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Abstract

We describe a replicating garbage collector for a persistent
heap. The garbage collector cooperates with a transaction
manager to provide safe and efficient transactional storage
management. Clients read and write the heap in primary
memory and can commit or abort their write operations.
When write operations are committed they are preserved in
stable storage and survive system failures. Clients can freely
access the heap during garbage collection because the collec-
tor concurrently builds a compact replica of the heap. A log
captures client write operations and is used to support both
the transaction manager and the replicating garbage collector.

Our implementation is the first to provide concurrent and
compacting garbage collection of a persistent heap. Measure-
ments show that concurrent replicating collection produces
significantly shorter pause times than stop-and-copy collec-
tion. For small transactions, throughput is limited by the log-
ging bandwidth of the underlying log manager. The results
suggest that replicating garbage collection offers a flexible
and efficient way to provide automatic storage management
in transaction systems, object-oriented databases and persis-
tent programming environments.
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Figure 1: The Transactional Heap Interface

1 Introduction

Operating systems, persistent programming environments,
and object repositories must store dynamically allocated per-
sistent data structures. Unfortunately, using explicit deallo-
cation to manage these data structures can easily cause catas-
trophic system failures due to the effects of dangling pointers
and storage leaks. To address these problems, we have de-
signed a storage management system that uses concurrent
replicating garbage collection to provide safe and efficient
automatic storage management for persistent data.

Traditionally, operating systems have used explicit deallo-
cation and reference counting to manage persistent storage.
Explicit deallocation can result in dangling pointers and stor-
age leaks. Reference counting can be expensive and results
in storage leaks because it does not recover cyclic structures.
We believe that these risks are unacceptable when storing
data that is so valuable that it must survive system failures.

Permanent data storage management should meet the much
higher safety standard achieved by tracing garbage collection.
Modern garbage collectors are very efficient and can often
be competitive with explicit deallocation [23]. However,
existing garbage collectors are not practical for use in systems
applications. Existing implementations either stop the client
while garbage collecting or do not maintain a heap image that
is resilient to system failure.

We have designed and implemented the first concurrent
compacting garbage collector for a persistent heap. Clients
are permitted to read and write the heap while the collector



concurrently replicates objects to create a new stable heap.
Clients are free to modify objects that have already been
copied because the modifications are recorded in a log. The
log is used by the collector to ensure that the new stable heap
contains all pertinent data before it is used to replace the
old stable heap. The log is processed concurrently, reducing
garbage collection interruptions imposed on the clients to
brief synchronization pauses.

There are several important advantages that derive from
using concurrent replicating collection in a transactional sys-
tem:

� The garbage collector is simple and easy to implement.

� Transaction processing and garbage collection opera-
tions are decoupled so that collector activity need not
affect transaction throughput or commit latencies.

� A single log is shared by the transaction manager and
the garbage collector.

In practice, our implementation provides clients more re-
sponsive access to the heap than does a stop-and-copy col-
lector. Concurrent replicating collection eliminates lengthy
interruptions caused by garbage collection. The implemen-
tation supports transactions, recovers from system failures,
and provides good performance. Transaction throughput for
simple small transactions can easily exceed 70 transactions
per second. In this case the transaction manager is limited by
the bandwidth of the underlying stable storage log manager.
We believe that our design offers a practical approach to stor-
age management in persistent programming environments,
object repositories, and similar applications.

The focus of this paper is on how a garbage-collected
persistent heap can be implemented with complete safety
and good performance. The remaining sections describe our
system interface (Section 2), present the design of the storage
system in detail (Section 3), present an implementation of
our design (Section 4), summarize our experimental results
with the implementation (Section 5), discuss related work
(Section 6), and discuss elaborations and applications of the
basic algorithm (Section 7).

2 Interface

Our interface provides basic heap operations, transaction op-
erations, and two distinguished roots. The complete interface
is shown in Figure 1. The basic heap operations are read,
write and allocate. The transaction operations are commit
and abort.

The transitory and persistent roots are distinguished and
available to the clients. No deallocation operation is exposed
to the clients. Instead, objects that the clients can access by
dereferencing pointers starting from either root are consid-
ered live and will be preserved by the system. A garbage
collector will identify unreachable objects and recycle their
storage.

Our interface provides orthogonal persistence [4]: objects
that are reachable via the persistent root are guaranteed to
survive system failures. In Figure 1, the stability of the per-
sistent root and the stable heap to which it points are indicated
by their gray background. In contrast, objects reachable only
via the transitory root are not available after a failure; the
transitory root is reset when the system recovers from a fail-
ure. Clients can use the transitory root to maintain access to
temporary objects without requiring that the system ensure
the persistence of those objects.

Our interface also includes the ability for multiple clients
to perform transactions on the heap by using the commit
and abort operations. The transaction manager is responsible
for tracking modifications to objects and implementing the
transaction semantics implied by commit and abort. Sup-
port for multiple clients, multithreaded clients, and nested
transactions can be provided by appropriate choice of the
transaction manager.

The exact transaction semantics supported by the transac-
tion manager are not of primary concern in this paper. In
considering the design of our system, we will assume that
the complexities of multiple clients and multiple transactions
are completely hidden from the rest of the system by the
transaction manager. We describe the system as if it contains
only a single client that performs a linear sequence of top-
level transactions. Every modification to an object is part of
a transaction and each transaction can be either committed
or aborted. The heap must be restored to the most recently
committed state if a system failure occurs.

