
LABORATORY FOR
COMPUTER SCIENCE

MIT/LCS{fR-556

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

CONCURRENT TIMEST AMPING
MADE SIMPLE

Rainer Gawlick

October 1992

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Concurrent Timestamping Made Simple

by

Rainer Gawlick

B.A., Physics
University of California - Berkeley

(1989)
Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1992

@ Massachusetts Institute of Technology 1992

Signature of Author __________________________ _

Department of Electrical Engineering and Computer Science
September 29, 1992

Certified by ____________________________ _

Nancy A. Lynch
Professor of Computer Science

Thesis Supervisor

Certified by ____________________________ _

Nir Shavit
Assistant Professor of Computer Science, Tel Aviv University

Thesis Supervisor

Accepted by ____________________________ _

Campbell L. Searle
Chairman, Departmental Committee on Graduate Students

Concurrent Timestamping Made Simple

by

Rainer Gawlick

Submitted to the Department of Electrical Engineering and Computer Science

on September 29, 1992, in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

Concurrent Timestamp Systems (CTSS) allow processes to temporally order concurrent events
in an asynchronous shared memory system. Bounded memory constructions of a CTSS are
extremely powerful tools for concurrency control, and are the basis for solutions to many co­
ordination problems including mutual exclusion, randomized consensus, and multiwriter multi­
reader atomic registers. Unfortunately, known bounded CTSS constructions seem to be complex
from the algorithmic point of view. Because of the importance of bounded CTSS, the rather
involved original construction by Dolev and Shavit was followed by a series of papers that tried
to provide more easily verifiable CTSS constructions.

In this paper, we present what we believe is the simplest, most modular, and most easily
proven bounded CTSS algorithm known to date. The algorithm is constructed and its correctness
proven by carefully reasoned use of several tools. Our algorithm combines the labeling method
of the Dolev-Shavit CTSS with the atomic snapshot algorithm proposed in Afek et. al, in
a way that limits the number of interleavings that can occur. To facilitate our correctness
proof, we introduce a specially tailored intermediate CTSS specification using unbounded label
values taken from the positive reals. Our correctness proof first shows that the real-number
based specification meets the CTSS axioms. Using the forward simulation techniques of the
I/O Automata model, we then show that our bounded algorithm implements the real-number
based specification. Finally, we prove that any CTSS that meets the CTSS axioms can be used
to implement multireader multiwriter atomic registers and first-some-first-serve (fcfs) mutual
exclusion.

Thesis Supervisor: Nancy A. Lynch

Title: Professor of Computer Science

Thesis Supervisor: Nir Shavit

Title: Assistant Professor of Computer Science, Tel Aviv University

Keywords: Timestamps, Concurrent Algorithms, Distributed Systems, I/O Automata

2

Contents

1 Introduction

2 1/0 Automata Model

3 Concurrent Timestamp System

4 An Unbounded Concurrent Timestamp System

5 A Bounded Concurrent Timestamp System

6 Invariants

7 Simulation Proof

8 Applications

8.1 Multireader Multiwriter Atomic Registers

8.2 Mutual Exclusion

9 Formal Justification for Use of Snapshot

9.1 Theory.

9.2 Proof ..

10 Discussion and Future Work

3

5

7

13

15

23

27

40

46

47

55

61

62

65

69

Acknowledgements

First, I would like to thank my advisor Nancy Lynch and my co-advisor Nir Shavit. Without

Nancy's incredible ability to read, correct, and improve numerous drafts of long and intricate

proofs, this thesis would never have been finished. Because of Nancy, I now know what it means

to have a formal proof. Nir's Ph.D thesis provides an important basis for the research in this

thesis. Furthermore, Nir's help and advice was instrumental in the early stages of the thesis

work.

Thanks also go to my office mates, Roberto Segala and J0rgen S0gaard-Andersen, for many

helpful discussions.

This work was supported in part by the Office of Na val Research under Contract N00014-91-J-

1046, by the Defense Advanced Research Projects Agency under Contract N00014-89-J-1988,

and by the National Science Foundation under Contract 89152206-CCR.

4

1 Introduction

The paradigm of concurrent timestamping is at the heart of solutions to some of the most fun­

damental problems in multiprocessor concurrency control. Examples of such problems include

fcfs mutual exclusion [19), construction of a multireader multiwriter atomic register[34], and

randomized consensus [8]. A simple bounded construction of a CTSS implies simple bounded

solutions to most of these extensively researched problems.

A timestamp system is somewhat like a ticket machine at an ice cream parlor. People's

requests to buy the ice cream are timestamped based on a numbered ticket (label) taken from

the machine. Any person, in order to know in what order the requests will be served, can

scan through all the labels and establish the total order among them. A concurrent timestamp

system (cTss) is a timestamp system in which any process can either take a new ticket or scan

the existing tickets simultaneously with other processes. Furthermore, a CTSS is waitfree, which

means that a process is guaranteed to finish any of the two above mentioned tasks in a finite

number of steps, even if other processes experience stopping failures. Waitfree algorithms are

highly suited for fault tolerant and realtime applications (see [16]).

Israeli and Li, in [17], were the first to isolate the notion of bounded timestamping (time­

stamping using bounded size memory) as an independent concept, developing an elegant theory

of bounded sequential timestamp systems. Sequential timestamp systems prohibit concurrent

operations. This work was continued in several interesting papers on sequential systems with

weaker ordering requirements by Li and Vitanyi [26], Cori and Sopena [9] and Saks and Za­

haroglou [35]. Dolev and Shavit [11] were the first to define and construct a bounded concurrent

timestamp system. However, to quote [12]: "Their algorithm is ingenious but its proof is long

and involved."

Because of the importance of the bounded concurrent timestamping problem, the original

solution by Dolev and Shavit has been followed by a series of papers directed at providing a

simpler bounded CTSS algorithm. Israeli and Pinchasov [18] have simplified the [11] algorithm

and its proof by modifying the labeling scheme of [11), introducing a new label scanning method,

and simplifying the ordering-of-events based formal proof [23] by reasoning about global states

(However, it still takes over 40 pages ...). Dwork and Waarts [12] have taken a totally different

approach, by having their bounded construction simulate a new and simpler type of unbounded

5

CTSS construction in which processes choose from "local pools" of label values instead of a

"global pool" as in [11, 18]. However, in order to bound the number of possible label values

in the local pools, they are forced to introduce a form of amortized garbage collection. This

greatly complicates their algorithm. (Their algorithm only has an informal operational proof.)

In this paper, we present a novel bounded algorithm that we believe is the simplest, most

modular, and most easily proven CTSS algorithm known to date. Our basic approach is to

decompose the problem into several distinct pieces.

• We base our algorithm on the atomic snapshot primitive introduced by Afek et. al [1]

(we use it as a black box). This primitive is waitfree and allows a process to collect an

"instantaneous" view of an array of shared registers. [1] gives an implementation of this

primitive from atomic single writer multireader registers. By using a snapshot primitive,

we limit the number of interleavings that can occur.

• The labeling operation, the operation of choosing a new label given a set of older ones, is

very complex in all former algorithms. Based on the snapshot operation, we introduce a

much simplified version of the labeling algorithm of [11].

• Proving that the bounded algorithm satisfies the CTSS specification has in the past led

to long and involved inductive arguments. We overcome this problem by introducing a

CTSS specification, that uses label values taken from the unbounded positive reals. Our

correctness proof first shows that the real-number based specification meets the CTSS

axioms of [11]. Using the forward simulation techniques of the I/O Automata model, we

then show that our bounded algorithm implements the real-number based specification.

(See [30] for references and a discussion of forward simulation techniques.)

The most efficient bounded CTSS implementations [12, 18] require 0(n) time per operation.

Though one might think that a high price in complexity must be paid for our algorithm's

modularity and ease of proof, this is not the case. The size of the labels is 0(n), and the time

complexity of our algorithm is just that of the underlying atomic snapshot algorithm. The

snapshot implementation of [3] requires 0(nyn) single writer multireader register operations

per snapshot operation. Hence the complexity of our algorithm is O(nyn) for each operation.

6

The final section of this paper considers some applications of the CTSS primitive. We present

specific algorithms for fcfs mutual exclusion and multireader multiwriter atomic registers and

prove that any CTSS can be used as a primitive in these algorithms.

2 I/ 0 Automata Model

We present our algorithm in the context of the I/O Automata model. This model, introduced

by Lynch and Tuttle [29], represents algorithms as I/O Automata which are characterized by

states, initial states, a set of actions called an action signature, state transitions called steps and

an equivalence relation on some of the actions of the action signature called a partition. For

a I/O Automaton A its five components are denoted by states(A), start(A), sig(A), steps(A),

and part(A) respectively.

A step that results from an action is denoted by (s, 7r, s') wheres is the original state, 7r is the

action, ands' is the new state. If an action can be executed in a states, it is said to be enabled in

s. If an action is not enabled in state s, it is said to be disabled in s. Actions are classified into

external actions, ext(A), those visible to user of the algorithm, and internal actions, int(A),

which are not visible to the user. External actions are further classified into input actions,

in(A), which are under the control of the user of the algorithm, and output actions, out(A),

which are under the control of the algorithm. By definition input actions are enabled in all

states. For an I/O Automaton A the tuple consisting of in(A) and out(A) is called A's external

action signature, exsig(A). We now give a more precise definition for some of the elements of

an I/O Automaton. Specifically, for an I/O Automaton A, sig(A) = (in(A), out(A), int(A)).

Furthermore, part(A) defines an equivalence relation on the set of internal actions and output

actions of A. Finally, we define acts(A)= in(A) U out(A) U int(A).

An execution of an I/O Automaton is an alternating sequence of states and actions that

could be produced if the algorithm is executed starting from an initial state. A state is called

reachable is it is the final state of some execution. A fair execution, o:, of infinite length is one

in which for all C E part(A), if some action from C (not necessarily always the same action)

is continuously enabled, o: contains infinitely many actions from C. A fair execution of finite

length is one in which for all C E part(A) no actions of C are enabled in the final state. A

schedule, sched(o:), is the projection of an execution o: onto the actions of the I/ 0 Automaton.

7

A fair schedule, fairsched(a), is the projection of a fair execution a on the actions of the I/O

Automaton. A behavior, beh(a), is the projection of an execution o: onto the external actions of

the I/O Automaton. A fair behavior, fairbeh(a), is the projection of a fair execution a on the

external actions of the I/O Automaton. The set of all possible behaviors of an I/O Automaton

A is called behs(A). The set of all possible fair behaviors of an I/O Automaton A is called

fairbehs(A).

In order to build complex I/O Automata from simple ones, the I/O Automata model defines

the concept of composition. Composed I/O Automata interact using input and output actions

that have the same name. Specifically, assume A and B are two composed I/O Automata. Let

ACT be an output action of A and an input action of B. If A executes ACT this triggers the

execution of ACT for B. In order to compose a set of I/0 Automata, we must place certain

restrictions on the action names the I/O Automata. Specifically, we require that none of the

I/O Automata share any output actions, the internal actions of each I/0 Automaton are not

elements of the action sets of any other I/O Automaton, and no action can an element of the

action sets of infinitely many I/O Automata (see [29] for a discussion of these restrictions). I/O

Automata that satisfy these restrictions are said to be strongly compatible.

Definition 2 .1 Let I = { 1 ... n}. A composition A = IT A; of a countable collection of
iEJ

strongly compatible I/O Automata {A1 .• • An} is the I/O Automaton defined as follows 1
:

• sig(A) = (u in(A;) - LJ out(A;), LJ out(A;), LJ int(A;)),
iEJ iE! iEJ iEJ

• states(A) = IT states(A;),
iEJ

• start(A) =IT start(A;),
iEJ

• steps(A) is the set of triples (si, 7r, s2) such that for all i if 7r E acts(A),

then (si[i], 7r, 82[i]) E steps(A) and if 7r rf_ acts(A) then s-i[i] = s-2 [i].

• part(A) = U;e 1 part(A;),

•
1The CT symbol used to define states(A) and start(A) represents the normal Cartesian product. The notation

s[i] denotes the i 1
h component of the state vector s.

8

We sometimes do not want the actions that constitute the interface between two composed

I/O Automata to be visible to the environment. Therefore, the I/O Automata Model makes it

possible to reclassify output actions to be internal actions. Such reclassified actions are said to

be hidden.

The I/O Automata model represent a problem specification, P, as an external action sig­

nature, exsig(P), along with set of allowable behaviors, be,hs(P), on the actions in exsig(P).

An I/O Automaton A is said to solve a problem specification P if exsig(A) = exsig(P) and

fairbe,hs(A) ~ behs(P). We say that an I/O Automaton A implements another I/O Automa­

ton B if the fairbe,hs(A) ~ fairbe,hs(B). Our correctness proof uses the following theorem on

simulation proofs which is a restricted version of a theorem in [29].

Theorem 2.1 Let A and B be I/O Automata with sig(A) = sig(B), part(A) = part(B), and

R a relation over the states of A and B. Suppose:

1. If a is an initial state of A, then there exists an initial state b of B such that (a, b) E R.

2. Suppose a is a reachable state of A and b is a reachable state of B such that (a, b) E R. If

(a, 7r, a') is a step of A then there exists a state b' of B such that (b, 7r, b') is a step of B

and (a',b') ER.

3. If action 7r is enabled in state b of B and (a, b) E R then action 7r is enabled in state a of

A.

Then fairbe,hs(A) ~ fairbe,hs(B).

The I/O Automata model, while providing efficient techniques for reasoning about the

correctness of algorithms, is much more general than the shared memory model [23) for which

our timestamp algorithm is designed. Consequently, we introduce some added structure to the

I/O Automata model. This section describes the basics needed to understand our correctness

proof. Section 9 provides a more sophisticated development of shared memory concepts in the

I/ 0 Automata model. Some of the concepts in this section and most of the concepts in Section 9

are due to Goldman, Lynch and Yelick [15]. (See [28] for discussion of similar issues.)

We first introduce a type of interface which will be used to characterize the external action

signature of I/O Automata and problem specifications for the shared memory model. The

9

interface captures the intuitive notion of a set of processes that perform operations on behalf

of some user. Typically, any process might be able to perform several types of operations.

Definition 2.2 {operational interface) An operational interface is an external action sig­

nature S that partitions its actions into disjoint sets called operation types. The set of operation

types of S is denoted by ops(S). Each operation type consists of at least one input and one

output action. •
As a short hand, we will sometime use the term operation instead of operation type. Notice

that an operational interface only describes an external action signature. Hence an operational

interface can be used to describe both I/O Automata and problem specifications. If we compose

two I/O Automata which have an operational interface, the set of operation types of the com­

posed I/O Automaton is the union of the sets of operation types of each of the constituent I/O

Automata. Again, we must add some restrictions on a set of I/O Automata being composed.

Assume that we wish to compose I/O Automaton A and I/O Automaton B. We require that

each action in acts(A) n acts(B) be an element of the same operation type in A and B. Fur­

thermore, if one action of an operation type of A or Bis in acts(A) n acts(B) then all actions

of that operation type are in acts(A) n acts(B). An operation instance is defined as follows:

Definition 2.3 (operation instance) Let f3 be a behavior of an operational interface. Let a

be an operation type of the operational interface. An operation instance is the occurrence of

an input action of a and the first output action of a that follows the input action of a in the

behavior (3. •
We now introduce a set of notational conventions. Let S be an operational interface. For

an operation type a E ops(S) we refer to the input actions of a by INVOKE(a, v) and the

output actions of a by RESPONSE(a, r). The symbols v and r are syntactic placeholders for any

arguments2 that are used by this operation type. The I/O Automata and problem specifications

that we consider typically allow several concurrent operations. We model concurrent operations

with I/O Automata whose operational interfaces are structured as follows. Assume that A is an

2 Formally, v and r are used to uniquely identify the actions of operation type a. Intuitively, v and r represent
arguments. The arguments v and r are syntactic placeholders since the I/O Automata Model does not have the
concept of an argument. Arguments are implemented by having a separate action for each possible argument
value.

10

I/O Automaton with an operational interface that can handle up to n concurrent operations.

Then for each i E {1 ... n} there exists a non empty set of operation types S; C ops(exsig(A)).

S; and Si are disjoint when ii- j. For each operation type a; E S; we refer to the input actions

of a; by INVOKE;(a;, v) and the output actions of a; by RESPONSE;(a;, r). Intuitively there is a

process, p;, associated with all actions whose names include the index i. For the remainder of

the section, assume that all I/O Automata have an operational interface as described above.

We now define a set of concepts with which we can characterize the behaviors of I/0 Au­

tomata and problem specifications that have operational interfaces. Let A be an I/O Automaton

or a problem specification with an operational interface. If f3 is a behavior of A, then /3; is the

projection of /3 onto the actions that have the index i as part of their name.

Definition 2.4 (well-formed) Let A be an I/O Automaton or a problem specification with

an operational interface. A behavior /3 of A is well-formed if, for all /3;, /3; consists of an

alternating sequence of input and output actions, starting with an input action, such that

each output action is immediately preceded by an input action of the same operation type.

Specifically, if a; E ops(exsig(A)), each RESPONSE;(a;,r) action is immediately preceded by an

INVOKE;(a;, v) action. •
Definition 2.5 (well-formed-input) Let A be an I/O Automaton or a problem specification

with an operational interface. A behavior f3 of A has a well-formed-input if, for all /3;, there

exist no two consecutive input actions. •
Definition 2.6 (well-formed-preserving) Let A be an I/O Automaton or a problem speci­

fication with an operational interface. Let f3 be a behavior of A. /3 is well-formed-preserving if,

for all prefixes /3' of /3 that have a well-formed-input, /3' is well-formed. •

We say that an I/O Automaton is well-formed-preserving if all of its behaviors are well-formed­

preserving. Similarly, a problem specification is well-formed-preserving of all of its behaviors are

well-formed-preserving. In addition to the safety properties described by the well-formedness

concepts, we require the following liveness property.

Definition 2.7 (response-live) Let A be an I/O Automaton or a problem specification with

an operational interface. Let /3 be a well-formed behavior of A. Then f3 is response-live if each

INVOKE;(a;, v) action is eventually followed by a RESPONSE; (a;, r) action. •
11

We say that an I/O Automaton is response-live if all of its fair behaviors are response-live.

Similarly, a problem specification is response-live of all of its behaviors are response-live. We

can now define the following partial order on the operation instances of any well-formed and

response-live behavior.

Definition 2.8 {----* order) Let /3 be a well-formed and response-live behavior of an I/O

Automaton or problem specification with an operational interface. Let ai and bi be any two

operation instances3 in /3. In general ai and bi can be instances of the same operation type.

We say that ai----* bi if and only if in the behavior f3 the RESPONSE;(ai,r) action associated

with a; precedes the lNVOKEi(biiv) action associated with bi. •
The order----* is the same as the precedes relation of (22, 23]. Since /3 is a well-formed behavior,

all operations with same index are totally ordered by ----*.

An important type of I/O Automaton is called an atomic I/O Automaton. Before defining

an atomic I/O Automaton we introduce the notion of a serial specification (38].

Definition 2.9 {serial specification) A serial specification is a set of finite and/or infinite

sequences of operations. •
Intuitively, a serial specification characterizes a behavior consisting of a set of sequentially

executed operations.

Definition 2.10 (atomic I/O Automata) An I/O Automaton A is atomic for a serial spec­

ification S if A has an operational interface, is well-formed-preserving, and is response-live.

Furthermore, for any behavior f3 E fairbehs(A) there exists a total order ==} on the operation

instances in /3 such that:

1. ==} is consistent with ----*.

2. The sequence consisting of the operation instances in f3 ordered by ==} is in S.

•
3 We sometimes use the same name for operation instances and operation types. The meaning of a name will

always be clear from context.

12

3 Concurrent Timestamp System

The following is a formal definition of a CTSS due to Dolev and Shavit [11]. It uses the axiomatic

specification formalism of Lamport [22, 23].

A CTSS is a problem specification with an operational interface. A CTSS that permits n

concurrent operations has 2n operation types, specifically LABEL; and SCAN; for i E {1 ... n}.

