
LABORATORY FOR
COMPUTER SCIENCE lrt

MIT/LCStrR-542

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

VIDEO CODING AND THE
APPLICATION LEVEL FRAMING

PROTOCOL ARCHITECTURE

Andrew T. Heybey

June 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Video Coding and the Application Level Framing
Protocol Architecture

by

Andrew Tyrrell Heybey

Submitted to the Department of
Electrical Engineering and Computer Science

In Partial Fulfillment of the Requirements
for the Degree of

Master of Science in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology
June, 1991

@ Massachusetts Institute of Technology, 1991

Signature of Author------------------------
Department of Electrical Engineering and Computer Science

May 10, 1991

Certified hY----------------------------
Senior Research Scientist David D. Clark

Thesis Supervisor

Accepted hY--------------------------~
Professor Arthur C. Smith

Chairman, Committee on Graduate Students

1

Video Coding and the Application Level
Protocol Architecture

by

Andrew Tyrrell Heybey

Submitted to the Department of Electrical Engineering and Computer Science
on May 10, 1991

in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Electrical Engineering and Computer Science

ABSTRACT

As networks and computers become faster, real time video transmission is expected to
become common. Variable bit rate video coders will be used in order to take advan­
tage of the statistical multiplexing gain and bandwidth efficiency of packet switched
networks. Video streams have different service requirements from the traffic usually
carried on computer networks. A new protocol architecture called Application Level
Framing (ALF) has been proposed to allow efficient implementation of communica­
tions with diverse service requirements. ALF allows the application to control the
way in which network errors are handled. This thesis studies the compatibility of
three proposed video coding standards with an ALF protocol architecture. Each
of the standards is found to be usable with varying degrees of effort. A set of de­
sign principles for video codes intended for use over an ALF protocol architecture is
presented.

Thesis Supervisor: David D. Clark
Title: Senior Research Scientist

2

Acknowledgments

My thesis advisor Dave Clark helped me finally find and refine a topic and provided
much guidance while writing the thesis.

Many thanks to my officemate Tim Shepard for his encouragement and sage advice
on getting my thesis done in time.

Chuck Davin has listened to me for many hours and also proofread my thesis.

And finally many thanks to my wife Karen who proofread and who also loves, en­
courages, and puts up with me.

This research was supported by the Advanced Research Projects Agency of the De­
partment of Defense, monitored by the National Aeronautics and Space Adminis­
tration under Contract No. NAG2-582, and by a grant from the Corporation for
National Research Initiatives.

This document was typeset with the U.TEX Document Preparation System.

3

Contents

1 Introduction
1.1 Service Requirements of Video .
1.2 Constant Bit Rate Codecs
1.3 Variable Bit Rate Codecs .
1.4 Application Level Framing
1.5 Video Coding Standards
1.6 Other Work
1. 7 Overview

2 Application Level Framing and Video Coding
2.1 Application Level Framing
2.2 Video and Video Coding
2.3 Compatibility of ALF and a Video Code

2.3.1 Defining an ADU ..
2.3.2 Lost ADUs
2.3.3 Out of Order ADUs .
2.3.4 Header Data

2.4 Design of an ALF Video Application
2.5 Multiple Video Streams

3 JPEG
3.1 Description of Algorithm .
3.2 Choice of ADU
3.3 Design of an ALF Application

3.3.1 Design for the C-Cube Chip
3.3.2 Modifying the C-Cube Chip

3.4 Multiple Streams

4 MPEG
4.1 Description of Algorithm .
4.2 Choice of ADU
4.3 Design of an ALF Application
4.4 Multiple Streams

4

6
6
7
8

10
10
11
12

13
13
16
17
18
19
22
23
25
26

27
27
30
31
32
35
41

43
43
46
47
51

: ~' •• - , ~- -.. • . - ' -i I

5 ccrrT'• 1 x M Vl,Mo 0.- II
1.1 a,•hifti•;., Ml•••• ~ ~ a
5.2 Qlli•, fJI ,ADU ·-. : • • . • . • • .. • • . • .. • • • . • .. . • . • • . • • M
5.S ·Dnr,t e1.a AVApflieadlm .••...•• · •. ~ 56
I . .& lil•k •11r1t1 ••.•..•.••• · ••••••.•.• • •• · • · · • • l1

• u

' .

5

Chapter 1

Introduction

Digitized video is an appealing use of computers and computer networks. As the

bandwidth available on networks and the speed of computers increases, real time

transmission of video between general purpose computers becomes a more and more

realistic goal. However, there are limits to the available resources. There is not yet

so much bandwidth available that the video can be sent without compression, and

the service requirements of video are not satisfied by the usually available network

protocols. Therefore new efficient protocol architectures must be employed for digital

video transmission, along with video codes that take advantage of them.

1.1 Service Requirements of Video

The service requirements of video1 differ in many ways from those of the traffic now

typically carried on computer networks.

First, the bandwidth requirements of video are enormous. Uncompressed NTSC

video requires approximately 50 megabits per second. Uncompressed HDTV requires

much more. Both the transmission and storage of video suggest some form of com-

1 Here "video" means a video sequence being displayed in real time. A video sequence being
transmitted from one place of storage to another has exactly the same service requirements as any
other data transfer.

6

press10n. There is so much redundancy in most video sequences that even a relatively

simple-minded compression scheme can result in a significant decrease in the space

required. However, even when compressed, video without significant concessions in

quality requires more sustained bandwidth than most other traffic.

Second, video is a real time service. If a computer is playing back a moving

picture, the frames must be displayed at the correct frame rate without significant

variation in the delay between each frame. This timing is lost during transmission

across a statistically multiplexed computer network. Therefore, timing information

must be encoded with the video data to allow the receiver to play back the video at

the correct rate. There must also be buffering at the receiver to absorb variance in

the delay across the network.

Finally, errors in a video stream require a different form of correction than errors in

a normal data stream. Normal data transmission requires that all errors be corrected.

The data must be delivered to the destination application in exactly the form and

order they were sent by the source application. If data are lost en route, they must be

retransmitted. In contrast, by the time a lost part of a video frame was retransmitted,

it would usually be much too late to do any good. The proper reaction to a lost piece

of video data varies with the way in which the video is coded. The correct reaction

may be to do nothing, or to retransmit the state of that part of the screen at the

current time, or some other more complex action. Hardly ever is the correct reaction

to retransmit the exact data that were lost.

1.2 Constant Bit Rate Codecs

Many past video codecs (COder DECoders) have been designed to function in a

leased-line fixed-bandwidth communication environment. Until very recently, a leased

line was the only way to get guaranteed bandwidth and a small enough maximum

delay. Constant bit rate (CBR) codecs must vary the picture quality to cope with

7

changes in the information content of the video (or they must waste a large amount

of bandwidth by reserving enough for the maximum burst rate required). They also

assume that the only transmission errors will be bit errors with some relatively low

probability, and that the delay across the communication link does not vary signif­

icantly. A variety of experimental and commercial codecs have been implemented

under these assumptions. See [10], [8], and [9] for examples of CBR codecs. Chao

and Johnston [4] built a constant bit rate codec that works over a packet-switched

(ATM) network. Schooler and Casner [20] built a video teleconferencing system that

runs over the Internet using a commercial CBR codec.

1.3 Variable Bit Rate Codecs

A constant bit rate codec has the big disadvantage that when a large burst of data

must be sent (for example to accomplish a scene change) the extra bandwidth to

perform the update simply does not exist. In contrast, a variable bit rate codec

maintains a constant picture quality while producing a bursty data stream. A packet

switched network can absorb such bursts without requiring all the bandwidth to be

reserved. Packets switched networks are now becoming fast enough with a low enough

delay to be able to carry video. Even the current Internet can support low bit rate

video teleconferencing.

When using a packet switched network, video transmissions can exploit what

is called the "statistical multiplexing gain."· When many streams are multiplexed

together on a statistically shared network, the total bandwidth required approaches

the sum of the average rate of each video stream. For example, [22] states that when 64

variable rate video conference streams are multiplexed the total bandwidth required is

about 64 times the average bandwidth. Since this is statistical multiplexing, there is

still a possibility that the instantaneous bandwidth required will exceed this average

(and the capacity of the network) so that packets will be lost. However, the probability

8

of such an overload is no greater than the probability of a packet being lost due to

transmission errors. Therefore, when many video streams share the same network

link, they can each enjoy the constant quality of a VBR codec while the total capacity

required is no more than the total average bit rate.

Variable bit rate codecs implemented to date mostly have used a packet-switched

network in an ad-hoc way, bypassing the usual communication protocols in use on

the network. Because of the memory bandwidth bottleneck described above, video

cannot afford the processing and data-copying overhead of most protocols. The OSI

seven layer reference model [11] strictly segregates the responsibility for reliability to

the transport layer, away from the higher layers such as presentation and application.

In this model, the transport layer does not know of the specific requirements of video,

but delaying data while an earlier packet is retransmitted is completely out of place

in a real time application like video. Late data are just as bad as lost data. Especially

if video decoding is the bottleneck, the decoding process will never catch up once it

gets behind because of delayed data. The correct reaction to a lost packet will vary

with the video code used and the particular piece of data lost. The application that

drives the codec is the only entity that knows the appropriate corrective action, and

so it should be responsible for whatever level of reliability is needed.

Examples of previous VBR codecs include Verbiest and Pinnoo's codec [21] which

is a piece of hardware that produces ATM packets directly. It can accept packet losses,

but relies on the ATM network to preserve packet order. Other packet networks

do not necessarily preserve order, and so to use this codec elsewhere would require

modifications.

Moorhead, et al [14] built a VBR codec that uses arithmetic coding and both

inter- and intraframe compression. They correct for packet losses rather crudely.

The screen is periodically refreshed with an intracoded frame (every fourth or eighth

frame). If a packet is lost, the screen freezes until the next intracoded frame arrives.

There codec apparently has no way to only freeze the part of the screen affected or

9

to otherwise disguise the error.

1.4 Application Level Framing

A new approach to network architecture has been proposed by Clark and Tennenhouse

in [5] to aid in building protocols and applications that can run at speeds commensu­

rate with new fast networks. The Application Level Framing architectural principles

stress that the application knows best how to deal with reordering and losses in the

network, and that memory bandwidth in the host is likely to be the bottleneck in the

networks of the immediate future. Video makes a good testbed for the ALF ideas

because of its unique service requirements as described above. The Application Data

Unit is defined as the smallest piece of data that the application can accept out of

order. The lower protocol layers are then responsible only for delivering complete

ADUs to the application. Reliability and ordering are left up to the application itself.

1.5 Video Coding Standards

This thesis studies proposed video compression standards with the idea that it will

be possible to buy off-the-shelf hardware to perform the compression and to inter­

work with many other sites around the world. There are many such standards being

proposed both by international standards organizations and by private companies.

• The JPEG draft standard [12] proposed by a joint committee from the ISO

and the CCITT is for compression of single images. While not designed with

video in mind, it can certainly be used for video by compressing each frame

individually. There already exists a hardware implementation [2].

• The MPEG draft standard [15] proposed by the ISO allows a variety of coding

algorithms and provides for the audio accompaniment as well. A hardware

10

implementation is planned by the same company that manufactures the JPEG

chip.

• The CCITT's p x 64 standard [3] is a predictive discrete cosine transform coder.

• CD-I (18] is a standard for recording interactive video and audio on compact

disks. CD-I can only display full-motion video at less than full screen resolu­

tions.

• DVI (digital video interactive) [19] is a proprietary scheme for compressing video

for playback from a storage medium. It is designed to require much more work

to compress than to uncompress, and so is unsuitable for real time transmission

of video. It can be stored on any digital storage medium, though CD-ROM is

a particularly attractive medium.

This thesis studies only the JPEG, MPEG, and p x 64 video compression stan­

dards. CD-I does not support full frame full-motion video, and no meaningful infor­

mation has been made public about DVI.

