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Abstract

The Input/Output Automata formalism of Lynch and Tuttle is a widely used framework for
the specification and verification of concurrent algorithms. Unfortunately, it has never been
provided with an algebraic characterization, a formalization which has been fundamental for
the success of theories like CSP, CCS and ACP. We present a many-sorted algebra for 1/0
Automata that takes into account notions such as interface, input enabling, and local control. It
is sufficiently expressive for representing all finitely branching transition systems, hence all /0
automata with a finitely branching transition relation. Our presentation includes a complete
axiomatization of the quiescent preorder relation over recursion free processes with input and
output. Finally, we give some example specifications and use them to show the methodology
of verification based on our algebraic approach.
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Chapter 1

Introduction

The Input/Output Automata [LT87, Sta84, Jon85, Jon87] is a widely used and deeply inves-
tigated formalism for specifying and verifying concurrent systems. Unfortunately, it has never
been provided with an algebraic characterization, a mathematical formalization that has been
fundamental for the success of theories like CSP, CCS and ACP [Hoa85, Mil89, Hen88, BW90)].
The goal of this thesis is to improve our understanding of the intricacies of I/O automata by
describing them as a process algebraic theory. This will permit algebraic manipulation and pro-
vide an alternative to the commonly used verification method based on possibilities mapping.

We start by designing an algebra that incorporates the fundamental features of I/O au-
tomata of Lynch and Tuttle [LT87] and captures the essential role of concurrent composition,
hiding and renaming of I/O automata. Qur design aims at maintaining minimality of operators
and universal expressivity with respect to the I/O automata we can represent. We base our

characterization on the following basic features of I/O automata:
1. explicit interfacing: a transition-invariant interface is associated with each process;

2. input/output distinction: a clear distinction is made between output actions that are

locally controlled and input actions that are globally controlled;
3. input enabling: input actions are enabled in every state;

4. local control: each action is under the control of at most one process.



Clearly this list is not exhaustive, and for the sake of simplicity we choose at this stage to avoid
considering important issues such as fairness.

The operators in our calculus associate distinct sets of input and output actions (interfaces)
with each process. This captures a critical aspect of I/O automata, namely the distinction
between input and output actions. To associate an interface to a process we use many-sorted
algebras: each sort stands for an interface. This permits dealing with partial operators in a
clean way. As an example consider the parallel composition operator. To comply with the
requirement that each action is under the control of at most one process, two processes that
have common output actions cannot be composed in parallel. Many-sorted algebras permit
capturing this restriction by defining the parallel operator as a family of sorted operators, one
for each pair of compatible interfaces.

Our research continues a line of investigation initiated by Vaandrager in [Vaa91]. That
investigation was deliberately done in a simple setting where no explicit interface is associated
to processes, and in which input enabling is obtained by means of self loops. No axiomatization
was proposed in [Vaa9l]. Indeed, the behavioral relation we use for comparing systems is the
quiescent preorder of [Vaa9l] (definition 2.2.4 of chapter 2). The main idea of the quiescent
preorder is that a quiescent trace leads system to a state from which only input actions are
enabled. Moreover the preorder is given by external and quiescent trace inclusion. The quiescent
preorder is a restriction to finite traces of the fair preorder of [LT87], and we see it as a stepping
stone toward the study of fairness sensitive semantics.

An important property we require of our calculus is substitutivity of the quiescent preorder.
One of our guides for achieving substitutivity is again [Vaa91] where, in the style of [De 84,
De 85b, GV89, BIM90], restrictions to the inference rules of a generic Structured Operational
Semantics [Plo81] are investigated to guarantee substitutivity of the quiescent and fair preorders.
Our calculus, however, does not completely fit Vaandrager’s format and thus new congruence
proofs are needed.

A key issue in defining our 1/0 calculus is the way input enabling is enforced. We present
our choice with the support of an example. Consider process P = a.e, which is able to perform
an action @ and then behave like e. If the system is input enabled, the above process must be

able to perform any other input action different from a. We considered two different possible



choices,

1. Angelic: Unexpected inputs are ignored and give rise to self-loops. For example, system
P = a.e, after accepting any input b different from a, behaves as before, and is ready to

accept the a-action.

2. Demonic: Unexpected inputs are considered as catastrophic; after any unexpected input
a system moves to a special state {2 from which any behavior is possible. Thus, P = a.e,

after any b-action different from a, moves to €2.

The Angelic choice was made by Vaandrager in [Vaa91]; here, we support the Demonic one. In
our view, the prefixing operator specifies the behavior of P only for action ¢ and says nothing
about input actions different from it. By interpreting this in the field of I/O automata we
have that an implementation of P should be correct independently of the behavior it exhibits
when provided with any input action different from a. Since the relation we use to compare
processes is the quiescent preorder, moving to a special state Q from which any behavior is
possible makes the above interpretation possible. Due to this basic choice, our calculus will be
called the Demonic calculus of 1/0 Automata (DIOA).

This demonic approach has been partially influenced by the Receptive Process Theory (RPT)
of Mark Josephs [Jos92]. However, the semantics of RPT provided by Mark Josephs is deno-
tational, and like CSP, is described by means of sets of failures, traces and divergencies. The
handling of underspecification is even more demonic than ours; underspecification is propagated
backward, i.e., if a process P can perform an output action o and move to the equivalent of an
Q state, then the whole P is equivalent to €.

For DIOA, we propose a set of sound algebraic laws that are complete with respect to the
quiescent preorder for recursion-free processes. The completeness result is achieved through
reduction to a special normal form in which the parallel operator is used in a restricted way.
Particularly important for our result is an operator representing internal choice. It does not fit
Vaandrager’s general format and forces us to prove substitutivity of our preorder explicitly.

We give a dual view of the algebraic laws: from one point of view a law is a theorem about
I/0 automata; from the other point of view a law is a statement about the relationship between

two syntactic entities. The dual view of the laws has the advantage of separating the properties



of the model chosen for DIOA (I/O automata) from the properties based on the syntactic
structure of the expressions. The main difference between the two points of view lies in the way
that side conditions are defined, i.e., in the way in which the conditions for the validity of a law
are expressed: according to the first point of view a side condition is defined in terms of the
semantics associated with an expression; according to the second point of view a side condition
is defined in terms of the syntactic structure of an expression.

Finally, we present two simple example specifications and implementations within DIOA in
which the quiescent preorder is used as an implementation relation and we outline a method-
ology for verification based on our algebraic laws. The examples suggest an alternative to the
commonly used verification method based on possibilities mapping and show that, in some
cases, algebraic reasoning might be simpler than directly searching for a mapping between
states of processes.

The rest of the thesis is organized as follows: Chapter 2 contains some preliminary defini-
tions; Chapter 3 presents the Demonic Calculus of /O Automata; Chapter 4 presents a set
of algebraic theorems for DIOA, corresponding to the first point of view of the algebraic laws;
Chapter 5 provides an axiomatization of the quiescent preorder over DIOA expressions that is
complete for recursion-free processes; Chapter 6 presents some example specifications; Chapter
7 presents some concluding remarks and some suggestions for further work. The end of the
thesis contains an appendix with the formal definition of DIOA and the complete list of the

axioms that are introduced in chapters 4 and 5.



Chapter 2

Preliminaries

In this chapter we give a general introduction to the formalisms we are comparing. Section
2.1 formally introduces 1/0 automata giving their definition together with some of the main
features and some of the commonly used preorder relations. Section 2.2 introduces process
algebras and other new preorder relations. The preorder relations of Section 2.2 are the process

algebraic version of the relations presented in Section 2.1.

2.1 I/O automata

In this section we formally introduce I/O automata whose complete formal definition is given
in [LT87]. One of the basic concepts is the notion of action signature. Basically an action

signature represents the interface of an automaton with the external environment.

Definition 2.1.1 (action signature) Given three disjoint sets in, out and int we refer to the
triple (in,out,int) as an action signature 5. The sets in, out and int are respectively denoted
by in(.5), out(S) and int(5). The entire set of actions inUout U int is denoted by acts(.S). The
set of external actions inUout is denoted by ext(.9). Finally the set of locally controlled actions

int U out is denoted by local(5). |

We can now formally define an I/O automaton.

Definition 2.1.2 (input-output automaton) An input-output automaton A is a tuple A =

(Q,Q0, S, t, P) where
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Q) is a set of states and is referred to as states(A),

Qo C Q is the set of start states and is referred to as start(A),

e S is an action signature and is referred to as sig(A),

t C Q xacts(S) x Q with the property that Vg € Q,a € in(S)3¢' € Q : (q,a,¢') € t. It is

referred to as steps(A), and

o P is a partition of local(5) and is referred to as part(A).
A step (q,a,q') € steps(A) is conventionally denoted by ¢ — ¢'. [ ]

The difference between classical automata and I/O automata is essentially in the differen-
tiation of the actions given by the action signature, the constraint that the transition relation
is always defined for input actions, and the presence of the partition P of the locally controlled
actions. We will discuss the role of P when introducing the notion of fair execution. For the

moment we concentrate on executions.

Definition 2.1.3 (executions and schedules) Given an automaton A, an execution frag-
ment is a finite sequence gyagq; - - - apqy or infinite sequence ¢uagqia,qs - - - of alternating states
and actions such that (¢;,a;,¢;41) € steps(A) for every 7. An ezxecution is an execution frag-
ment beginning with a start state (i.e., ¢y € start(A)). The schedule of an execution x is the
subsequence of actions appearing in z. It is denoted by sched(x). The executions and schedules

of an automaton A are denoted respectively by execs(A) and scheds(A). |

Usually it is necessary to deal with subsets of an automaton’s executions or schedules. For
this reason we define the notion of execution module and schedule module. The basic idea
is that an execution module simply represents a set of executions while a schedule module

represents a set of schedules.

Definition 2.1.4 (execution and schedule modules) An ezecution module E is a triple
E = (0,5, ¢e) where () is a set of states, S is an action signature and e is a set of executions
with actions in acts(.9) and statesin ). They are referred to as states(F), sig(F) and execs(I).

A schedule module C'is a pair C' = (9, ¢) where §' is an action signature and c is a set of

schedules with actions in acts(.S). They are referred to as sig(C') and scheds(C). |

11



Given an automaton A there is a natural execution module Ezecs(A) associated with it.

Frecs(A) = (states(A), sig(A), execs(A)).

Given an execution module £ there is a natural schedule module Scheds( E) associated with it.

Scheds( ) = (sig(Ll), scheds(E)).

I/0O automata, execution modules and schedule modules are collectively referred to as objects
and denoted by O.

As a last step, we restrict the observation of an automaton to its external actions.

Definition 2.1.5 (external schedule module) An external action signatureis an action sig-
nature consisting only of external actions. An external schedule module is a schedule module
with an external action signature.

The external action signature of a signature 5 is (in(.5), out(5),0), i.e., S without internal
actions; given a sequence y of actions and a set of actions X we denote by y[ X the subsequence
of y consisting only of actions of X.

The external schedule module of an object O, denoted by FEzternal(O), is the external

schedule module with the external action signature of O and the schedules {y[ext(O) : y €
Scheds(O)}. |

We can now define the first notion of equivalence for I/O automata.

Definition 2.1.6 (unfair equivalence) The unfair behavior of an object O, which is denoted
by Ubeh(O), is the external schedule module Ezternal(O). Two objects O and P are said to
be unfairly equivalent, O =y P, iff Ubeh(O) = Ubeh(P). [

This relation is an equivalence relation and turns out to be a congruence for the operators
defined over objects. There are three operations defined over objects: hiding, renaming and

parallel composition.

Definition 2.1.7 (hiding) Given an object O and a set of actions I : I Nin(O) = 0, we define
the object Hide;(O) to be the object differing from O in that

12



o out(Hide;(0)) = out(O)\I, and

o int(Hide;(0)) = int(O)U (acts(O)NI).

The effect of the hiding operator is to hide some locally controlled actions to the external
environment. The only difference from the argument of the operator and its resulting object
is that the signature is changed. IExecutions and schedules are exactly the same. Clearly
external schedules change. The definition of the hiding operator of [LT87] does not contain the
restriction that 7N4n(O) = 0, but it is immediate to observe that the operator is not closed for
I/O automata if we allow to hide input actions: part(A) would not be a partition of local(A)

any more.

Definition 2.1.8 (renaming) An injective mapping f is applicable to an object O if acts(O) C
dom(f). Given an automaton A and a mapping f applicable to A we define f(A) to be
(Q,Q0,5,t, P) where

o () = states(A), Qo = start(A),
o in(S) = f(in(A)), out(S) = flout(A)), int(S) = f(int(A)),
o t={(q, f(a),qd):(q,a,q) € steps(A)}, and

o P={(f(a).f(a): (a,@') € part(A)}.

The definition above can be easily reformulated for execution modules and schedule modules.

The effect of the renaming operator is simply to rename actions.

Definition 2.1.9 (composition of I/O automata) A set of action signatures {5; : ¢ € I}

is called compatible iff for all i, j € I we have
L. out(9;) Nout(S;) =0, and
2. int(S;) Nacts(S;) = 0.

13



In general the objects {O; : i € O} are compatible iff their action signatures are compatible.

The composition S = [];.; 9; of compatible action signatures {.5; : ¢ € I} is defined to be the

action signature with

Loan(8) = Jin(S;) — | out(S:),

i€l i€l
2. out(S5) = U out(S;), and
i€l
3. int(9) = U int(S;).
i€l

The composition A = [[;c; A; of compatible automata {A; :

automaton with

1. states(A) = H states(A; ),

i€l

2. start(A) = Hstart(Ai),

i€l
3. sig(A) = [] sig(a)
i€l
4. part(A) = Upart(Ai),
i€l

5. steps(A) = {((¢:)ier, @, (q})ier) Vi €T

(a) a € acts(A;) = (¢, a,q;) € steps(A;)

(b) a g acts(A;)) = ¢; = ¢} }.

i € I} is defined to be the

Composition of automata is of fundamental importance because it exactly characterizes the

way I/0O automata communicate. The compatibility conditions state that internal actions can

not interact and that every action can be controlled by at most one process. The transition

function states that all processes must synchronize on common actions.

The following two

definitions extend the composition operator to execution modules and schedule modules.

Definition 2.1.10 (composition of execution modules) The composition F =[]

compatible execution modules {E; : ¢ € I} is defined as follows:

14
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o states(F) = H states(E;),

iel
o sig(F)= Hszg(El)
iel
Given a state s = (s;);e; of the composition, we define s[F; = s;. Given a sequence z =
Joaoq - - - of states and actions of E, we define z[E; to be the sequence obtained from z by

removing all a;q; if a; ¢ acts(E;) and replacing the remaining s; by s;[E;.

o cxecs(E) = {2 = quapqy -+ : Vi € [2[E; € evees(E;) N (a; € acts(l;) = s;[F; =
sj+1[Ei)}-

Definition 2.1.11 (composition of schedule modules) The composition ' = [[;.,; C; of
schedule modules {C; : 7 € I} is defined as follows:
o sig(C) = Hsig(Ci),
i€l

o scheds(C)=A{y:Vie€ Iy[C; € scheds(S5;)}.

The following facts hold for I/O automata and show that the definitions above are well

given. The interested reader may refer to [L'T87] for the proofs.

Proposition 2.1.12 Let {A; : i € I}, A be compatible automata, {E; : i € 1}, F be compatible
execution modules, {C; i € I},C be compatible schedule modules and {O; : i € I} be objects.
Then

1. Execs(H A;) = H Frecs(A;),

i€l i€l
2. Scheds(H E) = H Scheds(E;),
i€l i€l

3. External(H Cy) = H Eaxternal(C;),

i€l i€l

4. Ubeh(J] 0:) = [] Ubeh(0;),

i€l i€l
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5. Evecs(Hide;(A)) = Hide ;( Ezecs(A)),

6. Scheds(Hide;(E)) = Hide ;(Scheds(E)),

7. External(Hide,;(C')) = External( Hide ;( External(C'))),
S. Evees(f(a)) = f(Erecs(A)),

9. Scheds(f(e)) = f(Scheds(e)),

10. External( f(C)) = f(Lzternal(C)).

A side effect of input enabling consists of the possible prevention of a system from performing
locally controlled actions by means of an infinite sequence of input actions. This case is avoided
by restricting the observations to fair executions. In the following definition we use the partitions

of the locally controlled actions for the first time.

Definition 2.1.13 (fair executions) A fair execution of an automaton A is an execution z

such that for all X € part(A)
o If 2 is finite then no action of X is enabled from the final state of =

o If z is infinite then either actions from X appear infinitely often in z or states from which

no action of X is enabled appear infinitely often in x

A finite fair execution is also said to be quiescent. [ |

The notion of fairness defined above recalls weak fairness [Fra86], but the two concepts are
different. In [Fra86] fairness is considered for each action, while in I/O automata fairness is
considered for locally controlled actions only. Moreover, instead of considering single actions,
fairness is defined in terms of sets of actions within I/O automata. The idea behind the partition
of locally controlled actions is that every element of the partition represents the actions under
the control of a component of the global system. In this way the notion of fair turn is expressed,
i.e., each component that is continuously willing to perform a locally controlled action will

eventually do so. The following two propositions are proven in [LT87].
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Proposition 2.1.14 If x is a finite execution of an automaton A, then x can be extended to a

fair execution va,q; - - - of A in which every a; is a locally controlled action of A. [ |

Proposition 2.1.15 For all compatible automata {A; : i € I}, Fair(H A;) = HFaz'r(Ai)
i€l i€l
where Fair(A;) is the execution module having fair(A;) as its set of executions and fair(A;) is

the set of fair executions of A;. [ |

We can now define the fair behaviors of an automaton as Fbeh(A) = Erternal( Fair(A))
and give a new equivalence relation that turns out to be a weak congruence for the automata’s
operators, i.e., a relation that is substitutive for the I/O automata operators whenever these

operators are defined for all the considered expressions.

Definition 2.1.16 (fair equivalence) Two objects O, P are fair equivalent (O =p P) iff
Fbeh(O) = Fbeh(P). |

With the concept of fair trace it is possible to introduce the notion of implementation. An
object O implements an object O, if they both have the same action signature and Fbeh(O;) C
Fbeh(O,). Trivial implementations are avoided by input enabling and fairness. These two
concepts, in fact, state that a process must accept all stimuli from the external environment
and must perform its output actions whenever it has the possibility to do so, i.e., it must give
an answer when requested.

On the base of the previous discussion we can define three main relations between 1/0

automata that will be used throughout the rest of the thesis.

Definition 2.1.17 (preorder relations) Given an object O, let Quiescent(O) be the set of
quiescent executions of O and let Qbeh(O) = Erternal( Quiescent(Q)). Finally, let FinUbeh(O)
be the set of finite unfair behaviors of O.

The external trace preorder on objects is defined as follows: O Cgy P iff
1. O and P have the same external action signature and
2. FinUbeh(O) C FinUbeh(P).

The quiescent preorder on objects is defined as follows: O Ty P iff

17



1. O Cgpy P and
2. Qbeh(O) C Qbeh(P).

The fair preorder on objects is defined as follows: O Cp P iff
1. O and P have the same external action signature and
2. Fbeh(O) C Fbeh(P).

The kernels of Cgp,Co and Cp are respectively called external trace equivalence, quiescent

equivalence and fair equivalence.
e O=p7 PIfOCgyr Pand PLCpgpr O,
e O=x Piff OCy Pand PCy O,
e O=p PIiff OCp Pand PLCy O.
|

A method to prove that an object O, implements another object O, makes use of the notion
of a possibilities mapping. The main idea of a possibilities mapping is to map every reachable
state s of O, onto a set of states h(s) of O, in such a way that every step s; 2. 55 0of O can be
performed from any state of h(s;). The steps of O, must end in a state of h(s;). For a formal

definition of possibilities mapping and its use the reader is referred to [LT87].