Each of these operation types consists of the following actions: LABEL; consists of the input

action BEGINLABEL;(val;) and the output action ENDLABEL;. SCAN; consists of the input action

BEGINSCAN; and the output action ENDSCAN;(o, v). A LABEL; operation associates a value, val;,

taken from any domain, V, with a label. In order correctly handle initial conditions the value

domain V must specify some initial value v0 • A SCAN; operation returns a pair (o, v), where

v = (v1 ••• Vn) is an indexed set of values (one per process), and o is an total order on these

indexes.

We now introduce some notation. In a particular behavior /3, L~k] denotes the k 1
h instance

of a LABEL; operation, and Slk] denotes the kth instance of a SCAN; operation. Furthermore,

val\kl denotes the value passed to operation L\kl. (The superscript [k] is used only for notation,

and is not visible to the 1/0 Automaton). We call the superscript [k] an execution number.

The domain of execution numbers is E = {1, 2, ... }. Finally, we define a choice Junction, c, as

a function mapping { 1 ... n} x Ex { 1 ... n} to EU { O}. Intuitively, the choice function provides

a way to determine which operation wrote a value returned by a SCAN operation. Specifically,

if c(i, a, k) =/:- 0, the value vk returned by operation S/al was written by the operation Llc(i,a,k)J.

If c(i,a,k) = 0, then the value Vk returned by operation S/a] is the initial value V 0 •

The set of behaviors of a CTSS, behs(CTSS), is defined as follows:

Definition 3.1 /3 E behs(CTSS) if and only if:

1. If /3 has a well-formed-input, then /3 is well-formed.

2. If /3 has a well-formed-input, then /3 is response-live.

3. If /3 is well-formed, then there exists a total order =} on the set of all LABEL operations

and a choice function c such that /3, =} and c satisfy axioms PO-P4 given below.

•
13

Note: if f3 does not have a well-formed-input, then f3 can be arbitrary.

In order to handle initial conditions, we let val/01 = v0 for all i, where v0 is the initial value

of the value domain V. Recall that execution numbers start with 1.

PO choice function: For any value vk in v of s/al' vk = val~c(i,a,k)] where vatl01 = Vo·

Pl ordering: ===} is a total order on the set of all LABEL operation instances in /3, such that:

a. precedence: For any pair of LABEL operation instances L~a] and L;b] (where possibly i

and j are the same index), if Ljal -----+ LP1, then Lla] ===} LP1.

b. consistency: For any SCAN operation instance S;[a] that returns v and a, if vi, vk E v:

c(i,a,j) > 0 and c(i,a,k) > 0: j <kin i5 if and only if L}c(i,a,j)] ===} Lic(i,a,k)]_

c(i,a,j) = 0 and c(i,a,k) = 0: j <kin i5 if and only if j < k.

c(i, a, j) = 0 and c(i, a, k) > 0: j < k in a.

c(i,a,j)>O and c(i,a,k)=O: k<jina.

The above property implies that there is a unique total ordering on LABEL operation instances

of all processes, which is a serialization order (part a), and with which all SCAN operations are

consistent (part b).

P2 regularity: Let sr1 be a SCAN operation instance. If c(j, a, i) > 0, then sr1 + LJc(j,a,i)]

and there is no Lr1 such that LJc(i,a,i)J -----+ Ljbl -----+ srl. If c(j, a, i) = 0, then there exists

no L[b] such that L[b]-----+ 5_[a)
I I) •

Though a regular CTSS (having properties PO-P2) would suffice for some applications (for ex­

ample Lamport's "Bakery Algorithm" [19]), a more powerful concurrent timestamp system is

needed in applications such as the multireader multi writer atomic register construction (see

[24, 34]). To this end the following third and fourth axioms are added:

P3 monotonicity: Let s}al return Vk = vallc(i,a,k)] and spi return vk = vallc(j,b,k)] (where

possibly i = j). Then, S}al-----+ spi and c(i,a,k) f:. c(j,b,k) imply c(i,a,k) < c(j,b,k).

Note that c(i,a,k) < c(j,b,k) implies that Lic(i,a,k)] ===} Llc(j,b,k)] when c(i,a,k) > 0 and

c(j, b, k) > 0. Monotonicity is the property that in a unbounded real number CTSS can be

14

described by saying that the labels of any one process, as read by increasingly later SCAN

operations, are "monotonically non-decreasing." It is important to note that P3 does not

imply that one can serialize all LABEL and SCAN operation instances. It does however imply the

serializability of the SCAN operation instances of all processes relative to the LABEL operation

instances of any one process [37]. P4 4 is an extension of part of the regularity property to the

=> order. The properties P3 and P4 together imply that all SCAN operations that consider

only the "largest" value, where "largest" is based on the o ordering, can be serialized with

respect to all LABEL operations.

P4 => regularity: Let s/al be a SCAN operation instance. If c(i, a, k) > 0, then s/al ----+ Lr]
implies that L!c(i,a,k)] => L}b].

4 An Unbounded Concurrent Times tamp System

This section introduces a particular implementation of a concurrent time stamp system, UCTSS,

that uses timestamps from R+. UCTSS is introduced as an intermediary I/O Automaton whose

purpose is to simplify the correctness proof of our bounded CTSS.

The code for the operations of UCTSS is presented in two forms. Figure 1 presents the code

in the precondition-effect notation commonly used to describe I/O Automata5
. Figure 2 uses

psuedocode. We use the precondition-effect notation as the basis for the correctness proof and

include the compact and intuitive psuedocode only for clarity.

The system models n processes indexed by {l. .. n}. Each process Pi in UCTSS can perform

a SCAN; and LABEL; operation. A LABEL; operation allows process p; to associate a label

(timestamp) with a given value. A SCAN; operation allows process Pi to determine the order

among values based on their associated labels. The function NEWLABEL;, which is used by

LABEL; is defined in Figure 3. A SNAP; operation, which is defined by Afek et al. in [1],

atomically reads an array of single writer multireader registers. A UPDATE; operation, also

defined by [1], writes a value to a single register in the array of single writer multireader registers

4 A more powerful CTSS satisfying P4 is needed in applications such as the multireader multiwriter atomic
register construction of [24, 34]. P4 is included in the journal version of [11], but is not included in the conference
version of [11] or in [37].

5
BCTSS is the name for our bounded CTSS implementation. The name is included in the caption since the

code in the figure is shared by BCTSS and UCTSS. BCTSS is introduced in Section 5.

15

Shared State:
t;: The current label associated with process p;; initially 0.
v;: The current value associated with process p;; initially v0 •

Local State:
nt;: The new label for p; determined by function MAKELABEL;; initially 0.
val;: The new value for p; passed to LABEL;; initially v0 •

f;: An array of labels returned by s NAP;; initially (0 ... 0).
v;: An array of values returned by SNAP;; initially (v0 ••• v0).

o;: An array of process indexes ordered based on the ~ order; initially (1 ... n).
pc;: The non-input action currently enabled; initially NIL.

op;: The current operation; initially NIL.

SCAN;:

BEGINSCAN;

SNAP;(f;, vi)

ENDSCAN;(o;, v;)

LABEL;:

BEGIN LABEL;

Eff: op; <--- SCAN;

pc; - SNAP;(f;, v;)

Pre: pc; = SNAP; (f; , V;)
Eff: If op; = SCAN; then

6; <--- the sequence of indexes where
j appears before k in o; iff (ti, j) ~ (tk, k)
pc; - ENDSCAN;(o;,v;)

If op; = LABEL; then
nt; <--- NEWLABEL;(f;)

pc; - UPDATE;((t;, v;), (nt;, val;))

Pre: pc;= ENDSCAN;(o;,v;)

Eff: pc; <--- NIL

Eff: op; <--- LABEL;

pc; - SNAP;(t~, v;)

UPDATE;((t;, v;), (nt;, val;)) Pre: pc;= UPDATE;((t;, v;), (nt;, val;))
Eff: pc; <--- ENDLABEL;

END LABEL; Pre: pc; = ENDLABEL;

Eff: pc; <--- NIL

Figure 1: Precondition-Effect code for UCTSS and BCTSS

16

SCAN;

SNAPi(°l~, v;)
ii; ,..._ the sequence of indexes where j appears before k in o; iff (ti, j) ~ (tk, k)
return (o;,v;)

LABEL;(val;)
SNAP;(f;, v;)
nt; ,..._ NEWLABEL;(f;)

UPDATE;((t;, v;), (nt;, val;))

Figure 2: Psuedocode for UCTSS and BCTSS

read by SNAP;. SNAP; and UPDATE; are waitfree, therefore their use does not compromise the

waitfree properties of our timestamp algorithm.

NEWLABEL;(ti)

if i -:f imax
then return (tmax + X) where Xis nondeterministically selected from ~> 0

Figure 3: Code for NEWLABEL; of UCTSS

The state of UCTSS is defined by the shared state and the local state of each of the n process.

The shared and local state of each process, along with the initial values are defined in Figure l.

The state of UCTSS also has derived variables tmax and imax· tmax = MAX(t1 ... tn) and imax is

the largest process index i such that t; = tmax.

In terms of the I/ 0 Automata model, u CTSS is an I/ 0 Automaton with an operational inter­

face. UCTSS is a composition of n I/O Automata called p1 , ••• ,Pn- Each p; is an I/0 Automaton

with an operational interface that consists of the operation types LABEL; and SCAN;. The LABEL;

operation type consists of the input action BEGIN LABEL; (val;) and the output action EN DLABEL;.

The operation type SCAN; consists of the input action BEGINSCAN; and the output action

ENDSCAN;(o;, v;). The internal actions of p; are SNAP;(f;, v;) and UPDATE;((t;, v;), (nt;, val;)).

The set steps(p;) is characterized by the precondition clause in each action. The set part(p;)

consists of a single equivalence classes C; where the elements of C; are the actions SNAP;(f;, v;),

ENDSCAN;(o;,v;), UPDATE;((t;,v;),(nt;,val;)), and ENDLABEL;. The set states(p;) is the set of

all possible states of p; where each state is defined by the values of the variables of the shared

17

and local state. The set start(p;) is the set consisting of the state defined by the initial values

of the variables of the shared and local state.

The shared state is accessed only using the atomic SNAP; and the UPDATE; actions. Since

SNAP; and UPDATE; are atomic, each action of UCTSS is atomic. Notice that the SNAP; action

makes references to the elements of the vector f; indirectly through the use of imax and tmax and

in order to calculate ii;. Since SNAP; is atomic, the labels int~ are the same as the corresponding

labels in the shared state. In other words, t;; = ti during the action. Consequently, we refer

directly to the shared variables imax• tmax, and t; rather than their copies i;marl t;max• and t;,

when analyzing the SNAP; action.

UCTSS uses labels that are non-negative real numbers. The ordering between labels is the

usual < order of R+. The ordering ~ used in the ORDER; action is a lexicographical order

between label and process index pairs.

Definition 4.1 { ~ order) (f;, i) ~ (fii j) iff f; < fi or f; = fi and i < j. •
We now prove some characteristics of ~ that will be used to prove that UCTSS solves CTSS.

First consider the following notation: tla] is the label written as a consequence of the LJal

operation. When a = 0, then tla] is equal to the initial value for labels, which for UCTSS is 0.

LJa1(uPDATE) refers to the UPDATE; action executed as a consequence of the LJal operation and

L;[a](SNAP) refers to the SNAP; action executed as a consequence of the LJal operation. Similarly,

S;[a](SNAP) refers to the SNAP; action executed as a consequence of the s}aJ operation. The SNAP

and UPDATE actions model two atomic operations. In the usual model for atomic operations

[23], each operation is separated into a request (input) action and a response (output) action,

concurrent operations executions are allowed, and it is assumed that every request eventually

terminates in a matching response, in such a way as to produce the illusion of instantaneous

operations. Consequently, we model SNAP and UPDATE as single actions rather than separate

input and output actions. We present a formal justification for treating SNAP and UPDATE

operations as single actions rather than separate input and output actions in Section 9. Since

SNAP and UPDATE are single actions, there exists a total order on all SNAP and UPDATE actions.

We represent this order by =>'. If a SNAP action returns the set of values, v, and labels, t, then

vk and tk are the value and label written by the u PDATEk action that immediately proceeds

the SNAP action in the==>' ordering. If a SNAP action is not proceeded by an UPDATEk action,

18

then vk and tk are equal to their initial values.

Lemma 4.1 Consider any well-formed, response-live behavior f3 where f3 E fairbehs(ucTss).

For any i,a and SNAP operation Ljbl(SNAP), if either a> 0 and L;[a](UPDATE) -===--' LP1(sNAP)

in (3, or a= 0 then:

1. (tJal,i) < (tpl,j) when i-/= j.

Proof: Let lmax and imax be the tmax and imax used in NEWLABEL; for LP1. Since f3 is well­

formed, each process must read its current label when determining its new label. This fact,

along with the fact that X in NEWLABEL; is in ~po, shows that the labels for all process are

nondecreasing. In other words, a label for some process in a particular state of f3 is never larger

than the label for the same process in a subsequent state of (3. Thus tla] :S tmax when a = 0.

When a > 0, Lia1(uPDATE) -===--' Ljbl(SNAP) shows that tJal :S lmax· Consider the following

cases:

. -. - d . -1- • Wh . - -. - h - - [b-lJ R 11 h [aJ < -t - C "d th J = Zmax an Z r J: en J - Zmax, t en tmax - tj . eca t at t; _ max. ons1 er e

[a] - -- d [a) -- 1 Wh [a] - -- h . -- - [b-1] cases t; - tmax an t; < tmax separate y. en t; - tmax' t en, smce tmax - t; '

[aJ [b-iJ F h . . -1- • d . -. - . -1- -. - s· . -. - . -1- -. -
f; = tj . Urt ermore, SlnCe Z r J an J = Zmax, Z r Zmax. Ince J = Zmax, Z r Zmax

and tla] = tp-1], the definition of imax shows that i < j. As a result of the action LP1,

t [b] -f - H f [a] [b] d . . h' h · l" h ([a] ') ([b] ') N j = max. ence, i = fj an Z < J W IC Imp IeS t at f; , Z < fj , J . OW

"d h [a] - A 1 f h . L [b] [b] - H [a] [b] cons1 er t e case t; < tmax. s a resu t o t e act10n i , t; = tmax. ence t; < ti

which implies that (tJal, i) < (tp], j).

. -. - d . . A 1 f h . L [bl d h f h . -. - [bl - s· J = Zmax an i = J: s a resu t o t e act10n j an t e act t at J = Zmax, tj = tmax. mce

tJal :S tmax, it must now be the case that tJal :S tP1. This implies that (t;[a], i) = (tP1, j) or

(tJal, i) < (tjbl,j).

j-/= C: As a result of the action LP1 and the fact that j-/= imax, tmax < tp1. Since t}al :S lmax,

it must now be the case that tJal < tjbl. This implies that (tia1,i) < (tp1,j).

•

19

Corollary 4.2 Consider any well-formed, response-live behavior f3 where /3 E fairbehs(ucTss).

For any two LABEL opemtions LJal and Lrl, if LJal --+ Lr1 in /3, then:

Proof: If LJal --+ Ljbl, then LJal(UPDATE) =} 1 LYJ(SNAP). Now Lemma 4.1 proves the

corollary. •

Consider any well-formed, response-live behavior /3 where f3 E fairbehs(ucTss). Define=:}',

a total order on all the SNAP and UPDATE operations of /3, as before. We now define a total

order6 =:} on the LABEL operations in f3 and a choice function c. Recall from Definition 2.8 that

--+ defines a partial order on the operation instances of a well-formed, response-live behavior.

Definition 4.2 (=:} order) LJal =:} LP1 iff either L;(a) --+ LY1 or (tJal, i) ~ (tY1, j). •

Definition 4.3 (choice function c) If S}a] returns v and L}b](UPDATE) is the UPDATEj action

that immediately proceeds S;(a](SNAP) in =:} 1
, then c(i, a,j) = b. If no such UPDATEj action

exists, then c(i, a, j) = 0. •
For the following lemmas assume that f3 is well-formed, response-live, /3 E fairbehs(ucTss), and

--+ is defined as in Definition 2.8. Furthermore, =:} and c are defined as in Definition 4.2 and

Definition 4.2 respectively.

Lemma 4.3 The order=:} is a total order on all LABEL operation instances in /3.

Proof: In order to simplify the notation in this proof, we write LJal ~ LP1 instead of (tJal, i) ~

(tP1, j). Since --+ is a partial order, it is irreflexive, antisymmetric, and transitive. By definition,

~ is irreflexive, antisymmetric, and transitive.

irreflexive: This follows immediately from the fact that --+ and ~ are irreflexive.

antisymmetric: To reach a contradiction assume that LJal =:} LY1 and LY1 =:} LJal. Since

--+ and ~ are antisymmetric, we can assume without loss of generality that LJal --+ LY1 and

6 Lernrna 4.3 proves that ==> is a total order.

20

LP] ~ LJal. Using the fact that LJal ---+ LP] along with Corollary 4.2 we can conclude that

L ial A" L [b] or L .[a] = L [b] However this contradicts the fact that L [bl ~ L [a]
• ""' J • J . ' J • •

transitive: For a contradiction assume that LJal ==> LP] and LP1 ==> L!c] but L;[a] =/? L!c].

Consider the case where L iaJ ---+ L [b] and L [bl A" L [c] but L ial + L [c] and L [a] k Lk[c].
• J J ""' k • k • ..,,...

Corollary 4.2 and the fact that LJal ---+ LP] imply that LJal ~ LP1 or LJal = L}b]. This fact

along with the fact that LP1 ~ L!c] implies that LJal ~ L!c]. This contradicts that earlier

assumption that LJal </:. L!cl. Since---+ and~ are transitive, the only other case is LJal ~ LP1

and L [bl ---+ L [c] but L ial + L [c] and L .!a] k L [c] We use the same reasoning as in the
J k • k • ..,,... k .

previous case to show that this case also cannot arise.

total: Consider any two label operations LJal and LP1• When i # J then L;[a] and LP1 are

ordered by ~. When i = j then LJal and LP] are ordered by ---+.

Since ==> is irreflexive, antisymmetric, transitive and total, we can conclude that ==> is a total

order. •
Lemma 4.4 {3 using the order ==> and choice function c satisfies axiom PO.

Proof: This follows immediate from the definition of c, the fact that {3 is well-formed, and

the definition of the SNAP and UPDATE actions. •
Lemma 4.5 {3 using the order ==> and choice function c satisfies axiom Pl.

Proof: In order to simplify the notation in this proof, we write Lla] ~ Lp1 instead of (tla], i) ~

(tp1,j). From Lemma 4.3 we know that==> is a total order. Part a of Pl, precedence, follows

immediately from the definition of==>. For part b of Pl, consistency, let Sia] return a;. There

are four cases to consider:

c(i, a, j) # 0 and c(i, a, k) # 0: => If j < k in 6; then, by the definition of 6; in the SNAP;

action, L}c(i,a,j)] ~ Llc(i,a,k)J. By definition of==> this shows that L}c(i,a,j)] ==> L!c(i,a,k)].

,,._ If L [c(i,a,j)] __._ L [c(i,a,k)] th 'th L [c(i,a,j)] L [c(i,a,k)] L [c(i,a,j)] A" L [c(i,a,k)]
'<-- i ----.r k en e1 er i ---+ k or i ""' k .

When L}c(i,a,j)] ---+ L!c(i,a,k)] Corollary 4.2 and the fact that j "# k show that L}c(i,a,j)] ~

L [c(i,a,k)] N . < k . - . L [c(i,a,j)] A" L [c(i,a,k)]
k • ow J m o; smce i ""' k •

21

c(i, a, j) = 0 and c(i, a, k) = 0: In this case the definition of c show that the ti and tk read

by S/al (SN AP) are equal to their initial values, which are 0. Now the definition of ii; in

the SNAP action shows that j < kin ii; if and only if j < k.

c(i, a,j) = 0 and c(i, a, k) f:. 0: Lemma 4.1 shows that (tjc(i,a,i)l,j) ~ (dc(i,a,k)J, k). Now the

definition of ii; in the SNAP action shows that j <kin ii;.

c(i, a, j) f:. 0 and c(i, a, k) = 0: Lemma 4.1 shows that (tkc(i,a,k)J, k) ~ (t}c(i,a,j)J, j). Now the

definition of ii; in the s NAP action shows that k < j in ii;.

•
Lemma 4.6 /3 using the order===} and choice function c satisfies axiom P2.

