELUDE is currently implemented on top of PROTEUS, a configurable simulator that provides both

fast and accurate simulations of a wide range of MIMD architectures. PROTEUS itself is a useful tool

for developing parallel applications, since it provides powerful non-intrusive debugging and performance

monitoring capabilities that are difficult or impossible to obtain on a real machine. Much of the testing,

debugging, and initial testing of an application can be accomplished using PROTEUS, typically with less

effort than would be required on a real machine. In addition, PROTEUS allows the programmer to test

the scalability and portability of a program, including a range of machine sizes and architectures not

supported by available machines. We are using PROTEUS to develop our initial prototype of PRELUDE,

and plan to port the implementation of PRELUDE to commercial and research multiprocessors in the

near future. We have also used PROTEUS for a number of algorithmic and architectural studies.

PRELUDE allows the programmer to write programs using an abstract model of computation that is

independent of any particular underlying architecture. A program can then be mapped onto a particular

machine by attaching annotations to it that describe the mapping. Our goal in PRELUDE is to provide

22 REFERENCES

a comprehensive suite of mapping mechanisms that give the programmer sufficient power to implement

a wide range of parallel programs efficiently on a wide variety of MIMD architectures. To this end,

we have included many mapping mechanisms that have appeared in other systems, including remote

procedure call, object migration, and data replication and partitioning. In addition, however, PRELUDE

include novel migration mechanisms for computations based on a form of continuation passing. We

are experimenting with our current implementation to evaluate the effectiveness of our current suite of

mapping mechanisms and to understand what other mechanisms or changes to our current mechanisms

are needed.

References

[Agh86]

[BCZ90]

G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,

Cambridge, MA, 1986.

J. Bennett, J. Carter, and W. Zwaenepoel. Munin: Distributed shared memory based on

type-specific memory coherence. In Proceedings of the ACM Symposium on Principles and

Practice of Parallel Programming, March 1990.

[BDCW91] E.A. Brewer, C.N. Dellarocas, A. Colbrook, and W.E. Weihl. PROTEUS: A high­

performance parallel-architecture simulator. Technical Report MIT /LCS /TR-516, MIT Lab­

oratory for Computer Science, 1991.

[Ben87]

[Bre91]

[CA89]

J .K. Bennett. The design and implementation of Distributed Smalltalk. In Proceedings of

the Object-Oriented Programming Systems Languages and Applications Conference, pages

318-330, 1987.

E.A. Brewer. Aspects of a high-performance parallel-architecture simulator. Master's thesis,

MIT Laboratory for Computer Science, 1991.

M.D. Coffin and G.R. Andrews. Towards architecture-independent parallel programming.

Technical Report 89-21a, Department of Computer Science, University of Arizona, December

1989.

[CAL+89] J.S. Chase, F.G. Amador, E.D. Lazowska, H.M. Levy, and R.J. Littlefield. The Amber

system: Parallel programming on a network of multiprocessors. Technical Report 89-04-01,

Department of Computer Science, University of Washington, April 1989.

[Del91] C.N. Dellarocas. A high-performance retargetable simulator for parallel architectures. Mas­

ter's thesis, MIT Laboratory for Computer Science, 1991.

REFERENCES 23

[For90]

[Gai86]

[GG88]

[GR83]

[Hal85]

[JHB88]

G. Fox et al. Fortran D language specification. Technical Report COMP TR90-141, Rice

University, Dept. of Computer Science, December 1990.

Parallel Computing Forum. PCF Fortran Proposed Standard, 1990. Version 3.

Jason Gait. A probe effect in concurrent programs. Software - Practice and Experience,

16(3):225-233, March 1986.

David K. Gifford and Nathan Glasser. Remote pipes and procedures for efficient distributed

communication. ACM Tmnsactions on Computer Systems, 6(3):258-283, August 1988.

A. Goldberg and D. Robson. SmalltalkBO: The language and its implementation. Addison­

Wesley, Reading, MA, 1983.

R. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM Tmns­

actions on Programming Languages and Systems, 7(4):501-538, 1985.

E. Jul, N. Hutchinson, and A. Black. Fine-grained mobility in the Emerald system. ACM

Transactions on Computer Systems, 6(1):109-133, 1988.

[LBG+88] B. Liskov, T. Bloom, D. Gifford, R. Scheifler, and W. Weihl. Communication in the Mercury

system. In Proceedings of the 21st Annual Hawaii Conference on System Sciences, January

1988. Available as MIT LCS Programming Methodology Group Memo 59.

[LDH+87] B. Liskov, M. Day, M. Herlihy, P. Johnson, G. Leavens (editor), R. Scheifler, and W. Weihl.

