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Abstract 

Current algorithms for reader-writer synchronization exhibit poor scalability because they do not allow 
readers to acquire locks independently. We describe two new algorithms for reader-writer synchronization 
that allow parallelism among readers during lock acquisition. We achieve this parallelism by distribut­
ing the lock state among different processors, and by trading reader throughput for writer throughput; 
we expect that in highly concurrent programs, the ratio of writers to readers should be very low, so 
this tradeoff should lead to better overall performance. We used a multiprocessor simulator, Proteus, 
to compare these algorithms with existing algorithms. Our experiments show that when reads are a 
large percentage of lock requests, the throughput of both of our algorithms scales significantly better 
than current algorithms; even when there is a fair percentage of writes, the throughput of one of our 
algorithms still scales better than current algorithms. 
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2 1 INTRODUCTION 

1 Introduction 

Synchronization has been an area of research in computer science since the 1960's. Although synchro­

nization mechanisms for uniprocessors are well understood, the same cannot be said for multiprocessors. 

Two factors increase the relative cost of synchronization on multiprocessors: network communication 

costs and resource contention. Since synchronization occurs quite frequently on multiprocessors, it is 

important to develop high-throughput, low-contention synchronization mechanisms. In this paper we 

describe our research on reader-writer synchronization for shared-memory multiprocessors. 

Recent work has focused on developing good algorithms for mutual exclusion on shared-memory 

multiprocessors [2, 12, 14]. Lamport's work [12] concentrates on minimizing the number of remote 

memory accesses; unfortunately, his algorithm leads to spinning over the network in the absence of 

caches. Anderson's lock [2] and Mellor-Crummey and Scott's lock [14] are similar: they both use fetch­

and-add (or similar operations) to eliminate remote spinning; as a result, their algorithms generate very 

little network traffic. 

Reader-writer locks relax the constraints of mutual exclusion: a given reader-writer lock can be held 

by multiple readers, but can only be held by one writer at a time; in addition, a given lock cannot be held 

simultaneously by both readers and writers. Such a lock can be used to ensure the sequential consistency 

of shared memory, as long as all readers and writers obey the locking protocol. Reader-writer locks are 

extremely useful for multiprocessors, since shared memory is a common abstraction on multiprocessors. 

Our interest in reader-writer locks lies in the fact that there is an opportunity for parallelism among 

readers that has not been exploited in previous work. 

Reader-writer locks were first described by Courtois et al. [8] in 1971. Recent papers by Mellor­

Crummey and Scott [14, 15] have presented several new algorithms for reader-writer synchronization 

in shared-memory multiprocessors. Their algorithms are based on the use of atomic operations such as 

"fetch-and-add" and "compare-and-swap", and are extensions of their work on algorithms for mutual 

exclusion synchronization. 

Mellor-Crummey and Scott call their algorithms for reader-writer synchronization "scalable"; unfor­

tunately, they define "scalable" to mean that the throughput of lock acquisition remains constant as the 

number of processors that request the lock increases. This definition of scalability, although satisfactory 

for mutual exclusion algorithms, is unsatisfactory for reader-writer synchronization. In particular, if all 

(or a large number of) processes are readers, the throughput of lock acquisition should increase linearly 

with the number of processors, since the semantics of read-locks does not preclude multiple readers from 

acquiring locks in parallel. 

We have developed two new algorithms for reader-writer synchronization that take advantage of 

this opportunity for parallelism. Our algorithms provide scalable throughput for readers; they differ 
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in the tradeoffs that they make between the costs for readers and for writers. Using Proteus [4, 5, 9], 

a multiprocessor simulator, we compared their performance with two standard algorithms. When a 

large proportion of lock requests are reads, one of our algorithms scales substantially better than recent 

algorithms. Indeed, our results show that previously described algorithms [15] do not scale at all. 

In Section 2 we describe our two new algorithms: static and dynamic reader-writer locks. In Section 3 

we describe the experiments that we performed to compare our algorithms with two other algorithms. 

Section 4 evaluates the algorithms, Section 5 discusses related and future work, and we draw conclusions 

in Section 6. 