Proof: Consider sr with c(j, a, i) > 0. By definition of c, L;(c(j,a,i)](UPDATE) ===}' sr1(sNAP).

Hence sJal + LJc(i,a,i)J. In order to prove that the second part of the axiom holds for /3

we assume that there exists L ibJ such that L.(c(j ,a,i)] --+ L _[b) --+ S [a) This implies that
l l I) •

L}c(j,a,i)](UPDATE) =}1 L}bl(UPDATE) =}1 srl(sN AP), which directly contradicts the defini-

tion of c. Now consider srl where c(j, a, i) = 0. The definition of c shows that there exists no

LJb1(uPDATE) such that LJb1(UPDATE) =}
1 srl(SNAP). Consequently, there exists no L;[b] such

•
Lemma 4. 7 /3 using the order ===} and choice function c satisfies axiom P3.

Proof: Consider s}aJ--+ spi, where c(i,a,k) > 0. By definition of c, Lic(i,a,k)](UPDATE) ===}'

S}a](SN AP) =}
1 spi(SNAP). Now the definition of c and the fact that c(i, a, k) f:. c(j, b, k) imply

that c(i, a, k) < c(j, b, k). When c(i, a, k) = 0 the fact that c(i, a, k) f:. c(j, b, k) immediately

shows that c(i, a, k) < c(j, b, k). •
Lemma 4.8 /3 using the order ===} and choice function c satisfies axiom P4.

Proof: Since s/al --+ Lp1, s/al(SNAP) =} 1 LP](SNAP). Furthermore, the definition of c

and the fact that c(i,a,k) > 0 imply that L~c(i,a,k)](UPDATE) =} 1 s}al(SNAP). Consequently,

Lkc(i,a,k)](UPDATE) =} 1 LP)(SNAP). Now Lemma 4.1 implies that (tkc(i,a,k)I, k) ~ (tpl,j). There-

fore the definition of===} implies that LJc(i,a,k)] ===} LP1. •
22

Lemma 4.9 If a be,havior /3, where f3 E fairbe,hs(ucTss), has a well-formed-input, then /3 is

well-formed and response-live.

Proof: Notice by inspecting the precondition clauses in the code of Figure 1 that for any

equivalence class C; of part(ucTss), there is always at most one action enabled. Furthermore

each action remains enabled until it is executed. Consequently, the actions must be executed in

the sequence in which they are enabled. Furthermore, in a fair execution each enabled action

will eventually be executed.

Now consider any fair execution that has a well-formed-input. The precondition-effects code

in Figure 1 shows that the following sequence of actions is executed in response to a BEGIN SCAN i

input action: SNAPi(f;,vi) and ENDSCANi(oi,vi). In response to a BEGINLABELi(val;) input

action, the following sequence of actions is executed: SNAPi(f;, vi), UPDATE;((t;, vi), (nt;, val;)),

and ENDLABELi. Also, no actions of C; are enabled between the execution of an ENDSCAN;(6;, v;)

or ENDLABEL; action and the next execution of a BEGINSCAN; or BEGINLABELi(val;) action.

Inspection of these action sequences and the definitions of well-formed-preserving and response-

live, immediately shows that UCTSS is well-formed-preserving and response-live. •
We now have the necessary lemmas to show that UCTSS solves CTSS.

Lemma 4.10 UCTSS solves CTSS.

Proof: By inspection exsig(ucTss) = exsig(cTss). In order to show that fairbehs(ucTss) ~

behs(cTss) we consider any behavior f3 such that f3 E fairbehs(ucTss). If f3 does not have a well­

formed-input, then /3 E behs(CTSS) trivially. So, assume that f3 has a well-formed-input. Now

Lemma 4.9 shows that /3 is well formed. Define an order==> and a choice function c as in Defini­

tion 4.2 and Definition 4.3 respectively. Now, Lemma 4.4, Lemma 4.5, Lemma 4.6, Lemma 4.7,

and Lemma 4.8 show that /3, ==>and c satisfy axioms PO~P4. Hence f3 E behs(cTss). •

5 A Bounded Concurrent Timestamp System

In this section we present our bounded implementation of a concurrent timestamp system,

BCTSS. BCTSS differs from UCTSS in three ways: the structure of the labels, the order between

labels, and the manner in which NEWLABEL; determines new labels. In all other aspects BCTSS

23

5

Figure 4: A graphical illustration of the -<.A order between the elements of A = { 1 ... 5}

and UCTSS are identical. Recall that a label in UCTSS is an element of R+. In BCTSS, labels

are taken from a different domain. In order to construct the new domain we introduce the set

A = { 1 ... 5}. We define the order -<.A and the function NEXT on the elements of A.

1 -<.A 2, 3, 4, 5; 2 -<.A 3, 4, 5; 3 -<.A 4; 4 -<.A 5; 5 -<.A 3.

The graph in Figure 4 represents -<.A, where a -<.A b iff there is a directed edge from b to a.

{

k + 1 if k E { 1, 2, 3, 4}
NEXT(k) =

3 if k = 5

A BCTSS label is an element of An- 1 , where n is the number of processes in the system. We refer

to elements of An-l using array notation. Specifically, the hth digit of label £ will be denoted

by £[h). Since we have redefined the label type, we must specify the order that is to be used

between elements of An-l for the ~ order in the SNAPi action. The order between elements of

An-l is represented by the symbol-< and will be a lexicographical order based on -<.A·

Definition 5 .1 (-< order) £; -< f i iff there exists h E { 1 ... n - 1} such that £i[h'] = f i [h'] for

•
Example 5.1 4 ... 4.5.2-< 4 .. .4.3.1

Lemma 5.1 If £1 and £2 are elements of An-l then exactly one of the following is true: £1 -< £2,

£2 -< £1, or £1 = £2.

Proof: If a, b E A, then by definition of -<.A exactly one of the following is true: a -<.A b,

b -<.A a or a = b. The lemma now follows since -< is a lexicographical order defined by -<.A. •

24

We define the following notation and functions for BCTSS labels:

Definition 5.2 (~ equivalence relation) For any h E {O .. . n - 1}, £1 ~ £2 iff £i[h'] = £2[h']

for all h' :'.Sh. Note that £1 n~
1 £2 implies that £1 = £2.

Definition 5.3 (NEXTLABEL) For any h E {1 .. . n - 1}, £'

f'[hj = NEXT(f[h]) and f'[h'j = 1 for all h' E {h + 1 .. . n - l}.

•
NEXTLABEL(f,h) iff f' h~l f,

•
Definition 5.4 (CYCLE) For any h E {l. . . n - 1}, l' E CYCLE(l,h) iff £' h~l land l'[h] E

{3,4,5}. •
Lemma 5.2 A set £ of labels is not totally ordered by -< iff there exist £1, £2, £3 E £ and

h E {1 .. . n -1} such that £1 h~
1 £2 \:~=1 £3 and {li[h],£2[h],£3[h]} = {3,4,5}.

Proof: =? The -< ordering on £is irreflexive by definition and antisymmetric by Lemma 5.1.

Therefore, it must be that transitivity does not hold. Specifically there exist £1, £2 , £3 E £

such that £1 -< £2 -< £3, and £1 -/. £3. By Lemma 5.1 it cannot be that £1 = £3, therefore

£3 -< £1. Since -< is a lexicographical order, there must exist h E { 1 ... n - 1} such that

£1 h~l £2 h~l £3 and li[h] -<A £2[h] -<A £3[h] and l 1[h) -/.A £3[h]. Now by definition of .A,

{£i[h],l2[h),£3[h]} = {3,4,5}.

{::: By definition of .A we can conclude without loss of generality that £1[h] -<A £2 [h) -<A £3[h]

and £1[h) f.A f3[h]. Since £1 \;
1 £2 h~l £3 and -< is a lexicographical order, £1 -< £2 -< £3, and

•
We now define some functions on the states of BCTSS. In order to reason about the states

of the system we introduce the notation b.x to refer to the variable x in state b. For a state b

and any label £ in state b:

Definition 5.5 (AGREE) For any h E {O .. . n - 1}, AGREE(b.£,h) = {jl b.tj ~ b.f}. •

Definition 5.6 (NUM) For any h E {O .. . n - 1}, NUM(b.£, h) = IAGREE(b.£, h)I. •

Definition 5.7 (NUM;) For any h E {O .. . n - 1}, NUM;(b.£, h) = IAGREE(b.£, h)- {i}j. •

Definition 5.8 (choice vector) A choice vector for state bis any vector (b.£1 .. . b.Cn) such

that b.C; E {b.t;, b.nti} for each i. •
25

FULLi(h), h E {1 .. . n - l}
if NUMi(tmax' h) 2: n - h

then return (true)
else return (false)

NEWLABEL;(~)

if i i= imax
then h' +--minimum h E {1 .. . n - 1} such that FULL;(h) = true

return (NEXTLABEL(tmax,h'))

Figure 5: Code for NEWLABEL; of BCTSS

Definition 5.9 (TOT) TOT(b) = true iff the set of values in every choice vector is totally

ordered by -<; otherwise TOT(b) = false. •
Recall that the second difference between UCTSS and BCTSS is the ~ order that is used in

SNAP;. We define ~for BCTSS lexicographically.

Definition 5.10 (~ order) (£;, i) ~(£ii j) iff either£; -< ei or£;= ei and i < j. •
In any state b in which TOT(b) = true, ~ defines a total order.

We now define b.tmax and b.imax for a state, b, in which TOT(b) = true. Consider the choice

vector (b.t 1 ••• b.tn)· Since TOT(b) =true, there must exist i E {l ... n} such that, for all j i= i

and j E {1 ... n}, b.tj ::S b.t;. Let b.tmax = b.t;. Let b.imax be the largest index j such that

b.tj = b.tmax·

The final difference between BCTSS and UCTSS is in the code for NEWLABEL;. Recall that in

UCTSS, NEWLABEL; nondeterministically picks a real number that is larger than tmax· In BCTSS,

NEWLABEL; also picks the new label based on tmax. In states in which TOT(b) = true, b.tmax

and b.imax are defined. We let NEWLABEL; be a no-op for states in which TOT(b) = false. In

Section 6 we will show that TOT(b) = true for all reachable states. When imax is defined and

ii= imax, NEWLABEL; finds the minimum h such that at least n - ht-labels, excluding t;, agree

with the prefix of tmax up to and including the hth digit. Then the new label is the same as

tmax for the first h - 1 digits, it differs from tmax at the hth digit based on the function NEXT,

and its remaining digits are equal to 1. The code for NEWLABEL; of BCTSS is given in Figure 5.

26

NEWLABEL; finds the minimum integer h such that FULL;(h) returns true. We now show

that such an h exists in { 1 ... n - 1}. The code that finds h is executed only when i # imax.

Notice that NUM;(tmax' n - 1);::: 1 when i # imax, hence FULL;(n - 1) = true.

The initial values for the labels in BCTSS are: t; = nt; = 1n- 1 , 6; = (1 .. . n), if;= (v0 ••• v0),

f; = (ln-l ... 1n- 1), V; =val;= v0 , op;= NIL, and pc;= NIL.

6 Invariants

For use in the simulation proof we define the following invariants:

Theorem 6.1 If b is a reachable state of BCTSS then, for all i E {1 ... n }:

I: TOT(b) =true.

II: If i = b. imax then b.t; = b. nt;.

III: Ifb.tmax--< b.nt; then there exists h E {l ... n-1} such that b.nt; = NEXTLABEL(b.tmax' h).

IV: If b.nt; ~ b.tmax then for any h E {1 .. . n - 1}, if b.t; ~ b.tmax then b.nti ~ b.tmax·

V: For any h E {l. . . n - 1}, if b.nt; E CYCLE(b.tmax, h) then b.ti h~l b.tmax·

VI: For any h E { 1. .. n - 1},

a: if b.nt; = NEXTLABEL(b.tmax, h) then NUM;(b.tmax, h - 1);::: n - h.

b: if b.tmax[h] # 1 then NUM(b.tmax, h - 1);::: n - h + 1.

•
I, II, and III are used in the simulation proof. We use an induction argument to show that

all reachable states of BCTSS satisfy these invariants. The purpose of invariants IV - VI is to

strengthen the induction hypothesis enough so that I can be proven. The only action that can

cause invariant I to be violated is SNAP; when op; = LABEL;. Specifically, we must show that

the new nt; picked by NEWLABEL; does not introduce any cycles in the --< order of the t-labels

and nt-labels. Since the NEWLABEL; code can examine the all of the t-labels, the code can

be written to avoid any cycles involving nt; and the t-labels. However, the NEWLABEL; code

27

cannot examine the local nt-labels of the other processes. In order to show that cycles that

include nt; and nt-labels are avoided, invariants IV and V are used to limit the possible values

of the nt-labels based on the corresponding t-labels.

For example invariant IV implies that nt; ~ t; when f; ~ tmax for all nt; ::::; tmax· If

nt; is in the cycle at level h, in other words nt;[h] E {3, 4, 5}, then invariant V states that

nt; h~l t;. Now assume that NEWLABEL; picks nt; = NEXTLABEL(tmax' h). Then the code for

NEWLABEL;, using the function FULL;, limits the number number oft-labels that are h~l tmax

and consequently the number oft-labels that are h~l nt;. Now invariant V can be used to limit

the number of nt-labels that could, by being in the cycle at level h, cause a cycle to occur with

the new nt;.

Invariant III gives information about the structure of nt-labels that are ?-- tmax. This

information is used to determine how the new nt; is ordered with respect to any nt-labels that

are ?-- tmax. Finally invariant VIb is used to prove invariant V, and invariant Vla is used to

prove VIb. If a new label nt; is picked in the cycle at level h then it must be that tmax [h] f 1;

hence VIb applies. VIb says that NUM(tmax, h - 1) ;::: n - h + 1. The code for NEWLABEL;

insures that NUM;(tmax' h - 1) < n - h + 1. Thus it must be the case that t; h~l tmax· This is

precisely what is required to prove invariant V.

The proof of Theorem 6.1 uses induction. It depends on a series of lemmas, one for the

initial state and one for each action in the inductive step.

Lemma 6.2 The initial state b of BCTSS, satisfies invariants I - VI.

Proof: This follows from the fact that b.t; = b.nti = 1 n-
1 for all i, j E {1 ... n }. •

Lemma 6.3 Let b be a state of BCTSS that satisfies I - VI. If (b, 7r, b') is a step of BCTSS

where 7r E {BEGINSCANk, ENDSCANk(oki vk), BEGINLABELk(valk), ENDLABELk} for any k, then b'

satisfies I - VI.

Proof: None of the t-labels or nt-labels change as a result of 7r. This suffices to show that b'

satisfies I - VI. •
Lemma 6.4 Let b be a state ofBCTSS satisfying I - VI. If(b, UPDATEk((tkivk),(ntk,valk)),b')

is a step of BCTSS for any k, then b' satisfies I - VI.

28

Proof: The proof is divided into a series of claims. By invariant I for state b, b.tmax and

b.imax are defined. We split the argument into two cases: k = b.imax and k I- b.imax· Consider

k = b.imax first.

Claim 6.4.1 If k = b.imax, then b' satisfies I - VI.

Proof: By invariant II for state b, b.tk = b.ntk. Thus, none of the t-labels or nt-labels change

for BCTSS. This suffices to show that b' satisfies I - VI. •

So assume that k I- b.imax for the remainder of the proof.

Claim 6.4.2 If k I- b.imax then I is true in b'.

Proof: Assume for a contradiction that TOT(b') = false. Since TOT(b) = true and tk is the

only label that changes, the choice vector whose values are not totally ordered must include

b'.tk. Now consider the same choice vector except that we substitute b'.ntk for b'.tk. Since

b'.tk = b'.ntki this new choice vector's values are also not totally ordered. Since none of the

labels in this new choice vector change as a result of the action, the same choice vector must

not have had its values totally ordered in state b. However this contradicts the assumption that

TOT(b) = true. •
Having proved invariant I we now know that b'.imax and b'.tmax are defined. The proof for

II - VI is subdivided into the following two cases: b.ntk ~ b.tmax and b.tmax -< b.ntk. Assume

first that b. ntk ~ b.tmax.

Claim 6.4.3 If k -j. b.imax and b.ntk -< b.tmax then b'.tmax

b'.imax = k.

b.tmax and b'.imax b.imax or

Proof: Let z = b.imax' then b.tz = b.tmax and z -j. k. We show first that b'.ti ~ b.tz for all i.

First consider i I- k. Since tk is the only label that changes, b'.ti = b.ti. Therefore, the fact that

b.ti ~ b.tz implies that b'.t; ~ b.tz. Now let i = k. As a result of the action, b'.t; = b.nt;. By

assumption b.nt; ~ b.tz, so b'.t; ~ b.tz. Since z I- k, tz does not change, so we can conclude that

b'.nt; ~ b'.tz for all i. This implies that b'.tz = b'.tmax· The following identity now establishes

the first part of the claim: b.tmax = b.tz = b'.tz = b'.tmax·

29

Let S = {ilb.t; = b.tmax} and S' = {ilb'.t; = b'.tmax} Then, b.imax = MAX(S) and b'.imax =

MAX(S'). Since tk is the only t-label that changes and b'.tmax = b.tmax, S' =Sor S' = S - {k}

or S' =SU {k }. When S' = S then MAX(S') = MAX(S). Let z = b.imax· Since k =f:. b.imax' the

definition of b. imax shows that z E S and k < z when k E S. Consequently, when S' = S - { k}

then MAX(S') = MAX(S). Finally, when S' = SU{k} then MAX(S') = MAX(S) or MAX(S') = k.

This shows that b'.imax = b.imax or b'.imax = k. •
Claim 6.4.4 If k =f:. b.imax and b.ntk ~ b.tmax then NVM(b'.tmax' h) > NVM(b.tmax' h) and

NVM;(b'.tmax' h) 2'. NVM;(b.tmax, h) for all i and h.

Proof: The Claim follows immediately if we show that AGREE(b'.tmax' h) 2 AGREE(b.tmax, h).

Suppose i E AGREE(b.tmax,h). If i =f:. k, then since t; does not change and, by Claim 6.4.3,

tmax does not change, i E AGREE(b'.tmax,h). Now consider i = k. By definition of AGREE,

b.t; ~ b.tmax· Since b.nt; ~ b.tmax' IV for state b implies that b.nt; ~ b.tmax· As a result of the

action b'.t; = b.nt;, so b'.t; ~ b.tmax· This fact along with the fact that tmax does not change

implies that i E AGREE(b'.tmax,h). •
Claim 6.4.5 If k =f:. b.imax and b.ntk ~ b.tmax then b' satisfies II - VI.

Proof: We proceed with a case analysis. Consider any i E { 1 ... n} and h E { 1 ... n - 1}.

II: Suppose i = b'.imax· By Lemma 6.4.3, i = k or i = b.imax· First consider i = k. As a direct

consequence of the action, b'.t; = b'.nt;. Now consider i = b'.imax where i =f:. k. In this

case II holds for b' since t; and nt; do not change, and II holds for b.

III: III holds for b' since tmax and nt; do not change, and III holds for b.

IV: First consider i = k. As a consequence of the action b'.t; = b'.nt;. Hence, b'.t; ~ b'.tmax

implies that b' .nt; ~ b' .tmax for all h. Now consider i =f:. k. Since IV holds in state b, and

tmax, t; and nt; do not change, IV holds for state b'.

V: First consider i = k. b'.nt; E CYCLE(b'.tmax' h) and the definition of CYCLE imply that

b'.nt; h~l b'.tmax· As a consequence of the action, b'.t; = b'.nt;. Hence, b'.t; h~l b'.tmax·

Now consider i =f:. k. In this case Vis true in b' since t;, nt; , and tmax do not change and

V is true in b.

30

VI: Since nt; and tmax do not change, b'.nt; = NEXTLABEL(b'.tmax' h) implies that b.nt; =
NEXTLABEL(b.tmax,h), and b'.tmax[h] f:. 1 implies that b.tmax[h] f:. 1. By Claim 6.4.4,

NUM(b'.tmax' h) 2: NUM(b.tmax' h) and NUM;(b'.tmax, h) 2: NUM;(b.tmax, h). Hence, VI holds

for state b' since it holds for state b.

•
Claim 6.4.5 shows that II - VI hold when b.nt1c ::5 b.tmax· For the remainder of the proof

assume that b.tmax -< b.nt1c.

