
:l!llPU: .. Mill,t,t&@M.'Wt- t,,.1 MW. t.J., U.1'1h ... E1!14M~ .. ¥JIQ 11!.QtL444rMJM.kl;tiiil@IJ#LiLUliJQJMM£Mttl.l .U@J#4@J.J£!I.4\4UQJ.UlJJ§t;;UQ. fc,@-t41§Jt 
·;:::gJ ·. . . . . . . 

' 
! 

· .. ,, ·.· .. '.).- ... ... _, ... -

···•Ul••t" Cid .. ·. . ,4 • .•• ,, .. ·· ·1·1. · . . ·. . .. J 1 





Preventing Recursion Deadlock in 

Concurrent Object-Oriented Systems 
by 

Eric A. Brewer Carl A. Waldspurger 

Technical Report MIT /LCS/TR-526 

January 1992 

Abstract 

This paper presents solutions to the problem of deadlock due to recursion in concurrent object­
oriented programming languages. Two language-independent, system-level mechanisms for 
solving this problem are proposed: a novel technique using multi-ported objects, and a named­
threads scheme that borrows from previous work in distributed computing. We compare the 
solutions and present an analysis of their relative merits. 

Keywords: deadlock, recursion, object-oriented systems, programming languages, concurrency 

© Massachusetts Institute of Technology 1992 

This work was supported in part by the National Science Foundation under grant CCR-8716884, 
by the Defense Advanced Research Projects Agency (DARPA) under Contract N00014-89-J-
1988, and by an equipment grant from Digital Equipment Corporation. Eric A. Brewer was 
supported by an Office of Naval Research Fellowship. 

Massachusetts Institute of Technology 
Laboratory for Computer Science 
Cambridge, Massachusetts 02139 



2 1 INTRODUCTION 

1 Introduction 

Recursion is a powerful programming technique that allows straightforward expression of many 

algorithms. Unfortunately, recursion often leads to deadlock in contemporary concurrent object­

oriented systems. In many systems [Ame87, Yon87, Man87, Chi90], a method that modifies 

an object's state cannot even call itself recursively. This occurs because the object (as sender) 

is blocked waiting for its call to complete, but the called method never executes because the 

object (as receiver) is blocked. In general, recursion deadlock occurs whenever an object is 

blocked pending a result whose computation requires the invocation of additional methods on 

that same object. 

We present two transparent solutions that allow general recursion without deadlock. These 

solutions are transparent in that programs suffering from recursion deadlock will run correctly 

without change if either solution is incorporated into the underlying system. The first solution 

is based on multi-ported objects, and uses separate communication ports to identify recursive 

calls. The second solution, named threads, draws on previous work in distributed computing, 

and generates a unique name for each thread in order to detect recursive calls. 

A combination of three factors leads to recursion deadlock. First, an object must hold a lock 

on some state. In systems with at most one active thread per object [Ame87, Yon87, Man87, 

Chi90], there is a single implicit lock for the entire object state. Second, the object must make 

a blocking call to some object (possibly itself), holding the lock while it waits for the response 

to the call. Finally, the resulting call graph must contain a call back to the locked object that 

requires access to the locked state, forming a cycle. When these criteria are met, every object 

involved in the cycle is waiting for a reply, but none of the objects can make any progress. The 

objects on the cycle are deadlocked. 

Aside from simple recursive methods, many patterns of message-passing can lead to recur­

sion deadlock. A common practice in programming sequential object-oriented systems is to 

use a method as a modular "subroutine" from within another method defined on the same 

object. An attempt to do this in a concurrent system, however, will result in deadlock. More 

sophisticated programs that manipulate cyclic data structures, use call-backs while responding 

to unusual or exceptional conditions, or implement dynamic sharing mechanisms are all candi­

dates for recursion deadlock. Some programming styles are also prone to recursion deadlock. 

For example, using inheritance by delegation [Lie86, Lie87], an object can delegate the handling 

of a method to another object dynamically. In a delegated call, references to self should be 

resolved to the original object that performed the delegation.1 Thus, all calls to self involve 

1The term self may be somewhat misleading in this context. Whenever a message is delegated, it must 



3 

call-backs that could lead to recursion deadlock. 

In the next section, we examine existing work related to the recursion deadlock problem. Our 

basic model of concurrent object-oriented systems is defined in section 3. Section 4 discusses 

the semantics of recursion without deadlock. In section 5, we outline our general solution 

framework, and we present the solutions in sections 6 and 7. An illustrative example appears 

in section 8. Finally, we compare the solutions in section 9, and then present our conclusions. 

2 Related Work 

A variety of partial solutions exist for handling some cases of recursion deadlock. The simplest 

partial solutions handle only direct recursion involving a single object. These amount to re­

leasing the object lock and ensuring that the next method invoked is the recursive call (e.g., 

by prep ending it to the incoming message queue), which will reacquire the lock. This approach 

is implicit in languages such as Vulcan [Kah87], which ensure that calls to self are processed 

before other incoming messages. 

Another solution for direct recursion is to provide procedures in addition to methods [Yon87]. 

Unlike methods, procedures are stateless and need not be associated with an object. Since 

procedures are stateless, they do not require locks. Using this approach, a method calls a 

procedure and the procedure handles the recursion. This avoids deadlock because there is no 

lock acquisition, assuming the procedures never invoke any methods. (Recursion deadlock is 

possible if the procedures invoke methods or otherwise acquire locks.) Since procedures only 

have access to the current object's state, multiple-object recursion is not possible. 

A partial solution for fixed-depth recursion is the use of selective message acceptance con­

structs [Yon87, Ame87]. For example, ABCL/1 allows calls to be accepted in the body of a 

method if the object enters a selective "waiting mode". In this case, the recursive call is handled 

in the body and need not acquire the object lock. An explicit waiting mode must be introduced 

for each level of recursion; if there are too many recursive calls the system will deadlock. 

