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Abstract

Multithreading has become a dominant paradigm in general purpose MIMD parallel computa-

tion. To execute a multithreaded computation on a parallel computer, a scheduler must order

and allocate threads to run on the individual processors. The scheduling algorithm dramatically

a�ects both the speedup attained and the space used when executing the computation. We con-

sider the problem of scheduling multithreaded computations to achieve linear speedup without

using signi�cantly more space-per-processor than required for a single-processor execution.

We show that for general multithreaded computations, no scheduling algorithm can si-

multaneously make e�cient use of space and time. In particular, we show that there exist

multithreaded computations such that any execution schedule X that achieves P -processor ex-

ecution time TP (X ) � T1=�, where T1 is the minimum possible serial execution time, must use

space at least SP (X ) � 1
4
(� � 1)

p
T1 + S1, where S1 is the space used by an e�cient serial

execution. For such a computation, even achieving a factor of 2 speedup (� = 2) requires space

proportional to the square root of the serial execution time.

By restricting ourselves to a class of computations we call strict computations, however,

we show that there exist schedulers that can provide both e�cient speedup and use of space.

Speci�cally, we show that for any strict multithreaded computation and any number P of pro-

cessors, there exists an execution schedule X that achieves time TP (X ) � T1=P + T1, where

T1 is a lower bound on execution time even for arbitrarily large numbers of processors, and

space SP (X ) � S1P . We demonstrate such schedules by exhibiting a simple centralized algo-

rithm to compute them. We give a second, somewhat more e�cient, algorithm that computes

equally good execution schedules; this algorithm is online and should be practical for moderate

numbers of processors, but its use of a centralized queue makes it ine�cient for large numbers

of processors.

To demonstrate an algorithm that is e�cient even for large machines, we give a ran-

domized, distributed, and online scheduling algorithm that computes an execution schedule

X that achieves guaranteed space SP (X ) = O(S1P lg P ) and expected time E [TP (X )] =

O(T1=P+T1 lg P ). Though this algorithm uses a lg P factor more space than the centralized al-

gorithm, it can still achieve linear expected speedup | that is E [TP (X )] = O(T1=P ) | provided
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the computation has su�cient average available parallelism | that is T1=T1 = 
(P lg P ). Fur-

thermore, this algorithm is e�cient in that on a PRAM or various low-latency, high-bandwidth

�xed-connection networks, the overhead in computing the schedule is only a constant fraction

of the execution time.

We also show that some nonstrictness can be allowed in an otherwise strict computation in a

way that may improve performance, but does not adversely a�ect the time and space bounds.

Thesis Supervisor: Charles E. Leiserson

Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In the course of investigating schemes for general purpose MIMD parallel computation, many

diverse research groups have converged on multithreading as a dominant paradigm. As an ex-

ample, modern data
ow systems [9, 11, 16, 24, 25, 26, 31, 32] partition the data
ow instructions

into �xed groups called threads and arrange the instructions of each thread into a �xed sequen-

tial order at compile time. At run time, a scheduler employs data
ow concepts to dynamically

order execution of the threads. Other systems have schedulers that dynamically order threads

based on the availability of data in shared memory multiprocessors [1, 4, 13] or on the arrival

of messages in message-passing multicomputers [2, 10, 20, 35].

Rapid execution of a multithreaded computation on a parallel computer requires exposing

and exploiting parallelism in the computation by keeping enough threads concurrently active

to keep the processors of the computer busy. If processors are busy most of the time, the

execution schedule X of the computation exhibits linear speedup: the running time TP (X )

with P processors is order P times faster than the optimal running time T1 with 1 processor,

that is, TP (X ) = O(T1=P ).

In attempting to expose parallelism, however, schedulers often end up exposing more par-

allelism than the computer can actually exploit, and since each active thread requires the use

of a certain amount of memory, such schedulers can easily overrun the memory capacity of the

machine [8, 12, 14, 30, 34]. To date, the space requirements of multithreaded computations

have been managed with heuristics or not at all [7, 8, 12, 14, 17, 23, 30, 34]. In this thesis,

we use algorithmic techniques to address the problem of managing storage for multithreaded

This thesis describes joint work with Charles E. Leiserson.
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10 Chapter 1. Introduction

computations. Our goal is to develop scheduling algorithms that expose su�cient parallelism

to obtain linear speedup, but without exposing so much parallelism that the space requirements

become excessive.

We compare the amount of space SP (X ) required by a P -processor execution schedule for

a multithreaded computation with the space S1 used by a space-optimal 1-processor execution.

We wish to use as little space as possible, and we argue that a space-e�cient execution schedule

exhibits linear expansion of space, that is, SP (X ) = O(S1 � P ).

Our �rst result shows that in general, it is not possible to achieve both linear speedup and

linear expansion of space. We exhibit a multithreaded computation such that any execution

schedule X that achieves P -processor execution time TP (X ) � T1=� must use space at least

SP (X ) � 1
4
(� � 1)

p
T1 + S1. For such a computation, even achieving a factor of 2 speedup

(� = 2) requires space proportional to the square root of the serial execution time.

In order to cope with this negative result, we restrict our attention to the class of strict

multithreaded computations. Intuitively, a strict computation is one in which no subroutine

is called until all its parameters are available. We show that for any strict multithreaded

computation and any number P of processors, there exists an execution schedule X that achieves

time TP (X ) � T1=P+T1, where T1 is a lower bound on execution time even for arbitrarily large

numbers of processors, and space SP (X ) � S1P . Such a schedule exhibits linear expansion of

space and linear speedup, TP (X ) = O(T1=P ), provided the average available parallelism, which

we de�ne as T1=T1, is at least proportional to P , that is, T1=T1 = 
(P ). We demonstrate

such schedules by exhibiting a simple centralized algorithm to compute them. We give a

second, somewhat more e�cient, algorithm that computes equally good execution schedules;

this algorithm is online and should be practical for moderate numbers of processors, but its use

of a centralized queue makes it ine�cient for large numbers of processors.

To demonstrate an algorithm that is e�cient even for large machines, we give a random-

ized, distributed, and online scheduling algorithm that achieves space expansion proportional

to P lgP for any strict computation and linear expected speedup for any strict computation

with average available parallelism at least proportional to P lg P , that is, T1=T1 = 
(P lgP ).
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This algorithm is e�cient in that on a PRAM or various low-latency, high-bandwidth �xed-

connection networks, the overhead in computing the schedule is only a constant fraction of the

execution time.

We also show that some nonstrictness can be allowed in an otherwise strict computation in

a way that may improve performance, but does not adversely a�ect the time and space bounds.

The remainder of this thesis is organized as follows. Chapter 2 develops a formal model

of multithreaded computation and execution schedules. In Chapter 3 we characterize mul-

tithreaded computations with three parameters and prove some basic bounds relating these

parameters to execution time and space. The lower bound for general multithreaded compu-

tations is presented in Chapter 4, and the upper bound for strict computations is presented

in Chapter 5. Chapter 6 presents and analyzes a distributed scheduling algorithm for strict

computations. In Chapter 7 we present a technique to allow nonstrictness without degrading

the space and time bounds obtainable by a strict execution. Finally, in Chapter 8 we discuss

some related work, and in Chapter 9 we conclude with some perspective on our results and

some open problems.
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Chapter 2

A model for multithreaded computation

This chapter de�nes the model of multithreaded computation that we use in this thesis. We

also de�ne what it means for a parallel computer to execute a multithreaded computation.

A multithreaded computation is composed of a set of threads, each of which is a sequential

ordering of unit-size tasks. In Figure 2.1, for example, each shaded block is a thread with circles

representing tasks and the horizontal edges, called continue edges, representing the sequential

ordering. The tasks of a thread must execute in this sequential order from the �rst (leftmost)

task to the last (rightmost) task. In order to execute a thread, we allocate for it a chunk of

memory, called an activation frame, that the tasks of the thread can use to store the values on

which they compute.

An execution schedule for a multithreaded computation determines which processors of a

parallel computer execute which tasks at each step. An execution schedule depends on the

particular multithreaded computation and the number of processors in the parallel computer.

In any given step of an execution schedule, each processor either executes a single task or sits

idle.

During the course of its execution, a thread may create, or spawn, other threads. Spawning

a thread is like a subroutine call, except that the calling routine can operate concurrently with

the called routine. We consider spawned threads to be children of the thread that did the

spawning. In this way, threads are organized into a tree hierarchy as indicated in Figure 2.1 by

the shaded edges, called spawn edges. Each spawn edge goes from a speci�c task, the task that

actually does the spawn operation, in the parent thread to the �rst task of the child thread.

When a thread executes its last task, it terminates.

13



14 Chapter 2. A model for multithreaded computation

Figure 2.1: An example multithreaded computation. The tasks are partitioned into threads,

represented by the shaded regions, and the tasks in each thread are compiled into a sequential

order, represented by the continue edges shown horizontal in each thread. A task can spawn

a thread, as shown by the shaded spawn edges, and this spawning organizes the threads into

a tree hierarchy. The data dependency edges, shown by the curved edges, impose additional

ordering constraints as required by producer/consumer relationships.

For an execution schedule to be valid, the task execution order must obey the constraints

given by the edges of the computation. For example, before a task can execute, its predecessor

| which connects to it via either a continue or spawn edge | must �rst execute.

There is one more kind of dependency that a valid execution schedule must respect. Consider

a task that produces a data value that is consumed by another task. Such a producer/consumer

relationship precludes the consuming task from executing until after the producing task. In

order to enforce such orderings, we introduce data dependency edges as shown in Figure 2.1 by

the curved edges. If the execution of a thread arrives at a consuming task before the producing

task has executed, execution of the consuming thread cannot continue | the thread stalls.

Once the producing task executes, the data dependency is resolved, and the consuming thread

can proceed with its execution | the thread becomes ready.

We quantify the space used in executing a multithreaded computation in terms of activation

frames. When a task spawns a thread, it allocates an activation frame for use by the newly
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spawned thread. Once a thread has been spawned and its frame has been allocated, we say

the thread is active. Recall that at any time, an active thread can be either stalled or ready,

but even if it stalls, its activation frame remains allocated. The thread remains active until it

terminates; at that point its frame can be deallocated.

We make the simplifying assumption that a parent thread remains active until all its children

terminate, and thus, a thread does not deallocate its activation frame until all its children's

frames have been deallocated. Although this assumption is not strictly necessary, it gives the

execution a natural structure, and it will simplify our analyses of space utilization. We also

assume that the frames hold all the values used by the computation; there is no global storage

available to the computation outside the frames. Therefore, the space used at a given time in

executing a computation is the total size of all frames used by all active threads at that time,

and the total space used in executing a computation is the maximum such value over the course

of the execution.

It is important to note here the di�erence between what we are calling a multithreaded

computation and a program. A program may have conditionals, and therefore, the order of

instructions (or even the set of instructions) executed in a thread may not be known until

the thread is actually executed. Thus, what we are calling a thread actually represents a

particular execution of a program thread. In general, a multithreaded computation is not a

statically determined object, rather the computation unfolds dynamically during execution as

determined by the program and the input data. We can think of a multithreaded computation

as encapsulating both the program and the input data. The computation then reveals itself

dynamically during execution.

An example

The multithreaded computation shown in Figure 2.2 contains 21 tasks, v1; v2; : : : ; v21, and 5

threads, �1;�2; : : : ;�5. Execution begins with the root thread �1 active and ready. Thread �1

has activation frame size F(�1) = 3, so the execution begins with 3 units of space in use. At

the �rst step of the execution, a processor executes task v1. At the end of the �rst step, �1 is
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v21v20

v18v17v16

v15v14

v13v12v11

v9

v8v7

v6

v5v4v3

v2v1

v10

v19

(Γ1) = 3F

(Γ2) = 6F (Γ3) = 3F

(Γ4) = 2F

(Γ5) = 7F

Figure 2.2: A multithreaded computation. This computation has 21 tasks, v1; v2; : : : ; v21, and

5 threads, �1;�2; : : : ;�5, with activation frame sizes, F(�1) = 3, F(�2) = 6, F(�3) = 3,

F(�4) = 2, and F(�5) = 7.

still the only active (and ready) thread, and therefore, at the second step, a processor executes

task v2. Task v2 spawns a child thread �2 with activation frame size F(�2) = 6. Consequently,

the second step ends with 3+ 6 = 9 units of space in use and both �1 and �2 active and ready.

Then if the parallel machine executing this computation has at least two processors, task v6

from �1 and task v3 from �2 can execute concurrently during the third step. Executing task v6

spawns another thread which further increases the amount of space in use. Eventually, when

task v5 executes, thread �2 terminates and decreases the amount of space in use. Furthermore,

executing v5 resolves the data dependency (v5; v20). When the execution of thread �1 reaches

v20, the thread stalls until both data dependencies (v5; v20) and (v19; v20) resolve.

Figures 2.3 and 2.4 show two di�erent 2-processor execution schedules for the computation

of Figure 2.2. The schedule of Figure 2.3 takes 14 time steps and 13 units of space. The

schedule of Figure 2.4 takes 15 time steps and 21 units of space; for a period of time during the

execution of this schedule, every thread in the computation is active.
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Time Tasks executed Active threads Space in use

0 ��
��
�1 3

1 v1 ��
��
�1 3

2 v2 ��
��
�1 ��
��
�2 9

3 v3 v6 ��
��
�1 ��
��
�2 ��
��
�3 12

4 v4 v7 ��
��
�1 ��
��
�2 ��
��
�3 12

5 v5 v8 ��
��
�1 ��
��
�3 ��
��
�4 8

6 v9 v11 ��
��
�1 �3 ��

��
�4 8

7 v10 v14 ��
��
�1 ��
��
�3 6

8 v12 v15 �1 ��
��
�3 ��
��
�5 13

9 v13 v16 �1 ��
��
�5 10

10 v17 �1 ��
��
�5 10

11 v18 �1 ��
��
�5 10

12 v19 ��
��
�1 3

13 v20 ��
��
�1 3

14 v21

Figure 2.3: An execution schedule for the computation illustrated in Figure 2.2 with two pro-

cessors. Each row represents one time step of the computation as indicated in the �rst column.

