
LABO RA TORY FOR
COMPUTER SCIENCE

MIT/LCS{fR-539

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

PIPES: LINGUISTIC SUPPORT
FOR ORDERED

ASYNCHRONOUS INVOCATIONS

Adrian Colbrook
Eric A. Brewer

Wilson C. Hsieh
Paul Wang

William E. Weihl

April 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Pipes: Linguistic Support for Ordered

Asynchronous Invocations
by

Adrian Colbrook
Eric A. Brewer

Wilson C. Hsieh
Paul Wang

William E. Weihl

April 1992

Abstract

We describe pipes, a new linguistic mechanism for sequences of ordered asynchronous procedure calls
in multiprocessor systems. Pipes allow a sequence of remote invocations to be performed in order, but
asynchronously with respect to the calling thread. Using pipes results in programs that are easier to
understand and debug than those with explicit synchronization between asynchronous invocations.

The semantics of pipes make no assumptions about the underlying architecture, which enhances code
portability. However, the implementation of pipes by the language compiler can be optimized so as to
take advantage of any underlying message ordering a particular architecture may provide. Pipes also
provide application-transparent flow control for asynchronous invocations and are able to throttle invo­
cations from multiple calling threads.

We present four implementations of pipes and show that the performance and space overheads asso­
ciated with pipes are low.

Keywords: linguistic mechanism, ordered asynchronous invocations, serialization, message-layer im­
plementation, flow control.

© Massachusetts Institute of Technology 1992

This work was supported by the National Science Foundation under grant CCR-8716884, by the Defense
Advanced Research Projects Agency (DARPA) under Contract N00014-89-J-1988 and by an equipment
grant from Digital Equipment Corporation. Individual authors were supported by a Science and En­
gineering Research Council Postdoctoral Fellowship, an Office of Naval Research Graduate Fellowship,
and National Science Foundation Graduate Fellowships.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

2 1 INTRODUCTION

1 Introduction

In this paper we describe pipes, a new linguistic mechanism for sequences of ordered asynchronous

procedure calls in MIMD multiprocessor systems. Pipes allow a sequence of remote invocations to

be performed in order, but asynchronously with respect to the calling thread. Using pipes results in

programs that are easier to understand and debug than those with explicit synchronization between

asynchronous invocations.

Remote procedure calls (RPCs) have become the standard method of communication in distributed

systems [8, 21, 34, 52] and in several parallel programming languages [7, 11, 37]. They use a widely

understood abstraction, the procedure call, that precisely specifies the remote interface. This allows

programs to be statically type checked and permits communication code to be generated automatically.

However, RPCs usually prevent the caller from running in parallel with the call, since the caller must wait

for a reply. This often leads to worse performance than explicit message passing. Consequently, some

languages and systems have introduced asynchronous procedure calls [26, 37, 43], which allow a caller

to continue to execute once its call has been sent. Mechanisms such as futures [22] and promises [35]

permit callers to run in parallel with the call and later use the results of the call.

Providing an asynchronous call mechanism alone is sometimes insufficient. A number of applications

require ordered delivery and execution. In particular, if call n has a side effect that ought to affect

call n + 1, then the execution of the calls should be synchronized to provide the required sequencing

semantics.

For example, consider executing operations on a dictionary data structure that is stored remotely.

A dictionary is a partial mapping from keys to data that supports three operations: insert, delete

and search. A number of useful computations can be implemented in terms of dictionary abstract data

types, including symbol tables and pattern-matching systems. To execute operations on the dictionary,

we need to send messages to the processor storing the dictionary. Since the dictionary is remote it may

be useful to be able to send operations asynchronously and access the result later. Intuitively, we want

the actions associated with the messages to occur in the order that the messages are sent. Thus, if a

thread sends an insert(key k, data d) request followed by a search(key k) request, we expect the

insert to take place first and the search to succeed and return the data value d associated with the key

value k (assuming that no other thread has changed or deleted the entry (k,d) in the meantime).

A further example where ordering semantics may be required is the updating of cached copies of a

replicated object. In some applications, such as the B-tree described by Wang and Weihl [49, 51], updates

to replicated objects can propagate to cached copies in a lazy fashion. Updates can be propagated by

sending asynchronous messages, but updates to copies must be made in the correct order.

The correct ordering of operations can be achieved by invoking the operations synchronously. How-

3

ever, this prevents the caller from running in parallel with the call. During an invocation the caller

will be delayed until it receives an acknowledgment: The acknowledgment could be sent as soon as the

invocation is received and enqueued at the callee, but the caller is still delayed for at least the round-trip

message delay of the network.

The round-trip message delay can be removed by performing the remote invocations asynchronously.

In this case the calling thread and target object must provide the synchronization required to preserve

order. Synchronization to achieve this effect can be coded explicitly in the application program; this

leads to complex and less efficient programs. Our mechanism for ordered asynchronous calls allows

programs to be simpler and more efficient than programs in which ordering is enforced by application­

level synchronization.

Previous work on distributed system by Gifford and Glasser [20] and in the Mercury system [30]

has resulted in the design of remote invocation mechanisms in which a sequence of calls between a

single sender and a single receiver are run in order, but asynchronously with respect to the caller. We

have adapted these ideas for use in the multiprocessor language PRELUDE [50]; our design provides

integrated language support for ordered asynchronous invocations, and also generalizes the previous

work by allowing calls from multiple sending threads to be ordered.

The use of a linguistic mechanism to provide ordered asynchronous invocations makes no assumptions

about the underlying architecture. Pipes guarantee the correct execution order regardless of the ordering

properties of the underlying architecture. This enhances portability as no changes need be made to

application code when moving to a different architecture. The implementation of pipes by the compiler

and runtime system can still take advantage of properties of the underlying architecture, so there is no

loss in performance. In fact, implementing the synchronization at the system level as opposed to the

application level results in a more efficient implementation. We show that the performance and space

overheads associated with pipes are low.

Pipes can also be used to provide flow control for asynchronous invocations. Carrying out flow control

in software is difficult in general, since a receiver cannot always determine who the next sender will be.

Implementing flow control in application programs also increases the complexity of the code. Pipes can

provide application-transparent flow control for asynchronous invocations and can throttle invocations

from multiple calling threads.

In Section 2, we define precisely what it means to "order" asynchronous invocations. In Section

3, we outline the impact the underlying architecture has upon message ordering. Section 4 describes

the semantics of pipes at the language level and illustrates the mechanism in an object-oriented lan­

guage. We show that a mechanism for ordered asynchronous calls leads to programs that are both

simpler to understand and more efficient than ones in which the ordering is enforced by application-level

4 2 ORDER SEMANTICS

synchronization. In Section 5, we describe different implementations of pipes and demonstrate how an

implementation can be optimized to take advantage of order-preserving networks. Performance results

for each implementation are given in Section 6. Finally, in Section 7 we describe using pipes to provide

application-transparent flow control.

2 Order Semantics

Simple asynchronous calls provide concurrency, but can result in programs that are hard to understand.

In many situations, a process can run concurrently with a sequence of calls that it makes, but the calls

themselves should run sequentially in invocation order. Synchronization to achieve this effect can be

coded explicitly in the application program, but this leads to complex programs. A mechanism for

ordered asynchronous calls leads to programs that are both simpler to understand and more efficient.

In this section we define precisely what it means to "order" asynchronous calls.

To serve as an illustration, we introduce a simple banking system that provides deposit and withdraw

operations on account objects. Each operation takes an integer argument; the number of dollars to be

deposited or withdrawn in each case. Assume that a withdrawal may only be made if there are sufficient

funds in the account; a negative account balance is not permitted. If we wish to perform operations on

a remote account, we need to send messages to the processor storing the account. We want the actions

associated with each message to occur in the correct order. Thus, if we send a "deposit" request followed

by a "withdraw" request, we expect the deposit to take place first.

If a sequence of calls from a single process are to run sequentially in invocation order then the actions

associated with sequence of messages must be serializable in the order of invocation. Two actions are

serializable if all of the observable effects are consistent with one of the actions occurring entirely before

the other. For example, if we perform the actions deposit(50) and withdraw(25) on a bank account,

then there are three possible results:

Serializable in order: deposit appears to run entirely before withdraw, which results in

a net increase of $25.

Serializable out of order: withdraw appears to run entirely before deposit, which could

cause the withdrawal to fail if there are insufficient funds in the account to make the

withdrawal. The net change will be +$25 normally and +$50 if the withdrawal fails.

Not Serializable: the deposit and withdrawal run in parallel, with both reading the initial

balance. The net change could be -$25 or +$50 (or, in general, some more bizarre

interaction), and the withdrawal may fail.