If recursive calling patterns are completely known in advance, deadlock can be avoided 

in actor systems by using replacement actors. By cleverly specifying insensitive actors that 

buffer most incoming messages while responding to a few special messages (such as become), 

programmers can write code that explicitly avoids potential deadlocks [Agh86]. Insensitive 

actors are automatically generated by compilers for actor languages to support the acceptance of 

include a reference to the client object that originally received the message. The term client is used because 
the object that is the target of the delegation can be thought of as performing a service for the original object 
[Lie86]. 



4 3 COMPUTATIONAL MODEL 

replies to messages sent by a locked actor.2 Although actor replacement provides the flexibility 

required to write deadlock-free code, the complexity of explicitly introducing insensitive actors 

and behaviors for all possible recursive calling patterns is daunting. In fact, these low-level 

actor mechanisms could be used to implement the solutions we propose without system-level 

changes. In general, systems that provide linguistic control of message acceptance, such as 

enabled-sets [Tom89] or protocols [Bos89), can be used to implement our language-independent 

solutions. 

Techniques for deadlock detection from the distributed systems and database literature 

[Gli80, Sin89) could also be used to address the recursion deadlock problem. Deadlock de­

tection algorithms examine process and resource interactions to find cycles (assumed to be 

relatively infrequent), and usually operate autonomously, separate from normal system activi­

ties. Although such schemes theoretically could be used to detect and recover from deadlocks 

in a concurrent object-oriented system, they would not be practical for fine-grained programs 

that use recursion. Nevertheless, the general idea of maintaining a list of blocked-process de­

pendencies is related to the deadlock-prevention techniques that we propose. 

Finally, recursion deadlock is closely related to the nested-monitor problem [Lis77). In the 

nested-monitor problem, monitors correspond to objects with a single lock. Nested-monitor 

calls correspond to blocking calls made while an object holds its lock. Thus, deadlock occurs if 

there is a cycle in the call chain.3 Most work on the nested-monitor problem occurred before 

the advent of concurrent object-oriented languages. Solutions presented during that period 

amounted to either releasing the lock across the call or forbidding calls entirely [Had 77). 

3 Computational Model 

We make a few basic assumptions about the underlying computational model. The model we 

assume encompasses most contemporary concurrent object-oriented systems. Objects abstractly 

encapsulate local state with a set of methods that can manipulate that state directly. Objects 

interact only by sending messages to invoke methods at other objects. To avoid ambiguity, we 

define the following terms: 

• Message: A message is a request from a sender object to a receiver object to perform an 

operation. A message causes the invocation of a particular method at the receiver; the 

2 In actor parlance, an actor that has not yet computed its replacement behavior. 
3 The nested-monitor problem is not restricted to cyclic calls. At the time, other forms of deadlock were the 

primary concern. 



:) 

arguments for that method are passed in the message. ~fessages may or may not arnve 

in the order they were sent, but message delivery is guaranteed. 

• Message Queue: Each object has a message queue that buffers all incoming messages. 

An object removes messages from its queue and invokes the corresponding methods. \Ve 

ignore issues of message priority and queue overflow. 

• Send: We divide messages into two categories, sends and calls. A send is an asynchronous, 

non-blocking method invocation. It is unidirectional, and has no corresponding reply. 

After performing a send, the sender immediately continues execution, and does not wait 

for a reply or for the completion of the invoked method. 

• Call: A call is a synchronous, blocking method invocation. After performing a call, the 

sender waits for a reply. This is analogous to normal procedure call semantics. Any locks 

held by the sender prior to the call are held until the reply is received. Every call has 

a matching reply; we assume the underlying system handles the matching of call-reply 

pairs.4 

A set of concurrent calls may also be sent such that each of the calls operates in parallel, 

and the sender waits for replies from all of the calls before continuing execution. This 

corresponds to a fork-join semantics. 

• Lock: A lock ensures mutual exclusion for some piece of state. A given object may 

contain several locks. We assume that locks are the underlying primitive synchronization 

mechanism for mutual exclusion. Lock acquisition may be implicit or explicit. In actor 

languages, for example, a single object lock is acquired implicitly upon method invocation 

and is released explicitly via the ready construct, which indicates that the method has 

finished modifying the actor's state. 5 

To avoid complication, we will assume that there is a single implicit lock per object that 

provides mutual exclusion for the entire object state, as in most contemporary languages 

[Ame87, Yon87, Man87, Chi90]. However, the solutions we present can be easily adapted 

for languages with more sophisticated locking schemes; we briefly discuss this after pre­

senting the solutions for the single-lock case. 

• Thread: A thread is a single flow of control that performs a sequential computation. 

A single thread may execute code at several different objects. For example, if object 

4 We do not preclude explicit handling of reply values, which can be useful for forwarding or delegation. 
5 In actor terms, there is no mutation; the actor computes a new "replacement actor" to process subsequent 

messages. 



6 4 RECURSIVE CA.LL SEMANTICS 

A calls object B, the sequential flow of control would initially execute some code at A, 

then proceed to execute the invoked method at B, and finally continue execution back 

at A. In a sense, the thread travels with the messages between A and B. This view 

of threads may differ from the low-level details of the underlying implementation, which 

might involve two distinct "threads" at A and B. Semantically, however, there is only 

one thread because the computation is sequential. 

A thread can also fork several distinct subthreads by performing concurrent calls. In this 

case, the original thread is suspended until its subthreads, or children, all reply and join 

with the original parent thread.6 

4 Recursive Call Semantics 

4.1 Existing Sequential Semantics 

In sequential object-oriented systems such as Smalltalk-80 [Gol83] and C++ [Str86], there is 

only a single thread of control, so mutual-exclusion locks are unnecessary. In these systems, if 

the call chain generated during a method invocation results in a later invocation on the same 

object, the recursive call is permitted to modify the object's state. Thus, a recursive call may 

be used to change the state of an object in sequential object-oriented systems, and there is no 

deadlock issue. 

