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ABSTRACT 

This thesis explores the use of fine-grain synchronization in the preconditioned con­
jugate gradient (PCG) method using the modified incomplete Cholesky factorization 
of the coefficient matrix as a preconditioner. The PCG algorithm being studied 
represents a large class of algorithms that have been widely used but traditionally 
difficult to implement efficiently on vector and parallel machines. Through a series of 
experiments conducted using a simulator of a distributed shared-memory multipro­
cessor, the thesis addresses two major questions related to fine-grain synchronization 
in the context of this application. First, what is the overall impact of fine-grain syn­
chronization on performance? Second, what are the individual contributions of the 
following three mechanisms typically provided to support fine-grain synchronization: 
language-level support, full-empty bits for compact storage and communication of 
synchronization state, and efficient processor operations on the state bits? 

The experiments indicate that fine-grain synchronization improves overall perfor­
mance by a factor of 3. 7 on 16 processors using the largest problem size that was 
feasible to simulate; the thesis also projects that a significant performance advantage 
will be sustained for larger problem sizes. Preliminary experience shows that the 
bulk of the performance advantage for this application can be attributed to exposing 
increased parallelism through language-level expression of fine-grain synchronization. 
A smaller fraction relies on a compact implementation of synchronization state, while 
an even smaller fraction results from efficient full-empty bit operations. The the­
sis also shows that the last two components are likely to have a greater impact on 
performance as mechanisms for latency tolerance are employed. 
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Chapter 1 

Introduction 

This thesis describes an in-depth investigation of the impact of fine-grain synchroniza­

tion in MIMD machines on the performance of the preconditioned conjugate gradient 

problem using the modified incomplete Cholesky factorization of the coefficient ma­

trix as a preconditioner (henceforth referred to as MICCG3D). An application study 

of this sort is important because it tells architects not only how programmers will 

use the mechanisms provided in parallel machines, but also the relative usefulness 

of various mechanisms provided in the system as evidenced by their impact on end 

application performance. 

One of the challenges in such a design methodology lies in finding appropriate 

applications which will provide meaningful information concerning a specific set of 

mechanisms. The problem of finding an application that is both important and 

suitable for investigating fine-grain synchronization is particularly difficult because 

benchmarks that pose challenges for synchronization are virtually nonexistent in pre­

vious studies of parallel applications. Applications used to study the performance 

of MIMD multiprocessors have traditionally employed coarse-grain synchronization 

where synchronization operations are infrequent and are separated by large amounts 

of useful computation (see [23]). For these problem domains, special mechanisms for 

synchronization are not necessary. The MICCG3D application meets the criteria for 
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this thesis because it is an important application with challenging synchronization 

requirements. 

1.1 Contributions of this Thesis 

The investigation of fine-grain synchronization in this thesis makes two major con­

tributions. First, the thesis shows how fine-grain synchronization can be employed 

in MICCG3D to provide significant performance gains over coarse-grain synchroniza­

tion, and it determines quantitatively this resulting performance gain. The study uses 

a simulator of Alewife, a distributed memory multiprocessor that provides hardware 

support for the shared-memory abstraction [1 ). The result of this first contribution 

is that applications for which synchronization is challenging do exist. Furthermore, 

implementations on MIMD machines can achieve good performance by employing 

fine-grain synchronization. 

Second, through a sequence of experiments, the thesis provides insight into where 

the "muscle" of fine-grain synchronization lies. A common conception of fine-grain 

synchronization - one which has contributed to the preference for coarse-grain ap­

proaches - has been that its success relies on efficient, but expensive, hardware­

supported synchronization primitives. This thesis demonstrates that the most signif­

icant contributions of fine-grain synchronization for MICCG3D do not rely on hard­

ware acceleration; rather, they arise from the expressivity and flexibility of language­

level support. 

1.2 Overview 

The rest of this thesis proceeds as follows. Chapter 2 addresses the differences between 

coarse-grain and fine-grain synchronization and reveals the benefits that fine-grain 

synchronization affords. In addition, the chapter identifies different levels of sup­

port for fine-grain synchronization that machines can provide. Chapter 3 describes 
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the MICCG3D application, and motivates the need for fine-grain synchronization by 

discussing why MICCG3D is hard to parallelize. Chapter 4 discusses the details con­

cerning the parallel implementation of MICCG3D using coarse-grain synchronization 

and fine-grain synchronization. Chapter 5 describes the experimental environment, 

and in particular, outlines the level of support assumed for fine-grain synchroniza­

tion. Chapter 6 presents experimental results and discusses their significance. Finally, 

Chapter 7 includes a summary of the results from this thesis as well as concluding 

remarks. 
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Chapter 2 

Synchronization 

Synchronization in shared-memory MIMD multiprocessors ensures correctness by 

enforcing two conditions: read-after-write data dependency and mutual exclusion. 

Read-after-write data dependency is a contract between a producer and a consumer 

of shared data. It ensures that a thread reading a value produced by another thread 

performs the read only after the write has completed. Mutual exclusion, on the other 

hand, enforces atomicity. When a data object is accessed by multiple threads, mu­

tual exclusion allows the accesses of a specific thread to proceed without intervening 

accesses by the other threads. Since MICCG3D only involves synchronization aris­

ing from read-after-write data dependency, the rest of this chapter will only address 

read-after-write data dependency. 

2.1 Coarse-Grain Versus Fine-Grain for Producer­

Consumer Computations 

A coarse-grain solution to enforcing read-after-write data dependency is barrier syn­

chronization. Barriers are typically used in programs involving several phases of 

computation where the values produced by one phase are required in the computa­

tion of the next phase. Parallelism is realized within a single phase of computation, 
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Figure 2.1: Enforcing read-after-write data dependencies in producer-consumer com­
putations using coarse-grain barriers and fine-grain data-level synchronization. 

but between phases, a barrier is imposed which requires that all work from one phase 

be completed before the next phase is begun. Therefore, all the consumers in the 

system must wait for all the producers. In contrast, a fine-grain solution provides 

synchronization at the data level. Instead of waiting on processors, fine-grain syn­

chronization allows a consumer to wait on the data that it is trying to consume. 

When the data has been filled by the producer, the consumer is allowed to continue 

processmg. 

Fine-grain synchronization provides two primary benefits over coarse-grain syn­

chronization. 

• Unnecessary waiting is avoided because a consumer waits only for the data it 

needs. 

• Global communication is eliminated because consumers communicate only with 
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those producers upon which they depend. 

The significance of the first benefit is that parallelism is not artificially limited. Bar­

riers impose false dependencies and thus lose parallelism to unnecessary waiting. 

Figure 2.1 illustrates this by showing a trace of three threads of computation in time. 

In the figure, consumers CO - C2 depend on the values computed by producers PO 

- P2. The example shows the data dependencies enforced using both coarse-grain 

barriers and fine-grain data-level synchronization. Notice in the barrier example that 

consumers CO and C2 are artificially held in time until the last producer, in this 

case producer Pl, has arrived at the barrier. This waiting is unnecessary because 

the data that these two consumers need are actually ready prior to when the last 

producer arrives at the barrier, but they are nonetheless forced to wait because of 

skew in the runtimes of the producer threads. Because data-level synchronization 

does not introduce the false dependency of consumers CO and C2 on producer Pl, 

such runtime skews do not adversely affect data-level synchronization. 

The significance of the second benefit listed above is that each synchronization 

operation is much more efficient and much less costly than a barrier. This means 

that synchronization operations can be performed more frequently without incurring 

significant overhead. 

It is important to note that these benefits are a manifestation of the expressivity 

provided by fine-grain synchronization; they do not depend on assumptions of the 

underlying hardware implementation. This is an important observation because it 

underscores the fact that fine-grain expression of synchronization and the implemen­

tation of synchronization primitives are orthogonal issues. 

2.2 Mechanisms for Fine-Grain Synchronization 

In this thesis, three mechanisms to support fine-grain synchronization are identified. 

They are: 
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• Language constructs for the expression of fine-grain synchronization. 

• Special hardware to compactly store synchronization state. 

• Efficient operations on synchronization state. 

The first component of support provides the programmer with a means to express 

synchronization at a fine granularity, resulting in increased parallelism. Another 

attractive consequence is simpler, more elegant code [14]. 

The second component of support is based on the intuition that an application 

using fine-grain synchronization will need a large number of synchronization objects­

typically one for every data item. Providing specially allocated state for these objects 

can lead to an efficient implementation from the standpoint of the memory system. 

This benefit is referred to as memory efficiency. As Chapters 5 and 6 will discuss in 

detail later in the thesis, memory efficiency has two consequences. The first is that 

synchronization objects are implemented with lower overhead than if no special state 

is provided. The second consequence is that memory efficiency results in less commu­

nication. With special state, there is a unique association between synchronization 

objects and data, so whenever a piece of data is fetched, the synchronization object 

associated with the data will be fetched as well. This gives both the data and the 

synchronization object in one memory transaction. 