2.2 Process Algebras

The main idea of Process Algebras is the existence of some basic processes and some funda-
mental operators modeling operations such as sequential composition, parallel composition,
nondeterministic composition and synchronization. A process is represented by an expression
which is built inductively from the basic processes and the fundamental operators. The seman-
tics of each expression is given in terms of an underlying model which may vary from algebra

to algebra.
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Particularly important is the way in which processes are identified in the underlying model.
The equivalence (preorder) relations defined on the underlying models induce equivalence (pre-
order) relations on the interpreted expressions. The next step is then to define a sound and
possibly complete proof system over the expressions with the result that the relationship be-
tween expressions can be proven by means of pure algebraic analysis.

One of the first process algebras was the calculus of Communicating Sequential Processes
(CSP) [Hoa85]. CSP has a large amount of operators and its semantics is given in terms of
traces (sequences of actions a process can perform) and refusal sets (sets of actions that a
process may refuse to perform). An action represents a visible move of a system.

Another algebra is the Calculus of Communicating Systems (CCS) [Mil89]. The underlying
model of CCS is given by labeled transition systems (LTS), which are state machines with
a labeled transition relation. A LTS is associated with a CCS expression by means of an
operational semantics as described in [Plo81]. The standard notion of equivalence for CCS is
bisimulation [Par81].

In this thesis we concentrate on the LTS approach by using 1/O automata as underlying
model and we analyze a particular preorder relation which is connected to the fair preorder of
I/O automata. For a better understanding of other different existing relations the interested
reader is referred to [De 87] and [Gla90].

We now introduce the main notions for the definition of a process algebra based on the LTS

approach. We start with the notion of signature.

Definition 2.2.1 (signatures and terms) Let S be a set of sorts ranged over by s, s, 8o, . ..
A signature element is a triple (f, sy85- -5, s) consisting of a function symbol f, a sequence of
sorts sy ---8, 18 € §S,t=1,...,n, and a single sort s € §. s is called the sort of the signature
element and n is its arity. In a signature element (c, A, s), ¢ is often referred to as a constant
symbol of sort s. A signature is a pair ¥ = (S, O) consisting of a set of sorts S and a set of
signature elements (0. We denote sort and function symbols of a signature ¥ by sorts(X) and
op(X). The set of terms over X, is denoted by T'(X). The set of terms of a particular sort s € §
are denoted by T'(X);. |

A signature represents the basic processes (constants) and the operators that are considered

as fundamental ((f, s182- sy, s) is an operator taking n processes respectively of sort s, - - - s,
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as arguments and giving back a process of sort s. Well known calculi like CCS are one-sorted.
We presented the more general many-sorted definition because we use sorts to model interfaces
associated with processes.

The following definition introduces the notions of substitutive relation.

Definition 2.2.2 (substitutivity) Let ¥ be a signature and let R be a relation over T'(X) x
T(X). R is substitutive iff for each signature element (f,s155---s,,s) of ¥ and each ¢;,t} of sort
Siy

LR,y R = f(tr,. . 1) R F(LL,. 1),

We proceed by formally defining a calculus.

Definition 2.2.3 (calculi) Let A be a given set of labels and let ¥ be a signature. A transition

rule has the form

Bl )

ay ’
t1—>t17"'7tn n

R
where t;,t0 € T(X), t,t € T(X), a; € A and a € A. The elements t; — ¢! are called the
premises and t — t' is called the conclusion. The interpretation of a rule is that, whenever the
transitions of the premises are possible, the transition of the conclusion is possible. Transition
rules can be parameterized using variables in their terms. A calculus, is a triple P = (X, A, R)

where X is a signature, 4 is a set of labels and R is a set of transition rules. |

We extend the transitions to sequences of labels in the obvious way by saying that ¢ ‘=" ¢/

3ty =t —— s —— =

We finally adapt two of the preorder relations of section 2.1 to the process algebraic frame-
work. Fairness is not considered at this stage. The definition of the quiescent preorder is an
adaptation to the many-sorted framework of the definition of [Vaa91]. In particular we identify
sorts with action signatures; i.e., we assume the existence of a bijective mapping from sorts to
action signatures. We use the same relation symbols we used in section 2.1 to emphasize the
fact that we are expressing the same notions in different formalisms. We also abuse notation by
writing ext(e) when we mean ext(S) where S is the action signature associated with the sort

of e.
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Definition 2.2.4 (preorder relations) Given a many-sorted calculus with input and output

actions, the set of enabled actions from an expression e is defined as
{a|3e’ 1 e X €'}

An expression e is quiescent if it only enables input actions.

The set of (finite) external traces of an expression e of sort S is defined as

h

etraces(e) = {hfext(5)|3e’ : e — €'}

where h denotes a sequence of actions and h[A is the projection of h on A.

The set of quiescent traces of an expression e of sort 5 is defined as
gtraces(e) = {h[ext(5)|3e' : e 2= ¢, quiescent(e')}.

The external trace preorder Cpr is defined as follows: e; Cpp €5 iff
1. e; and e; have the same external action signature and
2. etraces(e,) C etraces(es).
The quiescent preorder T is defined as follows: e; Cg e, iff
1. e Cgp €5 and
2. gqtraces(ey) C gtraces(esy).

The kernels of Cpp and T are respectively called external trace equivalence and quiescent

equivalence.
o ¢ =gy e ifl ey Cpp ey and e; Cpp e,

o e =¢geriff ey Cg ey and ey T €.
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Chapter 3

A Calculus of Demonic 1/0

Automata

This chapter introduces a calculus for I/O automata following the demonic approach. The
calculus is many sorted and each sort represents an action signature consisting of input and
output actions and a single internal action 7. In the I/O automaton model action signatures may
have more than one internal action, and the reason for that is to have flexibility in expressing
fairness with respect to different internal tasks. Since we do not address the issue of fairness in
this thesis, we present only the simple calculus with a single internal action. At the end of this
chapter we give an idea of how to extend the calculus to handle multiple internal actions.

The rest of the chapter is organized as follows: Section 3.1 presents the definition of DIOA
and discusses its operators; Section 3.2 presents /O automata definitions of the operators
of DIOA; Section 3.3 presents a construction associating an I/O automaton with each DIOA
expression; Section 3.4 presents an I/O automata interpretation of recursion, a tool that is used
for the definition of DIOA; Section 3.5 discusses the problem of introducing multiple internal

actions.

3.1 The definition of DIOA

In this section we present the calculus of Demonic 1/0 automata (DIOA); it permits representing

any finitely branching I/O automaton [LT87]. Moreover, the operational semantics of the
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Name Op. Domain Range Restrictions

quiescent nilg A S
omega Qs A S
prefixing a.s S5 S a € ext(S)

ichoice Py 9,9 S

echoice  ;4+5 5,8 S I,J Cin(S)

parallel g /|ls, 51,92 S out(Sy) Nout(Sy) =0
0

out(S3) = out(S1) U out(Ss)
in(S3) = (en(S1) Uin(Ss))\out(Ss)

hiding T S 5 I Cout(S5),5" = (in(9),out(S)\I)

renaming pg S S’ for each injective p : acts(S) — acts(5’)
5" = (plin(5)), plout(5)))

process X A S Xs € Xs

Table 3.1: The signature of DIOA

operators of DIOA specifies the same transition trees as of the corresponding operators for 1/0
automata.

Table 3.1 presents the signature for DIOA. The sort symbols associated with the opera-
tors range over all possible action signatures with a single internal action 7 if no additional
restrictions are mentioned. Thus, rather than a single operator (e.g. parallel, renaming, etc.)
we actually have a family of operators parameterized on the sorts of the operands. To avoid
heavy notation we will drop the sort indexes from the operators whenever the sorts are evident.
Indeed all non-constant operators are uniquely determined by the sorts of their operands. As
additional simplification we will represent action signatures as pairs (in, out) since the set of
internal actions is fixed to be {7}. In choosing the operators we had in mind two major goals:
representing the three main operators of I/O automata (i.e., parallel, hiding and renaming) and
expressing a sufficient number of transition trees. The second goal is achieved through prefix-
ing, external choice and recursion; the internal choice operator will turn out to be useful for

proving completeness of axioms. Recursion is obtained in a De Simone style [De 84, De 85b].
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We assume the existence of a countable set X of process variables for each sort S and the
existence of a declaration mapping F associating a guarded expression of sort S to each process
variable of X5. An expression e is guarded if each process variable occurs in the scope of a
prefixing operator.

Table 3.2 presents the transition rules for DIOA; some comments follow:

e quiescent expression “nilg”:

This expression models a quiescent automaton, where no output actions are enabled. It
has a transition to Qg for each input action of sort §. Each input action of 5, in fact, is

unspecified in nilg. No output is permitted.

e omega expression “1g”:

This expression models the unspecified process, for which everything is possible. It has
a self-loop for each action of S with the consequence that any trace with actions from 5
is an external trace of Q5. An additional transition to nilg (rule ome,) makes any trace
a quiescent trace of 5. Note that the use of rule ome, is the only way to move Q to a

quiescent state.

o prefixing operator “a.”:

In our interpretation a . e specifies the behavior of a process only when it first performs
action a. For all other input actions there is a transition to 2, meaning that every choice

of implementation is correct.

e internal choice operator “@”:

The expression e ¢ f can move either to e or f with an internal action (rules ich, ,
resembling the @& of [DH87]) or behave like e or f (rules ichj4 resembling the CCS +).
Rules ich;, are necessary for input enabledness. This is an additional difference from
10C of Vaandrager [Vaa91] since the internal choice operator of I0C has self loops for
any input action. The choice of using rules ichs 4 implies that the external and quiescent
traces of e; ¢ e, are obtained by unioning those of e; and those of e,. Note that none of

the four rules can be eliminated; elimination of ich; 4, would cause loss of input enabling,

24



nil nils —— Qg Va € in(9)
ome; Qs = Qs a € ext(S) ome, Qg — nilg
b .
pre; a.ce — e pre, a.ge — Qg Vb € in(9)\{a}
ich, €1 PBs €5 — € ich, e1 Ps €3 — €3
e — ¢ €y — €
. 1 . . 2 .
ich; —al, Va € in(9) ich, —a2/ Va € in(9)
e; Ps ea — €] €1 Dg ez — €
€ — ¢
ech; E ! Va € TU out(9)
€1 1F+7€e — €
€y — €
2
ech, E = - Va € J Uout(9)
€11+ €es — €
a .
ech; er 115 es — Qs Va € in(S)\(ITUJ)
e, — ¢
1 1
ech, s T 48
€17+ € — € 17 e
ey — €
ech; S — S
€1 1+5 €3 — €} +7 €
e -2 ¢ e -2 ¢
tau; E R agl tau, 3 — acl
77 (e) — 77 (€) 77 (e) — 77 (€)
a ’
h e — €
rho
pla) ,
ps(e) — ps(e’)
a ! a !
€1 — €, €y — €5
par; T -
€1 51H52 € € 51HS2 €
e — ¢
1
par, 2 /1 a € acts(S))\ext(S,)
€15, lls, €2 — €1 5|5, €2
€y — ¢!
2
pars; = ~ a € acts(92)\ext(5:)
€15, ls. €2 — €1 5|5, €
e 2 ¢
. def
rec e a— ifX=e
X -4 e

Table 3.2: The transition rules for DIOA
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while elimination of ich; , could give rise to problems whenever A is a quiescent trace of

one argument but not of the other one.

choice operator “;+;7:

The arguments of ;+; can perform an input action a only if @ is in the corresponding
parameter [ or J (rules ech, ). For input actions not in / U .J there is a transition to €
(rule echs). The choice context is not resolved with internal actions (rules echy 5). This
is essentially Vaandrager’s choice operator. It would have been nice to define a CCS-
like external choice operator without parameters, however our attempts have failed in
the sense that we have not been able to achieve substitutivity for the quiescent preorder

without using I and J. See Remark 3.1.8 for an example.

hiding, renaming and parallel operators “r, p, ||”:

They are in direct correspondence with the operators of 1/O automata. In particular,
the constraints on the sorts for the parallel operator guarantee that actions are under the
control of at most one process. The transition rules for the parallel operator state that
all processes synchronize on common actions and evolve independently on the others.
Note that, although processes synchronize on common actions, the communication is
asynchronous since at most one process has the control of each action. The restrictions on
hiding and renaming are directly inherited from I/O automata. Injectivity of p is required
to guarantee distributivity and the restriction on hiding is kept to avoid unnecessary

complications.

Below, a few basic properties of DIOA are listed.

Definition 3.1.1 (sort consistency) A many-sorted calculus is sort consistent if the sort of

every expression is invariant under transition. [ |

Proposition 3.1.2 DIOA is sort consistent. [

Definition 3.1.3 (input enabledness) An expression e is input enabled if Ve'|Ijcqcrser-€ LN

e',in(e) C enabled(e’). A many-sorted calculus with interfaces associated with expressions is

input enabled if each expression is input enabled. [ |
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Proposition 3.1.4 DIOA is input enabled. [

Theorem 3.1.5 (substitutivity) FExternal trace preorder and quiescent preorder are substi-

tutive for DIOA. [ |

The proofs of the above results are standard and can be done by cases analysis. For the
substitutivity theorem we cannot use Vaandrager’s results [Vaa9l] since the internal choice

operator does not fit Vaandrager’s general format.

Remark 3.1.6 It is possible to characterize each DIOA expression in terms of the external

and quiescent traces it exhibits. The inductive definition is as follows:
o ctraces(Qg) = gtraces(Qg) = ext(S)*,
o etraces(nils) = qtraces(nils) = {A} U{atla € in(9),t € ext(5)*},

o etraces(a.e)={A} U {at|t € etraces(e)} U {bt|b € in(5)\{a},t € ext(e) },
{A} U {at|t € gtraces(e)} U {bt|b € in(95)\{a},t € ext(e)*} if a € in(e),
{at|t € qtraces(e)} U {bt|b € in(S)\{a},t € ext(e)*} if a € in(e),

gtraces(a .e) =

o ctraces(ed f) = etraces(e) U etraces(f),

gtraces(e @ f) = qtraces(e) U gtraces( f),

o ctraces(e ;+; f) = {\} U{at|a € T Uout(e),at € etraces(e)}
U{atla € J Uout(f),at € etraces(f)}
U{at|a € in(S)\(TU J),t € ext(e)*},

({A} N gtraces(e) N gtraces( f))U

gtraces(e 14y f) = {atla € I Uout(e),at € gtraces(e)}U

{atla € J Uout(f),at € gtraces(f)}U

{atla € in(S)\(L U J),t € ext(e)*}

{t[(ext(e)\])|t € etraces(e)},
{t[(ext(e)\])|t € qtraces(e)},

o etraces(ti(e))

gtraces(t;(e))

o etraces(p(e)) = {p(t)|t € etraces(e)},

giraces(p(c)) = {p(1)]t € qtraces(c)},
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o etraces(e||f) = {t € ext(e||f)*|t[ext(e) € etraces(e),t[ext(f) € etraces(f)},

gtraces(e||f) = {t € ext(e||f) |t[ext(e) € qtraces(e),t[ext(f) € qtraces(f)}.

Remark 3.1.7 The main difference between internal and external choice can be seen by means

of an external observer. Consider processes

P b nil {a} o nel and

def

P, =a.b.nil @ ni

where @ is an input action and b is an output action. Consider an external observer O performing
an output action a for then waiting for an input action b. If O is interacting with P; it will
always receive the b-signal after performing the a-action since the choice context of P; is resolved
when O provides a; if O is interacting with P, then the system could send any signal to O since
Ps, while receiving a, can either move according to a . b . nil or nil. In other words P, has
decided internally how accepting action a.

The reader might think that e & f is equivalent to e 444 f where A = in(e). This fact,
unfortunately, is false since there are possibilities of discrepancies when considering the quies-
cence of A\. The difference can be noted by letting O interact respectively with a.(b.nily+y nil)
and a . (b.nil @ nil). In the first case O will always receive the b — signal while, in the second

case, the interacting process may internally decide not to perform the b-move.

Remark 3.1.8 There are some immediate questions about the definition we have given for the

choice operators:

(a) why did we choose only to allow internal and external choice of expressions with the same

action signature?
(b) why did we choose to use two parameters [,.J for the external choice operator?
The answer to question (a) is strictly related to sort consistency. Suppose we allowed the sum
(external choice) of expressions with different signatures and consider
P = a.nil(my{a}) oto b.m’l(@’{b})
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Py = anilg apy)0te bonilp 1oy

where every pair associated with nil represents its action signature (recall that the pair (in, out)
represents an action signature having input actions in, output actions out and internal action
7). It is reasonable to say that the output actions of P, are {a, b}, hence traces(P,) = {\,a,b} =
traces(Py). Consider now

P3 = nil({a}yq))

It is immediate to see that in(Py || Ps) = in( P || Ps) = 0 and that traces(Ps || Ps) = {\, a,b}.
On the other hand P; “loses” the output action a after performing action b because there is
no reason to consider a an output action of nil(y ;). In particular @ becomes an input action
if P, is composed with Ps, hence traces( Py || Ps) = {A, a,b,ba,baa,bab, ...} and trace preorder
is not substitutive. By means of some changes on the external signature it might be possible
to define a calculus with dynamic signatures (i.e., a calculus that is not sort consistent) that is
substitutive for trace preorders, but this topic goes beyond the scope of this thesis.

For point (b) one might like to define an unparameterized choice operator and implicitly
treat transitions to {). Consider for example the expression a .e; + b.e; where a,b are input
actions and consider another input action ¢ of e;. When provided with a the system should
evolve to e; since the behavior for a is specified by a . e;; when provided with & the system
should evolve to e, since the behavior for b is specified by b.e5; when provided with ¢ the system
should move to  since the behavior for ¢ is not specified neither by a.e; nor by b.e,. It is
easy to see that external and quiescent trace preorders are not substitutive for +. Consider for

example the signature S = ({a},{b}). We can easily check that

nil =g a.

since ntl moves to  with action a, but

a.nil+nil £Zga.nil+a.Q

since ab is a quiescent trace of the right process but not of the left one. Process nil, in fact, does

not specify the behavior for action a, hence a . nil + nil, when provided with «, should move
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to nel from which action b is not enables; on the other hand the behavior for a is specified by
a., hence a.nil+ a.€) can move to Q with action ¢ and then perform action b before moving
to nel. Unfortunately we have not been able to find an unparameterized choice operator for

which the quiescent preorder is substitutive.

3.2 DIOA operators for I/O automata

In the previous section we have defined the transition rules for the renaming, hiding and parallel
operators of DIOA in such a way that they behave in the same way as the correspondent
operators of /O automata with a single internal action. We also have defined another set of
operators (prefixing, internal choice, external choice) and a set of basic expressions (nil and )
in order to have a sufficient expressive power.

In this section we define a new set of operators for I/O automata with one internal action
in such a way that they have the same behavior as of the prefixing, internal choice and external

choice operators of DIOA. We analyze each single operator: let A = (Q4,Q%, 54,%4, P4) and
B =(Qr,Q% 58,tp, ).

o prefixing operator “a.”:

The automaton a . A, where a € acts(.S,), is defined to be

(QA U {Q} U Qﬂv {Q}v SAvtlv PA)

where ()q is the set of states of the unspecified automaton and

t t

U {(g,a,q4)l94 € ¢}
U {(¢,0,¢%) : b € in(Sa)\{a}}
U

to

where ¢J is the initial state of the unspecified automaton and tq is the transition relation
for the unspecified automaton. The unspecified automaton is formally defined in the next

section. Here we just assume that it can be defined.
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e internal choice operator “@®”

The automaton A ¢ B, where 54 = S, is defined to be

(QaUQpU{q}, {q},54,taUtg UL, Py)

where
t = {(¢:7q4)laa € Q%}
U {(¢,798)las € Q%}
U {(g.a,¢4)|a € in(S4) and 3g4 € QY : (¢a,a,q}4) € La}
U {(g,a f]ﬁg)|a € in(Sg) and Igp € Q% : (g8, a,q5) € tn}

e external choice operator “;+;”

The automaton A ;+; B, where S, = Sg and I,J C in(S4), is defined to be

(QaUQprUQA X QpUQq, Q% X QF, 54,1, Pa)
where

t/

(
o~
S

{(qa X qB,a,¢)|(qa,a,qy) € ta,a € TUout(Sa),q5 € Qp}
{(qa X qB,a,9%)|(qB,a,q) € tg,a € J U out(Sp),q4 € Qa}
{(ga X gB,a,q9)la € in(SAO\(LUJ),q4 € Q4,95 € Qp}
{(qa X 48,7, ¢4 X qB)|(qa,T,¢4) € ta,qp € @B}

(

c ¢ cCc cCc cCc cC c

{(ga X g8, 7,94 X q5)|(4B,T,q%) €ta,qs € Qa}

Note that the above definition might contain many unreachable states.