4.2 Proposed Concurrent Semantics 

In concurrent systems, a complete lack of mutual exclusion is not satisfactory because of the 

need to avoid interference between concurrently executing threads. For example, consider a 

bank account object A with a current balance of $100 that is accessed concurrently by two 

different threads, ti and h. Without provisions for serialization, ti and t2 could concurrently 

invoke "withdraw $75" methods on A. If both threads happened to read the current balance 

before either modified it to reflect a withdrawal, the account would have a balance of $25 

instead of being overdrawn. In order to serialize the withdraw methods, a mutual-exclusion 

lock could be associated with the account balance to ensure that each method appears to 

execute atomically. However, the addition of this lock makes recursion deadlock possible. 

Ideally, we would like to preserve atomicity while eliminating the potential for recursion 

deadlock. Our proposed semantics for concurrent systems is consistent with the "expected" 

6 Joins are relevant only for blocking calls. 



4.3 Recursion and Aiessage Order -
I 

behavior in sequential systems: we allow recursive calls to execute without (re )acquiring locks. 

However, the resulting behavior is undefined if a thread forks sub threads. ·when a thread 

forks several children, which thread gets the lock? If all subthreads have access to the object 

state, they may interfere with one another, exactly the behavior locks are supposed to prevent. 

The desired behavior is that any of the descendant threads may access the state, but only one 

may have access at any given time. Thus, our proposed semantics is to satisfy two properties: 

first, descendants must be able to acquire locks held by their ancestors, and second, mutual 

exclusion must be provided among siblings. One way to view this is that a descendant thread 

must acquire a lock from its ancestor, providing mutual exclusion from its siblings. The lock 

is returned to the ancestor when the descendant releases it. Once returned another descendant 

may acquire the lock. 

The semantics discussed so far provide mutual exclusion at the granularity of a single 

method. Atomicity at both smaller and larger grain sizes may be desirable. Finer granularity 

exclusion can be provided by explicitly acquiring and releasing locks within a method. Larger 

granularity exclusion requires that threads hold locks across multiple method invocations. Al­

though our work does not address these granularities explicitly, they can be handled by the 

solutions we present with simple modifications. Furthermore, most concurrent object-oriented 

languages provide little or no support for fine- or coarse-grain locking.1 These languages com­

monly acquire locks upon method invocation and release them at or near completion of the 

method. This implicitly limits the granularity of mutual exclusion to the method level. 

The recursion allowed by the solutions presented in this paper is generated by calls, not by 

sends. This implies that a method that performs a send and requires a result generated by that 

send before it completes will suffer from deadlock upon recursion. For example, a method that 

performs a request using send, and then waits for information from a second send, will deadlock 

if recursion is required to generate the second send. The obvious solution is to use call instead. 

so that the reply either is the result or guarantees that the required action has taken place. 

Thus we view send as a mechanism for causing remote actions that need not complete before 

the current method. This matches the use of call and send in current object-oriented systems. 

4.3 Recursion and Message Order 

The effect of the proposed mechanisms on message order depends on the policy of the un­

derlying language. In some languages, such as Acore [Man87], message ordering is completely 

nondeterministic. Others, such as ABCL/1 [Yon87], make the transmission-order preserva-

7 Exceptions include Argus [Lis88] and Concurrent Smalltalk [Dal87]. 



8 6 MULTI-PORTED OBJECT SOLUTION 

tion assumption (TOPA). TOPA guarantees point-to-point ordering: for any pair of messages 

sent from an object X to another object Y, the order of reception is identical to the order of 

transmission. 

If message ordering is nondeterministic, there are no ordering constraints that our mecha­

nisms could violate. If TOPA is guaranteed by the underlying message delivery system, then 

our mechanisms preserve TOPA. 

However, recursion introduce a new notion of order. Recursion implies that recursive sub­

tasks are logically part of the current task. In other words, all nested subtasks must complete 

before the current task can complete. Thus recursive subtasks (spawned by recursive messages) 

must be executed while the main task is waiting for the reply that the subtasks are supposed 

to generate. The logical order of execution is the order of reception, except that only recursive 

subtasks execute while the main task blocks on a call. Recursive messages are handled in the 

order received relative to other recursive messages, but before all non-recursive messages. 

5 General Solution Framework 

We describe two different transparent system-level mechanisms that allow programmers to 

express computations using recursive methods. No syntactic changes or programmer-visible 

linguistic mechanisms are necessary. 

The solutions presented in this paper have two key aspects in common. First, each message 

is tagged with identifying information by its sender. Second, each object filters incoming mes­

sages, dynamically deciding whether to accept or buffer each message based on the identifying 

information that it contains. A subset of messages in the message queue are currently accept­

able. A predicate, called the accept predicate, is used to test for membership in this set. When 

an object is ready to process a new message, it accepts the first message in its message queue 

that satisfies the accept predicate. 

6 Multi-Ported Object Solution 

In this section we present a novel solution to the recursion deadlock problem using multiple 

communication channels, or ports, per object. Conventional object-oriented systems assume 

objects have a single port through which all incoming messages arrive. The traditional notion 

of an object can be relaxed to allow several ports. The use of multiple ports to enable different 

client capabilities, multiple viewpoints, and secure communications is explored in [Kah89). We 

demonstrate that the recursion deadlock problem can be solved by providing objects with the 



6.1 Message Acceptance 

ability to create and select ports dynamically. 

The recursion problem is solved by creating a new current port for each method im·ocation. 

This port receives all replies and recursive calls, and persists until the method terminates .. .\n 

object accepts incoming messages from its current port, and buffers messages addressed to other 

ports. The current port for an idle object X is the distinguished top-level port Pf. 