The second column lists the tasks that execute at the associated time step. The third column

lists the threads that are active at the end of the associated time step; threads that are also

ready are shown circled. The last column shows how much space is in use at the end of the

associated time step. This execution takes 14 time steps and 13 units of space.
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Time Tasks executed Active threads Space in use

0 ��
��
�1 3

1 v1 ��
��
�1 3

2 v2 ��
��
�1 ��
��
�2 9

3 v3 v6 ��
��
�1 ��
��
�2 ��
��
�3 12

4 v4 v14 ��
��
�1 ��
��
�2 ��
��
�3 12

5 v7 v15 �1 ��
��
�2 ��
��
�3 ��
��
�5 19

6 v8 v16 �1 ��
��
�2 ��
��
�3 ��
��
�4 ��
��
�5 21

7 v11 v17 �1 ��
��
�2 �3 ��

��
�4 �5 21

8 v5 v9 �1 �3 ��
��
�4 �5 15

9 v10 �1 ��
��
�3 �5 13

10 v12 �1 ��
��
�3 �5 13

11 v13 �1 ��
��
�5 10

12 v18 �1 ��
��
�5 10

13 v19 ��
��
�1 3

14 v20 ��
��
�1 3

15 v21

Figure 2.4: Another execution schedule for the computation illustrated in Figure 2.2 with two

processors. This execution takes 15 time steps and 21 units of space.



Chapter 3

Time and space

We shall characterize the time and space of an execution of a multithreaded computation in

terms of three fundamental parameters: work, computation depth, and activation depth. We

�rst introduce work and computation depth, which relate to the execution time, and then we

focus on activation depth, which relates to the storage requirements.

The two time parameters are based on the underlying graph structure of the multithreaded

computation. If we ignore the shading in Figure 2.1 that organizes tasks into threads, our

multithreaded computation is just a directed, acyclic graph, or dag. We de�ne the work of the

computation to be the total number of tasks and the computation depth to be the length of

a longest directed path in the dag. For example, the computation of Figure 2.1 has work 17

and computation depth 10, and the computation of Figure 2.2 has work 21 and computation

depth 13.

We quantify and bound the execution time of a computation on a P -processor parallel

computer in terms of the computation's work and depth. For a given computation, let TP (X )

denote the time to execute the computation with P processors using execution schedule X , and

let

TP = min
X
TP (X )

denote minimum time execution with P processors | the minimum being taken over all valid

execution schedules for the computation. Then T1 is the work of the computation, since a 1-

processor computer can only execute one task at each step, and T1 is the computation depth,

since even with arbitrarily many processors, each task on a path must execute serially.

19



20 Chapter 3. Time and space

Still viewing the computation as a dag, we borrow some basic results on dag scheduling to

bound TP . A computer with P processors can execute at most P tasks per step, and since

the computation has T1 tasks, TP � T1=P . And, of course, we also have TP � T1. Brent's

Theorem [5, Lemma 2] yields the bound TP � T1=P + T1. The following theorem extends

Brent's Theorem minimally to show that this upper bound on TP can be obtained by greedy

schedules: those in which at each step of the execution, if at least P tasks are ready, then P

tasks execute, and if fewer than P tasks are ready, then all execute; both of the schedules shown

in Figures 2.3 and 2.4 are greedy.

Theorem 1 For any multithreaded computation with work T1 and computation depth T1, for

any number P of processors, any greedy execution schedule X achieves TP (X ) � T1=P + T1.

Proof: Let G = (V;E) denote the underlying dag of the computation. Thus, we have jV j = T1,

and a longest directed path in G has length T1. Consider a greedy execution schedule X where

the set of tasks executed at time i, for i = 1; 2; : : : ; k, is denoted Ei, with k = TP (X ). The Ei
form a partition of V .

We shall consider the progression hG0; G1; G2; : : : ; Gki of dags, where G0 = G, and for

i = 1; 2; : : : ; k, we have Vi = Vi�1 � Ei and Gi is the subgraph of Gi�1 induced by Vi. In other

words, Gi is obtained from Gi�1 by removing from Gi�1 all the tasks that are executed by X

at step i and all edges incident on these tasks. We shall show that each step of the execution

either decreases the size of the dag or decreases the length of the longest path in the dag.

We account for each step i according to jEij. Consider a step i with jEij = P . In this case,

jVij = jVi�1j � P , so since jV j = T1, there can be at most bT1=P c such steps. Now consider

a step i with jEij < P . In this case, since X is greedy, Ei must contain every vertex of Gi�1

with in-degree 0. Therefore, the length of a longest path in Gi is one less than the length of a

longest path in Gi�1. Since the length of a longest path in G is T1, there can be no more than

T1 steps i with jEij < P .

Consequently, the time it takes schedule X to execute the computation is TP (X ) � bT1=P c+

T1 � T1=P + T1.
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Theorem 1 can be interpreted in two important ways. First, the time bound given by

the theorem says that any greedy schedule yields an execution time that is within a factor

of 2 of an optimal schedule, which follows because T1=P + T1 � 2maxfT1=P; T1g and TP �

maxfT1=P; T1g. Second, Theorem 1 tells us when we can obtain linear parallel speedup, that

is, when we can �nd an execution schedule X such that TP (X ) = �(T1=P ). Speci�cally, when

the number P of processors is no more than the average available parallelism T1=T1, then

T1=P � T1, which implies that for a greedy schedule X , we have TP (X ) � 2T1=P . We shall be

especially interested in the regime where P = O(T1=T1) and linear speedup is possible, since

outside this regime, linear speedup is impossible to achieve because TP � T1.

These results on dag scheduling have been known for many years. A multithreaded compu-

tation, however, adds further structure to the dag: the partitioning of tasks into threads. This

additional structure allows us to quantify the space used in executing a multithreaded com-

putation. Once we have quanti�ed space usage, we will look back at Theorem 1 and consider

whether there exist execution schedules that achieve similar time bounds while also making

e�cient use of space. Of course, we will have to quantify a space bound to capture what we

mean by e�cient use of space.

We shall focus on a space parameter for a multithreaded computation which is based on

the tree structure of threads. If we collapse each thread into a single node and consider just

the spawn edges, the multithreaded computation becomes a rooted tree with the spawn edges

as child pointers. We call this tree the activation tree. We de�ne the activation depth of a

thread to be the sum of the sizes of the activation frames of all its ancestors, including itself.

The activation depth of a multithreaded computation is the maximum activation depth of any

thread. For example, in the computation of Figure 2.2, thread �4 has activation depth 8, and

the computation has activation depth 10, since the deepest thread �5 has activation depth 10.

We shall have occasion to consider subcomputations and subcomputation activation depth.

A subcomputation is the portion of a computation rooted at a given thread in the activation tree,

and the activation depth of a subcomputation is the activation depth of the subcomputation

when considered in isolation as a multithreaded computation. For example, in the computation
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of Figure 2.2, the subcomputation rooted at thread �3 consists of 7 tasks, v7; v8; : : : ; v13, and 2

threads, �3 and �4, and has activation depth 3 + 2 = 5.

We shall denote the space required by a P -processor execution schedule X of a multithreaded

computation by SP (X ). Recall that SP (X ) is just the maximum, over all steps in X , of the

sum of the sizes of the activation frames of the active threads at that step. Since we can always

simulate a P -processor execution with a 1-processor execution that uses no more space, we have

S1(X ) � SP (X ). The minimum space used by any execution with any number of processors is

therefore S1 = minX S1(X ).

The following simple theorem shows that the activation depth of a computation is a lower

bound on the space required to execute it.

Theorem 2 Let A be the activation depth of a multithreaded computation, and let X be a P -

processor execution schedule of the computation. Then SP (X ) � A, and hence, S1 � A.

Proof: In any schedule, the leaf thread with greatest activation depth must be active at some

time step. Since we assume that if a thread is active, its parent is active, when the deepest leaf

thread is active, all its ancestors are active, and hence, all its ancestors' frames are allocated.

But, the sum of the sizes of its ancestors' activation frames is just the activation depth. Since

SP (X ) � A holds for all X and all P , it holds for the minimum-space execution schedule, and

hence, S1 � A.

Given the lower bound of activation depth on the space used by a P -processor schedule, it is

natural to ask whether the activation depth can be achieved as an upper bound. In general, the

answer is no, since all the threads in a computation may contain a cycle of data dependencies

that force all of them to be simultaneously active in any execution schedule. For the class of

depth-�rst computations, however, space equal to the activation depth can be achieved by a

1-processor schedule.

A depth-�rst computation is a multithreaded computation in which a left-to-right depth-�rst

search of tasks in the activation tree always visits all the tasks on which a given task depends

before it visits the given task. In fact, this depth-�rst search produces a 1-processor execution
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schedule which is just the familiar stack-based execution: The serial depth-�rst execution begins

with the root thread and executes its tasks until it either spawns a child thread or terminates.

If the thread spawns a child, the parent thread is put aside to be resumed only after the child

thread terminates; the scheduler then begins work on the child, executing the child until it

either spawns or terminates. For the computation of Figure 2.2, the 1-processor execution

schedule that executes tasks in the order v1; v2; v3; : : : ; v20; v21 is the serial depth-�rst schedule.

Theorem 3 For any depth-�rst computation, S1 = A.

Proof: At any time in a serial depth-�rst execution of the computation, the set of active

threads always forms a path from the root. Therefore, the space required is just the activation

depth of the computation. By Theorem 2, S1 � A, and thus the the space used is the minimum

possible.

We now turn our attention to determining how much space SP (X ) a P -processor execution

schedule X can use and still be considered e�cient with respect to space usage. Our strategy

is to compare the space used by a P -processor schedule with the space required by an optimal

1-processor schedule. Of course, we can always ignore P � 1 of the processors and obtain the

same space bounds, and therefore, our goal is to use small space while obtaining linear speedup.

Even for depth-�rst computations, a P -processor schedule may use nearly P times the space

of a 1-processor schedule. We exhibit a depth-�rst computation with activation depth A = S1

that for any number P � T1=T1 of processors, requires space nearly S1P in order to achieve

linear parallel speedup. In the computation, the root thread, which we refer to as the loop,

spawns many children, and each child thread is the root of a large subcomputation, which we

refer to as an iteration. The root thread has an activation frame of size 1, and each iteration

has activation depth S1 � 1. See Figure 3.1. In addition, data dependencies force a serial

ordering on the tasks within each iteration, but there are no data dependencies between tasks

in di�erent iterations. In other words, the entire computation has no available parallelism

within an iteration; parallelism can only be realized by the concurrent execution of multiple

iterations. Executing P iterations concurrently, uses space P (S1 � 1) + 1 which is nearly S1P .
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S1

T1/T∞

Figure 3.1: The activation tree of a multithreaded computation for which any execution schedule

X requires space SP (X ) = 
(S1P ) in order to achieve linear speedup. The root thread is a

loop and each child thread is the root of a subcomputation that forms an iteration. The data

dependencies in each iteration (not shown) link the tasks of the iteration into a sequential

order, so there is no parallelism within the iteration. Between iterations, however, there are no

data dependencies, so multiple iterations can be executed concurrently. The average available

parallelism T1=T1 equals the number of iterations. Therefore, for any number P � T1=T1 of

processors, there is an execution schedule X (any greedy schedule for example) that achieves

TP (X ) = �(T1=P ) and space SP (X ) = P (S1 � 1) + 1 = �(S1P ).

Thus, for any number P � T1=T1 of processors, this computation has an execution schedule

X (any greedy schedule, for example) that achieves linear speedup, TP (X ) = �(T1=P ), at the

cost of space SP (X ) = �(S1P ).

In fact, a P -processor schedule that uses only P times the space of a single processor is

arguably e�cient, since on average, each of the P processors only needs as much memory as is

used by the 1 processor. We would, of course, like to do better, but an expansion in space that

is linear in the number of processors, while achieving linear speedup, is quite good, since the

time-space product is bounded by a constant:

TP (X )SP (X ) = O(T1S1) :

We shall show in Chapter 4 that achieving linear speedup and linear expansion of space simul-
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taneously is impossible in general, even for depth-�rst computations. For a restricted class of

computations that we call strict, however, Chapter 5 shows that one can achieve both.

To summarize, we can parameterize a multithreaded computation with three measures:

� T1 denotes the work of the computation,

� T1 denotes its computation depth,

� A denotes its activation depth.

For depth-�rst computations, S1 = A. For any number P = O(T1=T1) of processors, we would

like to �nd an execution schedule X with the following time and space bounds:

� TP (X ) = O(T1=P ),

� SP (X ) = O(S1P ).
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Chapter 4

Lower bound

In this chapter we show that there exist multithreaded computations for which no execution

schedule can achieve both linear speedup and linear expansion of space. In particular, for any

amount of serial space S and any (reasonably large) serial execution time T , we can exhibit a

depth-�rst multithreaded computation with work T1 = T and activation depth A = S but with

provably bad time/space tradeo� characteristics. Being depth-�rst, we know from Theorem 3

that our computation can be executed using serial space S1 = A. Furthermore, we know from

Theorem 1 that for any number P of processors, any greedy P -processor execution schedule

X achieves TP (X ) � T1=P + T1. Our computation has computation depth T1 approximately
p
T1, and consequently, for P = O(

p
T1), a greedy schedule X yields TP (X ) = O(T1=P ) |

linear speedup. We show, however, that for this computation, any schedule achieving TP (X ) =

O(T1=P ) must use space SP (X ) = 
(
p
T1(P � 1)). Of course,

p
T1 may be much larger than

S1, hence, this space bound is nowhere near linear in its space expansion.