Claim 6.4.6 If k f:. b.imax and b.tmax-< b.nt1c then b'.tmax = b'.t1c and b'.imax = k.

Proof: We proceed by showing that b' .t; -< b' .t1c for all i f:. k. From the definition of tmax and

the assumption that b.tmax -< b.nt1c, we know that b.t; ::5 b.tmax -< b.nt1c. Let z = b.imax then

b.tz = b.tmax and z f:. k. Since k f:. z, k f:. i, and b.tz = b.tmax, there exists a choice vector

that includes the values b.t;, b.tmax' and b.nt1c. Since TOT(b) = true, the values in this choice

vector are totally ordered. Hence, b.t; ::5 b.tmax -< b.nt1c implies that b.t; -< b.nt1c. As a result of

the action b.nt1c = b'.t1c and t; does not change. Therefore, b.t; -< b.nt1c implies that b'.t; -< b'.t1c.

Hence b'.tmax = b'.t1c. Since k is the only process index for which b'.tmax = b'.t1c, b'.imax = k. •

The following Claim lists some of the properties of b'.tmax·

Claim 6.4. 7 If k f:. b. imax and b.tmax -< b. nt1c then there exists h' E { 1 ... n - 1} such that:

1. b'.tmax = b'.t1c = b'.nt1c = b.nt1c = NEXTLABEL(b.tmax,h').

2. b'.tmax[h] = 1 for all h > h'.

3. For all i, b'.nt; ~ b'.tmax implies that b'.nt; = b'.tmax·

4. There exists no if:. k such that b'.t; ~ b'.tmax·

5. NUM(b'.tmax, h) 2: NUM(b.tmax, h) and NUM;(b'.tmax, h) 2: NUM;(b.tmax' h) for all i and all

h < h'.

Proof: By invariant III for state b and the assumption that b.tmax -< b.nt1c, we conclude that

b.nt1c = NEXTLABEL(b.tmax,h') for h' E {1 .. . n -1}. Fix h'.

31

1: By Claim 6.4.6 b'.tmax = b'.tk. The fact that b'.tk = b'.ntk = b.ntk is a direct con­

sequence of the action UPDATEk((tkl vk), (ntki vah)). Finally, we have already shown that

b.ntk = NEXTLABEL(b.tmax• h').

2: This follows directly from the definition of NEXTLABEL.

3: Suppose that b'.nt; ~ b'.tmax· First consider ii- k. The fact that nt; does not change and

part 1 of the claim show that b.nt; = b'.nt; ~ b'.tmax = NEXTLABEL(b.tmax• h'). Consequently,

b.nt; ~ NEXTLABEL(b.tmax• h'). Now the definition of NEXTLABEL implies that b.nt; h~l b.tmax

and b.nt;[h'] = NEXT(b.tmax[h']). Thus b.tmax --< b.nt;. Now III for state b implies that

b.nt; = NEXTLABEL(b.tmax,h) for some h E {1 .. . n - 1}. Since b.nt;[h'] = NEXT(b.tmax[h']),

h = h'. Hence, b'.nt; = b.nt; = NEXTLABEL(b.tmax,h') = b'.tmax· Now consider i = k. In this

case b' .tmax = b' .ntk by part 1 of the claim.

4: We proceed by contradiction. Assume that there exists ii- k such that b'.t; ~ b'.tmax·

Since t; does not change as a result of the action, b.t; = b' .t; ~ b' .tmax = N EXTLABEL(b.tmax, h').

Consequently, b.t; ~ NEXTLABEL(b.tmax, h'). Now the definition of NEXTLABEL implies that

b.t; h~l b.tmax and b.t;[h'] = NEXT(b.tmax[h']). Thus b.tmax --< b.t;. This contradicts the defini-

tion of b.tmax•

5: Let h < h'. Part 5 of the Claim follows immediately if we show that AGREE(b' .tmax' h) ~

AGREE(b.tmax' h). Suppose i E AGREE(b.tmax, h). If if. k, then t; does not change. By part 1 of

claim and the definition of NEXTLABEL, b'.tmax ~ b.tmax· Now the definition of AGREE implies

that i E AGREE(b'.tmax,h). Now consider i = k. Part 1 of the claim shows that b'.t; = b'.tmax·

Hence i E AGREE(b'.tmax' h). •
The remainder of the proof is structured as a senes of claims, one for each of the five

remaining invariants. Fix h' to be the h' defined by Claim 6.4.7. Parts 1-5 of Claim 6.4.7 will

be used throughout the remaining claims.

Claim 6.4.8 If k i- b.imax and b.tmax --< b.ntk then II is true in b'.

Proof: By Claim 6.4.6 b'.imax = k. Part 1 of Claim 6.4.7 shows that b'.tk = b'.ntk. •

Claim 6.4.9 If k f. b.imax and b.tmax --< b.ntk then Ill is true in b'.

32

Proof: Consider any i such that b'.tmax -< b'.nt;. By part 1 of Claim 6.4.7, b'.tmax = b'.ntk

so b' .tmax -< b' .nt; implies that i # k. Furthermore, nt; does not change as a result of the

action and part 1 of Claim 6.4.7 shows that b'.tmax = b.ntk. Hence b'.tmax -< b'.nt; implies

that b.ntk -< b.nt;. By assumption b.tmax -< b.ntkl so b.tmax -< b.ntk -< b.nt;. Now consider

two cases, i = b.imax and i # b.imax· When i = b.imax' invariant II shows that b.tmax = b.nt;.

This implies that b.nt; -< b.ntk -< b.nt; which is impossible by Lemma 5.1. Therefore, it must

be that i # b.imax· Since b.imax # i and b.imax # k there must exist a choice vector that

includes the values b.tmax,b.ntk, and b.nt;. Since TOT(b) =true, the values in this choice vector

are totally ordered. Hence, b.tmax -< b.ntk -< b.nt; implies that b.tmax -< b.nt;. Now III for

state band the fact that nt; does not change show that b'.nt; = NEXTLABEL(b.tmax, h) for some

h E {l .. . n - 1}. Since b'.nt; = NEXTLABEL(b.tmax' h), b'.tmax = NEXTLABEL(b.tmax' h'), and

b'.tmax-< b'.nt;, it must be that h < h'. Hence b'.nt; = NEXTLABEL(b'.tmax,h), which directly

implies that I holds for state b'. •
Claim 6.4.10 If k # b.imax and b.tmax-< b.ntk then IV is true in b'.

Proof: Let b.'nt; :j b'.tmax· First consider i = k. By part 1 of Lemma 6.4.7, b'.ntk = b'.tmax,

which directly implies IV. Now consider i # k and any h:

h < h': Part 1 of Claim 6.4.7 and the definition of NEXTLABEL show that b'.tmax ~ b.tmax when

h < h'. Now consider two cases: b.nt; :j b.tmax and b.nt; i b.tmax· When b.nt; :j b.tmax,

IV for state b shows that b.t; ~ b.tmax implies that b.nt; ~ b.tmax· Now IV is true in b' since

t; and nt; do not change and b'.tmax ~ b.tmax· Now consider the case b.nt; i b.tmax· By

Lemma 5.1, b.tmax -< b.nt;. Now III for state b shows that b.nt; = NEXTLABEL(b.tmax, h;)

for some h; E { 1 ... n - 1}. Furthermore, Since nt; does not change, the assumption that

b'.nt; :j b'.tmax implies that b.nt; :j b'.tmax· Finally, part 1 of Claim 6.4.7 shows that

b'.tmax = NEXTLABEL(b.tmax' h'). Using these facts and the definition of NEXTLABEL we

can conclude that h; > h'. Therefore, b.nt; ~ b'.tmax· Since nt; does not change, this

implies that b'.nt; ~ b'.tmax· This suffices to show that IV is true in b'.

h ~ h': Part 4 of Claim 6.4.7 shows that b'.t; ~ b'.tmax· Hence, IV is vacuously true in b'.

•
33

Claim 6.4.11 If k f b.imax and b.tmax -<(b.ntk then Vis true in b'.

Proof: Suppose b'.nt; E CYCLE(b'.tmax,h) for some i and h. The definition of CYCLE implies

h b, h-1 b' w .d t at . nt; = .tmax. e cons1 er two cases:

h ~ h': First consider if k. Part 1 of Claim 6.4.7 and the definition of NEXTLABEL show that

b'.tmax \~l b.tmax· Thus, V is true in b' since t; and nt; do not change, CYCLE(b' .tmax• h)

depends only on b'.tmax[l ... h - 1], and Vis true in b. Now let i = k. In this case, part

1 of Claim 6.4. 7 shows that b' .t; = b' .tmax. This suffices to show V.

h > h': Since b'.nt; \~1
b'.tmax and h > h', it follows that b'.nt; ~ b'.tmax· Thus part 3 of

Claim 6.4.7 implies that b'.nt; = b'.tmax· By part 2 of Claim 6.4.7, b'.tmax[h] = 1. Thus

b'.nt;[h] = 1, which implies that b'.nt; tf_ CYCLE(b'.tmax• h). This contradicts our original

assumption that b'.nt; E CYCLE(b'.tmax, h). Therefore this case cannot arise.

•
Claim 6.4.12 If k f b.imax and b.tmax -<(b.ntk then VIb is true in b'.

Proof: Assume that b'.tmax[h] f 1. We proceed with a case analysis:

h
h < h': Part 1 of Claim 6.4.7 and the definition of NEXTLABEL show that b'.tmax = b.tmax·

Thus b'.tmax[h] f 1 implies that b.tmax[h] f 1. Since b.tmax[h] f 1 and Vlb is true

for b, NUM(b.tmax,h - 1) 2:: n - h + 1. By part 5 of Claim 6.4.7 NUM(b'.tmax,h - 1) 2::

NUM(b.tmax, h - 1). Thus, NUM(b'.tmax, h - 1) 2:: n - h + 1 which implies that Vlb is true

for b'.

h = h' and b.tmax[h] f 1: Since b.tmax[h] f 1 and Vlb is true for b, NUM(b.tmax• h-1) 2:: n-h+l.

By part 5 of Claim 6.4.7 NUM(b'.tmax• h-1) 2:: NUM(b.tmax• h-1). Thus, NUM(b'.tmax• h-

1) 2'. n - h + 1 which implies that Vlb is true for b'.

h = h' and b.tmax[h] = 1: Part 1 of Claim 6.4.7 and the fact that h' = h imply that b.ntk

NEXTLABEL(b.tmax 1 h). Since b.ntk = NEXTLABEL(b.tmax• h) and Vla is true for state

b, NUMk(b.tmax• h - 1) 2'. n - h. By part 5 of Claim 6.4.7 NUMk(b'.tmax• h - 1) 2::

NUMk(b.tmax, h - 1). Thus, NUMk(b'.tmax, h - 1) 2'. n - h. Since b'.tmax = b'.tkl k E

34

AGREE(b'.tmax• h). Therefore NVM(b'.tmax, h - 1) > NVMk(b'.tmax, h - 1) ~ n - h. Thus,

NVM(b'.tmax• h- 1) ~ n - h + 1, which implies that VIb is true for b'.

h > h': Part 2 of Claim 6.4.7 and the fact that h > h' imply that b' .tmax[h] = 1. This contradicts

the assumption that b'.tmax[h] i 1. Therefore, this case cannot arise.

•
Claim 6.4.13 If k f b.imax and b.tmax -< b.ntk then Via is true in b'.

Proof: Let b'.nt; = NEXTLABEL(b'.tmax• h) for some hand i. We proceed with a case analysis:

h < h': Part 1 of Claim 6.4.7 and the definition of NEXTLABEL show that b'.tmax ~ b.tmax· Now

the fact that nt; does not change and the fact that b'.nt; = NEXTLABEL(b'.tmax' h) imply

that b.nt; = NEXTLABEL(b.tmax• h). Since b.nt; = NEXTLABEL(b.tmax, h) and Vla is true in

stateb, NVM;(b.tmax,h-1) ~ n-h. Part5ofClaim6.4.7showsthat NVM;(b'.tmax,h-1) ~

NVM;(b.tmax• h - 1). Therefore, NVM;(b'.tmax, h - 1) ~ n - h which implies that VIa is

true for b'.

h = h' 7
: Using part 1 of Claim 6.4. 7 and the definition of N EXTLABEL we can conclude that

b'.tmax[h] = NEXT(b.tmax[h]). There exists no z E A such that NEXT(z) = 1. Hence

b'.tmax[h] f 1. Claim 6.4.13 implies that VIb holds for state b'. Since b'.tmax[h] f 1, VIb

forstateb' implies that NVM(b'.tmax,h-1) ~ n-h+l. Thus NUM;(b'.tmax,h-1) ~ n-h

and Vla is true in state b'.

h > h': The fact that b'.nt; = NEXTLABEL(b'.tmax• h) and the definition of NEXTLABEL imply

that b'.nt; h~l b'.tmax· Now part 3 of Claim 6.4.7 and the fact that h > h' imply that

b'.nt; = b'.tmax· Thus b'.nt; f NEXTLABEL(b'.tmax,h) which contradicts our assumption

that b'.nt; = NEXTLABEL(b'.tmax• h). Therefore, this case cannot arise.

•
We now complete the proof of the lemma. To show that b' satisfies I - VI we consider two

cases: k = b.imax and k f b.imax· Claim 6.4.1 shows that b' satisfies I - VI when k = b.imax·

7 Actually, this case cannot arise. However, the argument that proves that the case cannot arise is more
complicated that the argument that proves that Vla is satisfied if the case does arise.

35

When k i b.imax Claim 6.4.2 shows that invariant I holds in state b'. The proof for invariants

II - VI is subdivided into two cases: b.ntk j b.tmax and b.tmax -< b.ntk. Claim 6.4.5 shows

that II - VI hold when b.ntk j b.tmax· Claim 6.4.8, Claim 6.4.9, Claim 6.4.10, Claim 6.4.11,

Claim 6.4.12 and Claim 6.4.13 each consider one of the invariants to show that II - VI hold

when b.tmax -< b.ntk. •
Lemma 6.5 Let b be a state of BCTSS that satisfies I - VI. If (b, SNAPk(tk, vi), b') is a step of

BCTSS for any k, then b' satisfies I - VI.

Proof: Note that none of the t-labels or nt-labels change when opk = SCANk. Therefore,

assume that opk = LABELk. The proof is divided into s series of claims. First consider the case

where k = b.imax·

Claim 6.5.14 If k = b.imax then b' satisfies I - VI.

Proof: The definition of SNAPk(tk, vk) for BCTSS shows that no labels change. This suffices

to show that b' satisfies I - VI. •
So assume that k i b.imax for the remainder of the proof of the lemma. By definition of

NEWLABELki b'.ntk = NEXTLABEL(b.tmax, h') for some h' E {l .. . n - l}. Fix h'. Note, by

definition of NEXTLABEL, b.tmax -< b'.ntk.

Claim 6.5.15 If k 'f b.imax then NVMk(b.tmax• h') = NVMk(b.tmax, h' - 1) = n - h'.

Proof: By definition of NEWLABELki FULLk(h') returns true in state b, so NVMk(b.tmax' h') 2':

n - h'. Moreover, FULLk(h' - 1) returns false in state b, therefore NVMk(b.tmax, h' - 1) <

n- (h' -1). But by definition, NVMk(b.tmax' h' -1) 2': NVMk(b.tmax, h') so NVMk(b.tmax, h' -1) =
NVMk(b.tmax' h') = n - h'. •
Claim 6.5.16 If k 'f b.imax then I is true in b'.

Proof: For a contradiction assume that TOT(b') =false. Then there must exist a choice vector

C whose values are not totally ordered. By Lemma 5.2, there exists b'.f;,b'.fi,b'.fz EC such

that b'.f; \~1
b'.fi \~/ b'.fz and {b'.f;[h],b'.fi[h],b'.fz[h]} = {3,4,5} for some h E {1 .. . n - 1}.

36

Since b' .fi, b' .fi and b' .£, are elements of a choice vector, b' .fi E { b' .t;, b'. nt;}, b' .fi E { b' .ti,

b'.nti}, b'.£, E {b'.t., b'.nt,} and i =f. z, j =f. z, j =f. i. By I for state b, TOT(b) =true. Therefore

the values of C for state b must be totally ordered. The only label that changes as a result of

the action is ntk. Consequently, we can assume without loss of generality that b'.£, = b'.ntk

and z = k. Furthermore, since i =f. k and j =f. k, fi and fi do not change as a result of the

action. Thus, b.£; = b'.fi and b.fi = b'.fi. Now we can conclude that:

b 0 h-1 b 0 h-1 b'
• .c.; = . .c.i = .ntk and {b.£i[h], b.fi[h], b'.ntk[h]} = {3, 4, 5} . (1)

Recall that b'.ntk = NEXTLABEL(b.tman h'). We will now show that h = h'. Let z = b.imax'

then b.tz = b.tmax· Since k =f. b.imax• k =f. z. The definition of NEXTLABEL implies that

b.t, h~l b'.ntk. For a contradiction assume that h < h'. Now substitute b.t, for b'.ntk in

Equation 1 to conclude that b.£; \;1 b.fi h~l b.t, and {b.£i[h], b.fi[h], b.t,[h]} = {3, 4, 5}. By

Lemma 5.2 any set of labels containing b.£;, b.fi, and b.t, is not totally ordered. We now show

that i =f. z and j =f. z since this will allow us to conclude that there exists a choice vector

that includes b.£i, b.fi, and b.t,. Since {b.£;[h], b.fi[h], b.t,[h]} = {3, 4, 5}, and b.£; E {b.t;, b.nt;}

either b.ti[h] =f. b.t,[h] or b.nt;[h] =f. b.t,[h]. If i = z the former is clearly impossible and the

later is impossible since b.nt, = b.t, by invariant II. Thus i =f. z. The same argument shows

that j =f. z. Now we have a choice vector for state b whose values are not totally ordered. The

existence of such a choice vector contradicts invariant I for state b. Thus h </- h'. The definition

of NEXTLABEL implies that b'.ntk[h"] = 1 for all h" > h'. Since b'.ntk[h] E {3,4,5}, h "f h'.

Now h </- h' and h "f h' so h = h'.

We now construct a set of labels which is not totally ordered and which includes b.tmax

and b'.ntk. First show that b.tmax[h'] E {3, 4, 5}. Since b'.ntk[h'] E {3, 4, 5}, the definition of

NEXTLABEL implies that b.tmax[h'] E {2, 3, 4, 5}. We proceed by showing that b.tmax[h'] =f. 2.

In order to reach a contradiction we assume that b.tmax[h'] = 2. Since b.tmax h;,;l b'.ntk

and b' .ntk h~l b.£;, b.tmax h;,;l b.fi. Furthermore, b.tmax[h'] = 2 and b.f;[h'] E {3, 4, 5} thus

b.tmax[h'] -<A b.f;[h']. Consequently, b.tmax -< b.£;. We consider the cases b.£; = b.t; and b.£; =
b.nt; separately. When b.£; = b.t;, b.tmax -< b.t;, which contradicts the definition of b.tmax· Thus,

this case cannot arise. When b.£; = b.nt;, b.tmax -< b.nt;. Now invariant III and the definition

of NEXTLABEL imply that b.nt;[h'J = b.tmax[h'J or b.nt;[h'] = NEXT(b.tmax[h'J) or b.nt;[h'] =

1. Thus, when b.tmax[h'] = 2, b.nt;[h'] r/. { 4, 5}. Therefore we can conclude that b.f;[h'] r/.

37

{4,5} when b.tmax[h'] = 2. Using the same argument we can show that b.fi[h'] {j. {4,5} when

b.tmax[h'] = 2. This contradicts Equation 1 according to which {b.f;[h'], b.fi[h'], b'.ntk[h']} =
{3, 4, 5}. Thus b.tmax[h'J =/: 2 and b.tmax[h'] E {3, 4, 5}.