Finally, the last component of support is motivated by the expectation that syn­

chronizations will occur frequently. Therefore, support for the manipulation of syn­

chronization objects can reduce the number of processor cycles incurred while access­

ing synchronization objects. This benefit is referred to as cycle efficiency. 

In Chapter 6 where the results are reported, each of these components of support 

for fine-grain synchronization is investigated in isolation. This will expose the impact 

that each component has on the performance of the MICCG3D application, and thus 

attribute a notion of relative importance for the three components of support. 

16 



Chapter 3 

Preconditioned Conjugate 

Gradient 

The Conjugate Gradient (CG) algorithm is a semi-iterative method for solving a 

system of linear algebraic equations expressed in matrix notation as Ax = b. The rate 

of convergence of the CG method can be improved substantially by preconditioning 

the system of equations with a matrix J<- 1 and then applying the CG method to the 

preconditioned system. The idea is to choose a preconditioner such that K-1 A is close 

to the identity matrix I. When this condition is met, the CG algorithm convergences 

much more rapidly. This is illustrated in Figure 3.1 where the number of iterations 

to convergence for the CG algorithm with and without preconditioning is plotted for 

several problem sizes. The numbers were obtained by running a sequential version of 

both CG algorithms on a SUN workstation. 

Since the operations in the basic CG method consist of vector updates, inner prod­

ucts, and sparse matrix-vector multiplies, efficient parallel versions of the algorithm 

have been demonstrated on many vector machines and MIMD multiprocessors [26] [27]. 

Preconditioned CG methods, however, have not enjoyed the same success. In many 

of the most popular preconditioning techniques, the preconditioner steps typically in­

volve recurrence relations which do not vectorize or parallelize easily. Many attempts 
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Figure 3.1: Conjugate gradient convergence rates with and without preconditioning. 
nx, ny, nz denote the discretization degree in the x, y, and z dimensions. The 
problem size is the product of these three values. 

have been made to choose preconditioners or to develop new techniques to perform the 

preconditioner steps such that the algorithm becomes easier to vectorize or to paral-

lelize [30] [31] [32] [34]. While many of these techniques are successful, they commonly 

suffer from one of two drawbacks. Some of the approaches do not converge quickly 

because they employ a suboptimal preconditioner with desirable parallel properties. 

Other approaches are complex and are tailored to a specific machine configuration. 

(See Section 3.3). 

3.1 MICCG3D 

This thesis studies a particular implementation of the preconditioned CG method 

known as the Modified Incomplete Cholesky Factorization Conjugate Gradient in 3-

Dimensions (MICCG3D). MICCG3D is a preconditioned conjugate gradient method 

that assumes the coefficient matrix A in the system Ax = b is sparse, and sym­

metric positive definite (SPD). Although this thesis centers around a particular CG 
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implementation, the general problem being addressed involves increasing performance 

through the recurrence relations in the preconditioner steps. It is important to em­

phasize that this problem is common to almost all preconditioned iterative methods, 

a very large class of applications. Therefore, the solution using fine-grain synchro­

nization proposed by this thesis has general consequences for the large number of 

algorithms that MICCG3D represents. 

3.1.1 Application of MICCG3D 

As mentioned above, MICCG3D assumes the coefficient matrix A is SPD. Such a 

matrix arises from the discretization of many different partial differential equations. 

Some examples of engineering problems for which this would have application are 

• Laplace's Equation: \72u(x, y, z) = 0. 

Applicable in potential theory for gravitational, electrostatic, and magnetostatic 

potentials in empty space. Also has application in problems from classical 

hydrodynamics and heat condution. 

• Poisson's Equation: -\72u(x, y, z) = J(x, y, z). 

Governs problems of gravitational potentials with continuous distributions of 

matter density and electrostatic potentials with continuous distribution of charge 

density. 

• Helmoltz's Equation: -\72u(x,y,z) + k2u(x,y,z) = 0. 

Governs problems involving wave propagation such as those arising from Maxwell's 

equations. 

• General 4th-Order PDEs: \74u(x, y, z) = J(x, y, z). 

Governs many problems from solid mechanics. An example would be the de­

flection of a stiff beam by an applied force distribution J(x, y, z). 
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3.1.2 How the Algorithm Works 

This thesis considers the standard 7-point discretization of second-order elliptic par­

tial differential equations in three dimensions. In such a discretization, there are 7 

non-zero diagonals in matrix A; all other elements are zero. Given that A is SPD, it 

is possible to write A= L + diag(A) +LT where Lis a lower triangular matrix. From 

this expression, the incomplete Cholesky factorization of matrix A, which is denoted 

as I<, can be computed as follows and is given in [30]. 

I<= (L + D)D-1 (D +LT) (3.1) 

In this expression, D is a diagonal matrix. Using the notation where di denotes the 

element in row i, column i of matrix D, and ai,j denotes the ith element in the jth 

non-zero diagonal away from the center diagonal in matrix A, the elements of D can 

be expressed as 

-ai-nx 3 * (aai-nx 2 + ai-nx 3 + aai-nx 4)/di-nx , ' ' ' 

-ai-nxny,4 * (aai-nxny,2 + ai-nxny,3 + aai-nxny,4)/di-nxny (3.2) 

a is a parameter ranging from 0.0 to 1.0 (the subscript notation involving nx and ny 

will be explained shortly). An optimal rate of convergence can be achieved by choosing 

a value for a which suits the problem domain. It turns out that for most academic 

(modeling) problems, a value of a closer to 1.0 yields faster convergence rates, while 

for most industrial (more realistic) problems, a value of a closer to 0.0 is better 

(see [30]). Throughout this study, for simplicity, it is assumed that a= 0.0. Since I< 

is an approximate factorization of A, J<-1 is used as the preconditioning matrix and 

the conjugate gradient method is applied to the preconditioned system. The steps 

for the preconditioned CG method are given below; derivation of the algorithm can 

be found in [29]. 
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Initialization 

/3-1 = P-1 = Po = 0 

x 0 = initial guess 

ro = b-Axo 

solve J( Wo = ro 

Iterate on i 

(1) p; = w; + /3i-1Pi-1 

(2) q; = Ap; 

(3) O'.i = p;j(p;, q;) 

( 4) Xi+i = Xi+ O'.iPi 

(5) ri+l = ri - a;q; 

(6) if p; < TOLERANCE then quit 

(7) solve J( Wi+i = r;+1 

(8) Pi+l = (ri+i, Wi+1) 

(9) /3; = Pi+i/ Pi 

3.1.3 Where the Bottleneck Lies 

As mentioned earlier, the challenge of MICCG3D lies in parallelizing the vector so­

lution step involving the preconditioner (which will be referred to as the "solver op­

eration"). The solver operation is a significant fraction of the total work in the main 

iteration loop. Table 3.1 gives a cycle breakdown for one iteration of MICCG3D on a 

problem size of 8x8x8, where the problem size ( nx )x( ny )x( nz) signifies the degree of 

discretization in the x, y, and z dimensions respectively (the numbers were acquired 

from a single processor simulation of the Alewife machine which will be described 

in Chapter 5). The last column shows the relative cost of each vector operation as 

a percentage of the total number of cycles in the iteration. Notice the solver is the 

costliest vector operation. If poor parallel performance is suffered in this part of 

the application, the potential parallel performance of the entire application will be 
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Vector Operation Cycles % 
Vector Update 10589 6.17 
Sparse Matrix-Vector Multiply 56099 32.7 
Inner Product 6212 3.62 
Vector Update 9295 5.41 
Vector Update 9288 5.41 
Solver 74058 43.1 
Inner Product 6212 3.62 

Table 3.1: Cycle breakdown of an iteration of MICCG3D. 

severely limited. 

3.2 Why MICCG3D is Difficult to Parallelize 

MICCG3D is difficult to parallelize because the recurrence relations in the solver 

operation impose data dependencies which are numerous and complex. The solver 

tries to compute w;, the residual vector in the preconditioned system. Given the 

solution vector of the current iteration step x;, w; can be expressed as 

K- 1 (b - Ax;) 

J{-1(ri) (3.3) 

r; = b - Ax; is the residual vector in the original system without preconditioning. 

Although K-1 is the preconditioner, actually calculating it is infeasible. Since A is 

sparse, it follows that I< will be sparse as well because it is an approximate factoriza­

tion of matrix A. J{-1
, being the inverse of a sparse matrix, will be dense. Not only 

will the calculation of K-1 be intractable, but the memory space required to store its 

result will be unmanageable for real problem sizes. Therefore, instead of solving 3.3, 

it is desirable to solve 

(3.4) 
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Since the factorization of matrix I< is known as the product of a lower triangular 

matrix and an upper triangular matrix, Wi can be found by first employing back sub­

stitution followed by forward substitution. As an example, the backward substitution 

step can be expressed as follows. 

where L is the lower triangular factor in f{ and li,j is the ith element in the jth non­

zero diagonal away from the center diagonal in matrix L. Because of the recurrence 

in w, it is not possible to perform the entire backward substitution step in parallel. A 

similar problem exists for the forward substitution step. The dependencies imposed 

by the recurrence relation in 3.5 result in what is known as "wavefront computation." 

