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Abstract

We present a design for distributed garbage collection in a new object-oriented database system
called Thor. Garbage collection in Thor is different from that in conventional distributed systems
because Thor has aclient-server architecture, in which clientsfetch copies of objectsfrom multiple
servers and run transactions. Our design accounts for the caching and prefetching of objects done
by the clients. It also accounts for the distributed commit protocol, which involves the transfer of
modified objects from the client cache back to the servers.

The scalability of Thor precludes the use of global mechanisms. Therefore, our designisbased on
each server keeping a conservative record of incoming references from clients and other servers;
thisallowsfast and fault-tolerant collection of most garbage. The performance requirement faced
by thedesignisthat it minimizethe delay added to fetch and commit operationsinvoked by clients.
We have devised techniquesthat eliminate major overheadswhen aclient fetchesablock of objects
from aserver: no extramessages need be sent, the server need not record the references contained
intheobjectsintheblock, and no stable-storagewriteisrequired. However, when aclient commits
a transaction, extra messages and stable-storage writes may be required for garbage collection
purposes. We propose a scheme that masks the delay by performing garbage collection work in
paralld with norma commit-timework. Therest of the distributed garbage collection protocol is
devised sothat it worksin the background; the protocol usesonly unreliablemessages and tolerates
node crashes and network partitions.

Since our design is based on keeping a record of remote references, it does not collect distributed
cyclic garbage. Thethesisincludesadiscussion of various techniquesthat can be used to augment
such adesign to collect all garbage. The thesis also contains a novel analysis of awide range of
distributed garbage collection algorithms.
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Chapter 1

| ntroduction

We present a design for distributed garbage collection in a new object-oriented database system
called Thor. Garbage collection in Thor is different from that in conventional distributed systems
because Thor has aclient-server architecture, in which clientsfetch copies of objectsfrom multiple
servers and run transactions.

So that the problem may be specified precisely, Section 1.1 establishes the terminology and the
basic concepts that will be used in this thesis. Section 1.2 extends the setting to a distributed
system and states what is expected of distributed garbage collection. Section 1.3 describes what
is different about a client-server, transactional, database system that poses new challenges for
distributed garbage collection. Section 1.4 summarizes what the design proposed in the thesis has
accomplished. An outline of the remaining chaptersis provided at the end.

1.1 Background and Basic Ter minology

Systems that make heavy use of allocating objects on the heap need to recycle the space. The
hazards of explicit deallocation of unusable objects are well known: premature deallocation of a
useful object leadsto the* dangling pointers’ problem, and forgetting to deall ocate a usel ess obj ect
leadsto “memory leaks.” Garbage collection, popularly known as GC, automates the deallocation
to free the user from tracking the usage of space. The part of the running processthat all ocates new
objects and modifiesthem is often called the mutator, while the part that automatically deallocates
the garbage is called the collector.

This automation can be achieved in different ways, depending on what is deemed to be “useful .”
Sometimes, it may be possible to have the compiler figure it out by analyzing the program. But
the most general and widely used criterion for usefulnessis based on run-time accessibility by the
user program.

Objects contain references to each other, thus forming an object-graph. At any time, the user



program is directly using certain objects, such as those referenced from the stack, which must
not be dedllocated. These objects are known as the roots. The objects reachable from the roots
through one or more references are also accessible by the user program. All such objects are said
to be live; the rest are garbage, which should be reclaimed.

Being a garbage object is a stable property; that is, once an object becomes garbage, it cannot be
live again. The safety requirement for the GC is that it may not collect alive object. The liveness
requirement is that any garbage should ultimately be collected. This requirement is especially
important for long-lived spaces like databases, since otherwise memory leaks might accumulate
over time and exhaust the space.

1.2 GCin Distributed Systems

A distributed system isa group of computers (hodes) that communicate by sending messages. It
is characterized by arelatively high cost of message passing and occurrence of partid failures. In
adistributed system the object graph spans multiple nodes. References crossing node boundaries
are caled remote, while those within one node are local. Spatia locality in the object graph is
expected to result in many fewer remote references than local ones.

The mutator on a node sends messages to other mutators in addition to doing local computation.
These mutator messagestransfer data, which may include references to objects. The node sending
the message will be referred to as the sender, the node receiving it, the receiver. The object to
which a reference in the message points may be on yet another node, called the owner (Figure 1-
1). For therest of this chapter, assume that the mutator message is carrying only one reference.
On receipt of the message, the receiver’s mutator may store the reference in alocal object, thus
creating anew inter-nodereference.! In somesystems, mutator messages may also transfer objects
from one node to another; thisis called migration.

Like any other distributed program, the GC in adistributed system should take care of the follow-
ing:

1. Use local computation to avoid message passing. Messages reduce throughput by con-
suming processor and network bandwidth; moreover, synchronous message-sends delay the
sender by at least around trip on the network, and rai se problems about what must be doneif
theintended receiver isinaccessible. A noteworthy exception to the ruleisthat around trip
on the network may be preferred to accessing the local disk, which isusually even slower.

2. Allow graceful degradation of service in the face of partial failures, often called fault-
tolerance in this context. Partial failures include crashes of individual nodes, and failures

YIn the literature, authors sometimes distinguish between creation of the first copy of the remote reference by the
owner, and its subsequent duplication by other senders[Pig91]. This thesis, however, does not distinguish between the
two.
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reference

Receiver
mutator message

Figure 1-1: A mutator message containing a remote reference

in message delivery: messages can be delayed, lost, duplicated, and delivered out of order,
or there might be a network partition, in which a group of nodes becomes virtually discon-
nected from the rest.

3. Employ mechanismsthat are scalable, that is, whose performance does not worsen unduly
asmore nodes are added to the distributed system. Thisrequiresthat the chosen mechanisms
have minimum dependence on limited resources that do not grow as the system gets bigger.

The need to avoid message passing implies that a scheme designed for single-site GC cannot be
tranglated for distributed systems by simply inserting synchronous communication wherever re-
quired. Similarly, schemesrequiring somekind of global synchronization are not favored because
they do not scale well.

One implication of fault tolerance is that even if some nodes crash, the remaining nodes should
collect as much garbage as is possible without interaction with the crashed ones. Similarly, if
thereisanetwork partition, each subset of hodes should be able to collect some garbage. Failures
in message delivery can be dealt with by using a generic reliable message protocol, but thisisa
costly solution that often requires one or more round trips per reliable message. The goal thenis
to design the GC such that messages are idempotent (so that duplicate messages are harmless),
and nonessential (so that the loss of a message does not violate correctness, and is expected to be
taken care of by later messages). Out of order messages can be serialized by using some variant
of timestamping.

Broadly speaking, techniques for distributed GC fall under the same two paradigms as single-site
techniques (more about thisis presented in Section 2.1):

e tracing, aso known as marking

¢ reference tracking, a generalized form of reference counting

Tracing performs a traversal of the entire object graph beginning from the roots, involving al
nodes in the process. Objects that are not reached by the end of the traversal are garbage. Each
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run of tracing startsafresh in that it does not use information from earlier runs. Itisglobal in nature
since it must proceed to completion on al nodes before any node can collect any garbage. Thus,
it might take along timeto before it collects any garbage, and it is not tolerant of node crashes.

On the other hand, if nodes track remote references as they get created by the mutator, each node
can perform alocal collection that collects most of the garbage, independent of other nodes. Nodes
track remote references by storing all incoming references (or a conservative estimate thereof) in
an inlist, and all outgoing references in an outlist. The local collection makes a conservative
assumption that references in the inlist are reachable, and counts them as roots in addition to
the“primary” rootswe have been talking about. Unlike global tracing, reference tracking collects
most of the garbage soon after it is created. However, such schemes have awell-known drawback:
they fail to collect distributed circular garbage.

Both of these paradigms are analyzed in detail in Chapter 2, but the one adopted in thisthesisis
aform of reference tracking, so the rest of this chapter is set in a framework that assumes this
paradigm.

Figure 1-2 provides an example of a distributed object graph. Objects A and D are the primary
roots. Objectsreachable from the primary rootsare live, namely, A, B, €', and D. Theremaining,
which are garbage, can be sorted into different categories:

1. local garbage: an object that it reachable neither from the local primary roots nor from the
inlist. In thefigure, objects F and F' are local garbage.

2. distributed garbage: an object that isnot reachable from thelocal primary roots but isreach-
able from theinlist, and yet is garbage because al remote objects that reference it (if any)
are garbage themselves. In thefigure, objects G, H, I, J, and K are distributed garbage.

3. distributed circular garbage: distributed garbage containing acycle of references that spans
more than one node. For convenience, any garbage referenced from thiskind of garbageis
also included, because most of the time, what appliesto circular garbage also appliesto all
garbagereachablefromit. Inthefigure, objects 7, ./, and K aredistributed circular garbage.

Having defined theseterms, the division of labour between local and distributed GC can be clearly
stated:

Local GC workswithinindividual nodes, and regards the local primary roots and theinlist asits
roots. It isresponsiblefor detecting and deallocating local garbage, including entriesin the
outlist. Further, depending on the exact scheme employed, the local GCs may be required
to store extra information and do extra work to assist the distributed GC.

Distributed GC is more like a protocol for exchanging information between loca GCs. It is
responsiblefor detecting distributed garbage and turning it into local garbage, which can be
collected by local GC. More precisely, it uses the information in the outliststo remove the
inlist entries of objectsthat are not referenced remotely. Theflip side of itsjob isto protect

12
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the objects reachable from remote primary roots against local collection. Thisincludesthe
timely creation of inlist and outlist entries in synchronization with mutator activities.

Usually, when the mutator sends messages, it cooperates by executing part of the distributed pro-
tocol. It has to make arrangements in anticipation of the creation of a new inter-node reference
at the receiver. This may require sending extra GC messages to the owner node, although many
schemes have been devel oped to avoid this (Section 2.4). GC messagesare also required toinform
nodes of the removal of inter-node references, but this can often be done by the collector lazily, in
the background.

1.3 GCin aClient-Server, Transactional Database System

Thor isdifferent from most other distributed systemsfor which GC schemes have been designed:
it has a multiple-client, multiple-server architecture, and it uses distributed transactions, which
complicates the way mutator messages transfer data. This section presents only a generic sketch
of a client-server, transactional system; a more specific description of Thor itself is available in
Chapter 3.

Asdiscussed in thelast section, in a conventional system, the transfer of data between the sender
and the receiver nodes occurs through mutator messages flowing directly between them. This
allowsthe sender to execute a necessary part of the distributed GC protocol, namely, handling the
possible creation of a new inter-node reference at the receiver.

In a client-server system, the client fetches objects from various servers, and keeps them in a
local cache. It works upon these objects by copying data between objects, removing data from

13



objects, creating new objects, etc. In other words, objects are gathered from their servers and the
transaction works upon them at the client. Thisisin contrast to the model in which thetransaction
moves from server to server viaremote procedure calls while the objects stay put.

When the time comes to commit the transaction, the client sends copies of the modified and the
new objects to a server designated as the coordinator of the transaction. It is the coordinator’s
responsibility to execute the 2-phase commit protocol [Gra78]. As a part of this protocal, it dis-
tributes the copies of modified and new objects to the servers where they belong. These servers,
the participants of the 2-phase commit, incorporate the object copies after the commit succeeds.

A server that sends data to the client does not know which servers, if any, are going to receive
some of it. The data hops from the sender to the client, then to the coordinator, and then to the
receiver (Figure 1-3). It is possiblethat at commit time, the server that sent the datais not even a
participant in the 2-phase commit protocol. Note that in reality any two or all three of the servers
involved may be the same.

(A) A mutator message in a conventional distributed system

fetch commit request prepare
’ S PRSI PRSI
’ s ’ N ’
’ \ ’ \ ’ \
\ \ \

/ / /
sender client coor dinator receiver
T sever " cache | U srver | T server

(B) Mutator messages in a client-server transactional system.

Figure 1-3: Thor isadifferent ball game.

Theclient isonly atemporary link in the chain, which will go away when itswork is done, while
the servers are persistent repositories of objects. Thus, itisnot possibleto treat the transfer of data
from the sender to the client in the same way as the transfer between two servers in conventiona
systems. Therefore, our distributed GC protocol has two separate components:

1. GC between client and server

2. GC between servers
Thereisanother issuethat ispeculiar to persistent systemslike databases. Theeffects of committed

14



transactions survive crashes. Some of the information that supports distributed GC must survive
crashes too, while the rest can be recomputed on recovery. Updates of the GC information may
therefore incur stable-storage writes in addition to those required for durability of transactions
[LS79]. Thechdlengeisto reducethe amount of GC information that must be kept stably, without
incurring along wait on recovery to re-establish the remaining information.

1.4 TheThesis

The contribution of thisthesisliesin the design of a distributed GC protocol that accounts for the
caching of objects at clientsaswell asthe commit-timetransfer of modified copies of objects back
to the servers.

The design is suited to scalable systems because it avoids the use of globa mechanisms such as
system-widetracing. Instead, it is based on aform of reference tracking where each server keeps
a conservative record of incoming references from clients and other servers. As noted earlier,
reference tracking allows fast and fault-tolerant collection of most garbage; however, it does not
collect distributed circular garbage.

We have devised techniques that eliminate mgjor GC overheads when a client fetches a block of
objects from a server: no extra messages need be sent, the server need not record the references
contained in the objects in the block, and no stable-storage write is required. However, when a
client commitsatransaction, extra messages and stable-storage writesmay be required for garbage
collection purposes. We propose a scheme that masks the delay by performing garbage collection
work in parallel with norma commit-timework.

Therest of the distributed garbage collection protocol isdevised so that it worksin the background;
the protocol uses only unreliable messages and tolerates node crashes and network partitions.

The scope of thisthesisislimitedto the distributed part of GC; it does not prescribe any schemefor
local collectionin either the serversor the clients apart from specifying how it must cooperate with
distributed collection. Further, the proposed design does not include a scheme for the collection
of distributed circular garbage. It is possible, though admittedly tricky, to augment the design by
either tracing [LQP92], or forced migration of certain objects[ SGPA0] to collect circular garbage.
These schemes are discussed in Section 2.5.

1.5 ThesisOutline

Chapter 2 provides a study of various distributed GC agorithms. The schemes proposed in this
thesis have borrowed many ideas from the analysis in this chapter. Chapter 3 describes Thor in
greater detail, and introduces some terminology that is employed in later chapters. Chapter 4
provides an overview of the design proposed in this thesis, and then focuses on the GC protocol

15



between clientsand servers. Chapter 5 focuseson the GC protocol among servers. Thelast chapter
summarizes the contributions of the thesis.
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Chapter 2

An Analysisof Distributed GC
Techniques

A study of the full spectrum of distributed GC techniquesis helpful for a good understanding of
what isapplicableto Thor. Indeed, the design proposed in thisthesis has borrowed many concepts
from existing techniques. This chapter is not a comprehensive survey of the papers published to
date on the topic of distributed GC: instead of summarizing who did what, it exploresthe how and
why.

Broadly spesking, techniques for distributed GC fall under the same two paradigms as single-
site techniques: tracing and reference counting. Section 2.1 provides a brief review of the pros
and cons of these two paradigms in a non-distributed setting. Some of these observations are
also applicable to distributed systems, only in a different flavor. Section 2.2 discusses distributed
algorithms based on tracing. It argues that a pure form of tracing is unacceptable for distributed
systems. Therefore, the rest of the chapter isrelated to different aspects of reference counting.