1.6 Other Work

Much work has been done on video codes and codecs of all types. Previous research on

codes meant to be used over packet-switched networks has discussed the opportunities

and challenges presented by such networks. However, studies of VBR codes and codecs

have usually focused on the characteristics of one specific network. Little work has

been devoted to protocols that can transmit video over networks with different packet

sizes, loss rates, and service guarantees.

Wu and Lee discuss the transmission of video over different types of packet

switched networks in [13]. While they discuss the ways in which different networks

affect video transmission, they do not suggest any overall strategy that might be

usable on all networks.

11

Brainard and Othmer [1] also discuss the effects of a general packet-switched

network on video transmission. However, they assume that the network maintains

packet order, thereby excluding a large class of networks from consideration.

1. 7 Overview

Chapter 2 discusses Application Level Framing, the service requirements of video, and

how well they mesh. Chapters 3, 4, and 5 summarize the three video compression

standards and discuss the choice of ADU and design of an ALF application for each.

Chapter 6 summarizes the characteristics of a video code that make it suitable for use

with an ALF protocol, and names the compression standard that best meets those

requirements.

12

Chapter 2

Application Level Framing and

Video Coding

2.1 Application Level Framing

Application Level Framing (ALF) is a new set of network architectural principles set

forth in [5]. ALF is motivated by several observations. Networks and processors are

getting faster and faster, but memory bandwidth is not keeping pace. Also, while

network bandwidth is increasing, network latency is bumping into the hard limit of

the speed of light. In the interests of high performance it is therefore important

to minimize the number of round trips across the network required to perform a

communication and the number of times that a communicant must cycle its memory.

In the ALF model network protocol processing is divided into two parts: data ma­

nipulation and transfer control. Data manipulation is anything that requires reading

or copying every bit of the bitstream, such as error detection, buffering, presentation,

etc. Transfer control encompasses operations such as flow and congestion control,

sending acknowledgments, detecting packet loss and reordering, etc. Because of the

sheer volume involved, data manipulation is by far the more expensive step. By

combining as many data manipulations as possible into a single integrated processing

13

loop (a technique called integrated layer processing in [5]), the maximum processing

efficiency is attained.

The strict layered division of responsibilities in traditional protocol architectures

inhibits integrated layer processing. In general, each layer must complete its process­

ing on the data before the next layer can begin, especially if each layer includes a

multiplexing function. This structure can force serial processing and multiple data

manipulation steps thereby inhibiting an efficient implementation.

In addition, this type of layering restricts the ability of an application that does not

have typical service requirements to take advantage of the implementation efficiencies

afforded (or demanded) by those requirements. The application is restricted to using

those service classes provided by the lower layers, without the ability to bypass or

improve upon them. A prime example of such an application is video, which wants

neither a reliable bitstream nor an unreliable datagram service.

ALF has been decomposed into four layers in [7]:

NDU layer The NDU layer is responsible for the physical information exchange.

The network data unit is the unit of data exchange in the underlying network

(such as an IP packet or an ATM cell). The ADU layer uses the routing,

congestion control, and resource allocation primitives provided by this layer to

implement the higher level services.

ADU layer The application data unit is the smallest unit of data that the application

can handle out of order. The ADU layer is responsible for transmitting ADUs

across the network in terms of NDUs, and of notifying the application upon

receipt or successful transmission of an ADU.

By allowing the application (the entity with the most complete knowledge of the

structure of the information being transferred) to define the unit of information

transfer, efficient use of host resources is encouraged. When an ADU arrives,

the application performs all processing (error detection, presentation processing,

14

and other application-specific processing) on it at once. This method limits the

number of times that the data must be copied, the number of context switches

that occur per ADU, and provides a great flexibility in the handling of ADUs.

In addition, this efficiency is provided without tying the application to the

characteristics of the physical network.

Application services layer This layer will provide common service classes (such

as a reliable byte stream) based on the ADU layer. The application services

layer exists only to avoid duplication of development effort. No application is

required to use it.

Application layer This layer contains the application programs producing and con­

suming the data transmitted across the network. Applications use the ADU

layer and/or the application services layer to create flows between themselves.

A flow is a set of ADUs with the same source, destination, and service require­

ments. "The effort of setting up a flow is intended to be more or less what

would be done for each packet in a connectionless network; the idea of a flow is

that the results of this effort can be cached to good advantage." (From [5].)

The ALF application discussed in this thesis is the bit of code that goes between

the video coder and the ADU layer. It is assumed that at least for the immediate

future general purpose computers will not be fast enough to perform the video coding

entirely in software. Therefore, the video coder will be a special purpose black box

that produces or consumes a bitstream as specified in the relevant standard. The

application in this case is responsible for converting that bitstream to ADUs and

back again. If the coding could be performed in software, then there would not be

such a strict line between the coder and the program that understands ADUs. There

would just be a single application program that produces and consumes AD Us.

15

2.2 Video and Video Coding

Video is typically divided into one luminance and two chrominance components when

it is digitally coded. This is in contrast to the typical computer color display, which

uses red, green, and blue (RGB) components. Luminance and chrominance compo­

nents are chosen because the chrominance components carry information less impor­

tant to humans than the luminance, and can therefore be coded at a lower resolution.

Codecs often sample each chrominance component at half the spatial resolution both

vertically and horizontally. See Netravali and Haskell [17, Chapter 2], for more infor­

mation.

Once the video has been divided into components and sampled, there are many

kinds of coding that can be applied including transform coding, tree coding, vector

quantization, and differential pulse code modulation. See Musmann, et al [16] or

Netravali [17] for surveys of various coding types. Any type of coding can be either

inter- or intraframe coded (also referred to as just intercoded or intracoded). An

intracoded code relies only on the redundancy within a single video frame. Each

frame is coded as an independent entity. An intercoded code also uses the temporal

redundancy of video to perform compression. Such a code transmits the compressed

differences from one frame to the next rather than complete frames. Each new frame

thus depends on the contents of one (or more) previous frames. lnterframe codes

often further increase their compression ratios by performing motion compensation.

In this case, the code includes motion vectors in the transmitted information. The

part of the previous frame at spatial offset given by the motion vector is used as a

predictor. Motion compensation allows moving objects in the video picture to be

transmitted cheaply.

Interframe codes can provide a much higher level of compression than intraframe

codes because of the high level of temporal redundancy inherent in video (especially

a video with limited motion such as a teleconference). However, it is also much more

difficult for an interframe codec to recover from transmission errors than an intraframe

16

codec. Since newly transmitted frames depend on previous frames, an error will

persist in the video display and in fact will propagate across the screen and grow if

motion compensation is used. For this reason, interframe codecs (whether intended

for circuit networks or packet switched networks) all incorporate some method to

periodically refresh all or part of the screen using intraframe coding.

The video codes studied in this thesis all employ two dimensional discrete cosine

transform (DCT) transform coding. A two dimensional transform transforms square

blocks of pels into another domain before they are coded and transmitted. A useful

transform concentrates the energy of the pels into a relatively small number of coeffi­

cients. The DCT produces a DC coefficient which is the average of all the pels in the

block, and many AC coefficients that represent increasing spatial frequencies in the

block. The coefficients of the higher frequencies can be transmitted at a lower preci­

sion than the DC and lower frequency coefficients. The DCT, while not an optimal

transform, can be computed quickly. See [17, Chapter 5] for a complete discussion of

transform coding.

2.3 Compatibility of ALF and a Video Code

In order to be carried by a network employing ALF protocol ideas, a video code must

have several attributes. First, the bit stream produced by the coder must be easily

divisible into ADUs that are neither too big nor too small. Second, the decoder must

be able (with a small amount of help) to cope with the loss of an ADU. Finally, to

mesh well with the ALF philosophy, the decoder should be able to process ADUs out

of order. In determining the suitability of a code for ALF, the particular details of

the coding used for the picture do not really matter that much (for example, DCT

versus quadtree versus subband). What matters is how the bitstream is subdivided

and framed.

17

2.3.1 Defining an ADU

An ADU that is too large suffers from several problems. If the error rate of the

underlying network is non-negligible, it may not be possible to get a complete ADU

through the network with any certainty. (At least not without implementing some

form of reliable delivery of NDUs at the NDU layer, which goes against the ALF

philosophy). Since the application receives only complete ADUs, the packetization

delay of a large ADU may be unacceptable. Finally, the more data an ADU contains,

the more difficult for the decoder to recover from its loss, and the greater the effect

on the picture quality.

A too small ADU creates fewer problems. Depending on the amount of other

information that the application must add to the compressed video data (such as

timestamp, sequence number, CRC, etc.) a small ADU may require too much trans­

mission overhead.

When considering the size of the ADU, it is tempting to tailor the size to the size of

the NDU for practical reasons. It can be argued that an ADU which fits into the NDU

is more efficient than one that is too large and must be fragmented and reassembled.

Alternatively, if the network data unit is a fixed size, an ADU that is significantly

smaller than the NDU uses network bandwidth inefficiently. This efficiency concern

is a fallacy for several reasons. First, reassembly is not necessarily that expensive.

There are a variety of implementations that can make it cheap relative to the other

ADU processing that must be done. For example, reassembly does not have to mean

copying the NDUs to construct an ADU that is contiguous in memory. Rather, the

receiving application can be presented with a list of pointers to the NDUs making

up the ADU. The fact that the ADU is not contiguous adds only a small amount

of complexity to the processing loop that the receiving application will run over the

data.

Second, the ADUs for the video codes discussed in this thesis will be of variable

size. In all of the codes the compression ratio varies with the complexity of the scene,

18

and the encoders and decoders operate on fixed-size areas of the screen. Therefore,

if the bitstream is divided into pieces that the decoder can operate on naturally, the

ADUs will be variable size. Sending fixed-size ADUs will either be impossible or add

substantial complexity to the sending and receiving applications. Since the theoretical

maximum size of an ADU is much larger than the typical size (the number of bytes in

an ADU can vary by several orders of magnitude, depending on the parameters chosen

for the compression), it is impractical to define an ADU that will never overflow the

NDU. The ADU layer will have to be prepared to disassemble and reassemble ADUs

m any case.

The size of the ADU versus the size of the NDU is much less important than

whether the ADU is suited to the video code and ALF application. The same video

protocol may be used over networks with radically different characteristics and NDU

sizes, so designing the ADU with the NDU in mind is unwarranted.

2.3.2 Lost ADUs

Another requirement for the ADU is that the decoder (with the help of the ALF

application) be able to cope with the loss of an ADU. The absolute minimum re­

quirement is that the decoder not lose synchronization in the video stream and that

the picture on the screen not fall apart. Beyond that minimum, there is a range of

possible responses to ADU loss, which include the picture freezing until it can be

refreshed, a part of the picture freezing, a noticeable loss of picture quality or at best

an unnoticeable loss of picture quality. The feasibility of any particular correction

depends on the details of the code and the network.

For any code, if the round trip delay between the sender and receiver is low enough,

the receiver can ask the sender to retransmit the lost ADU. However, this action does

not guarantee that the replacement will arrive in time. It too may be lost or arrive

too late. The receiver must not rely on retransmission to fix the problem.

In the case of an intraframe code, the visual error will exist only until the display

19

of the next frame. The error can be disguised by replacing the lost ADU with the

same portion of the preceding frame. Alternatively the data from lost ADUs can

be interpolated from the surrounding ADUs in the same frame. The feasibility of

interpolation depends on the code used. For the transform codes studied in this

thesis (where an ADU might be a block of 16 by 16 pels) interpolation is not likely

to be a successful strategy.

In the case of an interframe code that incorporates motion compensation, an

error due to a lost ADU will persist and propagate across the screen. A lost ADU

means that a part of the frame to which the ADU belongs will be incorrect. Because

the succeeding frame is sent using the current frame as a predictor, the error will

persist from frame to frame (and probably get worse as differences are applied to

an increasingly incorrect predictor). Since later ADUs are transmitted using motion

compensation, the error will propagate spatially. To correct the error, the transmitter

must transmit a correction large enough to cover the extent of the damage.