3 Design

Our design shows how the transactional heap interface can be
implemented efficiently. The interface specifies a high stan-
dard of programming safety and data stability. We provide
programming safety by using garbage collection and orthog-
onal persistence. Data stability is ensured through the use
of transactions and stable storage. Good performance comes
from caching stable data in volatile memory and from the
use of concurrent replicating collection. Using an extra pro-
cessor to perform concurrent replicating collection improves
throughput and provides the client with low-latency access
to the heap.

We will present the design of the storage manager as a
series of three refinements to a basic design. Each refinement
improves either the functionality or the performance of the
basic design:

� Basic Design: Replicating Collection of Stable Heaps.
Our basic design uses a replicating collector on sta-
ble spaces. Clients operate on stable from-space, and
the collector concurrently copies from-space into sta-
ble to-space. In this design each write is individually
committed and the client must access stable storage for
every read and write operation.
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Figure 2: Replicating Collection of a Stable Heap

� Refinement 1: Transactions Group Updates. Our first
refinement adds transactions to the basic design. Trans-
actions allow the client to perform a group of modifica-
tions atomically. The log required to support transac-
tions also serves as the log used by replicating garbage
collection.

� Refinement 2: Volatile Images Improve Performance.
Our second refinement adds volatile main-memory im-
ages of from-space and to-space to improve the per-
formance of the client and the collector. Committed
from-space operations must be recovered upon failure.
Thus it is necessary for the transaction manager to en-
sure that all committed operations are recorded in stable
from-space.

� Refinement 3: Transitory Heaps for Temporary Data.
Our third and final refinement adds a transitory heap.
All objects are initially allocated in the transitory heap,
and are automatically promoted to the persistent heap
when they are made reachable from the persistent root.
The transitory heap is garbage collected with respect to
the transitory root and is not recovered after a failure.

3.1 Replicating Collection of Stable Heaps

As shown in Figure 2, using stable storage and replicating
collection for the persistent heap provides an interface that
lacks only transaction support. In this design each write op-
eration is individually committed and becomes permanent as
soon as it is performed. Good performance can be achieved
by using battery-protected random access memory to imple-
ment high speed stable storage. While the client operates on
the heap, a replicating garbage collector concurrently builds
a compact replica of it.

Replicating garbage collection [16] is a new technique for
building incremental and concurrent garbage collectors. The
key idea of replicating garbage collection is to copy objects
non-destructively. As in any copying garbage collection al-
gorithm, the collector copies the reachable objects from the
from-space to the to-space. However, most copying collec-
tors destroy the original object when it is copied because the
contents of the object are overwritten by relocation informa-
tion containing its new address.
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Figure 3: A Transactional Heap

In contrast, a replicating collector avoids destroying the
contents of the original object. This can be accomplished
by storing the relocation information about the object in a re-
served portion of the object or elsewhere. The effects of repli-
cation are unobservable by the client, so it continues to oper-
ate on the original objects in from-space. This differs from
other concurrent compacting collection algorithms, which
require the client to operate on objects in to-space [5, 3].

Because the client and the collector execute concurrently,
the replicas become inconsistent when the client modifies the
original objects. To solve this problem, the client records
all write operations in a redo log, shown in Figure 2. The
collector processes the log to ensure that all replicas are
consistent. When to-space contains an exact replica of the
entire object graph, the collector flips, updating the client’s
roots to refer to the replicas and exchanging the roles of
to-space and from-space.

After a failure the client can be immediately restarted on
stable from-space without any recovery processing. The
stable nature of from-space guarantees it will survive fail-
ures. After a crash all that is necessary is to locate the stable
from-space in memory. Because from-space and to-space
exchange roles when the garbage collector flips, the garbage
collector must store a from-space identifier to indicate which
of the two stable spaces is the current from-space. The flip
occurs when this identifier is updated atomically.

The garbage collector can be resumed after a failure if
sufficient state is recorded in stable storage. If the collector
is to be recoverable, the redo log and the relocation infor-
mation containing the new address of each replicated object
must be in stable storage. These items will collectively be
called the garbage collector state. Alternatively the garbage
collector state can be kept in volatile storage and the garbage
collector can be restarted with an empty to-space upon fail-
ure. If failures are infrequent this option will result in better
performance.

3.2 Transactions Group Updates

Figure 3 shows how transactions can be added to the basic
design. In this model, each modification is part of a trans-
action and transactions can be independently committed or
aborted. All modifications are applied directly to from-space
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Figure 4: Using Volatile Images

and an undo log describing uncommitted modifications is
maintained. If a transaction aborts, all of its modifications
are undone by using the undo log. If a transaction commits,
then its modifications are atomically removed from the undo
log. An important advantage of using replicating collection
in a transactional setting is that the same undo log neces-
sary to support transactions can also be used by the collector
as a redo log. This minimizes the cost of using replicating
collection.

After a failure the client can be resumed on stable from-
space once the undo log is applied. Undoing the modifica-
tions in the undo log ensures that all uncommitted updates
are erased before the client resumes execution. The undo log
must be stored in stable storage so that it will survive failures
and be available for recovery processing after a failure. After
recovery the garbage collector can be resumed if the garbage
collector state has been preserved in stable storage.

3.3 Volatile Images Improve Performance

When slow stable storage media are used, forcing all oper-
ations to access stable storage will not provide acceptable
performance. Figure 4 shows how this problem can be ad-
dressed by caching images of the stable heaps in volatile
memory. In this design the client reads, writes, and allocates
in a volatile image of from-space. The garbage collector
reads the volatile from-space image and writes the volatile
to-space image.