5

The first case has the desired semantics: the actions are serializable in the order specified by the sequence

of invocations.

To ensure these semantics, a system must remember the order of invocation of the asynchronous calls

and ensure that the observable effects of the calls are consistent with that order. Essentially, order must

be preserved "end to end": intermediate orders, such as the order of reception at the target, need not

match the order of invocation.

Pipe semantics ensure that the invocations on the pipe execute in order, with one invocation running

to completion before the next invocation begins. Therefore, pipe calls are serializable in the order

specified by the sequence of invocations.

In some cases it is possible to preserve the correct semantics without each invocation running to com­

pletion. If an object uses fine-grain locking to provide mutual exclusion between concurrent invocations,

then an invocation can begin executing as soon as the previous invocation holds the locks it requires.

The pipe and target object cooperate to determine when the next invocation can start. The protocol

and interfaces required to facilitate this cooperation are an area of future consideration.

3 Architectures and Message Order

The cost of preserving order for a sequence of asynchronous calls depends greatly on the underlying

architecture. Bus-based machines, for example, ensure that messages arrive in order, since the bus

serializes all messages.

In general, an interconnection medium preserves message order if and only if the path between

two nodes is fixed. If there are multiple paths between two nodes, then messages sent on different

paths can arrive out of order. For networks, the single-path requirement is equivalent to deterministic

routing [15, 45]. Most contemporary multiprocessors use deterministic routing (1, 5, 16, 44].

The network performance of deterministic techniques has reached a limit, under random traffic, of

a stable maximum throughput of 45 to 50% of the limit set by the network bandwidth [39]. Adaptive

routing [14, 39, 53] improves network performance under high contention by allowing messages to travel

along alternate paths if the primary path is congested. Under adaptive routing, messages may arrive

out of order under high congestion, since later messages may take paths that are significantly faster.

In addition to the gains in performance, adaptive routing schemes can also enhance reliability by

performing fault-tolerant routing (39]. Since existing multiprocessor systems are already richly connected,

an adaptive routing scheme is able to take advantage of this path redundancy. Adaptive routing is used

in the CM-5 [4 7] and is likely to become more popular as machines scale.

If the interconnection medium preserves message order, the overhead for ensuring execution order

6 3 ARCHITECTURES AND MESSAGE ORDER

is essentially zero. If the architecture makes no such guarantees, then it must be possible to detect

and reorder messages that arrive out of order. However, even if the architecture ensures message order,

some overhead is still required if the path between two high-level objects can change. For example, if an

object migrates to a new node, the path from it to a particular target object will change. Conceivably,

a message sent before the migration could arrive after a message sent after the migration, since they

travel along different paths.

The obvious solution is to exploit the order properties of the network except across migration. When

an object migrates, the last message sent on the old path and the first message sent on the new path

must be ordered correctly. If these two messages are executed in the correct order by the target object,

the rest of the messages will be also, since the network maintains their order.

A simple way to preserve order across migration is to require an acknowledgment of the last message

sent on the old path. The first message along the new path is delayed until this acknowledgment

is received, so the two messages clearly execute in order. Thus, if the network preserves order, the

overhead is nonzero only across migrations (which should be rare compared to messages sends) and

even then it is small. However, this solution requires invocations to be buffered at the caller following a

migration until the acknowledgment is received. We present an implementation in Section 5 that avoids

buffering at the caller.

Finally, some architectures do not ensure delivery, in which case the system must support retransmis­

sion. In this case, the cost of preserving order is likely to be low, since the system handles retransmission.

The system as a whole thus has three possible levels of overhead for preserving order:

l. If the network preserves order and the path between any two objects never changes, the cost is

zero. The cost is essentially zero if the software must also support retransmission.

2. If the network preserves order and the system supports migration, then the cost is zero, except

across migrations.

3. If the architecture does not preserve order, then there must be some overhead for all ordered

messages.

In all cases, the overhead will be small, but the relative cost of preserving order depends on the

overhead of message passing as a whole. On fine-grain multiprocessors the message send can cost only

thirty cycles, 1 which makes the cost of preserving order very significant.

1 This is a typical time to send an invocation on the J-machine [16]. Comparable times can be achieved on other
fine-grain multiprocessor architectures [40].

7

4 Pipes: A Linguistic Mechanism

Ordered asynchronous invocations incur the overhead required to maintain order so they are more

expensive than unordered invocations. Also, unordered asynchronous invocations can run in parallel

with each other; this may be important in some applications. Therefore, it is desirable to provide both

ordered and unordered asynchronous invocations in the language; the user can choose to use ordered

invocations, with their additional overhead and constraints on concurrency, only in those situations

where it is necessary. In this section we begin by describing the functionality of our pipe mechanism

and then argue that a construct that provides ordering semantics for asynchronous invocations should

be included in programming languages designed for use in multiprocessor systems.

4.1 The semantics of pipes

We describe a pipe construct that supports ordered asynchronous invocations in the context of an

object-oriented language. We have implemented pipes as part of the PRELUDE portable parallel lan­

guage (50]. PRELUDE is a statically typed object-oriented language, and the examples presented here use

the PRELUDE syntax. However, a pipe construct can be included in any procedural language intended

for programming multiprocessors.

We make use of parameterized type definitions (sometimes termed generic types in the literature) in

the style of CLU [32]. Let the parameterized class pipe [T] denote the class of pipes to an object of type

T. A pipe is created by the class method pipe[T] .new. For example, if xis an object of type account,

then invoking pipe [account] . new (x) creates and returns a pipe object of type pipe [account] for

ordering asynchronous method invocations to object x. Objects of type pipe [account] provide all

methods provided by type account. However, the return types for these methods are promises: if

account provides a method withdraw(int) returns(int), then pipe[account] provides a method

withdraw(int) returns(promise [int]).

The parameterized class promise [T] refers to a promise for an object of type T. Promises [35] are

similar to futures [22], except that the value of a future can be extracted implicitly as it has the same type

as the object. The value of a promise must be explicitly extracted. For an object of type promise [T],

the method claim() returns(T) returns the value of the promise, an object of type T; it waits if the

promise has not been filled in.

A promise is created by an asynchronous call. For example, an asynchronous call to a procedure

that normally returns a type T returns the type promise [T]. In PRELUDE, invocations on pipe objects

return promises. However, pipe invocations could just as easily return futures. It is the notion of a place

holder for the return of the asynchronous invocation that is important rather than the particular flavor

8

of the place holder used.

x: account
p: pipe [account]
y: promise [int]
z: promise [bool]

4 PIPES: A LINGUISTIC MECHANISM

p := pipe[account] .new(x)
y := p.deposit(SO)
z .- p.withdraw(25)

Figure 1: Pipe invocations on an account object

To perform a sequence of ordered asynchronous calls to an object, we merely perform the same

sequence of calls in a synchronous manner to one of its pipes; we refer to such calls as "pipe calls". The

pipe ensures that pipe calls are processed by the target object in the same order that they are sent.

Abstractly, we can view a pipe of type pipe [account] as a forwarder that queues up all calls sent to

it and returns promises of the appropriate types. Semantically, it sends the queued calls sequentially to

an account; a call is sent to account only after account has finished processing the previous queued

call. The actual implementations, described in more detail later, use several queues so that delays in

the interconnection network have minimal effect on the computation.

If a calling thread is to perform a sequence of ordered asynchronous calls on an object, it must first

obtain a pipe assigned to the object. This can be accomplished either by accessing an existing pipe object

assigned to the object, or by creating a new pipe. The calling thread then invokes the sequence of pipe

calls synchronously on the pipe object. For example, suppose two asynchronous method invocations,

deposit and withdraw, are to be sent to account object x, and the invocation for deposit must occur

before the invocation for withdraw. The code shown in Figure 1 accomplishes this behavior; it assumes

that deposit returns a value of type int (the current balance in the account) and withdraw returns a

value of type bool (indicating whether there were sufficient funds in the account to make the withdrawal).

The pipe p in Figure 1 ensures that the call to withdraw does not start running on x until the call

to deposit has completed. The results of the calls can be obtained by the calling thread (or some other

thread that obtains the promises) by claiming the promises returned by the pipe calls.

Pipe objects of type pipe[T] may need some operations other than the ones provided by objects of

type T. For example, one useful method is sync, which ensures that all calls in the pipe's queue issued

by the calling thread have been executed before returning. However, providing additional methods such

as sync for pipe [T] may introduce name clashes; for example, T might have a method named sync. If

the number of such useful methods is large, the name clash problem can be significant. To avoid this

problem in PRELUDE, objects of type pipe [T] provide an additional method besides those provided by

4.2 The need for a linguistic construct 9

type T. This method, called get_basepipe, is used to extract the "underlying pipe object"; get_basepipe

returns an object of type basepipe. Operations such as sync are performed on this basepipe object.