[LG86]

[Li88]

[Lim84]

[Lin90]

[LS88]

Argus reference manual. Technical Report MIT/LCS/TR-400, MIT Laboratory for Com­

puter Science, November 1987.

B. Liskov and J. Guttag. Abstraction and Specification in Progmm Development. MIT Press,

1986.

K. Li. Ivy: A shared virtual memory system for parallel computing. In Proceedings of the

International Conference on Parallel Processing, pages II78-86, 1988.

INMOS Limited. Occam Programming Manual. Prentice Hall, Englewood Cliffs, New Jersey,

1984.

M.A. Linton. The evolution of dbx. In Proceedings of the 1990 USENIX Summer Conference,

pages 211-220, June 1990.

B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous procedure

calls in distributed systems. In Proceedings of the ACM SIGPLAN Conference on Program­

ming Languages Design and Implementation, pages 260-267, 1988.

24

[Luc87]

[LY81]

[MG89]

REFERENCES

S.E. Lucco. Parallel programming in a virtual object space. In Proceedings of the Object­

Oriented Programming Systems Languages and Applications Conference, pages 26-33, 1987.

P. L. Lehman and S. B. Yao. Efficient locking for concurrent operations on B-trees. ACM

Transactions on Database Systems, 6(4):650-670, December 1981.

J .A. Marques and P. Guedes. Extending the operating system to support an object-oriented

environment. In Proceedings of the Object-Oriented Programming Systems Languages and

Applications Conference, pages 113-122, 1989.

[MSA+85] J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert, C. Kirkham, W. Noyce,

and R. Thomas. SISAL language reference manual. Technical report, Lawrence Livermore

National Laboratory, March 1985.

[M vR87] P. Mehrotra and J. van Rosedale. The BLAZE language: A parallel language for scientific

programming. Parallel Computing, 5:339-361, November 1987.

[PM83] M.L. Powell and B.P. Miller. Process migration in DEMOS/MP. In Proceedings of the Ninth

ACM Symposium on Operating System Principles, pages 110-119, 1983.

[Wan91] P. Wang. An in-depth analysis of concurrent B-tree algorithms. Master's thesis, MIT,

January 1991.

[WHH+92] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. 0. Kephart, and S. Stornetta. Spawn: A

[WW90]

distributed computational economy. IEEE Transactions on Software Engineering, February

1992. to appear.

W.E. Weihl and P. Wang. Multi-version memory: Software cache management for concurrent

B-trees. In Proceedings of the 2nd IEEE Symposium on Parallel and Distributed Processing,

pages 650-655, 1990.

CS-TR Scanning Project
Document Control Form Date : ~ /_d-2_(1. S

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
~ Laboratory for Computer Science (LCS)

Document Type:

M Technical Report (TR)

D Other:

D Technical Memo (TM)

~----------------------------

Document Information Number of pages: J..L(- (1;;..-f rnr-.~-{"SJ
Not to include DOD forms, printer lntstructions, etc ... original pages only.

Originals are:

~ Single-sided or

D Double-sided

Print type:
D Typewriter D Offset Presa

Intended to be printed as :

D Single-sided or

~ Double-sided

D Laser Print

D Ink.Jet Printer h_ Unknown D Other:.~----~--~---~
Check each if included with document:

)8(_ DOD Fonn{J. P65)0 Funding Agent Fann jg(Cover Page

D Spine 'A Printers Notes D Photo negatives

D Other:
~-----------------------------------

Page Data:

Blank Pages(by....-,: ___________________ _

Photographs/Tonal Material (by.-eenumbell: ________ _

Other <"* ~,.rp.ge numb9f):
Description : Page Number:

i mf;)G~ mn P (12 41\LNu M(3L'f'fP rrr4- P,erei'

Scanning Agent Signoff:

Date Received: J-1~ 195 Date Scanned: ;}__1_115. Date Returned: 3-1_1.3,L

Scanning Agent Signature: ___ ~...._ ' ----~..-a.o.1.......,.1 v ·_~_......J.._ __ _
\ Rev 1W4 DSILCS Document Conlnll Form c:Aform.vsd