2 Our Algorithms 

We present two new spin-waiting algorithms for reader-writer synchronization on shared-memory multi­

processors: the static and the dynamic algorithms. These algorithms were designed to handle one process 

per processor; however, they could be easily modified to handle multiple processes per processor. We 

view network delay and contention as the primary issues in achieving high-performance synchronization; 

the additional overhead to support multiple processes per processor should not affect the relative perfor­

mance of our algorithms. Our model assumes that shared memory is partitioned among the processors; 

each processor has "local" shared memory that can be accessed without going over the network. 

All of our algorithms use spin-waiting, but readers in the static and dynamic algorithms spin only on 

local memory. We use "semaphore" to mean a word of memory that is accessed using test-and-set with 

exponential backoff; we do not use test-and-test-and-set, as we do not assume the presence of caches.1 

The literature describes several different fairness conditions that can be implemented [3, 8, 16]: first­

come-first-serve, reader-priority, and fair-readers priority are but a few. We have not implemented any of 

these conditions, as we consider fairness to be a secondary concern. The addition of fairness constraints 

would involve additional synchronization, which would probably lead to a reduction in performance. 

2.1 Static algorithm 

Our static algorithm allocates one semaphore per processor, plus an extra semaphore that acts as a gate 

on writers. In order to acquire a static lock, a reader acquires a local semaphore, whereas a writer must 

acquire all of the semaphores. The gate is present to keep the writers from interfering excessively with 

readers. In an earlier version that did not have the gate, the performance of the first reader was poor, 

because all of the writers were trying to acquire its semaphore. Figure 1 outlines the structure of a static 

1 We place a limit on the backoff; without a limit, we quickly overflowed 32 bits in most of our experiments. 
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Figure 1: Static reader-writer lock 
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lock: an arrow from a process points to a semaphore that the process must acquire in order to acquire 

the reader-writer lock. When releasing a static lock, a reader simply releases its local semaphore; a 

writer releases all of the semaphores. The lock can be viewed as a quorum of semaphores, where the 

read quorum is 1 and the write quorum is n. We call this algorithm static since the quorum is static. 

The static lock has two important properties: readers do not interfere with each other, and readers 

do not have to go over the network to acquire a lock. This algorithm performs extremely well when all 

lock requests are reads: a reader only needs to acquire a local semaphore. Unfortunately, the fact that 

readers never interfere means that writers must do a substantial amount of work in systems with many 

processors; when even a few percent of the requests are writes, the throughput suffers dramatically, since 

a writer must acquire a semaphore on every processor in order to acquire a static lock. 

2.2 Dynamic algorithm 

Our dynamic algorithm provides each processor with a semaphore and a bit that indicates whether the 

semaphore is "valid." Figure 2 outlines the structure of a dynamic lock (note that the reader queue and 

valid list are pointers to shared-memory). A dynamic lock can be viewed as a variant of the static lock 

that keeps track of the active readers in a centralized location; this saves work for writers, as they do not 
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have to contact every processor on every lock acquisition and release. We call this algorithm dynamic 

since the write quorum is dynamically maintained. 

The list of valid semaphores is protected by a Mellor-Crummey and Scott (MCS) mutual exclusion 

lock [14].2 If a reader tries to acquire a dynamic lock and its semaphore is valid, it can just acquire the 

semaphore3 ; otherwise, it must acquire the MCS mutex. After the reader has acquired the mutex, it 

checks the writer bit. If there is an active writer (i.e .. the writer bit is set), it adds itself to the reader 

queue, releases the mutex, and waits; otherwise, it adds its semaphore to the list, marks its semaphore 

valid and acquires it, and releases the mutex. Waiting is implemented using semaphores: the waiting 

process enqueues the address of its local semaphore, sets the semaphore, releases the mutex, and then 

spins until the semaphore is cleared; the process that performs the wakeup just clears the semaphore. 

In order for a reader to release a dynamic lock, it just needs to release its local semaphore. 