We construct a multithreaded computation having this poor time/space performance by

placing tasks that are computationally deep into the same portion of the computation as tasks

that are computationally shallow. If we look at just the dag structure of the computation, it

appears, from a distance, as shown in Figure 4.1 | the dag in Figure 4.1 is just missing a few of

the tasks and edges that organize the computation into a tree hierarchy. The dag consists of m

(a value we will specify later) components C0; C1; : : : ; Cm�1 that we call jobs. From this dag, we

see that with any number P � m of processors, we can obtain linear speedup by simultaneously

executing P jobs. Doing so, however, uses up lots of memory. To execute a job Ci, we begin

with a group of computationally shallow tasks called headers (see Figure 4.1). Each header is

27
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blockers

C0 C1 C2 Cm–1
headers

Figure 4.1: The tasks in the leaf threads are organized into m jobs, C0; C1; : : : ; Cm�1. The black

header tasks have shallow computation depth. The white tasks form the trunk of the job. The

grey blocker tasks have deep computation depth.

part of a separate subcomputation with fairly large activation depth, so to execute a header

task we must begin execution of its associated subcomputation by allocating the necessary

activation frames. Each of these subcomputations also contains a computationally deep task,

called a blocker (see Figure 4.1), from the previous job Ci�1. Therefore, these subcomputations

cannot complete, and the associated memory cannot be deallocated until the blockers from the

previous job execute. But in order to achieve speedup, jobs must execute concurrently, and

consequently, the headers must execute early and the blockers must execute late. Therefore, in

this scenario, many subcomputations begin early, but cannot �nish until late, hence the heavy

demands on storage.

Theorem 4 For any amount of serial space S � 4 and serial time T � 16S2, there exists a

depth-�rst multithreaded computation with work T1 = T , computation depth T1 � 8
p
T1, and

activation depth A = S, such that for any number P of processors and any value � in the range

1 � � � 1
8
T1=T1, if X is a valid P -processor execution schedule that achieves TP (X ) � T1=�,

then SP (X ) � 1
4
(�� 1)

p
T1 + S1.
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Proof: To exhibit a depth-�rst multithreaded computation with work T1, computation depth

T1, and activation depth A = S1, we �rst consider the dag structure of the computation. If we

look at just the tasks in the leaf threads and ignore a few of the edges, the dag appears as in

Figure 4.1. The tasks are organized into

m =
p
T1=8

(nearly) separate components C0; C1; : : : ; Cm�1 that we call jobs.
1 Each job begins with

� =
p
T1=S1

tasks that we call headers. After the headers, each job contains

� = 6
p
T1

tasks organized into a chain that we call the trunk. There are no dependencies between the

headers, but the �rst task of the trunk cannot execute until after all the headers. At the end

of each job, there are � blockers. Each job, therefore, consists of 2�+ � = 2(
p
T1=S1) + 6

p
T1

tasks. Since there arem =
p
T1=8 jobs, the total number of tasks accounted for by them jobs is

(2
p
T1=S1 + 6

p
T1)

p
T1=8 =

3
4
T1+

1
4
T1=S1, and this number is no more than 13

16
T1 since S1 � 4.

The remaining (at least) 3
16
T1 tasks form the parts of the computation not shown in Figure 4.1.

When we consider how the tasks of each job are organized into the threads of the com-

putation, we will exhibit an organization such that each header task is part of a separate

subcomputation with activation depth at least 1
2
S1. This organization will also be such that

each of these subcomputations contains a blocker task from a di�erent job. In particular, each

job Ci, for i = 1; : : : ; m�1, has each of its header tasks in a subcomputation that also contains a

blocker task of the previous job Ci�1. For each such subcomputation, the blocker task is placed

1In what follows, we refer to a number x of objects (such as tasks) when x may not be integral. Rounding

these quantities to integers does not a�ect the correctness of the proof. For ease of exposition, we shall not

consider the issue.
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to ensure that the subcomputation cannot complete until the blocker task executes. Therefore,

from the time the header task of job Ci executes until the time the blocker task of job Ci�1 exe-

cutes, all of the (at least) 1
2
S1 space used by the subcomputation remains active. Furthermore,

if all of the headers of Ci execute before any of the blockers of Ci�1, then during the intervening

time period, � of these subcomputations are active, and these active subcomputations take up

at least 1
2
S1� = 1

2

p
T1 space. We will show that in fact, this space consuming scenario must

occur in any execution schedule that achieves any amount of parallel speedup.

For any number P of processors, consider any valid P -processor execution schedule X . For

each job Ci, let t(s)i denote the time step at which X executes the �rst trunk task of Ci, and

let t
(f)
i denote the �rst time step at which X executes a blocker task of Ci. Since the trunk

has length � and no blocker task of Ci can execute until after the last trunk task of Ci, we

have t
(f)
i � t

(s)
i � �.

Now consider two jobs, Ci and Ci�1, and suppose t
(s)
i < t

(f)
i�1; this is the scenario we described

as using at least 1
2

p
T1 space. In this case, we consider the time interval from t

(s)
i (inclusive) to

t
(f)
i�1 (exclusive) during which we say that job Ci is exposed, and we let �i = t

(f)
i�1� t

(s)
i denote the

amount of time job Ci is exposed. See Figure 4.2. If t(s)i � t
(f)
i�1 then job Ci is never exposed and

we let �i = 0. As we have seen, over the time interval during which a job is exposed, it uses at

least 1
2

p
T1 space. We will show that in order to achieve speedup � | that is TP (X ) � T1=� |

there must be some time step during the execution at which at least
�
3
4
�
�
� 1 jobs are exposed.

If schedule X is such that TP (X ) � T1=�, then we must have t
(f)
m�1� t

(s)
0 � T1=�, and we can

expand this inequality out as

T1=� � t
(f)
m�1 � t

(s)
0

= t
(f)
0 +

m�1X
i=1

(t(f)i � t
(f)
i�1)� t

(s)
0

= t
(f)
0 � t

(s)
0 +

m�1X
i=1

�
(t

(f)
i � t

(s)
i ) + (t

(s)
i � t

(f)
i�1)

�

=
m�1X
i=0

(t(f)i � t
(s)
i )�

m�1X
i=1

(t(f)i�1 � t
(s)
i ): (4.1)
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Figure 4.2: Scheduling the execution of the jobs. A solid vertical interval from t
(s)
i to t

(f)
i indicates

the time during which the trunk of job Ci is being executed. When t
(s)
i < t

(f)
i�1, we can de�ne an

interval, shown dashed, of length �i = t
(f)
i�1 � t

(s)
i , during which job Ci is exposed.

Considering the �rst sum, we recall that t
(f)
i � t

(s)
i � �, hence,

m�1X
i=0

(t
(f)
i � t

(s)
i ) � m�: (4.2)

Considering the second sum of Inequality (4.1), when t
(f)
i�1 > t

(s)
i (so Ci is exposed), we have

�i = t
(f)
i�1 � t

(s)
i , and otherwise, �i = 0 � t

(f)
i�1 � t

(s)
i . Therefore,

m�1X
i=1

(t
(f)
i�1 � t

(s)
i ) �

m�1X
i=1

�i: (4.3)

Substituting Inequality (4.2) and Inequality (4.3) back into Inequality (4.1), we obtain

T1=� � m� �
m�1X
i=1

�i;
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from which
m�1X
i=1

�i � m� � T1=�:

Let exposed(t) denote the number of jobs exposed at time step t, and observe that

T1=�X
t=0

exposed(t) =
m�1X
i=i

�i:

Then the average number of exposed jobs per time step is

1

T1=�

T1=�X
t=0

exposed(t) =
1

T1=�

m�1X
i=1

�i

� 1

T1=�
(m� � T1=�)

=
m�

T1
�� 1

=
3

4
�� 1

since m =
p
T1=8 and � = 6

p
T1. There must be some time step t

� for which exposed(t�) is at

least the average, and consequently,

exposed(t�) �
�
3

4
�

�
� 1:

Now recalling that each exposed job uses space 1
2

p
T1, we have

SP (X ) � 1

2

��
3

4
�

�
� 1

�p
T1

� 1

4
(�� 1)

p
T1 + S1

for S1 �
p
T1=4 (which is true since T1 � 16S2

1).

All that remains is exhibiting the organization of the tasks of each job into a depth-�rst

multithreaded computation with work T1, computation depth T1 � 8
p
T1, and activation depth

A = S1 in such a way that for each job, each header task is placed in a subcomputation with a
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Figure 4.3: Laying out the jobs into the threads of a multithreaded computation. In this

example, each activation frame has unit size so A = 6. Also, in this example � = 2, � = 8, and

only the �rst 2 out of the m tasks in the root thread are shown. Each task of the root thread

spawns a child, and each child thread contains � + 1 = 3 tasks; the �rst � of these spawn a

child thread which is the root of a subcomputation with activation depth A � 2 = 4, and the

last one spawns a leaf thread with the � = 8 trunk tasks of a single job.

blocker task from the previous job and that each such subcomputation has activation depth at

least S1=2. There are actually many ways of creating such a computation. One such way, that

uses unit size activation frames for each thread, is shown in Figure 4.3.

For the multithreaded computation of Figure 4.3, the root thread contains m tasks, each of

which spawns a child thread. Each child thread contains �+ 1 tasks; the �rst � of these spawn

a child thread which is the root of a subcomputation with activation depth S1�2 � S1=2 (since

S1 � 4), and the last one spawns a leaf thread with the � trunk tasks of a single job. Each

of these subcomputations contains a single header from one job and a single blocker from the

previous job (except in the case of the �rst group of �) as shown in Figure 4.3. The header and

blocker in a subcomputation are organized such that in order to execute the header, all S1 � 2

of the threads in the subcomputation must be made active, and none of them can terminate

until the blocker executes. We can verify from Figure 4.3 and from the given values of m, �,

and � that this construction actually has work slightly less than T1; in order to make the work
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equal to T1 we can just add the extra tasks evenly among the threads that contain the trunk of

each job (thereby increasing � by a bit). Also, we can verify that T1 � 8
p
T1. Finally, looking

at Figure 4.3 we can see that this computation is indeed depth-�rst.

The construction of a multithreaded computation with provably bad time/space character-

istics as just described can be modi�ed in various ways to accommodate various restriction to

the model while still obtaining the same result. For example, some real multithreaded systems

require limits on the number of tasks in a thread, data dependencies that only go to the �rst

task of a thread, limited fan-in for data dependencies, or a limit on the number of children a

thread can have. Simple changes to the construction just described can produce multithreaded

computations that accommodate any or all of these restrictions and still have the same provably

bad time/space tradeo�. Thus, the lower bound of Theorem 4 holds even for multithreaded

computations with any or all of these restrictions.

Theorem 4 tells us that for any amount of serial space S and any (reasonably) large serial

execution time T , there exists a multithreaded computation that can be executed serially in the

given amount of time and space, has su�cient average available parallelism to achieve linear

speedup over a wide range of numbers of processors, but in order to achieve any speedup at

all, requires (potentially) extreme amounts of space. For example, in order to achieve linear

speedup when the number of processors is close to the average available parallelism, such a

computation requires space proportional to T1 | the serial execution time. Even to achieve

speedup of 2 (� = 2), such a computation requires space proportional to
p
T1 | not quite T1,

but still potentially huge compared to S1.

There are actually many ways of stating a lower bound as in Theorem 4, but they all

come down to the same thing: There exist multithreaded computations with arbitrary serial

execution time and space and with arbitrarily large amounts of average available parallelism,

such that achieving any amount of speedup ranging from 1 (no speedup) up to the average

available parallelism requires space that ranges from the serial space up to nearly the serial

time correspondingly.
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Scheduling algorithms for strict multithreaded

computations

Given a multithreaded computation, a scheduling algorithm for a P -processor parallel computer

must compute a valid P -processor execution schedule. In computing such a schedule, the

algorithm does not know the entire computation; the computation actually unfolds dynamically

during the course of execution, and consequently, the scheduling algorithm must be online. At

any given time during the execution, the scheduler has a set of active threads some of which

are ready and some of which are stalled. There might be some extra information attached to

each thread that the scheduling algorithm can use in deciding which ready threads get executed

by which processors, but the scheduler cannot know about the structure of the portion of the

computation not yet executed.

Besides being able to compute an e�cient execution schedule, we would like the scheduling

algorithm itself to be e�cient. In computing the execution schedule, the algorithm incurs costs

that we can broadly classify into three categories: queueing costs, synchronization costs, and

communication costs. The scheduling algorithm maintains active threads in one or more queues.

By enqueuing and dequeuing threads over the course of execution, the scheduler incurs queueing

costs. If the scheduling algorithm requires the use of any shared data or global values, it incurs

synchronization costs. Suppose that at some time during the computation, the scheduling

algorithm decides that a processor p should execute a task from thread �, and then at some

later time, the scheduler decides that a di�erent processor p0 6= p should execute a task from the

same thread �. In this case, some information about �, possibly the entire activation frame,

must be moved from processor p to processor p0. In doing so, the scheduling algorithm incurs

35
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AAA

(a) (b)

Figure 5.1: (a) This multithreaded computation is nonstrict since it has data dependencies, shown bold,

that go to non-ancestor threads. (b) If we replace the o�ending data dependencies with new ones, shown

bold, we obtain a strict computation since all data dependencies go from a child thread to an ancestor

thread.

some communication cost.

With a P -processor parallel computer and a scheduling algorithm, given a depth-�rst mul-

tithreaded computation with work T1, computation depth T1, and activation depth A = S1

possessing average available parallelism T1=T1 = 
(P ), we would like the scheduling algorithm

to compute an execution schedule X with TP (X ) = O(T1=P ) and SP (X ) = O(S1P ).

In light of the lower-bound, we consider scheduling algorithms for a speci�c class of depth-

�rst multithreaded computations. In particular, we consider multithreaded computations in

which all data dependencies go from a child thread to an ancestor thread as illustrated in

Figure 5.1.