The substitutivity result of Theorem 3.1.5 and the compositionality results of Remark 3.1.6

are trivially valid also for the new operators defined over I/O automata.
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We can also define a transition relation directly over I/O automata as follows:

(QA? Q?ﬁh SAvtAv PA) — (QA? {Q}v SAvtAv PA)

iff 3g4 € QY% : (ga,a,q) € t4. Finally we can define the notion of quiescent automaton as
follows: (Q4,Q%,54,ta, Ps) is quiescent iff 3¢ € QY%|q is quiescent. The main result, relating

the DIOA operators with the I/O automata operators, is then the following;:

Proposition 3.2.1 (transition rules for I/O automata) For every I/O automata opera-
tor op of arity n, the transition relation of the composition of n automata A, ..., A, is com-
pletely determined in terms of the transition relations of Ay, ..., A, by using the transition rules
for DIOA. More precisely, if AA|op(Ay, ..., A,) —— A according to the transition relation de-
fined on 1/0 automata, then A" =¢ Alop(Ai, ..., A,) —— A" according to the transition rules
of DIOA and vice versa.

Proof. Simple cases analysis for each operator. [ |

The above proposition says that we can use the transition rules for DIOA in order to
determine the behavior of the composition of simpler automata. Moreover it confirms the fact
that the definitions of the operators for I/O automata are consistent with the definitions of the

corresponding operators of DIOA.

3.3 DIOA expressions and I/0O automata

In this section we define what it means for an expression to represent an I/O automaton by

explicitly constructing the automaton associated with it.

Definition 3.3.1 Given an expression e of sort s, the automaton Aut(e) associated with e is
defined to be Aut(e) = (9,Q, qo,t, P) where S is the action signature associated with sort s, )

is the set of reachable states from e, ¢y is e, t is the transition relation associated with e, and

P = {local(5)}. |

The fact that Aut(e) is an I/O automaton is a direct consequence of the input enabling
and sort consistency properties of DIOA expressions. The definition of the partition P of the

locally controlled actions of § is arbitrary since we do not deal with fairness.
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We now state two important propositions showing the consistency of the definitions we have

given in this chapter.
Proposition 3.3.2 Given a DIOA expression e,
1. etraces(e) = Ubeh(Aut(e)) and
2. qtraces(e) = Qbeh(Aut(e)).
Proof. Direct consequence of Definition 3.3.1. [ |

Proposition 3.3.3 Aut is a morphism from DIOA expressions to 1/0 automata.

Proof. We prove the proposition for the internal choice operator. The proof for the other

operators is similar.

Ubeh(Aut(e ® f)) = by Proposition 3.3.2
etraces(e & f) = by Remark 3.1.6

etraces(e) U etraces(f) by Proposition 3.3.2

Ubeh( Aut(e)) U Ubeh( Aut(f))
Ubeh(Aut(e) @ Aut(f)).

by Remark 3.1.6 applied to I/O automata

The case for the quiescent behaviors is similar. [ |

Proposition 3.3.3 says that DIOA operators are preserved by the mapping Aut. For example
Aut(e @ f) =q¢ Aut(e) @ Aut(f)

where the left & is the internal choice operator of DIOA and the right ¢ is the internal choice

operator of I/O automata.

3.4 Recursion and I/O automata

How can recursion be interpreted within I/O automata? A definition of the form X o E(X)
can be interpreted as an equation between 1/0 automata meaning that the automaton X and

the automaton F(X) have to be quiescent trace equivalent. In other words the automaton
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X has to be a fixpoint of the equation X =g E(X). It could be the case, however, that the
equation has more than one fixpoint, therefore we need a method for choosing a particular
fixpoint of an equation.

A natural fixpoint that can be considered is Aut(X) where X and E(X) are viewed as
DIOA expressions. In Chapter 4 we provide a theorem about the uniqueness of the fixpoint for

a set of equations.

3.5 Dealing with multiple internal actions

DIOA does not completely capture the features of the I/O automaton model since it is defined
on signatures with one only internal action. The choice of this restricted set of action signatures
is due to the fact that we do not address the problem of fairness within this thesis.

It is not difficult to expand DIOA in such a way that it deals with multiple internal actions.
Two main consequences must be kept into consideration: the preorder relations will be defined
between expressions with different sorts (all sorts with the same external action signature) and
substitutivity will be no longer valid (if P = @ it might happen that there is a process C' such
that P||C is legal while Q||C is not legal). The new property that is valid is weak substitutivity,
i.e., two equivalent processes cannot be distinguished in any context in which they can both be
inserted.

The problem of defining calculi with multiple internal actions is completely addressed in
[Seg91] where Vaandrager’s work [Vaa91] is extended to the many-sorted setting. In [Seg91]

there is also the extended version of an angelic calculus of I/O automata (called I0A).
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Chapter 4

Algebraic theorems for the

Quiescent Preorder

This chapter presents a set of theorems about I/O automata and the operators defined in
Chapter 3. A theorem is a statement about the relationship between two automata where each
automaton is represented by expressions with free variables. Fach variable is meant to represent

an I/O automaton. An example of a theorem is
e=gede (4.1)

stating that an automaton e is equivalent to the internal choice composition of e with itself. In
other words & is idempotent.

Not all theorems, however, can be just expressed as a relationship between two expressions.
For example, it is not true in general that the automaton e is equivalent to the automaton
e 1+ e. The above equivalence is valid only if a particular property P(e) is valid for the set of

external and quiescent traces of e. The statement of the theorem is then
e=qgertyeif Ple) (4.2)

meaning “if the automaton e satisfies the property P then e =g e ;4 €”. The condition

expressed by the property P is called side condition.
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From the algebraic point of view, however, the above theorems have to be interpreted
as assertions about DIOA expressions meaning, for example, that the DIOA expression e is
equivalent to the DIOA expression e @ e. In the case of DIOA a theorem is called aziom, and
an axiom is said to be sound for the I/O automaton model if it is stating a true property of
the automata associated with the related expressions.

An additional property of axioms is that they have to be model independent, i.e., they
have to be stated purely in terms of the syntactic structure of an expression without using any
semantical reasoning. In particular theorem (4.2) cannot be directly interpreted as an axiom
since its side condition is not expressed in terms of the syntactic structure of e, rather in terms
of the semantics associated with e.

To view theorem (4.2) as an axiom we need a syntactic characterization p of P or a sound
proof system for P. In this thesis we pursue the approach of the syntactic characterization p
of P. It might not be the case that a syntactic property p equivalent to P can be defined,
therefore in general we introduce a property p such that p(e) implies P(e) and we write a real

axiom

e=qertyeif ple). (4.3)

In this thesis we want to keep a clear distinction between theorems and axioms. Theorems
are helpful for people working with I/O automata only since they provide a set of manipulation
rules for I/O automata; axioms, on the other side, are useful for algebraists since they permit
to capture the essence of the quiescent preorder just by means of syntactical analysis.

In accordance to the dual view theorems/axioms, this chapter deals with theorems only by
providing their statements based on semantic side conditions. The next chapter, instead, pro-
vides the axiomatic view of the theorems of this chapter by providing syntactic approximations
of the side conditions used in this chapter.

The rest of this chapter is organized as follows: Section 4.1 presents some auxiliary semantic
functions which are used for the formulation of the side conditions for the theorems; Section
4.2 presents general theorems concerning I/O automata where the auxiliary functions are those
of Section 4.1. The theorems of Section 4.2 will be converted into axioms in the next chapter;
Section 4.3 presents some tools for dealing with recursively defined automata. Since the sound-

ness proofs of the theorems are standard, we just provide the actual soundness proofs of some
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of them.

4.1 Auxiliary functions

In this section we introduce and justify some auxiliary functions that are useful for the formu-
lation of the theorems for I/O automata. The auxiliary functions are defined in terms of the
external and quiescent traces an automaton (or an expression) exhibits. In Chapter 5 we will
provide related definitions in terms of the syntactic structure of the expressions.

We start by defining the set of Weakly Specified Input actions of an automaton:
Wsi(e) = {a € in(e)|3t € ext(e)" : at & qtraces(e)}.

The idea behind the definition of Wsz is the following: if a specification of a device specifies
something about the behavior of the device in the presence of an input action a, then not all
choices of implementation should be correct when dealing with action a, i.e., some sequences of
actions should not be allowed after performing action a. The word Weakly emphasizes the fact
that we are abstracting from internal actions.

Another useful set is the set of Weakly Specified Output actions of an automaton:
Wso(e) = {a € out(e)|a € etraces(e)}.

Wso(e) is the set of output actions that could become enabled according to the specification
e. The word Weakly emphasizes the fact that we are considering output enabled actions up to
internal transitions. In other words, as for Wsi, we are abstracting from internal actions. The
usefulness of Wso is clear when stating distributivity of hiding over external choice. It is not
true in general that 7/(e g+x f) =¢ 7r(€e) g+ x 71(f) since performing an action from I resolves
the choice context in the left automaton but does not resolve it in the right one. The condition

for the above equivalence to hold turns out to be Wso(e) NI = Wso(f)N 1 = 0.
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Other useful functions are

Localen(e) = {a € local(e)|Te’,e — €'},
Inten(e) = true iff T € Localen(e) and
Quiet(e) = true iff Localen(e) = 0.

4.2 General theorems

In this subsection we present some general theorems that are sound for the quiescent preorder
over I/O automata. We call them “theorems” since they are viewed as properties of 1/0
automata. Fach expression stands for an /O automaton and the operators are those of 1/0O
automata. Moreover, the auxiliary functions are defined in terms of the external and quiescent
traces of the considered automata. In the next chapter we will define some other syntactic
functions to be substituted for the semantic ones and the theorems of this section will be
called “axioms” by viewing the expressions as actual DIOA expressions and the operators as
DIOA operators. Note that by the word “sound” we mean that the given theorems state valid
properties of I/O automata. When dealing with axioms, instead, the word “sound” means
that the relationship between two syntactic expressions stated by an axiom is valid in the
Input/Output automaton model.

The first group of theorems concern the relationship between  and the other operators. In

particular theorem M states that any automaton is an implementation of 2.

Proposition 4.2.1 (omega theorems) Let e be an I/O automaton. The following theorems

are sound.
R p(Qs) =q Qs
M el
I 71(Qs) =g Qs where S" = (in(5), out(S)\1)

P Qs ||Qs, =g Qs, where S5 is the composition of S, and 9
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The following theorems concern the renaming operator, which is distributive over every

other operator.

Proposition 4.2.2 (renaming theorems) Lete, f be /0 automata. The following theorems

are sound.
R, p(nil) =q nil
Ry pla.e)=q pla). p(e)
Rs ple® f) =q ple) & p(f)
Ry plerts f) =q ple) qyton p(f)
R pi(pa(€)) =q pro pale)
R p(ie)) =¢ Ty (p'(€)) if p' extends p
Re plellf) =q ple)llp(f)
n

The following theorems concern the parallel operator. This operator is commutative and
associative, but does not have a neutral element. In fact in general e||nil #g e. The problem is
that nil may have the control of some actions (essentially its output actions) which disappears
by only considering e. However a weaker property is valid saying that two automata {2 can be
collapsed (see theorem P). Theorem Pj describes the properties of the parallel composition of

an 2 automaton with a ni automaton.

Proposition 4.2.3 (parallel theorems) Let e, f and g be /0 automata. The following the-

orems are sound.

Py e|lf =q flle
P, (e[l Nllg=q ell(fllg)

P; Qg ||nils, Cg Qg,||nils, if (out(S1) C out(S3)) A ((in(S2) C in(Sy)) V out(Sy) = 0)

39



The following theorems concern the internal choice operator. Theorems Ic; ;3 state com-
mutativity, associativity and idempotence. Theorems Ic, 5 ¢ 7 state the distributivity of all the

operators of I/O automata (DIOA) over ¢. Theorem Icg is immediate.

Proposition 4.2.4 (internal choice theorems) Let e, f,g be I/O automata. The following

theorems are sound.
Ic, e f=q fbe
Ie, (e@ f)Dg=qed (fDyg)
Ics e =g eGe
Iy a.(ed fl)=ga.eda.f
Ies (e® f)rtrg=qertsg)® (frts9)
Ics (e ® f) =q mi(e) D 7(f)
Ier (e flllg =q (ellg) & (fllg)

Ies eCoe® f

The following theorems concern the external choice operator. This is the most complicated
operator of DIOA. The first two theorems state a sort of commutative and associative property.
In fact they are not really commutative and associative properties since the operator changes.
Theorem Ecj states a sort of idempotence property. This property is not valid in general since,
as noted in the introduction, the parameters of the choice operator play an important role.
Theorem Ee, permits duplicating an automaton e inside a choice context. Theorem Ec, is
different from theorem Ecj in that the presence of parameter I does not require any condition
on Wsi(e).

Theorems Ecs ¢ 7 s deal with the possibilities of adding or removing automata from a choice
context. Their combinations give rise to theorems Ec;5 ;5. Theorem Ec; is particularly inter-

esting since it expresses the main idea of our demonic approach: if e is not specifying anything
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about the occurrence of an input action a then any choice of implementation in the presence of
a is correct.

Theorem Ecg is a direct consequence of the definition of function Wsi. Its use, associated
with theorems Ecs 7, gives rise to theorem Ecy4. Theorem Ec;, permits to minimize the
cardinality of the parameters of the external choice operator. Finally, theorems Ecyg 11 12,13

state some relationships between the internal and external choice operators.

Proposition 4.2.5 (external choice theorems) Let e, f,g be 1/0O automata. The following

theorems are sound.

Eci e+, f=¢g fstre
Ec, (e;+s f) vtk 9=g € rt+sux (fi+K 9)
Ecs; e=ge;+seif Wsi(e) CTUJ

Ec, er+5 f=g(ent+re)+s fifICHUK
(not( Quiet(e)) A not(Inten(e))) Vv Quiet(f)

eCoerts f

(not( Quiet(e)) A not(Inten(e))) Vv Quiet(f)
ert;9Cg (et [ty g

Quiet( f)

ert+sfCqe

Quiet(f)
(eu+tr f)its9Cgertsyg

Ecy e=g e ;+ya.Q if Wsi(e) C T and Wsi(e)nNJ =10

EC5

if J N Wsi(f)C T

EC6

KN Wsi(fynIC H

Ec; if Wsi(e) C T and Wsi(e)nJ =10

Ecs if Wsi(e)N I C H and KN Wsi(e)N I =10

Ecjp a.ej+ya.f=qga.(ed f)ifacout(e)U(InJ)

Eci, e+ fCq e® f where Wsi(e)n Wsi(f) CITUJ

Quiet(e) <= Quiet( f) A not(Inten(e)) A not(Inten(f))
ety f=qedf

Ec, if Wsi(e)U Wsi(f)yCiInJ

a € in(e) V (not( Quiet(q)) A not(Inten(q))) vV Quiet(f) if Wsi(g) C K, and
(a.ert; fl)dg=qla.crts f)(a.ertkyg) {a}nIC{a}n K

41



The following theorems are derived from the theorems above:

Eciy e+ f =@ € n{atTJ\{a} fiface I\ WSZ(@)

Quict(f) .
Ecy; m where Wsi(e) C I
Ece Quict(f) fENT=0

erts9=qgertrx f)its g

Proof. We prove only theorem Ecs. Other examples of proofs are given for the hiding theorems.
Due to Proposition 3.2.1 of chapter 3, the proof can be given by using the transition rules for
DIOA. We also use a new notation e == ¢’ meaning that there are two automata f, f’ and two
integers 7, j such that e AN e,

Let ¢ be an external (quiescent) trace of e. If £ = A and ¢ is quiescent, then, by definition
of quiescent trace, there is a quiescent automaton ¢’ such that e =25 ¢. From rules ech, s
ertye 2y e 1+ € which is quiescent. Therefore, A is an external (quiescent) trace of e ;+ e.
If t # X then t = at’ for some external action a. In particular there is an automaton e’ such
that e == ¢’ and ' is an external (quiescent) trace of ¢’. If « € I U J U out(e), then, from
rules ech; 5, e ;5 € == ¢/, hence at’ is an external (quiescent) trace of e ;+; e. concluded; if
a ¢ 1UJ Uout(e) then, from rule echy, e ;+; ¢ —— Q and ¢ is trivially an external (quiescent)
trace of e ;47 e since any trace is a quiescent trace of €.

Conversely let ¢ be an external (quiescent) trace of e ;4 e. If t = A and ¢ is quiescent, then,
by definition of quiescent trace, there are two quiescent automata e’,e” such that e ;4 e N
e 145 €' where e 25 ¢ and e =2 ¢”. The fact that A is a quiescent trace of e is immediate
from the hypothesis above. If ¢ # A then t = at’ for some action a. If « € I U J U out(e), then,
from rules ech, ,, there is an automaton €’ such that e ;+; e == ¢/ where e = ¢’ and t' is an
external (quiescent) trace of ¢’. The conclusion is immediate once again. If a ¢ I U J U out(e),
then « is an input action and a ¢ Wsi(e) since Wsi(e) C I U J. From the definition of Wsi, at’
is an external (quiescent) trace of e, hence the proof is concluded. [ |

The following theorems concern the hiding operator. The first seven theorems show the
relations between the hiding operator and the other ones. In particular theorem I, establishes
the distributivity of hiding over choice (this is the place where function Wso is used); theorem

I is simply a way of saying that internal actions can be renamed. Theorems I, state some
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ways of dealing with the hiding operator when it does not distribute over prefixing or external
choice.

The rest of the theorems permit eliminating/adding internal actions from automata. Theo-
rem I, essentially says that 7;(e) is an implementation of 7;(7;.€). In fact the second automaton
can move to the unspecified state with every input action before performing action 7 while the
first process may not. The condition for which the two automata can be considered equivalent
is when also 7/(e) can perform any trace after any input action. A sufficient condition is then
Wsi(e) = () and this is what is stated in theorem I;.

Theorems I;5 5 permit eliminating explicit internal actions, possibly by transforming an
external choice into an internal one. Theorems I,4 5 permit eliminating the hiding operator
from particular classes of I/O automata that are expressible through DIOA expressions. These
theorems are particular important in their axiom version to achieve completeness.

Theorems I,6 .7 are derived from the above theorems and are useful for the applications.
Theorem 14 eliminates internal actions interleaved with an external one. Note that, by using
the external choice theorems together with theorems Iy 1513, the statement of theorem I5 can
be generalized to the case in which there is any number of hidden actions interleaved with a.

Theorem I, says that, if the effect of a prefix with an internal action is simply to temporary
block a process that can perform only locally controlled actions, then the prefix can be removed

and the automaton can be simplified. It is a consequence of theorems I3 and Ec; 1 4.

Proposition 4.2.6 (hiding theorems) Let e, f, g be 1/O automata and let i € I. The fol-

lowing theorems are sound.
I, my(e)=¢ge
I, 7(nil) =g nil
I; i(a.e)=qga.m(e)ifadg ]
L, ri(e g+ f) =g mi(e) utx (f) if Wso(e)NI= Wso(f)nI=10
Iy 71(7s(e)) =¢ Tr0s(€)

I mi(e)||ms(f) =g mrus(e|lf) if INacts(f) = J Nacts(e) =0
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I: e =g ple) if p is the identity function

71(¢) o 7r(f)
mi(a.e) Cg r(a. f)

71(e) Cq 71(g)
tilen+r ) Co (9 ntx f)

Lo 7(e) Co mi(i.e gtk f)

Ly 71(i.e) =¢ 7i(e) if Wsi(e) =10

not( Quiet(e)) A not(Inten(e))
ilegtot. f)=q mi(ed f)

Quiet(e)
ileg+oi. f)=¢ Trilex+x [)

Ly 71((Qs,[[nils, || - - - ||nils, )lle) =¢ Tr(Q]e) if Vigj<n(out(So) Min(S;) N I)\in(e) # 0

if Wsi(e) C H

if Wsi(e) C H and Wsi(e) C K

115 TI(QSDHnilSlu L HmlSn) EQ QSD\IHniZSI\IH L HmlSn\I ZfVISZSHOUt(SO) n Zn(SZ) n I = @
The following theorems are derived from the theorems above:
Lis mr(a.7.€{ajnine)toi.a.e) =g mr(a.e) if Wsi(e)=10

Lz 7i(i.(egts f)ot+s ) =¢ mi(eg+s f) if Quiet(f) and Wsi(f) C J

Proof. We only prove theorems I 1314 15. The other theorems are proven in the same way.