If the coder corrects errors by transmitting extra data, the sender runs the risk

of falling over a precipice into an unwelcome operating region. Depending on the

amount of extra data transmitted and the probability of losing an ADU, the extra

bandwidth consumed to fix errors could grow extremely large. The more corrections

that must be sent, the more bits are transmitted. The more bits that are transmitted,

the greater the chance of a lost ADU for a given network error probability. The more

errors, the more corrections that must be transmitted and the greater the bitrate

required. The extra bandwidth required may grow arbitrarily large, depending on

the design and/or stupidity of the coder.1 Even with a relatively intelligent sender,

the code could quickly degenerate to sending every frame intraframe coded. Once

this poor performance point is reached, the encoder may never recover.

1 Imagine that through some burst of errors, every ADU in a frame is lost. Further imagine
that the network delay and motion compensation possible are such that the sender believes it must
refresh the entire screen for any single lost ADU. If the sender does not notice that it has already
refreshed the screen for the first lost ADU, it will proceed to refresh the screen many times, once
for each lost ADU. This burst of data will have a high probability of losing several ADUs.

20

One alternative to the brute-force "retransmit everything that might have been

damaged" approach is to keep track of the motion compensation used in each block in

prior frames, and to transmit the appropriate differences to correct the error. Wada

proposes such a scheme in [23]. When an ADU is lost, the receiver displays the data

from the previous frame and sends back a negative acknowledgment for the block to

the sender. The sender then applies that same "fix" to its frame store and continues

to code the video stream using the incorrect picture as a predictor. These differences

will correct the error when they arrive without havi~g to either retransmit any data

or refresh the screen. The complexity of such a scheme must be balanced against

any savings in bandwidth due to the smaller number of intracoded blocks sent. The

sender must maintain a store of old frames at least as long as the maximum expected

round trip transmission delay. In addition, when it learns of a lost ADU, the sender

must propagate the error through its local frame stores by executing the decoding

algorithm on the bitstream with the missing ADU. All of this requires a significant

amount of memory and CPU cycles.

Another approach to dealing with lost ADUs is to use a code that tolerates them.

This approach is very promising, especially with a network that allows different flows

to have different priorities. The ADUs carrying low resolution information are sent

on a fl.ow with a higher priority than those carrying information to fill in the de­

tails. If ADUs are lost due to congestion, the picture just becomes fuzzy (possibly

unnoticeably so) for a little while. Sub band codes are very well suited to prioritized

transmission. Darragh and Baker discuss a subband code and its sensitivity to errors

in [6]. They note that "missing non-baseband packets have minimal effect on the sub­

jective image quality." They replace missing baseband packets with the interpolation

of the pels above and below the missing ones (their packets consists of a single line

of pels), and state that such losses produces a minimal effect on the picture quality.

Even if prioritized transmission eliminates the loss of ADUs with high priority,

any ADU may still be lost due to transmission errors. The receiver must still be able

21

to deal with such losses by one of the other methods described above. Of the codes

studied in this thesis only JPEG could take this approach. The multiple priority code

violates the constant quality promise made for variable bit rate codes. However, it

does so on a statistical basis (when bursts happen to coincide the in network), not

because of a fixed limit on transmission bandwidth.

Finally, note that in order to perform even the minimal recovery from lost ADUs

for a black box decoder, the ALF application has to know at least a little bit about

the structure of the bitstream. At the very least, the application has to know how to

construct a place-holder ADU that does not violate any invariants that the decoder

expects. The more complex those invariants, the more the receiving application has

to know about the code and the more it has to understand the contents of the ADUs.

2.3.3 Out of Order ADUs

Out-of-order ADUs are very closely related to, but slightly different from lost ADUs.

A lost ADU causes all the following ADUs to be "out of order" with respect to the

lost ADU. However, if the decoder cannot tolerate out-of-order ADUs the receiving

application can (assuming that it knows enough about the code) construct an artificial

place-holder ADU to fill in for the lost one. The decoder then does not see the ADUs

as being out of order. If the decoder can deal with out-of-order ADUs, then no such

place holder is required. The decoder can immediately be fed the subsequent ADUs,

and the missing ADU can be sent to the decoder when and if it arrives.

The need for out-of-order processing arises for two reasons. First, ADUs may

be reordered by the network. Second, an ADU which is lost and then successfully

retransmitted will arrive out of order. In either case, out-of-order processing makes

it possible to keep the decoder busy in the face of lost and reordered ADUs. If the

decoder is the bottleneck in the system, it must be able to process the ADUs as they

arrive, without waiting until they are put back into sequence. Otherwise the decoder

will fall farther and farther behind for every ADU that is reordered for any reason.

22

While not strictly necessary to be usable in an ALF protocol architecture, the

decoder should be able to process ADUs out of order as much as possible. The

application can reorder the ADUs if necessary, but if the choice of the ADU and

characteristics of the code do not allow at least some out-of-order processing, one of

the strong points of the ALF architecture is eliminated.

2.3.4 Header Data

Replicating Header Data for Reliability

There is an additional wrinkle to choosing an ADU for each of the compression

schemes. The ADU will, in general, be as small as is practical. However, all the

algorithms have additional header data for the larger units of pictures, groups of

blocks, etc. These data can not be lost without affecting at least the entire frame.

Therefore, whichever unit is chosen as ADU, if the header data for one of the larger

units are lost the decoder is in trouble. Even though subsequent ADUs appear to be

independent, they implicitly need the information that was lost. Even worse, it is

possible to lose the data without noticing the loss, as much of this information is an

optional part of the bitstream.

It is possible to fix the problem by including the needed information in every ADU.

However, depending on the amount of data (indices would probably be small enough

to duplicate; entire Huffman code tables would not), this strategy may impose an

unacceptable duplication of data, particularly in the case of large tables that do not

change often.

To avoid superfluous duplication of large amounts of header data, the sender can

create an additional fl.ow for the table updates. In this fl.ow, each ADU is a table

update. When a new table is produced by the encoder, it is transmitted on the

table update fl.ow. Each table is given a version number, and the ADUs in the video

flow carry the version number(s) of the table(s) they need for decoding. To avoid

decoding ADUs incorrectly, the table update flow should be reliable. The reliability

23

can be achieved in one of two ways. The first is the more traditional. The receiver

sends an acknowledgment upon receipt of each table update. If an acknowledgment

is not received within a certain amount of time, the sender retransmits the table.

This retransmission strategy is well understood. However, it might not provide quick

enough recovery from lost tables if the sender does not time out soon enough. An

alternative is for the arrival at the receiver of a video ADU containing a table version

number not yet seen to prompt the sending of a negative acknowledgment to the

transmitter. This strategy can either be used by itself or as an addition to the

positive acknowledgment strategy.

Using a separate reliable flow to transmit the table updates has the problem that

there is no guaranteed bound on the time it will take to get a table update to the

receiver. Unlike the loss of a regular ADU, the loss of a table update may force the

decoder to stop or to produce a very poor picture. A different strategy does not re­

quire a separate flow or retransmissions with their accompanying uncertainty. When

a new table appears in the bitstream, it is sent as part of every video ADU until an ac­

knowledgment is received for that table. Each such unit of reliably-transmitted data

must have its own sequence number (or other means of unique identification). When

the receiver acknowledges the sequence number of each unit of reliably-transmitted

data, the sender stops including the data with each ADU. This method of transmit­

ting data that must arrive reliably has the property that no ADU will ever arrive at

the receiver without all the information needed to decode it, at the cost of the extra

bandwidth for the needlessly duplicated tables. It also requires the video ADUs and

receiving application to be more complex to detect and process the optional tables in

the ADU.

Eliminating Redundant Header Data

While dividing the compressed video stream into ADUs requires the complexity of

duplicating the signalling information as described above, it also has advantages. The

24

part of the bitstream contained in each ADU is framed by the ADU itself. Therefore,

any framing information that delineated that part of the bitstream can be omitted.

The sending application can remove the framing information, and the receiver can

replace the framing in the stream being sent to the decoder.

2.4 Design of an ALF Video Application

The obvious design of a system using ALF to transmit encoded video over a packet­

switched network consists of three black boxes at each end of the network. The

three boxes at the transmitter are the encoder, the ALF application, and the ADU

layer. The encoder takes a video signal as input and produces a bit stream in the

format specified by the implemented video coding standard. The application takes

the encoded bitstream as input and divides it up into ADUs adding timestamps and

sequence numbers as necessary. Finally, the ADU layer takes ADUs and sends them

over the network to their destination.

At the receiver the boxes are the ADU layer, the ALF application, and the decoder.

The ADU layer receives network data units from the network, and produces AD Us for

the application. The application receives the ADUs and reconstructs the bitstream

according to the coding standard used, and then feeds the bitstream to the decoder

which produces a video signal.

The problem with this obvious design of the system is that requiring the encoder

and decoder to be black boxes eliminates much of the advantage of the ALF protocol

architecture. All of the codes proposed for standardization do not make any formal

provision for decoding their bitstreams out of order. (However, as discussed in this

thesis, all of the standards could be processed out-of-order if the coded stream is

divided into appropriate units and the decoder is prepared to deal with them.) The

C-Cube JPEG chip, for example, can decode the bitstream only in order. Therefore,

if an ADU is received out-of-order, the decoding process must grind to a halt. The

25

only alternative is to immediately treat the out-of-order ADU as lost.

To achieve the maximum benefit from the ALF principles, the receiving ALF

application must be able to send ADUs to the decoder out-of-order. This implies

that the communication between the decoder and the application must be more than

just a bitstream. The decoder (whether it is implemented in software or hardware)

must be able to communicate with the application to find out where to put each

ADU.

2.5 Multiple Video Streams

The proposed video compression standards studied in this thesis all implicitly assume

that the communications channel to be employed is a fixed-bandwidth point-to-point

circuit. From this assumption it follows that the decoder will decode one stream at a

time. In contrast, a statistically multiplexed network encourages the transmission of

many simultaneous streams. Even though the decoder may be a black box designed

to decode a single stream, the receiver would like to multiplex the decoder for many

different video streams. To use the same decoder for many video streams, the receiving

application must be able to quickly reload any state in the decoder as each ADU is

processed. If the decoder expects to receive only one video stream, that state may

be hidden or difficult to change. In this case the application must use a separate

decoder for each video stream. The decoder must also operate quickly enough to

decode multiple streams in real time.

26

Chapter 3

JPEG

3.1 Description of Algorithm

JPEG [12] is an image compression standard, meaning that it performs only in­

traframe coding. However, it can be used for video by coding each frame individually

if the encoding and decoding are performed fast enough. Of course the compression

achieved will generally be less than for algorithms that perform interframe coding.

The JPEG draft standard encompasses both a discrete cosine transform (DCT)

algorithm and a lossless differential pulse code modulation (DPCM) algorithm. The

DCT algorithms can entropy code the coefficients using Huffman coding or arithmetic

coding. The DCT coefficients can be transmitted sequentially, progressively in order

of increasing spatial frequency, or progressively with increasing precision. Both the

DCT and the DPCM algorithms can transmit the image hierarchically. In this mode,

the image is first coded and transmitted (using either DCT or DPCM) at a lower

resolution and/ or lower quality than desired for the final image. This low-quality

image is used as a predictor and differences from it to a higher-quality image are

computed and transmitted. This process is repeated until the final image is obtained.

It would be possible to use the hierarchical mode in a network that supports different

priorities for transmitted data. The initial frame could be transmitted at the highest

27

priority, and subsequent frames at lower priorities. If the network became congested,

it would drop lower-priority packets first, which would result in an overall drop in

picture quality rather than a glitch on the screen.