Thefirst step in using distributed reference counting is to divide alarge space into areas that can
be collected somewhat independently. Thisisdiscussedin Section 2.3 without actually addressing
issues pertinent to distributed systems. Most distributed GC algorithms use variants of reference
counting; we refer to them by the general term: reference tracking. Section 2.4 describes arange
of reference tracking techniques, and compares them with respect to message passing and fault
tolerance. Reference tracking, by itself, does not collect distributed circular garbage (Section 1.2).
Section 2.5 describes avariety of schemes that augment reference tracking to collect such garbage.

Figure 2-1 lists the techniques discussed in the paper. The figure includes some references for
the purpose of easy identification — in view of the fact that some of the names listed have been
invented by us.

In order to analyze these techniques we have recast the terminology used by their authorsinto our
own. Theresulting unification allowsusto reveal how various agorithmsstand in rel ation to each
other, and to bring out their fundamental contributions. In fact, the decomposition of some of the

17



Single-Site Tracing and Reference Counting (2.1) GC in Separate Areas(2.3)

Inter-Area Reference  Generational

Counting Collection
[Bis77] [LH83]
Distri buted GC
| ng (2'2) %m%
Marking Tree Reference Reference  Weighted Reference  Reference  Indirection, and
[HK82] Flagging Counting ~ Counting Listing  Strong-Weak Ptrs

[Alig4,Juu90]  [Ves87]  [Wen79,Bev87]  [Bis77,SGP90] [Piq91,SDP92]

Circular Garbage Collection
(for use with reference tracking) (2.5)

Object Migration ~ Trial Deletion ~ Complementary Tracingwith  Centralized Tracing

i Vess Tracing Timestamps  Server in Groups
[Bis77,SGP90] [Vess7] [Ali84 Juu90] [Huggsl - [LLoz] [CPO%2]

Figure 2-1: Techniquesdiscussed in this chapter
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rather involved algorithms into their key ingredients shows how they can be combined with other
algorithmsto obtain a better mix.

Towardsthe end of the discussion of each technique, we point out some of its drawbacks. In doing
this, different techniques have been judged using somewhat different models; so an observation
madefor one may not be applicableto another. In particular, the criticism provided for atechnique
does not indicate much about its suitability for Thor.

2.1 Single-Site Tracing and Reference Counting

Algorithms based on tracing find live objects by directly implementing the definition of what is
live: they traverse the object graph beginning from the roots. Each object reached during the
traversal is recorded to be live and scanned for references to other objects. Objects that are not
reached by the end of the traversal are garbage.

Two popular schemes of this kind are mark-and-sweep and copy-collection [Che70]. The first
scheme records reachabl e objects by marking them, and collects all objectsthat remain unmarked
into a free-list. It needs a GC queue (or a stack) to run a breadth-first (or depth first) marking
algorithm. The GC queue holds references to objects from which marking is yet to be propagated
further; it is initialized with the roots. The second scheme records reachable objects by copy-
ing them to a different space; when al reachable objects are copied, the old space can be fully
reclaimed. Rather than creating a free-list, it compacts the live objects into one end of the new
space, so that acontiguous spaceisavailablefor alocation. Also, it doesnot need a separate queue
because the queue isinherent in the placement of objectsin the new space.

Reference counting uses amore conservative approach to reclaim garbage than tracing: all that is
referenced from surviving objects survivesitself. Thisfails to reclaim objects that reference one
another but are really not reachable from the roots; we shall refer to them as circular garbage.

Roots

Reachable from roots Circular garbage, and objects

reachable from it

Figure 2-2: Reference Counting

Assuggested by the name, asimpleimplementationisto keep acount for every object of references
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from other objects (Figure 2-2). The count is updated when anew reference to an object is created
or when oneisdeleted. An object can be reclaimed when the count dropsto zero. When an object
isreclaimed, all of itsreferences are considered del eted, which causesthe counts of the referenced
objects to be decremented.

211 TheProsand Cons

Reference counting runsfinely interleaved with the user program, and identifies garbage as soon as
it is created. On the other hand, tracing is invoked as a corrective measure when the free memory
nears exhaustion, and it may lead to along GC interruption unless an incremental or concurrent
version isemployed [DLM SS7].

A related point isthat tracing must make a global search starting from the roots before any garbage
can be collected. But in reference counting, liveness effectively becomes alocal property of the
object, namely, whether there are references to the object. (This is especiadly desirable in dis-
tributed systems, where global mechanisms are considered unscalable.)

Maintaining the reference counts is a substantial bookkeeping overhead. Updates must be made
whenever areference is created, deleted or replaced. In a system where references are frequently
modified, a lot of work is wasted. In contrast, tracing does its work in one swoop, so its cost
is amortized over the history of modifications made to the object graph since the last collection.
However, if the abject graph israrely maodified, and the rate of garbage production islow, tracing
wastesits effort in traversing the entire graph which has changed very littlesince thelast traversal.
Thisis particularly costly for copy collection: even the part of the object graph that never changes
keeps getting copied from one space to another. Schemes to overcome this problem divide the
memory into separate spaces and use a hybrid of tracing and reference counting, which we discuss
in Section 2.3.

The bane of reference counting is its inability to reclaim circular garbage. While some systems
ignorethewaste, and others use a sy stem-specific remedy, such asdeclaring circular datastructures
in advance, the general solution falls back on a complementary tracing collection.

2.2 Tracing-based Distributed GC

Usudlly, each run of distributed tracing works in two phases: a global mark phase followed by a
globa sweep phase. In the mark phase, each node starts to mark object from itslocal roots. As
in the non-distributed setting, when an object is marked, the references contained in it become
candidates for marking. If such a reference is remote, a marking message must be sent to the
remote node. When a node receives a marking message, it marks the indicated object. When
marking isover at al nodes, and no mark messages are in transit, the nodes enter the sweep phase,
wherein all unmarked objects are collected.
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The tricky part of this protocol is to detect when the global marking phase has terminated. In
single-site systems, the completion of the marking traversal is indicated by the GC queue going
empty (Section 2.1). In distributed systems, each node has its own GC queue. The problem isthat
the emptinessof alocal GC queueisnot astable property. That is, even after aGC queueis empty,
an incoming marking message may initiate marking again. We describe one solution bel ow.

221 Marking-Tree

This scheme is based on the distributed termination detection of “ diffusive computation” [DS80].
For the time being, assume that there is only one root object. Also, for simplicity, the concept of
marking messages is generalized to include local references: when an object is marked, it sends
marking messages along every contained reference, remote or local [HK82].

When an object first gets a marking message, it remembers the sender abject in its own parent
field. Then it sends out a marking message for each of its contained references, and maintains a
count of these messages in its count field. Every timeit receives an ack back from areferenced
object, it decrements the count. When the count fallsto zero, that is, when the object has received
acks for every referenced object, it sends back an ack to its own parent. If a marked object gets
another marking message, it sends back an ack right away (Figure 2-3). The ack message from
theroot indicatesthe completion of marking. Notethat the parent fiel ds make atree-like structure,
called amarking-treein [HK82], which replaces the GC queue. Multipleroots on different nodes
can be handled by waiting until al roots have sent out an ack message. One node is selected as
the leader, which checks for this condition and notifies all other nodes [Ali84].

— mark ---# gck

done

node 2

-

Figure 2-3: Marking-Tree for termination detection

21



2.2.2 Criticism

Some of the marking messages sent between two nodes can be batched together into one packet.
For example, in Figure 2-4, m1 and m2 can be batched. But if there is a chain of references
spanning the nodes & times, at least £ marking messages must be sent back and forth between the
two. Further, if ascheme like the marking-tree is used, an ack needs to be sent for every marking

messages.

node 1 node 2
’I @
2
&*
| m3
m4
\
_ﬁ)’@
Q‘\’\nﬁ\
O—=%
-— |

Figure 2-4: A chain of remote references resultsin a series of marking messages.

Tracing requires all nodesto cooperate. If even asinglenodeisdown or inaccessible, other nodes
cannot be sure whether an object not reachabl e from their rootsis reachable from the roots on the
node that isdown. Tracing istherefore not tolerant of crashes or partitions (but see Section 2.5.6).
Also, the globa synchronization required for phase changes makes it poor in scaling. A node
must wait until al nodes have completed marking before it can collect any garbage. This might
be unduly long if the system has many nodes, or even if some hodes are slow or hon-cooperative.

2.3 GCin Separate Areas

Dividing the entire abject space into areas that can be collected independently is the preliminary
step in the direction of distributed reference counting. This section will ignore issues pertinent
to distributed systems, such as message passing and fault-tolerance; they will be introduced in
the next section. Indeed, the use of separate areas is aso useful in singe-site systems with large
address spaces [Bis77]:

1. Themutator need not wait for the collection of the entire address space. Having the collector
run incrementally® or concurrently with the mutator does not solve the whole problem: it

1j.e., incremental with respect to time, unlike collecting separate areas, which isincremental with respect to space
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disperses along GC pause into many shorter ones, but it does not reduce the total work to
be done before garbage can be collected. Therefore, if alarge space isto be collected, the
mutator may run out of memory before the on-going run of collectionis over.

2. Moreimportantly, separate collection gives control over how frequently to traverse different
parts of the object graph. As noted earlier in comparing reference counting with tracing
(Section 2.1.1), some parts of the graph may remain unchanged for a long time, so that
traversing them repestedly is a waste, while other parts may change rapidly, providing a
rich source of garbage.

3. Inasystem with alarge heap in virtual memory, tracing the entire heap will result in many
page faults. Dividing the heap into areas localizes the working set of the collector.

Note that full-scal e reference counting represents the extremein loca collection asit alowsindi-
vidual objectsto be collected separately; but that isusually not desirable because of the limitations
of reference counting indicated in Section 2.1.1. We therefore describe ageneral scheme— ahy-
brid of tracing and reference counting — that is used to create arbitrary sized areas that can be
collected separately. Next, we describe generational collection, which uses the lifetimes of ob-
jects as a metric to group objects into different areas and control the frequency of collection in
them.

2.3.1 Inter-Area Reference Counting

While tracing is used to collect garbage within each area, some kind of reference counting is
employed to insulate the GC in one from that in another. Each area keeps a record, called the
inlist, of references from outside the area to objects within the area. For the time being, assume
that theinlist maintains the count of inter-area references for each object in the area (no entry is
kept for a zero count). The count must be updated as inter-area references are created or deleted.
In a non-distributed system, updating the inlist entry in conjunction with creation or deletion of
inter-area references is straightforward. An entry can be removed when its count dropsto zero.

In someimplementations, the inter-area references point to the inlist entry, which stores the count
and pointsto the actual object. But thisis not essential: a remote reference can directly point to
the abject, provided thereisaway to accessthe object’sinlist entry, if any. Inthischapter, we will
not attach any significance to whether a reference pointsto theinlist entry or to the object directly.

When an areais traced, the objects with an entry in the inlist are counted as roots in addition to
the original root objects present in the area. We call the original root objects theprimary rootsto
distinguish them from theinlist entries. Objects not reached by the trace are reclaimed. In tracing
from both the primary roots and the inlist, the local GC makes a conservative assumption that all
objectsreferenced from outside the area are reachable. Thisiswhat alowsindependent collection
in different areas. But inter-area circular garbage is never collected (Figure 2-5).
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Figure 2-5: Inter-area Reference Counting

For the scheme to be efficient, the memory space must be partitioned in a way that individual
areas exhibit spatial locality of references. Thiswill result in fewer inter-area references, and less
inter-area circular garbage.

2.3.2 Generational Collection

Generational collection optimizesthe GC in separate areas by tuning it to the lifetimes of objects
[LH83]. Indoing so it exploitstwo facts:

1. Newly created objects have a higher chance of becoming garbage than those that have al-
ready survived many collections. The liveness pattern of heap objectsisoften similar to that
of stack objects; that is, the objects created recently are likely to be done with sooner than
others.

2. There are more references from new objects to older objects than the other way round. Old
objects may refer to newer ones only if they have been mutated. Mutations are infrequent
in many systems.

Objects are segregated into generations based on how long they have survived. We will talk of
just two generations—old and new, but the scheme can be extended to any number of generations.
Since the new generation is where most garbage is created, it is collected more frequently. also,
since inter-area references are commonly oriented from the new to the old generation, they are
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Figure 2-6: Generational collection collectsinter-area circular garbage.

traced in that direction and reference-counted in the other (Figure 2-6). 2 References from the old
generation to the new are recorded in the inlist for the new generation. If the assumptions hold,
there would be few such references.

Allocations are made from the new generation, and when it fills up, it is collected independently
by starting from its primary roots and the inlist. Typically, when an object in the new generation
has survived some number of collections, it istenured and moved to the old generation. To collect
the old generation, the new and the old generations are traced together, starting from their primary
roots (but not the inlist of the new generation). Since reference counting is used only in one
direction, inter-area circular garbage is collected when tracing is used in the other direction.

2.4 Distributed Reference Tracking and Its Many Forms

Now weturn to reference tracking in distributed systems. Each node maintainsitslocal spaceasa
Separate area— or more than one area, but we will discount thisfor simplicity. It tracksincoming
remote references in someform or other. Ingeneral, aninlist entry containsareference to thelocal
object and some information about incoming remote references to that object. Different schemes

2This idea can be traced back to [Bis77], which uses links for reference counting in one direction, and cables for
tracing in the other.
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result in differences in the message passing protocol and fault tolerance.

When the mutator creates anew remote reference, or del etes one, extra messages may be required
to update the remote inlist entry. We call the part of the distributed GC protocol that takes care of
creation of references the increase protocol, and the one that takes care of deletion the decrease
protocol. Theincrease protocol ensures the safety property that live objects will not be collected;
itistherefore run by the mutator before creating anew inter-node reference. On the other hand, the
decrease protocol ensures the liveness property that garbage will ultimately be reclaimed; there-
fore, it can be delayed and executed in the background.

The mutator may create anew remote reference by copying such areference locally, or by sending
it in a message to another node. It is unnecessary to run the increase protocol for local copying
of references. Similarly, it is unnecessary to run the decrease protocol when aremote reference is
deleted while there are other copies of it at the same node. Therefore, al remote references at a
nodethat point to the same object are grouped together. We model thisby having each nodecontain
an outlist that stores a single entry for each outgoing remote reference. The remote references
contained in objects are replaced by alocal reference to the outlist entry that stores that remote
reference (Figure 2-7). An useless outlist entry is collected by the local GC in the same way as
it collects the objects. The interaction between the local and the distributed GC is illustrated in
Figure 2-8.

Node A Node B Node C

In |, Primary Roots  [Out Primary Roots

>

In | Primary Ropts  [Out

Pl

C

Figure 2-7: Inlistsand outliststrack inter-node references.

D

The increase protocol is run when a remote reference received in a message from another node
creates a new outlist entry. The decrease protocol is run when the outlist entry is removed. The
inlist entry for an object tracks the outlist entries pointing to it from other nodes.