I,» Lett be an external (quiescent) trace of 7;(eg+yi.f). By the transition rules for 7; and the
definition of external trace, there is a trace ' of ey +yi. f such that ¢ [ext(Ti(eg+yi.f)) =1
and ¢’ leads the system to a quiescent state if ¢ is quiescent. Note that, since 7;(e y+4i.f)
is not quiescent, ' # A if t = A and ¢ is quiescent. Since no internal actions are enabled
from e then the first action of ¢’ is not 7 and rules ech, 5 are not used for the first transition

of t. We distinguish the following cases:

(a) rule ech, is used for the first transition of ¢’

. . a . a .
In this case e g+¢ i . f — €' for some action ¢ where ¢ — ¢’. By rule ich;

ed f - e ¢, hence t is trivially an external (quiescent) trace of 77(e @ f).
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(b) rule ech, is used for the first transition of ¢
In this case e g+pi.f —— f and (e gty . f) —— 7(f). By rules ich; and tau,

(e ® f) — 71(f) and the conclusion is immediate again.
(c) rule echs is used for the first transition of ¢

In this case e g+gi. f — € for some input action @ ¢ H. In particular ¢t = at” for
some trace t" and, since  C Wsi(e), a ¢ Wsi(e). From the definition of Wsi we
have that at” is an external (quiescent) trace of e, hence at” is an external (quiescent)

trace of 77(e & f).
A similar and simpler argument shows the converse trace inclusion.

Let ¢ be an external (quiescent) trace of 7/(e g+¢¢. f). If t = X and ¢ is a quiescent
trace, then, since e is quiescent and 7. f is not quiescent, it must be 77(e g+¢ i. f) —
m1(f) = 7,(f) where ' is quiescent. On the other side /(e x+x f) = 71(g) where
either g = e x+x f' or g = f' depending on the trace leading to f’. Since e is quiescent,
then in both cases ¢ is quiescent and A is a quiescent trace of 7;/(e x+x f). Suppose now
that ¢ # A. By the transition rules for 7; and the definition of external trace, there is a
trace ¢’ of e y+¢ ¢. f such that ¢[ext(r;(e g+ . f)) = t and ¢’ leads the system to a
quiescent state if ¢ is quiescent. Since no internal actions are enabled from e, then the
first action of ¢’ is not 7 and rules ech, s are not used for the first transition of ¢'. We

distinguish the following cases:

(a) rule ech; is used for the first transition
In this case e g+ i.f — € for some action @ where e — ¢’ and a € H Uout(e). If
a € K Uout(e) then rule ech, is applicable to e x+x f leading the right automaton
to 77(¢’). The conclusion is then immediate. If ¢ ¢ K U out(e) then rule echy is
applicable to e g+, f leading the system to 2. The conclusion is immediate again.
(b) rule ech, is used for the first transition
In this case e g+gi. f LN fand 7(e g+ i. f) — 71(f). Let ¢’ = ir™bt". Since
77bt" is a trace of f, we have that 3f', f"|f . f LN f” where t” is a trace of f”

leading the system to a quiescent state if ¢ is quiescent. By the transition rules for
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the external choice operator, e g+ f e k+x f LN g where ¢ is either f" or Q
depending on the rule used for the b-transition (echs or echs). In both the cases t”
is a trace of g leading the system to a quiescent state if ¢ is quiescent. The conclusion

is then immediate.

(c) rule echs is used for the first transition

In this case € g+g 7. f — Q for some input action a. In particular « ¢ Wsi(e),
hence rule echs is also applicable to e x+x f leading the right automaton to 2. The

conclusion is then immediate.

A similar and simpler argument shows the converse trace inclusion.

For each 1 < ¢ < n choose a; € (out(Sy) Nin(S;) N I)\in(e). Then
(s l[mils, || - -[Imils, lle =" (s, |2, | - - 125, )]|e and

Tr(QsylInils, || -~ Imils, )le) = 7r((Qsal| s, ]| - 1125, )l]e)

which, by axiom P, is equivalent to 7;(£2||e), hence

Tr(Qe) Eq (R, [|nils, | - - -[[nils, )lle)-

The other inclusion is trivial since each process is less than € (use theorem M and the

substitutivity rules).

Let ¢ be an external (quiescent) trace of 7;(Qg,[|nils, || - - - ||nils, ). We show by induction
on the length of ¢ that ¢ is an external (quiescent) trace of Qg \r||nils (|| - ||nils\r. If

t = A then the result is immediate since A is a quiescent trace of any automaton of the

form Q||ndl|| - --||nil. If t # A then ¢t = at’ for some external action a. By the definition of
external trace and the transition rules for 77, we have that Qg ||nils, || - - - |nils, —~ ¢ —*=

¢’ for some e, €', t; where ¢; has actions in I U {7}. Since Vi <;<,0ut(So) Nin(S;) N1 =0,

then e = f||nils, || - - - [|nils, where f is either Qg, or nilg,. In the case f is nilg, we have
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that Qg rl|nilsr|| - - - [|nils,\r = nilsorl|nilsr|| - - - ||nils,\r using rule ome,. Let

) Qseullmalsagl| - lnils,r i f = Qs
nilSD\IHniZSI\IH---HnilSn\I iffEnilSD
In the transition e — ¢’ there is a set of automata {nils,, :j € J} of fl|nils,||---[|nils,,

having « is an input action, that will move to Q. The set of automata {m'lglj\j 1jeJ}
also move to  with action ¢ on ¢ since they all have action a as an input action. To
conclude it is enough to collapse all £ automata by repeatedly applying axiom P, and

successively apply the induction hypothesis.

The inverse trace inclusion is easier to prove since each trace of Qg.\r||nils\f|| - - - | nils,\1

has no actions from 1.

4.3 Theorems for recursively defined processes

In this subsection we present some tools to deal with recursion by stating some properties about
recursive definitions. We first find a class of recursive DIOA equations having unique solutions
up to quiescent trace equivalence, i.e., a unique fixpoint; then, on the same class of equations,
we state some properties of their pre and post fixpoints.

We consider the class of equations given by means of strongly guarded expressions (see
Definition 4.3.2), i.e., expressions in which each process variable occurs within the scope of
some not hidden prefix. For this class we can assure that every set of mutually recursive
equations has a unique fixpoint. It is immediate to see that this property is not valid if we

consider non-strongly guarded equations. Consider for example

def

X E iy (a . (X]|nil))

where nil has a single output action a and a ¢ acts(X). Then every automaton with the same
action signature as X is a solution of the equation.

Since recursion is expressed through DIOA expressions, we can interchangeably talk of
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expressions or talk of represented automata. Moreover we can interchangeably talk of transition
rules applied to expressions or transition rules applied to automata. The only point in which
it is not possible to talk about expressions is when some automata are substituted for the
variables of a set of equations. We first introduce some notational conventions. We indicate
with F a set of expressions {Fi,...,FE,}. The same convention is valid for process variables
and for automata. With the notation E[P/X] we mean the automaton obtained from E by
simultaneously substituting all its occurrences of X; with P; for every ¢. With the notation
E[P/X] we mean the substitution above repeated for every expression F; of L.

We now introduce the notion of strongly guarded expression, which is then generalized to a

set of equations.
Definition 4.3.1 (strong guardedness) Given a set of actions A,
o nil is strongly guarded with respect to A,

e «.e is strongly guarded with respect to A iff a ¢ A or e is strongly guarded with respect
to A,

o e P ey is strongly guarded with respect to A iff both e; and e; are strongly guarded with

respect to A,

o e 1+ ey is strongly guarded with respect to A iff both e; and ey are strongly guarded

with respect to A,
o 7;(e) is strongly guarded with respect to A iff e is strongly guarded with respect to AU,

e p(e)is strongly guarded with respect to A iff e is strongly guarded with respect to p=*(A),

and

e ¢ |le; is strongly guarded with respect to A iff both e; and e are strongly guarded with

respect to A.
A DIOA expression e is strongly guarded iff it is strongly guarded with respect to (. [ |

Informally a DIOA expression e is strongly guarded with respect to a set of actions A iff

every process variable of e occurs in a subexpression of the form b.¢’ of e where b is an external
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action of € that is transformed (renamed) into an external action of e not belonging to A. The
use of parameter A is due to the presence of the hiding operator. The intuitive idea behind
a strongly guarded expression e is that no process variable affects any transition from e. The

following definition extends the concept of strong guardedness to a generic set of equations.

Definition 4.3.2 (strongly guarded equations) Given a set of equations X Lt E(X), an
equation X Lt Ek(f() is strongly guarded with respect to A if 4A4,,..., A, such that

1. V; EZ()N() is strongly guarded with respect to A;,
2. AC A, and

3. for each X; occurring within E;, A; U A" C A; where A’ is the set of actions of X; that

are hidden within F;.

X E(X) is strongly guarded if, for each i, X; = E;(X) is strongly guarded with respect to
0.

We can now state the main theorem of this section. As a corollary we have uniqueness of

fixpoint for strongly guarded equations.

Theorem 4.3.3 (recursive substitutivity) Let X Lt E(X) be a strongly guarded set of

equations and let P be a set of 1/0O automata. Then the following facts hold:

1. if PCq E[P/X] then P Co Aut(X);

2. if E[P/X] Cq P then Aut(X)Cq P.

oro ary Ty N unlque solution o equa 101s € X é (X easrongyguare Se
Corollary 4.3.4 (uni luti f ti Let X < E(X) be a strongl ded set

of equations and let P =4 E[P/X] where P is a set of automata.. Then P =g Aut(X).

Proof. Direct consequence of theorem 4.3.3. [ |
The rest of this section is dedicated to the proof of theorem 4.3.3. The main idea of the

proof is that, by unfolding a set of equations n times, every trace of length at most n can
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be generated independently of the automata substituted for the variables X. The first lemma
formally introduces the unfoldings of the equations and proves some properties that will be

fundamental to allow the above idea to work.

Lemma 4.3.5 (unfoldings) Given a set of process variables X consider the corresponding
defining expressions E(X). Let E° = E(X) and, for each n > 1, E™ = E[E""'/X]. Let P be
a set of 1/0O automata. Then the following holds:

1. X =g E" for each n.

o Py BIP/X] = P Cq E"[P/X] for cach n.

3. E[P/X]Cq P = E*[P/X]Cq P for each n.
Proof.

1. By induction on n. If n = 0 then the result is immediate from the fact that X =4 F(X)
for each process variable X. Suppose by induction that X =g E™. By substitutivity,
E[X/X] =q E[E"/X]. Since, by the base case, E[X/X] =, X and since, by definition,
E[E"/X]is E™*', we can conclude that X = E"*!.

2. By induction on n. If n = 0 then the assertion is true by definition. Suppose by induction
that P C, E7[P/X]. By substitutivity, E[P/X] Ty E[E"[P/X]/X]. Since by hypothesis
P C, E[P/X] and since, by definition, E[E"[P/X]/X]is E"t'[P/X], we can conclude
that P C, E"+[P/X].

3. By induction on n. If n = 0 then the assertion is true by definition. Suppose by induction
that £"[P/X] Cq P. By substitutivity, E[E"[P/X]/X] Cq E[P/X]. Since by hypothesis
E[P/X] Cq P and since, by definition, E[E"[P/X]/X]is E"t'[P/X], we can conclude
that E"+[P/X]| Cq P.

The following lemmas essentially state the independence of the traces of length at most n

from the automata substituted for the variables of E™.

Lemma 4.3.6 Let E(X) be strongly guarded and let E(X) — E'(X). Then
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1. E’()N() is strongly quarded and

2. for each set of automata P, E[P/X] - E'[P/X].

Proof. We prove a more general result: Let E(X) be strongly guarded with respect to A and
let E(X) -2 E'(X) where a € AU {r}. Then

1. E'(X) is strongly guarded with respect to A and
2. for each set of automata P, E[P/X] - E'[P/X].

The lemma follows by taking A = (). We proceed by induction on the structure of E. If F = nil
or I/ = ) then the result is trivial since no variables are contained in F. The result is trivial
also when F is a process variable since F is not strongly guarded. For the induction step we

consider cases depending on the most external operator.

Case 1 prefixing

Let F=a.F,. If a # a then the result is trivial since the only admitted transitions with
action a from E move the system to Q. If @ = @ then the transition is a . B, —— FE; and,
since a € A, Ey is strongly guarded with respect to A. Moreover a. E'[P/X] - E\[P/X]

for each set of automata P.

Case 2 choice

Let F = Fy ;+; F,. By definition of strong guardedness both F; and F, are strongly
guarded with respect to A. For transitions to € the result is immediate; for transitions

involving F; or Fs the result follows directly from the induction hypothesis.

Case 3 hiding

Let £ = 7/(F,). By definition of strong guardedness E is strongly guarded with respect
to AUL. If 7;(FE,) — 7;/(E') where « € AU {7} then, by the transition rules, F; Syl
where 3 € AUT U {r}. By induction £’ is strongly guarded with respect to A U [
and E[P/X] 2, E'[P/X] for each set of automata P. In particular 7;(£’) is strongly
guarded with respect to A and 7 (E\[P/X]) == m(E'[P/X]).
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Case 4 renaming

Let £ = p(F)). By definition of strong guardedness E; is strongly guarded with respect
to p~H(A). If p(Ey) — p(E') where @ € AU{} then, by the transition rules, F; ) p
where p~(a) € p~'(A)U{r}. By induction E’ is strongly guarded with respect to p~'(A)
and E[P/X] P(e) E'[P/X] for each set of automata P. In particular p(E') is strongly
guarded with respect to A and p(E,[P/X]) - p(E'[P/X]).

Case 5 parallel

Let £ = F,||F>. By definition of strong guardedness both F; and F, are strongly guarded

with respect to A. It is enough to apply the induction hypothesis to Fy and F to conclude.

Lemma 4.3.7 Let E(X) be strongly guarded and let E(X) AN E'(X). Then
1. E'(X) is strongly guarded and

2. for each set of automata P, E[P/X)] AR E'[P/X].

Proof. By induction on n. If n = 0 then the result is trivial. Suppose now that the fact is
valid for n and let E(X) RAAN E'(X). By means of Lemma 4.3.6 we perform the first step and,
by induction, we perform the remaining n steps. [ |

To state the following lemmas we need a definition.

Definition 4.3.8 (transitional equivalence between I/O automata) Twol/O automata
A, B are transitional equivalent (A = B) iff their transition trees are isomorphic, i.e., there is
an isomorphism A from the reachable states of A to the reachable states of B such that for each

reachable ¢ € states(A), ¢ —— ¢ iff h(q) - h(q"). |

In the following lemmas we use the transition rules for DIOA in order to derive the transi-

tions of an automaton.

Lemma 4.3.9 Let E(j() be strongly guarded and let P be a set of automata. Let E[P/X] AN
O. Then 3E" : E(X) = E"(X) and O = E"[P/X).
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Proof. The proof method is exactly the same as the one used in lemmas 4.3.6 and 4.3.7. Note

that the lemma is valid also when P are expressions. [ |

Lemma 4.3.10 Let E(X) be strongly guarded and let E(X) -+ E'(X). Then, for each set of
automata P, E[P/X] - E'[P/X].

Proof. The proof method is exactly the same as in Lemma 4.3.6. [ |

Lemma 4.3.11 Let F(X ) be strongly guarded and let P be a set of automata. Let E[P/X] -
O. Then 3E" : E(X) % E"(X) and O = E"[P/X].

Proof. The proof method is exactly the same as in Lemma 4.3.6. Note that the lemma is valid

also when P are expressions. [ |
Lemma 4.3.12 Let E(X) be strongly guarded. Then \ € qtraces(E[P/X]) iff A € gtraces(E).

Proof. Suppose A € gtraces(E[P/X]). By definition E[P/X] T2 O for some n > 0 where O
is quiescent. By Lemma 4.3.9 IE” : E(X) ~— E”( X) and E' = E"[P/X]. Suppose E” not
to be quiescent. Then E”[X] - E" for some local action o. By Lemmas 4.3.10 and 4.3.11
there is a transition from O with action o. This gives a contradiction, hence E” is quiescent
and A € gtraces(E). The converse is analogous. |

Before stating the main lemma we need a new definition.

def

Definition 4.3.13 Let F(Y) be a DIOA expression with k variables, and X = E(X) be
a strongly guarded set of k equations. F is said strongly compatible with E if, for each Y;
def

occurring within F, X; = F; (X) is strongly guarded with respect to A where A is the set of

actions of Y; that are hidden in F from the considered occurrence of V;. [ ]

def

Lemma 4.3.14 Let F(Y) be a DIOA expression with k variables, and let X = E(X) be a

strongly guarded set of k equations where F is strongly compatible with E. Then
F[E/Y] is strongly guarded;

2. 4f F is strongly guarded and F[X] —~ F' (where a could be T), then F' is strongly
compatible with E.
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Proof. Ttem 1 follows from the definitions of strong guardedness and strong compatibility; the

proof of item 2 is by induction and follows the same lines of Lemma 4.3.6. [ |

We can now prove the main lemma which relates the automata X to the automata sub-
stituted for the variables. Note that lemma 4.3.5 plays an essential role in this proof. The

introduction of F’ is necessary to set up an inductive process.

Lemma 4.3.15 Let F(f/) be an expression with k variables, P be a set of k automata, and

X« (f() be a strongly quarded set of k equations where F is strongly compatible with E and

the variables of X are disjoint from those of Y. Let h be a trace of length n. Then h is an
external (quiescent) trace of F[E"[P/X]/Y] iff h is an external (quiescent) trace of F[E™/Y].

Proof. We prove both directions by induction on n. We also use the following syntactical
identities:

2. FIEI[P/R])¥) = FE/Y)E(P) 5]/ ).
(=) Suppose that A is an external (quiescent) trace of F[E[P/X]/Y]. From identity 1, A is

an external (quiescent) trace of F[E/Y][P/X]. By Lemma 4.3.14, F[E/Y] is strongly

guarded and, by Lemma 4.3.12, A is an external (quiescent) trace of FIE/Y).

For the induction step suppose that ah is an external (quiescent) trace of F[E*+[P/X]/Y]
where |h| = n. From identity 2, ah is an external (quiescent) trace of F[E/Y][E"[P/X]/X]
and, by Lemma 4.3.14, F[I//Y] is strongly guarded. From the definition of external trace
and Lemmas 4.3.9 and 4.3.11 3F}, F5, such that

FLE/VI[E"[P/X)/X] == F[E[P/X)/X] - BIE"[P/X]/X]

where

FIE/V] 25 RX] % B[X]

and h is an external (quiescent) trace of Fy[E"[P/X]/X]. By Lemma 4.3.14 and a simple
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induction argument Fy is strongly compatible with E. By Lemmas 4.3.7 and 4.3.10
FIE/Y)E?/X] = R[E"/X] = B[E"/X].

By induction % is an external (quiescent) trace of Fy[E”/X]. Therefore, since by identity

2 FI[E"Y /Y] = F[E/Y][E"/X], ah is an external (quiescent) trace of F[E"+1/Y].

(<) Suppose that A is an external (quiescent) trace of F[E/Y]. By Lemma 4.3.14, F[E/Y] is
strongly guarded and, by Lemma 4.3.12, A is an external (quiescent) trace of F[E/Y][P/X].
From identity 1, \ is an external (quiescent) trace of F[E[P/X]/Y].