When a transaction commits, its updates to volatile from-
space must be made stable. Upon commit the transaction
manager uses the redo log to identify portions of the volatile
from-space image that have been updated and writes these
modifications to stable from-space. It also writes any newly
allocated objects to stable from-space. Applying these up-
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Figure 5: Using a Transitory Heap

dates to stable from-space must be performed atomically in
order to guarantee a consistent version of stable from-space
in the presence of failures.

The garbage collector directly writes the volatile to-space
image and a background process copies the volatile to-space
image onto the slow stable storage media. Thus a slow stable
storage medium can be used for to-space without slowing the
garbage collector. A flip may occur when all live objects in
volatile from-space have been copied, the redo log is empty,
and volatile to-space has been completely copied to stable
to-space. The flip causes both stable and volatile from-space
to be replaced by their to-space counterparts.

However, the stable to-space may contain uncommitted
data because it is an exact copy of volatile to-space, which is
a replica of volatile from-space. To prevent this uncommitted
data from being used after a crash, the undo log is also written
to stable storage as part of the stable to-space. This allows any
uncommitted transaction to be rolled back during recovery.

After a failure the client can use the volatile from-space
image once it is recovered from stable from-space and the
undo log is applied. After recovery the garbage collector can
be resumed if its state has been preserved in stable storage.
Otherwise it is restarted with an empty volatile to-space.

3.4 Transitory Heaps for Temporary Data

Figure 5 shows how a transitory heap may be added to our
previous design. The persistent heap, shown in gray, rep-
resents the volatile and stable versions of from-space and
to-space from the previous design. This figure emphasizes
that the role of the transitory heap is to store objects that are
not reachable from the persistent root. The transitory heap
has its own root and is stored in volatile memory. All objects
are initially allocated in the transitory heap.



Upon commit the transaction manager uses the log to detect
objects in the transitory heap that have become persistent.
The log is used to locate modified objects in the persistent
heap that contain pointers to objects in the transitory heap.
These objects are newly persistent because they have become
reachable via the persistent root.

The modified objects are used as the roots of a stop-and-
copy collection that promotes the newly persistent objects
into the persistent heap. The promoted objects must be
written to stable storage along with any persistent objects
modified by the transaction.

It is also possible for persistent objects to become transi-
tory. This happens when objects in the persistent heap are
reachable from the transitory root but have become unreach-
able from the persistent root. Such objects are live but not
persistent. When these objects are discovered they may be
moved back into the transitory heap or left in the persistent
heap. We have chosen to leave these objects in the persistent
heap because it simplifies our implementation. After a failure
these objects are unreachable and will be reclaimed by the
next collection.

After a failure the client is restarted on the persistent heap
using the algorithm outlined in the previous section. During
recovery the transitory heap is initialized to be empty.

4 Implementation

Our prototype implementation provides concurrent compact-
ing garbage collection for Standard ML of New Jersey. We
added a persistent heap and a transaction manager to the
runtime system to support persistence. We re-implemented
the garbage collector as a concurrent thread using replicating
collection. The purpose of the prototype implementation was
to test the feasibility of our design.

Standard ML of New Jersey (SML/NJ) is an implementa-
tion of a type-safe programming language that includes an
optimizing compiler, a runtime system, and a generational
garbage collector [2]. The SML/NJ source code is freely
available and is easy to modify for experimental purposes.

We chose to test our garbage collection algorithm in
the SML/NJ environment primarily for reasons of conve-
nience. Our previous work on persistence [18] and replicat-
ing garbage collection [16, 17, 19] using ML provided us
with several of the components needed for our prototype.

The SML/NJ runtime system is similar to most language
implementations with copying garbage collection. We there-
fore believe that our results apply to languages such as
Modula-3, Lisp, Scheme, Smalltalk and, if suitably modi-
fied to enable copying garbage collection, C++.

Overview

An implementation of the basic design and its three refine-
ments requires a replicating collector, an undo/redo log, sta-
ble storage, and a transaction manager. Here is a summary
of how each of these components is implemented:

� The replicating garbage collector is implemented as in
our previous work, except that it runs as a separate thread
of control so that it provides concurrent collection. It
occasionally interrupts the client to obtain more up-to-
date roots and log entries. It also pauses the client in
order to perform a flip.

� The undo/redo log is written by the client. We modified
the SML/NJ compiler to emit instructions in the client
code that generate appropriate log entries for every write
operation. The original SML/NJ implementation in-
cluded a simpler log to support generational garbage
collection. We expanded the log to include undo infor-
mation about every write operation in order to support
transaction operations and replicating collection.

� The stable heaps are maintained on disk and their
volatile images are maintained in main memory. We
use Recoverable Virtual Memory to manage the stable
heaps on disk. RVM allows us to apply changes atom-
ically to the stable heap by writing the changes into
a stable log. After a failure, the RVM log is used to
recover the stable heap.

� The transaction manager in our current implementation
performs transaction commit by reading the log, mov-
ing objects from the transitory heap to the volatile heap
image, and logging the resulting changes to the stable
heap via RVM. The transitory heap is merely the sim-
ple generational heap present in the original SML/NJ
implementation.

In the sections that follow we discuss some choices we
faced when implementing our prototype. We then describe
the structure of the persistent heap and review the threads of
control used by our implementation. We then present the step
by step procedures used to implement the commit, collection,
flip and recovery operations.

4.1 The Transitory Heap

The transitory heap contains only temporary objects that will
be discarded when a failure occurs. It consists of the two gen-
erational heaps present in the original SML/NJ implementa-
tion. The details of the these transitory heaps are mostly
irrelevant to our persistent heap implementation.