6.1 Message Acceptance 

Messages that arrive at an object X while it is executing some method H are buffered in the 

message queue associated with X for later processing. If H is blocked pending the arrival 

of messages that are required for further computation, or if H completes, X enters message 

reception mode. At this point X may begin processing messages that satisfy the accept predicate. 

Multi-ported objects use the following accept predicate: a message is accepted if and only if it 

is addressed to the current port. 

6.2 Message Handling 

Normal object semantics guarantee that for each object, only one method activation exists at 

a time; objects process messages serially (between state transitions). To permit recursive calls, 

we weaken this constraint to require that each object maintain a method activation stack of 

pending method activation frames, and guarantee that only the activation at the top of this 

stack may be actively executing. This corresponds to the stack of procedure call frames found 

in conventional sequential languages. 

The top frame on the method activation stack contains the state of the currently executing 

computation. Frames other than the top frame contain the state of suspended method invo­

cations that are blocked pending the arrival of reply messages. New frames are pushed on the 

method activation stack when handling messages other than replies.8 

When message M is accepted by object X, the following actions are performed: 

1. If M is a reply, match the reply value to its corresponding call. If there are no remaining 

outstanding concurrent calls, resume the associated blocked thread. 

2. Otherwise, the following actions are performed: 

(a) A new frame is allocated on top of the method activation stack. 

8 If the current port is the distinguished top-level port, these messages can be top-level calls or sends. Other­
wise, these messages will be recursive calls. 



10 6 MULTI-PORTED OBJECT SOLUTION 

(b) A new, locally unique port number Pis generated (perhaps by simply incrementing 

a counter) and associated with the frame. This port becomes the new current port; 

the set of currently acceptable messages are those addressed to P. 

(c) The appropriate method named by Mis invoked. 

When a method completes, its frame is popped off the method activation stack. The current 

port is then set to the port associated with the suspended method currently on top of the 

activation stack. 

6.3 Sending Messages 

In the following discussion, assume that an object X, during the invocation of its method H 

in response to a message M, is sending a message My to object Y. The current port for X 

during its handling of H is denoted by Pf. 

My is augmented with a port binding map, BMy, that associates object names with com­

munication ports. In general, the size of a port binding map BM is proportional to the number 

of distinct objects involved in the processing of message M. The procedure for sending My is: 

1. If My is a send: 

(a) Set BMy to nil. 

(b) Send My to Y at port P[. 

2. If My is a call, compute the destination port and the port binding map to be sent with 

M: 

(a) The destination port pis computed by searching for the port associated with Y in 

the port binding map BM from message M. If Y ti. BM, then set p to P[. 

(b) Set BMy to be the same as BM extended9 (or changed) to map X---+ Pf. 

( c) Send My to Y at port p, saving the appropriate information to match up the reply 

from Y. 

( d) If My is one of several concurrent calls, perform the remaining calls. After perform­

ing the last call, suspend the current thread pending replies. 

9 This extension (or change) is done at most once per method invocation, not once per call. 



6.4 Extension for Aiultiple Locks 11 

6.4 Extension for Multiple Locks 

Some languages, such as Concurrent Smalltalk [Dal87], support the addition of explicit locks 

for object methods as a general mechanism for concurrency control. The multi-ported object 

solution for recursion deadlock can be adapted to work with such languages. 

Basically, the notion of a current port is extended to a current port set; each lock has an 

associated current port. Port binding maps associate object names with communication port 

sets. The accept predicate is modified to accept a message if and only if it is addressed to the 

current set of ports. When an incoming message is accepted, a new method activation frame is 

allocated, and an associated unique port number is generated for every lock that the method 

acquires. \Vhen a call message is sent, the current port binding map is extended (or changed) 

to map self to the current port set. 

6.5 Summary 

In summary, an object creates a port for each method invocation. This port is used exclusively 

for replies and recursive calls. The port name is propagated in the port binding maps of call 

messages to objects that perform computations as subtasks on behalf of the current method. 

Each call is addressed to a specific destination port, and is accepted by an object only if its port 

matches the port associated with the current method. Section 8 presents an example using the 

multi-ported object approach to avoid recursion deadlock. 

7 Named-Threads Solution 

The essential elements of named threads are based on action ids from Argus [Lis88, Lis87], a 

language for robust distributed computing. The named-threads approach to avoiding recursion 

deadlock assigns each thread a unique identifier that travels with it through every object and 

message. Every object has a current owner, which is its currently executing thread, and every 

message has a name, which is that of the thread that carries it. In a recursive call, the name 

of the message matches the name of the owner. This avoids the deadlock that results from 

attempting to reacquire access to the state. 

The simplest cases occur in systems without concurrent calls. In such situations, a thread 

is given a unique name that it keeps for the duration of its existence. Upon acquiring access 

to the object's state, the thread marks itself as the owner of the object using its name or 

thread id. Upon recursion, the thread id of the message is checked against the thread id of the 

owner. If the ids match, the incoming message has access to the state. Because the new task 



12 7 NAMED-THREADS SOLUTION 

can determine that it already has access, it does not wait for the current task to finish, thus 

avoiding deadlock. 

The essential elements of named threads originated in Argus [Lis88], a language for robust 

distributed computing. Argus uses transactions to provide fault tolerance: a transaction either 

completes correctly, or if aborted, has no effect on the state of the system. A transaction often 

involves several objects (possibly on different machines) and several threads within an object. 

The techniques used to provide fault tolerance over many machines are quite complex and are 

not all relevant to recursion deadlock. Hidden in those techniques are the use of action ids, 

upon which thread ids are based [Lis87]. 

7 .1 Concurrent Calls 

Most concurrent object-oriented languages allow a single thread to create multiple threads. 