This form of computation derives its name from the fact that the solutions which 

can be computed in parallel at any instant in time form a wavefront in the solution 

space which propagates forward as time elapses. Figure 3.2 shows a snapshot of 

the wavefront in the three-dimensional solution space of MICCG3D. In MICCG3D, 

the wavefront forms a plane perpendicular to the diagonal of the three-dimensional 

solution space and propagates from coordinate (0,0,0) towards coordinate(nx,ny,nz). 

3.2.1 The Challenge of Wavefront Computation 

There are two reasons why the wavefront computation in MICCG3D is difficult to 

parallelize. First, the parallelism is not uniform. At the beginning and the end of 

the computation, there is very little parallelism. In the middle of the computation, 

parallelism is abundant. During the portions of computation where little parallelism 

exists, there may not be enough work for all the processors. Second, the dependencies 

exist across all three spatial dimensions. That is, an element can be computed only if 

all the elements to the left of it, behind it, and below it in space have been computed. 

Consequently, it is impossible to choose any cartesian axis in the solution space along 

which to partition work for the different processors and simultaneously avoid heavy 

dependencies. 
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Figure 3.2: Computational wavefront at an instant in time. nx, ny, nz denote the 
discretization degree in the x, y, and z dimensions. 

Machine Peak Vector Inner Sparse 2-Term 
MFlops Update Product MxV Recurrence 

CRAY-1 (1 Processor) 160 46 75 54 10 
CRAY-2 (1 Processor) 1951 71 88 77 8.5 
CRAY X-MP (1 Processor) 941 166 166 178 5.7 
CYBER 205 400 200 100 100 2.9 
ETA-lOP 333 167 83.3 83.3 1.6 
IBM 3090 (1 Processor) 800 21 29 27 6.5 
NEC SX/2 1300 548 905 843 21 
Alliant FX/80 (6 Processors) 188 17.1 30.5 16.8 3 

Table 3.2: Performance of vector operations in MICCG3D on vector machines. 

24 



Machine PEs Speedup MFlops Peak % 
FX 8 8 5.6 14.5 188 10 
Monsoon 8 6.0 2.4 80 3 
HP 1 1.0 7 50 14 
Cray X-MP 4 2.4 220 940 23 

Table 3.3: Performance survey from Rubin's study. The PE column is the number of 
processors, MFlops is the number of Mega-Flops, the Peak column is the peak Mega­
Flops rating of the machine, and the% column is the percentage of peak Mega-Flops 
that was sustained. 

The difficulty in performing computations involving recurrence expressions is well 

known. Table 3.2 shows performance numbers on some vector computers as pre­

sented in [26]. The first column of numbers shows the absolute peak floating point 

performance of the machine. The remaining columns give the maximum performance 

in MFlops on each of the four vector operations that appear in MICCG3D. Notice 

how performance degrades for recurrence expressions as compared to the other vector 

operations. Although only results for 2-term recurrence expressions are given, the 

general trends apply to the solver operation in MICCG3D (which involves a 3-term 

recurrence expression). 

3.3 Related Work in Preconditioned Conjugate 

Gradient 

Many studies of the preconditioned conjugate gradient algorithm appear in the liter­

ature, which attests to the challenge in making it run efficiently and the importance 

of the algorithm to the scientific community. This section is only meant to scratch 

the surface-a comprehensive survey could fill an entire thesis itself. 

Since the work in this thesis was inspired by Rubin's study (24], much of the dis­

cussion in his study is relevant to the context of this thesis. The greatest similarity is 

that the exact same algorithm is used. The experimental context for Rubin's study, 

though, is on Monsoon [10], and the language used to implement the application is 
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the dataflow language, Id. Rubin's study includes an execution of the application 

on MINT, a simulator of an ideal datafl.ow machine. The simulator assumes that an 

infinite number of instructions can be executed on any given cycle; the only constraint 

is that the operands for each instruction must be available before it can execute (or 

"fire"). Also, the simulator assumes that memory access has zero latency. Thus, this 

simulator yields the maximum parallelism inherent in the application given an ideal 

machine. For a fairly small problem size (8x8x8), Rubin found an average parallelism 

of about 40. On real Monsoon hardware, Rubin was able to attain a speedup of 6 on 

8 processors. Since the Monsoon machine at his disposal was configured with only 

8 PEs, he was unable to explore performance on larger machine configurations. An­

other interesting result provided by Rubin's study is a survey of performance results 

on various machines for 3-dimensional preconditioned conjugate gradient algorithms 

where Cholesky factorization is used in the preconditioner. The results of that survey 

are reprinted in Table 3.3. 

Particularly abundant in the literature are studies that try to come up with vari­

ants on the basic PCG algorithm which vectorize. Van der Vorst has been particularly 

prolific in this area. In one of his studies [33], Van der Vorst takes a factorized pre­

conditioner similar to the one used in this study and expresses it as a sum of smaller 

upper /lower traingular matrices. Each new matrix contains only one diagonal from 

the original LU factorization. Then, van der Vorst forms the power series expansions 

of one of these new matrices and truncates the series after m terms. The resulting 

truncated preconditioner vectorizes, but does not have as good convergence behavior 

as the orginal preconditioner. A tradeoff in the algorithm is in choosing a value form. 

The smaller m is, the less computation is required at each iteration, but the poorer 

the convergence rate. On the other hand, the larger m is, the more computation at 

each iteration, but convergence behavior is improved. Van der Vorst demonstrates for 

two different data sets on the Cray-1 that the truncated preconditioner always per­

forms better than the original preconditioner (he measures about 40% improvement 
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on both data sets). 

Another study which approaches some of the parallel issues for the PCG algo­

rithm is Meurant's study [34]. In this study, Meurant tries to eliminate some of the 

data dependencies in the back substitution step (referred to as the solver operation 

in this thesis) so that the preconditioning becomes more parallel. The target for his 

parallel preconditioner is a 2 and 4 processor CRAY X-MP /48. The approach is to 

block decompose the preconditioner and use what is known as "twisted factorization" 

on the blocks. This results in a preconditioner that is only an approximation to the 

original preconditioner, but some of the recurrence dependencies are eliminated. The 

experimental results of the study are that very good performance is attained on 2 pro­

cessors, but diminishing returns are seen on 4 processors due to memory contention 

and because the parallel preconditioner is not as effective as the original precon­

ditioner in increasing the convergence rate. Furthermore, because his factorization 

approach does not generalize easily, obtaining parallel preconditioners for machines 

larger than 4 processors is not an easy task. 
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Chapter 4 

Parallelizing MICCG3D 

This chapter discusses two ways of parallelizing MICCG3D. One uses coarse-grain 

barrier synchronization and the other uses fine-grain data-level synchronization. 

4.1 Coarse-Grain MICCG3D 

In the coarse-grain approach, the solution space is partitioned along the z dimension 

and nz/ P contiguous planes in the solution space are assigned to each processor, 

where P is the number of processors. To maximize physical locality of data reference, 

the partitioning scheme ensures that the nz/ P planes assigned to each processor 

are allocated in that processor's local memory. For this partitioning of the data, 

communication occurs only in the sparse matrix-vector multiply and solver operations 

when elements residing on the outermost planes assigned to a processor are being 

computed. Moreover, this communication is to near-neighbor processors. 

4.1.1 Enforcing the Data-Dependencies Using Barriers 

Barriers are placed in between vector operations to ensure that results are fully com­

pleted before being used in subsequent computation. For all but the solver operation, 

this is sufficient to guarantee correctness. Dependencies arising from the recurrence 
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Figure 4.1: Coarse-grain parallel implementation of the solver operation. Similarly 
shaded blocks are computed in parallel. Pi denotes processor i, and k is the number 
of computational blocks in the x-dimension. 
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relation in the solver require further use of barriers. Computation in the solver is 

further sectioned into k parts along the x dimension. This partitions the nz/ P 

planes assigned to each processor into k rectangular blocks of work each contain­

ing (nz/P)(nx/k)ny elements. Each processor computes all the results in one block 

and enters a barrier before it is allowed to move on to the next block. 

Within each block as well as between blocks assigned to the same processor, the 

dependencies of the recurrence relation are enforced by making sure the order in 

which the elements are computed follows the dependencies. Enforcing this invariant 

is possible because computation is sequential on a given processor. Dependencies 

between blocks across processors must be enforced by staggering the computation. 

This process is illustrated in Figure 4.1 on an example that has been partitioned 

for four processors with k equal to four. The blocks that are computed in parallel 

between barriers are filled with the same hash pattern. Staggering the blocks results 

in a staircase-like propagation of computation. 