The name clash problem still exists in this scheme, however it has been reduced so that the instantiation

pipe [T] is legal as long as T has no method named get_basepipe.

There is no special syntax for pipe calls, except that the object on which the method is invoked has

type pipe [T]. Note that a pipe, like any other object, can be passed on to other objects as an argument

in a procedure or method invocation. Multiple objects and threads can send calls through the same pipe

object. Also, there can be multiple pipe objects associated with any single object.

Pipe semantics make no guarantees about the order of execution of calls made from different threads.

This depends upon the scheduling of the calling threads. However, if order is required across multiple

threads, only their access to the pipe object needs to be synchronized. For example, consider the case

where two concurrent threads t0 and t 1 wish to make calls to an object x: account. If the semantics

of the application require that a call made by t0 (for example a deposit) be executed before a call

made by ti (for example a withdraw) then the two threads must be synchronized. In a language with a

pipe construct, to and ti simply make synchronous calls to the same pipe object connected to x in the

required order (to followed by t 1). The two threads can execute concurrently with the invocations on

x. To achieve the same semantics without pipe calls would require t 0 to invoke deposit synchronously

on x and, when this invocation completes, t 1 invokes withdraw. Providing a linguistic mechanism for

ordering asynchronous invocations from different objects and threads can therefore lead to increased

concurrent execution.

4.2 The need for a linguistic construct

The sequencing semantics that we have described can be implemented without a language construct

such as the pipe. The ordering semantics should be included within the language rather than at the

application level for the following three reasons:

1. The resulting application programs can have greater concurrency.

2. The resulting application programs are simpler to write and more likely to be correct.

3. The language compiler can improve performance by taking advantage of any message ordering the

underlying architecture provides without affecting the portability of applications.

The applications programmer must use explicit synchronization to order asynchronous invocations

in a language that does not provide pipes. This can be achieved by synchronizing in the calling thread

or the target object. For example, if a thread wishes to make two ordered asynchronous invocations on

an account object, the code in Figure 2 performs the required synchronization in the calling thread.

10

x: account
y: promise [int]
z : promise [bool]
balance: int

4 PIPES: A LINGUISTIC MECHANISM

y := fork x.deposit(50)
balance := y.claim()
z := fork x.withdraw(25)

Figure 2: Asynchronous invocations on an account object

In PRELUDE the reserved word fork proceeding an invocation expression or statement causes the

invocation to be made asynchronously. The invocation y. claim() returns only when the deposit

invocation has completed. If the promise y has not been filled when the claim is made, then the thread

waits. This has exactly the same affect as executing the deposit invocation synchronously, so we have

lost the concurrency present in Figure 1. However, it may be possible to continue thread execution

between the deposit invocation and promise claim if the calling thread has useful work. The only

restriction is that the promise y be claimed before the next invocation on x. This appears to be a

satisfactory solution provided that the thread can continue execution between successive asynchronous

invocations on the same object. However, if the deposit finishes quickly, the withdraw will not begin

until the other work is complete.

We would like to be able to begin withdraw as soon as deposit completes so as to improve concur­

rency. This can be achieved by forking a new thread immediately after the deposit invocation. The

new thread executes the promise claim followed by withdraw. Alternatively, we could simply fork a

new thread that performs the withdraw and deposit invocations synchronously and allow the existing

thread to continue execution. However, these solutions have drawbacks. First, new routines must be

written that correspond to the threads that are forked. A separate routine is required for every ordering

of invocations that is used, leading to code expansion and reduced clarity. Second, the existing thread

and new thread may need to synchronize eventually, which adds to the complexity of the code. Third,

if the sequence of invocations is determined dynamically by the calling thread, it may be impossible to

write a separate procedure that encapsulates the sequence.

In all the solutions described so far, before the withdraw invocation can be made, the return value for

the deposit invocation must be received. The execution of successive invocations on x will be delayed at

least for the time it takes for the return value of the first invocation to reach the calling thread followed

by the time it takes the next invocation to reach the target object: in total, at least a round-trip message

delay if x is remote. This is semantically equivalent to pipe calls; a pipe call is sent to an object only

after the object has finished processing the previous queued call. However, in Section 5 we show that

11

our implementations for pipes can queue invocations at the location of the target object, which increases

concurrency by overlapping the transmission of a call with the execution of previous calls.

To avoid the losses in concurrency that result from synchronization at the calling thread, we could

instead decide to synchronize at the target object. To implement this approach we must have a means of

preserving the invocation order. An obvious approach is to assign a sequence number to each invocation.

This technique is actually used in one of our pipe implementations, which is described in detail in the

next section. We also need a mechanism for ordering and queueing invocations at the target object. To

implement this in PRELUDE we would have to introduce new methods that execute their invocations

in the order given by the sequence numbers. The result is a large amount of additional complex code.

Application code that makes use of a language construct for preserving order is more likely to be correct,

since the resulting code is much simpler.

The implementation of pipes by the compiler and runtime system can also take advantage of order­

preserving networks. However, this is not visible to the programmer, so that moving user code to an

architecture that does not provide message order will not result in any changes at the source level.

Introducing the pipe construct at the language level therefore enhances the portability of user code.

Even if it is possible for application code to take advantage of properties of a given architecture to

further improve performance, such code lacks portability.

Although we have illustrated our pipe mechanism with a very simple banking system example, our

arguments still hold for more complex examples such as dictionary operations or updating copies of a

replicated object. For example, operations on a remote dictionary can be performed by connecting a

pipe object between every client of the dictionary and the dictionary itself. To guarantee that updates

to cached copies of a replicated object are made in the correct order, we connect pipes from the base

copy to each cached copy.

In this section we have shown that a language mechanism for ordered asynchronous calls leads to pro­

grams that are both simpler to understand and more efficient than ones in which the ordering is enforced

by application-level synchronization. In the following sections we show how pipes may be implemented

so as to maximize performance on a given architecture. We also show that the performance and space

overheads associated with pipes are comparable to those for unordered asynchronous invocations.

5 Implementation

In this section we describe four implementations of pipes that we built as part of the PRELUDE runtime

system. The implementations run on the PROTEUS parallel-architecture simulator [10].

In each case, a pipe is implemented as two objects, a head and a tail. Typically the head of a pipe

12 5 IMPLEMENTATION

is located on the same processor as the threads making calls on the pipe, and the tail is located on the

same processor as the target object of the pipe. However, any combination of the relative locations of

calling threads, head, tail and target object is permissible; all objects may also migrate.

The head and tail objects both contain queues of pending invocations. Buffering invocations at both

ends of the pipe allows most of the communication delay of the interconnection network to be hidden

from the computations using the pipe. This is possible since a pipe call returns as soon as the invocation

is placed on the queue of the head. In the normal case, when the calling thread and head object are

co-located, this does not involve any interactions with other processors, nor any network latency.

The semantics of pipe calls guarantee that the order of execution of calls from a single thread matches

the order of invocation by the thread. Each implementation ensures that:

1. Pipe calls from a single thread to the head object of the pipe are ordered regardless of whether

the thread and head object are co-located.

2. Pipe calls are queued in the tail object in the same order as they are queued in the head object.

3. Invocations on the target object are made in the same order as the corresponding pipe calls,

regardless of whether the target object and tail object are co-located.

For every pipe call, the compiler generates code that synchronously calls the runtime system routine

pipe..send. If the calling thread and head object are co-located, then pipe..send adds the pipe call to

the queue in the head object before returning; if the thread and head object are on different processors

then pipe_send sends the pipe call to the location of the head object where it is placed in the queue.

In the second case, the call to pipe..send does not return until an acknowledgment that the invocation

has been queued in the head object is received by the calling thread. This ensures that pipe calls from a

single thread to the head of the pipe are ordered, regardless of whether the thread and head object are

co-located.

We present two implementation of pipes for networks that do not preserve message order. Both are

equally applicable to networks that preserve order. The first uses sequence numbers and the second

uses synchronous messages. We then present two additional implementations of pipes for networks that

preserve message order. The first is an simplified version of the sequence numbers implementation; the

second is based on a new technique that uses multiple queues. In all cases we consider the normal case

pipe performance, where the head and tail objects are not located on the same processor. The interesting

differences between implementations involves the techniques used to ensure that the invocations are

queued at the tail in the same order as they were queued at the head.