For the induction step suppose that ah is an external (quiescent) trace of F[E" /Y] and
suppose |h| = n. From identity 2, ah is an external (quiescent) trace of F[E/Y][E"/X]
and, by Lemma 4.3.14, F[I//Y] is strongly guarded. From the definition of external trace
and Lemmas 4.3.9 and 4.3.11, 3F, I, such that

FIE/V|E)X) = F[E"/X] - B[E"/X]
where
FIE/V] 2 RIX] -~ B[X)

and h is an external (quiescent) trace of Fy[E”/X]. By Lemma 4.3.14 and a simple
induction argument Fy is strongly compatible with E. By Lemmas 4.3.7 and 4.3.10

FLE/VI[E"[P/X]/X] == F[E"[P/X]/X] - BIE[P/X]/X].

By induction A is an external (quiescent) trace of Fy[E"[P/X]/X]. Therefore, since by
identity 2 F[E"'[P/X]/Y] = F[E/Y][E"[P/X]/X], ah is an external (quiescent) trace
of F[E"t'[P/X]/Y].

We can finally prove Theorem 4.3.3.

Proof of Theorem 4.3.3 (recursive substitutivity)

1. Let h be an external (quiescent) trace of P; and let |h| = n. By Lemma 4.3.5 part 2,
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h is an external (quiescent) trace of F[E"[P/X]/Y] where F = Y;. By Lemma 4.3.15,
h is an external (quiescent) trace of F[E”()N()/f/] and, by Lemma 4.3.5 part 1, h is an
external (quiescent) trace of F[X/Y]. Therefore h is an external (quiescent) trace of X;

and Aut(X;).

. Let I be an external (quiescent) trace of Aut(X;), therefore an external (quiescent) trace
of X;, and let |A| = n. X; can be expressed as F[X/Y] where ' = Y;. By Lemma 4.3.5
part 1, h is an external (quiescent) trace of F[E*(X)/Y] and, by Lemma 4.3.15, h is an
external (quiescent) trace of F[E"[P/X]/Y]. Finally, by Lemma 4.3.5 part 3, A is an

external (quiescent) trace of P;.
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Chapter 5

An Axiomatization for the Quiescent

Preorder

In this chapter we present the syntactic view of the theorems of Chapter 4 and we prove a
completeness result for recursion-free expressions.

The first step consists in converting the theorems of Chapter 4 into actual axioms by giving
syntactic approximations of the semantic auxiliary functions; then the completeness result can
be stated and proved.

The completeness result is achieved through a special notion of normal form where the
parallel operator is present. In general (see [ABV92]) the normal form contains only a 0
process, a prefixing operator and a nondeterministic choice operator. In DIOA the parallel
operator cannot be eliminated in general from expressions of the form ||n:l. The transition
rules of DIOA, in fact, do not fit the format of [ABV92].

Once the normal form is identified, the completeness result is proven just for expressions
in normal form and it is extended to general expressions by showing that each recursion-free
expression with a finite interface has a provably equivalent one in normal form.

The rest of the chapter is organized as follows: Section 5.1 presents approximations for the
auxiliary functions of Chapter 4 given in terms of the syntactic structure of the expressions.
By substituting the new auxiliary functions in the theorems of Chapter 4 we obtain actual

axioms; Section 5.2 presents some classes of expressions that are used for the completeness
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results; Section 5.3 presents other three axioms that can be easily stated using the notation of

Section 5.2; Section 5.4 presents and proves the completeness result.

5.1 Syntactic definition of auxiliary functions

In this section we give an approximation of functions Wsi, Wso, Localen, Quiet and Inten
that is based on the syntactic structure of an expression. The new functions we define can be
substituted for the auxiliary functions used in Chapter 4 giving a set of actual axioms.

By looking at the way in which function Wsi is used in the theorems of Chapter 4, it is
immediate to see that the approximation we need is an upper approximation of Wsi, i.e., we
need a new function wsi, defined in terms of the syntactic structure of an expression e, such
that, for every e, Wsi(Aut(e)) C wsi(e). One specific property of wsi to guarantee the above

relation is the following:
if @ € in(e) and a ¢ wsi(e) then Je' =g Qe == €.

Table 5.1 contains the actual definition of wsi based on the property above. The definition of
wsi is a bit complicated due to the presence of the two parameters A and B which are necessary
for dealing with hiding and external choice operators. When dealing with the hiding operator
it is not sufficient to look at the set wsi of its argument to establish the set wsi of the global
expression: in fact all the hidden output actions must be considered internal. For this reason it
is necessary to introduce an additional parameter A saying which actions should be considered
internal in the evaluation of wsi. On the other hand, when dealing with an external choice
context, not all traces with elements in A can be performed because some of them may be
forbidden by the operator itself (for example e cannot perform the input action a in e 4+, f).
For the reason above it is necessary to introduce a second parameter B saying how the traces
to consider should begin. Notice, however, that parameters A and B could be eliminated: the
result is given by a coarser approximation of Wsi with the effect of a weaker set of axioms. The

following lemma is characterizes the relationship between Wsi and wsi.

Lemma 5.1.1 For each DIOA expression e, Wsi(Aut(e)) C wsi(e).
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wsia p(nil) =0
’LUSZ.AyB(Q) = @

wsig pla.e) = { {a} if a €in(e)\A
Ab 0 ifacout(e)UA

wsig pler B ey) = wsiy pler) N wsiy pes)

0 it BNnAN (in(e)\(TUJ)) #0
wsig p(er 1y e2) =4 (LN wsigpacruoutie))(€1)) U (J 0 wsig paiuout(es))(€2))
otherwise

WSiA,B(TI(e)) = WSiAuI,B(e)
wsiag(p(e)) = p(wsi,-1(ay,-1()(€))
wsi g pler|le2) = wsigg(er) U wsipg(es)

wsig p(X) = wsis p(E£(X))

Table 5.1: Definition of wsi for DIOA. wsi(e) < wsig g(e)

Proof. The lemma is a direct consequence of the assertion
if @ € in(e) and a ¢ wsi(e) then Je' =g Qe = €.
The assertion above is implied by the following one when choosing A = 0:

if a € in(e)\A and a ¢ wsiy p(e) and B C ext(e)
then 3¢’ =4 Q and h € A*, (h = A or first(h) € B), and e =% ¢/,

We show the last assertion by induction on the complexity of a guarded expression e. For
unguarded expressions it is enough to substitute F(X) for each unguarded occurrence of a
process variable X.

The cases for nel and €2 are trivial since, for any input action, they both have only transitions

to 2. For the other operators we have the following cases:

Case 1 prefixing:
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Let e = a. ¢ and suppose b € wsiy p(e) where b € in(e)\A. By definition of wsi, b # a,

hence the result is trivial since a . e —  for any input action b different from a.

Case 2 internal choice:

Let e = e; @ e; and suppose a ¢ wsi(e) where a € in(e)\A. By definition of wsi either
a ¢ wsi(ey) or a ¢ wsi(e;). Suppose without loss of generality that a ¢ wsi(e;). By
induction there is ¢; = @ and h € A* such that h = A or first(h) € B, and e, L4 e). By

. . A ha
first using rule ich; we have e; ® e; — €; = €.

Case 3 external choice:

Let e = €17+ €5 and suppose @ € wsiy p(e) where a € in(e)\A. If BNAN(in(ey)\([UJ)) #
0 then the result is trivial since e; ;+; €5 —— Q - Q where b € BN AN (in(e))\(JUJ)).
If BN AN (in(e))\(IUJ)) =0 then one of the following cases holds:

l.aglulJ
This case is trivial since e; ;47 €5 — €.

2. a€lUJ and a & (J U wsis pairoout(e))(€1))
In this case we apply the induction hypothesis to e;. Let €/, h such that ¢} = Q and
e L4, e). If h = A then rule ech; can be used to derive e; 1+ €5 = e} since a € [;
if h # A then, by induction, first(h) € I U out(e,), hence rule ech; can be used
again.

3. a€lUJ and a & (I U wsis paisuout(e))(€2))
Similar to the previous case.

4. a € IUJ and a € wsia pairucut(e;))(€1) U WSia Br(susuties))(€2)
In this case @ € I or a € J. Suppose without loss of generality that a € I. The

analysis is then the same as for item 2.

Case 4 hiding:

Let e = 17(¢’) and let a ¢ wsiy p(e) where a € in(e)\A. By definition wsiy g(7/(€')) =
wsiauy p(€’). By induction there exists €/ =g @ and 2/ € (AU )" such that o/ = A

or first(k') € B, and ¢ Z% ¢”. From the transition rules 7;(¢/) 2> 7;(e”) where
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h = h'[ext(e). Notice that, if A’ # A, then first(h) € B since B C exzt(e). In particular
Ti(€”) =g Q@ and h = X or first(h) € B.

Case 5 renaming:
Let e = p(¢’) and suppose a ¢ wsiy p(e) where a € in(e)\A. By definition wsi, g(p(€')) =
p(wsi,-1ca) ,-1(my(€")), hence p~'(a) & wsi,-1(a) ,-1(5)(€') and p~'(a) € in(e’)\p~'(A). By
induction there exists ¢’ =g @ and b’ € p~!'(A)* such that v’ = X or first(h') € p~'(B),
and ¢ "= ¢”. From the transition rules p(e') 2% p(e”) where h = p(h'). In particular
p(e”) =g Q and h = X or first(h) € B.

Case 6 parallel:

Let e = ey|les and suppose a ¢ wsiy p(e) where a € in(e)\A. The conclusion follows

directly by applying the induction hypothesis to both e; and es.

|
For function Wso we define an approximating function that satisfies the following property

for each expression e:
if a € out(e) and Je'le = ¢’ then a € wso(e).

Table 5.2 contains the actual definition of function wso. Unfortunately wso is not well defined

for all DIOA expressions. Consider for example the process

X rgya (X |nil))
where a is an output action of nil but not an action of X. The application of the definition of
wso gives wso(X ) = wso(X ). The problem is essentially due to the third case in the expression
of wso, p(a.e) where the prefix a is skipped and expression e is considered. One way to avoid
the problem is to replace wso4 a(e) with out(e)\A in the expression for wso, g(a . e); another
way is to consider only those expressions for which wso is well defined, i.e., strongly guarded
expressions as defined in Definition 4.3.1 of Chapter 4. On strongly guarded expressions the
third case of the expression for wso, g(a.e) does not cause any problem since a process variable

will never be reached.

61



(i) = 0 if AN BNin(nil)=10
wsoapinu) = out(nil)\A otherwise

wso() = out(N)\ A

out(e)\ A it BnAn{a} #0

{a}Nout(e) if BNAN{a}=0andag A
wso, 4(€) ifBﬁAﬂm:@andaeAﬁB
0 if BNAN{a}=0andac A\B

wso, pla.e) =

wso ple; @ es) = wso, pler) U wsoy ples)

WS04 Ba(Tuout(ey))(€1) U WS04 pr(suout(es)(€2) f BNANTUJ =0

wso ple) 147 €s) = { out(er)\ A otherwise

U)SOA,B(TI(e)) = U)SOAUI,BUI(e)
wso,p(p(e)) = p(wSso,-1(4),0-1(8)(€))

wsos a(€1) U wsog a(es) if Ja € BN A:a€ acts(er)\ext(es)
wso4 ple1les) = or a € acts(es)\ext(ey)

wso p(e1) U wsoy p(es) otherwise

wso, g(X) = wso, p(E(X))

Table 5.2: Definition of wso for DIOA wso(e) < wsog g(€)
The relationship between Wso and wso is then the following:
Lemma 5.1.2 For every strongly guarded DIOA expression e, Wso(Aut(e)) C wso(e).

Proof. The lemma is a consequence of the assertion
if 3¢’ :e == ¢ for a € out(e), then a € wso(e).

The assertion above is implied by the following one when choosing A = @: if e is strongly
guarded with respect to A and 3¢/, h such that h € A*, h = X or first(h) € B, and e L4 ¢
where a € out(e)\A, then a € wso, p(e). The lemma then follows by choosing A = 0.

We show the last assertion by induction on the complexity of an expression e and we analyze

each single operator. Clearly, since e is strongly guarded, e is not be a process variable.
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Case 1 nil:

Let e = nil and suppose 3¢’ h € A* such that h = A or first(h) € B, and e 24 ¢ where
a € out(e)\A. Since the only transitions for nil are labelled with input actions, it must
be h # A, first(h) € in(e) and first(h) € B. This implies that AN B Nin(e) # 0. By
definition, wsos p(e) = out(e)\ A, hence a € wso, g(e).

Case 2 omega:

This case is trivial since wso, g(Q) = out(Q)\ A.

Case 3 prefixing:

Let e = a. ¢ and suppose 3¢’ h € A* such that h = X or first(h) € B, and e Lb e

where b € out(e)\A. We distinguish four cases:

1. BnANn{a} #0
This case is trivial since, by definition, wsos g(e) = out(e)\A.

2. BnAn{a}=0andag A
In this case h = A, hence @ must be an output action and b = a. By definition
wso, p(e) = {a}, hence b € wso, g(e).

3. BnAn{a}=0andac ANB
In this case h = ah’ where b’ € A*. In particular a .e’ - €, hence, by induction,
b € wsoy 4(€'). Notice, in fact, that €’ is strongly guarded with respect to A. By

definition wso4 p(€e) = wsos a(€’), hence b € wso, g(e).
4. BnAn{a} =0 and a € A\B

In this case h = A. Moreover, since a € A, b cannot exist.

Case 4 internal choice:
This case is a simple application of the induction hypothesis after observing that ha must
be an external trace of one of the arguments of &.

Case 5 external choice:
Let € = €, ;47 €5 and suppose €, 47 €, == ¢ where h € A*, h = \ or first(h) € B, and

a € out(e)\A. We distinguish two cases:
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. BnANTUJ =10
In this case rule echs cannot be used for generating h, hence the only way to per-
form an output action is by first choosing between e; and e, using rules ech; ». In
particular the first external transition yielding ha is obtained by applying rule ech;
or ech,. Suppose without loss of generality that the applyed rule is ech;. In this
case we have that e; =% ¢/ and h = A or first(h) € IUout(e;). By induction, then,
a € wsoAan(IUom(el))(el). A symmetric argument holds if the applied rule is ech,.

2. BNANTUJ #£0

This case is trivial since, by definition, wso(e) = out(e)\ A.

Case 6 hiding:
Let e = /(¢') and suppose 7(¢') 2% 7(e”) where h € A*, h = X or first(h) € B,
and ¢ € out(e)\A. By definition 30" € (A U I)* such that A'[A = h and ¢ L
Clearly, if b # A, first(h') € B U I, hence, by induction, a € wso4ur pur(€’) giving

a € wsoy g(1r(€’)).
Case 7 renaming:

Let e = p(¢’) and suppose p(e’) =% p(e”) where h € A*, h = X or first(h) € B, and
a € out(e)\A. By the transition rules ¢’ L o Clearly, p~'(h) € p~'(A)* and, if
p~t(h) # A, first(p='(h)) € p~'(B), hence, by induction, p~'(a) € wso,-1(4) ,-1(p)(€)

giving a € wso, g(p(€')).
Case 8 parallel:

Let e = e,]|es. By definition

wso a(€1) U wsoy a(es) if Ja € B :a € acts(er)\ext(es)
ZX%(QHQ) = or a € acts(es)\ext(e;)

wso p(e1) U wsoy p(es) otherwise

Suppose e]|es 24 ¢/ where h € A", h = Xor first(h) € B, and a € out(e)\A. Suppose a
is an output action of e; (the case for 5 is analogous). By the transition rules it is a simple

e. If

induction argument to see that, if €] is the left component of €', then e; (Macts(er))e
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localen(nil) =

localen(a.e) = {a} N out(e)

localen(e, & ey) = localen(eq) U localen(es) U {7}
localen(ey 1+ ) = localen(ey) U localen(es)
localen(T(e )) = localen(e)

localen(p(e)) = p(localen(e))

localen(e,||es) = localen(e;) U localen(es)
localen( X' ) = localen( E( X))

inten(e) = true iff {7} € localen(e)

(
quiet(e) = true iff localen(e) = ()

Table 5.3: Definition of localen, inten and quiet

h = X then, by induction, we immediately have that « € wso, g(e1) and @ € wsoy a(e€;).
If first(h) € acts(e;) then again a € wso, g(ey) and a € wsoy a(ey). If first(h) €
acts(es)\acts(er) then we can only conclude that hfacts(e;) = A or first(h[acts(ey)) € A,

hence a € wsoy a(e1). In all the cases the conclusion is that @ € wso, g(e;]|es).

Remark 5.1.3 Functions wsi and wso could have been defined in several different ways. In
this section we have just presented some arbitrary definition that, in our judgement, permit
capturing the relationship between a large amount of expressions by means of the axioms of

Section 4.2.

Functions Localen, Inten and Quiet can be easily defined in terms of the syntactic structure

of an expression. Their definition is in table 5.3.

Lemma 5.1.4 Given a DIOA expression e,
1. localen(e) = Localen( Aut(e)),
2. inten(e) = Inten(Aut(e)) and

3. quiet(e) = Quiet( Aut(e)).

The following theorem is then straightforward.
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Theorem 5.1.5 The omega, renaming, prefizing, internal choice, external choice and hiding
theorems for 1/0 automata are sound axioms for DIOA when expressions are interpreted as
DIOA expressions and the syntactic auziliary functions are substituted for the semantic auziliary

functions. [ |

5.2 Prefix forms

In this section we present some special classes of expressions called normal forms. The presen-
tation also includes a definition of an unparameterized external choice operator which is useful

for simplifying the notation.

Definition 5.2.1 (normal forms) A DIOA expression e is in prefiz normal form if one of the

following conditions holds.

—
o
I

Q||ndl|| - - - ||nil (atomic expression )
2. e = a.¢€ where ¢ is in prefix normal form

3. € = €1 wsi(ey) Twsi(es) €2 Where e and e, are in prefix normal form but not atomic.

A DIOA expression e is in internal prefiz form if e = e; @ --- P e, where each e; is in prefix

normal form. We abbreviate e; @ --- G e, with »_ ;. [ ]

The reason for the complexity of item 1 is that in general the parallel operator cannot be
eliminated from an atomic expression.

When dealing with expressions in prefix normal form it is possible to drop the parameters
from the external choice operator; moreover, when e is not an atomic expression different from
nil, it is possible to use the notation e = Y, a; . ¢; where I = () means e = nil.

The above idea also suggests the use of an unparameterized choice operator + to simplify

the notation for expressions when possible: e + f is defined to be € ygi(e)twsics) f-

5.3 Other axioms

In this section we present other three important axioms which can be easily stated using the

prefix normal form. The first two axioms are the expansion axioms, giving the possibility to
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convert a parallel composition of n expressions into a nondeterministic composition of expres-

sions.

Proposition 5.3.1 (expansion axioms) The following axioms are sound:

E, Lete = Qg ||nils,|| - - -||nils, be of sort S. For each a € out(Sy)Uin(5) let e, be the unique

state that e reaches with action a. Then e =q (3 ¢ oui(so)vin(s) @ - €a) D (L agin(s) @ - €a)-

E, Let e = eylles|| - - - |len where each e; is of the form 37, a;; . e ;. For each action a € ext(e)

let

i {e;jlai; = a} if a € acts(e;)
’ {e:} otherwise

Let out(a) be the index j such that a is an output action of j (0 otherwise) and let

0 if out(a) # 0 and E2*H@) = ()
{fill - W i€ EEV(E.=0Af; =Q)}  otherwise

Then € EQ ZaEext(e)(ZfEEa af)

The third axiom concerns atomic expressions. We also prove that the axiom below com-
pletely characterizes the quiescent preorder for internal choice compositions of atomic expres-

sions.

Proposition 5.3.2 (completeness axiom) The following assertion is valid:

Cp; Let e;,0 < i < n be atomic expressions and, for each action a, let f# be the state that e;
reaches with action a (e if no state exists). Then eq Co». <<, € iff. for each action a,

either
1. ff=e€,0<i1<nor
2. f{=eor

3. fél EQEf?;‘éO fia'
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Proof.