However, when constructing our prototype we faced sev-
eral implementation choices that involved the transitory heap.
There are several situations in which pointers that cross be-
tween the transitory and the persistent heap may have to be
adjusted when objects are moved.



For example, when newly persistent objects are promoted
into the persistent heap, any other temporary objects that con-
tain pointers to them must be updated. Similar adjustments
may be required to either the transitory or the persistent heap
when the other heap is being flipped by the garbage collector.

In these situations, the implementation could use any one
of at least four different solutions:

1. Scan the heap that contains the pointers requiring ad-
justment.

2. Garbage collect the heap that contains the pointers re-
quiring adjustment.

3. Somehow track the locations of the pointers that require
adjustment so that they can be updated more quickly.

4. Use replication to move the objects, but refrain from
updating any pointers to the objects until some later
opportunity such as a flip.

In our implementation, pointers from the persistent heap to
the transitoryheap are always the result of uncommitted write
operations. They can be easily located via the transaction
log. Therefore, we use the third solution to update these
pointers when the transitory heap is garbage collected. To
deal with pointers in the other direction, we implemented
both of the first two methods: doing a scan and doing a
garbage collection.

4.2 Stable Storage

Our design assumes the ability to make multiple updates to
the stable heap atomically. To achieve this our implementa-
tion uses the Recoverable Virtual Memory system described
by Satyanarayanan, et al. [20] RVM provides simple non-
nested transactions on byte arrays and uses a disk-based log
for efficiency. We do not exploit the rollback features of
RVM at all; in our implementation, RVM provides only disk
logging and recovery services.

RVM allows us to establish a one-to-one correspondence
between a file and a portion of virtual memory. We use
separate files to store stable from-space and stable to-space.
These files also contain starting and ending addresses of the
spaces and the sequence number that serves as the stable
from-space identifier.

RVM defines a simple interface that allows changes to
the volatile heap to be atomically transferred to the stable
heap. During commit we begin an RVM transaction, inform
RVM of the location of each modification to the volatile heap
as well as of any newly persistent data, and then end the
transaction. RVM guarantees that this set of operations will
be atomic.

When a flip occurs the from-space identifier must be up-
dated to indicate which of the stable spaces is the stable
from-space. This update does not need to be made stable un-
til the next client transaction commit after the flip. When the

client first commits a transaction, that transaction will be ap-
plied to the new stable from-space. We write the from-space
identifier via RVM, but using a “no-flush” transaction that
does not require a synchronous disk write. Thus, although
the client is paused while the garbage collector finalizes the
flip and updates the roots, no synchronous disk write occurs
during this interruption.

4.3 Writing Stable To-space

Volatile to-space is written to stable to-space by an asyn-
chronous process. No writes that synchronize with the client
are required. Volatile to-space can be written directly to the
file containing stable to-space or indirectly via RVM.

During the garbage collection, large contiguous regions of
new data are created in volatile to-space. These regions can
be written directly to disk efficiently. Logging them through
RVM is less efficient because RVM first writes them into its
log and then later writes them again to the data file.

However, the garbage collector also performs small ran-
dom updates on volatile to-space when it uses the redo log
to update inconsistent to-space replicas. RVM is ideal for
applying these changes to stable to-space, because its use of
logging converts the small random writes into a single effi-
cient log write. Writing these changes to disk without using
a log is of course more expensive.

We tried writing stable to-space using several different
methods. We found that using RVM for all of the writes put
so much data into the RVM log that the client transaction flow
was substantially impeded. However, when we only wrote
stable to-space directly we found it difficult to schedule the
flip to avoid blocking while waiting for the last few disk
writes to complete.

Now our implementation uses a mixed strategy in which
the large contiguous writes are done directly to the file con-
taining stable to-space and the small random writes are done
using RVM.

4.4 The Persistent Heap

The persistent heap is maintained both in virtual memory and
on stable storage through the cooperation of the transaction
manager, the garbage collector and RVM. Figure 6 shows
the primary data structures used by the runtime system to
maintain and garbage collect the persistent heap:

� undo/redo log — This log is maintained by the client
and is used by both the transaction manager and the
collector. When the stable heap flips, the log is writ-
ten to stable storage to enable rollback of uncommitted
transactions.

� volatile from-space — The client accesses all persistent
data through volatile from-space. When a transaction
commits, all newly persistent objects are copied from
the transitory heap into volatile from-space.
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� volatile to-space — The garbage collector copies the
live objects in volatile from-space to volatile to-space.

� stable from-space — The stable representation of from-
space is stored on disk. Upon commit the newly persis-
tent objects and the new values of any modified locations
in volatile from-space are written to stable from-space
by the transaction manager using RVM.

� stable to-space — The stable representation of to-space
is stored on disk. It is a copy of volatile to-space and
must be written to disk before a flip.

� the RVM log — The stable log is maintained by RVM
on disk. The RVM log contains records that describe
modifications to stable from-space and stable to-space.
RVM updates this log atomically and uses it to recover
the contents of the stable spaces after a failure.

4.5 Threads of Control

The prototype contains three threads of control:

� The Client thread executes the application program
and periodically commits transactions by acting as the
Transaction Manager. The Client thread is responsible
for writing the undo/redo log. The Client thread also
traps into the runtime system when it must synchronize
with the garbage collector and perform a flip.

� The Collector thread performs replicating garbage col-
lection, copying reachable objects from the volatile
from-space into the volatile to-space. When the Col-
lector thread has constructed a complete replica of the
volatile from-space, it signals the Client thread that a
flip should take place.

� The Copy thread writes the contents of volatile to-space
onto the stable to-space, either directly to the disk or
via the RVM log manager. It performs I/O operations
on behalf of the garbage collector so that the Collector
thread need not block on I/O.