The following subsections discuss various forms of reference tracking, focusing on their increase
and decrease protocoals.
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Figure 2-8: Theroles of local and distributed GC in reference tracking

24.1 ReferenceFlagging

In this scheme, the only information kept is which local objects are referenced by one or more
remotereferences [Ali84, Juu90]. Such objectsare distinguished by the presence of aninlist entry;
the entry does not contain any other information. Thisis similar to using a 1-bit wide reference
count.

The inlist entry is created when the owner node first sends out a mutator message containing a
reference to the object. Subsequently, if the reference is passed on to other nodes, the inlist entry
isnot affected at all. Thus, after thefirst send, the increase protocol does not involve any work.

Since aninlist entry does not track the spread of remote references to other nodes, the deletion of a
remote reference does not affect it either: itisimpossibleto infer if thereisno remotereference to
thelocal object any more. Thus, once an inlist entry is created it cannot be removed without, say,
help from periodic global tracing. Thisisideal for systemsthat would have used a complementary
tracing scheme anyway to collect circular garbage (Section 2.5.3). A run of global tracing collects
al garbage, including useless inlist entries. As common to all reference tracking techniques, a
node can do an independent local collection to collect local garbage.

The virtue of this schemeis simplicity: no additional work needs to be done in passing a remote
reference or deletingone. Also, theinlist entriesarecompact. Theproblemisthat it relieson global
tracing to collect al distributed garbage — not just distributed circular garbage (Section 1.2).
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24.2 Reference Counting

This scheme has been described for the single-site, multiple-area setting in Section 2.3.1. Each
inlist entry stores a count of the number of outlist entries (same as the number of hodes) that point
toit. Aspart of theincrease and decrease protocol, increment and decrement messages heed to be
sent to the owner node to update the inlist entry.

When a mutator message contains aremote reference, either the sender or the receiver could send
the increment message. Ideally, wewould like the receiver to send an increment message because
one needs to be sent only if the receiver installed the remote reference into aloca object and that
resulted in a new outlist entry. However, this is not safe because a decrement message sent by
the sender (after it sent the mutator message) may reach the owner before the increment message
sent by the receiver, as shown in Figure 2-9 A(i). If the sender had the only remote reference to
the object, thiswill reduce the reference count to zero, resulting in the collection of an object that
is reachable from the receiver. Therefore, the sender must not send a decrement message for the
reference in question until it has received an ack confirming the receipt of the increment message
a the owner (Figure 2-9 A(ii)). But note that the sender is not blocked from doing other work
in the meanwhile. The ack from the owner may come directly or via the receiver. Also, if the
receiver isnot going to send an increment message, it can send an ack to the sender straightaway.

One way for the sender to refrain from sending a decrement message for a reference it sent out
to another node — until it has received the ack — is to store al such references in a separate
data structure, called the tranglist, whose entries include the receiver node to which the reference
was sent. (The concept of a tranglist is borrowed from [LL86], where it is used in a somewhat
different context.) Entries are deleted from the translist when the sender receives an ack from
the receiver (or the owner, depending upon the exact protocol). When an outlist entry is deleted,
a decrement message is deferred until the corresponding entry in the trangdlist, if any, is deleted
too. A different perspective helps to simplify this model: a translist entry can be viewed to be
protecting the corresponding outlist entry, so that the outlist entry is not deleted as long as the
translist entry exists. Further, since an outlist entry is normally protected by its reachability from
thelocal roots, atranglist entry can be viewed as aroot with areference to the corresponding outlist
entry. This model helps to consolidate all outgoing remote references into the outlist instead of
maintaining them in two separate lists. The two models are conceptually identical, but we shall
use the “consolidated outlist” one because it is easier to discuss.

Now consider the case when the sender itself sends the increment message to the owner when it
sends the mutator message to the receiver. When the receiver receives the remote reference, it
may decide not to install it and send a decrement message to the owner. Again, the problem is
that the decrement message might be received before the increment message from the sender, as
shown in Figure 2-9 B(i). To avoid this problem, the sender must wait until it has received an ack
confirming receipt of theinsert message before it can even send the mutator message (Figure 2-9
B(ii)). Since thisscheme adds around trip delay before mutator messages can be sent, the earlier
schemeisusually preferable.
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Without the acks, the race conditionsnoted in the above two schemes can happen even if the links
are reliable and deliver messages in FIFO order. The reason is that in the scenario depicted, the
increment and decrement messages are sent on different channels. The solution therefore is to
delay the decrement message until an ack for the increment message has been received from the
owner.

The decrement message can be sent in thebackground. Notethat both theincrement and decrement
messages must be sent on reliable channel s that do not duplicate messages. Neither increment nor
decrement is idempotent. If the same increment message is received twice by the owner, the
reference count of the object will remain higher than its real value, and the object will never be
collected. If the same decrement message is received twice, the reference count may drop to zero
prematurely. Because it requires reliable message-sends (together with the extra ack messages),
plain reference counting is not favored for distributed GC.

24.3 Weighted Reference Counting

Thisschemeisdevised to avoid increment messages. It associatesweightswith remote references,
which are stored in the outlist entries. The invariant maintained is that the sum of the weightsin
all outlist entries pointing to an object isthe same as the weight in the inlist entry at the owner of
that object, discounting decrement messagesin transit [Wen79,Bev87].

When an inlist entry isfirst created, it is assigned the maximum weight, which is also the weight
assigned to the outlist entry pointing to it. thisis illustrated in Figure 2-10(A). Subsequently,
when the holder of aremote reference passesit to another node, it dividesthe weight inits outlist
entry into two parts, retains one part, and sends the other with the message. Usually, the weight
isdivided equally, but that is not necessary. The receiver creates an outlist entry for the reference
with the weight included in the message, or, if it already had an outlist entry, adds the weight to
the existing value. The effect is that the sum of weights associated with the reference remains
unchanged (Figure 2-10(B)). Thus, the increase protocol involves no extra messages, only some
local computation.

When anode removes an outlist entry, it sends a decrement message, including the entry’sweight,
totheowner. Theowner subtractstheincluded weight fromthat intheinlist entry (Figure 2-10(C)).
Note that after an inlist entry is created with the maximum weight, its weight never increases. If
the weight drops to zero, the inlist entry can be collected. Asin plain reference counting, the
decrement message must be sent in reliable way — without loss or duplication.

The biggest problem with this schemeis that the weight in an outlist entry is halved every timeit
is copied into a mutator message. Thus, an initial weight of 2* can be copied only k times before
it fallsto 1 and cannot be split any further. Of course, thiswill happen only if the copying of the
reference was lop-sided — aways occurring from anode that already had alow weight, but itis
still apossibility. Several solutionshave been suggested. Oneisthat the sender sendsan increment
message to the owner, in response to which the owner increments the weight in theinlist entry by
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Figure 2-10: Weighted reference counting
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some amount. When the sender receives an ack from the owner, it can increase the weight of its
outlist entry by the same amount. An alternate solution, which avoids the synchronous increment
message, isto use indirection: create a new inlist entry at the sender, initialized to the maximum
weight, that points to the outlist entry (whose weight has dropped to 1), and send a reference
pointing to the new inlist entry to the receiver (Figure 2-10(D)). When the receiver accesses its
reference, which pointsto the sender, the sender redirects the access to the owner.

Thereis another scheme similar in spirit to weighted reference counting, called generational ref-
erence counting [Gol89], which is not described here. (Caution: the schemeis not related in any
way to the generational collection described in Section 2.3.2.)

244 Referencelisting

Here, instead of keeping just a count, the inlist entry for an object keeps the list of al nodes that
contain a remote reference to it [Bis77, SGP90]. Assume that the nodes are identified by distinct
node-ids. It is common in the literature to break the inlist entry into separate elements, each
containing areference to thelocal object and asingle node-id from where the object is referenced.
In the context of reference listing, we will call each such element an inlist entry. The invariant
maintained is that if a node has an outlist entry for an object, then that object has a matching
inlist entry for the node. Instead of the increment and the decrement messages used in reference
counting, anode sends insert and del ete messages, which include the node's node-id.

Asin the context of reference counting (Section 2.4.2), the receiver sends an asynchronousinsert
message to the owner, while the sender remembers the reference in transit in atranglist until the
delivery of the insert message is confirmed. ([SGP90] avoids the sending of synchronous insert
messages by using another scheme, which involvesindirection; see Section 2.4.5.) Upon receiving
an insert message, the owner creates a new inlist entry of the referenced object for the indicated
node, if one does not exist already. An entry in the tranglist protects the corresponding entry in the
outlist, so that a del ete message is not sent as long as the trandlist entry exists (Figure 2-11). Upon
receiving a del ete message, the owner deletes the entry for the indicated node, if one exists.

Reference listing improves fault-tolerance in message delivery. With the use of an additiona
technique, it does not matter if delete messagesare lost. Recdll that if adecrement messageislost,
the associated object will never be collected. The techniqueis asfollows:

1. Each node periodically sends messages to al nodesit contains references to. The message
sent to a node includes all entries in the sender’s outlist that refer to objects on that node.
We call these messages trim messages.

2. When anodereceives atrim message, it gatherstheinlist entriesfor the sender node. By the
invariant this scheme maintains, the part of the outlist sent by the sender is a subset of the
part of theinlist at the owner. Theinlist will have additional entriesif some del ete messages
were lost, or were not sent. The owner can remove al such entries.
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In fact, the delete messages need not be sent at al provided trim messages are sent periodicaly.
The advantage of sending trim messages instead is that they effectively batch together all earlier
delete messages. No harm is doneif atrim message is lost — the next one will do the work. One
problem with a trim message, however, is that it must be sent in its entirety to be effective; that
is, the message must contain all outlist entries at the sender pointing to the owner. This problem
exists because the owner removesinlist entriesif they are absent in the outlist.

Further, unlikeincrement and decrement messages, insert and del ete (or trim) messages are idem-
potent, so accidental duplication does not hurt. However, delayed messages that get re-ordered
behind messages sent later could still be problematic. A delayed duplicate insert message can re-
insert an entry intheinlist after it had been deleted. But thisis benign under the scheme described
above, because a subsequent trim message will get rid of the entry.

However, astraggler delete (or trim) messageispotentially unsafe. Supposethat aninsert message
was sent after the delete message to re-create the inlist entry. If the delete message reaches the
owner after the insert message, the inlist entry will be deleted for good. One way to avoid this
problem is to use timestamped insert and del ete messages. The owner node stores the timestamp
from the insert message in the inlist entry. A delete (or trim) message is effective only if it is
timestamped higher than theinlist entry.

For this timestamping scheme to work, the timestamped insert and the delete messages must be
sent by the same node — the receiver, which was the holder of that reference. It does not work if
theinlist entry is timestamped by the owner instead. This happens, for instance, when an insert
message from the receiver is suppressed because the sender is the owner itself. As before, the
delete messageis still timestamped by the node that held the reference, namely, thereceiver. Since
the clocks of the owner and the holder may not be synchronized, a somewhat more complicated
protocol isrequired (see [SGP2O0]).

Another way in which reference listing provides extrafault-toleranceisthat anode can send query
messages to the nodesfor whichit hasinlist entries. Such a message promptsthe recipient to send
a trim message to the owner. Alternatively, the owner may explicitly query about a particular
remote reference.

The upshot of all thisisthat GC messages are sent in the background and do not require reliable
delivery. One drawback of using reference listing is that it consumes more space than reference
counts; this might be acceptable if remote references are rare.

245 Indirection, and Strong-Weak Pointers

The primary goal of the indirection technique, which was briefly described in the context of
weighted reference counting (Figure 2-10(D)), is to avoid synchronous increment or insert mes-
sages. The key observation isthat the sender already has an outlist entry that protects the remote
inlist entry at the owner. Now, if the remote reference sent to the receiver is made to protect the
outlist entry at the sender, theinlist entry at the owner will be protected indirectly. To thisend, te

34



sender passes the receiver areference to its own outlist entry instead of a direct reference to the
object.

The problem with using indirection is that if the receiver accesses the reference, it is indirected
through the sender. One solution is to snap the indirection by communicating to the owner in the
background [SGP90]. As soon as the receiver has itsown inlist entry at the owner, it can switch
its reference to point directly to the object. However, it islikely that the receiver will attempt to
access the reference as soon as it obtainsit from the sender, and if snapping has not occurred by
then, the access will take an indirection.

Another solution eliminates the indirection in accesses completely. The sender sends a pair of
references for each original reference: aweak pointer and astrong pointer, and the receiver stores
both of them in its outlist entry. The strong pointer is used for protection against erroneous col-
lection, while the weak pointer is used for direct access to the object.

If the sender is also the owner of the reference, both of the two pointers it sends to the receiver
point to itsobject. If not, the sender must have atwo-pointer outlist entry itself, which was created
when it received the reference. It creates the two pointersfor the receiver as follows:

1. It passesits own weak pointer as the weak pointer.

2. It passes a pointer to its own outlist entry as the strong pointer.

The above scheme maintainstheinvariant that the weak pointers point directly to the actual object,
and achain of strong pointers protect that object against collection. Asan optimization, the strong
pointers can be snapped in the background to point directly tothe object after the owner has created
acorresponding inlist entry. Notethat the snapping isnot essential for the performance of accesses:
its only benefit is that it frees up the intermediate inlist and outlist entries, which can then be
collected if nothing else references them. If the maintenance of such entriesis not abig cost, the
snapping is unnecessary, so the increase protocol does not involve any extra message.

The use of indirection and strong-weak pointers is illustrated in Figure 2-12. Both the strong
and weak pointers of the outlist entry at the sender point to the actual object » because it was
sent the reference by the owner itself (Figure 2-12 (A)). When the sender sends the reference to
the receiver, it creates the two pointers for the receiver in accordance with the two rules given
above. This protects the sender’s outlist entry even when it deletes its own copy of the reference
from object y (Figure 2-12 (B)). Later, in the background, a separate inlist entry is made for the
receiver, and then its strong pointer can be changed to point directly to the object. Thisallowsthe
collection of the outlist entry at the sender (Figure 2-12(C)).

[Pig91] uses thistechnique in conjunction with reference counting, athough it is modeled differ-
ently. [SDP92] uses the technique in conjunction with reference listing.

One drawback of using strong-weak pointersisthat every reference included in mutator messages
actually occupies the size of two references. Thisis awkward if the mutator message is carrying
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Figure 2-12: Indirection and strong-weak pointers
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an object that contains references. It requires that the object be marshalled into a different format
wherein the contained references are twice as big.

A comparison between the use of trandlist and strong-weak pointersis enlightening. Both avoid
synchronous insert messages by securing the outlist entry at the sender. With the translist tech-
nique, the owner is sent an asynchronous insert message, and the outlist entry at the sender is
protected by atranglist entry until the delivery of theinsert message is confirmed (Section 2.4.2).
The asynchronous insert message is hecessary to remove the tranglist entry: without it, the refer-
enced object will not be collected because the outlist entry will persist for ever. With strong-weak
pointers, the outlist entry is protected until the receiver holdsthe reference. This technique obvi-
ates the need to send insert messages altogether: the outlist entry isautomatically unsecured when
the receiver deletes its copy of the reference. Asynchronousinsert messages may still be sent for
possible reclamation of intermediate entries even before the referenced object becomes garbage,
but all garbage will be collected even in the absence of such messages. An associated benefit of
avoiding insert messages is that there is no danger of out-of-order delivery of insert and delete
messages, which otherwise requires some kind of timestamping protocol to ensure correct order.
However, itisnot clear if thisisabig enough advantage to outweigh the drawbacks of strong-weak
pointers listed earlier.