The most likely candidate for video would be the DCT algorithm. The DPCM

algorithm is neither fast enough nor necessary for a moving picture. DPCM does

not achieve as great a compression ratio, and losslessness is even less important for

video than for still images. The standard claims to achieve very good quality images

with DCT coding, so there is no need to use the extra bandwidth to transmit DPCM

images for video.

A compressed JPEG image is constructed of the following parts. In the bitstream,

signalling information is identified by the hexidecimal value $FF followed by a marker

byte identifying which information follows. If $FI; appears .in the coded data, the

encoder must insert a zero byte after it to indicate that it is not a special code.

image The single image is the largest unit of information defined by JPEG. Each

video frame will be transmitted as a JPEG image. An image consists of one or

more components (up to 255 components per image). The JPEG draft standard

does not specify that any particular set of components be used. A common set

of components used for video is one luminance component and two chrominance

components, with the chrominance components sampled at one-half the spatial

resolution of the luminance component.

frame A JPEG image contains one or more frames. Images contain more than one

frame only if they are coded using hierarchical mode. Note that the different

JPEG "frames" of an image are all part of the same video frame. Unless other­

wise specified, the word "frame" in this chapter refers to the usual video frame,

not the JPEG frame. The signalling information for each frame includes the

type of coding used (DCT or DPCM, Huffman or arithmetic coding, sequential

or progressive, etc.), the number of lines and pels per line, the data precision,

the number of components, the resolution of each component and which quan-

28

tization table to use for each component. There may also be Huffman tables,

quantization tables, arithmetic coding tables, and definition of the restart in­

terval before the start of each frame in the image. If these tables are included in

the bitstream, they stay in effect for later images as well as the current image.

scan A frame consists of one or more scans through the image data. Each scan can

contain one to four components of the image. A scan may be interleaved or

non-interleaved. A non-interleaved scan contains one component of the image.

An interleaved scan contains more than one component. The signalling infor­

mation for each scan identifies the components of the image included in the

scan and which Huffman tables to use for each component. New Huffman and

quantization tables may also appear in the bitstream before the start of each

scan (as described above for the JPEG frame).

minimum data unit Each scan consists of a sequence of minimum data units

(MDUs). For non-interleaved scans (which contain only one component), the

MDU is either a single eight by eight block (for DCT) or a single sample (for

DPCM). For interleaved scans, an MDU is at least one block or sample from each

component. If the components have different resolutions, the number of blocks

or samples from each component is such that the total physical screen area cov­

ered for each component is equal. For example, if the luminance component has

twice the horizontal and vertical resolution as the two chrominance components

(as is a common case for video), the MDU will consist of four blocks from the

luminance component and one block from each of the chrominance components.

block The eight by eight block is the basic unit of DCT compression. The DC

coefficient is DPCM coded from that of the previous block of the same com­

ponent. The AC coefficients are either Huffman or arithmetically coded in a

way that efficiently encodes runs of zero coefficients. The end of each block is

marked by a special marker. If the block ends before all 64 coefficients have

29

been transmitted, the rest of the coefficients are implicitly zero.

restart interval A scan may be broken up into restart intervals. At the beginning

of every restart interval, the predictor of the DC coefficient of the DCT is set to

zero. The restart interval must be defined at the beginning of the image. Each

restart interval contains a fixed number of MDUs, except for the last one in a

scan which may be shorter. Restart intervals are identified in the stream using

a modulo-eight counter.

3.2 Choice of ADU

The smallest unit that could be used as an ADU is the restart interval. At the

beginning of every restart interval, the predictor for the DC coefficient is set to zero,

so decoding does not depend on any other ADUs in the frame. JPEG does not

include any interframe coding, so each restart interval is completely independent

(except for any redefined quantization or Huffman code tables). If transmitting video,

the ALF application would have to add some more identification (such as sequence

number and/ or frame number and/ or timestamp) to each ADU so that it could be

placed in the correct position in the appropriate video frame. Since new Huffman

and quantization tables can be defined before any frame or scan, any such new tables

must be transmitted reliably as discussed in Section 2.3.4. They are too large to be

included in every ADU transmitted.

The various signalling information included with the scan and the frame is also

needed to decode the ADUs. However, this information will not change from ADU to

ADU, and in fact will probably not change from video frame to video frame. Whether

to send this information with every ADU or to only send it when it changes (like the

tables), depends on the size of the ADU.

30

3.3 Design of an ALF Application

There are several issues to consider in the design of ALF applications to transmit and

receive JPEG. The first is how to deal with the transmission of the various tables that

may be included in the bit stream. These tables are large enough (several hundred

bytes) that it is impractical to transmit the applicable ones with every ADU. Instead,

as discussed in Section 2.3.4, the tables will be transmitted in some reliable manner

when they change.

The receiver must be careful to redefine the tables only at the right time. Old

tables must not be replaced too soon. If ADUs are reordered, then an ADU needing

a new table may arrive before all the ADUs using the old table have arrived and been

decoded. In this case, the old table must be retained until it is not needed any more.

The old table must be kept until the last ADU that might need it has become too

old (where "too old" is defined below). If changing the tables is expensive, then all

ADUs before a table change must be decoded before any ADUs following the table

change.

The job of the transmitting application is relatively simple, and does not depend

much on the particular encoder used. It packages each restart interval produced by

the encoder into an ADU. Each ADU gets a header containing all the signalling

information as described above, a timestamp and a sequence number. To provide the

most information to the receiver, the timestamp should be the midpoint of the time

interval during which this restart interval was displayed on the screen in the source

video. The sequence number is an integer which is incremented for each ADU,allowing

the receiver to order the ADUs (if necessary) and to detect duplicate and lost ADUs.

If the encoder and decoder support hierarchical mode and the underlying network

supports priorities, each ADU is also given a priority corresponding to its JPEG

frame number within an image.

The receiving application is somewhat more complex. It must discard AD Us which

arrive too late, give any new tables or other signalling information to the decoder at

31

the correct time, deal with lost and duplicate ADUs, perform any reordering that

the particular decoder requires, and send the restart intervals to the decoder. The

implementation of all of these functions (except for discarding ADUs which arrive

too late) depends to a large extent on the implementation of the decoder. As an

example, the next section describes the design of an ALF application to work with a

commercially available JPEG encoder/decoder chip.

3.3.1 Design for the C-Cube Chip

The C-Cube Microsystems CL550 JPEG Image Compression Processor [2] implements

the baseline JPEG draft standard. The baseline standard is the sequential DCT

algorithm with Huffman coding of the coefficients. It also limits the size of the

image, the pel precision, and the number of Huffman tables used. The C-Cube chip

has a "pixel interface" on one side and a "host interface" on the other. The pixel

interface can produce or consume raster-scan pixels as video (including the generation

of, or synchronization to, horizontal and vertical sync pulses). The pixel interface

requires some external RAM as a line buffer in order to convert from raster scan

video to the eight-by-eight blocks needed for the DCT and back again. The chip itself

does not interpret any marker codes in the bitstream except for the restart interval

code nor does it produce any marker codes except for the restart interval. External

software must add on the rest of the framing during compression and strip it off during

decompression. The quantization and Huffman code tables are programmable.

The sending application for the C-Cube chip must have an external source for the

signalling information defined in the JPEG bitstream since the chip produces only

restart interval marker codes and no other framing or signalling information. Besides

having to produce the signalling information, the sender works as described above in

the general description.

Unfortunately, if the C-Cube JPEG chip is used as the decoder, the advantages

of ALF are largely moot. The chip does not provide for any way to process the

32

data out of order. There are no addresses in restart intervals (they are addressed by

their position in the data stream), and the chip does not have any way to specify

where a restart interval belongs on the screen. The receiving application is limited

to reconstructing the bitstream verbatim. If an ADU is lost the receiving application

must put a placeholder in the bitstream so that the chip does not get confused, but

that is the extent of the permissible variation. The other signalling information in the

standard is not needed by the C-Cube chip. A number of registers must be initialized

with the size of the frame etc., but they need not be touched from frame to frame

unless the signalling data indicate a change. To elaborate, the receiving application

must perform the following tasks to prepare arrived ADUs for the C-Cube chip:

1. Determine if the ADU is too late. "Too late" means that the timestamp in the
.

ADU plus the decoding delay is less than the °timestamp of the oldest ADU not

yet displayed on the screen. In other words, each ADU must arrive with enough

time to be decoded before it must be displayed. If an ADU arrives too late it

is discarded.

2. Reorder the ADUs in left-to-right, top-to-bottom order. Since there are no

addresses encoded in the restart intervals (and no other way to communicate

an address to the decoder), the chip must receive them in the correct order with

no gaps. The ADU will also contain a timestamp and/or frame number so that

ADUs from different video frames can be differentiated (this information is, of

course, not included in the standard, since JPEG concerns itself with single

images only).

3. Install any new Huffman or quantizer tables that arrive and send any acknowl­

edgments that are required for the tables. The tables must be installed in the

chip at the correct temporal location in the stream so that each ADU is decoded

using the correct tables.

4. Deal with lost AD Us. If the receiver has not received an ADU by the time that

33

it must be sent off to the decoder, that ADU is considered lost. Because JPEG

uses only intraframe coding, minimal action is required when an ADU is lost.

The disruption to the current frame should be minimized, but the error will be

overwritten with the next frame anyway.

There are several ways to design the application so that it can hide the effects of

a lost ADU. One design is to keep track of each frame as a unit. The application

sets a timer for the time when the next frame should be sent to the chip. When

the timer goes off, the application checks to see if all the ADUs in the frame

have arrived. If there are any gaps, it fills them with the corresponding ADU

from the previous frame or an artificial all-grey ADU. Finally, all the ADUs

of the frame are placed on a queue to be sent to the chip. There must be a

separate task or interrupt handler whose sole responsibility is to feed the JPEG

chip from that queue.

Note that if the Huffman or quantizer tables have changed since the previous

frame, an old ADU cannot simply be substituted for the lost one. If the ta­

bles have changed, an artificial ADU must be used. The all-grey ADU will also

change with different Huffman and quantizer code tables. The application could

substitute a restart interval of all zero coefficients (since the all-zero ADU will

not change, no matter what the Huffman or quantization tables). This substi­

tution would not look very good but would satisfy the minimum requirement

of not letting the decoder get out of synchronization.

Reassembling complete frames before sending them to the decoder allows the

least leeway in arrival for the ADUs. An alternative is to operate at a finer

granularity. Set a timer for the time that each restart interval should be sent

to the chip. When the timer goes off, if the ADU has arrived, put it (and

subsequent ADUs in sequence that have arrived) on the queue to be sent to the

chip. If the ADU has not arrived, substitute the same ADU from the previous

frame or an artificial one. This involves setting more timers, but it allows the

34

ADUs to be later (and more out-of-order) without the image suffering at all.

Another alternative is a combination of the last two. Queue complete frames to

be sent to the chip (with placeholders for missing ADUs), but reach in and insert

any ADUs that arrive in time. The application must be careful to know just

how much of the frame has been sent to the chip to avoid completely destroying

an ADU. It also requires a more complex buffer-management scheme, since

ADUs are variable-sized. There must be enough room in the buffer containing

the placeholder, or the ADUs must be threaded on a list. Otherwise it will be

impossible to insert the late ADU in the queue.

The final approach is to request the retransmission of the lost ADU from the

sender. This approach is only feasible if the round trip delay between the sender

and receiver is very short and the decoder is not the bottleneck in the system.

Since the ADUs must be decoded in order, all decoding must be held up until

the replacement arrives. Also, the application must still be prepared to cope

(by using one of the strategies discussed above) with any retransmissions that

do not arrive in time.

5. Discard duplicate ADUs. These are simple to detect. In the process of re­

ordering the ADUs, if the application finds an ADU in the position where the

newly-arrived ADU belongs, the newly-arrived ADU is discarded. If older ADU

has already been sent to the decoder, then the duplicate should have been dis­

carded by the "too late" detector.