Soundness

Suppose, for each action a, one of the conditions 1, 2 or 3 to be valid. Let ¢ be an external
(quiescent) trace of e;. The case for ¢ = A is trivial since A is a quiescent trace of any atomic
expression. Let ¢ = {;t, where t; is the longest prefix of ¢ such that each e; EN e; by means
of self loop transitions. If ¢, = A then trivially ¢ is an external (quiescent) trace of (20, <;<, €)
using the same argument as for A. Suppose t, = ats for some action a and let ¢, —— f2.
3 is then an external (quiescent) trace of f¢ and, by hypothesis and the definition of i,
ts is an external (quiescent) frace of (R .z, f) and {ff # e} # 0 (in fact conditions 1
and 2 are false). This implies that 35 : #5 is an external (quiescent) trace of fi'. Moreover
®1cicn €) =2 e = e, fit, hence t is an external (quiescent) trace of (27, <;,, €).

Completeness

Let e Eq (B 1<i<, €i) and suppose conditions 1, 2 and 3 to be false for some action a.
Since, by condition 2, f¢ # e, we have that e, — f2. Since condition 3 is false, then either
{fe £ e} =0or f¢ Lo (Efgs_é. f#). The first case cannot hold, for which otherwise a is an
external trace of ey but not an external trace of (0, €;). Let t = at’ where ¢’ is an external
(quiescent) trace of fi' but not an external (quiescent) trace of (¥ ;.», f{'). We show that 7 is
not an external (quiescent) trace of (27, ,<,, €;). Suppose the contrary. By Lemma 5.4.3, ¢ is an

external (quiescent) trace of e; for some 7 > 0. In particular ¢; —— f, hence ' is an external

)

(quiescent) trace of f, i.e., ¢’ is an external (quiescent) trace of ¥ ., ff, absurdum. [

5.4 Completeness results

In this section we prove the completeness result for recursion-free expressions. It is achieved

through the following steps:
1. the completeness result is shown for expressions in internal prefix form.

2. each recursion-free expression is shown to have a provably equivalent expression in internal

prefix form;

The main theorem is then the following:
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Theorem 5.4.1 (completeness) Let e, f be recursion-free DIOA expressions with a finite
interface. If e Cg f then AF e Cg f where A is the set of all axioms presented in this thesis.

The completeness result for expressions in internal prefix form is shown through an addi-
tional axiom. We prove its soundness by using the axiom version of the theorems of Chapter

4. We first state some simple lemmas.

Lemma 5.4.2 Lete =) ,.;a;.¢e;. Then

wsi(e) = {a; 1t € [} Nin(e) and
wso(e) = {a; : ¢ € I} N out(e).

Proof. Direct application of the definitions of wsi and wso. [ |

Lemma 5.4.3 Let e =p . ; ¢;. Then

i€l
1. etraces(e) = Useg etraces(e;) and
2. qtraces(e) = Uy gtraces(e;).

Proof. Simple consequence of the transition rules for . [ |

Proposition 5.4.4 (completeness axiom) The following assertion is valid:

Cp, Lete=)",a;.¢ and [ =p ; f; where f; =52, b;y . fjx. For each a,j let

gl = Eb]‘k:a fjk Zf{k|b]k:a}7£@
’ M otherwise

Then e Tq f iff the following three conditions hold:

(a) quiescent(e) = 3j : quiescent( f;)
(b) Vi (ei EQEg;,s_é. g;" and 3j : gi* # o) or (a; € in(e) and 3j : gi* = o)

(¢) Va € N(wsi(f;))\ wsi(e) QCo¥; gf
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Proof.
Soundness
Suppose conditions 1, 2 and 3 to be valid. We perform the following quiescent equivalence

preserving transformations on e and f:

1. Using axiom Ecg add a . to each expression f; such that a ¢ wsi(f;) and a € wsi(e)U

wsi(f). Do the same on e.

2. Using axiom Ec,3 replicate on all the f;s each summand a . f; of each f; where a is an
input action. For example (a. fi + f{)® fo® --- P f, becomes (a. fi + fI') & (a. f] +
L)@@ (a. fi+ fo)

3. Repeat the operation of 2 for summands a . f, where a is an output action. Only non

quiescent expressions can be considered.
4. Using axiom Ec;3 group all expressions with a common prefix in each expression f;.

5. Reduce to a . each summand of the form a . (2 @ - --) of each f;. This step is possible

since it is immediate to prove e =g e @ by using axioms M and Ics.
6. Merge equal expressions on the f-side using axiom Ics.

The new expressions ¢ =g e and f' = f coming out from the above manipulations are
e =e+ Z a.Q
a€wsi(f)\ wsi(e)

and

f/E(f//‘|‘Za-f;/)@f“

aEA

where A is a set of output actions,

EETOD SR )

a€wsi(e)Uwsi(f)
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and each f” is

. Zg;;_:. gi if a € out(e) or (a € in(e) and Aj|g] = o)
Q if a € in(e) and Jjlgf = o)

Notice that the right expression f’ appears only if there is at least a quiescent f;. We now

distinguish two cases:

1. e is quiescent

In this case €’ is also quiescent and, by hypothesis there is a quiescent f;. We prove
that ¢ Cg f'. Axiom Icg is then sufficient to conclude. We show in particular that, for
each summand a.e” of ¢/, ¢” Ty fi. Axiom Ecz and substitutivity are then sufficient to
conclude. If 3j|g¢ = o then f, = Q and axiom M is sufficient to conclude; if otherwise,
then f! = Zg;;—g. gi. Ifa.e" is a summand of e then the conclusion follows from hypothesis;

if otherwise then the conclusion follows from hypothesis again after observing that a €
N(wsi(f;))\ wsi(e).
2. e is not quiescent

In this case we prove that ¢ Cqo f'+ > ,c4a. f.. The method is exactly the same we
used in the first case. For any summand a . e” of ¢/, in fact, there is a summand f. f] of
[+ 2 acaa. f,. Additional summands a . f, of the right expression that do not have any

correspondent summand in €’ can be added using axiom Ec;.

Completeness

Let e Ty f. We show that conditions 1,2 and 3 are satisfied.

1. Suppose e to be quiescent. By definition of quiescent trace, A is a quiescent trace of e,
hence, by hypothesis, A is a quiescent trace of f. By Lemma 5.4.3, A is a quiescent trace

of f; for some j, hence, since f; does not enable any internal action, f; is quiescent.

2. Suppose condition 2 to be false and let ¢ be one of the indexes for which the condition is

false. We distinguish the following cases:

(a) a; is an output action
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In this case the left side of condition 2 must be false. If Vj : g/ =

e, then no external
trace with a; as first action is an external trace for f, while a; is an external trace
of e. This gives a contradiction, hence 35 : g/* # e. Since condition 2 is false,
it must be ¢; Zg (Eg;,s_é. gi"). Let t' be an external (quiescent) trace of e; but
not of Eg;,s_é. g;". Clearly ¢t = a;t’ is an external (quiescent) trace of e. We show
that ¢ is not an external (quiescent) trace of f obtaining a contradiction. Suppose
f == f where t’ is an external (quiescent) trace of f’. From the transition rules,
dj,k 2 f' = fir and q;; = a;. By definition, f;; is a summand of g;*, hence ¢’ is an
external (quiescent) trace ong;,;_E. g;'. This gives a contradiction.

(b) @; is an input action
Since the right part of condition 2 must be false, then Vj : g;* # . It is then enough

to repeat the argument of the previous case to conclude.

3. Suppose condition 3 to be false. Then Jda € N(wsi(f;))\ wsi(e) : Q@ Ly (2; g7). Let ' be
an external (quiescent) trace of Q but not of °; g7, and consider ¢ = at’. Clearly, since
from the transition rules and Lemma 5.4.2 ¢ — , ¢ is an external (quiescent) trace of
e. By using the same argument as in case (b) of the proof for condition 2 we obtain that

t is an external (quiescent) trace of »; gf. This gives a contradiction.

The following definition is fundamental for setting up the opportune inductive proofs.

Definition 5.4.5 (complexities) The atomic complexity A of an atomic expression e is the
number of nil subexpressions appearing in e.

The prefiz complezity P of an expression e in prefix normal form is defined as

0 if e is atomic
Ple)=+4 1+ Per) if e = a.e; for some action a
max(P(er),Ples)) if e

€1+ e

The complexity C of an expression e in internal prefix form is the maximum prefix complexity

of its summands. []
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We first prove the completeness result for atomic expressions.

Lemma 5.4.6 Let ¢ be an atomic expression. If e —— f for some external action a where

e Z f, then there is an atomic expression f' such that A(f) < A(e) and - f =¢ f'.

Proof. From the transition rules a process  only has self loops for external actions. If e £ f,
then the only processes that can have changed are nil. A process nil can either have a self loop
or a transition to €. This implies that at least one of the nil subterms of e has became € in
f. From axiom P all £ subexpressions of f can be collapsed into a single Q expression. The

resulting expression (f’) is atomic and is such that A(f) < A(e). |

Lemma 5.4.7
e DD e, EQ f Zﬁcvlsisnei EQ f

Proof. Direct consequence of Lemma 5.4.3. [ |

Lemma 5.4.8 (completeness for atomic expressions) Let e, f be internal sums of atomic

expressions. If e Co f then e Cq f.

Proof. From Lemma 5.4.7 and axiom lcz it is sufficient to analyze the case in which e is
atomic. We show the result by induction on the sum n of the atomic complexities of e and the
summands of f. If n = 0 then e = Q and each summand of f is Q. By axiom Ics, F f =4 (,
hence, by reflexivity and transitivity of Cg, e Cg f. Let n > 0. Since e Cg f, by Lemma
5.3.2 the premises of axiom Cp; are satisfied. For each action ¢ condition 1 and 2 are easily
checkable. Suppose conditions 1 and 2 to be false. Then condition 3 is true. By Lemma 5.4.6
and the non validity of condition 1, the sum of the atomic complexities of the expressions to
compare on condition 3 is less than n. It is then enough to apply the induction hypothesis and
use axiom Cp; to conclude. [ |

We can now prove the completeness result for expressions in prefix normal form.

Proposition 5.4.9 (completeness for expressions in internal prefix form) Lete and f

be expressions in internal prefix form. If e Cg f then e Cq f.
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Proof. From Lemma 5.4.7 and axiom Ies it is sufficient to analyze the case in which e is in
prefix normal form. We show the result by induction on the maximum complexity n of e and f.
If n = 0 then e and the summands of f are atomic expressions and the result is given by Lemma
5.4.8. If n > 0 then, by using axiom E,, there are two expressions €', f’ such that - e =g ¢/,
F f=¢ f, the maximum complexity of ¢’ and fis n, and no summands of ¢’ and f’ are atomic
expressions. We can again assume ¢’ to be in prefix normal form. By applying axiom Cp, to
e’ and f’ we have that, for each condition involving the comparison of some expressions, one
level of prefixing is eliminated, hence the complexity of the expressions to prove in relation is
less than n. By applying the induction hypothesis and successively axiom Cp,, the proof is
concluded. [

To prove that every recursion-free expression has a provably equivalent one in internal prefix

form we show that the class of expressions in internal prefix form is closed under all the operators

of DIOA.

Lemma 5.4.10 (closure under internal choice) The internal prefix form is closed under

internal choice.

Proof. Immediate from the definition of internal prefix form and the associativity of the

internal choice operator. [ |

Lemma 5.4.11 (closure under prefixing) Let e be an expression in internal prefiz form.

Then there is an expression g in internal prefiz form such that - a.e =q g.
Proof. Direct consequence of the distributivity of a. over & (axiom Icy). [ ]

Lemma 5.4.12 (closure under external choice) Let e, f be expressions in internal prefiz

form. Then there is an expression g in internal prefix form such that e +; f =¢ g.

Proof. By repeatedly using axiom Ics (distributivity of ;4 over &) the problem is reduced to
the case in which e and f are in prefix normal form. If e or f are atomic expressions, then we
use axiom E; to transform them into non atomic expressions €', f' in prefix normal form. By
means of axiom Eec;4 the operator ;+; is replaced by g+x where K = wsi(e’) N wsi(f'). By
repeatedly applying axiom Ecys (and axiom Ec,) we obtain - ¢ x4+, f' =¢ ¢’ k+x f" where

one of the following conditions hold:
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1. wsi(e") = wsi(f"') =K
In this case we already have our expression g¢.

2. wsi(e")= K, f"=a.f", ais an input action and a ¢ K
In this case axiom Ee;5 is sufficient to conclude.

3. wsi(f') =K, ¢€"

a.e”, ais an input action and a ¢ K

In this case axioms Ec, ;5 are sufficient to conclude.

4 6//

a.e” f"=0b.f" a,bareinput actions and a,b ¢ K

In this case K = (), hence we use axioms Ecs ;5 ;5 to show the following:

e o to f// =q (6// o to ml) oto f// =q (ml oto 6//) oto f// =q nil o to f// =q nil.

The assertion on the complexity is then trivial.

This concludes the proof. [ |

Lemma 5.4.13 (closure under hiding) Lete be an expression in internal prefiz form. Then

there is an expression g in internal prefiz form such that b m(e) =¢ g.

Proof. By repeatedly using axiom Ices (distributivity of 7; over @) the problem is reduced to
the case in which e is in prefix normal form. The proofis by induction on the prefix complexity
of e. If e is atomic then, by repeatedly using axiom I;, and the substitutivity property, we
obtain an expression €’ such that - 7;(e) =¢ 7/(¢’') and 7;(€’) satisfies the conditions for axiom
I,5. The application of axiom I, yields the desired expression g. Notice that the complexity
of g is 0. Suppose now the prefix complexity of e to be n > 0, i.e. € = (3, a; .¢;) where the

prefix complexity of each e; is less than n. We distinguish the following cases:

By using axioms I3, we have b (3, a; . ¢;) =g (2, a; . 7r(¢;)). By induction each
7r7(e;) has a provably equivalent expression g; in internal prefix form. By Lemma 5.4.11
each a; . g; has a provably equivalent expression g; in internal prefix form. The desired

expression ¢ is then (»°; g;). The condition on the complexity is trivially satisfied.
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2. e=¢€ +a, .e, where ¢ is quiescent and a, € 1

From axiom Lz, b 7(e) =¢ 7Ti(€' wsi(er)Fusicer)y €n). From case 1, b 7/(e') = ¢’ for
some €” in internal prefix form. By induction F 7/(e,) =¢ €], for some €], in internal
prefix form. By using axiom E; we can force €’ and e/, not to have atomic summands.
From axioms I554 and Ics there are two expressions e’ and e, differing only in the
signatures of the operators, such that - ¢’ =g 7,(¢") and €], =¢ 7/(e)). In particular

¢ and ¢!/ do not enable actions from /. From axioms Iy 4 F /(€' wei(eryFusier) €n) =0

TI(elll wsi(e’)‘l’wsi(e’) 6%) EQ TI(eul) wsi(e’)‘l’wsi(e’) TI(eg) EQ e’ wsi(e’)‘l’wsi(e’) 6;- The closure

under external choice is then sufficient to conclude.

3. e=a,.e; whereaqy € 1

By induction F 7/(e;) =¢ €} for some € in internal prefix form. By using axiom E; we
can force €| not to have atomic summands. Moreover, from the internal choice axioms,
we can assume without loss of generality that €/ is in prefix normal form. From axioms
I5 54 and Ic; there is an expressions ef, differing only in the signatures of the operators,
such that - ¢} =g 77(e!). In particular e/ does not enable actions from /. From axiom
Is, - 7r(ay . e1) =¢ mr(a; . €f). From axiom Eci5, F ay . € =g nil + a; . /. From axiom
Lis, b r(nil+ay . €f) = mr(nil g+y €f). By using axiom Ecyg all input prefixed summands
of €] can be eliminated obtaining - 7;(nil y+¢ €)) =¢ T1(nil y+4 /') where wsi(e!") = 0.
From axiom Ecs b 7(nil g+¢ €/') =¢ 7r(€]’). The application of axioms I;5 354 is then

sufficient to conclude.

4. e=¢€¢ + a, .e, where ¢ is not quiescent and a, € 1

From axioms I;5 and Icg, b 7/(e) =¢ 7/(€ D e,) =¢ 7r(€') @ 77(e,). The expression
77(e,) can be reduced by induction. For the expression 7;(e’) we observe that ¢’ has
one summand less than e. We then repeatedly apply case 4 to 7;(¢’) and to its derived
expressions until case 4 does not apply (and we know that case 4 will not apply at a
certain point since at least two summands are needed). When case 4 does not apply, we

use the applicable case between 1,2 and 3 and the proof is concluded.
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Lemma 5.4.14 (closure under renaming) Let e be an expression in internal prefiz form.

Then there is an expression f in internal prefix form such that & p(e) =¢ f.

Proof. Since the renaming operator is distributive over all other DIOA operators, it can be
pushed down to the lowest level and then be completely eliminated from any DIOA expression.

Lemma 5.4.15 (closure under parallel composition) Let e, f be expressions in internal
prefix form with a finite interface. Then there is an expression g in internal prefiz form such

that Fe|lf =¢ ¢.

Proof. By repeatedly using axiom Ic; (distributivity of || over &) the problem is reduced to
the case in which e and f are in prefix normal form. We proceed by induction on the prefix
complexities of e and f. If both e and f are atomic then the result is immediate. Suppose now
the maximum complexity of e and f to be n > 0. If e or f are atomic expressions, then we use
axiom E; to transform them into expressions e’, f' in internal prefix form that have no atomic
summands without affecting the maximum complexity of e and f. After reducing again the
problem to the case in which all expressions are in prefix normal form, we apply the expansion
axiom E, obtaining a new equivalent expression €' = 3. ;a; . f; where each f; = flefj2 and
the maximum complexity of fj1 and sz is less than n. It is then enough to apply the induction

hypothesis and use axioms Ic, 5 to conclude. [ |

Lemma 5.4.16 (reduction to internal prefix form) Let e be a recursion-free DIOA ex-
pression with a finite interface. Then there is an expression g in internal prefix form such that

Fe=qgyg.

Proof. The proof proceeds by structural induction of the given expression e. The basic cases
nil and £ are trivial since they are atomic expressions. For all other operators we first reduce
their arguments using the induction hypothesis, then we eliminate the new operator by means

of the closure lemmas 5.4.10, 5.4.11, 5.4.12, 5.4.13, 5.4.14 and 5.4.15. [ |

We can finally prove the main theorem.

Theorem 5.4.17 (completeness) Let e, f be recursion-free DIOA expressions with a finite

interface. If e Cg f then At e Cq f where A is the set of all axioms presented in this thesis.
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Proof. By means of Lemma 5.4.16 the problem is reduced to the case in which e and f are in

internal prefix form. The completeness result is then stated by Proposition 5.4.9. [ |
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Chapter 6

Example Specifications and

Verifications

In this chapter we show some example specifications and verifications within DIOA. We specify
a simple circuit that is reported in [Jos92] and a more complicated one that is reported in
[BV88]. The examples are preceded by a discussion about the use of the quiescent preorder as

an implementation relation.

6.1 Quiescent preorder as an implementation relation

The intuitive idea of implementation at the base of the semantics of I/O automata is that
an implementation must respond to a sequence of external stimuli with some output actions
whenever the specification must too. The way in which the above idea is captured is by means
of fair trace inclusion.

Can the quiescent preorder be used for capturing the same idea of implementation? In this
section we just want to give an informal understanding of this question without pretending to
be formal. With this discussion we want to point out some of the problems of chosing a relation
as an implementation relation.

The answer to the given question is “no” in general. The absence of the notion of fairness,
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in fact, causes several problems. Consider for example

def

A= T{i}(a.X)

and
def

B=ua.b.n

where X & ;. X, a is an input action and b is an output action. It is immediate to verify
that A Ty B, but we do not want to consider A to be an implementation of B since A refuses
to perform action b after receiving the input e while B must perform the output action b.
The problem is essentially in the internal looping of A since we cannot observe it by means of
external and quiescent traces. In I/O automata the distinction between A and B is given by
fair traces: in fact a is a fair trace of A but not a fair trace of B according to the I/O automata
semantics. Also in receptive process theory [Jos92] the problem is solved since a is a divergence
of A but not a divergence of B. The use of divergences, however, leads to A Z B 4 a . nil while
the quiescent and fair preorders lead to A C B+a.nil. We would like to consider A C B+a.nul
since, although the implementation A refuses to perform action b after a, the specification may
too.