Requiring that all data dependencies go from a child thread to an ancestor thread can be

viewed as requiring all function invocations (in a functional language) to be strict, and therefore,

we refer to this class of computations as strict multithreaded computations. For example, many

languages express parallelism with the future construct [12, 15, 21].
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The expression (future X), where X is an arbitrary expression, creates a task to

evaluate X and also creates an object known as a future to eventually hold the

value of X . When created, the future is in an unresolved, or undetermined, state.

When the value of X becomes known, the future resolves to that value, e�ectively

mutating into the value of X and losing its identity as a future. Concurrency arises

because the expression (future X) returns the future as its value without waiting

for the future to resolve. Thus, the computation containing (future X) can proceed

concurrently with the evaluation of X . [21]

Consider the following code fragment:

(let ((a (future A))

(b (future B)))

(+ C (F a b)))

Such a code fragment could appear for example in a Mul-T [21] program. Figure 5.2(a) illus-

trates the corresponding multithreaded computation. In this example, the thread evaluating

this code can spawn child threads to evaluate expressions A and B concurrently; to the parent

thread, identi�ers a and b are futures until they resolve. Furthermore, evaluation of A and

B can proceed concurrently with the parent thread's evaluation of expression C. Once the

parent thread has evaluated C (and F ) it can go ahead and spawn a child thread to evaluate

the invocation (F a b) even if the arguments have not resolved. When a function is invoked

with an argument that is a future, the invocation is called nonstrict, hence, we call the spawn

nonstrict as well. To make this computation strict, we must ensure that the function value of F

is not invoked until the arguments a and b resolve. In Mul-T, this strictness can be expressed

with the touch construct as shown in the following code fragment:

(let ((a (future A))

(b (future B)))

(+ C (F (touch a) (touch b))))

In this case, before the parent thread goes to spawn the invocation (F a b), it touches the

arguments a and b, thereby forcing the thread to stall until those arguments resolve. Then

when it performs the spawn, the arguments are no longer futures, and consequently, the spawn

is strict. Figure 5.2(b) illustrates the computation corresponding to this strict version of the
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code | notice that the data dependencies now conform to the strictness condition. The strict

version of this computation still has parallelism: The expressions A, B, and C can still by

evaluated concurrently; it's just that evaluation of A and B can no longer operate in parallel

with the invocation (F a b).

Strict computations are also depth-�rst since requiring all data dependencies to go from a

child thread to an ancestor prohibits any data dependency going from one subcomputation of

a thread to another subcomputation of that thread.

For strict multithreaded computations, once a thread � has been spawned, a single processor

can complete the execution of � and all of its descendant threads by using a depth-�rst schedule

even if no other progress is made on other parts of the computation. In other words, from the

time the thread � is spawned until the time � terminates, there is always at least one thread

from the subtree rooted at � that is ready. This property allows us to derive algorithms to

schedule the execution of these computations with e�cient use of both time and space.

We �rst show that for any strict multithreaded computation, there exists an execution sched-

ule that achieves linear speedup with linear expansion of space. We demonstrate such schedules

by exhibiting a completely synchronous scheduling algorithm that we callGDF (stands for global

depth-�rst). On a P -processor parallel computer, for any strict multithreaded computation with

work T1, computation depth T1, and activation depth A = S1 possessing average available par-

allelism T1=T1 = 
(P ), algorithm GDF computes a schedule X such that TP (X ) = O(T1=P )

and SP (X ) = O(S1P ). This algorithm uses a centralized priority queue that is shared by all

P processors, hence, the synchronization cost of this algorithm makes it impractical for any

reasonably large number of processors.

By modifying GDF we can exhibit an algorithm that is e�cient for moderately sized ma-

chines. This algorithm, which we call GDF', uses fewer accesses to the global queue while still

computing an equally good schedule.

To obtain an algorithm that is e�cient for large machines, we use the technique of Karp and

Zhang [19] to replace the global priority queue with P local queues, one for each processor. By

combining this technique with a new technique to throttle the execution and thereby maintain
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(F a b)

A
A
A
A

(a)

(b)

u

u

Figure 5.2: (a) A nonstrict computation. The parent thread begins by spawning child threads

to evaluate expressions A and B. In parallel with the evaluation of A and B, the parent thread

can continue on to evaluate expression C. After evaluating C, the parent thread spawns a child

thread to evaluate the invocation (F a b). This spawn can occur even before expression A or B

has completed evaluation, in which case at least one of the corresponding identi�ers, a or b, is

still a future and the spawn is nonstrict. (b) A strict version of the same computation. In this

case, the parent thread must stall at task u until both expressions A and B have completed

evaluation. Thus, the corresponding identi�ers, a and b, are no longer futures when the spawn

occurs, and the spawn is strict.
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a modest degree of synchrony among the processors, we obtain a randomized algorithm that

we call LDF (stands for local depth-�rst). For any strict multithreaded computation with lg P

slack in its average available parallelism | that is T1=T1 = 
(P lg P ) | algorithm LDF

computes a schedule X with guaranteed space bound SP (X ) = O(S1P lgP ) and expected time

bound E [TP (X )] = O(T1=P ). This algorithm is simple and distributed (it requires no global

control nor any global data structures), and therefore, on a PRAM and certain low-latency,

high-bandwidth �xed-connection networks, the scheduling costs are no more than a constant

factor of the execution time.

Centralized scheduling algorithms

Algorithm GDF maintains all active threads in a global queue prioritized by activation depth

| the deepest threads get highest priority. At each step of the algorithm, the scheduler removes

from the queue the P deepest ready threads (if there are fewer than P ready threads, it just

removes them all) and assigns them arbitrarily to the P processors so that each processor

receives at most one thread. Each processor that has an assigned thread then executes one task

from that thread. To complete the step, all surviving threads and all newly spawned threads

are placed back into the global queue.

Theorem 5 For any number P of processors and any strict multithreaded computation with

work T1, computation depth T1, and activation depth A = S1, algorithm GDF computes a

schedule X that achieves space SP (X ) � S1P and time TP (X ) � T1=P + T1.

Proof: The time bound follows immediately from Theorem 1 since GDF always produces a

greedy schedule.

To prove the space bound, we show that the queue never contains more than P threads

(ready or not) that span any activation depth. A thread � spans an activation depth d, if � has

activation depth A(�) � d, and either � is the root or the parent thread �0 of � has activation

depth A(�0) < d. See Figure 5.3. For any time step t during the execution and any activation

depth d, let s(t; d) denote the number of active threads that span d at the start of step t. Then
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the total space s(t) being used at the start of time step t is

s(t) =
S1X
d=1

s(t; d): (5.1)

By induction on the number of steps, we show that for all t, every activation depth d, has

s(t; d) � P . With this bound, Equation (5.1) shows that s(t) � S1P for all time t, from which

the space bound follows.

The algorithm begins with just one active thread (the root), so for every activation depth

d, we have s(1; d) � 1 � P . Now consider any activation depth d, and suppose that for time

step t, the induction hypothesis s(t; d) � P holds. The computation being strict means that

for each of the s(t; d) active threads that span d at the start of step t, there is at least one

ready thread with activation depth greater than or equal to d | remember, this property is

the crucial property that we get by having all data dependencies go from a child thread to an

ancestor thread. Therefore, step t begins with at least s(t; d) ready threads at or deeper than d.

The depth-�rst ordering then ensures that no more than P � s(t; d) threads with depth less

than d can execute at step t. Then since the only way to increase the number of threads that

span d is to execute a thread shallower than d that spawns a child thread at or deeper than d,

step t ends with at most s(t; d)+ (P � s(t; d)) = P active threads that span activation depth d.

Therefore, s(t+ 1; d) � P , and the induction is complete.

We can make this algorithm more e�cient by reducing the number of accesses to the global

queue as follows. The algorithm begins with the root thread assigned to some arbitrary pro-

cessor and the global queue empty. In general, at the start of a step, some processors have an

assigned thread and some don't. Consider a step that begins with n processors that do not have

a thread. In this case, to start the step, the scheduler removes from the queue the n deepest

ready threads (if there are fewer than n ready threads, it just removes them all) and assigns

them arbitrarily to the n processors so that each processor receives at most one thread. Each

processor (now considering all P of them) that has an assigned thread then executes one task

from that thread. Unless that thread spawns, terminates, or stalls, the processor can keep its
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AAAAAAAAAAAAAA
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S1

d

Figure 5.3: The activation tree corresponding to the example computation of Figure 2.1. Each

black node corresponds to a thread and the edges correspond to the spawn edges. Associated

with each thread is an activation frame depicted by the grey rectangles drawn with height

equal to the size of the frame. Notice that the activation frames are located so that the top of

a thread's frame is just below the bottom of its parent's frame. In this way each thread's black

node is drawn at its activation depth (depth increases in the downward direction). The threads

that span activation depth d are indicated by highlighting the activation frame's border.

thread so it will have a thread to start the next step. If the thread stalls, the processor must

return it to the global queue, and consequently, the processor will not have a thread to start

the next step. Similarly, if the thread terminates, the processor will not have a thread to start

the next step. Lastly, if the thread spawns, the processor returns the parent thread (the one it

was working on) to the global queue and keeps the child thread, and therefore, in this case, the

processor will still have a thread to start the next step.

This version of the algorithm, which we call GDF', achieves the same performance bounds

as proved in Theorem 5, but requires access to the global queue only when threads spawn,

terminate, or stall.
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Theorem 6 For any number P of processors and any strict multithreaded computation with

work T1, computation depth T1, and activation depth A = S1, algorithm GDF' computes a

schedule X that achieves space SP (X ) � S1P and time TP (X ) � T1=P + T1.

Proof: This proof follows the proof of Theorem 5, but we add the following assertion to the

induction hypothesis: For any activation depth d, if a step t begins with s(t; d) � P active

threads that span depth d, then step t begins with no more than P � s(t; d) processors that

have a thread with activation depth less than d. If this assertion is true at the start of step t,

then at least s(t; d) processors get assigned to threads at or deeper than d, and step t+1 begins

with s(t+ 1; d)� P active threads spanning d. Also, since no more than P � s(t; d) processors

work on threads shallower than d during step t, step t+1 begins with no more than P � s(t; d)

processors that have a thread shallower than d. We consider two cases based on the relative sizes

of s(t; d) and s(t+1; d). If s(t+1; d)� s(t; d), then P �s(t; d) � P �s(t+1; d), and hence, step

t+1 begins with no more than P�s(t+1; d) processors that have a thread with activation depth

less than d. On the other hand, if s(t+ 1; d)> s(t; d), then s(t+ 1; d)� s(t; d) processors must

have executed a thread less deep than d that spawned a child thread at or deeper than d during

step t. Each of these processors only keeps the thread with depth greater than or equal to d, and

consequently, step t+1 begins with no more than P�s(t; d)�(s(t+1; d)�s(t; d)) = P�s(t+1; d)

processors that have a thread with activation depth less than d. In either case, step t+1 begins

with no more than P�s(t+1; d) processors having a thread less deep than d, thereby completing

the induction.

This algorithm may be feasible for a modest number of processors, but for a large number

of processors, the cost of synchronization at the global queue becomes prohibitive. To derive a

truly scalable and distributed algorithm, we need to split the global queue into P local queues

| one for each processor.
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Chapter 6

Distributed scheduling algorithms

In a distributed scheduling algorithm, each processor works depth-�rst out of its own local

priority queue. Speci�cally, to get a thread to work on, a processor removes the deepest ready

thread from its local queue. Ideally, we would like the processor to then continue working on

that thread until it either stalls, terminates, or spawns, and when the processor does need to

enqueue a thread (as in the case when the thread stalls or spawns) or dequeue a new thread,

it does so by accessing only its local queue. Of course, this approach could result in processors

with empty queues sitting idle while other processors have large queues. Thus, we require

each processor to have some access to non-local queues in order to facilitate some type of load

balancing.

The technique of Karp and Zhang [19] suggests a randomized algorithm in which threads

are located in random queues in order to achieve some balance. At the end of this chapter, we

show that the naive adoption of this technique does not work. In order to achieve the desired

result, we modify the Karp and Zhang technique by incorporating a new mechanism to enforce

a modest degree of synchrony among the processors.

Algorithm LDF operates in iterations with each iteration consisting of a synchronization

phase followed by a computation phase and ending with a communication phase. In a syn-

chronization phase, we compute a cuto� depth D that is a global value made available to all

processors. During the following computation phase, only those threads with activation depth

greater than or equal to D can execute. Finally, the communication phase redistributes threads

to random locations.

45
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The operation of each phase is governed by a synchronization parameter r that a�ects both

the time and space performance of the algorithm. Let LDF(r) denote Algorithm LDF with

synchronization parameter r.

In a synchronization phase of LDF(r), we use the synchronization parameter r to compute

the cuto� depth D. Each processor pi, for i = 1; : : : ; P , computes the activation depth di of its

rth deepest ready thread. In other words, di is the activation depth for which processor pi has

fewer than r ready threads deeper than di but at least r ready threads at or deeper than di.

Cuto� depth D is then computed simply by

D = max
1�i�P

di

as illustrated in Figure 6.1.

During the computation phase of LDF(r), each processor executes one task from each ready

thread with activation depth greater than or equal to the cuto� depth D in its local queue. We

further forbid each processor from executing more than r spawns; if a processor has more than

r threads at or deeper than D that want to spawn, it may only execute r of them.

The iteration ends with a communication phase during which each processor must move

each ready thread with activation depth greater than or equal to D (as determined at the

beginning of the iteration) and each newly spawned thread from its local queue to a queue

selected uniformly at random, independently for each thread.

By using the synchronization parameter r to compute the cuto� depth and then ensuring

that each processor executes only tasks from threads at or deeper than the cuto� depth while

allowing at most r spawns, we get a guaranteed space bound.

Lemma 7 For any number P of processors and any strict multithreaded computation with ac-

tivation depth A = S1, Algorithm LDF(r) computes a schedule X such that SP (X ) � 2rS1P .