3.3.2 Modifying the C-Cube Chip

The major limitation of the C-Cube JPEG chip is the requirement that ADUs be

decoded in order. As discussed above, there is nothing about the code that enforces

this requirement. The problem is that the ADUs contain only the most primitive

address in their header (a modulo eight counter), and the C-Cube chip does not

35

provide any way to tell it which restart interval belongs where in the image. For the

purposes of an ALF protocol, a better decoder design would include the ability to

specify an address with each ADU passed to the decoder. At a minimum, the address

would specify the location in the image that the ADU covers. At best, the address

could also specify to which image the ADU belongs.

The ability to specify an address with each ADU comes with some tradeoffs. The

C-Cube chip does not require a frame store to operate. It needs a line buffer to

convert the image from raster scan to eight-by-eigh.t blocks and back again, but it

needs only a few tens of lines of buffering for this purpose. A decoder that could

handle ADUs within the current frame out of order would need a single frame store.

A decoder that could handle ADUs out of order from different frames would need

multiple frame stores and a method to switch between them. Depending on the

characteristics of the intervening network, and whether the decoder is the bottleneck

in the communication, the ability to keep the decoder's pipe full is an important

enough advantage to outweigh the added cost of a frame store (or several frame

stores).

To add the capability to randomly address ADUs, the C-Cube chip needs some

extra hardware. First, the pixel interface must be changed to address at least one

frame store rather than the current line buffer. The current line buffer is effectively a

slice of a frame store, so this change requires only a widening of the the line buffer ad­

dress. The ubiquitous megapel display requires 20 bits of address (though a megapel

is overkill for NTSC video), plus additional bits if the framestore can hold more than

one frame. Twenty-four bits of address is a minimum and more are desirable.

Second, there must be a method to pass the decoder an address indicating the

frame and the location within the frame of each restart interval. The simplest way

to accomplish this is to use that address to initialize an external address register

addressing the framestore. The application must compute the address in the frame

store of the beginning of each ADU. The current complex address counting that the

36

C-Cube chip performs on its pixel bus would be ignored in the new scheme, since the

conversion from eight-by-eight blocks to raster scan is no longer needed. The chip

(with the external pel address register) would just lay down the blocks in the frame

store in order, starting at the address passed by the application.

The simplest way to add an address register that the application can initialize is

to install an external address register and ignore the pixel bus addresses generated

by the C-Cube chip. This register must also be a counter in order to generate all the

addresses for all the pels of each ADU. In order to put the pixels in the correct place

in the frame store (assuming that the frame store is read in the usual raster-scan

order), the address register/counter must count so as to step through the frame store

in eight by eight blocks. The application must initialize the address register for each

ADU fed to the chip.

The biggest problem is loading the external address register with the starting

address of each ADU exactly when the pels from that decoded ADU start to emerge

from the C-Cube chip. The application does not care about the ADU anymore at

this point. It will have handed off the ADU to be fed to the C-Cube chip by some

other task. In order to load the address register at the correct time, there must be

a FIFO between it and the application. When the application queues an ADU for

the C-Cube chip, it also puts the address of the ADU in the FIFO. The trick is now

to decide when to load the address register from the FIFO. The pel in the upper

lefthand corner of a row of blocks is accessed first in both raster scan and block order.

If the restart interval (and hence ADU) is made to be one row of blocks, then the

address register should be loaded every time the C-Cube chip emits a zero address

on the pixel bus.

If the ADU cannot be one row of blocks, then a more error-prone scheme can

be used. The address register is loaded from the FIFO every n pixels, where n is

the number of pels in an ADU. As long as the ADUs contain a constant number

of pels, and the counter that pokes the address register every n pels does not get

37

C-Cube
24

Frame
PXDAT .L t:l

CL550 ll> buffer I rt
ll>

Addr
PXADR ~

v 16 "'1 .;'
v 24

16 B Out

0 A > Address 7 Comparator ~ S'
ll> Counter tp p..

"' In_

~ v 24
"'1
Out

Address from .L_.. H FIFO
ALF application 7 ::>

24

Figure 3.1: Adding an external address counter

out of phase, this scheme will work. However, if the counter does manage to get out

of phase with the decoder chip, the scheme falls apart. Alternatively, the pixel bus

address put out by the C-Cube chip could be compared to a list of addresses, each

of which is known to occur at the start of an ADU. However, this scheme is just as

error prone as counting the number of pels per ADU. If an ADU is not an entire row,

then the address signifying the start of an ADU varies from scan to scan because of

the pattern that the C-Cube chips uses to generate addresses. The only pixel bus

addresses that always refer to the same physical pel on the screen are those that are

the same whether the screen is scanned block-by-block or line-by-line (for example

the pel in the upper left corner of a row of blocks, which is address zero).

A block diagram of the external address register and associated FIFO, counters,

and support circuitry is in Figure 3.1. The modified hardware does not require any

modifications to the ADU. The calculation of a frame store address for each ADU

does not require any more information than the application already has to reorder

the ADUs.

38

Now that the decoder can take a frame store address for each ADU, the ALF re­

ceiver application has much more latitude in the way it can pass ADUs to the decoder.

The application must still discard AD Us that are too late and deal appropriately with

new tables, but the operation in the presence of lost or reordered ADUs is different.

Another external circuit will scan and convert each frame store to one video frame in

a round robin order. As each ADU arrives, its frame number and frame store address

is computed. The ADU is immediately queued for output to the decoder chip if its

frame is currently occupying one of the frame stores and if there is enough time for

the ADU to be decoded before its frame is displayed. If it is too late, the ADU is

discarded. If its frame is so far in the future that there is not yet a frame store for

it, the ADU is put on a queue for "too early" ADUs. There is also still some need

for reordering ADUs. If an ADU arrives radically out of order, it may be too late if

it is placed at the end of the queue, but in time if placed at the front of the queue.

Therefore the application should enqueue the ADUs for decoding based on a rough

estimate of how late they are. This is much easier than maintaining a queue ordered

by sequence number since merely deciding whether to place the ADU at the head or

the tail will suffice.

Lost ADUs are now treated somewhat differently than with the unmodified C­

Cube chip. When the display time for each video frame arrives, some of the ADUs

for the frame may not have arrived because they were lost or delayed. The application

can take one of several approaches to handle lost ADUs:

1. The simplest choice is to do nothing. This means that the framestore will

contain garbage where the lost ADU should be. In practice, this garbage will

be the same portion of the frame from several frame times ago. This approach

will be visually ugly if the picture has changed significantly during the last few

frames, but requires no bookkeeping or extra processing.

2. If there is enough framestore bandwidth available, the application can initialize

each frame store to some value before beginning to decode ADUs into it. Any

39

missing ADUs will then be grey (or whatever other color chosen) areas on the

screen. This approach requires that the application be able to write directly into

the frame store (note that neither the existing C-Cube chip nor the proposed

modification require this capability). It also assures that any lost ADUs will be

visually noticeable.

3. The application can keep track of which ADUs have not arrived, and substitute

some other placeholder ADU for the missing one, as described above in the sec­

tion about the unmodified C-Cube chip. Substituting a constant ADU will have

the same visual effect as initializing the frame store to some value. However,

the application then does not need to directly write to the frame store. It will

have to keep track of which ADUs have been lost, and must start sending the

placeholder ADUs to the decoder early enough. For example, if calamity strikes

and half the ADUs are lost, the application must start sending the substitute

ADUs to the decoder half a frame time in advance, to be sure that the decoder

can complete the frame before it must be displayed.

4. Another approach is similar to the previous one, but instead of substituting a

constant ADU for the missing ones, the application substitutes the same ADU

from the previous frame. This approach requires the most bookkeeping on the

part of the application (it must both keep track of which AD Us have not arrived

and save the last n frames worth of ADUs), but has the potential for producing

the best visual results. It also does not require that the application be able to

directly write into the frame store. If the same ADU was lost in the previous

frame, the application would look for the frame before that, and so on. If the

same ADU was lost in the preceding n frames, the application could just omit

that ADU from this frame. This case should be rare and produces results no

worse than the first approach discussed.

5. The application can also request retransmission of the lost ADU with similar

40

conditions and caveats as discussed above for the unmodified chip. However,

since the ADUs no longer need to be decoded in order, retransmission is more

feasible. The application needs to decide when to ask for a retransmission. At

least one round-trip time (plus the decoding time for each missing ADU) before

the frame is displayed, the application must send a retransmission request for

all ADUs that have not yet arrived. If they arrive in time, the application feeds

them to the decoder and all is well. Otherwise, it must employ one of the other

lost ADU recovery methods.

The ability to decode out-of-order ADUs also alters the treatment of duplicate

ADUs. When using the C-Cube chip by itself, duplicate ADUs were detected and

discarded by the code that reordered the ADUs before sending them to the decoder.

Since there is no need to reorder ADUs any more, the application loses the ability

to detect duplicates "for free." However, decoding the same ADU twice does not

affect the video picture; it merely wastes resources. As long as the ADU duplication

rate is relatively small, is is more effective to waste the resources required to decode

the occasional ADU twice than to expend the resources to check every ADU for

duplication.

3.4 Multiple Streams

The C-Cube chip (with an external address register) works very well at decoding

multiple video streams if every stream uses the same picture components, horizontal

and vertical size, and Huffman and quantization tables. The ALF application just

computes the correct frame store address for each ADU and puts the ADU with its

address into the queue to be sent to the chip. Since each ADU is entirely independent

of all others (including those from other video streams), the order in which they are

decoded is irrelevant as long as the output is deposited in the correct place in the

frame store. If the parameters such as resolution and number of components are

41

dil'creM..,..tlw_...-.. .••• , .. 11,.,._nl.ltlt>;•''dtiJ~ta.~.-.
c1ep i 111•••···p°''· •..

--

' -·- fJ

Chapter 4

MPEG

4.1 Description of Algorithm

MPEG [15] is intended to code both audio and video. This thesis studies only the

video code. The video part of MPEG codes sequences of frames. Each frame is

composed of one luminance and two chrominance components. The chrominance

components are sampled at half the rate (both vertically and horizontally) of the

luminance component. MPEG uses a discrete cosine transform code, and both intra­

and intercoded frames.

MPEG-coded video is divided into the following parts:

video sequence A video sequence is one or more groups of pictures that have the

same parameters (such as picture rate, picture width, and picture height). The

header of a video sequence includes all this information as well as optional

quantizer matrices and optional extension data and user data.

group of pictures A group of pictures (GOP) is a set of one or more pictures that

can be decoded without reference to other pictures in the video sequence. The

group of pictures is the unit of random access in a video stream. A GOP must

begin with an intracoded picture, though intercoded pictures may exist in the

43

GOP that depend on other GOPs. If the video sequence is not played in order,

pictures that depend on earlier GOPs are not displayed. The GOP header

contains an SMPTE (Society of Motion Picture and Television Engineers) time

stamp and flags which indicate whether there are any pictures in the GOP

that depend on pictures in other GOPs. The timestamp gives the relative time

between the picture in this GOP with temporal reference zero and the picture

in the preceding GOP with temporal reference zero. (The temporal reference

number of a picture is described below.)

picture There are four types of pictures. An intra-coded picture (I-picture) can be

decoded without any other information. A predictive-coded picture (P-picture)

uses motion compensated prediction from an earlier picture. A bidirectionally

predictive-coded picture (B-picture) uses motion compensated prediction from

a past and/or future picture. A de coded picture (D-picture) contains only the

DCT DC coefficient information.1

The picture header contains a temporal reference number, the picture type, an

optional time stamp, and some information about how to decode any motion

compensation vectors in the picture. The temporal reference number orders

the pictures in a GOP in time, from zero through n where n is the number

of pictures in the GOP. The pictures in the GOP may be in the bitstream

out of order (for example B-pictures are transmitted after the picture used for

prediction). The timestamp is in units of 1/90000 second, and may be relative

to the timestamp of the preceding picture or an absolute value.

slice A picture consists of one or more slices. Each slice consists of one or more

macroblocks of the picture in order. Slices do not overlap. The slice header

contains the vertical position of the slice and the quantizer scale used for the

slice. The vertical position is the macroblock row of the first macroblock in

1This thesis will not consider D-pictures, since the standard does not discuss their use.