The tail object has associated with it a queue of pending invocations together with a thread that

executes these invocations. The queued invocations are executed synchronously and in order by the

5.1 An implementation using sequence numbers 13

thread associated with the tail object. Therefore, the invocations on the target object are executed in

the same order as the corresponding pipe calls regardless of whether the target object and tail object

are co-located.

The head and tail can migrate independently. Object migration for the head and tail is implemented

by creating a new object at the destination of the migration. The original object is removed some time

later. We refer to the new object as the new head or new tail of the pipe, and we refer to the original

object as the old head or old tail of the pipe.

5.1 An implementation using sequence numbers

In this implementation pipe calls are sent asynchronously from the head to the tail. Each is assigned

a sequence number by the head, and the tail keeps a record of the sequence number for the next call

it expects to receive. When the tail receives a pipe call whose sequence number corresponds to the

expected value, it adds the pipe call to the tail queue and increments the expected value for the next

call. If a pipe call is received out of order then it is buffered. After a pipe call has been added to the

tail queue any buffered calls are checked to see if they should now also be added to the queue.

If there are no bounds on the possible number of outstanding messages then an infinite number

of distinct sequence number values is required. In practice, we place an upper bound, b, upon the

number of outstanding messages. This means that we require b + 1 unique sequence number values.

In our implementation b is a 32 bit integer. Using a 8 bit sequence number is probably sufficient for

an implementation in which objects do not migrate. However, when a tail migrates, a large number

of invocations may be buffered at the old tail. The head then begins sending to the new tail. The

sequence number bound must be sufficiently large so as to prevent overlapping of sequence numbers for

invocations from the old tail and head. An 8 bit sequence number (256 distinct sequence number values)

may not be sufficient in this case. A 16 bit sequence number (64K distinct sequence number values)

should be enough, and a 32 bit sequence number (4G distinct sequence number values) will clearly be

adequate. Buffered messages can be stored in a variety of ways, one of the most efficient being a table

as used by Clark [12]. In our implementation the queue at the head of the pipe is in fact implicit, as we

simply place the pipe call on the outgoing message queue of the sending processor.

The migration facilities provided by this implementation are the most general but are also the most

costly of all the implementations. The head and the tail of the pipe can be migrated independently

at any time. Migration is complete when a new head (or tail) object has been created on the target

processor and the tail (or head) object has been notified. When a tail migrates, the old tail may have

invocations in its queue and may still be receiving invocations that were sent before the head object was

notified of the migration. These are forwarded to the new tail object where they are inserted into the

14 5 IMPLEMENTATION

queue in their correct positions according to their sequence numbers. If a tail has migrated several times

in a short space of time, there may be several queues forwarding pipe calls to the tail.

It is not clear that supporting a general migration scheme such as this is useful. We anticipate that

object migration will be rare, since it is likely to be relatively expensive. It therefore seems unlikely that

a case would arise where it was advantageous to have simultaneous migrations of both the head and tail.

For this reason, we adopt a more restrictive but simpler migration scheme in our other implementations.

5.2 An implementation using synchronous messages

In order to preserve message order between the head and tail objects in this implementation, we simply

send each invocation synchronously from the head to the tail. As soon as the invocation arrives at

the tail an acknowledgment is sent back to the head; note that the acknowledgment is sent before the

invocation is executed. Once the acknowledgment is received, the head object is free to send the next

invocation. Therefore, there is at most one invocation in transit from a pipe head to its tail at any time.

This approach is only useful if the round-trip message time is not the limiting factor in performance.

The assumption is that the acknowledgment will normally be received by the head before a further pipe

call is made. We have found this to be the case.

We send the first pipe call from the head to the tail and set a send in progress flag at the head. The

pipe_send call returns in the normal fashion without waiting for an acknowledgment from the tail object.

As soon as the invocation arrives at the location of the tail, an acknowledgment is sent back to the head.

Any invocations on the head that occur while the send in progress flag is set are simply queued at the

head. The acknowledgment interrupts the processor storing the head. If, when the interrupt occurs, the

queue of invocations at the head is not empty, then the invocations in the queue are sent to the tail and

the send in progress flag remains set. If the queue is empty when the interrupt occurs then the handler

clears the send in progress flag.

During head migration, the new head does not begin sending invocations until all the outstanding

invocations from the queue of the old head have been sent to the tail. During tail migration, the

head object queues all invocations locally until an acknowledgment is received from the new tail. An

acknowledgment is not sent by the new tail until all outstanding invocations have been forwarded by

the old tail object. This is the simplest of all the migration schemes used in our implementations.

One drawback of this approach is the increase in message traffic; two messages are now required for

each pipe call, whereas the other schemes require only one. A more serious drawback is that part of the

overhead for pipe calls includes the time taken to execute the interrupt handler for the acknowledgment.

In Section 6 we show that this leads to poor performance.

In this implementation, the order that invocations are received by the processor storing the tail

5.3 A simplified sequence number implementation 15

object matches the order in which the invocations were made, even across migration. There is no need

for reordering before execution.

5.3 A simplified sequence number implementation

For networks that preserve message order, we need be concerned only with the maintenance of execution

order across migrations of the head or tail of the pipe. If we use sequence numbers for each call from

the head to the tail then we can receive an out-of-order message only during or immediately following

migration. In fact, we make the restriction that only one pipe migration (either the head or the tail

but not both) can be in progress at any point in time, which greatly simplifies the problem of message

reordering at the tail.

In this implementation, the order of reception at the processor storing the tail object matches the

order in which the invocations were sent by the head object except across migration. The following

invariant holds: out-of-order messages occur only when the path changes, and the set of out-of-order

messages are in the correct order relative to each other. Thus when the last message on the old path

arrives, we know that the set of (previously) out-of-order messages are the next to execute and are in

the correct order. This trivial form of reordering gives us the invariant that pipe calls are queued in the

tail object in the same order that they were queued in the head object.

The implementation is similar to that described in Section 5.1; the differences are the simplifications

that result from the restriction placed upon migration. We associate a migration lock with the pipe; this

lock is part of the head. Before a pipe head or tail can migrate, the thread performing the migration

must acquire the migration lock for the pipe.

To illustrate the effect of this restriction, consider the case where the head object migrates from

processor Po to Pi while the tail object of the pipe is stored on processor P2 . Let each message be

represented by [x], where x is the sequence number of the message. During head migration the old

head sends an end of stream (EOS) message to the tail object. The EOS message contains a sequence

number and is the last message sent from the old head. Assume that the messages up to and including

to [i] have arrived at the tail, there are n messages in transit from the old head to the tail, and the old

head sends the message EOS[i + n + 1]. An order-preserving network guarantees that messages [i + 1]

to [i + n + 1] will arrive in order. The new head on processor Pi may now begin sending messages with

sequence number [i + n + 2]. It is possible that messages sent from processor Pi arrive out of sequence at

P2 (i.e., before message EOS[i + n + l]). However, messages arriving from processor Pi arrive in order

with respect to each other. Out-of-order messages are buffered as before, but they are stored as a linked

list. When the EOS[i + n + 1] message arrives the tail object performs two operations. It adds the list

of messages that arrived out of order to its queue (by concatenation) and it sends an acknowledgment

16 5 IMPLEMENTATION

back to the head. The acknowledgment notifies the head that the migration is complete so that a further

migration is now free to take place (the acknowledgment clears the migration lock associated with the

pipe).

The migration of the tail object proceeds in a similar style. A request to migrate a pipe tail is sent

first to the head object, where the migration lock for the pipe is set. The tail is then migrated. The

new tail notifies the head that migration has taken place and the head sends an EOS message to the

old tail. The head then begins sending invocations to the new tail. When the EOS message has been

received by the old tail and all the invocations sent to it have been forwarded to the new tail, the new

tail sends an acknowledgment back to the head that clears the migration lock.

5.4 An implementation using multiple tail queues

The use of sequence numbers in the previous implementation turns out to be unnecessary. Since the

network preserves order, the sequence numbers are only necessary to order messages following migration.

With the same restriction placed on migration as in the previous implementation, we are able to remove

the sequence number overhead for migration control from normal invocations.

In this implementation a tail contains two queues for invocations. Only one of theses queues is active

at any time; the thread executing pipe calls takes invocations from the active queue and executes them in

order. The key invariant is that the order of reception at each queue matches the order of transmission.

Thus, the messages in a queue are always in the same order as the corresponding invocations.