In order to use the quiescent preorder we have to be sure that situations like the one
presented above do not arise, i.e., we can deal only with processes that, whenever they present
an internal divergence, they can reach a quiescent state with a finite number of internal moves.
This is the only way the quiescent preorder has to detect a possibility of refusing the performance
of output actions due to an internal divergence. In the restricted case above the notion of
implementation is represented by the quiescent trace preorder as follows: the condition on the
quiescent traces makes sure that, after some stimuli, some output actions will eventually be
enabled; the condition on the external traces makes sure that only the desired output actions
will be enabled.

The notion above, however, presents some subtle properties. Consider for example

A=a.b.nil
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and

B=a.b.nil+a.nil

where @ is an input action and b is an output action. We do not want to consider B as an
implementation of A, and the quiescent trace preorder detects the deadlock problem since a is

a quiescent trace of B but not a quiescent trace of A. Consider now

def

C=c¢c.C

where ¢ is an output action. The result is that

Why does the above result hold? The idea is that, from the point of view of the output
actions, the quiescent preorder makes no distinction between the actions of €' and those of A.
In particular, an output action (¢) is always enabled. With the use of the fair preorder the
output actions of (' are separated from those of A since they constitute two separate classes in
the partition of the locally controlled actions of C'||A. In the quiescent preorder the partition is
constituted by a single class. Notice that the example above is valid also for Receptive Process
Theory since C is divergent and the parallel composition of a divergent process with any other
process is the divergent process. In other words RPT and the quiescent preorder do not deal
with the parallel structure of a system while the fair preorder does.

A new question now arises: Does the quiescent preorder imply the fair preorder in the

restricted conditions described above? The answer is “no”. Let X = ¢. X +b0.X+1.a.B,

BY a.B+b.B, P L. P +b.Pand PP a. P where ais an input action and b, 7 are output
actions. Then P Cg 7(;;(X) but P Zp 7(;;(X) since a™ is a fair trace of P but not a fair trace
of 71;3(X). With this example we can also give an example of an intuitive property that is
not detected by the quiescent preorder: if the output action b is blocked after n occurrences of
action a, then a is not blocked after n+1 occurrences of . The same problem holds also within

Receptive Process Theory and within the fair preorder relation. For Receptive Process Theory

it is enough to use the same example as above; for the fair preorder it is enough to change the
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definition of B to B ¥ a. X + b. B to have the same problem as above with P Cp 7(;3(X).

The last example presented above is the consequence of a problem that seems general within
the field of specification and verification, e.g., the understanding of the actual properties that
can be detected by a particular notion of implementation. This topic could be the subject of

further research.

6.2 A simple circuit

In this section we use DIOA and the quiescent preorder to specify and verify a simple circuit
that is reported in [Jos92]. We start by specifying some simple devices.

A majority element is a device having three input ports and an output one. The voltage
level of the output port is that of the majority of the inputs. Every action in the specification
represents a change of voltage level in the correspondent port. The process variable M represents
the majority element when the voltage levels of its input ports are the same as the voltage level
of its output port. The process variables containing subscripts represent the majority element
when only the voltage levels of the input ports not appearing as subscripts are the same as
the voltage level of the output port. Note that the equation for M,, specifies that no inputs
causing a variation in the output voltage level can occur when the output voltage level already
has to change. If such inputs occur then the system moves to an unspecified state. Real
implementations might actually present glitches on their output ports when such abnormal

input sequences occur.

Specification 6.2.1 (majority element) A majority element is specified by the following

equations
M ¥ 4. M,+b.M+c. M.
M, % a.M+b.My+c.M,
Mgy £ m. M, +c. Mg,
My & m.M+a.My,+0b. M, +c.M,

where a, b, ¢ are input actions and m is an output action. The equations for My, M., M,. and

M, are similar to the equations above and can be easily derived.
A wire is simply a device that waits for a change of level in its input port and communicates
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the change of level through its output port. Input and output actions must be interleaved.
If two consecutive inputs are not interleaved with an output then the system moves to the

unspecified state.

Specification 6.2.2 (wire) A wire is specified by the following equation:

def

W=m.c.W

where m is an input action and ¢ is an output action.

A Muller element has two inputs and a single output. It waits for a change of level of
both its input ports before changing the level of its output port. The subscripts in the process
variables represent the input ports that have changed voltage level. When both the inputs have

changed (state ;) the output voltage level is changed.

Specification 6.2.3 (Muller element) A Muller element is specified as follows:

c Y o4.c,+b.0

c, ¥ 4.c+v.0,
c, ¥ oa4.Ch4b.C
Cab déf c.C

where a,b are input actions and ¢ is an output action.

To give a simple example we formally prove that a Muller element can be implemented

using a majority element and a wire.

Proposition 6.2.4 A Muller element C' can be implemented using a majority element and a

wire, i.e., T (M||W) Cq C.

Proof. We show that 7y, ;(M||W) Cq C. For doing that we consider a family of processes
1.1,,1,, 1, where I def Tim) (M ||W) and show that they satisfy the equations of C' with Tg. It

is then enough to use the recursive substitutivity axiom to conclude.
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By applying the expansion axiom and the hiding axioms we obtain

I =q 1m(M||W) by expanding the process variables
=g Tmi((a. My +b.My+c.M)|(m.c.W)) by axiom E,
=g Timpla.(My||(m.c.W))+0b.(M|(m.c.W))) by substituting W for E(W)
=g Timp(a. (My||W)+b.(M||W)) by axiom I,
—o T (VMLIIW)) + 7oy (b (M|W)) by axiom Ty
=g a.Tm}(My||W)+b. 7y (M||W) by definition of I, and I,
=q a.l,+b.1,

where we define

def

L = Ty (Ma||W)

def

Iy = 7y (M| W)

With the same method we have
1, =q T{m}(MaHW) =qa. T{m}(MHW) + 5. T{m}(MabHW) =qa. I+5b. I

and

Ib EQ T{m}(MbHW) EQ a . T{m}(MabHW) + b. T{m}(MHW) EQ a . Iab + b. 1

where we define

def

Loy = Timy (M| W)
We now proceed with the analysis of I,. Step by step comments are below.

Ly =q Tymy(Ma[|W)

=q Tgmy(a (W) + 0. (QW) +m . (M.[|c. W))

Co Timp(m . (Melle. W)

=0 Tpm(m . (a. (My.|lc. W) +b. (My|c. W)+ c. (M||W)))
Co Timp(m.c. (M|[W))

=q ¢ Tim)(M[|W)

=qgc.l
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The first step follows the lines of the previous derivations by expanding process variables,
applying the expansion theorem, and reconverting untouched expanded expressions to their
correspondent process variable; the second step is an application of axiom Eec; where inputs
a and b are eliminated. According to the specification of C,;, in fact, no input should occur
before output ¢ occurs. The expression on the second line specifies an implementation choice
in the presence of inputs a and & while the expression on the third line does not specify any
implementation choice. The third step is similar to the first one while the fourth step consists
of successive applications of the hiding axioms. Action m is eliminated through axiom I;; and
action ¢ is brought outside the scope of the hiding operator through axiom I5. The last step is
a direct consequence of the definition of 1.

We can now apply the recursive substitutivity axiom and conclude. [ |

6.3 Handshaking protocol

In this section we use DIOA to specify and verify a circuit realizing the handshaking protocol.
The circuit is derived from Kaldewaij [Kal87] and was already specified and verified by means
of ACP by Baeten and Vaandrager [BV88]. The main problem encountered in [BV88] is the
absence of a distinction between input and output actions in a process. They had to introduce
an operator 6 to describe the “no output blocking” property of /O automata and another
operator V to limit the traces of a process. In DIOA the “no output blocking” property is
granted by the calculus itself, moreover we do not have to restrict the set of traces to consider
because the result of giving unespected input actions moves the system to the state £ from
which every trace is admitted. In this way € represents the unspecified process, i.e., if the
specification of a device moves to € for a particular action, then the implementation is correct
for whatever behavior it exhibits after performing the same action.

We now give the specifications of some electronic components. A digital component is
characterized by a set of input ports and a set of output ports. Each port accepts (or generates)
two different signals: HI or LOW. In the rest of this section we will use actions to represent
a change of voltage level (from HI to LOW or vice versa) in the signals. In this way, instead
of having a pair of actions for each port (¢ T,a |) as in [BV88], we have a single action «

corresponding to a change of voltage level. We start by specifying an AND port.
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Specification 6.3.1 (AND port) The following set of equations specify an AND port.

A00 d§f$.A10 —I—y.Am

ryz ryz ryz

10 def 00 11
Apy, = Apy, +y. 2. Ay,

o1 def 11 00
Ay, = .2 Ay, . Ay,

11 def 01 10
Ap, =2 Ay, +y. 2. Ay,

where x,y are input ports and z is an output port. The initial state of the port is Aggz

corresponding to both inputs to the low level.

The specification above contains four process variables, each one corresponding to a par-
ticular state of the inputs. At each step the port is able to accept an input and consequently
change its state. When the output level has to change it is not permitted sending other input
until the output level is changed. An input action sent while the system is changing its output
state will move the system to an unspecified state. The next specification introduces an AND

port with a negated input. The line under z specifies that port z is negated.

Specification 6.3.2 (AND port with a negated input) The following equations specify
an AND port with a negated input.

A00 d§f$.A10 —I—y.Am

zy2 zy2 zy2

10 def 00 11
Ay, =@ Apy, ty. 2 Ay,

o1 def 11 00
Ay, = .2 Agy, Hy- Ay,

11 def 01 10
Ag, = @2 Ay, +y. 2. Ay,

where z,y are input actions and z is an output action. The initial state of the port is A%gz

corresponding to both inputs to the low level.

The AND port with a negated input is identical to the AND port with the difference that the
output signal changes in different points (in the above specification the initial state is different
from the initial state of specification 6.3.1). Note that, by opportunely renaming the process
variables, we can obtain the specification of the AND port. Another interesting observation is
that, after giving the specification of an inverter (a component giving as output the opposite of

its input), the AND port with a negated input can not be implemented using a normal AND
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Figure 6-1: Symbolic representation of AND ports

port with an inverter. In fact its correctness strictly depends on time assumptions about the
occurrences of new inputs and the speed of the components. The two kinds of AND ports
we have just introduced are represented in figure 6-1. We proceed by specifying a Muller C
element. The specification below is similar to the one given in the previous section: it gives more
restrictions to the occurrences of input actions. A Muller C element is essentially a component
that waits for the change of both its input levels and then changes its output. Every input port

can not be changed more then once between one change in the output and the successive one.
Specification 6.3.3 (Muller C element) The following equations specify a Muller element.

O ey 2 O ty.a.2. O]

ryz ryz ryz
1 def 0 0
Cop. =2.y.2.Cp +y.v.2.C),

where .,y are input actions and z is an output action. The initial state of the process is ngz

corresponding to all the interfaces to the low level.

The following specification introduces a Muller C element with a negated input. It is
immediate to observe that the only difference from the normal Muller element is in the initial
state. This is because we use actions to represent only changes of level and not the kind of

variation itself.

Specification 6.3.4 (Muller element with a negated input) The following equations spec-

ify a Muller element with a negated input.

cy o y.2.C ty.x.z.C

TYz Yz Yz
1 def 0 0
Copo =2 y.2.Cp, +y.v.2.05,
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Figure 6-2: Symbolic representation of Muller elements

where .7 are input actions and z is an output action. The initial state of the process is

Y.z, Céyz corresponding to all the interfaces to the low level.

Figure 6-2 represents the two kinds of Muller elements introduced above.

We are now ready to specify the handshaking bit protocol. This protocol is often used to
avoid interference between circuits. The circuit has two input wires a,b and two output wires
a,b. It has to follow the four-phase handshaking protocol for the pairs a,a and b, b where a,a
is the input side. This means that on the input side an external process will change the level
of @ and wait for a change of a and then repeat the same process; on the other side the output
process waits for a change in action b and changes the level of b. It then repeats this pair of
actions. No other kinds of interactions are admitted for the protocol. For example changing
the level of a twice without waiting for the change of a will move the system to an unspecified

state.

Specification 6.3.5 (handshaking protocol) The following equations specify the handshak-

ing protocol.

def

S=a.5"

def _ _
S*=a.a.a.S;

def

.S +a.b.b.b.b. S
b

.S 4+a.b.b.b. S
o

LN

def 7

S3=b0.5+a.

def

=b.54a.0.5

Rl
L
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Figure 6-3: Implementation of the handshaking protocol
where a,b are input actions and @, b are output actions. The initial state is 5.

We now propose an implementation in which we assume instantaneous communication be-
tween the components. This is a simplification of the implementation given in [BV88]. The

implementation is the following process M.

ME rgla.d. ClllAgla. e ChllARs)

bac

In the following we will let H = {c¢,d}. It is immediate to verify that M can not diverge
since every component having the control of an internal action must perform an external action
before completing a cycle. Figure 6-3 represents process M. We proceed by giving the proof of

correctness.

Proposition 6.3.6 (correctness of M) The implementation of the buffer is correct. In other

words M Cq 5.

Proof. To prove the correctness of the implementation we find a set of expressions
M =A{M,M", M{, My, M3, M}

that satisfies M Co E(S)[M/S]. In this way we can apply the recursive substitutivity axiom
to conclude. To prove the equations we continuously perform steps by means of the expansion

axiom and then eliminate (if possible) undesired actions. We start by considering process M.
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M =q ma(a.(d.Cy [Ages) + - (a . d. Clull a2 AZ5)

Co r(a. (d. CpyllAggalla. . Cp [lAzG))

=q a.mu(d. ChpyllApalla . c. CbacHAacb)

=q @ -Tr(d . (Chylla. Aggalla. . Cy [|AGG) + a - (Q[Aygglla . e Crg | Ay )+
b (d. Couall Apaall 2 Ags))

EQ a'TH( ( cadHa Al%cllaHa c. CbacHA(lng))

’AbdaHa c.Cp

bac

In the first step we have applied the expansion axiom together with the substitutivity
axiom for the hiding operator. To obtain the expression above we implicitly assume that the
application of the expansion axiom proceeds as follows: unfold process variables that are not
prefixed, apply the expansion axiom, fold unchanged unfolded expressions. Since we are not
interested in the effects of action b (the equation for S does not consider action b) we use axiom
Ec; in the second step to eliminate the summand prefixed by b. In the third step we use axiom
15 to move the prefix a outside the hiding operator. We then apply the expansion axiom again
and eliminate the undesired input actions with axiom Ec; in the following two steps. Note that
we choose the input actions to eliminate by looking at the specification 6.3.5. It is clear, in
fact, that at this stage we do not have to wait for any input action until action a is performed.
If an input action occurs before action a is performed then any behavior is admissible.

In the last step we have an internal action d. In order to eliminate this action we have to
substitute its prefixed expression with an expression for which axiom I,; is appliable. For this

reason let

def
M/ = CcadHa Al%cllaHa c. CbacHAlo

ach

By using the expansion axiom for the first step and axiom Ec; to eliminate undesired inputs

we have

M7 EQ a ( cadHAl%cllaHC CbacHAg(ch) ( cadHQHQHA}LSb)
(C d. CcadHa AicllaHa c. CbacHA(lz(ch)
EQ a. ( cad ’AbdaHC C HA

Q

Q

bac acb)

By substituting this last expression in the last expression obtained from M we have

M EQ a.TH(d.(l ( ’AbdaHC CbaCHAacb))

cad
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=q a.tg(a.( cadHAbdaHC CbacHAacb))

where the last expression is obtained by means of axiom Ij;. Note in fact that wsi(a .

( cadHAl%cllaHC bacHAacb)) = @ Let

« def
M= TH ( ( cadHAl%cllaH bacHAacb))

We have just shown that
M EQ a. M

We now proceed on the analysis of M*. Since we often have to eliminate undesired input
actions we use the convention of not writing expressions that have to be eliminated in subsequent

steps. This convention is immediately clear from the following steps.

. =q a.Ty ( cad ’AbdaHC bacHAacb)
=q a.tpla.(c.d.ClyllAjgalle. CiallAZG) + 0. (.. )+

(‘.3

(a d CgadHAl%cllaH bacHAacb))
EQ TH( (C d. C?adHAbdaHC CbacHAacb) (a d. CgadHAbdaHCbacHAacb))

Q |

In the previous steps we again used the expansion axiom together with axiom Ec;. At this
point we can not proceed without solving the most internal expressions because there is an

internal action as prefix. We then simplify the internal expressions as follows:

c. d Cgad’AbdaHC bacHAacb
=q ¢ (d. ClLall Al CraclAgs) + @ (. )+ 0. (o)

EQ c. (d CgadHAécllaH bacHAacb)

a. d C?ad’AbdaHCbacHAacb
EQ a. (d CgadHAécllaH bacHAacb) b ()

EQ a. (d CgadHAécllaH bacHAacb)

where we have again used the expansion axiom and axiom Ec;. By combining the last two

inequalities with the last expression obtained for M* we have
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M EQ@ TH( (C d. CO

cad

EQ (Z.TH( (d CO

cad

HAbdaHC CbacHAacb) (a d C?adHAbdaHCbacHAacb))
’AbdaHCbacHAacb)—l_c‘a (d CO ’AbdaHCbacHAacb)

cad

We now have to apply axiom L4, but we first have to simplify the internal expression in order

to satisfy the condition for axiom I;¢.

d Cgad ’AbdaHCbacHAacb
EQ d ( cadHa Al%gaH bacHAacb) ()+b()

EQ d. ( cadHa Aigau bacHAacb)

By substituting in the last expression for M*

M*Eq a.tu(a.c.d (Colla. Apal|CrallAgep) + ¢ a.d (Coylla . Apgal|Cra.ll Ages))
=q a.7r(a.d. (Chylla. AygllCh.llA;))
=q @-a.7a(d (Chylla. Apgal|Chs.[lA;))
=g a.a.ty(d.(a.(CLullApllb-c. Cbach Aacb)—l— )+ 0.(000)
Coa.a.t(d.a.(ClallApallb.c. Cbach Aacb))
=q a.a.7(a. (CLllAllb.c. Chllb. AL))
=q a.a.a.7y(ClllApallb. . Ch.llb. AL)

In the first step we used axiom I;4. The rest of the steps are obtained by using the expansion
axiom together with axiom Eec; (an the substitutivity rules of course). The last but one step is

obtained using axiom I;;. We can now define the new process

« def
Ml = TH ( cadHAégaHb c. Hb Aacb)

bac

What we have just shown is

The following simplifications are new only for the third step. In this case we use axiom I,

followed by axiom Is.