In order for a writer to acquire a dynamic lock, it must first acquire the mutex protecting the list. If 

2 The MCS mutual exclusion lock should not be confused with their reader-writer lock, although they are very similar. 
3 However, the reader must check the validity of its semaphore after acquiring the semaphore; if it has become invalid, 

the reader must acquire the mutex. 
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there is an active writer (i.e., the writer bit is set), it puts itself on the writer queue, releases the mutex, 

and waits. Otherwise, it sets the writer bit and releases the mutex. The writer then invalidates all of 

the semaphores on the valid list, clears the valid list, and then waits for each semaphore to be cleared, 

which ensures that there are no readers with locks. The writer then has the lock, and can continue. A 

writer unlocks a dynamic lock by first reacquiring the mutex, and then checking if there is a waiting 

writer. If a writer is waiting, the unlocking writer wakes it up, and then releases the mutex. If there is 

no waiting writer, it checks if there are waiting readers. If there are, it swaps the pointers for the valid 

list and the reader queue, makes all of the waiting readers' semaphores valid, clears the writer bit, and 

releases the mutex; if there are no waiting readers, it just clears the writer bit and releases the mutex. 

Although readers can interfere with each other in this algorithm, they do not always do so; two 

readers can only interfere with each other when they are both trying to acquire the MCS mutex to make 

their semaphores valid. The reason that we make them interfere is to reduce the amount of work that 

a writer must do; this decreases the throughput of readers, but increases the throughput of writers and 

the overall throughput. In addition, although a reader might have to go over the network to acquire a 

lock, it does not have to go over the network if its local semaphore is valid. 

3 Experiments 

We compared the performance of various algorithms for reader-writer synchronization using the Proteus 

simulator, a high-performance, reconfigurable multiprocessor simulator that was developed at MIT [4, 5, 

9]. Proteus is an execution-driven simulator that interleaves the execution of an application program with 

the simulation of the underlying architecture. This structure makes it possible for Proteus to achieve a 

high degree of accuracy, which has been confirmed by several experiments [7, 9). We configured Proteus 

to run our experiments on k-ary !-cubes, 2-cubes, and 3-cubes of various sizes: 1, 2, 4, 8, 27, 64, and 

125 processors. Although the Proteus simulator does allow us to simulate shared-memory caches, we did 

not do so, as we did not want the choice of caching scheme to affect our results. In addition, we wanted 

to make the movement of data as explicit as possible. 

We measured throughput under various different percentages of read requests: 0%, 50%, 75%, 95%, 

99%, and 100%. In each experiment, every process executes a tight loop; at each iteration, each process 

chooses whether to act as a reader with percentage p. 4 When any process completes 400 iterations, the 

experiment stops. When p = 99, however, the experiment runs until 1600 iterations complete; the larger 

number of iterations is necessary in order to make sure that each process completes a reasonable number 

4 Given a chance of p percent that an operation is a read, it is not true that at any time p percent of the processes are 
readers: p must be weighted by the time a reader takes to acquire and release a lock relative to the time a writer takes. 
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of writes. When the first process finishes, we stop measuring throughput so that the drop in contention 

(and resulting increase in throughput) as processes finish is factored out of our results. 

The last parameter that we varied is the time spent holding the lock. In one set of experiments, 

each process spends 0 cycles holding the lock. This measures how the algorithms scale at the highest 

contention levels, and also demonstrates how the overhead for lock acquisition and release scales. In 

the other set of experiments, each process spends 50 cycles holding the lock; this is intended to model 

a simple system where each process spends a relatively small amount of time holding a lock. We did 

not vary the time spent outside of the lock, since the effect of that would be equivalent to having fewer 

processes accessing the lock. 

3.1 Existing Algorithms 

We compared our two new algorithms with two "standard" algorithms: a monitor-based algorithm and 

an MCS algorithm. The first algorithm is a simple extension to a monitor-based reader-writer lock [3]; 

it is intended to model a very simple implementation of a reader-writer lock. The MCS algorithm is the 

fair version of the MCS reader-writer lock (15]. 