4.1.2 Problems with the Coarse-Grain MICCG3D Imple­

mentation 

The main problem with the coarse-grain MICCG3D implementation is the lack of 

parallelism in parts of the solver operation. At the beginning of the solver operation, 

when processor PO computes its first block, processors Pl, P2, and P3 must remain 

idle. When PO moves on to its second block after the first barrier, only Pl is allowed 

to start computing; P2 and P3 are still idle, and so on. Not until PO is on its 4th 

block are all processors busy (note the same problem occurs at the end of the solver 

operation). The degree to which parallelism is limited depends on the value of k. The 

larger k is, the sooner all processors are computing in parallel. 

To find an upper bound on speedup in the solver computation, notice that se­

quential execution time is proportional to kP, the total number of blocks. Parallel 

execution time is proportional to the number of block intervals per processor, where 
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Figure 4.2: Fine-grain parallel implementation of the solver operation. nx, ny, nz 
denote the discretization degree in the x, y, and z dimensions. 

a block interval is the amount of time between barriers. There are k block intervals 

spent on useful work, and P - 1 block intervals spent idling. Therefore, the number 

of block intervals per processor is k + P - 1. Taking the ratio of sequential to parallel 

execution time gives the upper bound on speedup. 

kP 
Supper = k + p _ l ( 4.1) 

Notice this is only an upper bound because it ignores the overhead of barrier opera­

tions which becomes more significant as k increases. 

4.2 Fine-Grain MICCG3D 

Like the coarse-grain implementation, each processor is assigned nz / P planes parti­

tioned along the z dimension; however, in the fine-grain implementation, these planes 

are not contiguous. Instead, processors are allocated planes modulo P where P is the 

number of processors. This scheme, illustrated in Figure 4.2, results in substantially 

more communication during the sparse matrix-vector multiply and solver operations. 
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Because the data is partitioned into blocks in the coarse-grain implementation, only 

elements on the outermost planes need to communicate values. In the fine-grain 

implementation, all elements being computed require communication. 

4.2.1 Enforcing the Data-Dependencies Using Data-Level 

Synchronization 

Synchronization is done at the word-level using fine-grain synchronization. This pro­

gramming model completely eliminates the need for barriers except in the inner prod­

uct where an implicit barrier occurs in the accumulate of all the individual scalar mul­

tiplies. Not only does word-level synchronization enforce the dependencies between 

vector operations, it also automatically enforces the recurrence dependencies in the 

solver operation. In the fine-grain version of the solver, each processor can compute 

results for its elements as fast as possible. If a thread tries to read a value that has not 

yet been computed, the semantics of the data-level synchronization force that thread 

of execution to stop and wait until that location has been filled. This provides several 

benefits. First, processors never wait unnecessarily. Computation proceeds as long as 

the values that are needed are available. Second, the details of where synchronizations 

occur is abstracted from the programmer. All the programmer needs to do is specify 

the algorithm. The dependencies are handled by the system at runtime, making the 

code less complex. In addition, the code is more efficient because the order in which 

the elements are computed is more natural compared to the awkward staggering of 

blocks in the coarse-grain implementation, thus simplifying the computation of array 

indices. 

4.2.2 Theoretical Fine-Grain Performance 

The theoretical performance of the fine-grain implementation is similar to the theoret­

ical coarse-grain performance in that there is a startup time during which processors 
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are idle waiting for the first set of values they depend upon to be produced. However, 

in the fine-grain implementation, this startup time is significantly smaller because 

of the grain size of the data protected by each synchronization operation. In the 

coarse-grain implementation, that grain size is a whole chunk of work containing 

( nz / P) ( nx / k )ny elements. In the fine-grain implementation, this grain size is only 

one element. So for a reasonable problem size (reasonable relative to the machine 

size), the startup effects (and the similar effects at the end of the compu ta ti on) are 

miniscule. In this limit, the theoretical speedup is linear (i.e., Supper = P). 

It is possible that processors may have to idle in the middle of the computation 

m the fine-grain implementation because data that they require has not yet been 

produced. These effects can reduce the theoretical linear speedup predicted above. 

However, as it will be shown in Chapter 6, although such idling does occur, it is rare 

and certainly not the common case. 
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Chapter 5 

Implementation Environment 

The results reported in Chapter 6 are in the context of the Alewife Machine. This 

chapter describes the general architecture of Alewife, how synchronization is done in 

Alewife, and the special support which exists for fine-grain synchronization. 

5.1 The Alewife Hardware 

Alewife consists of a scalable number of homogeneous processing nodes connected in a 

2-dimensional mesh network. Each Alewife node consists of a 32-bit RISC processor, 

a floating point unit, 64 KBytes of cache memory, 8 MBytes of dynamic RAM, a 

controller memory management unit (CMMU), and a network routing chip. The 

channels in the 2-D mesh network are bidirectional; end-around connections do not 

exist at the edges of the network. Figure 5.1 shows the topology of the machine and 

a detail of one of the nodes. 

The RISC processing element, named Sparcle, is the SPARC processor with some 

modifications both to the basic hardware and to the way existing hardware is used. 

These modifications provide functionality that is useful in a multiprocessor environ­

ment. Some of the more important modifications are listed below. 

• The register windows in the SPARC architecture are used for block multithread-
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Figure 5.1: Topology of the Alewife Machine and detail of one node. 
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mg [1]. The original eight windows are organized as four register sets. Each 

register set, known as a context, caches the state associated with one thread 

of computation. The registers of each context are partitioned into 2 frames: 

a user frame of 32 registers ( 8 of which are global to all the contexts), and a 

trap frame of 16 registers. Eight of the registers from the user and trap frames 

belonging to the same context overlap. A context switch on Sparcle simply 

amounts to changing the current window pointer to point to a new context, 

saving the Program Counter (PC) and Processor Status Register (PSR), and 

:flushing the processor pipeline. In the current implementation of Sparcle, this 

can be done in 12 cycles. The ability to context switch rapidly between multiple 

contexts facilitates block multithreading, which is a useful technique for hiding 

the latency of remote memory requests and failed synchronization operations. 

• The Alternate Space Indicator (ASI) field in the SPARC architecture has been 

used to tag certain load/store instructions. The tags identify these load/store 

instructions as special synchronized accesses that are recognized by the CMMU. 

The CMMU is responsible for invoking the appropriate synchronization ac­

tion for these instructions. Through this mechanism, synchronization at an 

instruction-by-instruction granularity is feasible. Also, the SPARC instruction 

set has been augmented to provide instructions which compile directly down to 

these special ASI values. 

• Alewife relies heavily on traps to the processor to handle many frequently oc­

curring events such as context switching, synchronization failures, and interpro­

cessor interrupts. Thus, it is important to detect and dispatch traps efficiently. 

Sparcle supports this by expanding the number of pins upon which synchronous 

traps can be detected, and doing more decoding of trap conditions at the time 

of the trap. Both of these features reduce the amount of computation necessary 

to figure out the exact trapping condition once the processor enters the trap 

handler so that traps can be processed more rapidly. Also, the dedicated trap 
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frames in each context remove the need to save and restore user registers. 

The floating point unit and the cache memory chips are standard off-the-shelf 

parts from the SPARC chip set, and the network router is the CalTech Mesh Routing 

Chip (MRC). The MRC provides two dimensions of routing with two 8-bit channels 

in each dimension. Each channel is capable of a peak bandwidth of 100 Mbytes/sec 

thus giving 200 Mbytes/sec along each dimension. 

The CMMU part is a VLSI gate array being designed and implemented by the 

Alewife group and fabricated by LSI logic. It is the heart of each Alewife node. Among 

its many functions, it provides to the user at the programming level a sequentially 

consistent view of a monolithic shared memory address space. It also maintains 

coherence between all the caches in the system via a directory scheme known as 

LimitLESS [2]. In addition, it handles all the forming, dispatching, and processing of 

messages to and from the network. (For more information about the CMMU, see [3]). 

5.2 Synchronization on Alewife 

Synchronization can be expressed in the Alewife system in many different styles. Not 

only does a substantial synchronization library exist [4] providing the programmer 

easy access to many of the more commonly used synchronization primitives, but 

mechanisms at a very low level are also made available to the user so that he or 

she can synthesize new primitives to meet his or her needs. Here, we present a 

brief discussion on a subset of existing library primitives that are relevant to the 

coarse-grain and fine-grain implementations of MICCG3D as described in Chapter 4. 

In particular, the discussion will be limited to ways of doing synchronization for 

producer-consumer computations using coarse-grain barrier synchronization and fine­

grain data-level synchronization. 
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5.2.1 Coarse-Grain Barrier Synchronization 

The barrier provided by the Alewife synchronization library is a software combining 

tree barrier. Processors arriving at the barrier increment a barrier count in shared­

memory. The last processor to arrive also sets a release flag which signals to all the 

waiting processors that they can leave the barrier. In this barrier, the counter and 

release flag are distributed across all the processors over a combining tree structure so 

that contention for these resources is minimized. The software combining tree barrier 

in the Alewife synchronization library is able to perform a barrier operation on 16 

processors in approximately 2500 cycles. 