44

the slice. The quantizer scale is a number from one to 31 that indicates which

quantizer level to use when decoding the DCT coefficients.

macroblock A macroblock contains a 16 pel by 16 line block of the luminance com­

ponent and the spatially corresponding eight by eight block of each chrominance

component. A macroblock may be intra- or inter-coded. An I-picture contains

only intra-coded macroblocks. A P- or B-picture may contain intra- or inter­

coded macroblocks. The macroblock header contains a macroblock address

relative to the previous macroblock in the slice. The absolute address of the

first macroblock in a slice is computed by adding its relative address to the ad­

dress of the last macroblock in the row above the slice's vertical position. The

macroblock header also contains information about quantization and may con­

tain a motion compensation vector relative to that of the preceding macroblock.

It also codes which of the six possible blocks are actually included in the mac­

roblock (for an intercoded macroblock, blocks which contain no differences need

not be transmitted).

block The block is an eight pel by eight line block containing the DCT coefficients.

The DC coefficient is differentially coded from that of the preceding block of

the same component. If a block is the first block of a slice, the DC predictor

is set to zero. The AC coefficients are coded as the number of zero coefficients

followed by the next variable-length coded non-zero coefficient.

One additional feature of the MPEG standard is the Video Buffering Verifier

(VBV). The VBV is a model that describes the rate at which the encoder may produce

bits so that the decoder's buffer never overflows. It consists of a buffer between the

output of the encoder and the network. The buffer is of size B where

B= 5R.
p

R is the bitrate of the communications link and P is the picture rate (both constant

45

values for any particular video sequence). The buffer starts out empty, is allowed to

fill for an amount of time (specified by the encoder), and then is examined at picture

intervals. After instantaneously removing the bits for the oldest picture in the buffer,

there must not be more than B bits in the buffer after each picture interval.

Adhering to the VBV model clamps the output rate of the encoder to more-or-less

R as a relatively short term average. Unless R is quite large, keeping to this limit

will almost certainly entail varying the quality of the picture. Therefore, to use an

MPEG encoder with ALF to get a constant picture q1:1ality, the ALF application must

be able to set the R used by the encoder to limit its rate to some value substantially

higher than the average bit rate required by the video. This will allow the encoder to

produce large bursts when necessary to accommodate scene changes and other large

changes in the video stream.

4.2 Choice of ADU

The slice is the smallest structural unit of MPEG that could be decoded out of

order. Macroblocks can depend on earlier macroblocks in the same picture to be

decoded, so the macroblock is not the appropriate unit. Pictures are too large to be

an ADU. There may be networks where an extremely large ADU is necessary, but

it makes no sense to fix the ADU as a picture. Slices, however, do not depend on

other slices (or macro blocks) in the same picture. They may depend on earlier (or

later) pictures, but that is hard to avoid with any sort of interframe coding for video.

Slices are variably sized, from one macroblock to an entire picture, so the ADU size

can be varied if necessary. The encoder can size the slices (and hence the ADUs)

appropriately depending on the speed and error probability of the intervening link.

Each level of the MPEG hierarchy includes some information in the header for

that level. The total length of all this information is about 16 bytes not including

the optional quantization tables. Unless the ADU is made to be extremely small, it

46

makes sense to include all this extra information with every ADU. The quantization

tables can be transmitted only when they change, in a similar manner to the Huffman

and quantization tables for JPEG (see Chapter 3).

4.3 Design of an ALF Application

The transmitting application is not very complex. It must divide the bitstream into

slices (having programmed the encoder to produce slices of the desired size), add se­

quence numbers and timestamps to the ADUs, and send them off to their destination.

If the quantization tables ever change, they must be transmitted reliably according

to whatever method chosen for them. Finally, if the receiver is performing any sort

of retransmission of video data ADUs, the transmitter must be prepared for those

requests. This means that ADUs must be buffered until they are too old, where

"too old" means that the current clock exceeds the ADU's timestamp plus the trans­

mission, buffering, and decoding delay on the other side. Performing retransmission

applies a significant load to the transmitting application.

The MPEG receiving application must perform tasks that are very similar to those

of the JPEG application. However, recovering from lost ADUs is much more complex

because of intercoded frames. The application must perform the following tasks:

1. Determine whether the ADU is too late. This is the same test as for JPEG. If

an ADU arrives too late to be decoded before its video frame is displayed, the

ADU is discarded.

2. Install any new quantizer tables that arrive with the ADU in the decoder. The

details of this vary with the particular decoder implementation. The tables will

be transmitted reliably by one of the methods discussed in Section 2.3.4. As

with JPEG, new tables must not be loaded into the decoder until all ADUs that

depend on the old tables have been decoded.

47

3. Deal with lost AD Us. In an intracoded picture, the decoder will not be expecting

the gap since the standard specifies that no such gap will exist. Exactly what a

given decoder will do in the face of such a gap is therefore uncertain. If there is

a context (in other words, the video sequence is being played normally without

random access or fast play), then a reasonable behavior is to use the blocks

from the preceding frame in the sequence. If the I-picture is there because of a

scene change, this approach will produce an ugly glitch. However, there is not

really any good way to interpolate a 16 pel high by n pel wide strip from the

surrounding pels.

If the decoder cannot handle the gap in the ADUs, the application must sub­

stitute a some kind of placeholder for the missing ADUs. The choices are the

same as for the JPEG application.

If the picture containing the missing ADU is a predictive picture, then the

missing slice will be decoded as if the corresponding part of the frame had not

changed at all. This behavior is guaranteed by the standard, since a missing

ADU is indistinguishable from one that was not transmitted.

In any case, a lost ADU will affect future (and past) predictive pictures. The

error can propagate across the screen at the maximum motion compensation

offset per frame (±96 pels). In the standard code, the damage will not be

repaired for certain until the next I-picture arrives (though it is possible for

some macroblocks in P- or B-pictures to be intracoded). If there is a reverse

channel to the sender, the receiver could request that part of the screen be sent

intracoded to fix the problem. If there is enough time, the lost ADU could be

retransmitted so that the video picture will not suffer any damage at all rather

than being fixed later.

The difficult part is fixing the correct part of the screen. Since the ADU was

lost, some number of predictive (either P- or B-pictures) will have been trans­

mitted. (If an I-picture has been transmitted, there is no longer a need to fix

48

anything.) The receiver can try to calculate the area of the screen that must be

repaired either by assuming the worst case, or by storing the motion compensa­

tion vectors transmitted with all pictures and macroblocks of the last few frames

and figuring out the actual damage. However, the receiver cannot compute the

exact damaged area. During the time period between the computation of the

affected area and the arrival of the corrections, new intercoded blocks may ar­

rive that depend on the missing ADU, thus expanding the damaged area. A

better way is for the receiver to send only a notification of the lost ADU to

the transmitter. The transmitter can then calculate the damaged area before

assembling and transmitting the correction. Since the transmitter knows what

it has transmitted since the lost ADU, it can compute a correction that covers

exactly the damaged area.

Given the possible ±96 pel range of MPEG's motion compensation, a lost ADU

may always require that the sender transmit an I-picture. Unless the round

trip time to ask for a correction to the damaged area is shorter than one or two

frame times (between 15 and 60 milliseconds), the area of possible damage will

have expanded to cover the entire screen. The transmitter can limit the rate at

which the damage can expand by reducing the maximum motion compensation

used by the encoder. If the maximum motion compensation is reduced (for

example) to ±16 pels, the growth of the damaged area is reduced by a factor

of 36.

4. Reorder ADUs that need to be reordered. Enough information is included in

the MPEG code to allow slices within the same picture to be decoded out of

order. However, intercoded pictures depend on other video frames. Therefore,

the receiving application must be careful not to send ADUs to the decoder

before any frames on which the ADUs depend. The simplest method is to order

all the ADUs by frame. The application may send an ADU to the decoder only

if the previous frame has been completely sent to the decoder. This limits the

49

out-of-order processing to be entirely within a frame.

There is a greater potential for out-of-order processing in the MPEG code. In

order of increasing complexity, I-pictures can always be decoded in any order;

individual intracoded ADUs within a P- or B-picture can be decoded in any

order; and individual intercoded ADUs can be decoded if the particular part

of their predicting frame has already been decoded. The part of the predicting

frame depends on the motion compensation included in the ADU. Furthermore,

since the ADU is a slice and the unit of motion compensation is the macroblock,

figuring out just which parts of the predicting frame are required to decode a

particular slice may become quite complex. Depending on the processing power

available, one or more of the preceding constraints can be checked for each

newly arrived ADU. To be complete, the application should not only check

each new ADU to see if its precedents are satisfied, but also whether it satisfies

the precedent(s) of any waiting ADUs.

Finally, the same limitation applies as for a JPEG decoder with several frame

stores. An ADU can only be decoded if its frame is currently occupying one of

the frame stores of the decoder. Otherwise, there is no place to put its decoded

pels, so it must wait.

5. Deal with duplicate ADUs. Unless the network duplicates ADUs with a very

high probability, there is no need to worry about the duplicates. If the ADU

has already been decoded, decoding it again is an acceptable waste of resources.

The exact details of the application also depend to a great extent on the particular

implementation of the decoder. The preceding discussion concerns only the duties

of the ALF application as dictated by the code, not the coder. No implementation

fast enough to decode (or encode, for that matter) MPEG in real time is yet public

knowledge, though C-Cube claims to be working on a chip.

50

4.4 Multiple Streams

An MPEG decoder's state is the 16 bytes of picture resolution, frame rate, and other

parameters mentioned in Section 4.2, the quantization tables used, and several frame

stores. Whether it is feasible to use the same decoder for multiple streams will depend

mostly on the decoder. As long as it is possible easily to redirect the decoder to the

appropriate set of frame stores for the different video streams (perhaps in a similar

fashion to the external address register addition to the C-Cube JPEG chip proposed

in Chapter 3), and if the video streams use the same resolutions, frame rates and

quantization tables, an MPEG decoder can easily be multiplexed among several video

streams. Because the ADUs are defined so that they can be decoded out of order, they

do not require any low-level state to be retained from one ADU to the next. If the

video streams have different resolutions, quantization tables, or other other header

information, multiplexing the decoder is further complicated, again depending on the

details of the decoder implementation.

51

Chapter 5

CCITT's p x 64 Video Codec

The CCITT has draft recommendation H.261 (3] for a codec meant for video telecon­

ferencing. It is called p x 64 because it functions at bitrates that are multiples of 64

kilobits.