2.5 Collection of Circular Garbage

Distributed reference tracking does not collect distributed circular garbage by itself (Section 1.2).
Some systems can afford to ignore this kind of memory leak because they are short lived, or
because distributed circular structures form only rarely in them. Others have to augment their
reference tracking scheme to collect all garbage. Some of these techniques are described in the
following subsections. It is assumed that any local circular garbage is collected by the local col-
lector.

An important metric to keep in mind while judging a technique is the following property:

The collection of a distributed cycle should not require the cooperation of any node
other than those containing the cycle.

Thisproperty isdesirablefor fault tolerance in large distributed systems. With respect to Figure 2-

13, the collection of the cycle that passes through Node B and €' should not require cooperation
from Node A.

251 Object Migration

The am here is to consolidate an unreachable distributed cycle into a single area where it can be
collected by the local collector [Bis77, SGP90]. Thisisimplemented as follows: if an object is
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unreachable from the local primary roots but is remotely referenced, it is moved to a node that
references it. Thelocal GC helpsin finding such objects. Asa part of local tracing, it first marks
all objects reachable from only the primary roots. Any object that has an inlist entry and has not
been marked is a candidate for migration to one of the nodes that reference it. This requires the
inlist entry to maintain information about the remote nodes referencing it, asis donein reference
listing (Section 2.4.4). All unmarked objects that are remotely referenced from the same node,
and other unmarked objects reachable from them can be batched and sent together to that node
(Figure 2-14).

migration allowed
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Figure 2-14: Consolidation of distributed circular garbage into one node

Now consider circular garbage comprising two objects on different nodes, each referencing the
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other. It is possible that the two objects might migrate to each other’s node at the sametime. To
avoid this ping-pong effect, the nodes are totally ordered in some way and objects are allowed to
migrate in one direction only.

The virtue of this scheme is that collection of a distributed cycle involves only pairwise commu-
nication among the owner nodes; it does not matter if other nodes are inaccessible. In fact, al of
the nodes on the distributed cycle need not be up at the same time.

Thisscheme might migrateseven those objectsthat are not garbage. Thishasabenign re-clustering
effect in that objects settle down in nodes they are referenced from. But migration may be unde-
sirable for severa reasons:

1. Some heterogenous systems either do not allow migration or make it rather cumbersome.

2. If object locations are visible to users and can be controlled by them, they may not like
automatic migration of objects.

3. Object migrationis problematic if references are location dependent because the references
pointingtotheold location must betaken care of. A technique sometimesusedisindirection:
leave a surrogate at the old location that stores a reference to the new location [LDS92].
However, indirection will not help in consolidating the cycle because, in effect, the cycle
still goes through the object’s old node (Figure 2-15). Before migration can be effective
in claiming circular garbage, the indirection must be snapped so that the references point
to the actual object directly, and the surrogate must be collected so that there is ho remote
reference to the objectsin the cycle.

4. Migration can create a load imbalance between nodes. Thisis because objects move only
in the direction governed by the total ordering of nodes; the nodes at the target end cannot
offload their objects to other nodes because those objects will migrate back to them.

Fixes have been suggested to the problemslisted above. One of the schemes suggested in [Ves87]
istomovethe“logica structure” of an object, whileitsreal physical copy remainsfixed. Notethat
thelogica structure needs to include contained references if the collection of cyclic garbageisto
occur. Thereal copy iscollected only if thelogical copy provesto be garbage. The drawback here
is the overhead and complexity of maintaining two copies. Another solution is to use “logical
areas’ [Bar88]. Instead of moving objects between nodes, the area boundaries are changed to
include objects on other nodes. This means that the local collector of an area may have to reach
other nodes to complete local GC; for example, it may involve sending some marking messages
to remote objects (Section 2.2).

252 Trial Deletion

This schemeis based on the observation that circular garbage survives reference tracking because
itisself-supportive. If an object istemporarily deleted for the sake of experiment and the reference
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Figure 2-15: Treating migration using surrogates does not consolidate cycles by itself.

counts in the object graph adjusted accordingly, then if the reference count of the original object
does drop to zero, it must be part of circular garbage [Ves87].

This scheme works well only if thelocal collection is aso based on reference counting, because
then it is simple to propagate the effects of an experimental deletion. It is possibleto achieve the
same effect with local collection based on tracing, but only at a high cost: propagating the trial
deletion of an inlist entry to check which outlist entries get affected reguires that the entire local
space be traced afresh while ignoring the chosen inlist entry.

To help conduct this experiment without messing up the true reference counts, each object hastwo
count fields: actual count and trial count. An object heuristically suspected to be on an unreach-
abledistributed cycleisselected asthe seed, and istemporarily deleted. Itstrial countisinitialized
toitsactua count (Figure 2-16(A)). Thetria counts of all objectsreferenced from the temporarily
deleted object are decremented. If thetrial count of an object dropsto zero, the object istemporar-
ily deleted itself, and the process is repeated (Figure 2-16(B)). Note that as the updates spread to
more objects, their trial counts are initialized from the actual count. If, ultimately, the trial count
of the seed object dropsto zero, the object, and all other objectswhaosetrial count dropped to zero,
can be collected (Figure 2-16(C)).

Since different nodes can initiate trial deletions on different seed objects simultaneously, objects
actually needs to maintain a list of trial counts. Different trial counts may be distinguished by
distinct stamps, say, the identity of the seed object.

Asnoted earlier, this schemeis suited only for reference-counting based local collection. Another
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big problem with this scheme is how to choose the seed object. One solution might be to select
an object that is not reachable through primary roots, and has not been accessed for along time.
However, even if the chosen object is garbage, it could be either on a cycle, or it could be just
reachable from a cycle, such as object y in Figure 2-16. Tria deletion is not fruitful unless the
object is directly on the cycle. Thisfurther worsens the odds of selecting the correct seed. A bad
selection results in wasted computation. Another drawback is that each object needs to have an
extrafield beside the one used to hold the actual reference count.

25.3 Complementary Tracing

Theideahereisto invoke aglobal tracing periodically to collect circular garbage [Ali84, Juu9Q].

The drawbacks of this scheme are the same as those of global tracing itself (Section 2.2.2), except
with reduced severity because tracing as a complementary scheme is run infrequently, and its
responsibility is limited to collecting circular garbage. In particular, al the nodes must be up
together for tracing to complete. This violates the desirable property that the collection of acycle
not depend on nodes other than where it passes through.

The next few subsections describe the use of more sophisticated techniques that improve upon the
fault tolerance of plain tracing.

254 Tracing with Timestamps

In conventional global tracing, nodeshaveto synchronizetheir mark and sweep phases. no garbage
can be swept until marking is complete at al nodes. [Hug85] uses propagation of timestampsin-
stead of marks to do away with the synchronization. The usual local collection, which traces the
local space starting from the primary rootsand theinlist, al so playstherol e of propagating thetime-
stamps on behalf of global tracing. As before, nodes can perform local collection independently.
Each local collection contributes toward global tracing, pushing it a bit further ahead every time.
As aresult, global tracing turns into a smooth, abeit slow, ongoing process executed incremen-
tally through local collections. However, it still remains the case that a node that is inaccessible
or unwilling to do local collection will ultimately hold up the entire global tracing.

The agorithm as described in [Hug85] uses reference flagging augmented with timestamping.
That is, each inlist entry contains a timestamp, but no other information such as the reference
count. Consequently, the scheme relieson global tracing to collect all distributed garbage, not just
circular garbage (Section 2.4.1). Thisis particularly bad because the tracing technique employed
here can take alot of timeto collect garbage. In fact, we hold that it is possible to use the same
technique in conjunction with reference counting or reference listing instead, which will speed up
the collection of non-circular distributed garbage.

The mainidea of the techniqueisthat the timestamp of areachable object keeps advancing, while
the timestamp of a garbage object eventually saturates. After awhile, a certain global minimum
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rises above the timestamp of the garbage object, and then the object can be collected. We now
describe the algorithm, which is somewhat involved, in greater detail.

A locd collection propagates the timestamps associated with the roots to the reachable entriesin
the outlist. Each node has a clock that it uses to record the time when the local collection was
initiated; call it the GC-time. The primary roots are al timestamped with the GC-time, while
the inlist entries retain the timestamps last put into them. When an inlist entry isfirst created at
the owner, it is marked with the current timestamp. The local collection is expected to mark an
outlist entry with the largest timestamp of any root (primary or inlist) from which it is reachable.
To achieve this, roots are selected for tracing in the decreasing order of their timestamps. Any
unmarked outlist entry reached can be marked with the timestamp of the current root. But objects
in genera, which intervene between the roots and the outlist entries, need only a bit for marking,
asisusua intracing. A marked object need not be traversed again: selecting the roots in the
decreasing order of their timestamps avoids the need to trace the object graph multipletimes.

At the end of the local collection, the outlist stands ready with fresh timestamps. The outlist is
divided according to the owner nodes, and the parts are dispatched to those nodes. Thisappearsto
be similar to the batched trim messages of Section 2.4.4, but their functionality isactually similar
to that of marking messages (Section 2.2). When a node receives a marking message, it updates
the timestamps of the corresponding inlist entries to the maximum of their existing value and that
suggested by the outlist. When anode increases the timestamp of an inlist entry, it records the fact
that it has not propagated the increased timestamp. To thisend, each node maintains a timestamp,
called redo in [Hug85], such that al timestamps less than or equal to that are guaranteed to have
been propagated. Therefore, in increasing an entry’s timestamp, the redo is set to the entry’s old
timestamp, if that islower than its current value. When anode has processed the marking message,
it sendsback an ack to the sender. When the sender hasreceived acksfrom all nodesit sent the new
outlist to, it can bump its own redo to the GC-time (provided it did not receive marking messages
from other nodes itself).

It can be shown that an inlist entry timestamped below the global minimum of the redo’s of al
nodesisgarbage. However, itistricky tofind the global minimum of theredo’sat any timebecause
redo values keep bobbing up and down. (Note that while timestamps of inlist and outlist entries
can only increase, the redo value of a node often decreases on the arrival of a marking message.)
[Hug85] modifies a distributed termination detection algorithm [Ran83] to compute the global
minimum, but other distributed snapshot algorithms could be used as well. [Ran83] presumesthe
use of global synchronized clocks and instantaneous messages. We believe that apart from the use
of thisagorithm, the techniquein [Hug85] will work just as well without these two requirements.
If the clocks on different nodes are out of synchronization, that will only affect the performance
by further delaying the collection of garbage.

One way to view the above algorithm is that each local collection kicks off a new run of tracing
by marking its primary roots with the current timestamp. Further, by propagating the timestamps
in theinlist entries, it simultaneously propagates the tracing runsinitiated at other nodes.
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Thereare several problemswiththisscheme. Althoughit doesnot requirethe nodesto synchronize
themarking or bedl up together, it doesrequire all nodesto cooperate. If anodethat crashed does
not recover, or issimply unwillingto doits part, the entire global tracing will eventually cometo a
halt. In terms of the algorithm, the global minimum redo will get stuck at that node’s redo (which
remains fixed), so newly created distributed garbage will never get collected. Thisis true even
if the inaccessible node is not related to the distributed garbage in question. Another drawback
is that the execution of the distributed a gorithm to compute global minimum redo is costly and
slows down the collection of garbage.

255 Centralized Server

This scheme makes use of a logically centralized service that tracks al inter-node references
[LL92]. The implementation of the service may actually be distributed, and may use replication
for high availability and reliability, but it appears asif it were run by one server [LLSG90].

Nodes communicate with the service to provide it with information of their outlists and translists
(Section 2.4.2), typically, soon after they have performed alocal collection. They also query it
for the accessibility of their inlist entries. More precisely, a node queries whether an inlist entry
unreachable from its primary roots might be reachable from primary roots at other nodes. If the
service responds with a no, the node can del ete the corresponding inlist entry.

Since nodes do their local collections asynchronously and inform the service accordingly, the
service never has a snapshot of the entire object graph at any time. Instead, it must make do
with a fuzzy view and make conservative decisions while still guaranteeing that the nodes will
ultimately be able to collect all garbage. To this end, it uses a timestamping protocol involving
loosely synchronized clocks at the nodes and a maximum lifetime for messages in transit. The
violation of these bounds does not result in incorrectness, but may force certain messages to be
dropped and degrade performance.

The service can detect non-circular distributed garbage relatively easily. An inlist entry is not
reachable from other nodes if it is not in the outlist or tranglist of any node. The service requires
more information to detect circular garbage. For example, each node could provide connectivity
information describing exactly which outlist entries are reachable from each of the inlist entries.
The service can use this information to build a dense graph of all inter-node references present
in the system, and perform alocal tracing to detect garbage. This scheme is not viable, however,
because to provide the connectivity information, the nodes may have to traversetheir local spaces
multipletimes. [LL92] therefore employs the technique used in [Hug85] instead.

The nodes do not have to communicatewith each other for the purpose of GC. The communication
with the service can be performed in the background. Further, having a specia server to detect
distribute garbage offloads work from other nodes. The drawback, however, is that the server,
albeit replicated, can become abottleneck in alarge system. Also, the nodes haveto transfer afair
amount of information to the server in order to haveit detect all garbage.
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25.6 Tracingin Groups

This scheme aims to collect unreachable distributed cycles without requiring the cooperation of
nodes other than those containing the cycle. The main idea is to reuse the concept of separate
areas at a higher level: any set of nodes can decide to form a group, and perform a group-wide
tracing that collects all cycleswithinthe group [LQP92]. But unlike areas, groups of nodes can be
formed and dismantled dynamically, although it may be desirable to form some groups statically
and never dismantlethem.

Asin the case of separate areas, the conservative assumption that needs to be made to collect a
group independently of othersisthat al in-coming references from outsidethe group arereachable.
Therefore, the roots for agroup-wide tracing comprise the primary roots of the member nodes and
the references from outside the group. We shall refer to them as the group’s roots for brevity.
However, it is tricky for a group to find out the references from outside. Note that an area is
statically fixed, so it can keep track of the references from outsidein the inlist, but when a group
is formed it must figure this out afresh. In [LPQ92], the group derives the information from the
reference countsin theinlistsat each node. It uses [Chr84] to compute precisely how many times
aninlist entry is referenced from outside the group; if thisis non-zero, the entry isincluded in the
group’sroots. We claim that the same could be achieved more easily if reference listing were used
(Section 2.4.4). Simply stated, all inlist entries except those that stand for other member nodes
of the same group are included in the group’s roots. Once the group roots are found, the group
members mark the included inlist entries to distinguish them from the rest (Figure 2-17).
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Figure 2-17: A group-wide tracing collects cycles lying within the group.

Just as [Hug85] used local tracing to propagate timestamps, [LPQ92] uses them to carry out the
group-wide tracing. But unlike [Hug85], the mark and the sweep phases are separated. In the
mark phase, thelocal collection is expected to propagate marks from the group roots to the outlist
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entries reachable from them. Thisis achieved by having the local tracing start from the group
roots first, marking all outlist entries reached, and then continuing the remaining trace from other
inlist entries.