Since {b.f;[h'J,b.fi[h'J,b'.ntk[h']} = {3,4,5}, using the definition of -<A, we can assume

without loss of generality that:

b.f;[h'] -<A b.fi[h'] -<A b'.ntk[h'] and b.f;[h'] f.A b'.ntk[h']. (2)

Recall that z = b.imax, b.t, = b.tmax' b.t, h~l b'.ntk, and b.t,[h'J -<A b'.ntk[h']. Hence, we can

replace b.fj by b.tmax in Equation 1 and Equation 2 which yields the following:

h' h' I I
b.£; = b.tmax = b .ntk and {b.f;[h], b.tmax[h], b .ntk[h]} = {3, 4, 5}, (3)

b.f;[h'] -<A b.tmax[h'J -<A b'.ntk[h'] and b.£;[h'] f.A b'.ntk[h'J. (4)

Consequently,

b.£; -< b.tmax -< b'.ntk and b.£; -/. b'.ntkl (5)

{b.£;, b.tmax• b'.ntk} ~ CYCLE(b.tmaxi h'). (6)

Consider the cases b.f; = b.nt; and b.f; = b.t; separately:

b.nt;: Since b.nt; E CYCLE(b.tmax• h'), V for state b shows that b.t; h~l b.tmax· By Claim 6.5.15

NUMk(b.tmax, h' - 1) = NUMk(b.tmax' h'). Therefore, since i =/: k, b.t; h~l b.tmax implies
h' •

that b.t; = b.tmax· Now, from IV for state band the fact that b.nt; -< b.tmaxi it follows that

b.nt; ~ b.tmax, a contradiction to Equation 4 according to which b.nt;[h'] -<A b.tmax[h'].

b.t;: By Claim 6.5.15, NUMk(b.tmax,h' - 1) = NUMk(b.tmax,h'). Therefore, since i =/: k, b.t; h:;i
b.tmax implies that b.t; ~ b.tmax· Now, b.t; ~ b.tmax contradicts Equation 4 according to

which b.t;[h'] -<A b.tmax[h'].

We have reached a contradiction in each case. Consequently, there exists no choice vector such

that its values are not totally ordered. Hence, TOT(b') = true. •
Claim 6.5.17 If k =/: b.imax then II - VI are true in b'.

38

Proof: Vlb holds in state b' since it holds in state b and no t-labels change. Now consider

II - Via. If i =fa k, then the definition of SNAPk(t~,vk) shows that neither t;, nt;, tmax, nor

NUM;(tmax• h) change. Therefore, II - Via are true in state b' since II - Via are true in state b.

So assume that i = k. In this case b'.nt; = NEXTLABEL(b.tmax,h') and b'.tmax-< b'.nt;. Consider

II - Via separately:

II: Since k =fa b.imax, i =fa b.imax· Furthermore, b.imax b'.imax thus i =fa b'.imax· Now II is

vacuously true in state b'.

Ill: Since b'.tmax = b.tmax• and b'.nt; = NEXTLABEL(b.tmax• h'), b'.nt; = NEXTLABEL(b'.tmax, h').

IV: Since b' .tmax = b.tmax -< b'. nt; IV is vacuously true in b'.

V: Suppose that b'.nt; E CYCLE(b'.tmax, h) where h E {1 ... n - l}. The definition of CYCLE

now implies that b'.nt;[h] E {3, 4, 5}. Recall that b'.nt; = NEXTLABEL(b.tmax• h'). The

definition of NEXTLABEL implies that b'.nt;[h"] = 1 for all h" > h'. Since b'.nt;[h] E

{3, 4, 5}, we can conclude that h < h'. We consider the two cases h = h' and h < h'

separately.

First consider the case h = h'. Since NEXT(l) tJ_ {3,4,5}, and NEXT(b.tmax[h]) =
b'.nt;[h] E {3,4,5}, b.tmax[h] f. 1. Now VIb for state b shows that NUM(b.tmax,h- 1) z
n-h+l. Furthermore, Claim 6.5.15 and the fact that i = k show that NUM;(b.tmax• h-1) <

n - h + 1. Since NUM(b.tmax• h - 1) z n - h + 1 and NUM;(b.tmax, h - 1) < n - h + 1,

k EAGREE(b.tmax,h- 1). Thus b.t; h~l b.tmax· Since t; and tmax do not change, b'.t; h~l

Now consider the case h < h'. The fact that b'.nt; = NEXTLABEL(b.tmax, h') and the

definition of NEXTLABEL imply that b.tmax[h] = b'.nt;[h]. Therefore, b.tmax[h] f. 1 since

b.tmax[h] = b'.nt;[h] E {3, 4, 5}. Now VIb for state b shows that NUM(b.tmax, h - 1) z n -

h+ 1. The definition of NEWLABEL; and the fact that i = k show that FULL;(h-1) returns

false, which implies that NUM;(b.tmax• h-1) < n-h+l. Since NUM(b.tmax• h-l) z n-h+l

and NUM;(b.tmax, h- 1) < n - h + 1, i E AGREE(b.tmax• h- 1). Thus b.t; h~l b.tmax· Since

t; and tmax do not change, b'.t; h~l b'.tmax•

39

VIa: Since b'.tmax = b.tmax and b'.nt; = NEXTLABEL(b.tmax,h'), we conclude that b'.nt; =
NEXTLABEL(b'.tmax, h'). Now, Claim 6.5.15 implies that NUM;(b'.tmax' h' - 1) = n - h' .

•
We can now complete the proof of the lemma. Claim 6.5.14 shows that I - VI hold for b'

when k = b.imax· When k "=f b.imax• Claim 6.5.16 shows that I holds in b' and Claim 6.5.17

shows that II - VI hold for b'. •

Proof: (For Theorem 6.1) We proceed by induction on the length of the execution end­

ing in the reachable state b. The base case is established by Lemma 6.2. The induction

step is a case analysis based on the action 7l", where (b', 7l", b") is a step in the execution. If

7l" E {BEGINSCANkl ENDSCANk(ob vk), BEGINLABELk(va/k), ENDLABELk}, the induction step fol­

lows from Lemma 6.3. If 7l" = UPDATEk((tk, vk), (ntk. valk)), the induction step follows from

Lemma 6.4. If 7l" = SNAPk(t~, vk), the induction step follows from Lemma 6.5. •

7 Simulation Proof

In this section we prove that BCTSS solves CTSS. Specifically, we use Theorem 2.1 to show that

fairbehs(BCTSS) ~ fairbehs(UCTSS). This implies that BCTSS implements UCTSS. Recall that

we have already shown that UCTSS solves CTSS. In order to use Theorem 2.1, we define the

relation R between the states of BCTSS and the states of UCTSS as follows:

Definition 7.1 (relation R) If bis a state of BCTSS and u is a state of UCTSS then (b, u) E R

iff for all i,j E {1 ... n}, i -=f 1:

1. b.6; = u.6;.

2. b.ti -< b.t; iff u.ti < u.t;,

b. nti -< b.t; iff u. nti < u.t;,

b.ti -< b.nt; iff u.ti < u.nt;,

b.nti -< b.nt; iff u.nti < u.nt;.

3. b.v; = u.v;.

40

4. b.val; = u.val;.

5. b.Vj = U.Vj.

6. b.op; = u.op;.

7. b.pCj = U.pCi.

•
Parts 1 and 5 ensure that a process p; returns the same response to a SCAN; request m

BCTSS and in UCTSS. Recall that ii; contains the order of the labels that was last observed by

p;. Part 2 states that the -< ordering of any choice vector from BCTSS is the same as the <

ordering of the corresponding labels from UCTSS. Notice that part 2 gives no information about

the relation between t; and nti. Parts 3 and 5 ensure that BCTSS and UCTSS associate values

with labels in the same manner. Part 6 ensures that UCTSS and BCTSS will execute the same

part of the SNAPi action code. Finally, part 7 ensures that UCTSS and BCTSS will be able to

execute the corresponding action during each state transition.

The following lemma proves that the first of the three assumptions required by Theorem 2.1

is true.

Lemma 7.1 For the initial state b of BCTSS, there exists an initial state u of UCTSS such that

(b,u)E R.

Proof: In the initial states b of BCTSS and u of UCTSS, i5; = (1. .. n) for all i E { 1 ... n}. Hence

part 1 of R is satisfied. Part 2 is satisfied since ti = nti for all i, j E { 1 ... n} in both BCTSS and

UCTSS. Parts 3 - 5 are satisfied since vi = (0 ... 0) and vi = val; = 0 for all i E { 1 ... n} in both

BCTSS and UCTSS. Parts 6 and 7 of R is satisfied for the initial states since op; = pc; = NIL in

both systems. •

The following lemma shows that the mapping R is preserved by all of the actions of BCTSS.

This lemma proves that the second of the three assumptions required by Theorem 2.1 is true.

Lemma 7.2 Let b be a reachable state of BCTSS and u be a reachable state of UCTSS such that

(b, u) E R. If (b, 7r, b') is a step of BCTSS then, there exists u' such that (u, 7r, u') is a step of

UCTSS and (b', u') E R.

41

Proof: We proceed by case analysis on 7r.

Case 7r E {BEGINSCANk, ENDSCAN1:(6i, vi), ENDLABELi:}:

Since (b, u) E R, we can conclude that b.pck = u.pck, b.ok = u.oki and b.1h = u.vi:. Hence,

7r is enabled in u. Let u' be the unique state of UCTSS such that (u, 7r, u') is a step of UCTSS.

In both BCTSS and UCTSS only opk and pck change as a result of 7r. Inspection of the code in

Figure 1 shows that b' .opk = u' .opk and b' .pck = u' .pci:. This suffices to shows that (b', u') E R.

Case: 7r = BEGINLABELk(valk):

Since BEGINLABEL1:(valk) is an input action, it is clearly enabled in state u. Let u' be

the unique state of UCTSS such that (u, 7r, u') is a step of UCTSS. Only valki opki and pck

change as a result of the action. By definition of the action b'.valk = u'.valk. Furthermore

b'.op1c = u'.opk = LABELk and b'.pck = u'.pck = SNAPk(t~, vk)· This suffices to shows that

(b', u') E R.

Case 7r = SNAPk(t~, ii1:) when b.opk = SCANk:

Since (b, u) E R, b.pck = u.pc1:. Hence, 7r is enabled in u. Furthermore u.opk b.op1c

SCAN k. Let u' be the unique state such that (u, 7r, u') is a step of UCTSS.

SNAP1:(t-:i,, ii1:), when op1: = SCAN1:, determines ok based on the~ ordering. Recall that~ is

a lexicographical order defined by the order between the t-labels, using -< for BCTSS and < for

UCTSS, and the order between the process indices. By assumption (b, u) E R. This implies that

b.t;-< b.ti iff u.t; < u.ti for all i,j E {1 ... n}; thus SNAP1:(fk,v1:) will produce the same ordering

for BCTSS and UCTSS. Hence b'.0-1: = u'.01:. Furthermore, part 3 of R implies that b'.vk = u'.vk.

Figure 1 shows b'.pc1: = u'.pck = ENDSCAN1:(0A:,v1:). Only oki ii1:, and pc1: change as a result of

the action and thus we can conclude that (b', u') E R.

Case 7r = SNAP1:(t~, ii1:) when b.op1: = LABELk:

Since (b, u) E R, b.pck = u.pc1:. Hence, 7r is enabled in u. Furthermore u.op1c b.opk

LABELk. There are two case: k = b.imax and k /- b.imax·

We first consider the case k = b.imax· Since (b, u) E R, part 2 of R implies that b.imax =

u.imax· Hence, k = u.imax· Let u' be the unique state such that (u, 7r, u') is a step of UCTSS.

Now the definition of NEWLABEL1: for BCTSS and UCTSS shows that only pck changes for both

42

BCTSS and UCTSS. Figure 1 shows b'.pc1: = u'.pc1: = UPDATE1:((t1:, v1:), (nti:, val1:)). This suffices

to show that (b', u') E R.

So assume that k -/:- b. imax for the remainder of the proof of this case. Since (b, u) E R, part

2 of R implies that b.imax = u.imax· Hence, k -/:- u.imax· In this case there are many states u'

such that (u, 71', u') is a step of UCTss; these states differ only by the value of u' .nt1:. We now

define a particular value u'. nt1: and hence a particular state u'.

Define S = {iii-/:- k and b.tmax -< b.nt;}. Let z = b.imax' then b.tz = b.tmax· Invariant II

shows that b.ntz = b.tz. Hence, b.ntz = b.tmax· This implies that z r/. S. Thus, b.imax r/. S. For

all i ES, III for state b shows that b.nt; = NEXTLABEL(b.tmax,h;) for some h; E {l .. . n - l}.

Furthermore, the definition of NEWLABEL1: implies that b'.nt1: = NEXTLABEL(b.tmax• h1:) for

some h1: E {1 ... n - 1 }. Define:

S1 ={iii E S,h; > hk}, S2 ={iii E S,h; = hk} and S3 ={iii E S,h; < hk}. (7)

Note that:

(8)

Since -< is a lexicographical order, the order between any two labels in BCTSS is determined by

the first digit at which they differ. Therefore, for any i1 E S1, i2 E S2 , and i3 E S3 , it is the

case that:

b.tmax -< b.nt; 1 -< b.nt;, = b'.nt1: -< b.nt;,. (9)

Recall z = b.imax· Thus, b.tz -< b.nt; 1 -< b.nt;, = b'.nt1: -< b.nt;,. Since z r/. Sand (b, u) E R,

part 2 of R now shows that u.tz < u.nt;
1

< u.nt;, < u.nt;,. Since b.imax = u.imax, z = u.imax

and u.tz = u.tmax· This shows that:

u.tmax < u.nt;, < u.nt;, < u.nt;,. (10)

We use the following rules for picking u'.nt1:. If S2 -/:- 0, then u1.nt1: = u.nt; for any i E S2 • If

on the other hand S2 = 0, define u.ntmax and u.ntmin as follows: u.ntmax = max(u.nt;I i E S1)

if S1 -/:- 0, otherwise u.ntmax = u.tmax· u.ntmin = min(u.nt; Ii E S3) if S3 -/:- 0, otherwise

u.ntmin = oo. Choose any u'.nt1: such that u.ntmax < u 1 .nt1: < u.ntmin· For any i1 E S1, i2 E S2 ,

and i3 E S3 , the two rules and Equation 10 imply that:

u.tmax < u.nt; 1 < u.nt;2 = u'.nt1: < u.nt;,. (11)

43

With both rules for choosing u'.ntk, u.tmax < u'.ntk. Hence, there exists an X E ~> 0 such that

u'.ntk = u.tmax + x.
We now show that (b', u') E R. Only ntk and pck change as a result of the action. Figure 1

shows b'.pck = u'.pck = UPDATEk((tk, vk), (ntk, valk)). Consequently, (b', u') ER if we can show

that part 2 of R holds for states b' and u'. For part 2 of the relation there are four cases to

consider. All other cases do not involve b'.ntk. Let i E {1 ... n} and if:. k:

1. b'.ntk -< b'.t; iff u'.ntk < u'.t;,

b' .t; -< b'. ntk iff u' .t; < u'. ntk:

Since no t-labels change, b'.tmax = b.tmax and b'.imax = b.imax· Recall that k f:. b.imax'

hence b'.ntk = NEXTLABEL(b.tmax' hk) and b'.tmax = b.tmax -< b'.ntk as a result of the

action. Furthermore, b'.t; = b.t;. Therefore, b'.t; ~ b'.tmax -< b'.ntk. Let z = b'.imax· In

this case z f:. k and b'.tz = b'.tmax· Since i f:. k, z f:. k and b'.tz = b'.tmax, there exists

a choice vector that includes b'.t;,b'.tmax, and b'.ntk. By invariant I the values of this

choice vector are totally ordered by -<. Therefore, b'.t; ~ b'.tmax -< b'.ntk implies that

b'.t;-< b'.ntk.

Similarly, since k f:. u.imax, u' .tmax = u.tmax < u' .ntk as a result of the action. Further­

more, u'.t; = u.t;. Therefore u'.t;::::; u'.tmax < u'.ntk. This implies that u'.t; < u'.ntk.

2. b'.nt; -< b'.ntk iff u'.nt; < u'.ntki

b'.ntk -< b'.nt; iff u'.ntk < u'.nt;:

We can divide the nt-labels of UCTSS into two disjoint sets: Recall that S = {j[j f:. k and

b.tmax -< b.ntj }. Define T = {jlJ f:. k and b.tmax ~ b.ntj }. Similarly, define S., = {jlJ f:. k

and u.tmax < u.nti }. Define T,, = {j[j f:. k and u.tmax z u.nti }. By part 2 of R and the

fact that (b, u) E R, S = S,, and T =Tu. Consider i ET and i E S separately.

Suppose i E T. Since i f:. k, b'. nt; = b. nt;. Therefore b'. nt; ~ b' .tmax -< b'. ntk. Let

z = b'.imax· In this case z f:. k and b'.tz = b'.tmax· Since if:. k, z f:. k and b'.tz = b'.tmax'

there exists a choice vector that includes b'.nt;, b'.tmax' and b'.ntk. By invariant I the

values of this choice vector are totally ordered by -<. Therefore, b'. nt; ~ b'. tmax -< b'. nt k

implies that b'. nt; -< b'. ntk. Similarly, u'. nt; = u. nt;, since i f:. k. Therefore, u'. nt; ::::;

u'.tmax < u'.ntk. This implies that u'.nt; < u'.ntk.

44

Now suppose i ES. Consider any i 1 E S1 , i 2 E S2 , and ia E Sa where S1 , S2 , Sa are defined

by Equation 7. Since k (/. S, b'.nti = b.nti and u'.nti = u.nti for all j E S. Consequently

Equation 9 and Equation 11 show that b.tmax -< b'.nt;, -< b'.nt;, = b'.ntk -< b'.nt; 3

and u.tmax < u'.nt;, < u'.nt;, = u'.ntk < u'.nt;
3

• Using these facts we now consider

the following cases: i E S1 , i E S2 , and i E Sa. If i E S1 , then b'.nt; -< b'.ntk and

u'.nt; < u'.ntk. If i E S2 , then b'.nt; = b'.ntk and u'.nt; = u'.ntk. If i E Sa, then

b'.ntk-< b'.nt; and u'.ntk < u'.nt;.

Since (b, u) E R, b.pck = u.pck. Hence, 7r is enabled in u. Let u' be the unique state such

that (u, 7r, u') is a step of UCTSS.

Only vk, tk and pck change as a result of the action. Since (b, u) E R, part 4 of R shows

that b.valk = u.valk. Thus, b'.vk = u'.vk. Figure 1 shows b'.pck = u'.pck = ENDLABELk.

Consequently, (b', u') E R if we can show that part 2 of R holds for states b' and u'. For part 2

of R there are four cases to consider. All other cases are immediate since they do not involve

tk, and since tk is the only label that changes as a result of the action. Let i E { 1 ... n} and

i ~ k:

l. b' .tk -< b' .t; iff u' .tk < u' .t;:

Since (b, u) E Rand tk is the only label that changes, b.ntk -< b'.t; iff u.ntk < u'.t;. As a

result of the action, b'.tk = b.ntk and u'.tk = u.ntk. Hence b'.tk -< b'.t; iff u'.tk < u'.t;.

2. b'.t; -< b'.tk iff u'.t; < u'.tk.

b'.nt; -< b'.tk iff u'.nt; < u'.tk,

b'.tk -< b'.nt; iff u'.tk < u'.nt;:

For all three statements, the reasoning is similar to that of case l.

We can now conclude that BCTSS correctly implements the properties of CTSS.

Theorem 7.3 BCTSS solves CTSS.

45

•

Proof: By definition of BCTSS and ucTss, sig(BcTss) = sig(ucTss) and part(scTss) =
part(ucTss). Lemma 7.1, and Lemma 7.2 show that BCTSS and UCTSS satisfy the first two

conditions of Theorem 2.1. For the third condition note that action 1C is enabled in UCTSS if

and only if 1C is enabled in BCTSS. Consequently, Theorem 2.1 shows that fairbehs(BcTss) ~

fairbehs(vcTss). Thus BCTSS implements UCTSS. Since UCTSS solves CTSS, BCTSS solves CTSS .

•

8 Applications

This section discusses two applications of a CTSS in the area of waitfree algorithms. Specifi­

cally, we discuss multireader multi writer atomic registers and first-come-first-serve (fcfs) mutual

exclusion8
. Both of these problems are solved by very simple algorithms based on a CTSS. Us­

ing our bounded CTSS, these problems have a simple bounded solution. For both problems

we present an algorithm based on a CTSS along with a correctness proof for the algorithm.