5.1 Description of Algorithm

The p x 64 code is also an eight by eight pel DCT transform followed by a quantiza­

tion and variable-length coding of the coefficients. It uses motion compensation and

interframe coding. The p x 64 video codec recommendation divides the video stream

into the following hierarchical units:

picture Each picture is one video frame. The encoder may save bandwidth by not

transmitting some pictures. The picture header contains a temporal reference

(TR) number which is a five bit frame number (it is incremented by one plus

the number of non-transmitted pictures for each transmitted picture), six bits

of ptype, and room for extra information that is not yet defined. Pictures may

be in one of two formats, either CIF (common interchange format) or quarter

CIF (QCIF). In each case, the picture consists of one luminance component

and two chrominance components. CIF pictures are luminance sampled at 352

52

rows by 288 lines, and QCIF at 176 by 144. The chrominance components are

sampled at half the resolution both vertically and horizontally.

group of blocks Each picture consists of either three (QCIF) or twelve (CIF) groups

of blocks (GOB). The GOB header contains the address of the GOB in the

picture, an integer specifying the quantizer to use for the macroblocks of the

GOB, and room for extra information not yet defined.

macroblock Each GOB consists of 33 macroblocks, each covering a 16 pel by 16 line

area of the picture. Each macroblock header includes the macroblock address,

type, quantization, motion vector, and coded block pattern. The macroblock

address is relative to the location of the last transmitted macro block (except for

the first macroblock in a GOB, whose address is absolu.te). The type indicates

whether the macroblock is inter- or intracoded, whether a spatial filter should

be used on the predictor pels during decoding, and the presence or absence of

the optional parts of the macroblock header described next. After the type

comes an optional integer (MQUANT) specifying the quantizer to be used for

this macroblock and all following macroblocks in the GOB. This overrides the

quantizer specified in the GOB header. Following MQUANT is the optional

motion vector data (MVD). This vector can be relative to the MVD of the

preceding macroblock. Next is the optional field coded block pattern. The CBP

indicates which blocks of the macroblock contain some transmitted data. A

block that is intercoded and does not change does not need to be transmitted

at all.

block Each macroblock consists of four eight pel by eight line luminance blocks and

a single eight by eight chrominance block from each chrominance component.

The coefficients of the DCT transform for each block are transmitted run-length

encoded in zig-zag order. The end of a block is indicated by a special code that

does not otherwise occur in the coefficients. There is no header information in

53

a block.

The bitstream produced by a standard coder contains forward error correction

(FEC), though the use of the error correction by the decoder is optional. However,

the FEC is over 492 bit blocks of the encoded bit stream-it bears no relation to the

other framing in the stream (pictures, GOBs, or MBs). The FEC would be relatively

useless for an ALF application using this code, though it may have to be computed

and transmitted anyway to conform to the standard. The only reason to transmit or

compute the FEC of the p x 64 recommendation is if the decoder used requires it.

The FEC included in the p x 64 standard is the epitome of an anti-ALF philoso­

phy. Since the error correction bears no relationship to the structure of the bitstream,

it is impossible to break the bitstream into any sort of unit related to the video frames

while retaining the FEC. If the FEC is indeed required to be present in the bitstream

produced or consumed by a p x 64 device, the effort to compute it will be entirely

wasted. Such an error correcting code is utterly useless for anything but a point-to­

point link.

The p x 64 recommendation also places a requirement on the encoder output

bitrate that is almost exactly the same as the Video Buffer Verifier of MPEG (see

Section 4.1). The only difference is that the buffer size of p x 64 is defined to be

B = 4R
p·

Pis fixed at 29.97. As with MPEG, to take advantage of statistical multiplexing and

ALF it must be possible to set R to some very large value.

5.2 Choice of ADU

The smallest unit of data that does not have any dependencies on other parts of

the bitstream (at least not within a single picture) is the GOB. Macroblocks have

addresses relative to preceding macroblocks and the motion compensation vector of

54

a macroblock may depend on a previous macroblock within the same GOB. Blocks

do not have any addresses in them at all. Naturally, intercoded macroblocks depend

on previous pictures. However, GOBs within the same picture could be decoded

out-of-order. There are either three or twelve GOBs in a picture, depending on the

format used (CIF or QCIF respectively). GOB headers are transmitted even if no

macroblocks within the GOB have any data. The necessary information in picture

headers would have to be duplicated in each ADU. That information is the temporal

reference number and the format (CIF or QCIF). Additional information might also

need to be added by the encoding application, for example sequence numbers and/ or

timestamps with more than five bits of resolution for the frames. The temporal

reference number as specified in the p x 64 recommendation could comprise some part

of a larger timestamp. More resolution than a frame time is required in order to be

able to timestamp each GOB. Sequence numbers will have to be added to the ADUs

so that lost ones can be detected. While the GOB addresses of the recommendation

(within a picture) are always transmitted and are sequential, extra bits must be added

to differentiate among GOBs from different pictures. Since the number of GOBs in

a picture is not a power of two, the best approach may to discard the GOB address

(for the purpose of the ALF application) and just add a new sequence number.

5.3 Design of an ALF Application

As with the other codes, the transmitting ALF application is not very complex. It

must strip off the FEC, divide the bitstream into GOBs, and add the timestamps

and sequence numbers to each ADU. If the receiver will ever ask for ADUs to be

retransmitted, the transmitting application must buffer ADUs until they are too old,

as described for the other two codes.

The ALF receiving application for a p x 64 video code must perform functions

very similar to those of the MPEG application. The p x 64 code is not as complex,

55

but includes both intra- and intercoded frames and motion compensation, leading

to similar concerns when handling lost and out-of-order ADUs. The details of the

application depend on exactly how the particular decoder used works. The receiving

application must perform the following tasks:

1. Determine whether the ADU is too late. This test is the same as for MPEG

and JPEG.

2. Deal with lost ADUs. Unlike MPEG, the entire picture is not classified as

intracoded or intercoded. Each macroblock can be coded either way. When

an ADU is lost, 33 macroblocks are lost each of which may be either inter- or

intracoded. Each ADU is either one twelfth or one third of the screen, so any

loss will very likely be noticeable. As with the JPEG and MPEG applications,

there are a number of possible responses to lost ADUs.

The application can do as little as possible. In this case, the minimum response

is to insert a GOB containing no macroblock data. The decoder will treat this

area of the screen as if it had not changed since the previous frame.

If there is enough time, the application can ask the sender for a retransmission

of the lost ADU. If the retransmitted ADU is received in time, all is well.

However, the application must be prepared to fall back on some other strategy

if the replacement is not received in time.

Since p x 64 makes it so easy (by inserting a header for an empty GOB in the

stream) to use the pels from the preceding frame as a substitute for lost ADUs,

it does not make sense to try something like substituting an all-grey ADU for

the lost one. A solid rectangle of a single color is almost certain to be more

noticeable than the pels from the previous frame.

3. Deal with reordered ADUs. ADUs within the same frame may be decoded in

any order, while out-of-order processing across frames depends on the coding

56

type of the individual macroblocks within the ADU. Each macroblock can have

its own motion compensation vector, so figuring out whether all the precedents

have been decoded or not is quite complex. Any particular ADU may depend

on many ADUs in the previous frame.

There is no restriction inherent in the p x 64 bitstream that makes it impossible

or even difficult to decode GOBs within the same picture in an arbitrary or­

der. However, a decoder must not hinder out-of-order decoding. The standard

calls for all GOB headers to be transmitted even if they do not contain any

macroblocks. Therefore, it is not inconceivable that a decoder could ignore the

GOB address in the GOB header and just count on the GOBs arriving in order.

Such a decoder would not be very useful for an ALF application. (MPEG does

not have this problem because the standard explicitly states that slices do not

have to be contiguous. The decoder must look at the slice vertical address to

know where in the frame it belongs.)

4. Deal with duplicate ADUs. As with the other codes, as long as the number of

duplicates is not extreme, the application should not have to perform any work

to eliminate them. As discussed above for out-of-order ADUs, duplicate ADUs

may pose a problem if the decoder does not look at the GOB address in the

header.

5.4 Multiple Streams

A p x 64 decoder's state is the picture type, the temporal reference number of the

last frame received, and two frame stores. As with MPEG, the feasibility of multi­

plexing a single decoder over several video streams depends on the implementation

of the decoder. It must be possible to quickly change the frame store used for each

GOB decoded, the picture type (if the video streams are of different types), and the

temporal reference number (if the decoder pays attention to it).

57

Chapter 6

Conclusion

As computers and networks become faster, the digital transmission of video will

become a prevalent use of computer networks. The bandwidth available in the im­

mediate future will not be quite enough to send uncompressed digitized video, so the

video must be coded in some way that reduces entropy. The amount of redundancy

inherent in a video signal strongly suggests some form of compression since even rela­

tively simple compression schemes can produce a significant reduction in the required

bandwidth.

Because the redundancy in a video signal changes radically with time, almost all

video coding schemes are intrinsically variable rate, and thus stand to profit from the

statistical multiplexing gain of a packet network. However, to take advantage of a

statistically multiplexed network, a video codec must be able to deal with the other

characteristics of a packet-switched network such as jitter and lost packets.

The real-time nature and relatively high bandwidth requirements of video causes

a video stream have special requirements as compared to the traffic typically carried

on computer networks. The packets must get there in time or they are useless, and

the receiver need not process the stream strictly in order. In fact, it will be important

that the receiver be able to process the stream out of order, since the decoder will

likely be the bottleneck in the communication. If the decoder cannot decode packets

58

out of order, it will fall behind every time a packet is lost. The need for out-of-order

processing can arise either because the network reorders packets or because of lost

packets.

A new set of network protocol architectural principles called Application Level

Framing has been proposed to deal with networks having a high bandwidth-delay

product and the idea that the memory bandwidth and/or processing speed of the

host will be the communication bottleneck. ALF supports applications with varying

service requirements by allowing the application itself to control the response to lost

and out-of-order data. The application defines the Application Data Unit (ADU),

which is the unit of data that the application can handle out of order. The ADU

layer is then responsible only for transporting complete ADUs across the network.

The application can be used without change over any network for which an ADU

layer can be written.

ALF has many advantages for video. First, it allows efficient implementation of

the service requirements of video. The application is not forced to accept levels of

service (such as a reliable byte stream) that it does not want. Multiple flows with

different priorities or service classes can be created by the application as required.

Second, it is efficient in a network-independent way. Previous examples of variable

bit rate codecs have been tied to the particular network for which they were designed.

They could not otherwise be implemented, since the existing protocols are not efficient

enough. Finally, ALF makes it relatively easy to multiplex a decoder over multiple

streams. Since each ADU is defined to be as independent as possible, ADUs from

different streams can alternately be decoded just as ADUs in the same stream can be

decoded out of order. As video becomes more common, users will want desktop video

that works just like desktop windows do now. They will want many video streams on

the display at the same time, and the ability to move and resize the video windows.

If a video codec works with ALF, it can also decode multiple streams.

This thesis has shown how three proposed video coding standards, designed for

59

use over fixed-bandwidth point-to-point circuits, can be made to work over a statis­

tically multiplexed network using the ALF ideas. Sending and receiving applications

which perform the necessary extra processing to enable the codes to process ADUs

are described. The standards are very similar. Each is implemented using a two­

dimensional discrete cosine transform on eight-by-eight blocks of pels, followed by

some form of variable length coding of the transform coefficients. The standards

differ in that JPEG performs only intraframe coding while the other two also do

interframe coding. MPEG and p x 64 differ widely in their complexity.

Even though the coding is inherently variable rate, MPEG and p x 64 are both

designed to be CBR codes and as such have a rate limiter on their outputs. The rate

limiter must be bypassed or eliminated to achieve the variable bit rate and relatively

constant picture quality available with a packet-switched network. Exploring the

compatibility of these codes (and coders) with ALF has revealed the following design

guidelines:

• The subunits of the bitstream produced by the code should not be addressed

by their position in the bitstream. Rather they should contain explicit absolute

addresses at some level. This is a requirement of both the code and its imple­

mentation. The code should contain the addresses and the coder should use

them.

JPEG, for example, does not contain any addresses in the bitstream, so a de­

coder (such as the C-Cube chip) that accepts an unembellished JPEG bitstream

cannot decode pieces of the bitstream out of order. Luckily, there is nothing

else about JPEG that demands in-order decoding, so some additional hardware

can be added to the decoder to enable the external ALF application to supply

the ADUs with addresses.

Another example is the requirement of p x 64 that all the group of block headers

of a picture be transmitted even if there is no data in a particular group. There is

no reason that the GOB header must appear in the bitstream even for a standard

60

decoder; the GOBs contain an absolute address describing their position on the

screen. However, since the requirement is in the standard, some implementor

may depend on the GOBs arriving in order.