A migration of the head or tail causes the status of the queues at the tail to be swapped; the

active queue becomes inactive, and vice versa. The head begins sending to the new active queue. This is

depicted for head migration in Figure 3. Let the head be stored on processor Po and the tail on processor

P2. In Stage 1, no migration has taken place and the head sends invocations to the active queue of the

tail. In Stage 2, the head migrates to processor P 1 . The migration lock in the new head is set and the

old head sends the end of stream message to the tail. The new head can begin to send invocations to the

inactive queue of the tail. When these invocations arrive at the tail they are enqueued but not processed

since the execution thread is processing the active queue. When the tail receives the EOS message, it

takes the contents of the active queue and adds them to the front of the inactive queue, swaps the status

of the queues, and the sends an acknowledgment to the new head, whose location is given in the EOS

message. When the new head receives the acknowledgment, it clears the migration lock associated with

the pipe, as shown in Stage 3. The EOS message ensures that the switch between queues is made at the

correct time; the switch is analogous to concatenating the out-of-order messages onto the tail queue in

the simplified sequence-number implementation.

The migration of the tail object proceeds in a similar style, as shown in Figure 4. Again, let the

5.4 An implementation using multiple tail queues

head lJ tail

old
head

P1 new
head

new
head

invocations in transit

Stage 1: The head object sends invocations to the
active queue of the tail.

tail

EOS messa e in transit

active queue
inactive queue

active queue

inactive queue

Stage 2: The head object migrates. The old head sends
the EOS message to the tail and the new head has the
migration Jock set (denoted by X). The new head begins
sending invocations to the inactive queue.

inactive queue
active queue

Stage 3: The tail object processes the EOS message,
swaps the queue status and sends an acknowledgment
to the head. The head object clears the migration Jock.

Figure 3: Head migration using multiple queues

17

18

Po

Po

head -q tail

head

invocations in transit

Stage 1: The head object sends invocations to the
active queue of the tail.

old
tail

5 IMPLEMENTATION

active queue
inactive queue

new P1
tail

Stage 2: The tail object migrates. The head sends the
EOS message to the old tail and the migration lock is

active queue
inactive queue

set (denoted by X). The head begins sending invocations
to the inactive queue of the new tail. The old tail forwards
invocations to the active queue of the new tail.

Po head

new P1
tail

inactive queue
active queue

Stage 3: The new tail processes the EOS message,
swaps the queue status and sends an acknowledgment
to the head. The head object clears the migration lock.

Figure 4: Tail migration using multiple queues

19

head be stored on processor Po and the tail on processor P2 . In Stage 1, no migration has taken place

and the head sends invocations to the active queue of the tail. A request to migrate a pipe tail is sent

first to the head, where the migration lock is set. In Stage 2 tail migrates to P 1 and a message is sent

to the head object notifying it of the new location of the tail. The head sends an EDS message to the

old tail and then begins sending invocations to the inactive queue of the new tail. The old tail forwards

all queued invocations to the active queue of the new tail, including the EOS message. When the new

tail receives the EOS message it swaps the queues and sends an acknowledgment to the head to clear

the migration lock, as shown in Stage 3.

6 Performance Comparisons

In this section we compare the performance of the four implementations of pipes. We contrast the time

taken to process an invocation at the head, the time spent queuing the invocation at the tail, and the

storage overhead. Finally, we compare the overheads of pipes with the cost of ordering all asynchronous

invocations in the system.

6.1 Performance at the caller

We measure the "normal case" pipe operation, where the calling thread is located on the same processor

as the head, and the tail and target object are remote. We contrast the time taken to call pipe_send for

each implementation. This time is the latency for pipe calls seen by the calling thread. Furthermore, we

found that the performance bottleneck for pipe calls is due to this latency. Thus, the latency for pipe

calls at the caller determines the throughput of the pipe.

In order to appreciate the relative overhead of pipe implementations compared to those for issuing

an unordered asynchronous invocation, we express the time for the pipe call in terms of the number of

additional RISC machine cycles above the cost of an unordered asynchronous invocation.

The code executed during pipe..send is almost identical in all the pipe implementations. Furthermore,

it is very similar to the code that is executed to perform an unordered asynchronous call. This makes it

possible to identify the operations that are not present in all implementations and express the time to

call pipe..send in terms of the time to execute these operations. There are only seven of these operations:

Access tail reference: read the tail object reference in the head object data structure.

Check locality of the tail: determine whether the tail is co-located with the head.

Increment send count: increment the count of the number of sends in progress (used in

migration control).

20 6 PERFORMANCE COMPARISONS

Operation, number of RISC cycles, Sequence Synchronous Simplified Multiple
read (R) and write (W) operations Number Send Sequence # Queues

access tail reference (1 cycle, lR) x x x x
check tail locality (3 cycles, lR) x x x x
increment send count (3 cycles, lR, 1 W) x x x x
decrement send count (3 cycles, lR, 1 W) x x x x
increment sequence # (3 cycles, lR, 1 W) x x
marshal sequence # (4 cycles, lR, 2W) x x
reply interrupt (32 cycles) x

..
Total Additional Cycles II 17 42 17 10

Table 1: Cost breakdowns for the time for pipe calls at the head expressed in terms of the number of
RISC cycles required over and above the time for an unordered asynchronous invocation. The number
of memory reads and writes for each case is also given.

Decrement send count: decrement the count of the number of sends in progress (used in

migration control).

Increment sequence number: read and increment the sequence number associated with

the head object.

Marshal sequence number: marshal the sequence number into the message buffer that is

sent to the tail object.

Synchronous reply interrupt: execution of the interrupt handler used for the acknowl­

edgment in the pipe implementation that uses synchronous messages.

A counter of the number of pipe calls in progress at the head (the send count) is required to syn­

chronize between pipe invocations and head migration. When a head migration request occurs, it waits

until the send count is zero before migrating the head. This ensures that pipe invocations and head

migrations occur atomically relative to each other.

Table 1 gives a breakdown of the time for the call to pipe_send for each implementation in terms

of the seven operations listed above. We measure the time in terms of RISC cycles; we assume that a

memory read and write each take only one cycle. In some systems this may not be the case, so Table 1

also gives a breakdown of the number of read and write operations for each case.

The results in Table 1 show that, for networks that do not preserve message order, the sequence num­

ber implementation has a lower time and hence a higher throughput than using the synchronous message

implementation. The comparatively poor performance of the synchronous message implementation is

caused by the time taken by the processor storing the head object to execute the interrupt handler. If

the network preserves order, then the multiple queue implementation has the best throughput of all;

this is because the operations associated with the sequence numbers have been removed.

6.2 Performance at the target 21

6.2 Performance at the target

We also measured the number of additional RISC cycles required at the tail over and above the time for

an unordered asynchronous invocation. We measured for "normal case" operation, where invocations

are received in order (so no buffering is required) and the tail and target object are co-located. We are

again able to break down the time in terms of a number of operations:

Unmarshal sequence number: unmarshal the sequence number from the message buffer

received at the tail object.

Check sequence number: compare the sequence number value in the message to that for

the next in-order message.

Send acknowledgment: send the acknowledgment back to the head object m the pipe

implementation using synchronous messages.

Table 2 gives a breakdown of the additional time required by each implementation at the tail. These

results also show that, for networks that do not preserve message order, the sequence number imple­

mentation has lower overhead than the synchronous send implementation. For networks that preserve

message order, the multiple queue implementation incurs no additional overhead over unordered asyn­

chronous invocations.

6.3 Storage overhead

Finally, we compared the storage overheads of each implementation in terms of the space that each

requires over and above the structures common to all. All the implementations of head objects require 1

word to store a reference to the tail object, 1 byte to store the send count and 1 byte to store status flags

and migration information. All the implementations of tail objects require 2 words to store references to

the head object and target object, 2 words for pointers to the front and back of the ordered invocation

Operation, number of RISC cycles, Sequence Synchronous Simplified Multiple J
read (R) and write (W) operations Number Send Sequence# Queues

unmarshal sequence # (4 cycles, 2R, 1 W) x x
check sequence number # (3 cycles, lR) x x
send acknowledgment (10 cycles) x

..
Total Add1t10nal Cycles II 7 10 7 0

Table 2: Cost breakdowns for the time for pipe calls at the tail expressed in terms of the number of
RISC cycles required over and above the time for an unordered asynchronous invocation. The number
of memory reads and writes for each case is also given.

22 6 PERFORMANCE COMPARISONS

Pipe Sequence Synchronous Simplified Multiple
Object Number Send Sequence# Queues

head 4 bytes 1 bit 4 bytes 1 word
tail 4 bytes + 9 words 4 bytes + 2 words 2 words

Table 3: Additional storage overheads for the pipe implementations.

queue and 1 byte for status flags. Table 3 gives the additional space overheads for each implementation

for head and tail objects.