In the correctness proof, we assume nothing about the CTSS except that it satisfies the CTSS

specification of Section 3.

/-exclusion (see [13, 14]) and randomized consensus (see [4, 8, 27, 2]) are also important

problems that have simple CTSS based solutions. I-exclusion seeks to limit the number of

processes concurrently executing a section of code called the critical section to l. Mutual

exclusion is the same as I-exclusion when l = 1. Randomized consensus provides a random

algorithm by which a set of asynchronous processes can agree on a common value. A consensus

algorithm is consider valid if all processes agree on value a whenever a was the input originally

given to all processes. Finally a consensus algorithm must guarantee that each process will

terminate in a finite number of steps with probability 1 even if other processes exhibit stopping

failures. Shavit [37] presents an algorithm based on a CTSS along with a correctness proof

for both the [-exclusion and randomized consensus problems. In the correctness proofs, he

assumes nothing about the CTSS except that it satisfies axioms PO-P3 of the CTSS specification

of Section 3.

8 The algorithms for fcfs mutual exclusion and multireader multiwriter registers presented in this paper are
based on similar algorithms presented in [37]. We discuss the algorithms since [37] does not prove their correctness.

46

8.1 Multireader Multiwriter Atomic Registers

This section presents a simple bounded algorithm for solving the famous problem of construct­

ing a multireader multiwriter atomic register, MRMW, from single writer multireader atomic

registers (see [33, 17, 36]). Informally, the read and write operations of a multireader mul­

tiwriter atomic register are separated into a request (input) action and a response (output)

action, concurrent operations executions are allowed, and every request eventually terminates

in a matching response, in such a way as to produce the illusion of instantaneous operations.

The algorithm in Figure 6 is a version (due to Li and Vitanyi [25]) of the elegant and simple

unbounded Vitanyi-Awerbuch algorithm [34]. The original solution is based on an unbounded

construction that behaves in a manner similar a CTSS. We replace this construction by the

LABEL and SCAN operations of the CTSS specification9 .

The code for the operations of MRMW is presented in two forms. Figure 7 presents the code

in the precondition-effect notation commonly used to describe 1/0 Automata. Figure 6 uses

psuedocode. We use the precondition-effect notation as the basis for the correctness proof and

include the compact and intuitive psuedocode only for clarity. The only shared variables of

MRMW are those of the CTSS. The local variables ii; and if; contain the results of the SCAN;

operation. Recall that the n1h process index in the array ii; contains the process index of the

process currently associated with the "largest" label in the ==> ordering of LABEL operations.

READ;

SCAN;(~, if;)
return (V;mar) where max = O;n

WRITE;(val;)
LABEL;(val;)

Figure 6: Psuedocode for MRMW.

In terms of the 1/0 Automata model, MRMW is an 1/0 Automaton with an operational

interface. MRMW is the composition of n 1/0 Automata {p1 .. ·Pn} and any 1/0 Automa­

ton solving CTSS for n concurrent operations. The actions BEGINSCAN;, ENDSCAN;(o;, v;),

9 (37) erroneously claims that the Vitanyi-Awerbuch algorithm [34) can be implement using a CTSS that only
satisfies axioms PO-P3.

47

Shared State:
The shared state of the CTSS with initial values given by Figure 1.
Local State:
The local state of the CTSS with initial values given by Figure 1.
val;: The value written by WRITE;; initially v0 •

V;m•.r: The value returned by READ;; initially v0 •

v;: An array of values returned by SCAN;; initially (v0 ••• v0).

6;: An array of process indexes returned by SCAN;; initially (1 ... n).

READ;:

WRITE;:

BEGIN READ; Eff: pc; +-- BEGINSCAN;

BEGINSCAN; Pre: pc; = BEGINSCAN;

Eff: pc; +-- NIL

ENDSCAN;(ii;,v;) Eff: pc;+-- ENDREAD;(v;m.J where max= O;n

ENDREAD;(V;m.J Pre: pc; = ENDREAD;(V;m • ..)

Eff: pc; +-- NIL

BEGINWRITE;(val;) Eff: pc; f- BEGINLABEL;(val;)

BEGINLABEL;(val;) Pre: pc;= BEGINLABEL;(val;)

Eff: pc; +-- NIL

END LABEL;

ENDWRITE;

Eff: pc; +-- ENDWRITE;

Pre: pc; = ENDWRITE;

Eff: pc; +-- NIL;

Figure 7: Precondition-Effect code for MRMW.

48

BEGINLABEL;(val;), and ENDLABEL; are the means by which p; and the I/O Automaton solving

CTSS communicate. These actions are hidden in MRMW. Each p; is an I/0 Automaton with

an operational interface. The operation types of p; are READ;, WRITE;, SCAN;, and LABEL;.

The operation type READ; consists of the input action BEGINREAD; and the output action

EN DREAD;(v;m.J. The operation type WRITE; consists of the input action BEGINWRITE;(val;)

and the output action END WRITE;. The operation type SCAN; consists of the output action

BEGINSCAN; and the input action ENDSCAN;(o;, v;). The operation type LABEL; consists of the

output action BEGINLABEL;(val;) and the input action ENDLABEL;. There are no internal ac­

tions for p;. The set states(p;) is the set of all possible states of p; where each state is defined by

the values of the variables of the shared and local state. The set starts(p;) is the set consisting

of the state defined by the initial values of the variables of the shared and local state. The set

steps(p;) is characterized by the precondition clause in each action. The set part(p;) consists of

the equivalence class C; where C; consists of BEGINSCAN;, EN DREAD;(V;m.J, BEGIN LABEL; (val;),

and ENDWRITE;.

We introduce the following notation: In any schedule (3, where beh(f3) E fairbehs(MRMW)

and beh(f3) is well-formed and response-live, denote the ath execution of WRITE; by W}aJ and

the ath execution of READ; by RJal. Since each WRITE operation results in exactly one LABEL

operation and each READ operation results in exactly one SCAN operation, LJal and S/al are the

the LABEL; operation of w/al and the SCAN; operation of RJal respectively. Define x(i, a) = O;n

for operation RJal. Intuitively, x(i, a) is the index of the process that wrote the value returned

by RJal. Let c be a choice function for f3 as characterized by PO-P4 of Section 3. Define

r(i,a) = c(i,a,x(i,a)) for operation RJal. Intuitively, r(i,a) is the execution number of the

WRITE operation that wrote the value returned by RJal. Since MRMW has an operational

interface and beh(f3) is well-formed and response-live, Definition 2.8 gives a partial order --+

on all READ and WRITE operations of (3. By inspection of the code in Figure 7, the projection

of f3 onto the actions in exsig(CTSS), f3c, yields a well-formed and response-live behavior, where

(3 0 E behs(CTSS). Consequently, Definition 2.8 gives a partial order --+ 1 on all SCAN and LABEL

operations of (3. Note that W/al --+ Rjbl implies that LJal --+' s)6l. However L;[aJ --+' s}61 does

not imply W/al --+ Rj6l.

An atomic multireader multiwriter register is characterized by the following serial specifi-

49

cation S [23],[28]:

Definition 8.1 (serial specification S) Let s be a sequence of READ and WRITE operations.

Then s E S, if every READ operation returns the value written by the WRITE operation that

immediately precedes the READ operation in s. If no such WRITE operation exists, the READ

operation returns the initial value v0 • •
In order to prove that the MRMW is an atomic multireader multiwriter register, we must show

that MRMW is well-formed-preserving and response-live. Furthermore, we must show that for

every well-formed and response-live behavior /3, where /3 E fairbehs(MRMW), there exists an

order =::::} such that (see Definition 2.10):

l. =::::} is a total order on all READ and WRITE operations that is consistent with ---+.

2. Ifs is the sequence of READ and WRITE operations ordered by =::::}, then s E S of Defini­

tion 8.1.

Consider any schedule f3 where beh(/3) E fairbehs(MRMW) and beh(/3) is well-formed and

response-live. Define order =::::}' and choice function c for f3c as characterized by PO-P4. We

construct =::::} in several steps.

Notice that each WRITE operation includes a LABEL operation from the underlying CTSS.

By Pl the LABEL operations are totally ordered by ==}
1 in a manner that is consistent with

the partial order ---+'. Now define =::::} as follows:

w.[aJ =::::} w.[oJ iff L faJ --•-' L [oJ
I] I---,.-]"

Note that =::::} so far is only defined on the WRITE operations. Now extend =::::} to include the

READ operations.

Insert Ria] in =::::} such that Ria] is between W [(r~i,a))] and the WRITE operation that
x 1,a

immediately succeeds W}(;(,i~)ll in=::::}. If r(i,a) = 0 then let RlaJ precedes the first

WRITE operation.

Now =::::} orders each READ operation with respect to every WRITE operation. However, =::::}

is not yet a total order. READ operations are ordered amongst themselves only if they are

transitively ordered by a WRITE operation. Let R be any set of READ operations that are

50

ordered between two WRITE operations that are consecutive in the ==> order. Now extend ==>

such that the elements of Rare totally ordered in a manner that is consistent with --+. Repeat

this procedure for each set of READ operations that are ordered between two WRITE operations

that are consecutive in the ==> order. Finally, extend ==> for the READ operations that are

ordered before any WRITE operations in a manner that is consistent with --+. Now ==> is a

total order. Specifically, ==> is irreflexive, antisymmetric, transitive and total. We now show

that ==> is consistent with --+.

L 8 1 D • • {1 } f W[a] w[b] h w[b] + w[a] emma . ror any z,J E .. . n , i ; ==> i t en i ; .

Proof: Since W}al ==> wpl, the construction of==> shows that Llal ==>' Lr1• Now Pla

implies that Ljbl +' LJal. Consequently wpi + w}aJ. •

Lemma 8.2 For any i,j E {1 ... n}, if R}aJ ==> wpi then wpl + R}al.

Proof: We consider the cases b = c(i,a,j), b < c(i,a,j), and b > c(i,a,j) separately.

b = c(i,a,j): There are two cases to consider: j = x(i,a) and j f- x(i,a). When j = x(i,a),

then by construction of the==>' order, c(i,a,j)= r(i,a) and wpl ==> R}al. This contra­

dicts the assumption that RJal ==> wpi, so this case cannot arise. Now consider the case

j f- x(i, a). Assume that r(i, a) > 0. Since RJal ==> wpi, the construction of the ==>

order implies that W[r~i,a)J ==> R[aJ ==> w.[bJ Consequently L[r(i,a)J ==>' L[bJ Now Plb
x(i,a) • J • ' x(i,a) J • '

implies that S}aJ finds x(i, a) < j in 6;. However, by definition of x(i, a) no such j exists.

Therefore, this case cannot arise. Now consider the case j f- x(i, a) when r(i, a) = 0.

Since b f- 0, Pl b implies that S/al finds x(i, a) < j in o;. However, by definition of x(i, a)

no such j exists. Therefore, this case cannot arise.

b < c(i,a,j): In the previous case we proved that W}°(i,a,i)] ==> R}aJ. Since b < c(i,a,j),

it must be the case that LP1 --+ 1 L}c(i,a,i)J. Now, Pla shows that LP1 ==>' L}c(i,a,j)J_

Consequently, the construction of the ==> order implies wp1 ==> wp(i,a,i)J ==> RJal,

which contradicts the assumption that R}aJ ==> wp1• Therefore, this case cannot arise.

b > c(i, a, j): We proceed by showing that L}bJ +' S}aJ. In order to reach a contradiction,

assume that LP1 --+ 1 s/al. Assume also that c(i,a,j) > 0. Since b > c(i,a,j), it follows

51

that L [c(i,a,i)J ---"' L fbJ Thus L [c(i,a,i)J ---"' L [bl ---"' s.[aJ which is impossible by P2
J J • J J ' ' •

Therefore L}b] +' s}aJ. Furthermore, if c(i, a, j) = 0, P2 directly show that LP1 +' s}al.

Since L fbJ +' sJaJ we conclude that w.[bJ + R·[aJ
1 ' ' J ' •

•
L 8 3 D . • {1 } :1w[b] R[a) h R[a) + w[b] emma . ror any i, J E ... n , iJ j ==> ; t en ; j .

Proof: We consider the cases b = c(i,a,j), b < c(i,a,j), and b > c(i,a,j) separately.

b = c(i, a,j): P2 implies that sla] +' LP1• This shows directly that Rl01 +' wp1.

b < c(i, a, j): P2 implies that s/al +' L}c(i,a,j)J. Since b < c(i, a, j), LP1 ---+ 1 L}c(i,a,j)] _ Conse­

quently, s/0 l +' LP]. This shows directly that RJal +' wpi.

b > c(i, a, j): We proceed by showing that S}al +' LP]. In order to reach a contradiction,

assume that S}al ---"' Lp1. Assume that r(i, a)> 0. Now P4 implies that L!()'.~)ll ==>' Lp1•

By construction of the==> order, this implies that RJal ==> wpl. If r(i,a) = 0, the

construction of the ==> order shows that RJal ==> wpi. However, the fact that R}aJ ==>

wpi contradicts that assumption that wpi ==> RJal. Consequently, S;[a] +' LP1. This

shows immediately that RJal + wpi.

•
Lemma 8.4 For any i,j E {1 ... n}, If RJal ==>RP] then RP1 + RJal.

Proof: We consider two cases. First consider the case where there does not exist Wk[d] such

that RJal ==> Wk[d] ==> RP1. In this case the construction of the ==> order immediately shows

that RP1 + R}al when RJal ==> RP]. For the second case assume that there exists Wk[d] such

that RJal ==> w}dJ ==> Rpl. The right-most Wk[dJ is given by k = x(j,b) and d = r(j,b). Now

define k' = x(i,a) and d' = r(i,a) assuming that r(i,a) > 0. Consequently,

(12)

In order to reach a contradiction, we assume that RP] -----+ R}al. Consider Equation 12. By

definition of x and r, sl1 sees vjdJ, and S}al sees vjc(i,a,k)J. We now wish to show that c(i, a, k) f:

52

d. To reach a contradiction assume that c(i, a, k) = d. Since S}al sees vld] and vl~'l, and

k' = x(i,a), slal finds k < k' in o;. Now Plb shows that LldJ =>' Ll~'l. By definition of=>

this implies that W }dJ ==> Wk[~'l, which contradicts Equation 12. Thus c(i, a, k) f:. d.

By assumption R[bJ _.... R·[aJ thus 5_[bJ _...., sJaJ Since s.rbJ sees v[dJ sJaJ sees v[c(i,a,k)J and
J ,, J •• J k' k '

c(i,a,k) f:. d, P3 now shows that d < c(i,a,k). This implies that Lld] =>' Llc(i,a,k)J. Thus, by

definition of==> it follows that:

(13)

Next we show that Wk[c(i,a,k)J => RlaJ. If not, the construction of the => order and the facts

that k' = x(i,a) and d' = r(i,a)imply that wrl => Rlal => Wk[c(i,a,k)J. Consequently,

Ll~'J => Llc(i,a,k)J. Then, Plb implies that S/al finds k' = x(i,a) < kin o;. However, by

definition of x(i, a), no such k exists. Therefore Wk[c(i,a,k)] => R}aJ. This fact along with

Equation 13 and the fact that ==> is transitive implies that Wk[dJ => R,!al. Thus we have a

contradiction to Equation 12.

Finally, consider the case where r(i, a) = 0. As in the previous case, R,!al => Wk[dJ ==> RP1,

where Wk[dJ is given by k = x(j, b) and d = r(j, b). Since r(i, a) = 0, the definition of r(i, a)

and Plb imply that c(i,a,z) = 0 for all z E {1 ... n}. In order to reach a contradiction

assume that RP1 - Rla]. This implies that sp1 _, s/al. Furthermore since c(i, a, k) = 0 and

d = r(j,b) > 0, c(i,a,k) f:. r(j,b). Now P3 shows that r(j,b) < c(i,a,k), which contradicts the

fact that c(i,a,k) = 0 and d = r(j,b) > 0. •
We now show that the READ and WRITE operations ordered by the => order form a sequence

permitted by the serial specification S of Definition 8.1.

Lemma 8.5 Let s be the sequence of READ and WRITE operations of f3 ordered by the =>

order. Then s E S.

Proof: There are two cases: r(i,a) > 0 and r(i,a) = 0. When r(i,a) > 0 the definition of=>

implies that R}aJ is immediately preceded by WJ(ri~l)l, where r(i,a) = c(i,a,x(i,a)). Now, PO

shows that v; .. <•.•l = val!(~'.~))J. When r(i, a) = 0, the definition of=> implies that Rla] precedes

all WRITE operations. Also, PO shows that v; .. (•,•> = val!~L) = v0 • Noting that R}aJ returns

vi .. (.,•> completes the proof. •
53

Finally, we prove that MRMW is well-formed-preserving and response-live.

Lemma 8.6 MRMW is well-formed-preserving and response-live.

Proof: Notice, by inspecting the precondition clauses in the code of Figure 7, that for equiv­

alence class C; of part(MRMW), there is always at most one action enabled. Furthermore each

action remains enabled until it is executed. Consequently, the actions must be executed in the

sequence in which they are enabled. Furthermore, in a fair execution each enabled action will

eventually be executed.

Now consider any fair execution whose behavior has a well-formed-input. Since CTSS is

well-formed-preserving and response-live, inspection of the precondition-effects code in Figure 7

shows that the following sequence of actions are executed in response to a BEGIN READ; input ac­

tion: BEGINSCAN;, ENDSCAN;(6;, v;), and EN DREAD;(V;m.J. In response to a BEGINWRITE;(val;)

input action, the following sequence of actions is executed: BEGIN LABEL; (val;), ENDLABEL;, and

ENDWRITE;. Finally, no actions of C; are enabled between the execution of a ENDREAD;(v;m.J

or ENDWRITE; action and the next execution of a BEGINREAD; or a BEGINWRITE;(val;) ac­

tion. Inspection of these action sequences and the definitions of well-formed-preserving and

response-live, immediately show that MRMW is well-formed-preserving and response-live. •

We can now conclude that MRMW, if it uses our bounded CTSS construction, is a bounded

atomic multireader multiwriter register.

Lemma 8. 7 M RMW is an atomic register satisfying serialization specification S.

Proof: By Lemma 8.6, MRMW is well-formed-preserving and response-live. Now consider

any behavior /3 E fairbehs(MRMW) that has a well-formed-input. Since MRMW is well-formed­

preserving and response-live, /3 is well-formed and response-live. Consider the order => on the

operations in /3 defined in the preceding discussion. Lemma 8.5 shows that the order satisfies

the serial specification S. Lemma 8.1, Lemma 8.2, Lemma 8.3, and Lemma 8.4 show that =>

is consistent with partial order --r. •

54

1'

8.2 Mutual Exclusion

The mutual exclusion problem, originally due to Dijkstra [10], is stated informally as follows

(a more formal treatment that also introduces fault tolerance issues, can be found in (22]) 10
.

A system of n asynchronous processes communicate via shared memory consisting of single

writer multireader atomic registers. The program of every process consists of two distinguished

sections: a remainder section and a critical section. Processes alternate between executing the

remainder and the critical section. The fundamental goal of the mutual exclusion algorithm

is to limit the number of processes concurrently executing the critical section to 1. To solve

the mutual exclusion problem, one is required to design trying and exit program sections to be

performed before and after executing the critical section respectively. The trying section coor­

dinates the entry into the critical section. In our algorithm the trying section has a subsection

called the doorway section. This section is the first part of the trying section and is waitfree.

The behavior of a mutual exclusion algorithm is characterized as follows (in order to simplify

the discussion, this section uses a slightly less formal approach than the previous sections):

Mutual Exclusion: In any reachable state, no two process are executing the critical section.

Deadlock Freedom: In any reachable state, if there exists some process that is in the trying

section, then there exist a process that is in the critical section or a process that will

eventually enter the critical section.

Lockout Freedom:

1. In any execution, if there is no process that is forever executing the critical section,

any process executing the trying section will eventually execute the critical section.

2. In any reachable state, if there is some process in the exit section, then some process

will eventually enter the remainder section.

The fairness property of lockout freedom is strengthened in the following way.

First Come First Serve: If process p; finishes executing the doorway section before process Pi

begins executing the doorway section, then p; executes the critical section before Pi does.