Although it was not used for the implementation in this thesis, Alewife also pro­

vides a tree barrier which uses direct message sends via the interprocessor interrupt 

mechanism (see [3]). This barrier implementation bypasses the overhead of the cache 

coherence protocol associated with communicating via shared-memory. Because the 

barrier counters and release flags in the software combining tree barrier are read 

and written by multiple processors in the system during the barrier operation, lots 

of communication between processors occurs solely for the purpose of maintaining 

consistency on those values. This extra communication can be avoided by directly 

sending messages through the tree structure everytime a processor arrives at the 

barrier. This results in a much more efficient barrier operation. 

While the message-passing barrier is quite a bit more efficient than the shared­

memory barrier, the thesis shows in Chapter 6 that skew in thread runlengths and not 

barrier operation latency is the main reason for performance degradation in the coarse­

grain barrier implementation of MICCG3D. Using a more efficient barrier reduces 

the latency of each barrier operation but does not address skew. Therefore, it is not 

expected that the results of this thesis will change noticeably if the message-passing 

barrier is used in place of the software combining tree barrier. 
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5.2.2 Fine-Grain Data-Level Synchronization 

Alewife supports the fine-grain synchronization capabilities described in Chapter 2. 

Data-level synchronization for producer-consumer types of computations is supported 

by the J-structure language construct. A J-structure is essentially an array of data. 

Each element, in addition to storing the data value, can be in one of two states: 

full or empty. Initially, all the elements of the J-structure start in the empty state. 

As producers and consumers manipulate the elements in the J-structure, this state 

changes. The semantics for producers and consumers are as follows. 

• Consumer Semantics: A read to a location that is in the full state proceeds 

as a normal read. A read to a location in the empty state causes the thread 

of computation issuing the read to block, and prior to blocking, the thread 

enqueues a continuation at the location it needs. 

• Producer Semantics: A write to a location in the empty state proceeds as a 

normal write, except for when there are queued continuations at the location. 

In this case, the data is forwarded to all the continuations and those threads 

are allowed to proceed. A write to a location in the full state generates an error 

requiring the program to abort. 

The reader might notice that J-structures are very similar to I-structures [14]. Indeed 

they are with the exception that J-structures can be reset back to the empty state 

once in the full state and thus can be reused. I-structures do not provide this resetting 

capability and thus are never reused. 

Alewife also supports data-level synchronization primitives for enforcing mutual 

exclusion on data. The primitive for this kind of synchronization is known as L­

structures. Since L-structures are not used in the implementation in this thesis, a 

discussion of them is omitted here. For a discussion on L-structures and a more 

detailed discussion on J-structures, see [25]. 
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5.3 Support for Fine-Grain Synchronization 

The implementation of J-structures (and L-structures) in Alewife is facilitated by 

full-empty bits in the memory hardware and fast operations on full-empty bits in the 

processor hardware. 

A full-empty bit is associated with every word in shared-memory. Each full-empty 

bit acts as a dedicated hardware lock for that memory location. During special load­

store instructions supported by the processor, the state of this bit can be altered or 

tested for some condition. The full-empty state associated with J-structure elements 

can be implemented directly via these full-empty bits. 

5.3.1 Memory Efficiency 

Full-empty bits provide the memory efficiency benefit discussed earlier in Chapter 2. 

As was indicated in that chapter, this benefit has two consequences. First, the mem­

ory overhead for synchronization objects is low. Without full-empty bits, a pro­

grammer would have to explicitly allocate extra memory for every synchronization 

variable. For data-level synchronization and word long synchronization variables, 

this can potentially double the memory requirements of an application. It is possible 

to allocate multiple synchronization variables in a single word of memory, but this 

would introduce the problem of false sharing. In a system without full-empty bits, it 

would probably be best to allocate some small number of synchronization variables 

per memory word to control the amount of overhead and to minimize the severity of 

false sharing effects. 

The second consequence of memory efficiency is that there is a reduction in com­

munication. A synchronized data-level access on Alewife brings both the datum and 

the synchronization variable to the processor in one memory system transaction. This 

is possible because full-empty bits are closely associated with the data to which they 

belong. If the datum and synchronization variable are stored in separate memory 
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locations, two memory transactions would be needed. 

5.3.2 Cycle Efficiency 

All operations on the full-empty bits occur simultaneously with the load or store of 

the associated data facilitated by special support in the processor hardware. These 

operations are thus atomic and do not cost any additional cycles. This constitutes 

the cycle efficiency benefit described in Chapter 2. If hardware support did not exist 

in the processor to test the full-empty bit simultaneously with loading the datum, 

a synchronized access would take at least three instructions: one to access the full­

empty bit, another to test the bit, and a third to access the datum. 

The result of conditional tests on the bit can be used to affect processor activity. 

In particular, the processor can be trapped depending on the type of load-store being 

executed and the state of the full-empty bit. Exceptional cases such as failed syn­

chronizations can be identified using this trapping mechanism and then processed in 

a software trap handler. This approach provides extremely efficient support for suc­

cessful synchronization operations since successful synchronizations proceed as nor­

mal load/store instructions. Failed synchronizations, however, are relegated to slower 

software trap handlers and thus incur a high latency. The philosophy driving this 

approach is that successful synchronization operations will be the common case when 

using fine-grain synchronization. 

Towards the end of the next chapter, this thesis will compare the importance 

of cycle efficiency and memory efficiency against the benefit of increased parallelism 

offered by language-level support. 
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Chapter 6 

Results 

This chapter presents the experimental results obtained on the MICCG3D applica­

tion. The results fall under two categories. The first set of results compares the per­

formance between the coarse-grain and fine-grain MICCG3D implementations. Not 

only will the simulation data quantifying the performance difference be presented, 

but there will also be discussion on how these results will change as problem size and 

machine size are scaled beyond what can be simulated. The second set of results 

investigates the performance gains observed for the fine-grain implementation and 

tries to explain what is responsible for these performance gains. In particular, what 

is the impact of memory and cycle efficiency on the performance of the application? 

6.1 Comparing the Coarse-Grain and Fine-Grain 

Implementations 

Simulation results were obtained for both the coarse-grain and fine-grain implemen­

tations on 1, 4, and 16 processor Alewife configurations. A problem size of 16x16x16 

was used. 
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Figure 6.1: Coarse-grain and fine-grain speedups on MICCG3D. Problem Size 
16x16x16. 

6.1.1 Speedup Results 

Figure 6.1 shows the speedups observed on the Alewife simulator for the coarse-grain 

and fine-grain MICCG3D implementations. Notice that the fine-grain implementation 

does consistently better than the coarse-grain implementation. The difference in 

performance can be predominantly attributed to the solver operation. 

To graphically show the performance difference between the two implementations 

in the solver operation, a synchronization trace of the solver operation in both the 

coarse-grain and fine-grain implementations was recorded. These traces appear in 

Figures 6.2 and 6.3 respectively. 16 processors are shown executing the solver on a 

16x16x16 problem size. 

In both traces, the signature of the wavefront computation in first the backward 

substitution step and then the forward substitution step is visible. Black bars repre­

sent useful work and the interspersed white space signifies waiting for synchronization. 

In the fine-grain trace, failed J-structure references (which are referred to as "JREF 

misses") are traced by a cross appearing above the barline of the processor that ex-
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Figure 6.2: Coarse-grain barrier trace in the solver operation of MICCG3D. Problem 
size = 16x16x16. Barlines show useful work. White space shows waiting for barrier 
synchronization. 
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Figure 6.3: Fine-grain JREF trace in the solver operation of MICCG3D. Problem 
size= 16x16xl6. Barlines show useful work. White space shows waiting for synchro­
nization. Crosses show JREF misses. 
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perienced the event. After every JREF miss, processors idle until the desired value 

is filled by its producer. Comparing the amount of idle time (white space) in each 

trace, one can see that the coarse-grain implementation is waiting much more than 

the fine-grain implementation. Although both traces have been sized for clarity, no­

tice that the coarse-grain trace is approximately four times longer than the fine-grain 

trace. 

As was described in Section 3.2 of Chapter 3, there is no axis along which a 

partitioning of the wavefront computation can avoid heavy dependencies across the 

partitions. Since the high cost of barrier synchronization forbids synchronizing on 

every one of these dependencies, the coarse-grain implementation must group several 

of them together and synchronize once for the entire group. This requires that the 

computations associated with several dependencies be sequenced in such a way that 

dependencies are enforced. Thus, the processors must wait unnecessarily; this waiting 

is most visible at the beginning and end of the two wavefront steps in the coarse-grain 

implementation. 

In contrast, one can see in the fine-grain implementation that almost immediately, 

all 16 processors start doing useful work; idling occurs only when the parallelism is 

limited at the beginning and the end of the two wavefront steps. No waiting for artifi­

cial dependencies occurs. In addition, the amount of waiting at each barrier is greater 

than the amount of waiting at each JREF miss. This is a reflection of the fact that 

the barrier is doing global communication whereas each fine-grain synchronization 

operation is not. 