We use a table to store out-of-order messages in the sequence number implementation for networks

that do not preserve message order. We have chosen a table size of eight entries (i.e., if the tail expects

message [i], then messages [i + 1] through [i + 8] can be stored in the table). Any messages that are not

stored in this table are held in an overflow buffer, which is implemented as a linked list. This results

in 9 additional words of storage for the table plus an additional 4 bytes at the head and tail for the

current sequence number value. In the synchronous send implementation, only an additional bit (the

send in progress flag) is required at the head. For simplified sequence numbers, the table used for storing

out-of-order messages is replaced with pointers to the front and back of the out-of-order queue. Finally,

for the multiple queue implementation, an additional word is required at the head for the reference to

the additional queue, and two pointers are required at the tail for the front and back of this queue.

6.4 Cost of ordering all asynchronous invocations

Rather than providing a linguistic mechanism for ordering a.synchronous invocations, we could order all

a.synchronous invocations in the system. However, this raises semantic issues concerning the meaning of

"ordered invocations". For example, the sender of an invocation may be viewed as a thread, an object

or a processor. Similarly, the receiver may be viewed as an object or a processor. Let us assume for

example, that we choose to order invocations between a sending thread and receiving object.

On networks that do not preserve message order we could implement ordered a.synchronous messages

by using sequence numbers for all a.synchronous invocations between the processors in the system. In

the normal case, this would increase the time to send an a.synchronous invocation by 7 cycles (increment

a sequence number and marshal it), and would increase the time to receive an a.synchronous message

by 7 cycles (unmarshal the sequence number and check the value). For networks that preserve message

order, we would only need to be concerned with preserving execution order across migration, which can

be achieved by using an acknowledgment for the la.st message sent on the old path. However, this is a

naive approach for multiprocessor systems for the following four reasons:

6.5 Discussion 23

1. A message send can cost as little as 30 cycles (the time for a message send on the J-machine [16]).

In this case the additional 7 cycles at the sender would be significant.

2. In a multiprocessor system with N processors the amount of storage space required to hold the

sequence numbers and table for reordering would be 0(N) on every processor.

3. Serializing all invocations reduces concurrency.

4. Migrations increases the complexity of the implementation.

The storage overhead associated with ordering all asynchronous invocations for a fine-grain multipro­

cessor is best illustrated by an example. Consider a 4K-node machine that uses adaptive routing, thus

allowing out-of-order delivery. We will assume that the system correctly handles object migration and

implements message ordering by sequence numbers between each processor pair. Each processor requires

10 words of storage for each of the other processors in the system. The total storage overhead would then

be (4096 - 1) x 10 ~ 40K words per processor. If each processor has 2M words of local memory, then

the storage overhead would represent 2% of the memory in the system. However, if a more intelligent

scheme is adopted then most of this overhead can be avoided. For example, the synchronized-clock

message protocol (SCMP) [36] for distributed systems only keeps sequence number information for pairs

that have communicated "recently".

Serializing all invocations between a thread and an object restricts concurrency between threads

executing on the same object, and can lead to severe performance reductions. In addition, in those cases

where order is not important, the execution order that yields the highest throughput should be chosen;

this would not be possible if order is imposed in every case. Furthermore, we only wish to serialize

invocations between thread/object pairs and not between processor pairs. The target object is therefore

required to do additional work to determine which invocations can execute concurrently. A linguistic

construct that explicitly specifies where order is required removes these restrictions.

If threads and objects migrate then sequence numbers between processors is not sufficient. Additional

code is required to forward messages following a migration and to handle reordering. This reduces

performance.

6.5 Discussion

In this section we have shown that the performance overheads associated with pipes are low. For pipe

calls in systems in which the network does not preserve message order, an additional 17 RISC cycles are

required at the head and an additional 7 cycles are required at the tail. In systems in which message

order is preserved, pipe calls require only an additional 10 cycles at the head. Also, the space overhead

24 7 FLOW CONTROL

in both cases is small. Finally, the alternative of preserving order for all asynchronous invocations in a

system is too restrictive in terms of space overhead and performance.

7 Flow Control

Flow control in a multiprocessor is used to restrict message traffic so as to prevent buffer overflow. A

flow control policy provides a mechanism for throttling traffic on the network and for determining which

circuits must be throttled. In this section we describe how the pipe construct can be used to provide

flow control for asynchronous invocations.

Flow control can be supported by either the sender or receiver. A send/acknowledge protocol for

each message is a form of receiver-controlled flow control. A processor sends a message and waits

for an acknowledgment before sending the next message on that link. The acknowledgments can be

"piggy-backed" onto messages going in the opposite direction, which leads to looser coupling between

the sender and receiver. Alternatively, flow control can be sender-controlled. Messages are only sent

when the sender knows that there is sufficient storage for the message at the receiver.

In the absence of system support for flow control, it may be necessary for the applications program

to limit the number of outstanding asynchronous invocations. For example, in the classic "producer­

consumer" problem, it is possible for the producer to get too far ahead of the consumer if asynchronous

invocations are used. The stored messages may require a substantial amount of memory; this may slow

the system down due to paging or swapping. In the extreme, messages may be lost due to insufficient

storage and run-time errors can occur. One solution for this example is to have the consumer occa­

sionally send an acknowledgment to the producer [18]. However, in more general cases throttling may

be impossible as it may not be possible to determine who the next sender will be. Implementing flow

control in application programs also increases the complexity of the code. Gehani [18] implemented

four versions of the producer-consumer example and noted that: "This version [asynchronous with flow

control] of the producer-consumer example is considerably harder to understand (and to debug) than

the other versions."

Pipes can provide system-level flow control for single and multiple senders by using a clear-to-send

mechanism. When a pipe tail finds that its pending invocation queue has become too long, it can

throttle all the senders by throttling the head of the pipe. The tail sends a message to the head that

causes the head to stop sending invocations to the tail. The head could then simply queue invocations

locally until it is free to begin forwarding them to the tail. However, this approach does not throttle

the calling threads, which are still free to add invocations to the queue in the head. The problem has

simply been moved from the tail to the head. To avoid this problem, the head suspends all local threads

25

that attempt invocations on the pipe. Invocations are made synchronously on the head and remote

invocations generate local threads. Therefore, suspending all local threads throttles all the senders as

they attempt to make invocations on the pipe. Once the tail has processed enough of the pending

invocations, it sends a message to the head that causes all the suspended threads to be restarted; normal

pipe operation resumes.

In this case, the applications programmer need not be concerned with flow control in asynchronous

invocations that use pipes. This results in code that is simpler to understand and debug. Pipes also

solve the problems associated with throttling multiple senders since all invocations must be made syn­

chronously on the pipe head. However, pipes also provide sequencing semantics that are not always

required. To avoid paying for these semantics in applications that require only the flow control prop­

erties of the pipe, we could remove the sequencing semantics. We term this construct "an unordered

pipe"; invocations on an unordered pipe execute in parallel with no guarantees made about the order of

execution.

8 Related Work

The issue of synchronous versus asynchronous message passing has been discussed in the context of

programming languages [2, 18, 33] and distributed operating systems [19, 46]. Languages have been

designed that contain only synchronous message passing constructs [7, 11, 23, 24, 25, 28, 48], or only

asynchronous message passing constructs [17] or a combination of both [2, 6, 13, 18, 41].

Liskov, Herlihy and Gilbert [33] show that the combination of synchronous communication (such as

rendezvous or remote procedure calls) with a static process structure (such as Ada tasks) leads to complex

and indirect solutions to common problems in distributed and concurrent systems. They conclude that

a language designed for programming these systems should provide either asynchronous communication

or a dynamic process structure (but it need not provide both). With a dynamic process structure, fork

and join constructs can be used to program in an asynchronous style with remote procedure calls [8].

However this approach has a high overhead for each asynchronous call [20].

The language SR [2] originally provided synchronous and asynchronous communication with only

static process structure. Conversely, Concurrent C [18] originally had only synchronous message passing

with a dynamic process structure. With experience, the designers of both SR and Concurrent C felt

that these mechanisms were not sufficiently expressive. SR was extended to include a dynamic process

structure and asynchronous communication was added to Concurrent C.

Interprocess communication in languages such as CSP [24], occam [28], SR [2], Concurrent C [18]

and Hermes [6] is performed via explicit send and receive primitives. CSP and occam support only

26 8 RELATED WORK

synchronous messages. Concurrent C, SR and Hermes support both synchronous and asynchronous

messages. However, asynchronous messages can not have return values.