10 Many solutions to the problem have been proposed over the years. (See [31].)

55

The psuedocode version of our mutual exclusion algorithm is presented in Figure 8. The

algorithm is a simplified version of Lamport's Bakery Algorithm [19). Our notation uses

BEGINLABEL;() and ENDLABEL; instead of just LABEL;() in order to clearly indicate what the

atomic actions are. The reason for using BEGINSCAN; and ENDSCAN; instead of SCAN; is the

same. Lines 1 - 8 represent the trying section and line 10 the exit section. The doorway

section consists of lines 1 - 4. In addition to the shared variables associated with the CTSS,

each processes, Pi, has a shared variable called xi which is implemented as a single writer mul­

tireader atomic register. Process Pi writes xi and all other processes read x;. The variable

ii; is a local variable that contains the result of the SCAN i operation of lines 6 and 7. Lines

1, 2, 3, 4, 6, 7, 9, 10, and 11 each represent atomic actions. Since lines 5 and 8 read the shared

atomic variables xi for j E { 1 ... n}, lines 5 and 8 consist of one atomic action for each time

a particular xi is read. For every execution of lines 5 and 8 each xi, for j E {1 ... n }, is read

once. The states of the Lamport-Bakery mutual exclusion algorithm are defined by the values

of the variables associated with the CTSS, the shared variables X; for all i, as well as all local

variables and the program counter, pc, of each process.

Our correctness proof essentially follows the arguments given in [28] and [22]. The contribu­

tion of our proof is that it is based on the CTSS specification. We now introduce some notation

that will be used in the correctness proof. Consider the state s in any execution. If process Pi

is not executing the LABEL; operation in states, in other words pc; -f: 2 and pci -/: 3, we define

the function l(i, s) which is a function from the set of process indexes and the set of states to

the set of execution numbers of the LABEL operations of the execution. s(i, s) is defined in a

similar manner for the SCAN; operations.

Definition 8.2 (function l) Consider an execution a. Let s be a state in a where pc; -/: 2

and pc; -/: 3. Then, define l(i, s) to be the execution number of the LABEL; operation whose

ENDLABEL; action was the last ENDLABEL; action executed in a before states. •
Definition 8.3 (function s) Consider an execution a. Let s be a state in a where pc; -/: 6

and pc; -/: 7. Then, define s(i, s) to be the execution number of the SCAN; operation whose

ENDSCAN; action was the last ENDSCAN; action executed in a before states. •

56

Intuitively, for a state s, LP(i,•)l is the most recently executed LABELi operation and s/•(i,•)l

is the most recently executed SCAN; operation. In order to simplify the presentation, we do

not provide the argument for why p; has pc; =/:- 2 and pc; =/:- 3 or pc; =/:- 6 and pc; =/:- 7 when

discussing LP(i,•)] or S;[•(i,•)] in cases where it is obvious. The order ---+ is used to order states

of an execution as well as the CTSS operation instances in the execution.

Definition 8.4 (---+ order) Let A1 and A2 be CTSS operation instances and si and s2 be

occurrences of states in an execution a of the Lamport-Bakery mutual exclusion algorithm.

Then:

1. A 1 ---+ A 2 iff the response action associated with Ai occurs before the request action

associated with A2 •

2. Ai ---+ si iff the response action associated with Ai occurs before si.

3. s 1 ---+Ai iff the request action associated with Ai occurs after si.

•
Note that ---+ provides a total order for the states and a partial order for the CTSS operation

instances. Now consider any execution a of the Lamport-Bakery mutual exclusion algorithm.

We wish to show that the execution satisfies the four properties for mutual exclusion given

above. Notice that the projection of the execution onto the external actions of CTSS, gives a

behavior of CTSS that has a well-formed-input. Consequently, the projection of the execution

onto the external actions of CTSS must satisfy axioms PO, Pl, and P2 11 of Section 3. Let ==>

and c be an order and a choice function that satisfy PO, Pl, and P2 for the projection of a

onto the external actions of CTSS. Now consider the following lemma which will be used to

prove the mutual exclusion property.

Lemma 8.8 In any state s of the execution a, if p; is in the critical section and Xj = T then

L.!t(i,•)l ___.._ L pU,.)J
' ---r J •

11 Axioms P3 and P4 are not needed for the Lamport-Bakery mutual exclusion algorithm.

57

1
2
3
4
5
6
7
8
9
10
11

repeat forever
X; f- L
BEGINLABEL;()

END LABEL;

X; f- T
Ll: If 3j such that x; = L then goto Ll
L2: BEGINSCAN;

ii; <--- ENDSCAN;

If 3j such that j < i in ii; and xi = T then goto L2
critical section
X; <--- NIL

remainder section
end repeat

Figure 8: Psuedocode for Lamport-Bakery mutual exclusion algorithm

Proof: Consider the first state in the execution a after the action in which p; reads xi of L

in line 5 for the last time before states. Call this state s 1 • Since xi f L, pci f 2 and pc; f 3

in state s 1 • Hence we can now consider two cases: L}1(i,•)]---+ 8 1 and s 1 ---+ L}1(j,•)l.

Lj1U,•)] ---+ 8 1 : Consider the last state in a before the action in which p; considers Pi for the

last time in line 8 before state s. Call this state 8 2. Since p; enters the critical section,

there are three cases to consider: i < j in 6; and xi = T, i < j in 6; and xi f T, and

j < i in ii; and x1 f T. We consider the last two cases together by showing that the case

xi f T cannot arise.

i < j in Oj and xi = T: In this case L}1(j,s)] ---+ S1 ---+ s}•(i,s,)J, therefore L}1(j,s)] ---+

s/•(i,•,)J. Furthermore, by definition of l(j, s) there exists no LY1, where b f l(j, 8), such

that L}'(j,•)]---+ LY1 ---+ s/*·•>ll. Consequently, P2 shows that c(i,s(i,s2),j) = l(j,s).

The same argument shows that c(i, s(i, s2), i) = l(i, 8). Since p; found i < j in ii; of

s.[•(i,•,)l Plb shows that L·[l(i,•)l::::} L riu,•ll
' ' ' J •

xi f T: In this case xi = NIL or xi = L. If xi = NIL, then since xi = T in state 8

and 82 ---+ 8, Pi must execute the LABELi operation of lines 2 and 3 between 8 2 and 8.

Consequently 8 1 ---+ Lj'U,•)l, which contradicts the assumption that L}1CJ,•)J ---+ 8 1 . So,

it must be that xi = L in state 8 2 • Recall that xi f L in 8 1 and xi = T in 8. Since

8 1 ---+ 8 2 ---+ s, inspection of the code shows that Pi must execute the LABELi operation

of lines 2 and 3 between 8 1 and 8. This implies that 8 1 ---+ L}1(j,s)J, which contradicts the

58

assumption that Lj1U,•)]----> s1 • Therefore this case cannot arise.

s 1 ----> Lj1U,•)]: Since LP(i,•)l----> s 1 , we can conclude that LP(i,•)l----> Lj1U,•ll. Now Pla implies

that LJ1<i,•)l => LJ1U.•ll.

•
With this lemma, it is easy to show mutual exclusion.

Lemma 8.9 In any state s of the execution a, if p; is in the critical section, then there exists

no j of i such that Pi is in the critical section.

Proof: We proceed by contradiction. Assume that there exists a state s such that p; and Pi

are in the critical section where i of j. Since p; and Pi are in the critical section, x; = T and

xi = T. Now Lemma 8.8 implies that LP(i,•)] => Lj1U,•)] and L}1U,•)] => LP(i,•)l. By Pl, =>

is a total order, so we have a contradiction. •
The following Lemma shows that Lamport-Bakery mutual exclusion algorithm satisfies the fcfs

property.

Lemma 8.10 Consider the execution a. Lets; be any state after p; executes the action on line

3 but before p; is in the critical section for the first time after the execution of the action. Let

si be any state before Pi executes the action on line 2 such that Pi must execute line 2 before it

enters the critical section for the first time after si. Assume that s; ----> si. Let sc, be the first

state in which p; is in the critical section after s;. Let sc, be the first state in which Pi is in the

critical section after si. Then Sc, ----> sc,.

Proof: For a contradiction assume that sc, ----> Sc,. In sc,, Pi is in the critical section and

T H L 8 8 • l• h L [/(i,•c ·)] [l(i,•c.)] H . x; = . ence emma . imp ies t at i 1 => L; 1
• owever, smce s; ----> Sj, we

k h L [t(i.ac.)J L[IU,•c·ll h" h b P . d .. now t at ; 1 ----> i 1
, w ic y la is a contra ict10n. •

Next we consider the deadlock freedom property of the Lamport-Bakery mutual exclusion al­

gorithm. We consider the second part of the property first.

Lemma 8.11 Suppose that process p; is in the exit section in state s of execution a. Then p;

will eventually enter the remainder section.

59

Proof: The lemma follows immediately from the fact that the exit section, line 10, consists

of a single waitfree action. •
Lemma 8.12 If Pi is in the trying section in state si of execution a, then there exist some

process that is in the critical section, or there exists some process that eventually enters the

critical section.

Proof: Let Pi be in the trying section in si. If there exist some process in the critical section

in si, then we are done. Therefore, assume that no such process exists. Let Sc, where s; -------+ Sc,

be the state in which the first processes is in the critical region after s;. Since the code of

Figure 8 is waitfree, except for lines 5 and 8, p; will eventually reach line 5. Label this state in

the execution as s 1 • Now let S be the set of processes that are in the trying section in state s 1 •

If there are any processes in the exit section in state s1 , Lemma 8.11 implies that there exists

a state s2 , where s1 -------+ s2 , such that there are no processes in the exit section in state s2 •

Let Pk E {1 ... n} - S. If xk = Tin any state between s2 and sci it must be that Pk

executes the LABELk operation of lines 2 and 3 after the state s 1. Furthermore p; last executes

the LABEL; operation before state s1 Hence Pla shows that for any state s between s2 and sc

where Xk = T:

L.[1(i,a)J ==::} L[l(k,•)l
• k • (14)

Consider any p
1
· E S. If x

1
· = T then L [l(i,•,)] is defined If x · = L then L [l(i,•,)] may not

' J • J ' J

be defined. Since lines 1 - 4 are waitfree, it will eventually be the case that xi = T for all

Pi E S. Call this state S3. Now L}1(i,•,)] is defined for all Pi E S. Consider Pi E S such that

L}1(i,•,)] ==::} Lll(k,•,)] for all Pk E Sand k f:. j. By Pl, ==::} is a total order, hence Pi exists.

Since none of the processes in S pick a new label between s3 and sc, L}1(j,•)] ==::} Lll(k,•)] for

all k f:. j, k E S, and s between s3 and Sc. Furthermore, for all Pk E { 1 ... n} - S where x k = T

and s between s3 and sc, Lj1U,•)] ==::} Lf(k,•)l. This is a consequence of Equation 14 which

shows that L.[l(i,•)] ==::} L[l(k,•)] and the definition of p· which shows that L[l(i•)l ==::} L[l(i,s)]
I k) J l •

The process Pi will progress past line 5 unless there exists some process Pk such that xk = L.

Eventually, it must be that xk f:. L. Furthermore, xk f:. L at least until Sc. Thus each

process that is preventing p/s process at line 5 will eventually have xk f:. L. At this point

Pi will advance to line 8. Process Pi will advance to the critical section unless there exists

60

some processes Pk such that xk = T and Pi orders k < j in the 0 returned by the SCANi

operation executed in lines 6 and 7 just prior to Pi finding k < j in line 8. Since the SCAN i

operation of lines 6 and 7 continues to be executed while there exists some processes Pk such

that xk = T and k < j in Oj, there must eventually be a states between states s3 and Sc such

that Lkl(k,•)J--+ sJ•U,•ll. By definition of l(k,s) there exists no Lkbl, where b -f:. l(k,s), such

that Lk1(k,•)J--+ Lib]--+ s}•U,•ll. Consequently P2 shows that c(j,s(j,s),k) = l(k,s). The

same argument shows that c(j, s(j, s), j) = l (j, s). Since Pi orders k < j in 0, P 1 b shows that

Lll(k,•)] ==> Lj1U,•ll. However, such a k cannot exist in state s since s is between the states

s3 and Sc and, for all states s' between s3 and sc, Lj1U,•')] ==> Lll(k,•')] for all k E S and all

k E {1 ... n} - S where xk = T. Therefore, Pi will eventually enter the critical section. •

Finally, we consider the no lockout property.

Lemma 8.13 Suppose in the states; in execution a, p; is in the trying section. If there is no

Pi, such that Pi is in the critical section for all states after some state si, then p; will eventually

enter the critical section.

Proof: The first 4 lines of the trying section are waitfree. Therefore, p; will eventually com­

plete these lines. Call the first state after line 4 completes s 1 • Let S be the set of processes

Pi for which it is possible that Pi is in the critical section in some state which succeeds s 1 ,

but proceeds the state in which p; enters the critical section. Clearly S ~ {1, ... , n} - { i}.

Since p; is in the trying section Lemma 8.12 says that p; or some Pi E S will eventually enter

the critical section. The proof is complete if p; enters the critical section, so assume that Pi

enters the critical section. After Pi exits the critical section, Pi must start executing line 2 after

some state si, wheres; --+ si, before Pi enters the critical section a subsequent time. Now

Lemma 8.10, shows that S = S - {j} after after Pi exits the critical section. We repeat this

argument until S = 0. Then Lemma 8.12 says that p; eventually enters the critical section. •

9 Formal Justification for Use of Snapshot

The purpose of this section is to formally justify the manner in which the snapshot operations

SNAP and UPDATE of [1] are used in BCTSS and UCTSS. Specifically, we must justify the fact

that we do not use separate actions for the invocation and response of each snapshot operation.

61

9.1 Theory

In order to provide a strong theoretical foundation for the discussion, we extend some of the

concepts introduced in Section 2. Most of the ideas in following discussion are taken from

Goldman, Lynch and Yelick [15]. We present a simplified and less general version of their

results.

Goldman et al. introduce the concept of an environment, a process and an object. Intuitively,

an environment refers to the user of a particular I/O Automaton. The I/O Automata model

generally does not model the users of I/O Automata except to describe the situations in which

a user is expected to issue input actions. A process is an I/O Automaton that performs an

operation on behalf of the environment. Typically the interface between the environment and

a process is described by a set of input actions that are used by the environment to request an

operation and output actions that are used by the process to respond to an operation request.

Finally, objects are I/O Automata that model shared data types that provide a means for a set

of processes to communicate. The following discussion formalizes these concepts. Note that we

largely retain the notational conventions used in Section 2.

Definition 9.1 (object I/O Automata) An object I/O Automaton, o, which can be used

by n process I/0 Automata (see Definition 9.2) is an I/O Automaton with an operational

interface which is characterized as follows. For each i E {l ... n}, there exists a disjoint set of

operation types ops;(o) ~ ops(exsig(o)). For each operation type a; E ops;(o), we denote the

input actions by INVOKEo,p;(ai, v) and the output actions by RESPONSE 0 ,p;(ai, r). •
As a shorthand for an object I/O Automaton we use the term object. The subscript o,p;

indicate that a process I/0 Automaton denoted by p; will use this action to communicate with

the object o when o and p; are composed. We now present a formal definition for a process I/O

Automaton.

Definition 9.2 (process I/O Automata) A process I/O Automaton, p;, is an I/O Automa­

ton with an operational interface which is comprised of two disjoint sets of operation types:

• There are a set of operation types which describe the interface between the process and

the environment. For any such operation type called ai we denote the input actions by

INVOKEp.(a;,v) and the output actions by RESPONSEp,(a;,r).

62

• There are a set of operation types which describe the interface between the process and

an object12 denoted by o. For any such operation type called ai we denote the input

actions13 by RESPONSEo,p, (a;, r) and the output actions by INVOKE0 ,p.(ai, v).

•
For the discussion that follows, let A be any 1/0 Automaton that is a composition of n pro­

cesses {p1 •• ·Pn} and one object o where the external actions of o are hidden. We now define

various characteristics of schedules of A. These characteristics will be used in the definition of

an 1/0 Automaton called an IR system. Let (3 be a schedule of A. Then fJIPi is the projec­

tion of (3 onto all INVOKEp,(ai, v) and RESPONSEp,(a;, r) actions that constitute p;'s interface

with the environment. Similarly, fJlo,pi is the projection of (3 onto all INVOKE 0 ,p,(a;,v) and

RESPONSEo,p, (ai, r) actions that constitute Pi 's interface with the object o. In order to insure

that a process only issues requests to an object when that process is servicing a request from the

environment, we introduce the concept of a process Pi being active after a prefix of a particular

schedule. Specifically, a process Pi is active after a prefix (J' of the schedule (3 of A if the last

action in fJ'lp; is an INVOKEp,(ai,v) action.

Definition 9.3 {IR-well-formed) Let (3 be a schedule of A. We say (3 is IR-well-formed if

1. beh((J) is well-formed.

2. Every INVOKE 0 ,p,(ai, v) action in fJlo,p; occurs from a prefix of (3 after which p; is active.

3. fJlo,p; consists of an alternating sequence of input and output actions of o, starting with

an input action, such that each RESPONSEo,p,(a;,r) action is immediately preceded by an

INVOKE0 ,p,(a;, v) action.

4. In (3 no actions of Pi occur between any pair of corresponding INVOKE 0 ,p, (a;, v) and

RESPONSE 0 ,p,(a;, r) actions.

•
12 [15] allows processes to have an interface to an arbitrary number of objects. For the sake of simplicity, we

restrict attention to processes which have an interface to only one object.
13 Notice that we have changed the notational convention for the process' interface with the object. This arises

from the fact that the input actions of the object must have the same name as the output actions of the process.
In this way, the process can initiate operation instances on the object (see discussion of composition in Section 2).

63

Definition 9.4 (IR-well-formed-preserving) Let f3 be a schedule of A. f3 is IR-well-formed­

preserving if, for all prefixes {3' of {3, where beh(f3') has a well-formed-input, /3' is IR-well-formed .

•
We say that A is IR-well-formed-preserving if every schedule of A is IR-well-formed-preserving.

Definition 9.5 (IR system) Let A be an I/O Automaton that is a composition of n pro­

cesses, {p1 •• ·Pn}, and one object, o, where the external actions of o are hidden. A is an IR

system iff:

1. The object o of A is an atomic I/O Automaton that satisfies some specification S.

2. A is IR-well-formed-preserving.

3. A is response-live.

•
We now define an IRA system which is the same as an IR system except that it combines the

INVOKE 0 ,p,(a;, v) and RESPONSEo,p,(a;, r) actions into a single action called ATOMIC 0 ,p,(a;, v, r).

Definition 9.6 (IRA system) Let I = {l ... n}. Let A be an IR system composed of n

processes, {p1 .. ·Pn}, and an atomic object, o, satisfying specification S. Then the IRA system

A' that corresponds to A is defined as follows:

• states(A') = states(A)

• start(A') = start(A)

• sig(A') = (in(A),out(A),(int(A)- LJ{INVOKE 0 ,p,(a;,v),RESPONSE0 ,p,(a;,r)})
iEJ

U LJ{ATOMIC0 ,p,(a;, v, r)}.
iEJ

• steps(A') = the set of all steps (a, 7r, a") such that either:

7r ~ LJ{1NVOKE0 ,p,(a;,v),RESPONSE0 ,p.(a;,r)} and (a,7r,a") E steps(A).
iEJ

64

7r E LJ{ATOMIC0 ,p,(a;, v, r)} and there exists state a' of A such that:
iEl

(a,INVOKE0 ,p,(a;,v),a') E steps(A) and (a',RESPONSE0 ,p,(a;,r),a") E steps(A), and,

for any schedule f3 of A', the projection of f3 onto the set of all ATOMIC0 ,p,(a;, v, r)

actions must be an element of the sequential specification of the atomic object o.

• part(A') = part(A) except that the set of ATOMIC 0 ,p,(a;, v, r) actions, for all v and r,

replace the set of INVOKE0 ,p,(a;, v) actions for all v.

•
In the action signature we are replacing pair of actions INVOKE 0 ,p,(a;, v), RESPONSE 0 ,p,(a;, r)

by a single action ATOMIC0 ,p,(a;,v,r) such that ATOMICo,p,(a;,v,r) can be executed in A' for

situations where the pair of actions INVOKEo,p; (a;, v), RESPONSEo,p; (a;, r) can be executed in

A. The following significant theorem due to Goldman et al. [15] can be used to show that A'

implements A.