4.6 Operations on the Persistent Heap

Now we consider in detail the steps needed to perform the
key operations of our design.

Commit

When the Client thread commits a transaction, it acts as the
Transaction Manager and performs the following operations:

1. Scan the undo/redo log to locate references that created
pointers from the volatile from-space to transitory data.
These references are used to identify the roots of the
newly persistent data.

2. Promote all newly persistent objects into volatile from-
space, using a standard stop-and-copy garbage collec-
tion algorithm. This collection uses the locations iden-
tified in step 1 as roots.

3. Atomically update the stable from-space by logging and
committing an RVM transaction containing all modifi-
cations and additions to volatile from-space.

4. Update all of the transitory heap data to point to the
newly promoted objects in volatile from-space. This is
done either by scanning the transitory heap for point-
ers to promoted objects or by garbage collecting the
transitory heap.

Persistent GC

When a commit adds enough new data to the volatile from-
space to exceed a predetermined threshold, a garbage collec-
tion of the persistent heap is initiated. At this point the Col-
lector thread performs the following steps asynchronously
with respect to the Client thread:

1. Copy all objects in volatile from-space that are reachable
from the persistent root into volatile to-space. This
preserves the persistent data.

2. Copy all objects in volatile from-space that are reach-
able from the transitory heap into volatile to-space. This
preserves the objects that are live and have become tran-
sitory.

3. Scan the undo/redo log, and update replicas of modified
objects in the volatile to-space.

The undo/read log is reset to empty after its entries have
been processed by both the transaction manager and the



garbage collector. The transaction manager and the garbage
collector maintain separate pointers into the shared log to
keep track of what prefix of the log they have already pro-
cessed.

When a collection is in progress the Copy thread asyn-
chronously copies the volatile to-space image into stable to-
space. The Copy thread occasionally synchronizes with the
Collector thread to obtain information about what portions of
volatile to-space have been modified.

Persistent GC Flip

A flip is attempted after the Collector thread has success-
fully replicated volatile from-space in volatile to-space and
the Copy thread has copied it into stable to-space. Then the
Collector thread stops the Client thread and performs any
remaining collection work required by recent client opera-
tions. Finally, the Collector thread performs the following
steps before resuming the client:

1. Update the client’s roots to point to volatile to-space.

2. Update all pointers in the transitory heap that point to
volatile from-space to point to volatile to-space.

3. Write the stable from-space identifier via RVM to indi-
cate that stable to-space is now stable from-space.

The stable replicating collector must ensure that the
undo/redo log is preserved in stable storage at the time of
a flip. In the prototype, this is accomplished very simply
because the transaction manager stores the log in the volatile
from-space. Therefore, it is preserved in volatile to-space by
the Collector thread and written to stable storage by the Copy
thread.

The flip has occurred in volatile memory when these steps
are complete. The Collector thread does not write the stable
from-space identifier synchronously. Instead, it uses a no-
flush transaction that will update the from-space identifier
before any subsequent client transactions.

Recovery

When a crash occurs and the system restarts the following
steps are performed for recovery:

1. RVM applies pending committed log records from its
stable log to bring the stable from-space and stable to-
space files to their most recently committed state.

2. The garbage collector examines the stable from-space
identifier stored in the stable heaps to determine which
heap is the stable from-space.

3. The transaction manager uses the undo log stored in sta-
ble from-space to roll back the uncommitted operations
of any partially complete transactions. These changes
are made atomically using RVM.

The Client thread can now be restarted using the recov-
ered volatile from-space and an empty transitory heap. The
collector begins with an empty volatile to-space.

5 Performance

We designed and ran a series of experiments to test whether
our algorithm:

� significantly reduces the duration of collector pauses.

� increases transaction throughput by reducing storage
management overhead.

The experiments compare the implementation described in
the previous section to our implementation of a stop-and-
copy collector for the persistent heap. We are unable to
compare our work directly to other concurrent collector im-
plementations because they do not support the collection of
stable heaps.

Our experiments demonstrate that replicating collection
interferes with the client less than stop-and-copy collection.
For our collector, the longest pauses are a few hundred mil-
liseconds, the same general magnitude as commits. For heap
sizes in the megabyte range, the pause times achieved by
our technique are a factor of ten shorter than stop-and-copy
collection. For larger heaps, such as those found in a produc-
tion object database, the difference would be even greater.
We are also able to demonstrate substantial improvements in
throughput due to our technique.

We also measured the commit performance of the system.
Commit performance depends mostly on the choice of persis-
tence model, the transaction profile, and the performance of
the underlying log manager. We measured this aspect of the
system to better understand our prototype implementation.
We found that the commit performance can be quite good.

5.1 Benchmarks

We used three benchmarks to test our implementation. Each
was chosen to measure and stress different aspects of the sys-
tem. Two of the benchmarks performed a significant number
of garbage collections, while the third was used to measure
transaction throughput. Although we did not measure re-
covery performance we did crash and recover each of our
benchmarks to verify that they were recoverable.

� The Compiler benchmark is Standard ML of New Jersey
compilinga portionof the SML/NJ implementation. We
modified the compiler to store all of its data in the per-
sistent heap and to commit its state every time a module
(file) was compiled, modeling the behavior of a persis-
tent programming environment. This 100,000 line pro-
gram is compute-intensive and contains long-running
transactions.