This wreaks havoc with the simple thread-id solution presented above. As discussed in Section 

3, two requirements must be met for the desired semantics: descendants must be able to acquire 

locks held by their ancestors, and mutual exclusion must be provided among siblings. These 

requirements lead to the following convention for naming threads. 

Upon creation, a thread is given a unique identifier. This could be done by using a com­

bination of the id of the creating object and some time-dependent integer, such as a simple 

counter. As expected, the difficulties arise with concurrent calls. A set of concurrent blocking 

calls will be referred to as a call group. When a thread forks subthreads, we extend its thread 

id for every member of its call group. The extension is different for every resulting thread. For 

example, if thread t performs three concurrent calls, the three new threads are: t.l, t.2, and 

t.3. If t.l then spawns a two-member call group, there are six threads in total: t, t.1, t.1.1, 

t.1.2, t.2, and t.3. Note that each thread has a unique thread id, and that a thread id encodes 

all of the thread's ancestors. A thread is an ancestor of another thread exactly when its id is a 

prefix of the other's id. 

The use of named threads requires some extensions to the basic object model. First, the 

object lock must have an owner. This field holds the name of the currently executing thread and 

is referred to as owner. Second, there must be a stack of pending call messages (as explained 

below), referred to as ownerStack. Finally, each message must have a field that contains its 

thread id. 



7.2 1'Jessage Acceptance 

7.2 Message Acceptance 

The named-threads approach employs the following accept predicate: a message is accepted if 

and only if it is a descendant of owner. That is, owner must be a prefix of the thread id associated 

with the message to be accepted. The accept predicate changes every time O'imer changes. The 

owner field initially contains nil, which yields a predicate that accepts all messages. Accepted 

messages are handled as follows: 

1. If the message is a reply, then it is a response to a call spawned by the current owner. 

(If it did not match the current owner, it would not have been accepted.) The blocked 

thread is resumed. 

2. Otherwise, the message is a recursive call. In this case, the current owner is pushed onto 

the stack o'WilerStack. The thread named by the id of the message becomes the new 

owner, and the method for the message executes. 

7.3 Choosing the Next Thread 

Once a thread is started, no new messages are accepted until the thread either ends or performs 

a call. When the thread ends, the next thread is chosen a.5 follows: 

1. The previous owner is popped off of ownerStack. This changes the accept predicate, 

which could make previously unacceptable messages acceptable. 

2. The next message is chosen ba.5ed on the new predicate. There must eventually be a 

message, namely the matching reply to the pending call. 

7.4 Sending Messages 

If a thread performs a call, the object starts accepting messages. Because the thread owns the 

lock, only descendant messages or the reply will be accepted. A send does not pass on the 

thread id, leaving the id field of the message empty. Thus methods executed in response to 

sends start new threads. 

When concurrent calls are made, the thread id of each member of the call group is extended 

by a unique number. All of the members are descendants of the original thread, but no member 

is an ancestor of another member. This guarantees that at most one member of the call group 

can have access to an object at any given time. The spawning thread retains ownership of 

the lock until one of the concurrent calls recurses, or until all the replies are received and the 

method completes. 



14 8 AN ILLUSTRATIVE EXAlvIPLE 

7.5 Extension for Multiple Locks 

As in the multi-ported object solution, the named-thread solution can be modified to handle 

multiple locks per object. Each object has a set of locks and a method requires a particular 

subset in order to execute. Each lock has an owner field and a stack of owners. As in the 

single-lock case, the owner field contains the name of the thread that holds the lock. A message 

is accepted if it can obtain all of the locks needed by the corresponding method. Every lock 

the method needs must be either free or owned by an ancestor. If the required subset can be 

obtained, the current thread becomes the new owner of every lock in the subset. The previous 

owners are pushed onto the corresponding stacks. Upon release of a lock, the previous owner 

is restored. 

7.6 Summary 

In summary, recursion is detected by encoding ancestry in thread ids. Recursive calls are de­

scendants of the blocked call, and are allowed to execute. Names are extended when concurrent 

calls are made, providing mutual exclusion among the resulting threads. An example is given 

in the next section. 

8 An Illustrative Example 

Consider a do-query method defined for a node object that is connected to other nodes in a 

graph. When invoked on a node N, this method queries each of N's children concurrently and 

then returns a function of their replies. The children compute their replies in the same way. As 

is common in sequential implementations, a node object marks itself visited the first time it is 

queried, and the do-query method returns immediately if an object has already been visited. 

To illustrate our solutions, we examine this abstract concurrent query algorithm on part of 

a larger graph. Note that the call tree is isomorphic to the graph; calls are made along the 

directed edges. 

Figure 1( a) presents a graph that does not involve recursion. Figure l(b) depicts a query 

performed in this graph. Object X queries object W, which concurrently queries objects Y 

and z. All of the queries complete and X returns the result. Figure l(c) presents a graph that 

involves recursion; the corresponding query in figure 1( d) suffers from recursion deadlock. Since 

X is blocked waiting for the query to W to complete, the query from W to X never executes. 

The method at W will not complete until X replies, and X will not reply until the method at 

W completes. The following two subsections illustrate how the solutions eliminate recursion 



l .S 

(a) (b) 

(c) (d) (e) 

Figure 1: Graph fragments and calling patterns in the abstract query example. In the calling 
pattern diagrams, call and reply messages are represented by solid and hollow arrowheads 
respectively. (a) A non-recursive graph fragment. (b) Call pattern in the non-recursive graph 
fragment. X calls W, which concurrently calls Y and Z. (c) A recursive graph fragment. 
(d) Call pattern in the recursive graph fragment. X calls W, which concurrently calls X and 
Y, resulting in deadlock. ( e) A deadlock-free call chain, which uses the solution techniques 
presented in the paper. 



16 8 AN ILLUSTRATIVE EXA1\IPLE 

deadlock in this example. 