The outlist entries that get marked are sent to their owner nodes, but only if the owner is a group
member. On receipt of such a message, the owner node marks the corresponding inlist entries. If
it does mark an entry that was not marked aready, it records the fact that it has yet to propagate
some marks by setting aredo flag. These additiona markswill be propagated the next timeit does
aloca collection itself. The owner then sends back an ack to the sender. When the sender has
received acks from all nodes it sent outlists to, it can reset its own redo flag (unless it received
outlists from other nodes in the meanwhile). Further, when a new inlist is created, the owner
setsitsredo flag. The marking terminates when all redo flags are reset. A distributed termination
detection algorithmisemployed to detect thiscondition. Once markingisover, al unmarkedinlist
entries can be collected.

This scheme is fault tolerant. If some nodes are down, or if there is a network partition, the set
of nodes accessible to each other can still form a group and collect circular garbage lying within
the group. Secondly, a small distributed cycle can be collected quickly by a small group instead
of having to wait for a global tracing. Multiple group collections can be active at the same time.
They may even overlap, though this puts more burden on local collections. If remote references
exhibit spatial locality, e.g., if there are many more remote references within the same local area
networks than across them, groups can even be organized hierarchically.

Among the drawbacks of this scheme is that dynamic configuration of nodes into groups that
succeed in collecting circular garbage is anon-trivia task. Further, it still involves a group-wide
termination detection algorithm. Thisisin contrast with schemes like migration (Section 2.5.1),
which makes incremental progress by communication between pairs of sites.

257 Summary

Among the techniques discussed in this section, object migration and trial deletion have the prop-
erty that the collection of adistributed cycleinvolvesonly the nodesthecycleresideson. However,
forced object migration may result in load-imbalance, whiletrial deletion is not suited to tracing-
based local GC. Complementary tracing is effective provided all nodes cooperate. This may be
acceptable in relatively small distributed systems. Using a highly available centralized server to
coordinate the tracing improves fault tolerance by requiring only asynchronous message-passing
between the server and the nodes. Tracing in groups limitsthe involvement in each run of tracing
to the member nodes of the group, and collects distributed cycles lying within the group.
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Chapter 3

An Overview of Thor

Thor is an object-oriented database system being developed by the Programming Methodol ogy
Group at the Laboratory for Computer Science at MIT. Thor can be used in a heterogenous dis-
tributed system and it allows programs written in different languages to share objects [Lis92,
LDS92]. Thischapter describes the system architecture of Thor, but the description isrestricted to
what is relevant to the design proposed in thisthesis. The setting and the terminology introduced
herein will be assumed in later chapters.

The nodes that run client programs are different from server nodes that store the database. Thor
runs on both client and server nodes: the component that manages persistent objects at a server
is caled an object repository (OR), while the component that interacts with the client program is
caled afront end (FE). Thor’s universe of objects is spread across multiple ORs, and multiple
clients can access it concurrently through their own front ends (Figure 3-1). Thor is designed to
be scalable: adatabase may span alarge number of ORs separated by awide-area network.

Objects in Thor are encapsulated and can be accessed by clients only through their operations.
Thor provides transactions that allow clients to group operations so that objects are consistent in
spite of concurrency and failures. The effects of committed transactions persist across crashes.

3.1 Object Repositories

An OR manages the objects stored at a Thor server. Each OR has adistinct OR-id. Objects at an
OR may contain references to other objects at the same OR or objects at other ORs. A reference
to a local object is in the form of an oref!, which is a location-dependent name. (An oref is
devised such that the object can be efficiently located while still allowing some flexibility in its
exact placement.) A reference to aremote object, called an xref?, iscomposed of the OR-id of the

pronounced as “ O-ref”
2pronounced as “ X -ref”
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Figure 3-1: A configuration of clients, front ends, and object repositoriesin Thor.

remote OR and the oref of the object withinit. Most references in the objects are expected to be
local.

The dlotsfor storing references in an object are only aswide as an oref, therefore an object cannot
contain an xref directly. Instead, it contains an oref to a special local object, called a surrogate,
whose sole purposeisto contain the xref of the remote object (Figure 3-2(A)). We shall often refer
to non-surrogate objects as actual objects.

Each OR has a root directory object. The root directory contains references to other objects,
presumably other directories.

The ORs use some kind of stable storage mechanism to store their abjects. Our plan is to use
primary copy replication [OL88]. Nonetheless, in the rest of this thesis we shall simply use the
terminology commonly used for disks.

3.2 Front Ends

A front end is created for each client program. It fetches copies of the required objects from their
ORsintoitsloca cache, and runs operations on them. The objects at the ORs will be referred to
as the stable versions to distinguish them from their cached versions at the front ends. The front
end terminates together with the client program, or possibly earlier.

When the front end contacts an OR for thefirst time, it opens a session with it; during the session
the front end and the OR maintain information about each other. The front end closes all sessions
before it terminates.

To fetch an object from an OR, the front end asks for it by its oref. It can aso ask for the root
directory object at the OR without knowing its oref; in fact, that is how the front end begins to
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acquire other orefs.

When an OR receivesafetch request, it sends over the requested object plus someother objectsthat
it suspects might be required by the front end in the near future. This mechanism is commonly
known as prefetching, and we call the group of objects sent over a block. When the front end
receives the block, it caches al objects therein. Later, the OR may stream more blocks in the
background so that the front end has even more prefetched objects available.

Asdescribed earlier, objects at the OR contain references in theform of orefs. It isthefront end's
job to convert them into direct memory pointers to cached objects for better performance; the
conversion iscalled swizzling [M0s90]. To do swizzling, the front end maintains a swizzle table,
which maps xrefs to memory pointers for the cached objects. If an oref refers to an object that
the front end has aready cached, it replaces the oref with a memory pointer to the object. If the
referenced object is not in the cache, the front end creates a surrogate containing the xref of that
object, and the reference is replaced by a memory pointer to the surrogate (Figure 3-2(B)). To
distinguish between the surrogates at ORs and those at front ends, we call them or-surrogates and
fe-surrogates, but the prefix is dropped whenever the context is clear.

The treatment of or-surrogates must be made clear here. Consider an or-surrogate stored at xref
x1 in OR4, which containsthe xref z, of an object in OR,. When the or-surrogate is fetched by a
front end, the front end makestwo entriesfor it in the swizzletable: one at x1, and another at z.
Both point to the same object at the front end — the copy of the actua object, or an fe-surrogate
if the object at 2, has not been fetched. Thus an object may be entered in the xref table under a
number of different xrefs.

If the front end runs into an fe-surrogate during the course of some operation, it actualizes the
object by fetching it from the OR. The xref contained in the surrogate provides the OR-id and the
oref. Then the surrogateis filled with the memory address of the actual object, so that all existing
pointers to the surrogate now point indirectly to the actua object (Figure 3-2(C)). A background
process at the front end keeps snapping such indirection by replacing pointers to filled surrogates
with direct pointersto the actua objects. Subsequently, the local GC at the front end collects the
surrogate.

The operations executed by the front end may modify the objects in the cache as well as create
new ones. Objects at the front end for which a stable copy exists at some OR are said to be
persistent; others are said to be temporary. When a transaction commits, copies of the persistent
objects that were modified during the transaction are sent to the ORs they were fetched from. The
temporary objectsthat are reachable from these objects are al so sent along to the ORs, whereupon
they become persistent.* They are said to be newly persistent. Thisishow the ORs get popul ated.

Before the front end sends a copy of an object to an OR, it replaces the memory pointers contained
in the object with orefs. This conversion is known as unswizzling. To do unswizzling, the front

3“fe-surrogate” is pronounced as “ FE-surrogate,” and “or-surrogate” as “ OR-surrogate.”
*The mechanismiis explained further in Section 3.4.
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end maintainsan unswizzetable (or equivaent informationin adifferent form) that mapsacached
object to its xref. As noted earlier, an object at the front end may have multiple xrefs associated
withit: oneat the OR where the object actually resides, and one each for the or-surrogates fetched
from other ORs that point to it. In order to avoid indirectionsin the unswizzled references, the
unswizzle table provides the xref where the object actualy resides (Figure 3-3).

FE
Swizzle Unswizzle
Table Table
Y A
X2 I
X3 B P ./ \..... X3
X4 N \
x5

Figure 3-3: Swizzle table and unswizzle table

In unswizzling a memory pointer, if the xref of the containing object and that of the referenced
object havethe same OR-id, the pointer can bereplaced by theoref part of the xref of thereferenced
object. Otherwise, thefront end creates anew surrogate to be sent along with the contai ning object,
and replaces the memory pointer with areference to that surrogate. The new surrogate contains
the xref of the referenced object. When the OR receives such a surrogate, it may create a new
or-surrogate, or, if it already has an or-surrogate for that xref, it may use the existing one instead.

3.3 Clients

A client program, which may be written in any programming language, interacts with Thor viaa
front end. If thelanguageistype-safe, the client and the front end may execute in the same address
space. But programswritten in unsafe languages could possibly corrupt the front end such that the
errors reach the ORs. Since thisis unacceptable, the two must run in separate address spaces and
communicate through messages.

If the final result of an operation invoked by the client is a reference to an object, the front end
turnsit into a handle before returning it to the client (Figure 3-4). Handles are short lived: they
arelocd to the lifespan of the front end. The front end maintains a handle table mapping handles
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to objects. The client refers to abjects through handles. It can also ask for the root directory of an
OR, and that is precisely how the client begins to get acquire handles.

CLIENT FE OR 1

varl := get_root (OR1) e H @‘ .........

var2 := lookup (varl, "B") /
toF ' . :
Ol AL
it () ) <D>
—/ ! 7 °

var2 7

...... » oref  — —= xref ——® memorypointer =g handle

@ object at OR @ its copy at FE <> or-surrogate Afesurrogate

Figure 3-4: The client accesses objects at the front end through handles

3.4 Transaction Commit

The client may direct the front end to commit or abort the current transaction, which includes the
series of operations since the last commit or abort. Transactions are serialized using optimistic
concurrency control: the front ends might fetch inconsistent data, so the transactions have to be
validated at commit time[KR81]. A transaction abortsif the vaidation fails.

The front end tracks the persistent objects read and modified during the current transaction. At
committime, it collectsthe (to-be) newly persistent objects by tracing for temporary objectsreach-
able from the set of modified objects. For each such object, the front end indicatesiits preference
for the OR where it should be placed.

The ORs whose objects were read or modified by the transaction constitute the participants of the
transaction. The front end selects a participant as the coordinator, and sendsit the necessary infor-
mation about the transaction, including copies of newly persistent objects and modified objects.
The coordinator coordinates the commit with other participants. The 2-phase commit protocol
proceeds as follows [Gra78, Ady93]:

Phase 1 (or, the prepare phase)

initiate: The coordinator assigns the transaction atid that is unique across Thor. All messages
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sent on behalf of the transaction are stamped with itstid.

Thecoordinator sends out prepare messagesto the participants. The messageto aparticipant
containsthe information required to validate and commit the transaction at that participant,
including its share of newly persistent objects and modified objects.

prepare : When aparticipant receives the prepare message, it attemptsto validate the transaction.
If validation fails, it sends anegative ack to the coordinator. Otherwise, it forces arecord of
theinformation, called the prepare record, to stable storage and sends apositive ack. There
might be other information that needs to be returned with the ack; e.g., the orefs assigned to
the newly persistent objects. We shall call it phase 1 information.

decide (commit/abort): The coordinator waitsfor acks from al participants. If it receives aneg-
ative ack, or if it times out while waiting (after having retried a few times), it decides to
abort the transaction. Otherwise, it decides to commit the transaction, and saves arecord of
this decision and the collected phase 1 information on stable storage.

The coordinator can respond to the front end about the fate of the transaction as soon as it
hasdecided. It also sendsalong the phase 1 information useful to thefront end, including the
xrefs of the newly persistent objects. The second phase is then executed in the background.

Phase 2 (or, theinstall phase)

install : The coordinator distributes the decision and the collective phase 1 information to the
participants. When a commit decision is reported to a participant, it logs the decision and
the phase 1 information on stable storage, and sends back adone message to the coordinator.
At some later point, the modifications suggested in the prepare record are installed in the
object store. If an abort decision isreported, the prepare record isinvalidated.

done: When the coordinator receives a done message from all participants, it can truncate al
records of the transaction.

We will talk of transactions as having initiated, prepared at a participant, committed, aborted,
installed at a participant, or done if they have passed the corresponding stage.

Having summarized the architecture of Thor, we note that there are two distributed operations
that liein the critical path of operations invoked by clients (i.e., they affect the latency visibleto
clients):

1. Fetching an object from an OR.

2. First phase of the 2-phase commit.

Therefore, a performance requirement on the distributed GC in Thor isthat it minimizethe delay
it adds to these operations.
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Chapter 4

FE-OR Garbage Collection

This chapter first presents an overview of our design for distributed GC in Thor, and then focuses
onthe GC protocol between afront end and an OR. The GC protocol to be followed among the ORs
isdescribed in the next chapter. Section 4.1 redefines the problem of distributed garbage collection
in the specific context of Thor. Section 4.2 provides an overview of the proposed solution. The
remaining sections provide detail on the FE-OR GC protocol. Section 4.3 describes the part of
the protocol that ensures the safety of accessible objects, while Section 4.4 describes the part that
guarantees progress in collecting garbage. Section 4.5 ded's with providing safety despite OR
crashes.

4.1 TheProblem

The task of garbage collection in Thor isto reclaim as many objects at the ORs as possible such
that no client ever finds anything amiss. It followsthat the objects accessible from client programs
need to be protected against collection. A client can refer to objects in two ways: either specify
the root directory object at any OR, or use ahandle given it earlier by the front end (Section 3.3).
Therefore, the primary roots for garbage collection in Thor consist of the root directories of al
ORs and the handle tables at the front ends running at the time.

The distributed GC is responsible for protecting remotely accessible objects and exposing inac-
cessible ones to local collection. The problem arises because of the roundabout manner in which
the exchange of references might take place in Thor (Figure 1-3), which we recapitul ate bel ow:

1. Thefront end fetches objects from an OR referred to as the sender.

2. Thefront end reads data from these objects and copies it into objects fetched from another
OR, referred to asthe receiver.

3. When the time comes to commit the transaction, the front end sends necessary information,
includingthe modified versionsof receiver’s objects, to an OR designated asthe coordinator.
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4. The coordinator executes the 2-phase commit protocol with the participants, which include
the receiver, and notifies the front end of the result (Section 3.4).

Thus, when the sender sends the objects, it does not know which ORs, if any, will receive ref-
erences extracted from those objects. The sender may or may not be among the participants,
depending on whether any of its objectswere read or modified during the transaction in which the
receiver’s objectswere modified. For example, the front end might have read the sender’s objects
in an earlier transaction, stashed away some of the contained data in temporary objects, begun a
new transaction, and copied the data from the temporary objects into the receiver’s objects.

4.2 TheOverall Plan

The ORs protect remotely accessible objects by tracking incoming remote references. Each OR
maintainsan FE tablefor every front end it has sent objectsto; the FE tablerecords a conservative
estimate of references the front end holds to objects in that OR. Further, each OR maintains an
ORtablefor every other OR, which records a conservative estimate of incoming references from
that OR. If OR; has asurrogate pointing to an object in OR,, the OR tablefor OR; at OR, hasan
entry for the referenced object. The use of FE tables and OR tablesis aform of reference listing
(see Section 2.4.4 for a detailed analysis), where al inlist entries from the same area have been
grouped together into atable. Asdiscussed in Section 2.4.4, the main advantage of using reference
listing isthat the removal of entriesfrom FE tables and OR tables can be carried out by unreliable
messages, called trim messages, sent in the background.