Mf EQ TH( ( cadHAl%gaHb c. bacHAacb)—l_b‘(“‘)—l_
a'( cadHAbdaHb c. Cbach Aacb))
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EQ TH ( ( cadHAbdaHb c. C HAacb) ( cadHAbdaHb c. Cbach Aacb))

bac
=q b.7u( Craall Aggallb - e . CbacHAacb)‘|‘a Tr(c.d. Oyl Apgallb . c. Cbach Aacb)
=q b.7u( Craall Aggallb - e . CbacHAacb)

a.1p(b.(c.d.ClyllAgllb.c. Ch.llAy) +a.(.)+b.(...)
Co b mu(ClallAgallb . e ChellAyl) + a mr(b. (. d . Clogll Ajgallb - . O [1AL))
=q b.7u( cadHAbdaHb c. CbacHAacb)—I_a‘B‘TH(C‘d‘CcladHAbdaHb . CbacHAacb)

We now define two new processes:

def
M; = TH( cadHAbdaHb' bacHAacb)

def

Ml - TH(C d. CcadHAbdaHb‘ bacHAacb)

What we have just shown is

M;Cob.M;+a.b.M,
We start by analyzing M.
My =q mu(a.(...)+b.(c.d.ClyllAyglle. CpllAgs))
EQ TH(b (C d. CcladHAlgg(iHC bacHAacb))

_Q b TH(C d CcadHAbdaHC C HAacb)
o bl (d. CLyll A CL, 5. AL

bac

cad

a. (.)+b.(..)
Co b.ma(e. (d. ClLll ARl Challb - AX)

)+

bac‘ acb

The steps above are again the application of the expansion axiom and axioms Ee; and Is.
However it is not possible for the moment to eliminate the internal prefix ¢ because we first
have to simplify its prefixed expression. We then define

def
M2 = TH(d CcladHAgg(iH Hb Aacb)

bac

simplify M, and then substitute the result in the last expression for M; by means of axiom

Ill'
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M2 —Q TH d ( cadHAbdaHCI?ach Alob—l_a ( )+

(
bo(d. Clall ARl Chall ALZ) + b ()
Co mr(d . (Chal Apiall Cacllb - AL + 6 (d . Clogll ARl Chic | A525))
o Tu(d.
(
(
(

( cad’AbdaHCbacHAacb) a.(..)+b.(..))+

(

(b
b.(d.( cadHAbdaHCbacHAacb) a.(...)+b.(d. Cclad’AbdaHa c. CbacHAacb)))

b.

-

EQ TH d. ( cadHAl?cllaH bacHAacb)

cadHAl?cllaH bacHAacb)—l_b (d Cl

b cadHAégau@‘c bacHAacb)))

&

The steps above are again standard. Note however that in the third step we have to accept the
input action b in the expression prefixed by b. This follows from the specification of S7. We
will show later that failing to accept action b will generate an error. To proceed we first have

to simplify the internal expressions.

cadHAbda HCbacHAacb

EQQ()—I_b ( cadHa AbdaHa c. CbacHAacb)
EQ b ( ’(Z AbdaHa c. CbacHAacb)

cad

d.C}

cad

HAI%C?&H@C bacHA

ach

JAZ) +a. ()b ()
A

EQ d ( cadHa Al%cllaHa c.

EQ d. ( gadHa . Aécllaua -C.

bac

bac acb)

cadHa AbdaHa c. CbacHAacb

a ( cadHAbdaHC C HAacb) ()+b()
EQ a ( cad’AbdaHC CbacHAacb)

Il
O
2

bac

Q

Let

def

F=a. ( cadHA;cllaHC bacHAacb)
By substituting the results above in the last expression for M, we have

M2 EQ TH(d I; ( cadHAl?cllaH bacHAacb)
( ( cadHAbdaHCbacHAacb)—l_b (d CcladHAbdaHa c. CbacHAacb)))
b.

Coma(d.b.b.F+b.(d.b.F+b.d.F))
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b.F)

—Q TH(I;

The third step is obtained using axiom I;¢ together with axioms Is o for the substitutions. This
step would not have been possible without accepting the input action b mentioned above. The

fourth step is the application of axiom I,. This gives two results:

My Eq b.7g(c.(d. CcladHAbdaHCbach Aacb))
Cob.7a(c.b.b. F)
=¢b.b.b. M

where the only interesting case is the second step for M; in which we used axiom Ig. The

process M* comes from the fact that 74 (F') = M*. The result of the argument above is
MyCgob.b.M*

My Cob.b.b.M*

In particular, by substituting in the last expression for M,
M;Cob.M;+a.b.b.b.b.M"

We can now analyze M;. The treatment is standard and the substitution of M, derives

from syntactical equivalence.

M; EQ TH( (C d CcladHAbdaHb c. CbacHAacb) ( cadHAbdaHC Cbac A(llib))
HAbdaHb c. CbacHAacb)—l_b TH(CcadHAbdaHC CbacHAacb)

’Abda HC CbaCHAacb)

cad

Coa.mg(c.d.C}

=Q Q.M1+b.TH(

cad

Let
def
ML;: é TH ( cadHAlggaHC bacHAacb)
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We have just shown that
M;Cob.M;+a.b.b.b.M"

Mi=q mi(c.(a.d. CLgll AR ICENb - Ay + a. (c.d. CLyl| A llc . Chll AL+
Co u(c.(a.d. CcladHAbdaHCbach Aacb)‘|‘a (c.d.ClllAggalle - CbacHAacb))
=q u(c.(a.(d. CcladHAbdaHCbach Aacb)—l_i) (a.d. CcladHAbdaHCbacHAacb)

(--)+

a.(c.(d. Coll AN Chllb- Ags) +a. () +b.(..)))
(c-(a-(d. Cluall ARl Clacllb - ALZ) + b (. d . Clgll Al Clac 1 A4%))+
a.(c.(d.Clll Al Chllb - A)))

Co mrlc.(a.b.b. F4b.(a.d.ChgllA|ICh.llA))+
a.c.b.b.F)

The steps above are standard. The problem is that we have to eliminate internal actions. In
the steps below we first eliminate the internal action from the rightmost term a.c.b.b. F by
means of axioms Iggq 11, then we apply axiom I;; obtaining the third expression. The rest is

simple application of axioms I 4.

M;Cq ru(c.(a.b.b.F+b.(a.d. CcladHAggaH bacHAacb))+
c.b.b.F)
EQ TH(C (aBbF—I—B (a d CcladHAgg(iH bacHAacb))+

b F4b. (a.d. CcladHAbdaHCbacHAacb))
b b F) + TH(b (a d CcladHAbdaHCbacHAacb))
b M +b. Tg(a.d.C} ]AbdaHC I|A

cad bac acb)

Let

def

M;f = TH(a d. CcladHAgg(iH bacHAacb)

We have just shown that
M;Cob.M;+a.b.b.M*
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M =g ti(a . (d. Coull Apal|Crael| Agey) + 0 (0 d . Coul| Apgalla - e Cia [l Agy))
=q Tr(a. (A (Coall Aaall il AZs) + @ - (- )+
b.(d. cad’AbdaHa . CbacHAacb)))‘|‘b-M
Co u(a.(d.( cad’AbdaHCbacHAacb)—l_b (d. Cclad’AbdaHa c. CbacHAacb))‘I‘b-M

The steps above are standard. We now simplify the left expression.

Tgla . d ( cadHAbdaHCbacHAacb)—l_b (d Cl

HAbdaHa c. CbacHAacb))

(a( cad
=q (e (d.(a.(..)+b.(Chglla. Apglla.c. Co [|AZG))+
bo(d. (Challa - Ajgalla e CiallAgp) +a- () +b.(...)))
Co (e (d. 0. (Chylla. Aygalla. . Cig || Agp)+

b.d. ( cadHa Al%cllaHa c. bGCHAacb)))
EQ TH(a‘(d‘b‘a ( cadHAl%cllaHC bacHAacb)
bd(l ( cadHAl%cllaHC bacHAacb)))

=qQ TH(a‘b‘a ( cadHAl%cllaHC bacHAacb))

=qga.b.M"

The fourth step above is justified from the fact that C} lla. Ajg,lla.c. Cy, [|AL) is M’ and

cad bac‘ ach

the inequality derived at the beginning of this proof. The successive step is the application of
axiom Iys.

By substituting in the last expression obtained for M} we have

M;Cob.M+a.b. M

We can now apply the recursive substitutivity axiom obtaining our conclusion, i.e., M Cg 5.
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Chapter 7

Conclusion

We have presented a process algebra (DIOA) with the following features: explicit interfaces
associated with each expression, clear distinction between locally and globally controlled actions,
input enabling, and actions under the control of at most one process. DIOA is directly related to
I/0 automata of Lynch and Tuttle [LT87], which have been successfully used for the verification
of algorithms in distributed environments.

We have found a set of sound laws for the quiescent preorder over DIOA that are complete
for recursion-free processes.

We have investigated the possibilities of using the quiescent preorder as an implementation
relation and we have provided an intuitive understanding of its use. As a side effect we have
found an intuitive property that could be required of a system and is not detected by the
quiescent and fair preorders.

We have given two simple example specifications to show how axioms can be used to prove
correctness of implementations. The use of axioms, as can be seen in the given examples, seems
sometimes simpler than the method based on possibilities mappings, that is characteristic for
I/O automata, in the sense that the specification itself helps the verifier in understanding the
axioms that need to be applied.

The above results, however, make clear that there are still many open problems. Some of the
problems are understanding when algebraic reasoning is really simpler than the method based
on possibilities mappings, whether it is possible to use algebraic reasoning on very complex

systems, whether it is possible to integrate algebraic reasoning with simulation techniques in
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order to simplify correctness proofs. For the last topic a useful fact is that most of the presented
axioms are still valid if the underlying model deals with infinite traces or with fair traces.

An advantage of the algebraic method we have presented is that it seems easy to be mecha-
nized. A proposal of research could involve an understanding of how such a mechanized system
could work. The tools could deal both with algebraic and mapping based methods and could
be a sort of interactive environment where the user is helped in providing correctness proofs or
discovering errors.

A third open problem is finding general formalisms capturing the essence of I/O automata
without being necessarily input enabled. Input enabling, in fact, is one of the most discussed
features of the I/O automaton model since many reasonable concurrent tasks cannot be de-
scribed at a sufficient abstract level using /O automata. In this thesis we have investigated the
implications of input enabling on the algebraic laws of a generic process algebra; the successive
step is verifying how the notion of input enabling could be embedded into a generic process
algebra without the input enabling condition. In doing so, we obtain a more expressive model
having all the features of I/O automata when a process meets the input enabling condition.
Moreover, we can understand the essence of the commonly used implementation relations by
viewing them through the process algebraic framework and by comparing them with the rela-
tions that are commonly used within process algebras. Some relations that seem very closed to
the preorder relations of I/O automata and that deserve further investigation are the testing
preorders of De Nicola and Hennessy [DH84, De 85a, Hen88].

Although the above topics are quite important, we believe that one of the most important
topics is to give a strong foundation to the commonly used verification methods. For example,
in Chapter 6 we have given an informal description of how and when the quiescent preorder
could be thought as an implementation relation; in [LT87] Nancy Lynch and Mark Tuttle give
an informal understanding of how the fair preorder can be used as an implementation relation;
in Chapter 6 we have given an example of a property that could be required of a system and is
not detected by the fair preorder. The questions are then straightforward: What do we require
to an implementation relation? What are the properties we are interested in? What properties
does a particular relation guarantee to be preserved? What is a property? Trying to give an

answer to the questions above is definitely worth doing and should be one of the main topics
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for a long term plan of further research.
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Appendix A

Tables

Name Op. Domain Range Restrictions
quiescent nilg A S

omega Qs A S

prefixing a.s S5 S a € ext(S)

ichoice Py 9,9 S
echoice ;45 5,8 S I,J Cin(S)
parallel g /|ls, 51,92 S out(Sy) Nout(Sy) =0

out(S3) = out(S1) U out(Ss)
in(S3) = (en(S1) Uin(Ss))\out(Ss)

hiding o S 5 I Cout(S5),5" = (in(9),out(S)\I)

renaming pg S S’ for each injective p : acts(S) — acts(S')
5" = (plin(5)), plout(5)))

process X A S Xs € Xs

Table A.1: The signature of DIOA
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nil nils —— Qg Va € in(9)
ome; Qs = Qs a € ext(S) ome, Qg — nilg
b .
pre; a.ce — e pre, a.ge — Qg Vb € in(9)\{a}
ich, €1 PBs €5 — € ich, e1 Ps €3 — €3
e — ¢ €y — €
. 1 . . 2 .
ich; —al, Va € in(9) ich, —a2/ Va € in(9)
e; Ps ea — €] €1 Dg ez — €
€ — ¢
ech; E ! Va € TU out(9)
€1 1F+7€e — €
€y — €
2
ech, E = - Va € J Uout(9)
€11+ €es — €
a .
ech; er 115 es — Qs Va € in(S)\(ITUJ)
e, — ¢
1 1
ech, s T 48
€17+ € — € 17 e
ey — €
ech; S — S
€1 1+5 €3 — €} +7 €
e -2 ¢ e -2 ¢
tau; E R agl tau, 3 — acl
77 (e) — 77 (€) 77 (e) — 77 (€)
a ’
h e — €
rho
pla) ,
ps(e) — ps(e’)
a ! a !
€1 — €, €y — €5
par; T -
€1 51H52 € € 51HS2 €
e — ¢
1
par, 2 /1 a € acts(S))\ext(S,)
€15, lls, €2 — €1 5|5, €2
€y — ¢!
2
pars; = ~ a € acts(92)\ext(5:)
€15, ls. €2 — €1 5|5, €
e 2 ¢
. def
rec e a— ifX=e
X -4 e

Table A.2: The transition rules for DIOA
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wsia p(nil) =0
’LUSZ.AyB(Q) = @

wsig pla.e) = { {a} if a €in(e)\A
Ab 0 ifacout(e)UA

wsig pler B ey) = wsiy pler) N wsiy pes)

0 it BNnAN (in(e)\(TUJ)) #0
wsig p(er 1y e2) =4 (LN wsigpacruoutie))(€1)) U (J 0 wsig paiuout(es))(€2))
otherwise

WSiA,B(TI(e)) = WSiAuI,B(e)
wsiap(p(e)) = p(wsiy-1(ay,-1(5)(€))
wsi g pler|le2) = wsigg(er) U wsipg(es)

wsig p(X) = wsis p(E£(X))

Table A.3: Definition of wsi for DIOA. wsi(e) < wsig g(€)
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(mil) = 0 if AN BNin(nil)=10
wsoapinu) = out(nil)\A otherwise

wso() = out(N)\ A

out(e)\ A it BnAn{a} #0

{a}Nout(e) if BNAN{a}=0andag A
wso, 4(€) ifBﬁAﬂm:@andaeAﬁB
0 if BNAN{a}=0andac A\B

wso, pla.e) =

wso ple; @ es) = wso, pler) U wsoy ples)

|} wsoa Baruout(ey(€1) U w04 pacsusutesy(€2) i BNANTUJ =10
wSOA,B(€1 I+tJ 62) = { out(el)\A otherwise

U)SOA,B(TI(e)) = U)SOAUI,BUI(e)
wso4,5(p(€)) = p(wsop-1(a),p-1()(€))

wsos a(€1) U wsog a(es) if Ja € BN A:a€ acts(er)\ext(es)
wso 4 p(er|les) = or a € acts(es)\ext(ey)

wso p(e1) U wsoy p(es) otherwise

wso, g(X) = wso, p(E(X))

Table A.4: Definition of wso for DIOA wso(e) < wsog g(€)

localen(nil )

0
localen(a.e) = ){ a} Nout(e)

(

(
localen(e, & localen(e; ) U localen(es) U {7}
localen(ey 1+ ) = localen(ey) U localen(es)
localen(T(e )) = localen(e)
localen(p(e)) = p(localen(e))
localen(e,||es) = localen(e;) U localen(es)

(

localen( X' ) = localen( E( X))
inten(e) = true iff {7} € localen(e)
quiet(e) = true iff localen(e) = ()

Table A.5: Definition of localen, inten and quiet
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renaming axioms

Ry pi(p2(e)) =q p1opae)
Rs p(7i(e)) =¢ Ton(p'(€)) if p’ extends p
Rs plellf) =q ple)llp(f)

parallel axioms

Py ellf =q flle

P, (el )llg =q ell( /1)

P; Qg ||nils, Cg Qg,||nils, if (out(Sy) C out(S3)) A ((in(S2) C in(Ss)) V out(Sy) = 0)
external choice axioms

Ec, e;+5 f=¢ fstre

Ec, (e;+s f)rvstrk 9=g € rt+sux (f itk 9)

Ecs; e=g e ;+seif Wsi(e) CTUJ

Ecy ety =g (egtxe)+s fFHICHUK

(not(quiet(e)) A not(inten(e))) V quiet(f)
eCoertsf

(not(quiet(e)) A not(inten(e))) V quiet(f)
ert+s9Cq (eg+r f)its g

quiet(f)

ert+sfCqe

quiet(f)
(eutr f)its9Cgertsyg

Ecy e=ge+ya.Qif Wsi(e) C T and Wsi(e)nJ =10

Ec; if JN Wsi(f)C1

EC6

if K0 Wsi(f)nICH

Ec; it Wsi(e) C I and Wsi(e)nNJ =10

Ecs it Wsi(e)nI C H and KN Wsi(e)NnI =10

Ecijp a.ej+ya.f=ga.(ed f)ifa € out(e)U(INJ)
Eci; e+ fCg ed® f where Wsi(e)n Wsi(f) C1TUJ

Table A.6: The axioms for DIOA.
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quiet(e) <= quiet( f) A not(inten(e)) A not(inten(f))
ertsf=qed f

a € in(e) V (not(quiet(q)) A not(inten(q))) vV quiet(f) . Wsi(g) C K, and
(a.er+5f)Dg=q(a.er+; f)®(a.e+kg) {a}nIC{a}nk

Eciy e+ f =@ € n{atTJ\{a} fifae I\ WSZ(@)

Ec, if Wsi(e)u Wsi(f)CInJ

EC13

Ecy; M where Wsi(e) C I
€ EQ € I—I—q) f
Ecys quiel(/) fEKNTI=10

erts9=qgertrx f)itsg

internal choice axioms
Ic, e f=q fbe
Iey (eb f)Dg=qed (fDyg)
Ie; e=gede
Icy a.(e® f)=ga.eda.f
Ies (e@ f)rts9=q(erts9)®(frts9)
Ies (e ® f) =q 7i(e) & 71(f)
Te: (¢ flg =o (ello) @ (g)
Ies eCped f

hiding axioms

I, g(e) =g e

I, m(nil) =g nil

L, 7
Is; m1(75(e)) =¢ Trus(e)

Is m(e)||ms(f) =g mros(el|lf) if INacts(f)=J Nacts(e) =10
I: e =¢ p(e) if p is the identity function

71(e) Cqg T1(f)

Is
mi(a.e) Cg r(a. f)

Table A.7: The axioms for DIOA: actions of the form 7; belong to [.
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E,

E,

71(e) Cq 71(g)
(e ntr [) Co (9 ntx f)

m(e) Co mi(i.e m+x f)
Tr(i.e) =g r(e) if Wsi(e) =0

not(quiet(e)) not(inten(e))
mileg+oi. f) =g mi(ed f)

quiet(e)
miento i f)=q (e xtx f)

(
Tr((Qs,[Inils, || - -+ [[nils, )lle) =q 7r(Q|€) if Vic;j<nlout(So) Nin(S;) N I)\in(e) # 0
(s, il || - --[nils, ) =g Qepslnils sl - - - nils.s if Yiicnout(So) M in(S:) A T = 0
71(
7r(1

if Wsi(e) C H

if Wsi(e) C H and Wsi(e) C K

(@ . 0. € {aynine)toi.a.€) =g Ti(a.e) if Wsi(e)=10
i (egts [)ots [)=q mrleo+s f)if quiet(f) and Wsi(f) CJ
omega axioms
p(Sks) =q Qps) MeCq Q2
71(Q2s5) =q Qs where 57 = (in(5), out(5)\I)
Qs 1925, =g Qs, where S5 is the composition of 57 and 55

expansion axioms

Let e = Qg [|nily, || - - - ||nils, be of sort S. For each a € out(Sy)Uin(9) let e, be the state
that e reaches with action a. Then € =q (X acout(so)uin(s) @ - €a) B (Xagin(s) @ - €a)-

Let e = ey|es]| - - -[|e, where each e; is of the form 3, a;; . e;;. For each action a € ext(e)
let

i { {e;jlai; = a} if a € acts(e;)

{e;} otherwise

Let out(a) be the index j s.t. a is an output action of j (0 otherwise) and let

E = 0 if out(a) # 0 and EovH ) = ()
TV AAl e i€ EEV(EL=0A fi=Q)}  otherwise

Then € EQ ZaEext(e)(ZfEEa af)

Let €;,0 < ¢ < n be atomic expressions and, for each action a, let f? be the state that e;
reaches with action a (e if no state exists). Then ey Co¥, o<, € iff, for each action a,

either f# =e;,0 <1< nor ff =eor f§ CoPuz, [

Table A.8: The axioms for DIOA.
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