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

"''..:01rc reoorting auraen for this cc11eaion or 1nrormat1on is ~st:mate-:: rn average 1 ~our oer ~":soor.se. 1r•c:..:c1ng :i;e t:me ror re'l1ew1ng 1nsrruc.:1ons, :;earc.'":1ng ex1st1ng ::iata sources,
garnering 3~d m'!inta1n1ng tne data ne-=<:leo, and como1enng ~na re"1ew1nq t~e collectron ot 1nrormat1on. S~no comments regara1ng mi-. burden e'Strmate or anv Jtl"'er asoect_or !his
.;:o11ect1cn or 1nformat1on. :nc1ud1ng sugge-strons ror recuc1nq Ui1s ourcen to 'Ndrntngton rleaaouaners Services. 01reaorate ror 1 nformat1on Ooerat1on'!i ana Reoons. 1215 .letierson
Davis H1ghwav. Suite 1204. ,.:.r11ngton. JA 22202-4302. ano to t:i~ Otf1ce 'Jf Management ano Budget. P~oerworo: Re<iuct:1on Pro1ect (0704·0188). Wa'irungton. QC 2CS03.

1. AGENCY USE ONLY (Leave blank)] 2. REPORT DATE l 3. REPORT TYPE AND DA TES COVERED
Oct. 1991

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

PRELUDE: A System for Portable Parallel Software

6. AUTHOR(S)
Chrysanthos William Weihl, Eric Brewer, Adrian Col brook,

Dellarocas, Wilson Hsieh, Anthony Joseph, Carl
Paul Wang

7. PERFORMING ORGANIZATION NAME(S) ANO ADDRESS(ES)

:Massachusetts Institute of Technology
Laboratory for Computer Science
545 Technology Square
Cambridge, :t-1..A 02139

9. SPONSORING I MONITORING AGENCY NAME(S) ANO AODRESS(ES)

DARPA

WaldspurgE r

8. PERFORMING ORGANIZATION
REPORT NUMBER
MIT/LCS/TR 519

j 10. SPONSORING 1 MONITORING
j AGENCY REPORT NUMBER
j

l N00014-89-J-1988
!

l 11. SUPPLEMENTARY "JOTES
l
l
l
j
'
i 12a. OISli\IBUTION 1 AVAILABILllY STATEMENT ' 12b. DISTRIBUTION CODE

l
j
j

I
i 13. ABSTRACT (Maximum 200 words)

I
l

I

14. SUBJECT TERMS

In this paper v1e describe PRELUDE, a programming language and accompanying system support for
writing portable MIMD parallel programs. PRELUDE supports a methodology for designing and orga­
nizing parallel programs that makes them easier to tune for particular architectures and to port to new
architectures. It builds on earlier work on Emerald, Amber, and various Fortran extensions to allow
the programmer to divide programs into architecture-dependent and architecture-independent parts,
and then to change the architecture-dependent parts to port the program to a new machine or to tune
its performance on a single machine. The architecture-dependent parts of a program are specified by
annotations that describe the mapping of a program onto a machine. PRELUDE provides a variety of
mapping mechanisms similar to those in other systems, including remote procedure call, object migra­
tion, and data replication and partitioning. In addition, PRELUDE includes novel migration mechanisms
for computations based on a form of continuation passing. The implementation of object migration in
PRELUDE uses a novel approach ba.sed on fixup blocks that is more efficient than previous approaches,
and amortizes the cost of each migration so that the cost per migration drops as the frequency of mi-
grations increases.

(over)

Portability, performance tuning, annotations,
data migration

15. NUMBER OF ?AGES

computation migration 24
!--~~~~~~~~~~~-<

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS ?AGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

1\IS:'J 7540-01-280-SSOO Stardard Form 293 (Rev 2-89)
P~e'iCr'Ot:'-0 by ~;'J)i }[::: .:J9-i3
29S· ~ 02

I
I
l
j
1

13 a. The current implementation of PRELUDE is built on top of PROTEUS, a configurable simulator that
provides both fast and accurate simulations of a wide range of MIMD architectures. PROTEUS itself is
a useful tool for developing parallel applications, since it provides powerful non-intrusive debugging and
performance monitoring capabilities that are difficult or impossible to obtain on a real machine. Much
of the testing, debugging, and initial testing of an application can be accomplished using PROTEUS,

typically with less effort than would be required on a real machine. In addition, PROTEUS allows the
programmer to test the scalability and portability of a program, including on a range of machine sizes
and architectures not supported by available machines. We are using PROTEUS to develop our initial
prototype of PRELUDE, and plan to port the implementation of PRELUDE to commercial and research
multiprocessors in the near future.