Table 6.1 indicates where performance is being lost by showing a cycle breakdown 

of the 16x16x16 problem size simulation for both implementations. There are three 

sources of overhead: waiting for the memory system labeled "cache", waiting for 

JREFs labeled "JREF", and waiting at barriers. Barrier overhead is further split 

into two components. The first, "Bar Time," is the number of cycles from when the 

last thread enters the barrier until the last thread leaves the barrier. The second 
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Coarse-Grain MICCG3D. 
Processors Total Cache JREF Bar Time Bar Skew 

1 6943004 568540 N/A 17921 0 
8.19% 0.258% 0.0% 

4 2769725 85157 N/A 73799 946855 
3.07% 2.66% 34.19% 

16 2428515 179888 N/A 945195 735474 
7.41% 38.92% 30.28% 

Fine-Grain MICCG3D. 
Processors Total Cache JREF Bar Time Bar Skew 

1 6831696 472287 0 1270 0 
6.91% 0.0% 0.019% 0.0% 

4 2328728 305456 111627 11636 57288 
13.12% 4.79% 0.503 2.46% 

16 662230 65929 36301 12496 68996 
9.96% 11.55% 1.89% 10.42% 

Table 6.1: Cycle breakdown for simulations. Raw numbers are in the units of cy­
cles. Percentages of total execution for each overhead appears below overhead value. 
Problem size= 16x16x16. 

is "Bar Skew" which is the number of cycles from when the first thread arrives at 

the barrier until the last thread arrives at the barrier. "Bar Time" is a measure of 

the cost of the barrier operation after all threads have arrived, and "Bar Skew" is a 

measure of skew in the runtimes of the threads. Both are totals across all barriers. 

In Sections 6.1.2, 6.1.3, and 6.1.4, each of these sources of overhead is discussed 

and their impact is described. In particular, attention is given to how they behave as 

problem size and machine size are increased beyond what can be simulated. Then, 

in Section 6.2, the different components of support for fine-grain synchronization 

discussed in Chapters 2 and 5 are considered, and their impact on the performance 

of the fine-grain version of MICCG3D is explored in order to better understand the 

source of the fine-grain implementation's performance advantage. 
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6.1.2 Memory System Overhead 

The overhead of the memory system l.s consistently one of the smallest overheads in 

Table 6.1, and the effect of the memory system will be even less at larger problem 

sizes. In the coarse-grain implementation, the number of remote accesses will stay 

constant and the number of local accesses will increase as the problem size is increased. 

Thus, for realistic problem sizes, the fraction of remote memory accesses will tend 

to zero. In the fine-grain implementation, a new J-structure is allocated on each 

iteration thereby bypassing the need to reset the J-structure in between iterations. 

This results in no data reuse. In a real implementation, J-structures will be reset 

between iterations and reused thus giving rise to better cache performance. One 

important observation is the cache wait time for the fine-grain implementation will 

typically be higher than the coarse-grain implementation simply because there are 

so many more remote data accesses that must be made in the sparse matrix-vector 

multiply and the solver operations of the fine-grain implementation. 

Communication of data in the coarse-grain and fine-grain implementations of 

MICCG3D is an easy problem for the following two reasons. First, the commu­

nication patterns are static and are thus known completely at compile-time. This 

means optimal partitioning can be found with relative ease. Although the idea has 

not been investigated, it is expected that very naive prefetching will be successful at 

eliminating almost all memory system latency. This should make the fact that the 

fine-grain implementation has more remote-accesses insignificant. Second, there is 

good physical locality. Most accesses are local, and the communication that needs to 

occur is always confined to near-neighbor processors. As problem size and machine 

size grow, this means that the cost of communication will not grow. 

6.1.3 Controlling J-Structure Synchronization Overhead 

Accessing a J-structure location incurs an overhead in the fine-grain implementation 

whenever a consumer tries to read a J-structure location not yet filled by its pro-

47 



ducer. For the vector update and inner product operations, processors consume only 

those values which they produce in previous vector operations, so JREF misses do not 

occur in these two operations. In the sparse matrix"vector multiply operation, proces­

sors occasionally consume values produced by near-neighbor processors in a previous 

vector operation. Theoretically, JREF misses can occur here; however, these misses 

are infrequent because a consumer thread would have to be at least an entire vector 

operation ahead of the producer thread upon which it depends. This case is unlikely. 

The only JREF misses that have been observed occur in the solver operation. 

In the fine-grain implementation of the solver, processor Pi consumes values pro­

duced by processor Pi-I· It is expected that the number of JREF misses is related to 

how far producers and consumers are apart in their computations. If producers are 

well ahead of their consumers, then very few JREF misses will occur. If, however, val­

ues are consumed immediately after they are produced, then there is a much greater 

chance of JREF misses. A graphical analogy can be visualized by recalling Figure 3.2. 

A low JREF miss rate would correspond to a wavefront that is almost parallel to the 

x-y plane, whereas a high JREF miss rate would result from a wavefront that has a 

steeper inclination. The significance of this observation is that JREF miss rate is not 

dependent on the problem size; rather, it depends only on the relative computational 

progress that each processor has made with respect to one another. 

Using Backoff 

The intuition that JREF miss rate is not dependent on problem size is supported 

by the simulation results reported in Figures 6.4 and 6.5. Simulations were run on 

4 and 16 processors while varying the problem size, and the JREF miss rates were 

recorded under two different failed synchronization policies which are called spinning 

and backoff. 

When spinning on a JREF miss, the processor waiting for the JREF continually 

spins on the missing value. Once the value gets filled by the producer, the consumer 
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Figure 6.4: JREF miss rate as a function of problem size on the Spinning synchro­
nization failure policy. 
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Figure 6.5: JREF miss rate as a function of problem size on the Backoff synchroniza­
tion failure policy. 
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immediately reads it and continues computing. This policy will result in a steeper 

wavefront since it allows consumers to consume values very close to when they are 

produced. In the backoff policy, whenever a processor encounters a failed JREF, it 

idles for some number of cycles before retrying the read. Backoff allows the producer 

to make computational progress ahead of the consumer and thus results in a wavefront 

with a smaller inclination to the x-y plane. 

Figures 6.4 and 6.5 verify that backoff achieves a dramatically lower JREF miss 

rate and also confirms that for non-trivial problem sizes, the miss rate is constant 

with respect to problem size. 

False Sharing 

Although the results reported above seem to make intuitive sense, the real benefit of 

backoff is not obvious. In actuality, the total time spent waiting for JREF misses is 

higher in the backoff case than it is in the spinning case. This is because with backoff, 

each JREF miss takes much more time to service than with spinning and more than 

makes up for the reduction in JREF miss rate. To show this, the number of cycles 

spent waiting for JREF misses for each datapoint in Figures 6.4 and 6.5 is plotted 

in Figures 6.6 and 6. 7. Notice that for both the 4 and 16 processor simulations, 

the actual waiting time is always higher when backoff is used as compared to when 

spinning is used. 

However, backoff does better overall because it reduces false sharing. In the fine­

grain implementation of MICCG3D, four J-structure locations fit into each cache line. 

Even if a value that a consumer reads has been filled, the other values belonging to 

the same cache line may not. If a consumer has a read copy of a cache line containing 

J-structure elements yet to be filled, the producer will have to send an invalidate 

to the consumer to retain write permission on the cache line. Then, the consumer 

will take a cache miss when it tries to read subsequent values on that cache line. 

This ping-pong effect due to false sharing can happen up to four times per cache line 
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Figure 6.6: Waiting time on JREF misses as a function of problem size on the Spinning 
synchronization failure policy. 
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Figure 6.8: The Effect of Backoff on False Sharing. 

and can significantly degrade performance. The real benefit of backoff is to hold the 

waiting processor long enough for the producer to fill at least one cache line. When 

the consumer comes out of the backoff and retries the JREF, not only will it find that 

the value it was waiting for has been filled, but it will also have prefetched an entire 

cache line of filled values for subsequent computation. 

This effect of backoff is quantized in Figure 6.8. Here, the five largest problem 

sizes in Figures 6.4 and 6.5 simulated using 16 processors have been chosen and the 

amount of waiting due to the memory system and synchronization under both the 

spinning and backoff policies are shown in a bar graph. Each pair of bars has been 

separately normalized against the backoff overhead in the pair. The normalizing 

constant that is used for each pair appears in a label directly above the pair. The 

label is in the units of thousands of cycles. Notice that for all the simulations, the 

spinning policy actually has a lower JREF wait component but has a much higher 

cache wait component due to false sharing. As a result, the backoff policy consistently 

has the lower overall overhead. 
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6.1.4 Barrier Overhead 

Some of the barrier overhead in Table 6.1 is attributed to synchronization between 

vector operations. Large amounts of computation separate these barriers, and as 

problem size is increased, their overhead becomes insignificant. Since this is the only 

way barriers are used in the fine-grain implementation (for the accumulate in the 

inner product operations), it is not expected that barrier overhead will be a problem 

there. 