Proof: We show by induction on the number of iterations that no activation depth ever has

more than 2rP active threads that span it. Speci�cally, recalling the notation used in the proof
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p1 p2 p3 p4

Cutoff
depth

Figure 6.1: Computing the cuto� depth. Each column represents the local priority queue of a processor,

and each row represents an activation depth with depth increasing in the downward direction. We depict

each thread by a circle located at its activation depth. The ready threads in each queue are ordered by

activation depth with ties broken arbitrarily. In this example, the synchronization parameter r = 12,

and the rth deepest ready thread for each processor is shown in black. The deepest of these black threads

determines the cuto� depth. Only the ready threads at or deeper than the cuto� depth | those in the

shaded region | can execute during the following computation phase.

of Theorem 5, we show that for every activation depth d and every iteration t of the execution,

s(t; d) � 2rP . The result then follows from Equation (5.1). As before, the base case is obvious.

For any activation depth d and any iteration t of the execution, we consider 2 cases. In

the �rst case, suppose iteration t begins with rP � s(t; d) � 2rP active threads spanning

depth d. Due to the strictness of the computation, there must be at least rP ready threads

with activation depth greater than or equal to d, and by pigeon-holing, some processor's local

queue must have at least r of them. Therefore, the cuto� depth D will be set with D � d.

Consequently, during the computation phase of iteration t, no thread with activation depth

less than d can execute and the iteration ends with no more active threads spanning depth d

than it started with. Now suppose iteration t begins with s(t; d) < rP active threads spanning
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depth d. In this case, during the computation phase, since each processor is only allowed r

spawns, the number of active threads that span depth d can increase by at most rP , and

therefore, the iteration ends with no more than 2rP active threads spanning depth d. In either

case, s(t+ 1; d) � 2rP , which completes the induction.

In order to achieve speedup in the execution time, we must ensure that during the computa-

tion phase of each iteration, each processor has some ready threads at or deeper than the cuto�

depth. To ensure that the cuto� depth is not set too deep, we must use a large enough synchro-

nization parameter r. On the other hand, the space bound of Lemma 7 is directly proportional

to r. By setting r = 6 lgP , the space bound of Lemma 7 becomes SP (X ) � 12S1P lg P , and

with high probability, most computation phases take O(lgP ) time and get at least P lg P tasks

executed as we now show.

To analyze the running time, we say that each iteration either succeeds or fails depending

on how many tasks execute. An iteration that begins with at least P lg P ready threads fails if

fewer than P lgP of the ready threads get a task executed. An iteration that begins with fewer

than P lg P ready threads fails if not all of them get a task executed.

We now show that with the synchronization parameter set to r = 6 lgP , each iteration fails

with probability no more than P�5.

Lemma 8 For any number P of processors, an iteration of Algorithm LDF(6 lgP ) fails with

probability no more than P�5.

Proof: Consider an iteration that begins with at least P lgP ready threads, and suppose that

when two threads have the same activation depth, we give each thread a unique identi�er to

break the tie so we can uniquely identify the P lg P deepest ready threads. If no local queue

contains more than 6 lgP of the P lg P deepest ready threads, then the synchronization phase

sets the cuto� depth so that all P lg P of these deepest threads are at or deeper than the cuto�

depth. Therefore, an iteration that begins with at least P lgP ready threads succeeds if no

local queue contains more than 6 lgP of the P lg P deepest ready threads.

Consider a particular processor pi and let the random variable Zi denote how many of the
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P lg P deepest ready threads start the iteration in the local queue of processor pi. Each thread

is located independently at random, hence, the random variable Zi has a binomial distribution

with P lgP trials and success probability 1=P . Therefore,

Pr fZi > 6 lgPg �
 
P lg P

6 lgP

!�
1

P

�6 lgP

:

Then from the bound  
x

y

!
�
�
ex

y

�y

(6.1)

and the fact that 6 � 2e, we can upper bound Pr fZi > 6 lgPg by

Pr fZi > 6 lgPg �
�
eP lgP

6 lgP

��
1

P

�6 lgP

=

�
e

6

�6 lgP

� P�6:

Now let Z = max1�i�P Zi. For an iteration that begins with at least P lg P ready threads, the

probability of failure is no more than Pr fZ > 6 lgPg. We can use Boole's Inequality to upper

bound Pr fZ > 6 lgPg by adding the individual probabilities, from which,

Pr fZ > 6 lgPg � P � Pr fZi > 6 lgPg � P�5:

For the case of an iteration that begins with fewer than P lg P ready threads, the failure

probability is still upper bounded by Pr fZ > 6 lgPg where the random variable Z has the

distribution just described.

We now show that iterations fail independently of each other. Speci�cally, we show that

knowing whether an iteration t fails provides no information about whether any future iteration

fails. The failure of an iteration depends only on how the ready threads are distributed among

the processors. Therefore, we need to show that knowing whether iteration t fails provides no

information about the distribution of threads at the end of the iteration. Suppose iteration t has
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cuto� depth D. No matter if iteration t fails or not, the iteration ends with a communication

phase in which every ready thread at or deeper than D gets moved to a random location. Thus,

iteration t provides no information about the distribution of threads at or deeper than the cuto�

depth. Now consider the threads less deep than D. The only part of an iteration that even

considers the threads shallower than the cuto� depth is the synchronization phase. Therefore,

we need to show that computing the cuto� depth provides no information about the distribution

of threads with activation depth less than D. Consider an alternative method for computing

the cuto� depth. Let all the processors work in synch from the bottom up. First each processor

counts the number of ready threads it has with activation depth S1. Then each processor adds

on the number of ready threads it has with activation depth S1�1. We continue in this manner

until some processor reaches a count of r (the synchronization parameter). At this depth we

stop and set the cuto� depth. In this way the synchronization phase can compute the cuto�

depth with the exact same result but without ever considering threads shallower than D. Thus,

computing the cuto� depth provides no information about the distribution of threads shallower

than the cuto� depth.

With iterations failing independently of each other, we can bound the number of failed

iterations, thereby bounding the total number of iterations taken.

Lemma 9 For any number P of processors and any strict multithreaded computation with

work T1 and computation depth T1, for any � > 0, with probability at least 1 � �, Algorithm

LDF(6 lgP ) computes a schedule X that takes O(T1=(P lg P ) + T1 + logP (1=�)) iterations.

Proof: First we consider the failed iterations. Let the random variable f denote the number

of failed iterations. We will show that for any � > 0, the probability that f � eT1=(P lg P ) + b

is no more than � when b = 1
3
logP (1=�). There are at most T1 iterations since each iteration

always results in at least one task being executed, and each iteration fails independently with

probability P�5. Therefore, f is bounded by a binomial distribution with T1 trials and success
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probability P�5, from which

Pr

�
f � e

T1

P lg P
+ b

�
�
 

T1

e T1
P lgP

+ b

!�
1

P 5

�e
T1

P lg P
+b

:

Then using Inequality (6.1) we get

Pr

�
f � e

T1

P lgP
+ b

�
�

 
eT1

e T1
P lgP

+ b
� 1

P 5

!e
T1

P lg P
+b

�
�
P lgP

P 5

�e T1
P lg P

+b

�
�
1

P 3

�b
= P�3b;

and P�3b = � for b = 1
3
logP (1=�). Thus, with probability at least 1 � �, f = O(T1=(P lgP ) +

logP (1=�)).

Now consider the successful iterations. A successful iteration that begins with at least

P lg P ready threads, executes a task from at least P lg P of them, and a successful iteration

that begins with fewer than P lgP ready threads, executes a task from every ready thread.

Therefore, we can think of each successful iteration as a step in a greedy schedule with P lg P

processors. Then, as in the proof of Theorem 1, we know that there can be no more than

T1=(P lgP ) + T1 successful iterations.

Adding together the number of successful iterations and the number of failed iterations

completes the proof.

Now if we let the random variable Xi denote the time taken by the ith computation phase

of Algorithm LDF(6 lgP ), we can give the total time in computation phases as the random

variable X = X1 + X2 + � � � + XY where Y is the random variable denoting the number of

iterations. The time taken by the ith computation phase is proportional to the maximum

number of ready threads with activation depth greater than or equal to the cuto� depth in

any processor. There can be a total of at most 18P lg P ready threads at or deeper than the
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cuto� depth | r = 6P lgP deeper than the cuto� depth and 12P lgP at the cuto� depth (from

Lemma 7 with synchronization parameter r = 6 lgP ) | and each of these threads is located

independently at random. Thus, we can bound each Xi as the size of the largest bin when

throwing 18P lg P balls at random into P bins. Furthermore, by the independence argument,

the Xi's are independent. We can now bound the random variable X .

Lemma 10 Let the random variable X denote the sum of Y mutually independent random

variables, X = X1 +X2 + � � �+ XY with each Xi, for i = 1; : : : ; Y , distributed as the number

of balls in the fullest bin when throwing P lnP balls independently at random into P � 2 bins.

Then for any � > 0, we have X = O(Y lnP + lg(1=�)) with probability at least 1� �.

Proof: We have

Pr fX � aY ln P + bg = Pr
n
eX=e � e(aY ln P+b)=e

o
� E

h
eX=e

i
e�(aY lnP+b)=e (6.2)

by Markov's inequality. By the independence of the Xi's,

E
h
eX=e

i
=

YY
i=1

E
h
eXi=e

i
: (6.3)

From the de�nition of expectation,

E
h
eXi=e

i
=

P lnPX
j=lnP

Pr fXi = jg ej=e:

To bound E
�
eXi=e

�
, we break this sum into pieces. First we break out the terms from j = ln P

to j = e3 lnP � 1, which yields

E
h
eXi=e

i
=

e3 ln P�1X
j=ln P

Pr fXi = jgej=e +
P lnPX

j=e3 lnP

Pr fXi = jg ej=e: (6.4)

The �rst of these sums we bound by factoring out the largest term and upper-bounding the
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sum of probabilities by 1:

e3 lnP�1X
j=lnP

Pr fXi = jg ej=e �
e3 ln P�1X
j=ln P

Pr fXi = jg ee2 lnP

= ee
2 ln P

e3 lnP�1X
j=lnP

Pr fXi = jg

� ee
2 ln P : (6.5)

To bound the second sum in Equation (6.4), we further break the range of the index variable

j into smaller pieces indexed by k = 3; : : : ; dlnPe � 1, with piece k going from j = ek lnP to

j = ek+1 ln P � 1:

P ln PX
j=e3 lnP

Pr fXi = jgej=e =

dln Pe�1X
k=3

0
@ek+1 lnP�1X

j=ek lnP

Pr fXi = jg ej=e
1
A

�
dln Pe�1X

k=3

0
@eek lnP ek+1 ln P�1X

j=ek ln P

Pr fXi = jg

1
A

�
dln Pe�1X

k=3

ee
k ln P Pr

�
Xi � ek lnP

	

=

dln Pe�1X
k=3

P ek Pr
�
Xi � ek ln P

	
: (6.6)

Now we can bound Pr
�
Xi � ek ln P

	
by the same technique as in Lemma 8, since Xi has the

same distribution has the random variable Z considered in the proof of Lemma 8:

Pr
�
Xi � ek lnP

	
� P

 
P lnP

ek lnP

!�
1

P

�ek ln P

� Pe�(k�1)ek ln P

= P�(k�1)ek+1:
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Substituting this bound into Inequality (6.6) yields

P lnPX
j=e3 lnP

Pr fXi = jg ej=e �
dlnPe�1X
k=3

P ekP�(k�1)ek+1

�
1X
k=3

P�(k�2)ek+1

� 1; (6.7)

since the sum is bounded by the geometric sum
P1

k=1 2
�k = 1. Now, we can substitute Inequal-

ity (6.5) and Inequality (6.7) back into Equation (6.4), producing

E
h
eXi=e

i
� ee

2 ln P + 1

� e(e
2+1) ln P :

Substituting this bound into Equation (6.3) and then substituting into Inequality (6.2), we

obtain

Pr fX � aY ln P + bg � e((e
2+1) lnP )Y e�(aY lnP+b)=e

= exp

�
�
�
a

e
� e2 � 1

�
Y ln P � b

e

�

� exp

�
�b
e

�

for a � e3 + e. Thus, with b = e ln(1=�), we obtain

Pr
�
X � (e3 + e)Y lnP + e ln(1=�)

	
� �:

We can now characterize the time and space usage for execution schedules computed by the

LDF algorithm with synchronization parameter r = 6 lgP .
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Theorem 11 For any number P � 2 of processors and any strict multithreaded computation

with work T1, computation depth T1, and activation depth A = S1, Algorithm LDF(6 lgP )

computes a schedule X that uses space SP (X ) = O(S1P lgP ), and for any � > 0, with probability

at least 1� �, the schedule uses time TP (X ) = O(T1=P + T1 lg P + lg(1=�)).

Proof: The space bound follows directly from Lemma 7 with synchronization parameter r =

6 lgP . The time TP (X ) is the total time taken in computation phases. Let the random variable

Y denote the number of iterations. Then we can decompose TP (X ) as a sum of Y mutually

independent random variables, TP (X ) = X1 + X2 + � � � + XY with each Xi distributed as

the size of the fullest bin when throwing 18P lg P balls independently at random into P bins.

Using �=2 as the value of � in Lemma 9, we obtain Y = O(T1=(P lg P ) + T1 + logP (1=�)) with

probability at least 1� �=2. Then, using �=2 as the value of � in Lemma 10, we obtain TP (X ) =

O(Y lgP + lg(1=�)) with probability at least 1 � �=2 (using 18P lgP instead of P ln P only

a�ects the constant). Thus, with probability at least 1� �, the total time taken in computation

phases is TP (X ) = O(T1=P + T1 lg P + lg(1=�)).