8.1 A Multi-Ported Object Solution 

The following steps, depicted in Figure 1( e ), trace the message-passing activity for the example 

presented above. Assume that objects W, Y, and Z a.re initially idle, with current ports Pif', 

Pf, and Pf, respectively. Assume that X calls W while its current frame is X 5 , with associated 

port Pf. 

1. X calls do-query at W on port P0w, using the port binding map10 B = {(X --+ Pf)}. 

2. W receives X's call: W starts a new frame W1 with associated port Pf. W concurrently 

calls X and Y, using B = {(X--+ Pf), (W--+ Pf)}. The call to Xis sent to X's port 

Pf, and the call to Y is sent to Y's port PJ'. 

3. Concurrently: 

(a) Y receives W's call: Y starts a new frame Y1 with associated port Pr. Y replies to 

W, and ends frame Y1. 

(b) X receives W's call: Note that this is a recursive call involving the path of objects 

X --+ W--+ X. X accepts the message since it is addressed to X's current port Pf. 
X starts a new frame X 6 with associated port P{. X replies to W, and then ends 

frame X 6 , restoring X 5 as the current frame. 

4. W receives the replies from X and Y. 

5. W computes the return value as a function of the information returned from X and Y, 

and sends a reply containing this value to X. W then ends frame W1, restoring Wo as 

the current frame. 

8.2 A Named-Threads Solution 

This example can be used to illustrate the named-threads technique as well. Objects will be 

annotated with their current owner: "X[t.l]" implies that object Xis owned by thread t.l. 

1. X[x] calls W[], invoking method do-query. This leads to W[x]. 

10The port binding map B would contain additional entries if the current call is part of a larger call chain. For 
clarity, only those entries relevant to the calls in the depicted graph fragment are listed. 



17 

2. W[x] concurrently calls X[x] and Y[]. The message to X[x] has an id of x.1, and the 

message to Y[ J has an id of x .2. 

3. Concurrently: 

(a) Y[] receives the call from W[x]. Note that Wis owned by x but the calling thread 

is x.2. This implies Y[x.2]. The result is calculated and returned to W[x]. After the 

reply, Y is again unowned, that is, Y[]. 

(b) X[x] receives the call (with message id x.l) from W[x]. This is a recursive call. 

Since x, the current owner of X, is an ancestor of the calling thread, x.l, the call is 

accepted. The current owner, x, is pushed on to ownerStack, and x.l becomes the 

new owner. X[x.l] replies to W[x], and the previous owner is popped off the stack. 

This implies X[x]. 

4. W[x] receives the replies from X and Y. 

5. W computes the return value of do-query based on the replies. The result is returned to 

X[x], and Wis again unowned. The ownership is then: X[x], Y[], and W[J. 

9 Analysis and Comparison 

The multi-ported object and named-thread solutions affect the underlying system in three major 

areas: maintenance of a call stack, overhead for message sending and message acceptance, and 

an increase in message length. The impact is negligible when using only sends, but may be 

significant in the presence of blocking calls. 

A send message incurs negligible overhead because there is no call stack, little extra work 

for handling messages, and no increase in message length. For the case of blocking calls, each 

object maintains a stack of pending calls. In the multi-port solution this is the stack of frames, 

while in the named-threads solution, it is the stack of owners. For general recursion, the size of 

the pending call stack is unbounded. The height of the stack at X depends on the number of 

recursive calls in the call chain, that is, the number of calls to X. For single-object recursion, this 

is the depth of the call cha.in, while for multiple-object recursion the height will be smaller than 

the length of the call cha.in. The stack is not a side effect of these solutions; it is fundamental to 

recursion. Just as a stack supports recursive procedures in conventional sequential languages. 

the stacks used here support recursive call messages. 



18 9 ANALYSIS AND COMPARISON 

9.1 Comparative Overhead 

For the general case, is it useful to define two metrics for call chains: object depth and split 

depth. The object depth is the number of distinct objects in a call chain. Thus, if X calls Y 

calls Z, the object depth is three, while if X calls Y calls X, the object depth is two. The 

split depth measures the number of splits in a call chain. An unsplit thread is defined to have 

a split depth of one. Thus if X calls Y, the split depth at Y is one, while if X concurrently 

calls Y and Z, the split depth at Y is two (one for the original thread and one for the split at 

X). Using the named-threads notation introduced in section 7, the split depth is the number 

of fields in the id: "x .1.2" has a split depth of three. 

The solutions differ in the performance of choosing destinations for calls and accepting 

messages. For multi-ported objects, choosing a destination for a call requires scanning the port 

binding map to identify the exact destination. The average time for this scan is proportional 

to the length of the port binding map, which is the same as the object depth of the call 

chain. Thus the time for locating the destination is proportional to the object depth.11 For the 

named-threads solution, the destination is known and the cost is constant. 

The cost of message acceptance has a dual behavior. The multi-port solution checks the 

validity of the port with a single comparison. The named-threads solution must compare the 

id of the message and the id of the owner. In the worst case, this comparison is proportional 

to the length of the owner id. Since the length of the owner grows with each split, the cost of 

the acceptance test is proportional to the split depth. Note that if the object is unowned, the 

message is a send, or the id starts with a different object, then the test completes immediately. 

In summary, the multi-port solution requires time proportional to the object depth for choosing 

a destination, but can accept messages in constant time. On the other hand, the named threads 

solution requires time proportional to the split depth for accepting a message, but can locate 

message destinations in constant time. 

Message length is also affected differently by the two solutions. For multi-ported objects, 

the message is extended by the port binding map: the length of the extension is proportional to 

the object depth. For named threads, the message is extended by the id of the calling thread: 

the length of the extension is proportional to the split depth. 

11 More complex data structures, such as hash tables, could reduce this lookup to constant time asymptoti­
cally. However, this would probably be worse in practice due to both higher constant factors and larger space 
requirements. 