The more serious barrier overhead appears in the coarse-grain implementation of 

the solver where barriers are used to enforce the dependencies caused by the recurrence 

relations. To better understand how this overhead effects performance as a function 

of problem size and machine size, the theoretical speedup in the coarse-grain solver 

operation, equation 4.1, is rederived below to include barrier overhead. Ignoring 

communication costs, the time to execute the solver in parallel is 

Tseq 
Tpar = -

5
-- + BnB 
upper 

(6.1) 

Tpar is the parallel execution time, Tseq is the sequential execution time, Supper is the 

theoretical solver speedup, Bis the average cost of a barrier synchronization (includes 

skew in the runtimes of threads), and nB is the number of barriers encountered. Using 

equation 4.1, and recalling from Section 4.1 that nB = k+P-l, equation 6.1 becomes 

T. = Tseq ( k + P - 1) + B( k + p _ l) 
par kP (6.2) 

The solver speedup including barrier overhead S( k, P) = Tseq/Tpar is 

S(k, P) = 
Tseq(~tP-1) + B(k + p _ 1) 

( 
kP ) ( Tseq ) 

k + P - 1 Tseq + Bk P 
(6.3) 

From Figure 4.1, it can be seen that the run-length between barriers is proportional to 

a single block of computation. Defining this run-length as ri, it is possible to express 
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Tseq as Tseq = r1kP since there are kP blocks in total. Therefore, equation 6.3 can be 

rewritten as 

(6.4) 

Equation 6.4 expresses the speedup with barrier overhead as the product of the ideal 

theoretical solver speedup and the overhead of a barrier operation in comparison to 

the average run-length between barriers. Notice that both these terms cannot be 

optimized simultaneously. Making k large increases the theoretical speedup term; 

however, it reduces the run-length between barriers, r1, which makes the barrier over­

head B more significant in the denominator of equation 6.4. Conversely, decreasing 

k helps the overhead term but lowers the theoretical speedup term. 

Projecting Barrier Overhead for Large Problem Sizes 

To understand how the overhead term behaves for large problem sizes, one block of 

computation in the solver (one barrier step) on a 16 processor Alewife machine was 

simulated and the barrier overhead was observed. Observing the behavior for a single 

block of computation is equivalent to looking at the behavior for a problem size that is 

a factor kP larger since there are kP blocks in the solver operation (see Section 4.1). 

For a decent theoretical speedup, k needs to be O(P); therefore, these simulations 

predict the barrier o_verhead for problems approximately P 2 times larger. Even for 

modest machine sizes, simulating the largest feasible block size is in fact equivalent 

to looking at fairly large problem sizes. 

The result of this experiment appears in Figure 6.9. Various block sizes were run, 

and the barrier operation cost (appearing as "BAR TIME") and the average skew in 

the runtimes of threads (appearing as "BAR SKEW") was recorded. Since the cost 

of a barrier operation depends only on the number of processors, it is constant with 

respect to problem size. Furthermore, its overhead is significant only at the smallest 

problem sizes. Skew in the runtimes of threads, however, is a significant source of 

overhead even at the largest block sizes simulated. Therefore, even for large problem 
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Figure 6.9: Barrier overhead as a function of problem size. 

sizes, synchronization overhead due to barriers will remain significant. 

6.2 Evaluating the Support for Fine-Grain Syn-

chronization 

The results thus far indicate that an implementation of MICCG3D that uses fine­

grain synchronization performs better than an implementation that uses coarse-grain 

synchronization. This thesis will now investigate what contributes to this difference 

in performance. In particular, what is the impact of cycle efficiency and memory 

efficiency provided by the Alewife implementation of fine-grain synchronization (dis­

cussed in Chapters 2 and 5)? 

6.2.1 The Effect of Cycle Efficiency 

To understand the effect of cycle efficiency, a 16xl6x16 problem size on 4 and 16 

processors was simulated, varying the cost of a successful JREF between 1 cycle and 
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21 cycles. This was accomplished by introducing a variable number of stall cycles in 

the simulator immediately before each JREF. The results of these simulations appear 

in Figures 6.10 and 6.11 which show the effect on the solver operation in isolation 

and on one entire MICCG3D iteration respectively. As one can see, increasing the 

cost of a successful JREF does not dramatically impact overall runtime. The cost of 

a successful JREF is simulated out to 21 cycles only to show extreme effects. Any 

realistic JREF implementation should cost less than 10 cycles. 

The degree to which performance will be affected depends on the frequency of 

JREFs. The more frequent JREFs are, the greater the effect increasing successful 

JREF cost will have. For MICCG3D on 16 processors, an average JREF frequency 

of approximately one J-structure reference every 80 cycles has been observed. 

The frequency of JREFs is determined by three factors: the amount of computa­

tion between JREFs, the number of memory transactions between JREFs for both 

local and remote data, and the amount of waiting associated with failed synchroniza­

tion attempts between JREFs. For this particular application, computation between 

JREFs is minimal, but for each JREF, at least one remote data value needs to be 

fetched; this cost is significant. Waiting on failed synchronization attempts can also 

lower the JREF rate significantly. This is why the 4 processor simulation is affected 

by a higher successful JREF cost more than the 16 processor simulation. The 4 pro­

cessor case, with fewer synchronization failures, exhibits a much higher JREF rate 

than the 16 processor case. It is expected that greater synchronization failure rates 

will be a trend as machine size grows; therefore, on larger machines, it will be more 

difficult to sustain high JREF rates. 

6.2.2 The Effect of Memory Efficiency 

The effect of memory efficiency can be measured by implementing J-structures with 

explicit synchronization variables for each J-structure element instead of using the 

full-empty bits. This doubles the memory requirement and forces two memory trans-
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Figure 6.10: Effect of increasing successful JREF cost in the solver operation. Prob­
lem size = 16x16x16. 
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actions to occur for each JREF. This modification was performed on the solver op­

eration and the resulting performance was compared with the original hardware im­

plementation of J-structures in simulations of 4 and 16 processors on 16x16x16 and 

32x32x32 problem sizes each. The results of this experiment appear in Figures 6.12 

and 6.13. 

In Figure 6.12, execution times are compared. For each machine size and problem 

size, there is a group of three bars. The "H" bar (for Hardware) uses the Alewife 

support for J-structures. The "Sl" bar (for Software I) uses explicit synchronization 

variables for each J-structure element, and "82" (for Software2) uses the same J­

structure implementation as "Sl" except the cache size has been doubled from 64 

KBytes to 128 KBytes. All three bars in the group have been normalized against the 

"H" execution time; the normalizing factor in raw cycles appears directly above each 

group (the uni ts are in thousands of cycles). 

The software version consistently runs about 35% slower. The 16x16x16 problem 

size with 16 processors does a bit worse than 35% which will be explained shortly. 

Notice that doubling the cache size does not help, indicating that the difference in 

performance is not due to cache pollution from the extra synchronization variables in 

the software version. This is expected because in MICCG3D, the producer-consumer 

computation exhibits very little data reuse. In fact, all cache misses to J-structures 

are cold start misses. 

In Figure 6.13, the synchronization and cache overhead components for each of the 

simulations appearing in Figure 6.12 are shown. Again, times have been normalized 

against the hardware time in each group of three, and the normalizing factor appears 

over each group. Notice that cache overhead is significantly higher in the software 

versions. In general, the JREF overhead for the software versions goes up as well. 

This is because in order for the backoff mechanism to be effective for the software 

implementations, the backoff time needs to be increased. This change in JREF over­

head is most pronounced in the 16 processor, 16xl6x16 problem size simulation. In 
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this simulation, because of the relatively small problem size for the relatively large 

machine size, total execution time is very short. This means the JREF overhead is 

dominated by the JREF misses which occur at the beginning and end of the forward 

and back substitution steps. In these phases of the solver step, JREF misses are fre­

quent, so the increase in backoff time for the software implementation has a significant 

impact on total JREF overhead. For more realistic problem sizes, this "JREF cold 

start" effect will not be significant and instead, a "steady state" JREF miss frequency 

will be observed. This trend is already visible in the 4 processor 32x32x32 simulation. 

Since the JREF miss rate is independent of problem size (shown in Section 6.1.3), the 

asymptotic overhead for real problem sizes will be dominated by the cache overhead. 

All of the above data is from the solver operation only. To see how much these 

results vary for the entire application, the exact experiments were run on one full 

iteration of the MICCG3D application. The data from these simulations appear in 

Figures 6.14 and 6.15. Unfortunately, the 32x32x32 problem size proved to be too 

large to simulate. 

Generally, the same trends that were observed in Figures 6.12 and 6.13 are re­

flected in the data for the entire MICGG3D iteration. The main discrepency is that 

a greater difference in performance (about 45%-50%) between the software and hard­

ware implementations of J-structures is observed. The explanation for this occurrence 

is as follows. In the vector operations other than the solver, processors need not fetch 

data belonging to other processors. In this case, a much higher JREF rate can be 

achieved because there are no non-local cache misses and no synchronization failures. 