Corollary 12 For any number P � 2 of processors and any strict multithreaded computation

with work T1 and computation depth T1, Algorithm LDF(6 lgP ) computes a schedule X with

expected execution time E [TP (X )] = O(T1=P + T1 lgP ).

Proof: Just use � = 1=P in Theorem 11 to get TP (X ) = O(T1=P + T1 lgP ) with probability

at least 1� 1=P . Then

E [TP (X )] �
�
1� 1

P

�
O

�
T1

P
+ T1 lg P

�
+

1

P
T1

= O

�
T1

P
+ T1 lgP

�
:

The LDF(6 lgP ) algorithm achieves linear expected speedup when the computation has

average available parallelism T1=T1 = 
(P lgP ).
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We can view the lgP factors in the space bound and the average available parallelism

required to achieve linear speedup as the computational slack required by Valiant's bulk-

synchronous model [33]. The space bound SP (X ) = O(S1P lgP ) indicates that Algorithm

LDF(6 lgP ) requires memory to scale su�ciently to allow each physical processor enough

space to simulate lg P virtual processors. Given this much space, the time bound E [TP (X )] =

O(T1=P + T1 lg P ) then demonstrates linear expected speedup provided the computation has

lg P slack in the average available parallelism.

Practical considerations

In many models of parallel computation, the queueing, synchronization, and communication

costs for Algorithm LDF(6 lgP ) are only a constant fraction of the execution time. If a global

max across the P processors can be accomplished in O(lgP ) time, then each synchronization

phase takes only O(lgP ) time, and since each computation phase takes 
(lgP ) time, the

synchronization phases take at most a constant fraction of the total time. To ensure that the

communication costs make up only a constant fraction of the total time, each processor must

be able to send w = 
(lgP ) threads to random processors in O(w) time. For each thread, the

communication may involve sending just a word or two of thread description, or it my involve

sending the entire activation frame. When the amount of information that needs to be sent with

each thread is just some constant amount, then these requirements are met by a hypercube or

indirect butter
y using Ranade's algorithm [28] to do the routing.

In order to facilitate the analysis of the LDF algorithm, we had to use a rather large syn-

chronization parameter, but in practice, we expect that Algorithm LDF can be implemented

with signi�cantly smaller values of r and a small constant in the expected time bound of Corol-

lary 12. With greater care in the analysis, the synchronization parameter can be reduced from

6 lgP to 4 lgP . This reduction in r, reduces the space bound of Theorem 11 from 12S1P lg P

to 8S1P lg P . The constant hidden in the expected time bound of Corollary 12 then works out

to be slightly less than 69; as the number P of processors increases, however, this constant

approaches 34. These constants are, of course, artifacts of the analysis. A proper value for
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the synchronization parameter should be determined empirically. With fairly large machines,

values of r much smaller than 4 lgP should work to yield small constants in both the space and

expected time bounds.

If implemented, LDF(r) can be modi�ed to allow more asynchrony in the execution, re-

quire less thread migration, and take better advantage of speci�c processor architectures. In

particular, during an iteration, each processor can work on threads in any way it desires so long

it obeys the following rules.

1. Only threads at or deeper than the cuto� depth may execute.

2. Only r spawns may be performed.

3. Each thread at or deeper than the cuto� depth must �nish the iteration at a random

location.

With these rules, an iteration can continue for an arbitrarily long time. The computation

phase only has to end when a constant fraction of the processors no longer have work to do.

In the case of a computation phase in which more than a constant fraction of the processors

go idle before lg P steps, the phase cannot end until each of the other processors has executed

at least one task from each of its threads at or deeper than the cuto� depth (modulo rule 2).

Once enough processors go idle, the communication phase begins to ensure that each processor

observes rule 3 (and this last provision if necessary), and then the iteration ends. During the

computation phase, some processors may want to interleave the execution of multiple threads

while others may prefer long runs with a single thread.

Bounding individual processor storage requirements

The space bound of Theorem 11 is an aggregate bound, but in a distributed memory machine,

we may want to bound the space associated with each individual processor's queue. In the LDF

algorithm, each active thread is located in the local queue of a processor chosen at random,

so we assume that each activation frame is located in the local memory of the same randomly

chosen processor as its associated active thread. Since Lemma 7 shows that the aggregate space
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used by Algorithm LDF(r) is bounded by 2rS1P , we would like some way to ensure that each

individual processor requires space bounded by O(rS1).

Since activation frames are located in randomly chosen processors, we can show that at

any given iteration, the expected spaced needed by any given processor is no more than 2rS1.

Suppose that at some iteration t, there are k active threads with frame sizes F1;F2; : : : ;Fk.

Consider a particular processor p, and let the random variable W denote the total space being

used by activation frames located in the memory of processor p. We can decompose W as the

weighted sum of mutually independent indicator random variables:

W = F1W1 + F2W2 + � � �+ FkWk

where the random variable Wi indicates whether the ith active thread is located at processor p.

Since each active thread is located at a processor chosen uniformly at random, the expected

value of Wi is given by E [Wi] = Pr fWi = 1g = 1=P . Then we can bound the expected value

of W by

E [W ] = F1E [W1] + F2E [W2] + � � �+ FkE [Wk]

=
1

P

kX
i=1

Fi

� 1

P
2rS1P

= 2rS1;

since the sum of the frame sizes is bounded in Lemma 7 by 2rS1P .

To show that for any given iteration t, with high probability, no processor uses more than

O(rS1) space for activation frame storage, we use the following result due to Raghavan [27,

Theorem 1].
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Lemma 13 (Raghavan) Let a1; a2; : : : ; ak be reals in (0; 1]. Let  1;  2; : : : ;  k be independent

Bernoulli trials, and let 	 =
Pk

i=1 ai i. Then for any � > 0,

Pr f	 > (1 + �)E [	]g �
 

e�

(1 + �)(1+�)

!E[	]

:

Setting ai = Fi=S1, we can bound Pr fW > 2erS1g by applying Lemma 13 to the random

variable 	 with E [	] = 2r. Then

Pr fW > 2erS1g � Pr f	 > eE [	]g

�
�
ee�1

ee

�E[	]

= e�2r:

If the synchronization parameter is set with r = r0 lnP where r0 � 1, this probability is no

more than P�2r0

. Then, since there are P processors, the probability that any processor uses

more than 2erS1 = O(rS1) space at iteration t is bounded by P�(2r0�1).

This probabilistic bound shows that with an appropriate choice of synchronization param-

eter, we can allow each processor O(rS1) space and ensure that no processor ever exceeds this

space allotment by simply rerandomizing the thread locations any time a processor �lls up its

allotted space. As we just proved, the probability that rerandomizing is needed at any given it-

eration is no more than P�(2r0�1). Therefore, the expected number of times that rerandomizing

is needed over the course of the entire execution is no more than T1=P
2r0�1. If rerandomizing

can be accomplished in O(rS1) time | as is the case with a fully-connected, hypercube, or

indirect butter
y network | then the total expected time taken by rerandomization is no more

than

O

�
T1

P 2r0�1
rS1

�
= O

�
T1

P 2r0�1
r0S1 lg P

�
:

This total expected rerandomization time is O(T1=P ) provided r
0 = 
(1 + logP S1). Thus, by
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setting the synchronization parameter to r = �(lg P + lgS1) and rerandomizing thread loca-

tions when any processor �lls its space allotment, the LDF algorithm achieves linear expected

speedup (provided the computation has lgP slack in its average available parallelism) with

each processor's storage requirement bounded by O(S1(lgP + lg S1)). When S1 is bounded by

a polynomial in P , this space bound is O(S1 lgP ).

Simple strategies that don't work

To conclude this chapter, we now show that some simpler ways of adopting the Karp and Zhang

technique do not work.

The most natural thing to try is to have each processor work depth-�rst out of its local

queue and spawn new threads to random locations. Speci�cally, when a processor executes a

task from a thread, if it spawns a new thread, the original thread is kept locally and the new

child thread is moved to the queue of a processor selected uniformly at random from all P

processors. With this method, once a thread gets spawned and placed into a random queue,

it never has to migrate. Unfortunately, this method does not work as the following scenario

illustrates. Suppose a processor p has as its deepest thread a thread that just keeps spawning

children | a loop with many iterations for example | and each child thread has a unit size

activation frame. Suppose also that this loop thread is at activation depth d and all the other

processors are busy executing long threads at activation depths greater than d + 1. In this

case, most of the invocations (which have depth d+ 1) spawned by the loop thread land in the

queues of the other P � 1 processors and languish there. The occasional invocation that lands

at processor p temporarily interrupts the loop thread, but if each loop invocation is just a short

thread, processor p quickly resumes executing the loop thread. Thus, the loop invocations just

keep piling up and eventually over
ow memory.

To �x this problem, we must force threads to migrate. After a processor executes a task

from a thread, it moves that thread to the local queue of a processor selected uniformly at

random, and as before, any newly spawned threads are placed at random. Unfortunately, even

this method does not work as the following scenario illustrates. Consider an activation depth d
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and suppose the threads at d are long sequential threads with unit size activation frames and

the threads at depth d� 1 just keep spawning these long threads. At each step, if a processor

has a depth d thread, it just executes a task from that thread and then moves that thread to

a random processor; otherwise, it executes a depth d� 1 thread which spawns a child at depth

d. Therefore, if we look at the queues at depth d as bins and the threads as balls, we have the

following process. At each step, one ball is removed from each non-empty bin and P new balls

are thrown at random into the P bins. If we consider this process over n steps and consider the

balls arriving in a particular bin, we have a binomial distribution with mean n and standard

deviation �(
p
n). Thus, we can show that the expected number of balls that arrive into the

fullest bin is n+
(
p
n). During this time, at most n balls are removed from this bin, hence,

this bin contains 
(
p
n) balls at the end of these n steps. Recall that each ball corresponds

to an activation frame, and therefore, this probabilistic analysis shows that over time, some

queue's size grows as the square root of the elapsed time.

The basic problem in the above scenario is that with a purely random process without any

global control, over time, processors get out of synch with each other. Even though there may

be lots of deep threads in the system, every once in a while, some processor will be without

any of these deep threads and therefore will execute a task from a shallow thread that spawns

a child. Thus, over time, the number of threads in the system can just keep growing. Our

solution to this problem uses a moderate degree of global control to throttle the execution of

processors that get out of synch. We implement this throttle by maintaining a cuto� depth

to ensure that all processors only execute threads that are among the deepest in the system;

a processor that does not have any of these deepest threads cannot execute any tasks until it

gets some of these deepest threads.
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Chapter 7

Scheduling nonstrict, depth-�rst multithreaded

computations

The algorithms of Chapterss 5 and 6 for strict multithreaded computations can also be used for

nonstrict, depth-�rst computations | just change the computation to make it strict and then

execute the strict computation. Transforming a computation to make it strict involves simply

adding data dependency edges as illustrated in Figures 5.1 and 5.2; we call this transformation,

strictifying the computation. This transformation is always valid for depth-�rst computations.

For arbitrary computations, however, there are examples for which strictifying adds data de-

pendency edges that introduce cycles into the computation; for such computations, nonstrict

spawns are required in any valid execution schedule.

Consider an arbitrary depth-�rst multithreaded computation with work T1, computation

depth T1 and activation depth A = S1. Strictifying this computation produces a new compu-

tation with the same work and activation depth but with a possibly larger computation depth

that we denote T (s)
1 . Executing the strict computation on a P -processor computer with algo-

rithm GDF generates an execution schedule X with SP (X ) � S1P and TP (X ) � T1=P + T (s)
1 .

Such a schedule achieves linear speedup provided the strict computation has su�cient aver-

age available parallelism; that is, provided T1=T
(s)
1 = 
(P ). In general, any of the algorithms

of Chapterss 5 and 6 achieve linear speedup (or linear expected speedup) provided the strict

computation has average available parallelism su�ciently large relative to P (or P lgP ). When

T (s)
1 is much larger than T1, however, the strict computation may not have su�cient average

available parallelism even though the original (nonstrict) computation does. The fact that a

nonstrict computation may have far more parallelism than its strict counterpart is one of the

63
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reasons for nonstrictness. Hence, we would like a technique by which a scheduler can exploit

at least some of the parallelism o�ered by nonstrict spawns.

The lower bound of Theorem 4, however, should temper our expectations. The computations

demonstrated in the proof of Theorem 4 are all depth-�rst, but they use extreme amounts of

nonstrictness in order to achieve parallelism. As the theorem shows, exploiting this nonstrict

parallelism requires potentially unmanageable amounts of storage. Thus, we cannot hope for

a technique that achieves parallel speedup from arbitrary uses of nonstrict spawns while still

maintaining reasonable space bounds.

In this chapter, we exhibit a technique that allows a scheduler to exploit some of the par-

allelism available through nonstrict spawns. This technique allows the scheduler to perform

some nonstrict spawns while still maintaining space bounds that are within a constant factor

of the bounds it obtains for strict computations. Of course, this technique cannot guarantee

any speedup from the nonstrict spawns, but it does guarantee execution time that is no greater

than the execution time obtained by strictifying and executing the strict computation.