The roots for the local collection at an OR include its root directory object, its FE tables, and its
OR tables. (To be complete, the roots a so include the modified versions and new objectsstoredin
the prepare records of transactionsthat are yet to beinstalled.) It isargued below that this protects
all objects accessible from the primary roots. An object reachable from the local root directory is
trivially protected against local collection. An object that is reachable from the handle table of an
FE is protected by an FE table followed by a sequence of zero or more OR tables. An object that
is reachable from a remote root directory via objects on intervening ORs is protected by the OR
tables on those ORs.

The argument aboveisillustrated by the scenario in Figure 4-1. FF; hasasessionwith OR;, from
where it has fetched the root directory A and an or-surrogate D. It is questionable how FF; got
hold of D inthefirst place, sinceit is not reachable from any root directory. One possibility that
can explainthesituationisthat theroot directory A contained areferenceto D when A wasfetched
by F'F1, and later, some other front end modified A such that the referenceto D was deleted. Now
consider object H, whichisreachablefromahandleat F'F1. The FE tablefor F'F; at OR1 protects
the or-surrogate D, which containsan xref to H . Therefore, the OR tablefor OR; a OR, protects
H. Asanother case, consider object J in OR3, which is reachable from the root directory A in
OR;. Theroot directory A protects or-surrogate B, which contains an xref to F'. Therefore, the
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ORtablefor OR1 a OR, protects F'. I protects the or-surrogate &, which contains an xref to .J.
Therefore, the OR tablefor OR, a OR3 protects /.
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Figure 4-1: OR tables and FE tables protect objects accessible from primary roots.

Itistheresponsibility of distributed GC to insert and delete entriesin OR tablesand FE tables. The
timely insertion of entries ensures the safety property that live objects will not be collected; the
entries must therefore be made in synchronization with the operations that call for the insertion.
On the other hand, deletion of entries ensures that garbage will be collected ultimately; therefore
it can be delayed and executed in the background. The events that result in the insertions and
deletions are briefly indicated below:

1. Entries are inserted in an FE table at an OR when the OR sends a block of objects to the
front end in response to a fetch request.

2. Entriesin an FE table are deleted when the FE closes its session with the OR, or when it
sends a trim message, indicating which objects at the OR it continuesto hold references to.

3. Entriesare inserted in the OR table for OR1 a OR, when OR;, as a participant of a com-
mitting transaction, receives new xrefs to OR,, which results in the creation of new or-
surrogates.

4. Entriesinthe OR tableare deleted when OR; sendsatrim messageto OR; indicating which
objects at OR; it continues to hold references to.
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The handle tableis essentialy an inlist maintained by the front end for the client. The front end
makes entriesin this table whenever it returns anew handle to the client. The client can help trim
the handle table by sending trim messages to the front end, indicating the handles that are useful
to it (or a delete message indicating the handles it is done with). The communication between a
client, itsfront end, and two ORs isillustrated in Figure 4-2.

data transfer through fetch and commit

o
1
handles block s AP
trim handle table trim FE table trim OR table

Figure 4-2: GC interaction between the client, the front end, and the ORs

We show below how OR tables and FE tabl es stitch together to protect the objectswhose references
areintransit between the sender and the receiver ORs. For simplicity, attention isfocused on only
one reference in transit. Further, to describe the most general scenario, the sender, the owner, and
thereceiver involved in the transfer are assumed to be different ORs. A series of events that tests
theintegrity of the scheme is described below, and isillustrated in Figure 4-3:

1. Before the sender sends the reference to the front end, there must exist an or-surrogate at
the sender containing an xref to the object at the owner. The owner must therefore have an
entry for the referenced abject in its OR table for the sender.

2. After the referenceis sent to the front end, the surrogate at the sender is protected by the FE
table there. Following this, it does not matter if the preexisting protection for the surrogate
iswithdrawn. (Say, the surrogate was earlier reachable from the root directory, but becomes
disconnected due to modifications made to the root directory.)

3. Thefront end copies the reference into an object fetched from the receiver OR. At commit
time, it sends the modified object to the coordinator.

4. The coordinator, the receiver, and the owner communicate with each other, resulting in the
creation of an entry for the referenced object in the owner’s OR table for the receiver. The
coordinator then informsthe front end of the commit.

5. Subsequently, the front end may do alocal collection that gets rid of the reference to the
surrogate fetched from the sender. It then sends a trim message to the sender. The sender,
noticing that the front end no longer references the surrogate, deletes the entry in the FE
table that protected the surrogate. Alternatively, the front end could close its session with
the sender, which resultsin the deletion of the entire FE table.
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6. The surrogate at the sender can then be reclaimed when the sender next performs a local
collection. After the local collection, the sender sends its outlist to the owner in a trim

message.

7. The owner, noticing that the sender no longer references its object, will delete the corre-
sponding entry in its OR table for the sender.

Note that the protection of the referenced object at the owner switched from the OR table for the
sender to that for the receiver without any gap in between. The FE table ensured the protection of
the or-surrogate at the sender, so that the entry in the OR table for the sender was maintained long

enough.
time —m
Owner
OR
session-end /
trim FE table {rim OR table
fetch commit committed ow
Sender == —— - - - Sender - - ner
—» - = = ®loordinatot=- = = = = = Frontend > OR OR

Figure 4-3: The overall plan: How objects with references in transit are protected.

The next four sections providethe complete design for insertion and del etion of entriesin FE tables
and OR tables.

4.3 Inserting Entriesinto FE Tables

When a front end opens a session with an OR, the OR creates an empty FE table for it. Subse-
guently, whenever the front end makes afetch request for some object, the OR sends back ablock
of abjects. What needs to be entered in the FE table?

At the bare minimum, the orefs of al objects in the block must be recorded in the FE table. So
long as the stableversions of these objects are not modified, the references contained in the objects
are also protected against local collection at the OR. The problem arises when a stable versionis
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modified — by aconcurrently executing front end or even the same front end — so that one of the
original references contained in it iseliminated. If that was the only reference to itstarget object,
that object might be reclaimed. But the front end may still have the reference cached. Therefore,
it isnot sufficient to record only the objectsin the block: the references contained in those objects
must be recorded too.

An or-surrogate included in the block is a specia case because it contains an xref to an object at
another OR. As with other objectsin the block, the oref of the or-surrogate is recorded in the FE
table. Aslong as the or-surrogate exists, the object referenced by it is protected by an entry in an
OR table at the OR where it resides.

Consider, again, the scenario in Figure 4-1. When the front end receives the or-surrogate D from
OR;, it acquires two references: the xref of the or-surrogate D, and the xref of the referenced
object H at OR,. It usesthe xref of H to directly refer to that object, as when fetching the object
or unswizzling a memory pointer to it. But it aso retains the xref of D — until H isfetched (if
ever) — so that the entry for D in the FE table at OR; is not removed?, which in turn protects
the referenced object H through the OR table at OR,. This technique is similar to the strong-
weak pointers technique described in Section 2.4.5. Here, the strong pointer is the xref of the
or-surrogate D, while the weak pointer is the xref of the referenced object H. The technique
protects the referenced object without sending an insert message to the OR where it resides.

In addition to the blocks sent to the front end, there is another source of entriesin the FE table.
When anew object created by thefront endisinstalled at the OR (in theinstal | phase of the commit
protocol), its oref must be entered into the FE table because the front end has a reference to the
object.

Although theinsert protocol does not involve any extramessages, thereisadifferent problem that
needs to be solved: the recording of all references contained in the block increases the latency of
the fetch operation and inflates the FE table. Blocks are relatively big because that alows more
objects to be prefetched. The OR has to scan each abject to check for references, and insert al
references in the FE table. We refer to the naive scheme that requires the objects to be scanned
before sending the block as scan-ahead. Two ways of optimizing the process are described bel ow.

43.1 Scan-Behind

Before sending the block to thefront end, the OR records only the objects composing theblock, and
it locks the stable versions of those objects against modification. The stable versions are scanned
after the block has been sent. Thelocks guarantee that all contained references are indeed entered
in the FE table before the containing object is modified.

!Note that or-surrogates areimmutable. They may be modified to reflect migration of the referenced object, but such
modification is benign.
2This remark will become clearer when the removal of FE table entries is discussedin Section 4.4.
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This scheme removes the scanning of objects from the critical path of the fetch operation, but
increases the total amount of work done because of the added complexity. Further, the scheme
does nothing to reduce the size of the FE table.

4.3.2 Scan-on-Need

The approach is similar to scan-behind in that only the objects composing the block are recorded
before they are sent to the front end. But the main idea here is not to scan an object unlessit is
going to be modified.

Each FE table needs to be divided into two:

¢ an obj-table, which records the references to the objects sent to the front end

¢ aref-table, which records the references contained in the objects sent to the front end

References to or-surrogates sent to the front end can be entered in either obj-table or ref-table,
because or-surrogates are immutabl e objects, and their contents need never be entered into the FE
table.

Before a block is sent to the front end, its objects are entered in the obj-table. When the stable
version of any object is about to be modified during the installation of atransaction (Section 3.4),
the OR checks every FE obj-table for that object. If an entry for the object is present in any obj-
table, the references contained in the object are included in the ref-table for the same front end.

In order to avoid re-scanning an object for the same FE table as it gets modified multipletimes, a
boolean scanned isincluded with each entry in the obj-table, which indicates whether the object’s
references have been included in the ref-table. Initialy, when an aobject is sent to the front end,
scanned inthe obj-table entry is set to false. When an object about to be modified isdiscoveredin
an obj-table, scanned ischecked. If it isfase, the object’sreferences areincluded in the ref-table
and scanned isset to true. Nothing need be doneif scanned isaready true. If the same objectis
sent to thefront end again (as part of another block), the scanned bit must be reset to fal se because
the object might have been modified since the last fetch and may contain additional references.

Another optimization is possible. If the modified version of an object contains a superset of the
references contained in the old version, the object need not be even searched for in obj-tables.
Thiswill hold, for instance, when the modifications are limited to the non-reference data part of
the object, or when some extra data is appended to the object.

The virtue of this scheme isthat it scans an object and adds its references into the FE table only
when needed, namely, when the object is about to be modified and one of the contained references
is about to be overwritten. Given that modifications are rarer than reads, we expect that most
objects entered in obj-tables will not have to be scanned. The scheme also keeps the FE tables
from explodingin size.
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One hitch is that before modifying an object, it must be searched for in all FE tables at the OR.
The situation worsens as the number of FE tables increases. But note that objects at the OR are
modified when a transaction is being installed. Since thisis a background process, delaying it is
probably an acceptable overhead — especially in the view of thefact that it expedites the fetches,
which liein the critical path of client-invoked operations, and are more common.

Further, the search for the FE obj-tables to which an object belongs can be expedited if auxiliary
data-structures are maintained to store thisinformation. As an extreme, an additional table may
be maintained that maps an object at the OR to the front endsit has been sent to. 2

4.4 Removing Entriesfrom FE Tables

An FE tableisremoved when the front end closesits session with the OR, which typically happens
when the front end is about to terminate. For short sessions, it may be acceptable to let the FE
table grow monotonically as more entries are added to it. For long-lived ones, however, the FE
table may grow very large and need some pruning.

441 Redundant Entries

There are various sources of redundant entries in FE tables. First, if the OR composes the block
with the objects physically clustered around the one asked for by the front end, some of those
objects may not be accessible from references at the front end at all. (This will not happen if
prefetching of objectsis done according to their reachability from the requested object.)

Second, the front end will be doingits own garbage collectionto make spaceinitslocal cache. The
roots for this collection include the entries in the handle table. In addition, the front end must not
collect any persistent object that was modified by the current transaction, regardless of whether it
is reachable from the handle table. The reason isthat when the transaction commits, the modified
copy of the object needsto be sent to the coordinator. So the roots also include the modified object
set for the current transaction (Section 3.4).

Besides deleting unreachable objects, the front end can create extra space by turning reachable
objects that are unlikely to be accessed into fe-surrogates. Thisis the reverse of caching; we cdl
it shrinking because it reduces actua objects to surrogates [Day93]. (Only persistent objects that
have not been modified during the current transaction can be shrunk in thisway.) When an objectis
turned into a surrogate, its contents are removed, which in turn may cause other objectsto become
inaccessible.

3There are other usesfor such atablein Thor. Oneis theinvalidate-notification service: when an object is modified
as aresult of atransaction at some front end, the OR notifies all other front ends that might have cached the object.
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442 TheOutlist

To each OR it has opened asession with, thefront end sendsa set of references it continuesto hold
to objects at that OR, so that the OR may trim its FE tablefor thefront end. Thisistypically done
soon after alocal collection at the front end. Continuing with the terminology set up in Chapter 1,
we refer to the set of references as the front end’s outlist for the OR.

The front end gathers the outlist by making use of its swizzle table, which maps each xref known
to the front end to a memory pointer for the corresponding object — actual or fe-surrogate (Sec-
tion 3.2). To be useful for the purpose of computing the outlist, the functionality of the swizzle
table is extended. First, the swizzle table is organized hierarchicaly: it maps an OR-id to an oref
table, which in turn maps an oref to a memory pointer. In addition, the oref table can enumerate
all pairsentered intoit. A list of al orefs entered in the oref tablefor an OR can serve asthe outlist
for that OR.

Asnoted in Section 3.2, an object may be entered in the swizzle table at multiplexrefs. If thefront
end fetches an or-surrogate stored at xref x; in OR4, which contains the xref z, pointing to an
objectin OR,, it makestwo entriesin the swizzletable: oneat «1, and another at x,. Theentry for
zpisintheoref tablefor OR,. If thefront end doesnot have asession open withOR5, theoref table
for that OR is not used as an outlist at all. Nonetheless, the object at =, is protected against GC
because the or-surrogate in OR; is protected by the FE table there, which in turn ensures that the
ORtablefor OR1 at OR; protectsthe object. Ontheother hand, if thefront end does have asession
open with OR,, the entry for z, isincluded in the outlist sent to it, even though the reference x»
may have never been fetched from OR, and does not exist in the FE table for the front end at
OR>. Thisextraentry isredundant in that it protects an object that was aready protected through
another FE tableand OR table. We expect that the occurrence of such entrieswill be small enough
that the extra slots occupied in FE tables can be ignored.

Since the OR uses the scan-on-need scheme and maintains the FE table as an obj-table and a ref-
table (Section 4.3.2), theoutlist must be separated into an obj-list and aref-list. Thisseparation can
be performed by checking the object paired with the oref in the oref table: if it isan fe-surrogate,
the oref isinserted in the ref-list, otherwise it is inserted in the obj-list. The handling of the or-
surrogates fetched from the OR needs to be validated. The scheme as described above inserts the
reference to the or-surrogate into the ref-list if the actual object was never fetched, and into the
obj-list if the object was; but this is acceptable because or-surrogates can be recorded in either
obj-table or the ref-table at the OR (Section 4.3.2).