� The TP-OO1-V benchmark is a variant of the OO1 En-
gineering Database benchmark described by Cattell [6].
The benchmark models an engineering application us-
ing a database of parts, performing traversals of the
database, adding parts, etc. We implemented this algo-
rithm in order to have a representative object-oriented
database application. However, the OO1 benchmark,
as specified, does not require garbage collection, so we
added deletion operations to make it a more realistic
application for our system.

� The TPC-B benchmark performs a large number of bank
teller operations that perform transfers among various
bank accounts. This benchmark is our slightly non-
standard implementation in Standard ML of the TPC-B
benchmark from Gray [8].

5.2 Experimental Setup

All benchmarks were executed on a Silicon Graphics 4D/340
equipped with 256 megabytes of physical memory. The clock
resolution on this system is 1 millisecond. The machine
contains four MIPS R3000 processors clocked at 33 mega-
hertz. Each processor has a 64 kilobyte instruction cache, a
64 kilobyte primary data cache, and a 256 kilobyte secondary
data cache. The secondary data caches are kept consistent
via a shared memory bus-watching protocol and there is a
five-word deep store buffer between the primary and the sec-
ondary caches. With this configuration, the collector can
copy between 1 and 2 megabytes per second.

All benchmarks were executed using a transactional pro-
cess model. Each time the application requests a commit,
its entire process state is committed to the persistent heap,
including processor register contents. We chose to run the
benchmarks using this model because it generally minimizes
the size of the transitory heaps and maximizes the workload
on the stable heap. The transactional process model itself
is implemented in SML using the persistence facilities de-
scribed here.

5.3 Pause Times

The most important property of our collector is that the pause
times it imposes on the client are short and bounded. Very
large stable heaps imply very large stop-and-copy garbage
collection pauses. We want to demonstrate that the stable
replicating collector pause times are independent of heap
size. We also want to examine the distributionof pause times
caused by both the concurrent and stop-and-copy collectors
and compare them to pauses caused by commit operations.
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Figure 7: OO1 Collector Pause Times

5.3.1 Heap Size Dependence

We ran the OO1 Engineering Database benchmark in Stan-
dard ML with various amounts of live data in the heap. This
allowed us to examine the dependence of collector pause
duration on heap size. Figure 7 shows the maximum pause
times caused by collection of the persistent heap plotted with
respect to heap size. The plot also includes the minimum
pause times for the stop-and-copy collector. The minimum
pause times for the concurrent collector are too small to mea-
sure.

Even for the modest heap sizes used here, the pauses cre-
ated by the stop-and-copy collector are unacceptably long.
As expected, pause times increase with increasing heap size.
In contrast, the maximum pause created by the concurrent
collector is approximately 1 second and is brief enough not
to cause a major disruption. Although not shown in this fig-
ure, typical concurrent collector pauses for this benchmark
were less than 300 milliseconds. These results show that
pause times are independent of heap size for the concurrent
collector.

We are investigating the cause of the longer pauses and
believe they can be avoided. Examining the worst pauses
in an earlier implementation was what convinced us that
stable to-space should be written using a combination of
direct disk writes and RVM. That change produced a five
fold reduction in the maximum pause times and eliminated
almost all pauses in the 100 to 1000 millisecond range. We
believe that further tuning will reduce our maximum pause
times to 100 milliseconds or below.

5.3.2 Pause Time Distributions

To explore how the frequency and duration of collection
pauses compared to commit pauses, we ran the Compiler
benchmark using both the concurrent collector and the stop-
and-copy collector. We measured pauses caused by persistent
garbage collector activity and transaction commit operations.
Figures 8, 9, and 10 show the pauses from concurrent collec-
tor activity, stop-and-copy collections, and transaction com-
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Figure 9: Stop-and-Copy Pause Distribution (Note scale)

mit, respectively. Note that the scale of Figure 8 is smaller
than in the other figures because the pauses caused by the con-
current collector are very brief. The commit pauses shown
here were produced using the concurrent collector, and are
essentially the same as those produced when using the stop-
and-copy collector. Stop-and-copy and commit pauses have
been grouped into histogram bins 300 milliseconds wide.

As shown in Figure 8, the pauses due to the concurrent
collector are mostly very short. The long tail is comprised
entirely of pauses during which the collector completed a flip.
Even the longest pause is short compared to most commit
pauses. The total time spent by the client waiting for the
collector was 1760 milliseconds. This is less time than the
shortest stop-and-copy pause.

In contrast, the pauses shown in Figure 9 show that all of
the stop-and-copy pauses are long enough to be disruptive.
Many applications would be unable to use this collector due
to the long interruptions. The total time spent in collection
was 35 seconds. This is almost twenty times that for the
concurrent collector.
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Figure 10: Commit Pause Distribution (Note scale)

5.4 Transaction Throughput

We were also interested in examining the throughput of our
system. We wanted to know the answer to two questions.
First, could the system provide good performance for simple
small transactions? Second, can concurrent replicating col-
lection provide increased throughput for systems that garbage
collect? The answer to both of these questions is yes.

5.4.1 Commit Performance

In order to test the fast paths for transaction commit, we ex-
ecuted the TPC-B program using a 12 megabyte database
containing bank account records for 1 branch covering
100,000 customers. During this test, our implementation
ran 80 transactions per second. The limiting factor was the
synchronous disk write required by each transaction. Note
that this database size is smaller than the TPC-B guidelines
require for a system claiming 80 transactions per second. We
believe that we have complied with all other requirements of
the benchmark standard. Although we have not done a care-
ful comparison, a similar RVM benchmark [20] also executed
approximately 80 transactions per second on our machine.