It is important to realize that when space is bounded, the use of nonstrict spawns when

executing a computation can actually result in an execution time that is longer than the exe-

cution time that results from simply executing the stricti�ed computation. Suppose we could

execute the computation as if it were stricti�ed, but at each step, if there is an idle processor

and a thread that is stalled (due to the strictness condition) at a task that wants to spawn, we

let the processor go ahead and execute that task thereby performing a nonstrict spawn. For

example, in executing the computation of Figure 5.2(a), if at some time step t, execution of

the parent thread is at the task u that spawns the invocation (F a b) and execution of either

the child thread evaluating expression A or the child thread evaluating expression B is not

complete, then task u can only execute if a processor would otherwise go idle. Performing the

spawn requires allocating an activation frame, and this is where the trouble lies as the following

scenario illustrates: Suppose there is a single thread � computing a value A that is used by

lots of other threads. At step t, one processor executes a task from �, and instead of idling,

some of the other processors perform nonstrict spawns | invoking functions that have A as
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an argument, for example. At the next step, the same thing happens, and this continues for

awhile. Over time, memory gets �lled up with the activation frames of these threads that were

spawned nonstrictly. To avoid over
owing memory bounds, eventually these nonstrict spawns

must cease. At this point, thread � is still computing A, and lots of other threads are stalled

waiting for A. Now, if � wants to spawn a bunch of child threads to help it compute A, it

cannot do so since memory is already full. In this case, the nonstrict spawns do not really add

any useful parallelism since the spawned threads just stall waiting for A. Useful parallelism

could have come from the evaluation of A, but with memory full, that parallelism cannot be

exploited. Thus, performing nonstrict spawns may increase processor utilization for a brief spell

but at the cost of forcing very low processor utilization for a potentially very long period of

time | a period of time that could have had very high processor utilization had those nonstrict

spawns not been performed.

To keep the nonstrict spawns from hindering the progress of other parts of the computation,

we classify each active thread as either strict or nonstrict and then ensure that the nonstrict

threads do not �ll up too much memory. When a thread is spawned nonstrictly, we say that

the thread itself is nonstrict. A nonstrict thread remains nonstrict until those data dependen-

cies that caused the spawn to be nonstrict in the �rst place get resolved. Once those data

dependencies get resolved, the thread is strict. For example, in executing the computation

in Figure 5.2(a), if the child thread that evaluates the invocation (F a b) is spawned non-

strictly, then that thread remains nonstrict until both the thread evaluating expression A and

the thread evaluating expression B terminate thereby resolving the associated data dependen-

cies. A strictly spawned thread is considered strict and remains strict. Observe that from the

time an active thread � becomes strict until the time � terminates, there is always at least one

thread from the subtree rooted at � that is ready. This crucial property of strict threads in

combination with an enforced bound on the space used by nonstrict threads forms the basis for

a technique that we call �-sequestering.

To ensure that the activation frames of nonstrict threads do not interfere with the progress

of strict threads, the �-sequestering technique allocates separate space | the amount is deter-
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mined by the value of �| for use by the nonstrict threads. By maintaining a separate region of

memory for the activation frames of nonstrict threads, �-sequestering allows nonstrictness with-

out adversely a�ecting the running time. We execute the computation as if it were stricti�ed,

but at each step, if there are idle processors and threads that are stalled (due to the strictness

condition) at tasks that want to spawn, we allow processors to perform these nonstrict spawns

so long as the activation frames of the resulting nonstrict threads do not over
ow their region

of memory.

We illustrate the e�ectiveness of �-sequestering in conjunction with the global depth-�rst

algorithm GDF. Suppose we allow nonstrict spawns only so long as no activation depth ever

has more than �P active, nonstrict threads that span it. We are not specifying any speci�c

way of prioritizing among nonstrict spawns | we are only saying that nonstrict spawns can

only occur when processors would otherwise go idle, and they can only occur so long as no

activation depth ever has more than �P active, nonstrict threads that span it. For this reason,

we refer to this scheduling policy as the �-sequestered GDF method (rather than algorithm).

Theorem 14 For any number P of processors and any depth-�rst multithreaded computation

with work T1, strict computation depth T (s)
1 , and activation depth A = S1, the �-sequestered

GDF method computes a schedule X such that TP (X ) � T1=P +T (s)
1 and SP (X ) � (1+�)S1P .

Proof: The time bound follows from Theorem 1 since the schedule X is greedy with respect

to the stricti�ed version of the computation.

To prove the space bound, we show that no activation depth ever has more than (1 + �)P

active threads that span it. Speci�cally, using the notation from the proof of Theorem 5, we

show that for every activation depth d and every time step t, the bound s(t; d) � (1 + �)P

holds. The space bound then follows from Equation (5.1). As before, we prove this bound by

induction on the number of time steps, and again, the base case is obvious.

Now, consider a time step t that begins with s(t; d) � (1 + �)P active threads spanning d.

Further, let s0(t; d) denote the number of these threads that are strict. With s0(t; d) active,

strict threads spanning d, there must be at least s0(t; d) ready threads at or deeper than d. We
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consider two cases. In the �rst case, s0(t; d) � P . In this case, there are at least P ready threads

at or deeper than d, hence, no threads less deep than d execute at step t. Therefore, the number

of active threads that span d cannot increase during step t, so s(t + 1; d) � s(t; d) � (1 + �)P .

In the other case, s0(t; d) < P , so as many as P � s0(t; d) threads less deep than d may execute

during step t. Consequently, the number of threads that span d may increase by as many as

P � s0(t; d) but not more. Thus,

s(t+ 1; d) � s(t; d) + (P � s0(t; d))

= P + (s(t; d)� s0(t; d))

� P + �P

since s(t; d)� s0(t; d) is the number of active, nonstrict threads that span d, and this number,

by force of the method, is no more than �P . In both cases, s(t + 1; d) � (1 + �)P , and the

induction is complete.

Exactly as with GDF, we can use the �-sequestering technique with algorithm GDF' to

yield the �-sequestered GDF' method.

Theorem 15 For any number P of processors and any depth-�rst multithreaded computation

with work T1, strict computation depth T (s)
1 , and activation depth A = S1, the �-sequestered

GDF' method computes a schedule X such that TP (X ) � T1=P +T (s)
1 and SP (X ) � (1+�)S1P .

Proof: This proof follows the proof of Theorem 14, but we add the following assertion to the

induction hypothesis: For any activation depth d and time step t, if t begins with s0(t; d) active,

strict threads that span d, then t also begins with no more than max(P � s0(t; d); 0) processors

having a thread with activation depth less than d. Proving that this additional assertion holds

follows the proof of Theorem 6.

This �-sequestering technique can also be used with the local depth-�rst algorithm LDF.

At each iteration, only those threads (strict or nonstrict) at or deeper than the cuto� depth
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can execute, and each processor is allowed no more than r spawns (strict or nonstrict), where

r is the synchronization parameter. Nonstrict spawns are allowed only when a processor would

otherwise go idle and only so long as no activation depth ever has more than �P active,

nonstrict threads that span it. This �-sequestered LDF method achieves execution time as

stated in Theorem 11 but with T1 replaced by T (s)
1 ; this result follows by making the obvious

change in the proof of Lemma 9. The space bound is captured in the following theorem.

Theorem 16 For any number P of processors and any depth-�rst multithreaded computation

with activation depth A = S1, the �-sequestered LDF(r) method computes a schedule X such

that SP (X ) � (2r+ �)S1P .

Proof: We show that for any activation depth d and any iteration t, the bound s(t; d) �

(2r+�)P holds. Again, we prove this bound by induction on the number of iterations, and the

base case is obvious.

Now, consider an iteration t that begins with s(t; d) � (2r+�)P active threads that span d.

And as before, let s0(t; d) denote the number of active, strict threads that span d at the start

of iteration t. Consider two cases. In the �rst case, s0(t; d) � rP . In this case there are at least

rP ready threads at or deeper than d and by pigeon-holing, some processor must have at least

r of them. Therefore, the synchronization phase sets the cuto� depth D with D � d, hence, no

thread less deep than d executes at iteration t. Consequently, s(t+ 1; d) � s(t; d) � (2r+ �)P .

In the other case, s0(t; d) < rP . In this case, the number of active threads that span d may

increase but not by more than rP since no processor may execute more than r spawns during

an iteration. Then

s(t + 1; d) � s(t; d) + rP

= (s(t; d)� s0(t; d)) + (s0(t; d) + rP )

� (s(t; d)� s0(t; d)) + 2rP

� �P + 2rP

since s(t; d)� s0(t; d) is the number of active, nonstrict threads that span d, and this number,
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by force of the method, is no more than �P . In both cases, s(t + 1; d) � (2r + �)P , and the

induction is complete.

By adjusting the value of �, the �-sequestering technique provides some control over the

space bounds and the allowable nonstrictness. With � = 0, the computation is forced to execute

strictly. At the other extreme, with � = 1, the computation may execute with arbitrary

amounts of nonstrictness (and achieve execution time within a factor of two of optimal by using

a greedy schedule) but with a potentially huge demand on space. In order to maintain space

bounds that are within a constant factor of those obtained with strict computations, the value �

needs to be no more than a constant (forGDF orGDF') or proportional to the synchronization

parameter (for LDF).

The �-sequestering technique does not specify how to schedule nonstrict spawns, it does

not specify how to determine whether a particular spawn will be nonstrict, and it does not

specify how to keep track of the space being used by nonstrict threads. All of these further

speci�cation are needed for a real algorithm or implementation. Furthermore, �-sequestering

does not guarantee any speedup from the nonstrict parallelism. Nevertheless, with proper

linguistic and runtime mechanisms, �-sequestering may prove feasible, and with new ways to

prioritize the nonstrict spawns, �-sequestering may be able to exploit nonstrict parallelism

with small values of � and provable speedup for speci�c uses of nonstrictness in depth-�rst

computations.
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Chapter 8

Related work

Storage management for multithreaded computations has been a concern for a number of years.

In 1985, Halstead [12] described this problem.

A classical di�culty for concurrent architectures occurs when there is too much

parallelism in the program being executed. A program that unfolds into a very large

number of parallel tasks may reach a deadlocked state where every task, to make

progress, requires additional storage (e.g., to make yet more tasks), and no more

storage is available. This can happen even though a sequential version of the same

program requires very little storage. In e�ect, the sequential version executes the

tasks one after another, allowing the same storage pool to be reused. By trying to

execute all tasks at the same time, the parallel machine may run out of storage.

Nevertheless, precious little prior work has addressed this problem. To date, most existing

techniques for controlling storage requirements have consisted of heuristics to either bound

storage use by explicitly controlling storage as a resource or reduce storage use by modifying

the scheduler's behavior. We are aware of no prior scheduling algorithms with proven time and

space bounds.

The storage management problem, as described by Halstead, can be quite pronounced under

the execution of a fair scheduler. By executing threads in round-robin fashion, a fair scheduler

gives each ready thread a fair portion of the execution time. A fair scheduler aggressively

exposes parallelism, often resulting in excessive space requirements. Consider the multithreaded

computation of Figure 8.1. Let N denote the number of leaf threads (this computation performs

a divide-and-conquer algorithm on an input of size N), and suppose each activation frame has

unit size. This computation has work T1 = �(N) and activation depth A = �(lgN). Notice also

that this computation is depth-�rst (and strict), and therefore it can be sequentially executed
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Figure 8.1: A multithreaded computation to perform a divide-and-conquer algorithm. Each

non-leaf thread spawns two children. Each child computes a value that it passes back to its

parent. Once the parent gets a value back from each child, it computes a result value that it

then passes up to its parent.

using space S1 = A = �(lgN). A parallel execution with a fair scheduler, however, executes

this computation in (nearly) breadth-�rst order; at some point in the execution, nearly every

leaf thread is active, and therefore, the fair schedule X (with any number P � 2 of processors)

uses space SP (X ) = �(N) | an exponential blowup in storage requirements.

In order to curb the excessive exposition of parallelism, and consequent excessive use of

space, exhibited by fair scheduling, researchers from the data
ow community have developed

heuristics to explicitly manage storage as a resource. The e�ectiveness of these heuristics is

documented with encouraging empirical evidence but no provable time bounds. We consider

two of these heuristic techniques: bounded loops and the course-grain throttle.

Culler's bounded loops technique [6, 7, 8] uses compile-time analysis to augment the program

code with resource management code. For each loop of the program, the resource management

code computes a value called the k-bound ; a k-bounded loop can have at most k iterations

simultaneously active. The k-bound represents k tickets each of which buys the use of some

storage. Once the loop has spawned k iterations, it must wait until one of those iterations

completes and relinquishes its ticket; then the loop can use that ticket to spawn another it-

eration. The compile-time analysis that generates the code that computes the k-bounds is

based on heuristics developed from a systematic study of loops in scienti�c data
ow programs

(programs employing only iteration and primitive recursion) [7]. These heuristics attempt to

set the k-bounds so that the exposed parallelism is maximized under the constraint that space
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usage stays within the machine's capacity.

Ruggiero's course-grain throttle technique [30] makes storage allocation decisions based on

overall machine activity at run-time. When a process (thread) wants to spawn a child, it

must request an activation name from the resource management system. When the overall

level of activity in the machine is high, the resource manager defers these requests, thereby

suspending the requesting processes. When the activity level falls below a certain threshold,

the resource manager begins granting deferred requests giving priority to the lowest, leftmost

suspended processes in the process (activation) tree. Like the bounded loops technique, the

goal of the coarse-grain throttle is to maximize the exposed parallelism under a �xed space

usage constraint.

In contrast with these heuristic techniques, we have chosen to develop an algorithmic foun-

dation that manages storage by allowing programmers to leverage their knowledge of storage

requirements for sequentially executed programs. The two techniques just described view stor-

age as a resource that requires explicit management, and they actually modify execution be-

havior based on these management policies. Such techniques, however, generally have not been

needed for programs running on serial machines | when the machine runs out of memory, the

program terminates. On most uniprocessor systems, the job of ensuring that the program does

not use too much memory rests solely with the programmer, and such systems work because

programmers understand the storage model and they understand the execution schedule that

orders the invocations of the program's procedures. On parallel systems, however, the storage

model is somewhat more complex and predicting the execution order is somewhat more di�-

cult. Nevertheless, this increased complexity does not require encumbering parallel machines

with responsibility for bounding storage requirements. Programmers should still be able to un-

derstand the storage model, and by developing an algorithmic understanding of scheduling that

relates parallel storage requirements to serial storage requirements, programmers should still

be able to predict how much storage their programs will use when run on a parallel computer.