• The code should not include any sort of information in the bitstream that bears

no relationship to the semantics of the stream. Of the codes studied in this

thesis, the prime example of this onerous behavior is p x 64. The forward error

correction that the recommendation calls for is computed and transmitted over

492 bit pieces of the bitstream, which bear absolutely no relation to the rest

of the structure of the stream. If the bitstream is divided into units that can

stand on their own, the FEC becomes completely useless.

• The code should be as simple as possible given the limits on available band­

width. Although JPEG requires more bandwidth than the other two, it is much

more robust in the face of lost ADUs because the video frames are completely

independent of one another. JPEG has no constraints on the order in which

ADUs can be decoded. Because of interframe dependencies, the other two codes

require either limits on the extent to which ADUs can be decoded out-of-order

or complex calculations of the dependencies of ADUs on one another.

In the immediate future, it seems that interframe coding will be necessary to ex­

periment with video on any large scale because the commonly installed networks

are not quite fast enough to support solely intraframe coded video. However,

when the bandwidth becomes widely available it makes sense to use simpler

video codes.

• The coders and decoders should be designed with multiplexing in mind. The

state of the coder should not be hidden away in a black box where it is difficult

or impossible to modify quickly. Video stream "context switches" should be

as fast as possible. Assuming that the coder implements a well-designed code

which has nicely defined units able to be decoded independently, make sure that

61

the decoder can actually decode them independently.

This design issue depends both on the code and the implementation, so it is

difficult to compare the three codes since there is only one implementation: the

C-Cube chip. For video streams which operate in the same modes, have the

same resolutions, and use the same Huffman and quantization tables, the chip

can decode multiple streams with the addition of some external hardware. For

the other two codes, the ability to decode multiple streams is less clear. It is

possible to build a codec that could easily handle multiple streams-there is no

great amount of state that would have to be swapped-but there are not any

implementations to examine.

The ideal video code for use with an ALF protocol would code each picture into

relatively small units. Each ADU would be independent of all the others in at least

the same picture. If the bandwidth is available, each ADU would be entirely inde­

pendent of all other ADUs of the video stream (in other words, intraframe coded).

If network limitations dictate that interceding be used, then it should be coded as

a straight forward difference from the preceding frame with some relatively limited

motion compensation. The processing necessary to compensate for lost ADUs should

be as simple as possible while allowing the picture quality to degrade as little as

possible.

Of the codes studied in this thesis, the one that best meets these criteria is JPEG.

If there is enough network bandwidth available to carry it, JPEG is the simplest and

easiest to use. None of its ADUs depend on one another to be decoded and recovering

from lost ADUs can be accomplished relatively simply by replaying the ADU from

the previous frame.

If an interframe code must be used because of bandwidth limitations, the best of

the other two codes in p x 64. MPEG's complexity does not provide any compelling

advantage for real time video transmission. If storage space for the video is at a

premium and the encoding process can take a very long time, then the addition flex-

62

ibility of MPEG's many picture types and large motion compensation might provide

a small advantage. However, for use over a network that might lose or delay packets,

p x 64 is much simpler.

Unfortunately, none of the codes studied come as close to the ideal as is possible.

MPEG and p x 64 require complex strategies to cope with lost ADUs, and careful

consideration of which ADUs may be decoded out-of-order. JPEG is better because

its ADUs are entirely independent, but substituting from the previous frame for lost

ADUs can unacceptably degrade image quality during a scene change.

Any packet-switched network will experience packet loss to some degree. Network

congestion may cause packets to be dropped and transmission bit errors can cause

packets to be misdelivered or to fail error checks. Therefore it is very important that

a video code for use over a packet network be able t? cope with packet losses without

severely degrading the picture quality and without requiring excessive computation.

A family of video codes that provides very good error recovery is the family of so­

called layered codes. A layered code is one that divides the video data into layers of

varying importance. An example of a layered code is a subband code. A subband

code filters the video into different frequency bands and codes each band separately.

The baseband is very important to the picture quality while the other bands are

much less important. If the network provides different priorities, each band can be

transmitted at a different priority. Then ADUs from the baseband will not be lost

due to network congestion. The ALF architecture provides an ideal framework for

such a code because it explicitly allows the application to specify the service class

desired for each flow.

Of the three codes studied in this thesis, JPEG is the only one that could produce

a layered bitstream. Either its hierarchical or progressive modes could be used to

divide up the data into layers. However, JPEG does not suffice if an interframe code

is needed. Also, using a code that does not require a DCT can be helpful for handling

packet losses. If the data that are lost are in units of eight-by-eight blocks, it is not

63

realistically possible to fix the error through interpolation from the surrounding pels.

Assuming that retransmission is not possible, the best correction is to repeat the

pels from the previous frame. However, this correction will be very noticeable if it

occurs during a scene change. It is more desirable to interpolate missing pels from

the surrounding area of the same frame.

The best code to use would be a subband code similar to the one described in

[6). Such a code lends itself to a network that can give different priorities to different

flows, can easily be divided up into ADUs, and recovers from lost ADUs gracefully.

Subband coding provides other advantages as well. The resolution of the displayed

picture can be varied depending on the number of bands uses. If the user makes

the displayed video window be smaller, the receiver can ask the sender to send only

the lower bands, to reduce the load on the network (and on the receiver) by not

transmitting what will not be needed. If the network becomes congested, the sender

or network can also reduce the number of bands transmitted.

If video codes are designed to follow the above guidelines, they can make use of

an ALF protocol and thus will be usable without modification over a wide range

of networks. ALF makes it possible to efficiently satisfy the service requirements of

video.

64

Bibliography

[1] R. C. Brainard and J. H. Othmer. Television compression algorithms and trans­

mission on packet networks. In T. Russel Hsing, editor, Visual Communications

and Image Processing '88, pages 973-978, 1988. Proc. SPIE 1001.

[2] CL550 JPEG image compression processor, November 1990. C-Cube Microsys­

tems Part Number 90-1150-202.

[3] Video codec for audiovisual services at p x 64 kbit/s. International Telegraph

and Telephone Consultative Committee, August 1990. Study Group XV, Report

R37, Recommendation H.261.

[4] H. Jonathan Chao and Cesar A. Johnston. Asynchronous transfer mode packet

video transmission system. Optical Engineering, 28(7):781-788, July 1989.

[5] David D. Clark and David L. Tennenhouse. Architectural considerations for a

new generation of protocols. In Proceedings ACM SIGCOMM, pages 200-208,

September 1990. Philadelphia.

[6] John C. Darragh and Richard L. Baker. Fixed distortion subband coding of

images for packet-switched networks. IEEE Journal on Selected Areas in Com­

munications, 7(5):789-800, June 1989.

[7] James R. Davin. ALF spec working paper. Work in progress.

65

[8) Luis de Sa and Vitor Silva. Implementing a 64kbit/s video codec on DSP hard­

ware. In Applications of Digital Image Processing XII, pages 90-95, 1989. Proc.

SPIE 1153.

[9] Herbert Holzlwimmer, Walter Tengler, and Achim v. Brandt. A new hybrid

coding technique for videoconference applications at 2 mbit/s. In Murat Kunt

and Thomas S. Huang, editors, Image Coding, pages 250-259, 1985. Proc. SPIE

594.

[10] K. Iinuma, T. Koga, K. Niwa, and Y. Iijima. A motion-compensated interframe

codec. In Murat Kunt and Thomas S. Huang, editors, Image Coding, pages

194-201, 1985. Proc. SPIE 594.

[11] Information Processing Systems - Open Systems Interconnection: Basic Refer­

ence Model, 1984. Interational Standard 7498.

[12] Revision 8 of the JPEG technical specification. Joint Photographic Experts

Group, August 1990. ISO/IEC JTC1/SC2/WG8, CCITT SGVIII.

[13] S. H. Lee and L. T. Wu. Variable rate video transport in broadband packet net­

works. In T. Russel Hsing, editor, Visual Communications and Image Processing

'88, pages 954-964, 1988. Proc. SPIE 1001.

[14] Robert J. Moorhead, Joong S. Ma, and Cesar A. Gonzales. Realtime video

transmission over a fast packet-switched network. In Ying wei Lin and Ram

Srinivasan, editors, Digital Image Processing Applications '89, pages 118-123,

1989. Proc. SPIE 1075.

[15] Coding of moving pictures and associated audio (MPEG). International Orga­

nization for Standardization/International Electrotechnical Institute, September

1990. ISO/IEC JTC1/SC2/WG11.

66

[16] Hans Georg Musmann, Peter Pirsch, and Hans-Joachim Grallert. Advances in

picture coding. Proceedings of the IEEE, 73(4):523-548, April 1985.

[17] Arun N. Netravali and Barry G. Haskell. Digital Pictures: Representation and

Compression. Plenum Press, 1988.

[18] Philips International, Inc., editor. Compact Disc-Interactive: A Designer's

Overview. McGraw-Hill, 1988.

[19] G. David Ripley. DVI-a digital multimedia technology. Communications of the

ACM, 32(7):811-822, July 1989.

[20] Eve M. Schooler and Stephen L. Casner. A packet-switched multimedia confer­

encing system. ACM SIGOIS Bulletin, 10(1):12-22, January 1989.

[21] Willem Verbiest and Luc Pinnoo. A variable bit rate video codec for asyn­

chronous transfer mode networks. IEEE Journal on Selected Areas in Commu­

nications, 7(5):761-770, June 1989.

[22] Willem Verbiest, Luc Pinnoo, and Bart Voeten. The impact of the ATM concept

on video coding. IEEE Journal on Selected Areas in Communications, 6(9):1623-

1632, December 1988.

[23] Masahiro Wada. Selective recovery of video packet loss using error concealment.

IEEE Journal on Selected Areas in Communications, 7(5):807-814, June 1989.

67

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubhc reporting burden for this co1lect1on at 1ntormat1on 1s estimated to average 1 hour per response. including the time for rev1.ew1ng 1nstruct1ons, 5earch1ng existing data sources,
gathering and maintaining the data needed, and completing and rev1ew1ng the collection of 1nformat1on. Send comments r:{arding th ts burden estimate or any other aspect at this
coflect1on of 1nformat1on, 1nc1uding suggestions for reductng this burden. to Washington HeadQuarters Services. Directorate or 1ntormat1on Operations and Reports, 1215 Jetfe~n
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwor< Reduction Pro1ect (0704-0188). Wa•hrngton. DC 20503.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DA TE 13. REPORT TYPE AND DA TES COVERED

June 1992
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Video Coding and the Application Level Framing
Protocol Architecture

6. AUTHOR(S)

Heybey, A. T.

7. PERFORMING ORGANIZATION NAME{S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Massachusetts Institute of Technology REPORT NUMBER

Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139 MIT/LCS/TR-542

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING I MONITORING
AGENCY REPORT NUMBER

DARPA
1400 Wilson Blvd.
Arlington, VA 22217 NASA Grant NAG 2-582

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

As networks and computers become faster, real time video transmission is expected to become
common. Variable bit rate video coders will be used in order to take advantage of the statistical
multiplexing gain and bandwidth efficiency of packet switched networks. Video streams have different
service requirements from the traffic usually carried on computer networks. A new protocol architecture
called Application Level Framing (ALF) has been proposed to allow efficient implementation of
communications with diverse service requirements. ALF allows the application to control the way in which
network errors are handled. This thesis studies the compatibility of three proposed video coding
standards with an ALF protocol architecture. Each of the standards is found to be usable with varying
degrees of effort. A set of design principles for video codes intended for use over an ALF protocol
architecture is presented.

14. SUBJECT TERMS 15. ~UMBER OF PAGES

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19.
OF REPORT OF THIS PAGE

NSN 7540-01-280-5500

SECURITY CLASSIFICATION
OF ABSTRACT

67
16. PRICE CODE

20. LIMITATION OF ABSTRACT

~ Stanoaro rorm 298 (Rev 2-89)
?rescr1bed by ;.NSI)td z3g. 18
298·102

l