If the outlist computed for an OR is empty, the front end has an opportunity to close its session
with that OR. Thisalowsthe OR to reclaim al resourcesit had maintained for that front end.
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44.3 A Timestamp Protocol

When an OR receives atrim messagefrom afront end, it replacesits FE tablewith the outlistin the
message. In the context of the scan-on-need scheme, this means that the OR replaces its obj-table
and ref-table with the obj-list and the ref-list contained in the trim message. Further, it can set dl
scanned bitsin the obj-tableto true, because obj-list and ref-list together cover al references the
front end continues to hold to objectsin that OR.

Trim messages are sent in the background — asynchronously and using unreliable delivery. This,
however, givesriseto the problem of delayed trim messages: what if the OR receives an old outlist
that does not capture the results of the recent fetches made by the front end? Replacing itsFE table
with such an outlist will lead to erroneous deletion of some entries that were made following the
recent fetches.

Any of a number of commonly-known, simple timestamping techniques can be applied to solve
the problem. It is desirable to use a scheme that allows the OR to send a block spontaneously,
that is, without a fetch request from the front end. Thisis useful for streaming extrablocksin the
background after the requested object has been sent (Section 3.2). Such blocks can be sent using
unreliable messages. A timestamping scheme suited for this purposeis given below. It issimilar
to the one used in [SDP92].

The OR timestamps each block sent out. It maintains the timestamp of the latest block sent to a
front end as 7T',,,.(# £, for each front end it has a session with. The timestamp required for the
purposeis simply a monotonically increasing identifier. On the other side, the front end maintains
the maximum timestamp of the blocks it has received from an OR as 7)., ;o r), for each OR it
has a session with. Just before the front end computes the outlist for an OR, it records the current
vaueof 1), ,,jor) for that OR as T, ;0 r), ad includesthistimestampin the trim message. This
protocol requires the front end to drop blocks received later from the OR that are timestamped
below 7},;,,j0r]- As asimplification, the front end could drop all out-of-order blocks received
from any OR, that is, those timestamped below 77,0 r); this may result in more blocks being
dropped than if 7;,;,,[0 r) Was used as athreshold.

When the OR receives the trim message, it compares the timestamp included (7},.;,,,jor)) With
142 p) it has maintained for that front end. It discards the message if T, j0R] < lmas[FE]
because thisindicates that the outlist does not account for a block the OR sent recently.

The technique described above will be ineffective if block-sends are too frequent and trim mes-
sages are usualy delayed, because the OR may have to discard al trim messages. The problem
here is that when a trim message is late, it makes no contribution to trimming the FE table. A
well-known fix for thisis that each entry in the FE table be timestamped separately — with the
timestamp of thelast block that created or affirmed the entry. Now, even alatetrim message can be
patialy effective: entriesin the FE tablethat are missing from the outlist can be deleted provided
the timestamp included in the trim message is as big as the timestamp associated with the entry.
We chose not to use this scheme because it increases the size of the FE table and requires extra
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processing of trim messages. Further, we do not expect the problem to arise often enough to merit
afix that has an extra cost in the common case. Our solution isthat, if an OR does not receive a
valid trim message from afront end for along time so that the FE table growsvery big, the OR can
send a query message to prompt the front end, and delay further block sendstill atrim messageis
received.

45 Stability of FE Tables

In this section, wefirst argue why FE tables should be stable. However, maintaining an up-to-date
stable copy of the FE tableisacostly proposition. Therefore weintroduce alternative mechanisms
that substitute for stable storage operations.

Suppose that ORs do not keep any stable information for the front ends they have a session with.
What might go wrong with a front end if an OR it has a session with crashes? When the OR
recovers, it will have lost al knowledge of the front end, including its FE table. Subsequently, the
objects that were protected only by the FE table might be reclaimed by the local GC at the OR.
Further, if an or-surrogate that was sent to the front end is reclaimed, the actual object at another
OR, to which the front end holds a reference, might be reclaimed too. With respect to Figure 4-1,
the reclamation of or-surrogate D at OR4 will withdraw the protection provided to object H at
OR; and a subsequent local GC at OR, will collect H.

At first sight the situati on seems manageable: whenever the front end attemptsto use areference to
adeleted object (in either fetch or commit), the OR raises an exception, which forces the front end
to abort the current transaction. However, aborting the transaction is not a cure for the situation
because subsequent transactions may have to abort for the same reason. Conceivably, all objects
containing areference to the del eted object could be shrunk into fe-surrogates. Thisdoes not help,
for instance, when the client holds a handle to the del eted object.

The problem is even more severe in the particular context of Thor because, as described below,
the deletion of areferenced object may pass undetected at fetch or commit time. Usually, the OR
will detect that the object has been deleted and raise an exception. However, in Thor, ORs are
free to reuse the orefs of reclaimed objects. If another object has come to reside at the same oref
the front end asked for, the front end will end up fetching the wrong object instead of finding it
deleted, which in turn could lead to serious system errors.

We therefore conclude that having the ORs keep no stabl e information about front ends and allow-
ing the front ends to run until an OR raises an exception is not acceptable. We discuss a number
of alternatives below, starting with simple-minded schemes and evolving more elaborate onesin
abid to improve performance.
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451 StableFE Tables

A stable copy of the FE tableiskept up-to-date at al times. Upon afetch request, the OR updates
the FE table and forces the update to stable storage before sending the block to thefront end. This
guaranteesthat if the OR crashes at any time, the FE table can be readily reconstructed on recovery.

The penalty paid is that the fetch operation is delayed by a write to the stable storage. Note that
the stable update cannot be simply deferred and done in the background, because that introduces
the possibility of the OR crashing after it sends the block but before the stable update could be
made.

452 Stable Reconnect Infor mation

Instead of keeping a stable copy of the FE table, the OR maintainsonly enough stableinformation
that will alow it to reconnect with the front end when it recovers after a crash. The OR stores
this information when a front end begins a session with it. The information may include the net
address and the process id of the front end; we shall call it the FE-id.

When the OR recovers from acrash, it retrieves the stable set of FE-ids, and for each entry, checks
if the front end is still running. If so, the front end is asked to send its outlist, which is then used
to reconstruct the FE table at the OR. The OR must defer itslocal collection until, for each FE-id
in the set, it has either confirmed that the front end is not running or the front end has sent it the
outlist.

The problem ariseswhen the OR isunableto access afront end, say, because of anetwork partition.
If we are to uphold the guarantee that the front end will not runinto a del eted object, the OR must
not do alocal collection without its FE table. But then, the local collection cannot be deferred for
an unbounded span of time. One solution to thisisto useleases [ GC89] as discussed bel ow.

453 Leased FE Tables

In this scheme, the OR guarantees to maintain the FE table for a limited time. We say that the
“lease” for the FE table expires after that time. If the front end intends to continue using the
references fetched from the OR, which will normally bethe case, the lease must be renewed before
it expires.

When a front end starts a session with an OR, the OR informs it of the time until when it will
maintain the session. The OR computesthistime by adding the lease period, 7}.. 5., to the current
time. Both the front end and the OR keep a record of the lease expiration time. Subsequently,
a background thread at the front end sends a ping message to the OR to renew the lease. Ping
messages are sent every T,,;,, seconds, where 77,;,,, is much smaller than 7}.,s.. They can often
be piggybacked on the fetch and commit requests sent to the OR. When the OR receives a ping
message, it extends the lease and sends back the new expiration time. On receiving the ack, the
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front end extends its own copy of the lease.

If the ping messages aren’t acknowledged, the lease at the front end will gradually run out. A
background thread at the front end checks the time that remains before the lease will expire. If
thistimefalsbelow acertaininterval, Tyesh014, the thread triggers a shut down of the front end
to avoid the possibility of a system error. This condition must be checked every T.;... seconds,
where 1., issmaler than 13, .sn014. On the other side, if the lease runs out at the OR, it can
reclaim the resources devoted to the front end, including the FE table.

Now consider what happens if the OR crashes and loses its FE tables. When the OR recovers, it
need wait for only time 7., .. before performing alocal GC; thisensuresthat the old leases granted
to the front ends will expire before any object referred to from those front ends is reclaimed. If
the OR receives a ping message from afront end during this period, it asks the front end to send
the outlist so that it can reconstruct the FE table. If T}.,.. ischosen to be larger than the failover
time, most of the sessions that were started before the crash will be able to continue in this way.
Thisisparticularly applicablein Thor because ORs are replicated so that failover isfast. Notethat
the OR need not even maintain the FE-ids on stable storage. The scheme preserves the following
invariant:

If afront end holds the lease for a session opened with an OR, then either the OR has
an FE table for the front end, or the OR is crashed, or the OR has recovered but has
not performed aloca GC.

Besides maintai ning sessions across OR crashes, |eases solve another important problem, namely,
partitionsand undetectabl e front end crashes. Without the use of |eases, the OR would be required
to maintain the FE table for an indefinitely long time. While the stability of FE tablesis a safety
issue, the removal of useless FE tables is required to reclaim the space. The use of leases solves
both of these problems without introducing stable storage operations.

Thereisasmall probability that the |ease at the front end expires whileit iswaiting for acommit
request to execute. To see why thisis an unsafe situation, consider again the scenario depicted
in Figure 4-3. If the lease for the front end’s session with the sender expires while the commit
is pending, the sender might remove the FE table before the referenced object is protected by the
OR table for the receiver. Thisopens up awindow of time during which the referenced object is
exposed to garbage collection. Even though the front end will shut down as required, the commit
it issued cannot be revoked. The commit might result in the creation of a reference to a deleted
object, or the“wrong one” if the oref of the object has been reused. Althoughthisscenarioishighly
unlikely to occur, a simple fix can be used to safeguard against it. The front includes a commit
deadline with each commit request, which is the minimum of the expiration times of al leasesit
holds. The commit must succeed by this time; otherwise the coordinator aborts the transaction.

For the use of |eases to be safe, thelease at the front end must expire no later than it expiresat the
OR. Otherwise, the OR might assumethe lease to have expired when the front end believesthat it
still holdsthe lease. Then thefront end could try to fetch an object after the OR had discarded the
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FE table and reclaimed that object. Our scheme relies onloosely synchronized clocks to guarantee
correct behavior. Bounded differences in clock times can be handled by conservatively adjusting
the lease period at the two ends. [Lis93] suggests a technique to implement leases using loosely
synchronized clock rates instead of the absolute time maintained by the clocks. We could not
employ that technique because the commit deadline included in commit requests needs to be an
absolutetimelimit. Webelieveitispractical torely onloosely synchronized clocks; the probability
that the clocks will differ by greater than a generously chosen bound are remote.

The scheme we have just described keeps one lease for the whole of the FE table. Conceivably,
leases could be kept for each entry in the FE table and the FE could renew some leases but not
others. We do not consider this alternative because it is computationally expensive. Instead, the
FE table at the OR is pruned using explicit trim messages sent by the front end (Section 4.4).

46 Summary

Each OR maintains an FE table for every front end it has sent objects to; the FE table records a
conservative estimate of the references the front end holds to objectsin that OR. Entries are made
in the FE table when the OR sends copies of its objectsto the front end.

The protocol is designed to minimize the latency of the fetch operation. Inter-OR references in
or-surrogates sent to the front end do not generate insert messages to the owners because the
or-surrogates are also protected by the FE table. Prefetching of large blocks, however, poses a
problem: recording al references contained in the block would delay the fetch and increase the
size of the FE table. The scan-on-need scheme records only the objects composing the block; the
references contained in such an object are included only when the object is about to be modified.

Entries are removed from the FE table when the front end closes its session with the OR or sends
a trim message containing an outlist of the references it continues to hold to objects in that OR.
Trim messages are sent in the background using unreliable message delivery. A simpletimestamp
protocol is used to handle late trim messages.

The FE tables are maintained on alease basis; that is, the OR guarantees to maintain the FE table
only till the lease expires. Normally, the leaseis renewed before it expires by ping messages sent
in the background. In the event of a partition or a crash of the front end, the lease does not get
renewed, and the OR can reclaim the FE table when the lease runs out. On the other side, if the
front end isup, it shutsitself down when it detects that the lease is about to expire.

When the OR recovers from a crash, it waitsfor the lease period to pass before doing alocal GC,
so that there is no danger of reclaiming an object accessible from an active front end. The scheme
allows most of the sessions started before the crash to re-establish in this duration. Further, the
scheme avoids the need to maintain FE tables stably, thus eliminating a stable-storage write from
the fetch operation.
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Chapter 5

OR-OR Garbage Collection

An overview of our design for distributed GC in Thor was presented in the last chapter. It intro-
duced the use of OR tables as inlists maintained by ORs to track the incoming references from
other ORs. This chapter provides a detailed design of the GC protocol to be followed among the
ORs. Section 5.1 describesthe part of the protocol that ensures the safety of accessible objects by
inserting entries into OR tables, while Section 5.2 describes the part that guarantees progress in
collecting garbage by removing entries from OR tables. Section 5.3 deals with maintaining GC
information on stable storage.

5.1 Inserting Entriesinto OR Tables

ORs receive new remote references in the prepare phase of the commit protocol. For simplicity,
we will focus on a single remote reference contained in the modified version of an object that
belongsto the receiver. To begin with, we consider the most general case, wherein the sender, the
receiver, the owner, and the coordinator are all different ORs.

Before the commit, the referenced object is protected by the combination of an FE table at the
sender and the OR table for the sender at the owner (Section 4.2). As shown in Figure 4-3, the
front end might discard the reference soon after the commit is reported, thus withdrawing the
protection provided by the FE table. Therefore, the referenced object must be provided additional
protection to account for the creation of the new remote reference at the receiver.

Conceivably, the front end could refrain from discarding the reference until it had notified the
owner in the background. Such a scheme employs a trangdlist a the front end, as described in
Section 2.4.2, to avoid synchronous insert messages to the owner. The scheme is unacceptable,
however, because the front end is atemporary entity, and the protection provided by the FE table
a the sender is temporary too. What if the front end is unable to contact the owner after the
transaction has successfully committed? The front end could possibly contact the sender instead,
so that the sender maintains a tranglist entry until the owner is notified. This seems plausible
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because the sender is a persistent entity, and it could wait indefinitely before the owner is notified.
But, what if the front end is unable to contact the sender too? It would be an error if, after the
front end and the FE table ceased to exist, the referenced object were reclaimed whilethe receiver
holds areferencetoit.

Theupshotisthat it isnecessary to notify the owner (or the sender) asapart of the commit protocol
itself, so that it is possible to abort the transaction if the owner (or the sender) is not accessible.
It may be that the owner and the sender are not among the participants of the commit protocol
(Section 4.1), therefore one of them has to be contacted solely for GC purposes. Now that extra
messages must be sent anyway, it is preferable to communicate with the owner directly rather than
use atrangdlist entry at the sender. Further, unless the front end maintains extra information, the
sender of areference might not be known at commit time. If such information is maintained, it
is possibleto avoid extrainsert messages when the sender is a participant while the owner isnot;
special cases likethisare described in Section 5.1.4.

We describe two schemesfor sending insert messages to the owner: asimple-minded one that adds
amessage round trip in series with the rest of the prepare phase, and another that adds the round
trip in parallel with other prepare messages. The second scheme, however, requires a trickier
timestamp protocol to take care of hazardousinterplay of insert and trim messages (Section 5.2).