Other researchers have also addressed the storage issue by attempting to relate parallel stor-

age requirements to serial storage requirements. Halstead, in completing the quoted paragraph



74 Chapter 8. Related work

above, made the following observation:

Ideally, parallel tasks should be created until the processing power of the parallel

machine is fully utilized (we may call this saturation) and then execution within

each task should become sequential. [12]

To emulate this ideal behavior, Halstead considered an unfair scheduling policy. When a

processor executes a thread that spawns a child, the processor places the parent thread into a

local LIFO pending queue and begins work on the child thread. If all the processors remain

busy, the parent thread stays in the local pending queue until the child thread terminates.

(This execution is exactly the type of depth-�rst sequential execution that is so familiar to

programmers.) If, however, another processor goes idle in the meantime, then it may steal the

pending parent thread. Thus, so long as all the processors remain busy, each processor operates

depth-�rst out of its local queue and each local queue's size is bounded by the maximum stack

depth in a serial execution. On the strict computation of Figure 8.1, for example, this unfair

scheduling policy computes a P -processor execution schedule X with SP (X ) � S1P . When we

consider more complex computations, even if we just consider strict computations, however,

this unfair scheduling policy may exhibit greater than linear space expansion, and in general,

predicting or bounding space usage is quite di�cult.

Characterizing the performance of Halstead's unfair scheduling policy is even more di�cult

when we consider time bounds. Though this policy attempts to compute a greedy schedule

by allowing idle processors to steal pending threads from other processors, success depends on

the thread stealing algorithm. Other researchers [17, 23, 34] have considered variants of unfair

scheduling, but none have fully developed or analyzed thread stealing algorithms.

A multithreaded computation with no data dependency edges is equivalent to a backtrack

search problem, and in this context, Zhang [36] actually did develop and analyze a thread

stealing algorithm. Zhang showed that in a fully connected processor model with P processors,

if idle processors choose other processors at random to steal work from, then a binary tree of

size N and height h can be search in O(N=P + h) time with high probability. In the context

of multithreaded computations with no data dependency edges, this bound translates into a

schedule X that with high probability achieves TP (X ) = O(T1=P +T1). Though Zhang did not
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make the observation, his algorithm also demonstrates linear expansion of space: SP (X ) � S1P .

Other researchers [18, 29] have considered backtrack search on �xed-connection networks, but

their algorithms explore the tree in breadth-�rst order and consequently demonstrate poor

space performance.
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Chapter 9

Conclusions

The results of this thesis just begin to develop our algorithmic understanding of nonstrictness

in multithreaded computations. We have formalized a model of multithreaded computations

and developed a working de�nition to characterize e�cient execution schedules with respect

to time and space usage. In general, it appears that arbitrary uses of nonstrictness can make

e�cient parallel execution di�cult. In fact, we have demonstrated uses of nonstrictness that

make e�cient parallel execution provably impossible. This di�culty stands in sharp contrast to

the situation with strict computations. For strict computations, we have shown the existence

of e�cient execution schedules for any number of processors, and further, we have exhibited

(fairly) e�cient online and distributed algorithms to compute such schedules. Between these

extremes, we have a technique that allows the use of some nonstrictness in an otherwise strict

computation without degrading the e�ciency, but this technique does not guarantee any bene�t

from the nonstrictness.

Even among the strict computations, some open problems still remain, most notably with

respect to e�cient and practical scheduling algorithms. For one thing, none of the algorithms

presented in this thesis deal with the space used by persistent data structures. Also, the

LDF algorithm of Chapter 6 does not take any advantage of locality. An algorithm that

can keep groups of closely related threads in the same processor or that can exploit speci�c

�xed-connection networks to keep related threads close to one another would alleviate some

of the communication costs. The work on lazy task creation [23] and the work on dynamic

tree embedding [3, 22] may provide some pointers in this direction. Of course, an algorithm

that removes the lgP factor from the space bound of LDF would be a nice improvement.
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Other algorithmic improvements to LDF might include: an algorithm that performs less thread

migration, a technique to keep track of thread location when threads do migrate, a more

asynchronous algorithm, and an incremental rebalancing technique to keep the individual queues

bounded. Finally, it would be interesting to see if a deterministic distributed algorithm is

possible.

Turning back to nonstrict computations, we �nd a vast range of uncharted territory. Cur-

rently, �-sequestering is the only technique we know of that allows nonstrictness in the execution

of multithreaded computations while maintaining reasonable space and time bounds. This tech-

nique may be practical if e�cient support mechanisms can be developed. In this case, with

simple algorithms for scheduling the nonstrict spawns, the �-sequestered methods described in

Chapter 7 may perform well in practice using small values of �.

We believe, however, that deriving any real bene�t from either �-sequestering or any other

technique for executing nonstrict computations depends on developing a fundamental under-

standing of how nonstrictness can be used to realize increased parallelism. Computations that

are inherently highly parallel can be packaged into programs in such a way that the parallelism

can only be exploited through such extensive use of nonstrictness that e�cient execution on

a parallel computer is impossible. Therefore, we need to understand how to write programs

in such a way that nonstrict parallelism can be exploited. Developing such an understanding

might involve identifying useful patterns of usage for nonstrictness and developing algorithms

to schedule computations that follow these patterns. Such advances would greatly increase the

utility of nonstrictness and in general would expand the class of multithreaded computations

for which e�cient methods of execution are known.



Bibliography

[1] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: A pro-

cessor architecture for multiprocessing. In Proceedings of the 17th Annual International

Symposium on Computer Architecture, pages 104{114, Seattle, Washington, May 1990.

Also: MIT Laboratory for Computer Science Technical Report MIT/LCS/TM-450.

[2] William C. Athas and Charles L. Seitz. Multicomputers: Message-passing concurrent

computers. Computer, 21(8):9{24, August 1988.

[3] Sandeep Bhatt, David Greenberg, Tom Leighton, and Pangfeng Liu. Tight bounds for

on-line tree embeddings. In Proceedings of the Second Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 344{350, San Francisco, California, January 1991.

[4] Bob Boothe and Abhiram Ranade. Improved multithreading techniques for hiding com-

munication latency in multiprocessors. In Proceedings of the 19th Annual International

Symposium on Computer Architecture, pages 214{223, Gold Coast, Australia, May 1992.

[5] Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the

ACM, 21(2):201{206, April 1974.

[6] David E. Culler. Resource management for the tagged token data
ow architecture. Mas-

ter's thesis, Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, January 1980. Available as MIT Laboratory for Computer Science

Technical Report MIT/LCS/TR-332.

[7] David E. Culler. Managing Parallelism and Resources in Scienti�c Data
ow Programs.

PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts

79



80 Bibliography

Institute of Technology, March 1990. Available as MIT Laboratory for Computer Science

Technical Report MIT/LCS/TR-446.

[8] David E. Culler and Arvind. Resource requirements of data
ow programs. In Proceedings

of the 15th Annual International Symposium on Computer Architecture, pages 141{150,

Honolulu, Hawaii, May 1988. Also: MIT Laboratory for Computer Science, Computation

Structures Group Memo 280.

[9] David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, and John

Wawrzynek. Fine-grain parallelism with minimal hardware support: A compiler-controlled

threaded abstract machine. In Proceedings of the Fourth International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, pages 164{175,

Santa Clara, California, April 1991.

[10] William J. Dally, Linda Chao, Andrew Chien, Soha Hassoun, Waldemar Horwat, Jon Ka-

plan, Paul Song, Brian Totty, and Scott Wills. Architecture of a message-driven processor.

In Proceedings of the 14th Annual International Symposium on Computer Architecture,

pages 189{196, Pittsburgh, Pennsylvania, June 1987. Also: MIT Arti�cial Intelligence Lab

Memo MIT/AI/TR-1069.

[11] V. G. Grafe and J. E. Hoch. The Epsilon-2 hybrid data
ows architecture. In COMPCON

90, pages 88{93, San Francisco, California, February 1990.

[12] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM

Transactions on Programming Languages and Systems, 7(4):501{538, October 1985.

[13] Robert H. Halstead, Jr. and Tetsuya Fujita. MASA: A multithreaded processor archi-

tecture for parallel symbolic computing. In Proceedings of the 15th Annual International

Symposium on Computer Architecture, pages 443{451, Honolulu, Hawaii, May 1988.

[14] Waldemar Horwat. Concurrent Smalltalk on the message-driven processor. Technical

Report MIT/AI/TR-1321, MIT Arti�cial Intelligence Laboratory, September 1991.



Bibliography 81

[15] Waldemar Horwat, Andrew A. Chien, and William J. Dally. Experience with CST: Pro-

gramming and implementation. In Proceedings of the ACM SIGPLAN '89 Conference

on Programming Language Design and Implementation, pages 101{109, Portland, Oregon,

June 1989.

[16] Robert A. Iannucci. Toward a data
ow / von Neumann hybrid architecture. In Proceedings

of the 15th Annual International Symposium on Computer Architecture, pages 131{140,

Honolulu, Hawaii, May 1988. Also: MIT Laboratory for Computer Science, Computation

Structures Group Memo 275.

[17] Suresh Jagannathan and Jim Philbin. A customizable substrate for concurrent languages.

In Proceedings of the ACM SIGPLAN '92 Conference on Programming Language Design

and Implementation, pages 55{67, San Francisco, California, June 1992.

[18] Christos Kaklamanis and Giuseppe Persiano. Branch-and-bound and backtrack search on

mesh-connected arrays of processors. In Proceedings of the Fourth Annual ACM Symposium

on Parallel Algorithms and Architectures, pages 118{126, San Diego, California, June 1992.

[19] Richard M. Karp and Yanjun Zhang. A randomized parallel branch-and-bound procedure.

In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pages

290{300, Chicago, Illinois, May 1988.

[20] Stephen W. Keckler and William J. Dally. Processor coupling: Integrating compile time

and runtime scheduling for parallelism. In Proceedings of the 19th Annual International

Symposium on Computer Architecture, pages 202{213, Gold Coast, Australia, May 1992.

[21] David A. Kranz, Robert H. Halstead, Jr., and Eric Mohr. Mul-T: A high-performance

parallel Lisp. In Proceedings of the SIGPLAN '89 Conference on Programming Language

Design and Implementation, pages 81{90, Portland, Oregon, June 1989.

[22] Tom Leighton, Mark Newman, Abhiram G. Ranade, and Eric Schwabe. Dynamic tree

embeddings in butter
ies and hypercubes. In Proceedings of the 1989 ACM Symposium on

Parallel Algorithms and Architectures, pages 224{234, Santa Fe, New Mexico, June 1989.



82 Bibliography

[23] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation: A technique

for increasing the granularity of parallel programs. IEEE Transactions on Parallel and

Distributed Systems, 2(3):264{280, July 1991. Also: MIT Laboratory for Computer Science

Technical Report MIT/LCS/TM-449.

[24] Rishiyur S. Nikhil and Arvind. Can data
ow subsume von Neumann computing? In

Proceedings of the 16th Annual International Symposium on Computer Architecture, pages

262{272, Jerusalem, Israel, May 1989. Also: MIT Laboratory for Computer Science,

Computation Structures Group Memo 292.

[25] Rishiyur S. Nikhil, Gregory M. Papadopoulos, and Arvind. �T: A multithreaded mas-

sively parallel architecture. In Proceedings of the 19th Annual International Symposium

on Computer Architecture, pages 156{167, Gold Coast, Australia, May 1992. Also: MIT

Laboratory for Computer Science, Computation Structures Group Memo 325{1.

[26] Gregory M. Papadopoulos and Denneth R. Traub. Multithreading: A revisionist view of

data
ow architectures. In Proceedings of the 18th Annual International Symposium on

Computer Architecture, pages 342{351, Toronto, Canada, May 1991. Also: MIT Labora-

tory for Computer Science, Computation Structures Group Memo 330.

[27] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Approximat-

ing packing integer programs. Journal of Computer and System Sciences, 37(2):130{143,

October 1988.

[28] Abhiram Ranade. How to emulate shared memory. In Proceedings of the 28th Annual

Symposium on Foundations of Computer Science, pages 185{194, Los Angeles, California,

October 1987.

[29] Abhiram Ranade. Optimal speedup for backtrack search on a butter
y network. In Pro-

ceedings of the Third Annual ACM Symposium on Parallel Algorithms and Architectures,

pages 40{48, Hilton Head, South Carolina, July 1991.



Bibliography 83

[30] Carlos A. Ruggiero and John Sargeant. Control of parallelism in the Manchester data
ow

machine. In Functional Programming Languages and Computer Architecture, number 274

in Lecture Notes in Computer Science, pages 1{15. Springer-Verlag, 1987.

[31] Mitsuhisa Sato, Yuetsu Kodama, Shuichi Sakai, Yoshinori Yamaguchi, and Yasuhito

Koumura. Thread-based programming for the EM-4 hybrid data
ow machine. In Pro-

ceedings of the 19th Annual International Symposium on Computer Architecture, pages

146{155, Gold Coast, Australia, May 1992.

[32] Kenneth R. Traub. Sequential Implementation of Lenient Programming Languages. PhD

thesis, Department of Electrical Engineering and Computer Science, Massachusetts Insti-

tute of Technology, 1988. Available as MIT Laboratory for Computer Science Technical

Report MIT/LCS/TR-417.

[33] Leslie G. Valiant. A bridging model for parallel computation. Communications of the

ACM, 33(8):103{111, August 1990.

[34] Mark T. Vandevoorde and Eric S. Roberts. WorkCrews: An abstraction for controlling

parallelism. International Journal of Parallel Programming, 17(4):347{366, August 1988.

[35] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser.

Active messages: a mechanism for integrated communication and computation. In Pro-

ceedings of the 19th Annual International Symposium on Computer Architecture, pages

256{266, Gold Coast, Australia, May 1992.

[36] Yanjun Zhang. Parallel Algorithms for Combinatorial Search Problems. PhD thesis, De-

partment of Electrical Engineering and Computer Science, University of California at

Berkeley, November 1989. Available as University of California at Berkeley, Computer

Science Division, Technical Report UCB/CSD 89/543.