In the standard Actor model (the model used in the language Acore [38]) there are no guarantees

that messages are sent in order. However, the order of reception and execution are equivalent. In

ABCL/1 [54] messages are transmitted, received and executed in order.

Programming languages such as Sloop [37], Emerald [9, 25, 27] and Amber [11] abstract away from

explicit send and receive constructs by providing a remote procedure call interface. Emerald and Amber

support only synchronous invocations although their dynamic process structure allows an asynchronous

style to be used. Sloop attempts to combine the advantages of the procedural interface with the parallel

execution capabilities of asynchronous invocation; when one object invokes an operation on another

object, it only waits for the operation to complete if the operation returns a value. Operations that do

not return a value execute asynchronously.

Previous work by Gifford and Glasser [20] and in the Mercury system (29] resulted in the design

of remote invocation mechanisms for distributed systems in which a sequence of calls between a single

client and a single server are run in order, but asynchronously with respect to the caller. This permits

the sequencing semantics required by certain calls to be preserved, while allowing other calls to run in

parallel. Gifford presents a communication model for distributed systems that combines the advantages

of bulk data transport and remote procedure calls in a single framework. However, the definition of a

server specifies whether its operations must be invoked synchronously or asynchronously by the clients.

In Mercury (29], call-streams allow a sender to make a sequence of calls to a receiver without waiting

for replies. The stream guarantees that the calls will be executed at the receiver in the order they were

made and that the replies from the receiver will be delivered to the sender in call order. To make Mercury

usable within a particular programming language, some extensions to the language (termed veneers) are

needed. Veneers are provided for Argus [31], C, and Lisp. However, a single Mercury stream cannot be

shared between a number of calling threads. Stream calls made by different threads are sent on different

streams.

In some distributed operating systems [4, 26, 42], processes transfer messages among themselves

in an asynchronous, network-transparent, and process-name-transparent manner. In these systems the

message order between a sending process and a receiving process is preserved. The language Match­

maker [26] is used in the Mach environment [26] to hide the underlying message-passing mechanisms

via a procedural interfaces for sets of operations upon objects; a similar interface is provided by the

language Lynx [43] for the Charlotte [3, 4] operating system. In Mach, a client process can initiate an

asynchronous request on a server. A server can choose any execution style appropriate to the seman­

tics of the operations being performed, from serial execution to unconstrained parallel execution. Each

27

reply is typically returned to a unique port (a send-once right) that is generated at request time and is

destroyed when the reply is received. This must be coded explicitly within the clients and servers.

9 Conclusion

We have described a new linguistic mechanism, the pipe, for sequencing asynchronous procedure calls

in multiprocessor systems. Our design provides integrated language support for ordered asynchronous

invocations, and also allows invocations from multiple sending threads to be ordered.

In many applications, such as transaction systems and dictionaries, a sequence of invocations must

be performed in order but can run in parallel with the calling thread. Implementing ordered invocations

on top of unordered invocations adds complexity and is difficult to debug.

Ordering semantics should be provided by the language rather than coded at the application level

because application programs will be simpler and more likely to be correct, and the compiler can improve

performance by taking advantage of message ordering provided by the underlying architecture without

affecting the portability of applications.

We have presented four implementations of pipes. Of the implementations we considered, the general

sequence number implementation is the best for systems in which the network does not preserve message

order. For systems that preserve message order, our multiple queue implementation is the most favorable.

In general, the performance and space overheads associated with pipes are low.

Pipes can also provide application-transparent flow control for asynchronous invocations; they can

throttle invocations from multiple calling threads. To avoid paying for the sequencing semantics of

pipes in applications that require only the flow control properties, unordered pipes provide an unordered

channel connecting multiple senders to a receiver.

Given that the ordering semantics should be provided by the programming language, we can choose

to provide an explicit construct such as the pipe, or guarantee order for all asynchronous invocations in

the system. We have shown that preserving the order for all asynchronous invocations in a system is too

restrictive in terms of performance and space overhead. We conclude that procedural languages designed

for programming multiprocessor systems should provide a pipe mechanism for ordered asynchronous

invocations, which allows the programmer to choose to incur the additional cost of ordering only when

the semantics of the application require it.

28 REFERENCES

10 Acknowledgments

Several others contributed to our work on pipes, including Crysanthos Dellarocas, Anthony Joseph, Carl

Waldspurger, Barbara Liskov, Sanjay Ghemawat and Robert Gruber.

References

[l] A. Agarwal et al. The MIT Alewife machine: A large-scale distributed-memory multiprocessor. In

Scalable Shared-Memory Multiprocessors. Kluwer Academic Publishers, 1992.

[2] G.R. Andrews and R.A. Olsson. The evolution of the SR language. Distributed Computing, 11:133-

149, 1986.

[3] Y. Artsy, H. Chang, and R. Finkel. Interprocess communication in Charlotte. IEEE Software,

4(1):22-28, 1987.

[4] Y. Artsy and R. Finkel. Designing a process migration facility: the Charlotte experience. IEEE

Computer, 22(9):47-56, 1989.

[5] W. Athas and C.L. Seitz. Multicomputers: Message-passing concurrent computers. IEEE Computer,

pages 9-24, August 1988.

[6] D.F. Bacon and A. Lowry. A portable run-time system for the Hermes distributed programming

language. Technical Report 15686, IBM Research Division, T.J. Watson Research Center, February

1990.

[7] J .K. Bennett. The design and implementation of Distributed Smalltalk. In Proceedings of the Object­

Oriented Programming Systems Languages and Applications Conference, pages 318-330, 1987.

[8] A. Birrell and B. Nelson. Implementing remote procedure calls. A CM Transactions on Computer

Systems, 2(1):39-59, 1984.

[9] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and abstract types in Emerald.

Technical Report 86-02-04, Department of Computer Science, University of Washington, February

1986.

[10] E.A. Brewer, C.N. Dellarocas, A. Colbrook, and W.E. Weihl. PROTEUS: A high-performance

parallel-architecture simulator. Technical Report MIT /LCS/TR-516, MIT Laboratory for Computer

Science, 1991.

REFERENCES 29

[11] J.S. Chase, F.G. Amador, E.D. Lazowska, H.M. Levy, and R.J. Littlefield. The Amber system:

Parallel programming on a network of multiprocessors. Technical Report 89-04-01, Department of

Computer Science, University of Washington, April 1989.

[12] D.D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An analysis of TCP processing overhead.

IEEE Communications Magazine, 27(6):23-29, 1989.

[13] R.P. Cook. *Mod: A language for distributed programming. IEEE Transactions on Software

Engineering, SE-6(6):563-571, 1980.

[14] W.J. Dally and A. Hiromichi. Adaptive routing in multicomputer networks using virtual channels.

to appear in IEEE Transactions on Parallel and Distributed Systems, 1992.

[15] W.J. Dally and C.L. Seitz. The Torus routing chip. Distributing Computing, 1:187-196, 1986.

[16] W.J. Dally et al. The J-machine: A fine-grain concurrent computer. In G.X. Ritter, editor,

Proceedings of the IFIP Congress, pages 1147-1153. North-Holland, August 1989.

[17] J .A Feldman. High level programming for distributed computing. Communications of the A CM,

22(6):353-368, 1979.

[18] N .H. Gehani. Message passing in Concurrent C: synchronous versus asynchronous. Software Practice

and Experience, 20(6):571-592, 1990.

[19] W.M. Gentleman. Message passing between sequential processes: the reply primitive and the

administrator concept. Software Practice and Experience, 11:435-466, 1981.

[20] D.K. Gifford and N. Glasser. Remote pipes and procedures for efficient distributed communication.

ACM Transactions on Computer Systems, 6(3):258-283, August 1988.

[21] D.K. Gifford et al. Information storage in centralized computer systems. Technical Report CSL-81-8,

Xerox Palo Alto Research Center, 1982.

[22] R. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM Transactions

on Programming Languages and Systems, 7(4):501-538, 1985.

[23] P. Brinch Hansen. Joyce - a programming language for distributed systems. Software Practice and

Experience, 17:29-50, 1987.

[24] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, Englewood Cliffs, NJ, 1985.

[25] N .C. Hutchinson. Emerald: An object-based language for distributed programming. Technical

Report 87-01-01, Department of Computer Science, University of Washington, January 1987.

30 REFERENCES

[26) M.B. Jones and R.F. Rashid. Mach and Matchmaker: Kernel and language support for object­

oriented distributed systems. In Proceedings of the Object-Oriented Programming Systems Languages

and Applications Conference, pages 67-77, 1986.