When the TPC-B benchmark is completing 80 transactions
per second, each transaction requires 12.5 milliseconds of
processing. We measured our system to determine how those
12.5 milliseconds were being used. Measurements of our
system and independent measurements of write calls show
that the synchronous write accounts for about 8 milliseconds
or 65% of the total time. Other processing by RVM during
the end transaction accounts for another 10%. An additional
10% came from a surprising source, an instruction cache
flush required because the collector may copy machine code.
Traversing the undo/redo log and logging the entries to RVM
accounts for an additional 5%. No single factor accounts for
the remaining 10% of the time. The time spent executing the
benchmark code, which was too small to measure accurately,
was certainly less than 0.5% of the total per-transaction time.
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Figure 11: OO1 Elapsed Time per Transaction

5.4.2 Heap Size Dependence

We used our variant of OO1 to study the transaction through-
put of our system in the presence of garbage collection. Our
version of the benchmark performs twice as many updates
to persistent data because each transaction includes one hun-
dred deletions and one hundred insertions. This change to
the benchmark causes it to require garbage collection, yet
maintain a constant amount of live data in the heap. We mea-
sured the elapsed time to perform the standard engineering
modification described by the benchmark.

We varied the total heap size by adding various amounts
of live data. Figure 11 shows the elapsed time to perform
each transaction as a function of heap size. The use of con-
current collection is clearly advantageous. The elapsed time
for the concurrent collector is constant with heap size. As
expected, the stop-and-copy collector causes the elapsed time
to increase linearly with heap size.

5.5 Improving Stable Storage Access

In most transaction systems the critical performance issue
is access to stable storage. In this section we consider a
variety of performance issues and enhancements. Most of
these issues are closely tied to our use of RVM for stable
storage.

5.5.1 Transaction Reordering

We ran the compiler benchmark using configurations in
which all writes of stable to-space either only used the disk
directly or only used RVM. Using only the disk made it hard
to synchronize with the client to achieve the flip. The key
difficulty was scheduling the flip when no disk write was in
progress. This lead to occasional very long pauses, as well
as more pauses in the few hundred millisecond range. In the
configuration that used only RVM, the extra log traffic from
the garbage collector thread introduced substantial additional
commit delays.

In the concurrent replicating algorithm, the write traffic
from the garbage collector need not slow down the com-
mit traffic from the client because the writes are to different
spaces. The transactions that the collector performs on to-
space can be reordered with the client transactions on from-
space without affecting correctness. A suitable change to
RVM would allow us to take better advantage of this fact by
allowing some transactions to move through the log indepen-
dently of others.

5.5.2 Change Record Batching

For large transactions, such as in the compiler benchmark,
we examined the detailed components of both commit and
collection closely. Our examination shows that a significant
fraction of the time is spent processing the log, primarily
the cost of logging the modifications through RVM. This
suggests several possible enhancements that should improve
commit performance or reduce total overhead or both.

Many of the modifications on the log are to the same loca-
tion. Recognizing these duplicate log entries and eliminating
them would reduce the logging cost substantially. A more ef-
ficient interface to transfer the log information to RVM would
also be advantageous. Currently, we make one call to RVM
for each change record on the log and RVM validates each
such call independently. An interface that allowed a group of
change records to be processed together would allow RVM
to reduce its overhead without compromising safety.

5.5.3 Write-Ahead Logging

RVM delays capturing the value of a redo record until its
transaction commits. For our purposes it is acceptable to
capture the value when the change record is first logged. This
would allow RVM to use write-ahead logging aggressively.

We could also take advantage of write-ahead logging by
promoting newly persistent objects eagerly. Currently no
promotions are done until commit. Earlier promotion would
allow the cost to be absorbed in existing collection work and
would be especially beneficial for long running transactions
like those in the compiler.

5.5.4 Log Editing

When the RVM log fills with transaction records it must be
emptied. RVM does this by applying the log records to the
data files and truncating the log. However, if the garbage
collector has flipped the stable from-space and the stable
to-space, then many log records are obsolete, because they
contain changes to the heap that has been reclaimed by the
collector. It would be much more efficient to inform the stable
log manager (RVM) that these log records can be removed
from the log entirely.

In our implementation, this optimization would also be
very useful whenever the Copy thread bypasses RVM and
writes directly to stable to-space. Currently we must force



an RVM log truncation before issuing these writes in order
to ensure that RVM is not holding any old log records that
apply to stable to-space. It would be much more efficient to
discard these log records instead.

Garbage collectors sometimes benefit from similar features
in data caches and virtual memory systems [7]. When the
garbage collector reclaims a semi-space it is better that cache
lines and virtual memory pages that contain reclaimed data
be reset to a zero-fill-on-demand status because there is no
need for the underlying memory system to preserve their old
contents.

Recently the designers of RVM have begun the implemen-
tation of an incremental log truncation mechanism [20]. This
new feature will subtly change the semantics of RVM. Cur-
rently the only changes to virtual memory that RVM applies
to stable storage are the changes that the client explicitly logs
via the RVM interface. Our collector takes advantage of this
property when it overwrites portions of volatile from-space
with relocation information containing the new address for
each replicated object. Because the collector does not no-
tify RVM of these changes, the original contents of these
locations will be restored after a failure. The proposed in-
cremental truncation technique will use pages of the virtual
memory to update the disk file instead of using the log entries.
For our application this would result in an unacceptable loss
of committed data.