Theorem 9.1 Let A be an IR system and A' be the IRA system corresponding to A. If a is

a fair execution of A, then there exists a fair execution a' of A' such that beh(a') = beh(a).

Corollary 9.2 Let A be an IR system. Then A implements the IRA system corresponding it.

Proof: This follows immediately from Theorem 9.1. •
9.2 Proof

Figure 9 shows the code for UCTSS and BCTSS 14 that uses the invocation and response actions for

SNAP; and UPDATE;. We call these new 1/0 Automata UCTSS' and BCTss'. Since the interface

provided by [1] uses request and response actions, we can technically only use the SNAP; and

UPDATE; primitives as is done in UCTSS' and BCTSS'. In order to show that UCTSS' and BCTSS'

solve CTSS will will show that UCTss' implements UCTSS and BCTss' implements BCTSS.

We proceed as follows. We show that UCTss' and BCTss' are IR systems, and then note

that the IRA systems corresponding to UCTss' and BCTSS' are UCTSS and BCTSS respectively.

14
UCTSS and BCTSS share the code that is relevant to this discussion.

65

SCAN;:

BEGINSCAN;

BEGINSNAP;

ENDSCAN;(o;, v;)

LABEL;:

BEGIN LABEL;(val;)

Eff: op; +-- SCAN;

pc; +-- BEGINSNAP;

Pre: pc; = BEGINSNAP;

Efj: pc; +-- NIL

Efj: If op; = SCAN; then
ii; +-- the sequence of indexes where
j appears before k in o; iff (ti, j) ~ (tk> k)
pc;+-- ENDSCAN;(o;, v;)

If op; = LABEL; then
nt; +-- NEWLABEL;(4)

pc; +-- BEGINUPDATE;((t;, v;), (nt;, val;))

Pre: pc;= ENDSCAN;(ii;, v;)

Efj: pc; +-- NIL

Efj: op; +-- LABEL;

pc; +-- BEGINSNAP;

BEGINUPDATE;((t;, v;), (nt;, val;)) Pre: pc;= BEGINUPDATE;((t;, v;), (nt;, val;))
Efj: pc; +-- NIL;

ENDUPDATE;

ENDLABEL;

£ff: pc; +-- ENDLABEL;

Pre: pc; = ENDLABEL;

Efj: pc; +-- NIL

Figure 9: Precondition-Effect code for UCTSS' and BCTSS'

66

This will allows us to use Corollary 9.2 to conclude that UCTSS' implements UCTSS and BCTss'

implements BCTSS.

Formally, UCTSS' and BCTSS1 are a composition of n process I/O Automata {p1 .. ·Pn} and

one object I/O Automaton o where p; and o are defined as follows: Each process I/O Au­

tomaton has two operation types that constitute its interface with the environment, LABEL;

and SCAN;. The object interface of p; consists of the SNAP; and the UPDATE; operation types.

These operation types consist of the following external actions: LABEL; consists of the input

action BEGINLABEL;(val;) and the output action END LABEL;. SCAN; consists of the input ac­

tion BEGINSCAN; and the output action ENDSCAN;(o;, v;). SNAP; consists of the output action

BEGINSNAP; and the input action ENDSNAP;(f;, v;). UPDATE; consists of the output action

BEGINUPDATE;((t;, v;), (nt;, val;)) and the input action ENDUPDATE;. There are no internal ac­

tions. The partition is the same as it was for the UCTSS and BCTSS version of p; (see Section 4)

except that BEGINSNAP; replaces SNAP;(f;, v;) and BEGINUPDATE;((t;, v;), (nt;, val;)) replaces

UPDATE;((t;, v;), (nt;, val;)). The steps of p; are determined by the pc; variable, and the states

and start states are defined as they were for the UCTSS and BCTSS version of Pi· The object

I/O Automaton o is the implementation of the snapshot object given in [1]. We do not provide

the code for o, but present some of its characteristics relevant to our discussion. The interface

with the processes consists of 2n operations types SNAP; and UPDATE; for i E {l ... n}. Each

of theses operation types consists of the following external actions: SNAP; consists of the input

action BEGINSNAP; and the output action ENDSNAP;(f;, v;), and UPDATE; consists of the input

action BEGINUPDATE;((t;, v;), (nt;, val;)) and the output action ENDUPDATE;. Furthermore, o

is an atomic I/O Automaton satisfying the SNAPSHOT serial specification.

Definition 9. 7 (SNAPSHOT serial specification) A sequence of operations instances a is in

SNAPSHOT if and only if the following conditions hold. For any i, if a SNAP; operation instance

returns the set of values, v, and labels, f, vk and tk are the value and label written by the

UPDATEk operation instance that immediately proceeds SNAP; in a. If a SNAP; operation in­

stance is not proceeded by a UPDATEk operation instance, then vk and tk are equal to their

initial values. •

Lemma 9.3 UCTSS' and BCTSS' are IR systems.

67

Proof: From [1] we know that the object I/O Automaton of UCTSS' and BCTSs' is an atomic

object I/O Automaton that satisfies the SNAPSHOT serial specification given in Definition 9.7.

So we must show that UCTss' and BCTSS' are IR-well-formed-preserving and response-live.

Notice by inspecting the precondition clauses in the code of Figure 9 that for any equiv­

alence class C, of part(ucTss') and part(BcTss'), there is always at most one action enabled.

Furthermore each action remains enabled until it is executed. Consequently, the actions must

be executed in the sequence in which they are enabled. Furthermore, in a fair execution each

enabled action will eventually be executed.

Now consider any fair execution whose behavior has a well-formed-input. Since the object o

is well-formed-preserving and response-live, inspection of the precondition-effects code in Fig­

ure 9 shows that the following sequence of actions is executed in response to a BEGIN SCAN; input

action: BEGINSNAP;, ENDSNAP;(f;,v,), and ENDSCAN;(o;,v;). Following a BEGINLABEL;(val;)

input action, the following sequence of actions is executed: BEGINSNAP;, ENDSNAP;(f;, v;),

BEGINUPDATE;((t,, v,), (nt,, val;)), END UPDATE;' and ENDLABEL;. Finally, no actions of C; are

enabled between the execution of a ENDSCAN;(o;, v;) or ENDLABEL; action and the next execu­

tion of a BEGINSCAN; or BEGINLABEL;(val;) action. Inspection of these action sequences and

the definitions of IR-well-formed-preserving and response-live, immediately show that UCTss'

and BCTss' are IR-well-formed-preserving and response-live. •
Now that we have shown that UCTSS' and BCTSS' are IR systems, note that the IRA systems

corresponding to UCTss' and BCTSS' are UCTSS and BCTSS respectively. Specifically, in UCTSS

and BCTSS the BEGINSNAP; and ENDSNAP;(f;, v;) actions of UCTSS' and BCTSS' are replaced

by the SNAP;(f;, v;) action. Similarly, the BEGINUPDATE;((t;, v;), (nt;, val;)) and ENDUPDATE;

actions are replaced by the UPDATE;((t;, v;), (nt;, val;)) action (see Definition 9.6).

Theorem 9.4 BCTSS' and UCTSS' solve CTSS.

Proof: Using Corollary 9.2 we conclude that BCTSS' implements BCTSS and UCTss' imple­

ments UCTSS. From Theorem 7.3 we know that BCTSS solves CTSS, hence BCTss' solves CTSS.

Similarly, Lemma 4.10 shows that UCTSS solves CTSS, therefore UCTSS' solves CTSS. •

68

10 Discussion and Future Work

Critical to constructing and proving the correctness of our simple bounded timestamping sys­

tem are the design technique of composition and the analysis techniques provided by the I/O

Automata Model.

The composition of the label structure of [11] with the atomic snapshot primitive of [1]

greatly reduces the complexity of our algorithm relative to [11]. Many possible executions are

eliminated by the fact that the snapshot primitive returns an instantaneous (in the sense of

[20]) view of the current labels. Even though the construction of the snapshot primitive is

complex, its complexity is hidden from the timestamping system. Our simple constructions for

the multireader multiwriter atomic register and first come first serve mutual exclusion further

demonstrate the power of using composition to simplify the design and analysis of algorithms.

Due to the fact that our algorithm uses the snapshot primitive, the complexity of our

timestamping system is worse by 0(y'n) than the most efficient known bounded timestamping

system [12]. The complexity of our bounded timestamping system is the same as the complexity

of the underlying snapshot primitive. The complexity of the original construction in [1 J was

0(n 2). The best construction currently known has complexity 0(ny'n) [3]. In addition to our

bounded timestamping system, there are several other areas in which the snapshot primitive

is useful (see [1]). Consequently, improving the complexity of the snapshot primitives would

provide a significant contribution. Since the SN AP operation must read n registers, D(n) is a

lower bound for the SNAP operation. We see no reason why O(n) algorithms for both the SNAP

and UPDATE operations should not be possible.

An important feature of the I/O Automata Model is the concept of stepwise refinements

[29], [21]. Specifically, the I/O Automata Model defines the concept of one I/O Automaton

implementing another I/O Automaton. Therefore the correctness of complex algorithms can

be proved by designing a series of algorithms of increasing complexity. The simulation proof

techniques are used to show that the complex algorithms implement the simpler ones. In this

way, the complexities of an algorithm are introduced in a stepwise manner. Our use of the simple

unbounded real number based timestamping specification demonstrates these techniques (see

[29] for thorough discussion of these issues).

The use of the I/O Automata Model in our paper suggests several avenues of research for

69

I/O Automata theory. The reader will notice that the I/O Automata section is fairly long since

it develops several concepts. The need to develop these concepts is due to the fact that the I/O

Automata Model is much more general than the shared memory system model that is needed

in this paper. Hence much of the structure of the shared memory model must be developed for

the I/O Automata Model. A research effort that develops structure for specific system models

such as the shared memory model and the network model would be an invaluable contribution.

[15] is a good step in this direction for the shared memory model.

In recent years, much progress has been made in the area of automatic theorem provers.

Large parts of our correctness proof, especially the proof for the invariants in Section 6 use an

extensive, well structured case analysis. Each case is proved by a simple but tedious argument.

Consequently, we view the correctness proof of our bounded timestamp algorithms as an ideal

candidate with which to test the effectiveness of automatic theorem provers [6]. In testing a

theorem prover on our algorithm we hope to determine wether or not I/O Automata proofs

might in the future utilize theorem provers on a regular basis.

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic Snap­

shots of Shared Memory. In Proc. 9th ACM Symp. on Principles of Distributed

Computing, 1990, pp. 1-14.

[2] H. Attiya, D. Dolev, and N. Shavit. Bounded polynomial randomized consensus.

In Proceedings of the 3th Annual ACM Symposium on Principles of Distributed

Computing, pages, ACM SIGACT and SIGOPS, ACM, 1989.

[3] H. Attiya and M. P. Herlihy. Private Communication, 1991.

[4] J. Anderson and M. Gouda. The virtue of patience: concurrent programming with

and without waiting. 1988.

[5] J. H. Anderson. Multiple- Writer Composite Registers. Technical Report, The Uni­

versity of Texas at Austin, September 1989.

70

[5] W. Bevier and J. S¢gaard-Andersen. Mechanically Checked Proof of Kernel Speci­

fication. To appear in Proceedings of the 3rd Workshop on Computer Aided Verifi­

cation, 1991.

[7] J. Burns and G. Peterson. Constructing multi-reader atomic values from non-atomic

values. In Proceedings of the 5th Annual ACM Symposium on Principles of Dis­

tributed Computing, pages, ACM, August 1987.

[8] B. Chor, A. Israeli, and M. Li. On process coordination using asynchronous hard­

ware. In Proceedings of the 5th Annual A CM Symposium on Principles of Distributed

Computing, August 1987.

[9] R. Cori and E. Sopena. Some Combinatorial aspects of timestamp systems. Un­

published Manuscript, 1991.

[10] E.W. Dijkstra. Solution of a problem in concurrent programming control. Commu­

nications Of The ACM, 8:155, 1955.

[11] D. Dolev and N. Shavit. Bounded concurrent time-stamps are constructible. SIAM

Journal on Computing, to appear. Also in Proceedings of the 21'1 Annual ACM

Symposium on Theory of Computing, Seattle, Washington, pages 454-455, 1989.

[12] C. Dwork and 0. Waarts. Simple and Efficient Bounded Concurrent timestamping -

or - Bounded concurrent time-stamps are comprehensible. Unpublished manuscript,

Stanford University, Stanford,1991.

[13] M. Fischer, N. Lynch, J. Burns, and A. Borodin. Resource allocation with immunity

to limited process failure. In Proceedings of 20th FOGS, pages, October 1979.

[14] M. Fischer, N. Lynch, J. Burns, and A. Borodin. Distributed fifo allocation of

identical resources using small shared space. A CM Transactions on Programming

Languages and Systems, 11(1):90-114, January 1989.

[15] K. Goldman, N. Lynch, and K. Yelick Modelling Shared State in a Shared Action

Model. Unpublished manuscript, Washington University, St Louis, 1992.

71

[16] M. P. Herlihy. Wait-free synchronization. In ACM TOPLAS, 13(1), pages 124-149,

January 1991.

[17] A. Israeli and M. Li. Bounded time stamps. In 28th Annual Symposium on Foun­

dations of Computer Science, White Plains, New York, pages 371-382, 1987.

[18] A. Israeli and M. Pinchasov. A linear time bounded concurrent timestamp scheme.

Technical Report, Technion, Haifa, Israel, March 1991.

[19] L. Lamport A new solution of Dijkstm's concurrent programming problem. Com­

munications of the ACM, 78(8):453-455, 1974.

[20] L. Lamport Time, clocks, and the ordering of events in a distributed system. Com­

munications of the ACM, 27(7):558-565, 1978.

[21] L. Lamport Specifying concurrent modules. ACM Transactions on Programming

Languages and Systems, 5(2):190-222, April 1983.

[22] L. Lamport The mutual exclusion problem. parts I and II. J. ACM, 33(2):313-348,

1986.

[23] L. Lamport On interprocess communication. parts I and II. Distributed Computing,

1, 1 (1986) 77-101.

[24] M. Li and P. Vitanyi. A Very Simple Construction for Atomic Multiwriter Registers.

Report, Aiken Computation Laboratory, Harvard University, 1987.

[25] M. Li and P. Vitanyi. Uniform construction for wait-free variables. 1988. Unpub­

lished manuscript.

[26] M. Li and P. Vitanyi. How to Share Concurrent Asynchronous Wait-free Variables.

In Proceedings of the 15th International Colloquium on Automata, Languages and

Programming, pages 488-505, 1989. Unpublished manuscript.

[27] M. Lui and H. Abu-Amara. Memory requirements for agreement among unreliable

asynchronous processes. Advances in Computing Research, 4:163-183, 1987.

72

[28] N. Lynch and K. Goldman Distributed Alogorithms. Lecture Notes for 6.852, Fall

1988. MIT/LCS/RSS-5, Laboratory for Computer Science, MIT, 1989.

[29] N. Lynch and M. Tuttle. Hierarchical Correcntess Proofs for Distributed Algorithms.

Tecnical Report MIT/LCS/TR-387, Laboratory for Computer Science, MIT, 1987.

[30] N. Lynch and F. Vaandrager. Forward and backward simulations for timing based

systems. To appear in Proceedings of REX Workshop on Real-time: theory in

practice, Mook, 1991.

[31] M. Raynal. Algorithms for Mutual Exclusion. North Oxford Academic, England,

1986. Originally published in French in 1984. Translated by D. Beeson.

[32] S. Owicki and D. Gries. An Axiomatic Proof Technique for Parallel Programs. Acta

Informatica, 6(1):319-340,1976.

[33] G.L. Peterson and J. Burns. Concurrent reading while writing ii: the multi-writer

case. In 28th Annual Symposium on Foundations of Computer Science, White

Plains, New York, pages, May 1987.

[34] P. Vitanyi and B. Awerbuch. Shared register access by asynchronous hardware. In

27th Symposium on the Foundations of Computer Science, 1986.

[35] M. Saks and F. Zaharoglou. Optimal Space Distributed Move-to-front Lists. In

Proceedings of the 101h Symposium on the Principals of Distributed Computing,

pages 65-73, Montreal, 1991.

[36] R. Schaffer. On the correctness of atomic multi-writer registers. 1988. Bache­

lor's Thesis, June 1988, Massachusetts Institute Technology. Also, Technical Memo

MIT/LCS/TM-364.

[37] N. Shavit. Concurrent time stamping. Ph.D. Thesis, Hebrew University, 1989.

[38] W. Wiehl. Specification and Implementation of Atomic Data Types. Ph.D. Thesis,

Technical Report MIT /LCS/TR-314, MIT Laboratory for Computer Science, MIT,

1984.

73

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Puclic reoomng ourcen for this collection of rn1'ormat1on is estimated to dvenae 1 r-our aer ~esoonse. 1nctuaing tl"e time tor reviewing mstruct1ons. searal1ng ex1st1ng aata sourc~.
gathering and rna1nta1n1ng the data needea. and comoteting and rev1ew1ng :~e c-:11ect1on of 1riformauon Sena comments re<]arc1ng tl115 burden estimate or anv Otl"ler asoect or t~1s
collectron of 1nformat1on. 1nc1ud1ng suggest1on-s tor reauc1ng the'!! ourcen. ~a Wasn1ngton Heaaauaner'l Services. Directorate tor 1nrormat1on Ooeratrons ana Reoons. 1215 ;etterson
Davis H19hwa1J, Suite 1204, Arlington, VA 22202-4302. ana tom~ Off re~ 0t "'1dnagement anc Budget, P~perworK Reduction Proiect (0 704-0 138), 'Nasn1ngton. DC 20503.

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 13. REPORT TYPE AND DATES COVERED

September 1992
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Consurrent Times tamping Made Simple

6. AUTHOR(S)

Gawlick, R.

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

MIT, Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139 MIT/LCS/TR-556

9. SPONSORING I MONITORING AGENCY NAME(S) ANO ADDRESS(ES) 10. SPONSORING I MONITORING I AGENCY REPORT NUMBER

I

DARPA N00014-89-J-1988

11. SUPPLEMENTARY NOTES l

I
l
'

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

I
13. ABSTRACT (Maximum 200 words) I

Concurrent Timestamp Systems (CTSS) allow processes to temporally order concurrent events in an I

asynchronous shared memory system. Bounded memory constructions of a CTSS are extremely powerful tools for
concurrency control, and are the basis for solutions to many coordination problems including mutual exclusion,
randomized consensus, and multiwriter multireader atomic registers. Unfortunately, known bounded CTSS
constructions seem to be complex from the algorithmic point of view. ;

'
Because of the importance of bounded , CTSS the rather involved original construction by Dolev and Shavit was l

I followed by a series of papers that tried to provide more easily verifiable CTSS constructions.
I In this paper, we present what we believe is the simplest, most modular, and most easily proven bounded CTSS

algorithm known to date. The algorithm is constructed and its correctness proven by carefully reasoned use of I
several tools. Our algorithm combines the labeling method of the Dolev-Shavit CTSS with the atomic snapshot l
algorithm proposed in Afek et. al, in a way that limits the number of interleavings that can occur. To facilitate our !
correctness proof, we introduce a specially tailored intermediate CTSS specification using unbounded label values i
taken from the positive reals. Our correctness proof first shows that the real-number based specification meets the 1

CTSS axioms. Using the forward simulation techniques of the l/O Automata model, we then show that our bounded
j algorithm implements the real-number based specification. Finally, we prove that any CTSS that meets the CTSS

axioms can be used to implement multireader multiwriter atomic registers and first-some-first-serve (fcfs) mutual ;

'
exclusion.

14. SUBJECT TERMS 15. NUMBER OF PAGES

73 i

timestamps, concurrent algorithms, distributed systems, 16. PRICE CODE l
1/0 automata '

17. SECURITY CLASSIFICATION 18. SECURITY CLASSiflCA TION 19. SECURITY CLASSIFICATION I'°· LIMITATION OF AB5"AG I OF REPORT OF THIS PAGE OF ABSTRACT

NSN 7540-01-280-5500 - -Standara c-orm .c98 (::;ev 2-89:
::iroscr•oea cv .:.,,'J)I)tc ZJ9- '.'3
29':3-1 ;2