[27) E. Jul, N. Hutchinson, and A. Black. Fine-grained mobility in the Emerald system. ACM Transac­

tions on Computer Systems, 6(1):109-133, 1988.

[28) INMOS Limited. Occam Programming Manual. Prentice Hall, Englewood Cliffs, New Jersey, 1984.

[29) B. Liskov, T. Bloom, D. Gifford, R. Scheifler, and W. Weihl. Communication in the mercury system.

Technical Report PMG Memo 59-1, MIT Laboratory for Computer Science, 1987.

[30) B. Liskov, T. Bloom, D. Gifford, R. Scheifler, and W. Weihl. Communication in the Mercury system.

In Proceedings of the 21st Annual Hawaii Conference on System Sciences, January 1988. Available

as MIT LCS Programming Methodology Group Memo 59.

[31) B. Liskov, M. Day, M. Herlihy, P. Johnson, G. Leavens (editor), R. Scheifler, and W. Weihl. Argus

reference manual. Technical Report MIT/LCS/TR-400, MIT Laboratory for Computer Science,

November 1987.

[32] B. Liskov and J. Gut tag. Abstraction and Specification in Program Development. MIT Press, 1986.

[33) B. Liskov, M. Herlihy, and L. Gilbert. Limitations of synchronous communication with static

process structure in languages for distributed computing. In Proceedings of the A CM Symposium

on Principles of Programming Languages, pages 150-159, 1986.

[34) B. Liskov and R. Scheiffer. Guardians and actions: Linguistic support for robust, distributed pro­

grams. In Proceedings of the Ninth ACM Symposium on the Principles of Programming Languages,

1982.

[35) B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous procedure calls in

distributed systems. In Proceedings of the ACM SIG PLAN Conference on Programming Languages

Design and Implementation, pages 260-267, 1988.

[36) B. Liskov, L. Shrira, and J. Wroclawski. Efficient at-most-once messages based on synchronized

clocks. ACM Transactions on Computer Systems, 9(2), May 1991.

[37] S.E. Lucca. Parallel programming in a virtual object space. In Proceedings of the Object-Oriented

Programming Systems Languages and Applications Conference, pages 26-33, 1987.

[38] C.R. Manning. Acore: The design of a core actor language and its compiler. Master's thesis, MIT

Laboratory for Computer Science, 1987.

REFERENCES 31

[39] J. N gai. A framework for adaptive routing in multicomputer networks. Technical Report Caltech­

CS-TR-89-09, Computer Science Department, California Institute of Technology, 1989.

(40] R.S. Nikhil, G.M. Papadopoulos, and Arvind. *T: A multithreaded massively parallel architecture.

Computational Structures Group Memo 325-1, MIT Laboratory for Computer Science, 1991.

[41] F.N. Parr and R. Strom. NIL: a high-level language for distributed systems programming. IBM

Systems Journal, 22(1/2):111-128, 1983.

[42] M.L. Powell and B.P. Miller. Process migration in DEMOS/MP. In Proceedings of the Ninth ACM

Symposium on Operating System Principles, pages 110-119, 1983.

[43] M.L. Scott. Language support for loosely coupled distributed programs. IEEE Transactions on

Software Engineering, SE-13(1):88-103, 1987.

[44] C.L. Seitz. The Cosmic Cube. Communications of the ACM, 28(1):22-33, 1985.

[45] H. Sullivan and T. Bashkow. A large-scale homogenous machine. In Proceedings of the 4th Inter­

national Symposium on Computer Architecture, pages 105-124, 1977.

[46] A.S. Tanenbaum and R.V. Renesse. Distributed operating systems. ACM Computer Surveys,

17(4):419-470, 1985.

[47] Thinking Machines Corporation, 245 First Street, Cambridge, MA 02154-1264. The Connection

Machine CM-5 Technical Summary, October 1991.

[48] United States Department of Defense, ANSI/MIL-STD-1815A. Reference manual for the Ada pro­

gramming language, January 1983.

[49] P. Wang. An in-depth analysis of concurrent B-tree algorithms. Technical Report MIT/LCS/TR-

496, MIT Laboratory for Computer Science, January 1991.

[50] W. Weihl, E. Brewer, A. Colbrook, C. Dellarocas, W. Hsieh, A. Joseph, C. Waldspurger, and

P. Wang. PRELUDE: A system for portable parallel software. Technical Report MIT/LCS/TR-519,

MIT Laboratory for Computer Science, 1991.

[51] W.E. Weihl and P. Wang. Multi-version memory: Software cache management for concurrent B­

trees. In Proceedings of the 2nd IEEE Symposium on Parallel and Distributed Processing, pages

650-655, 1990.

[52] J. White. A high-level framework for network-based resource sharing. In Proceedings of the National

Computer Conference, pages 561-570, 1976.

'
~u i!liifii:•,~: ilto.u .tu•~ili!iPij~riiii:iidiiiJ&i!it!•Jillli.r.1.,1xa)IJ'iWIJlllM!&&&Ui.XJi42ll J. ,44;44tLl!i(iilii;& ¥LbhMJ Lk ti. iLZkMIUJt;aatJflll.1.11'11!11\\l

32

{5.1) J. Yantdlev and C.R. Jembope. AdapQve, low la&eaq, ,.clrei rout.inc for aetworb

of proc111on. IEE P'""-1' hrC E, 138(1):17&-188. 1111.

(64) A. YOW1awa, E. Slaib11 •••• T. '1WrMa, aad Y_ .. tr' ·-,...,_.,. ia •object­

orieated COllQlmlllt. ABOL/1. la ABaod Ya••••• a ... -.no ~ edt., Oljcd­

Orierd.4 C'natt'Naf J'NfN•••f\ 1187.

RE?ORT DOCUMEi'JTAl!ON PAGE
Ferm ,J.,p;:noved

0,',-18 "Jo. ,)704-fJTSB

l 1. AGENC'f USc ONLY (Leave Olam:)

1
2. REPORT DA TE

April 1992
13. REPORT TYPE AND DATES COVERED

j 4. ilTLE AND SUBTITLE

1 Pipes: Linguistic Support for Ordered Asynchronous
I
I

Invocations

l
o. AUTHOR(S)

Colbrook, A., Brewer, E. A., Hsieh, W. C., Wang, P.,
Weihl, W. E.

j 7. PERFOR~lllNG ORGANIZATION NAME(S) AND ADDRESS(ES)

l Massachusetts Institute of Computer Science
Laboratory for Computer Science

l 545 Technology Square
j Cambridge, MA 02139

i 9 .
j

• 1
'

.;PCNSORING 1 1VlO:'liTCRING AGC:NCt NAME(S) AND ADDRESS(ES)

DARPA
1400 Wilson Blvd.
Arlington, VA 22217

5. FUNDING NUMBERS

j 8· PERFORMING ORGANIZATION
1 REPORT clUMBER

MIT/LCS/TR-539

j 10. SPONSORING 1 MONITORING l AGENC'f REPORT NUMBER

l N00014-89-J-1988

I
j 11. SUPPLEMENTARY NOTES

l
i
1 12a. CJISTi'\IBUT!ON i AVAILABILITY STATEMENT 12b. DISTr\ISUTlON CCDE

j 13. ABSTRACT (,'•lax1mum 200 words)

l

'
We describe pipes, a new linguistic mechanism for sequences of ordered asynchronous procedure calls
in multiprocessor systems. Pipes allow a sequence of remote invocations to be performed in order, but
asynchronously with respect to the calling thread. Using pipes results in programs that are easier to
understand and debug than those with explicit synchronization between asynchronous invocations.

The semantics of pipes make no assumptions about the underlying architecture, which enhances code
portability. However, the implementation of pipes by the language compiler can be optimized so as to
take advantage of any underlying message ordering a particular architecture may provide. Pipes also
provide application-transparent flow control for asynchronous invocations and are able to throttle in vo­
cations from multiple calling threads.

We present four implementations of pipes and show that the performance and space overheads asso­
ciated with pipes are low.

Linguistic mechanism, ordered asynchronous invocations,
serialization, message-layer implementation, flow control

~ 7. SC:GJRIT'f CLAS51FiCA TION
O~ r<EPORT

SECURITY CLASSlrlC;, ~ION
OF THIS PAGE

19. SECUi1.lT'f CL.~ss;;:;c.~ r;C1'~

OF :IBSIRACT

i i 6.
I

, '
I .:... IJ,

~RIC :::coE

NScJ 1s,;.o-o 1-280-)soo Stanoaro crm ~98 '\e'' 2-89)
.:-"'"scr oea cv :.,\j')1 Sic iJ'J· 3
2'3~· 'J2