5.6 Recovery Performance

Although we have not measured recovery performance, we
believe that the cost of recovery is almost entirely attributable
to RVM. There are two phases of recovery processing in our
implementation. First, the RVM log manager must recover
the last committed physical heap image. Second, the trans-
action manager must undo any uncommitted modifications
that are present in the persistent heap. The cost of processing
the undo log is small relative to the cost of RVM recovery.
RVM recovery must perform disk operations to reconstruct
the committed contents of the stable heap from its stable log,

6 Related Work

The basic literature on uniprocessor garbage collection tech-
niques is surveyed by Wilson [21]. Discussions of persistent
heaps and language support for transactions appear in work
on Persistent Algol [4] and Argus [15]. Garbage collection
algorithms based on replication appear in work by Nettles and
O’Toole [16, 17, 19], and an instance of the basic technique
is also described by Huelsbergen and Larus [13].

We are aware of only one other implementation of a con-
current collector for a persistent heap. Almes [1] designed
and implemented a mark-and-sweep collector for use in the
Hydra OS for C.mmp. The collector is based on Dijkstra’s
concurrent mark-and-sweep algorithm [11]. There are two
key differences between this work and our own. First, it

cannot relocate objects and therefore offers no opportunities
for heap compaction or clustering of objects for fast access.
Second, although it works in the context of persistent data, it
is not designed for use in a system with transaction seman-
tics. Because of the rather unusual environment in which
it operated, we cannot make any performance comparison
between it and our work.

We have recently learned of ongoing work in the EOS
system [12]. The EOS design proposes to combine a marking
process and a compaction process. An implementation of
EOS is underway but details are not available at this time.

There is a long history of incremental and concurrent copy-
ing collectors dating back to Baker [5]. These collectors re-
quire the client to access the to-space version of an object
during collections and sometimes force objects to be copied
so that the client may access them. The technique of Ellis,
Li, and Appel [3] enforces this restriction by using virtual
memory protection traps to detect certain client accesses and
perform required collector work. In contrast, our technique
does not constrain the order in which objects are copied nor
does it require any special operating system support. We
believe that the ability to freely choose the traversal order is
especially important in systems that may need to optimize
access to the disk.

There are two earlier designs of concurrent copying
garbage collectors for persistent heaps, both based on the
Ellis, Li, and Appel algorithm. Detlefs [10] described how
to apply this algorithm in the transactional environment of
Avalon/C++ [9], while Kolodner [14] worked in the context
of Argus. In Detlefs’s design, the programmer must explicitly
manage object persistence at the time of allocation; Kolodner
supports orthogonal persistence.

Neither of these designs was completely implemented. We
believe this is due to the complexity of using the to-space
invariant in a transactional setting.

In to-space techniques the flip takes place at the beginning
of the collection. Starting at the flip, the client uses objects
that are in to-space and so client operations are reflected
in the transaction log using to-space values. The log also
contains from-space pointers due to transaction activity that
occurred prior to the flip. Therefore, the recovery process
must be able to reconstruct the relationship between from-
space and to-space objects. This relationship depends on the
exact sequence of copy operations performed by the garbage
collector. In practice, this means that essentially the entire
garbage collection process must be recoverable.

There are two primary disadvantages to making the col-
lection recoverable: complexity and cost. Added complexity
arises because each step of the collection must be recoverable,
thereby greatly increasing the interaction of the collection al-
gorithm with the logging and recovery algorithms. Both
Kolodner and Detlefs explain how each step of the collec-
tion algorithm is logged and recovered. These arguments are
quite detailed and complicated. Added cost arises because
each step of the collection adds to the logging burden of the



system. Detlefs’s design attempts to minimize the amount of
log traffic but at the cost of introducing some synchronous
writes. Kolodner requires no synchronous writes but has
greater log traffic.

Our design avoids the problems described above because
there is never any need for the recovery process to deal with
to-space values. In our system, the client only uses from-
space objects and only the flip need be coordinated with the
transaction manager. Our collector can be made recoverable
at the cost of added log traffic, but for many applications this
may not be necessary.

7 Future Work

We expect to support multiple client threads by using the
Venari transaction model [22]. We plan to examine closely
the remaining sources of delay in the pauses due to the con-
current collector. We also plan to experiment with a few
simple optimizations that may compress the logs. One les-
son learned from the performance measurements is that there
are several desirable features that are candidates for addition
to the RVM log manager.

Our current implementation does not support the restart
of a partially completed garbage collection, but the changes
required are minimal. Because the client uses only from-
space, the recovered state of to-space is of little importance.
The state of the replicating garbage collector can be recov-
ered as long as its volatile data structures are periodically
checkpointed to stable storage.

We also expect that replicating garbage collection will
prove to be valuable for very large persistent heaps that are ac-
cessed using swizzled internal and external representations,
via a cache, or in a distributed programming environment
containing multiple volatile heaps. There are two primary
advantages of replicating collection in these configurations:
The client and the garbage collector need not be as tightly
coupled as in other garbage collection algorithms and there-
fore system features that depend on knowledge of object
modifications and object locations are easier to build.

8 Conclusions

We have implemented a concurrent compacting garbage col-
lector for a transactional persistent heap. Our design is based
on replicating garbage collection and uses a log that is shared
with the transaction manager. The prototype implementa-
tion demonstrates that client activity can continue during the
garbage collection of stable data.

The experimental measurements show that concurrent
replicating collection offers garbage collection pauses that
are much shorter than for stop-and-copy collection. The in-
terrupts suffered by the client are small in comparison to
transaction commit latencies and are independent of stable

heap size. Transaction performance provided by the proto-
type is good. The use of garbage collection in the transaction
commit processing adds littleoverhead; commit performance
remains dominated by the underlying log manager. Our de-
sign offers garbage collection performance that will be useful
to real-time operating systems applications that require safe
persistent storage.
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