3.2 Monitor-based algorithm 

Figure 3 outlines the structure of a reader-writer lock based on a monitor. A reader that requests a 

monitor-based lock must first acquire the monitor, which is implemented as a semaphore. It then checks 

the writer bit; if it is 0, the reader increments the reader count and releases the monitor; otherwise, it 

enqueues itself on the reader queue, releases the monitor, and waits. In order to release a monitor-based 

lock, a reader must acquire the monitor, decrement the reader count, and release the monitor. If the 

process finds that it is the only reader (i.e., the number of readers is 0 after the decrement), it wakes up 

a writer and sets the writer bit before releasing the monitor. 

A writer that requests a monitor-based lock must first acquire the monitor. If there is already a 

writer, or if there are any readers, the writer enqueues itself on the writer queue. Otherwise, it sets the 

writer bit and releases the monitor. In order to release a monitor-based lock, a writer must acquire the 

monitor, clear the writer bit, and then release the monitor. If there are waiting readers, the writer wakes 

them all, and sets the reader count appropriately; if there are no waiting readers and there is a waiting 

writer, it wakes that writer, and sets the writer bit. 
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Figure 3: Monitor lock 

4 PERFORMANCE EVALUATION 

monitor 

The MCS algorithm is one version of the MCS reader-writer lock (15]; it can be viewed as an extension 

of a monitor lock where the "monitor" is controlled by using the compare-and-swap primitive. The 

MCS algorithm is fair because it is FIFO; processes are allowed to run in the order in which they are 

enqueued. Although Mellor-Crummey and Scott avoid creating significant network traffic with their 

algorithm, they impose two requirements on processes: there is still serialization to acquire a lock, and 

every process must go over the network to acquire a lock.5 Our algorithms attempt to avoid imposing 

these two requirements, and in doing so achieve better performance. 

4 Performance Evaluation 

Figures 4-15, which were produced by the Proteus simulator, illustrate the results of our experiments. 

Throughput is measured in iterations completed per 1000 machine cycles: an iteration consists of a lock 

5 These requirements a.re present because the MCS lock is an extension of the MCS mutual exclusion lock, and so retains 
most of its characteristics. 
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acquisition followed by a release. Even though we performed our experiments on a completely different 

platform than Mellor-Crummey and Scott's, it is important to note that the behavior of their algorithm 

that we observed is very similar to what is presented in their paper [15]. 

4.1 Comparing Lock Overhead 

Figures 4-9 illustrate how the various algorithms scale when processes spend 0 cycles inside the lock; this 

demonstrates how the overhead of lock acquisition and release affects throughput. Figure 4 demonstrates 

that both of our algorithms scale linearly with 100% readers, whereas the MCS and the monitor-based 

locks do not allow any real parallelism among readers in their access to the lock; we cut the graph off so 

that the data for the monitor-based and MCS algorithms could be seen. 

Figure 5 demonstrates that the static algorithm does not scale well, even with a small percentage 

of writes, because a writer incurs overhead proportional to the number of processors. With a small 

number of processors, a writer does not have to acquire many semaphores; however, as the number of 

processors increases, the throughput of acquiring a write-lock decreases dramatically, and becomes a 

limiting factor. The dynamic algorithm continues to perform quite well: with 64 or more processors, it 

achieves a throughput that is an order of magnitude higher than that achieved by the MCS algorithm. 

As Figure 6 illustrates, the static algorithm does not scale when we decrease the ratio of reads to 

writes. The throughput of writers begins to dominate the curve; the shape of the curve begins to look 

like 1/n, where n is the number of processors. This makes sense, as the latency for a writer increases 

linearly with n. The throughput curve for our dynamic algorithm also begins to flatten; we do not get 

an increase in throughput as the number of processors increases. As the number of processors increases, 

it is more likely that any process is performing or waiting to perform a write, since the writer latency 

increases; the throughput of writes becomes the limiting factor for total throughput. 

We can see from Figure 7 that the MCS algorithm begins to outperform the dynamic algorithm as 

the number of writes becomes substantial. However, the dynamic lock is within a constant factor of 

the MCS lock, and these factors are larger than they should be, as we did not work hard to tune our 

implementation of the dynamic lock. For example, when a process reads the valid list, it performs a 

remote read for every element in the list. A more efficient implementation would read the list in larger 

blocks, which would result in lower latency and less network contention. For this reason, we believe that 

even at a lower percentage of reads, the performance of the dynamic lock could be comparable to that 

of the MCS lock. 