9.2 Example Calling I'atterns 

(a) (b) (c) (d) 

Figure 2: Calling patterns for comparing object depth and split depth. Arrows denote calls, 
and arcs joining arrows signify concurrent calls. 

9.2 Example Calling Patterns 

Since the performance of the multi-port solution depends on object depth and that of the 

named-threads solution depends on split depth, their relative merit depends on the call chains 

encountered in a given system. Several possible call chains are shown in Figure 2. 

The most common case of recursion is direct recursion, represented by the call chain in 

Figure 2( a). Only one object and one thread are involved, so both the object depth and the 

split depth are one. Both solutions have low overhead for this case. 

A more general form of recursion is shown in Figure 2(b ). The call chain is a cycle of k 

objects. Fork= 2, this reduces to simple mutual recursion. Since there are k objects involved, 

the object depth is k, regardless of how many times the call chain loops around the cycle. Since 

there are no concurrent calls, the split depth is one. Note that the overhead is the same if the 

last call is not recursive; the split depth is one and the object depth is k. The overhead for the 

multi-port solution is proportional to k, while the overhead for the named-threads solution is 

constant. The named-threads approach is superior when there are many objects involved and 

few concurrent calls. 

The multi-port solution is superior in the opposite case: few objects and many concurrent 

calls. Figure 2(c) depicts a call chain with only two objects, each of which makes a pair of 

concurrent calls. This kind of call tree might occur in a system that processes data structures 

with two different types of nodes. For example, consider a computation applied to a binary 

tree, in which X handles all of the right nodes and Y handles all of the left nodes. Because 

there are only two objects involved, the object depth is two, regardless of the height of the call 



20 10 CONCLUSIOSS 

tree. Performance is much worse for the named threads solution. After k pairs of concurrent 

calls, the split depth is k for threads that are the leaves of the call tree. Thus, the overhead 

for the multi-port technique is constant, while the overhead for the named-threads solution is 

proportional to k. 

In summary, the relative overhead of these solutions depends on the ratio of object depth 

to split depth. Systems with recursion among small groups of objects and many concurrent 

calls would perform better using the multi-ported object technique. Systems with recursion 

among many objects and few concurrent calls would perform better using the named-threads 

technique. In many applications, call chains involve few objects and few concurrent calls, in 

which case both solutions perform well. 

9.3 A Hybrid Model: Differentiating Recursive Calls 

Since the additional overhead in the proposed solutions stems from the requirements of recursive 

calls, it may be useful to differentiate calls that are allowed to recurse from those that are not. 

Note that if a call is not allowed to recurse, the situation is identical to current object systems 

with one exception: non-recursive calls must propagate the recursion information if performed 

in response to a call that is allowed to recurse. This mixed model yields better performance 

when a programmer (or compiler) is certain that recursion cannot occur. However, deadlock 

results if a "non-recursive" call does recurse. 

9.4 General Object Deadlock 

Although the techniques presented eliminate deadlock due to recursion, the general deadlock 

problem remains quite serious. Figure 2( d) depicts a call chain that may lead to deadlock. 

Object X concurrently calls objects Y and Z, which in turn call each other. Deadlock occurs if 

Y is blocked waiting on Z and Z is blocked waiting on Y. In this case, deadlock can be avoided 

by serializing the calls at X. Unfortunately, avoiding deadlock in general is quite difficult. 

Thus, although blocking calls provide clean, simple semantics, it is generally safer to use sends 

wherever possible. But using sends without eliminating blocking is no better than using calls; 

the fundamental problem is blocking. 

10 Conclusions 

Current object systems place severe limits on the use of recursion, reducing expressive power. 

The two techniques presented allow fully general recursion in a manner that is transparent to 



the user. The multi-port solution uses ports to distinguish recursive calls, placing the hurdl'n 

on the sender to identify the correct port. The named threads solution names each path in 

the call tree, encoding ancestors in the name. The test for ancestry is used to detect recursive 

calls, placing the burden on the receiver to identify ancestors. The relative overhead of these 

solutions is dependent on application call graphs, in particular, on the ratio of object depth to 

split depth. Call graphs with many objects and relatively few concurrent calls perform better 

with the named-threads solution, while the multi-port solution leads to better performance in 

the opposite case. 

Recursion is a powerful and important programming technique that causes deadlock in 

most concurrent object-oriented systems. The solutions presented in this paper provide simple, 

effective system-level support for general recursion. They can be used by designers and imple­

mentors of concurrent object-oriented systems to avoid severe restrictions on the expression of 

recurs10n. 

11 Acknowledgements 

We are grateful to Barbara Liskov, William Weihl, Adrian Col brook., Chris Dellarocas, Sanjay 

Ghemawat, Bob Gruber, Wilson Hsieh, Ken Kahn, and Paul Wang for their comments and 

assistance. 

References 

[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT 
Press, Cambridge, MA, 1986. 

[Ame87] Pierre America. POOL-T - A Parallel Object-Oriented Language. In Akinori 
Yonezawa and Mario Tokoro, eds., Object-Oriented Concurrent Programming, MIT 
Press, 1987. 

[Bos89J Jan van den Bos and Chris Laffra. PROCOL: A Parallel Object Language with Pro­
tocols. Proceedings of the Fourth ACM Conference on Object-Oriented Programming 
Systems, Languages, and Applications (OOPSLA '89), October 1989. 

[Chi90] Andrew A. Chien. Concurrent Aggregates {CA): An Object-Oriented Language for 
Fine-Grained Message-Passing Machines., PhD thesis, Massachusetts Institute of 
Technology, July 1990. 

[Dal87] William J. Dally. A VLSI Architecture for Concurrent Data Structures. Kluwer Aca­
demic Publishers, 1987. 