Thus, the memory efficiency benefit becomes increasingly important. 

6.2.3 Interpreting the Fine-Grain Performance Gains 

The previous discussion examined in detail the importance of the different components 

of support for fine-grain synchronization. In this section, a coherent argument is made 

using data from the previous discussion to convey the fundamental source of the fine-
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Figure 6.16: Benefits of the fine-grain implementation added incrementally. 

grain implementation's performance advantage. 

To do this, data is compiled from earlier parts of the thesis to show the increase in 

performance as the components of support for fine-grain synchronization are added 

incrementally. Figure 6.16 shows compiled data for 4 and 16 processor machine config­

urations of normalized execution times on the 16x16x16 problem size of MICCG3D. 

In each set, Bar I shows the performance of MICCG3D implemented with coarse­

grain barriers. Bar II shows the performance when J-structures are implemented 

without support for cycle efficiency and memory efficiency. Bar III shows the per­

formance when memory efficiency is provided through the use of full-empty bits on 

J-structures that can be successfully accessed in 5 cycles. Bar IV shows the final 

addition of cycle efficiency by allowing single cycle successful access to J-structures 

with full-empty bits (i.e., full Alewife support for fine-grain synchronization). 

The cycle efficiency benefit provided by fast operations on full-empty bits gives 

little performance gain in both cases. The memory efficiency benefit of using full­

empty bits provides a more significant gain of about 35% in the solver operation and 

45% in an entire iteration of MICCG3D. But the largest gain in performance comes 
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from the increase in parallelism due to the expressivity of fine-grain synchronization. 

This is especially true on the larger machine configuration because with more proces­

sors, extracting the most parallelism out of the application is more crucial for good 

performance. 

It is important to reflect here that 16 processors is a very modest machine size. 

With a more ambitious number of processors, it is expected that the sharp difference 

in performance gains observed for the 16 processor machine will be even more pro­

nounced. Although the difference in performance gains is not as dramatic in the 4 

processor machine, notice that even for a trivially small machine size, expressivity is 

still more important than cycle and memory efficiency. Also, the 4 processor data 

along with the 16 processor data show that expressivity becomes increasingly impor­

tant in comparison with memory and cycle efficiency as machine size increases. This 

is in agreement with what is expected. 

As was discussed in Section 6.2, the importance of memory and cycle efficiency 

ultimately depends on the frequency of JREFs. This is determined by the amount 

of computation, memory system latency, and synchronization failure latency between 

every JREF. In the context of the experimental environment used in this thesis, 

MICCG3D running on 16 processors sustained an average JREF rate of about 1 

JREF every 80 cycles. This sustained rate can be increased by optimizing for the 

overheads mentioned. More aggressive compiler optimizations can reduce the cost 

of the computation, prefetching can reduce the overhead of the memory system, 

and context switching can hide the latency of synchronization failures. With these 

optimizations, the cost of successful JREFs should become increasingly important 

and thus so will the benefits of memory and cycle efficiency. 
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Chapter 7 

Conclusion 

Previous application studies have dealt with problems which do not present a chal­

lenge for synchronization. To obtain a better understanding of what the synchroniza­

tion needs of programmers will be, a more comprehensive look into how applications 

synchronize is needed. MICCG3D, a preconditioned conjugate gradient algorithm 

using the incomplete Cholesky factorization of the coefficient matrix as a precondi­

tioner, is an application for which synchronization is a challenging problem. It is an 

important application having received much attention in previous work, and it repre­

sents a larger class of preconditioned iterative methods which have traditionally been 

hard to parallelize. By implementing MICCG3D using both a coarse-grain and fine­

grain approach, this thesis shows that the application benefits greatly from fine-grain 

synchronization. 

Due to the recurrence relations m the solver operation, the dependencies that 

arise in MICCG3D are complex. Consequently, there is no partition of the problem 

that avoids frequent synchronization. By allowing synchronization at the data-level, 

fine-grain synchronization provides the expressive power to enforce all the depen­

dencies without introducing significant overhead or sacrificing parallelism. Because 

coarse-grain synchronization lacks the ability to synchronize at all the dependencies, 

it must group synchronization points together. Synchronizing at a coarse granularity 
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sacrifices much of the available parallelism by introducing false dependencies. These 

false dependencies degrade performance since skew in the runtimes of threads results 

in unnecessary waiting at the barriers. 

7.1 MICCG3D Attains Better Performance with 

Fine-Grain Synchronization 

In problem sizes that were simulated, the implementation using fine-grain synchro­

nization executed 3. 7 times faster than the coarse-grain implementation on a 16 pro­

cessor Alewife machine. Since JREF overhead does not depend on problem size, the 

fine-grain version should maintain its performance as problem size is scaled. If the 

coarse-grain implementation is to have any hope of achieving comparable performance 

at large problem sizes, the run-lengths between barrier points must increase enough 

to make the overhead of the barriers less significant. However, due to the nature of 

the dependencies and the fashion in which barriers can be used to enforce them, an 

increase in the problem size only affects an increase in run-length that is P 2 times 

smaller. Even for modest machine sizes and especially for large machines, run-lengths 

should be small enough on realistic problem sizes that barrier overhead will remain 

significant. Therefore, this thesis projects that the fine-grain implementation will 

sustain a significant performance advantage over the coarse-grain implementation at 

large problem sizes. 

7.2 Relative Importance of Components of Sup­

port for Fine-Grain Synchronization 

After evaluating the performance of MICCG3D implemented with both coarse-grain 

and fine-grain synchronization, the study in this thesis was extended to understand 

how fine-grain synchronization achieved its performance advantage. First, three com-
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ponents of support for fine-grain synchronization were identified and the benefits they 

provided for applications were enumerated: increased parallelism through expressiv­

ity, cycle efficiency, and memory efficiency. Next, the degree to which cycle efficiency 

and memory efficiency were responsible for the performance gains observed in the 

fine-grain implementation was ascertained. The conclusion of the thesis is that for 

the MICCG3D application, cycle efficiency has the least impact while memory effi­

ciency provides a consistent 35% to 45% increase in performance. But the single most 

important benefit for MICCG3D comes from the ability to express synchronization at 

a fine granularity. By employing optimizations to reduce the cost of the computation, 

memory system, and synchronization failures, the contribution of memory and cycle 

efficiency will become more significant, but in the absence of further evidence, it is 

the conclusion of this thesis that fine-grain expression of synchronization will remain 

the most important benefit. 

7.3 Directions for Future Work 

There are two major points that can potentially influence the conclusions of this thesis. 

The first is the issue of resetting of J-structures. It is a well-known fact [14] that part 

of the cost of J-Structures is in resetting them after they have been filled. This is 

a necessary operation if the J-structures are to be reused in future computations. 

In the fine-grain implementation used in this study, for simplicity, the J-structure 

resetting issue was bypassed by allocating enough J-structures during initialization 

such that each iteration has its own J-structure and thus there is no need to reset 

any of them. For real problem sizes and a realistic number of iterations, this will be 

infeasible from the standpoint of memory space. If J-structures have to be reset at 

each iteration point, it is possible that much of the performance gains in the fine-grain 

implementation will be loss to this operation. 

Although this effect isn't studied in this thesis, there are some comments to be 
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made in defense of the thesis' conclusions. First, the J-structure resetting operation is 

one that can be done easily in parallel. Second, each processor should only reset those 

elements that are local to that processor such that the high latency of interprocessor 

communication will not be incurred. Both of these considerations tend to lessen the 

cost of J-structure resetting. 

The other important point absent from this study is the investigation of the effect 

of latency tolerance techniques on the impact of memory and cycle efficiency. Recall 

from the discussion in Section 6.2.3 of Chapter 6 that the impact of memory and cycle 

efficiency depends on the frequency of JREFs. For the fine-grain implementation of 

the MICCG3D application, an average of one JREF every 80 cycles was observed, 

a relatively low JREF rate. This rate was difficult to increase because of the high 

latencies of remote memory requests and synchronization failures. If prefetching 

(which should be pretty easy to perform given the regularity of the access patterns 

in MICCG3D) is employed to lower the effective latencies of the memory system, 

and context switching is employed to address synchronization latencies, the JREF 

frequency will increase and the impact of memory and cycle efficiency will become 

greater. By how much this impact will increase needs to be quantified through further 

simulation. 

Aside from these two major points, one minor detail left out of this thesis is the 

issue of effective backoff techniques. Recall in Section 6.1.3 of Chapter 6 that backoff 

was employed on failed JREF synchronizations in order to alleviate the problem of 

false sharing in the fine-grain implementation. The amount of backoff is a parameter 

which can significantly influence performance. Too little backoff will fail to remove 

the false sharing problem, and too much backoff will result in unnecessary processor 

idling. For the purposes of this thesis, through trial and error, this backoff parameter 

was chosen such that it would be optimal for this particular application. In reality, 

what would be needed is some sort of adaptive backoff approach [16) which would 

converge on the optimal (or near-optimal) value after some startup time. It would be 
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