Figures 8 and 9 demonstrate that as the number of writers increases, the MCS algorithm performs 

even better relative to the others. This is to be expected, since our algorithms are designed to take 

advantage of a large number of readers. Interestingly, the dynamic algorithm performs at least as well 
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as the monitor-based algorithm, even with 0% readers. 

4.2 Performance Under A Synthetic Load 

Figures 10-15 illustrate how the various algorithms scale when processes spend 50 cycles inside the lock. 

This models a more realistic situation, where processes do spend some time holding a lock. The shapes 

of the throughput curves in these figures are very similar to those in Figures 4-9, and we can draw 

similar conclusions. 

5 Related Work 

This work is very similar to work in distributed filesystems (6, 17], although the thrust is different. Our 

goal is to increase throughput in multiprocessors, whereas the main motivation in distributed systems has 

typically been to avoid the latency of remote lock requests. Burrows' MFS filesystem [6] uses a locking 

scheme that resembles our dynamic lock, where a central server keeps track of all of the processes with 

read locks. The Vaxcluster system [17] provides a distributed lock manager that allows a more general 

locking semantics than reader-writer synchronization; its structure is also similar, in that each resource 

has an associated lock-manager that keeps track of the outstanding locks for that resource. 

Distributed systems also deal with dropped messages, network partitions, and processor failures; 

however, most multiprocessor systems are not designed to deal with such occurrences. The use of 

time-based expiration of locks has been explored by Gray and Cheriton as a means of dealing with fault­

tolerance (10]: a process that requests a lock gets a lease, which expires after a certain time. It would be 

interesting to combine such a mechanism with the dynamic algorithm, as we expect that fault-tolerance 

will become more important as multiprocessors scale. 

There is also some similarity between this work and research on cache coherence. The dynamic lock 

can be viewed as directly implementing a directory-based cache consistency scheme for a reader-writer 

lock [1]: the valid list is analogous to a directory of possible readers. Similarly, the static lock can be 

viewed as generalizing a bus-based (broadcast) cache consistency scheme. 

Recent work has explored two-phase (spin, then block) algorithms for waiting in multiprocessors 

[11, 13]. This work has shown that two-phase algorithms perform better than pure spinning or blocking, 

and that some two-phase strategies perform within a constant factor of the oflline optimal decision to 

spin or block. In generalizing our algorithms to handle multiple processes per processor, it would be 

very useful to incorporate this work. 
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6 Conclusion 

We have experimented with two new algorithms for reader-writer synchronization, in the hope that the 

opportunity for parallelism between readers would allow us to achieve higher throughput than existing 

algorithms. Although the static algorithm does not exhibit better performance (except when there are 

very few writes), the dynamic algorithm achieves substantially higher throughput and better scalability 

than current algorithms. 

In environments where reads are a high percentage of lock requests, the dynamic algorithm performs 

significantly better than the MCS lock. When writes are a significant proportion of lock requests, the 

MCS lock performs slightly better. This is to be expected, for as the percentage of writes increases, a 

reader-writer lock increasingly behaves like a mutex. In highly parallel systems, it is likely that writes to 

heavily shared memory will be infrequent; if there are many such writes in an application, the parallelism 

available is likely to be very low. 

It would be useful to find analytic bounds on the performance of reader-writer locks; we could 

then evaluate in a more absolute sense how the dynamic lock performs. We actually designed another 

algorithm that uses combining-tree techniques: we intended this algorithm to be more adaptive than the 

dynamic algorithm. Unfortunately, this tree-based algorithm always performs worse than the dynamic 

algorithm. We are investigating the possibility of improving this algorithm; in particular, the use of 

blocking instead of spinning may help. 

An important implication of our research is that the design of an algorithm should take into account 

the semantics of the problem. The MCS lock does not take advantage of the differences in semantics 

between reader-writer synchronization and mutual exclusion; as a result, the throughput that it achieves 

for readers does not scale. Our results suggest that significant performance advantages can be obtained 

by paying careful attention to the semantics of synchronization primitives. 
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