22 REFERENCES 

[Gli80] Virgil D. Gligor and Susan H. Shattuck. On Deadlock Detection in Distributed Systems. 
IEEE Transactions on Software Engineering 6(5): 435-440, September 1980. 

[Gol83] Adele Goldberg and David Robson. Smalltalk-BO: The Language and its Implementa­
tion. Addison-Wesley, Reading, MA, 1983. 

[Had 77] Bruce K. Haddon. Nested Monitor Calls. Operating Systems Review, vol. 11, no. 3, 
October 1977. 

[Kah87] Kenneth Kahn, Eric Dean Tribble, Mark S. Miller, and Daniel G. Bobrow. Vulcan: 
Logical Concurrent Objects. In Ehud Shapiro, Concurrent Prolog: Collected Papers, 
MIT Press, 1987. 

[Kah89] Kenneth Kahn. Objects: A Fresh Look. Proceedings of the Third European Conference 
on Object-Oriented Programming (ECOOP '89), Cambridge University Press, July 
1989. 

[Lie86] Henry Lieberman. Using prototypical objects to implement shared behavior in object­
oriented systems. Proceedings of the First ACM Conference on Object-Oriented Pro­
gramming Systems, Languages, and Applications (OOPSLA '86), September 1986. 

[Lie87] Henry Lieberman. Concurrent Object-Oriented Programming in Actl. In Akinori 
Yonezawa and Mario Tokoro, eds., Object-Oriented Concurrent Programming, MIT 
Press, 1987. 

[Lis87] Barbara Liskov. Implementation of Argus. Proceedings of the 11th ACM Symposium 
on Operating Systems Principles, November 1987. 

[Lis88] Barbara Liskov. Distributed Programming in Argus. Communications of the ACM, vol. 
31, no. 3, March 1988. 

[Lis77] Andrew Lister. The problem of nested monitor calls. Operating Systems Review, vol. 
11, no. 2, July 1977. 

[Man87] Carl R. Manning. Acore: The Design of a Core Actor Language and its Compiler. 
Master's thesis, Massachusetts Institute of Technology, August 1987. 

[Sin89] Mukesh Singhal. Deadlock Detection in Distributed Systems. IEEE Computer, Novem­
ber 1989. 

[Str86] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA, 
1986. 

[Tom89] Chris Tomlinson and Vineet Singh. Inheritance and Synchronization with Enabled­
Sets. Proceedings of the Fourth ACM Conference on Object-Oriented Programming 
Systems, Languages, and Applications (OOPSLA '89), October 1989. 

[Yon87] Akinori Yonezawa, Etsuya Shibayama, Toshihiro Takada, and Yasuaki Honda. Mod­
elling and Programming in an Object-Oriented Concurrent Language ABCL/1. In Aki­
nori Yonezawa and Mario Tokoro, eds., Object-Oriented Concurrent Programming, 
MIT Press, 1987. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

?uo11c reooning ourcen for nws colleCT1on ot 1nrormat1on is estimat~ to a11erage 1 ~our oer resoo~se. 1nc1ua1ng u•:e time for rev1ewrng 1nstruc:::1ons. :.earc.~1ng ex1st1ng .::Jata sources, 
gathering Jrd m~1nta1n1ng the '=lata ne"!a~. and como1et1ng :Jna rE>•11ew1ng L"":e cclleCT10n of 1ntormat1on. Sena commem.s re1arc1~g U1ts curcen estimate or an11 otrier asoeCT_or tnis 
.::01lecrrcn of 1nformat1on. :nctua1ng sugg~nom. tor reducing t.i-:rs curcen to •/llashrngton rleaoauaners Serv1ce'i. 01recrorate tor 1 ntorniat1on Ooerarians ana Reoorts, 1215 .Jeffer'!lon 
Davis Higriwav, Suite 1 2C4 . .:.r11ngcon. ·l J. 22202~302. dnO to tri~ Otf1ce 0t Management ano Budget, PaoerworK Reduction Pro.1ect (0 704-0 1SS). 1Nasn1ngrnn. JC 2VS03. 

1. AGENCY USE ONLY (Leave blank) J2
· Rife°6': Df~92 13. REPORT TYPE 

4. TITLE AND SUBTITLE 

Preventing Recursion Deadlock in Concurrent 

Object-Oriented Systems 

6 . .l.UTHOR(S) 

Eric A. Brewer, Carl A. Waldspurger 

1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Massachusetts Institute of Technology 

, Laboratory for Computer Science 

l 545 Technology Square 

! Cambridge, ~.A 02139 
I 

j 9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS( ES) 
l 
l 
I 
j 

! DARPA 
i 

AND DA TES COVERED 

s. FUNDING NUMBERS 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

MIT/LCS/TR 526 

j 10. SPONSORING 1 MONITORING 
j .l.Gi:NCY REPORT NUMBER 
l 
l 
! N00014-89-J-1988 

~ 

J 11. SUPPLEMENT.l.RY NOTES 

l 13 . .l.BSTRACT (Maximum 200 words) 

' 
l 

I This paper presents solutions to the problem of deadlock due to recursion in concurrent object­
oriented programming languages Two language-independent, system-level mechamsms for 
solving this problem are proposed: a novel technique using multi-ported objects, and a named­
threads scheme that borrows from previous work in distributed computing. We compare the 
solutions and present an analysis of their relative merits. 

14. SUBJECT TERMS 15. NUMBER OF PAGES 

22 
deadlock, recursion, object-oriented systems, programming~-------------; 

16. PRICE CODE 
languages, concurrency 

17. SECURITY CLASSIFICATION 
OF REPORT 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT 
OF ABSTRACT 

NSN 7540-01-280-5500 Starcard Form 298 (Rev 2-89) 
:Jr~sc~ ::~by -H~)i ;ta L39-i3 
293- ::;2 

I 
l 

l 
I 
l 