511 Serial Insert
The prepare phase proceeds as follows (Figure 5-1(A)):

1. The coordinator sends the receiver a prepare message containing modified versions of ob-
jects together with surrogates created by the front end for non-local references in those ob-
jects (Section 3.2).

2. If thereceiver finds a non-local reference (xref) in any object, it checks whether it already
has an or-surrogate for that xref. If so, it replaces the reference with the oref for the existing
or-surrogate. Otherwise, it sends an insert message to the owner indicated in the xref.

3. When the owner receives the insert message, it makes an entry for the referenced object in
its OR table for the receiver, and sends back an ack.

4. When the receiver gets the ack, it creates a new or-surrogate and replaces the non-local
reference with its oref. Note that the or-surrogate is created only after the creation of a
matching entry in the owner’s OR table is confirmed. If the rest of the prepare work has
also succeeded, the receiver sends a positive ack to the coordinator.

5. If, however, the receiver times out waiting for the ack from the owner, it sends a negative
ack to the coordinator. The flip side is that if it cannot validate the transaction on other
grounds, it need not bother about the insert message.
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The additional messageround trip addsto the commit latency observed by theclient. Moreover, as
discussed later in Section 5.3, updating the OR table involves stabl e storage writes, which further
adds to the latency.

Coordinator Coordinator

(A) Serial Insert (B) Parallel Insert

Figure 5-1: Two Insert Protocols

5.1.2 Paralld Insert
The prepare phase proceeds as follows (Figure 5-1(B)):

1. The the coordinator sends the insert messages to the owners in paralld with the prepare
messages to the participants. The coordinator can figure out a conservative estimate of the
references that need insert messages by searching for non-local references in the complete
set of modified objects.

2. An insert message includes the identity of the receiver OR. When the owner receives the
insert message, it makes an entry for the referenced object in its OR table for the receiver,
and sends back an ack.

3. When the receiver finds a non-local reference in the prepare message, it checks whether it
already has an or-surrogate for that xref. If so, it replaces the reference with the oref for
the existing or-surrogate. Otherwise, the receiver creates a new or-surrogate, but marks it
as unconfirmed because there is no certainty that a matching entry existsin the owner’'s OR
table. Theor-surrogateisconfirmed when it becomesknown that amatching entry was made
inthe OR table. The commit decision from the coordinator servesto notify the receiver that
the or-surrogate is confirmed.

4. Thecoordinator waitsfor acksfrom al participants and owners, and commitsthetransaction
only if al acks are received and those from the participants are positive.
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This schemeis expected to reduce the latency of the commit protocol because the insert messages
are sent in parallel with prepare messages. However, it has some drawbacks of its own. First,
the coordinator might send insert messages for references that didn’t require any. If the receiver
were to send the insert messages itsalf, it would send one only if it did not already have an or-
surrogate for thereference. If the creation of new inter-OR references israre, asignificant fraction
of insert messages sent by the parallel scheme might be redundant. Section 5.1.4 suggestswaysto
minimizethe extramessages. Second, it issimpler to design aremove protocol when the receiver
itself sends the insert message. Thisissueis addressed in Section 5.2. Since the parallel scheme
holds a promise of better performance than the serial scheme, this chapter will mainly focus on
solutionsto these problems.

513 Special Cases

The schemes given above describe the most general case, where the coordinator, the receiver, the
sender, and the owner were all different ORs, and the sender and the owner were not among the set
of participants. Special cases, like onewhere two of theroles are played by the same OR, resultin
some straightforward simplifications, which are listed bel ow. We expect such cases to be common
in practice dueto spatial locality at ORs.

Special Case: owner € participants

If the owner isaparticipant, the coordinator sends it one message containing both the prepare and
theinsert information; this saves an extraround trip of messages. Thisoptimizationisnot possible
in the seria insert scheme, where the receiver must send the owner a separate insert message.

Special Case: owner = coordinator

If the owner is the coordinator itself, no insert message is necessary in either serial or paralle
scheme, but the serial scheme needsto be slightly modified. The reason for this has to do with the
remove protocol, and the slight modification required is described in Section 5.2.1.

Special Case: receiver = coordinator

If the receiver is the coordinator itself, the seria and the paralel insert schemes are equivalent:
an insert message is sent to the owner only if the receiver (coordinator) does not aready have an
or-surrogate for the purpose. However, in the parallel scheme, an insert message is still required
if the or-surrogate is marked unconfirmed, because it is hot certain that previous insert messages
for such a surrogate succeeded in creating an entry in the OR table at the owner.
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5.14 Trackingthe Senders

In the model discussed so far, the sender of areference is not known at commit time. If the front
end tracks the senders of references and passes this information to the coordinator, many insert
messages can be avoided. However, such astrategy adds some overhead at the front end (primarily
space overhead). Therefore we discussit as an optional extension to the scheme proposed so far.
The design of the extension is such that, in the same Thor world, a front end may or may not
employ it. The front endsthat do are likely to experience somewhat shorter delays on distributed
commits.

Asdescribed in Section 3.2, the front end maintains an unswizzle table that maps a cached object
tothexref whereit actually resides, although the object may have been entered in the swizzletable
at multiplexrefs (Figure 3-3). The xref where the object resides indicates the owner of the object.
Any other xref in the swizzle table that mapsto the same object isfor an or-surrogate that pointsto
that object. The ORs where such or-surrogates were fetched from can be viewed as the sendersin
our model, because they sent to the front end aremote reference to an object at a different owner.
For actual objects cached in the front end, the owner istechnically a sender itself because it sent
the object to the front end; however, for the sake of uniformity in discussions, we shall exclude
the owner from the set of senders.

The front end could track the senders by storing in the unswizzle table the compl ete set of xrefs
associ ated with each object. One of these xrefsisdistinguished asthe actual xref; the othersdenote
the or-surrogates at the sender.

Figure5-2illustratesasituation where the modified version of an object 2, which wasfetched from
R (thereceiver), isto be sent to the coordinator. Object = contains a pointer to object y, which has
to be unswizzled. Object y wasfetched from O (the owner), and an or-surrogate pointing to y was
fetched from 5 (asender). The unswizzletable provides the following xrefs (an xref is denoted as
an OR-oref pair):

1. thexref of the containing object at the receiver: (R, a)
2. thexref of the referenced object at the owner: (O, b)

3. thexrefs of the or-surrogates for the referenced object at the senders: {(.5, ¢)}
As before, if the receiver and the owner are the same, the front end replaces the memory pointer
with the oref part of the xref of the referenced object. In the context of Figure 5-2, if R = O, the

pointer isunswizzled into the oref b. Otherwise, thefront end checksif thefollowing special cases
are applicable.
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xref: <OR-id, oref>
R = OR-id of the receiver

Swizzle containing Unswizzle Table O = OR-id of the owner
Table object owner [senders _
..... S= OR-id of a sender
<R a3 ’ o <Ra>
referenge to be
unswizpled
<Obx - T \.....| ... |<O,b>| <Sc>
<Scy Lot g%;gﬂced

Figure 5-2: Thefront end remembers all xrefs associated with an object.

Special Case: receiver € senders

This condition holdswhen the front end knows of an or-surrogate at the receiver that pointsto the
referenced object; therefore the front end uses the xref of the or-surrogate in place of the actual
xref of the object at the owner. The pointer to the referenced object is unswizzled with the oref
part of the xref of that surrogate. In the context of Figure 5-2, if R = .5, the pointer is unswizzled
into the oref ¢.

Unswizzling thisway has a particularly benevolent effect because the receiver would have had to
replace the reference with the oref of itssurrogate anyway. Further, sincethe unswizzled reference
islocal to the receiver, no GC work need be done for it at commit time.

This technique helps the parallel insert scheme avoid many of the redundant insert messages that
the serid insert scheme does not send. (In the seria insert scheme, the receiver never sends an
insert messageif it already has a suitable or-surrogate.) With this technique in place, the parallel
insert scheme will send a redundant insert message only if the front end does not know of the
or-surrogate at the receiver. In many common cases, the front end does know of such an or-
surrogate, e.g., when thefield containing the reference to be unswizzled was never modified since
the containing object was fetched from the receiver.

Special Case: sender € participants

If one of the sendersis aparticipant of the commit protocol but the owner isnot, theinsert message
to the owner can be avoided by suitably preparing the sender instead. (The techniques described
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earlier are preferable if the owner itself is a participant, or if the receiver is a sender.) Theidea
hereisto passtheresponsibility of protecting the referenced object at the owner to the sender. The
sender aready has an or-surrogate for that object, which is protected by the FE table until commit
time, which in turn protects the referenced object through the owner’s OR table for the sender.
Now, the sender hasto extend this protection until it is sure that the owner has made an entry inits
OR tablefor the receiver. To thisend, the sender sends a background insert message to the owner
on behalf of the receiver (Figure 5-3). The techniqueis detailed below.

Receiver
(participant)

Coordinator

Figure 5-3: The sender sends an asynchronousinsert message to the owner.

When the front end unswizzles a pointer, it first checks if the owner is same as the receiver, or if
the receiver is a sender, or if the owner is a participant. If not, it checks if any sender is among
the participants. If so, it creates a surrogate for the reference that contains both the actual xref of
the referenced object at the owner, and the xref of the or-surrogate at the sender. In the context
of Figure 5-2, the result of the unswizzling is shown in Figure 5-4. The containing object and the
surrogate are sent to the coordinator.

containing
object surrogate created by FE
on unswizzing

At owner: <O,b>

At sender: <Sc>

Y

Figure 5-4: The surrogate sent to the coordinator contains xrefs at both the owner and the sender.

The prepare message from the coordinator to the sender contains a copy of the surrogate as well
as the OR-id of the receiver. The sender records this information as an entry in its translist for
the owner. Theideais similar to the one discussed in Section 2.4.2. The translist entry, which
has a reference to the or-surrogate at the sender, is used to protect the or-surrogate against local
collection. Inorder to expedite the prepare phase, the sender defers communicationwiththe owner
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until after it has sent the ack for the prepare message. Later, it sends an asynchronous insert
message to the owner, informing it of the new remote reference at the receiver. In fact, the sender
can batch together asynchronous insert messages for entries pending in its tranglist for the owner
into a single message. A further possibility is to merge asynchronous insert messages with trim
messages: such a message contains the sender’s trandlist and the outlist for the owner.

The owner processes the tranglist received from the sender as follows: for each trandlist entry, it
makes an entry inits OR table for the indicated receiver. The owner sendsthe tranglist back inits
ack to the sender. When the sender receives the ack, it can remove the entriesin its tranglist that
areincluded in the ack. (The sender may have made more entries in itstranglist since it last sent
the tranglist to the owner, which should not be removed.)

An dternative way of protecting the or-surrogate at the sender would be to use the strong-weak
pointer schemeinstead of the tranglist, which isdiscussed in Section 2.4.5. It isnot clear whether
oneissubstantialy better than the other.

This technigque avoids the need to send a synchronous insert message at commit time. Only the
paralld insert scheme can benefit from this. The same technique can also be used for another
purpose: when the owner is not accessible at commit time, the coordinator can contact a sender
instead, even if it is not a participant; thisis discussed in the next subsection.

5.1.5 Unavailability of the Owner

In the general case, when an insert message is sent to the owner, the transaction has to be aborted
if there isno ack from the owner in due time. On the other hand, conventional distributed systems
are able to avoid dependence on the owner for the transfer of a mutator message by using GC
protocols that do not involve a synchronous insert message to the owner. We argued earlier that
the same is not possible in Thor because the sender does not know the future receiver(s) when it
sends objectsto afront end.

Thisproblem arisesin both the serial and the parallel insert schemes, but isslightly more severe for
the parallel scheme because it sends some redundant insert messages that the serial scheme does
not. Actualy, when the insert message is redundant, it is possible to avoid the dependence on the
owner as follows. The receiver, along with its ack for the prepare message, indicates which non-
local references in the modified versions did not require an insert message (because the receiver
already had confirmed or-surrogates for them). Then the coordinator does not have to wait for the
acks of those insert messages.

The dependence on the owner can be further reduced if the front end tracks the senders of refer-
ences, as described in Section 5.1.4, and passes on the information to the coordinator even when
none of the sendersisa participant. If the owner does not respond to an insert message, the coor-
dinator tries to contact an OR that has a confirmed or-surrogate for that reference. It is possible,
though not very likely, that the coordinator itself has such an or-surrogate. Otherwise, it triesto
contact the sender indicated in the surrogate sent by the front end. The sender (or the coordinator
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itsdlf if it has an or-surrogate to the referenced object) makes an entry in its trandlist to protect
its or-surrogate until the owner is notified. This allows the commit protocol to proceed while the
owner isunavailable.

5.2 Removing Entriesfrom OR Tables

AnOR trimsits OR tablefor another OR when it receives atrim message containing afresh outlist
from that OR. An OR can aso send a query message to another OR to prompt it to send itsoutlist.

Each OR keeps an outlist for every OR to which it contains references. The outlist for OR1 at
OR; can be viewed as an abstraction over the set of all or-surrogates at OR, containing xrefs to
objects in OR;. Entries in the outlists correspond with the or-surrogates: they are created and
deleted together with or-surrogates. As discussed in Section 5.1, or-surrogates are created during
the prepare phase of the commit protocol; they are deleted by the loca collector. The roots for
the local collection are the root directory object at the OR, and its FE tables and OR tables, and
the modified versions and new objects stored in the prepare records of transactions that are yet
to beinstaled. If trandlists are used, as suggested in Section 5.1.4, they too are used to protect
or-surrogates against collection.

Trim messages are sent asynchronously, typically, soon after the OR has completed alocal collec-
tion. A trim message that arrives late could erroneously undo the effect of insert messages sent
later. In order to study theinterplay of insert messages and trim messages, we use the same setup
as used for the insert protocol: insert messages are sent on behalf of the receiver to the owner,
resulting in new entries in the owner’s OR table for the receiver. Therefore, for the remove proto-
col, we consider the trim messages that the receiver sends to the owner, which result in removal
of entries from that OR table.

The seria insert scheme requires a simple remove protocol. The paralld insert scheme requires a
more elaborate protocol, but keeping in mind the performance benefits of this scheme, we focus
on the design of such aprotocol, and argue that it has sufficient safety and liveness properties.

521 TheSerial Scheme

Under the serial scheme, the receiver itself sends the insert and the trim messages to the owner.
Therefore it is simple to keep late trim messages from getting re-ordered behind insert messages
sent later. One way isto have the receiver timestamp each insert or trim message. The timestamp
is simply a monotonically increasing identifier. The owner discards trim messages timestamped
earlier than the latest insert message it has received from the receiver. When it receives a valid
trim message, it replaces its OR table for the receiver with the outlist included in the message.

Consider theinsert protocol again: when the coordinator isthe owner itself, the receiver need not
send a separate insert message (Section 5.1.3). Instead, the receiver simply includesitstimestamp
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inthe ack sent to the coordinator (owner) in responseto the prepare message. The coordinator then
makes new entriesin its OR table for the receiver and records the timestamp sent by the receiver
as that of the latest insert message.

This protocol is safe because it maintains the following invariant:

For every or-surrogate at an OR, there existsamatching entry inthe owner’s OR table
for that OR.

The insert protocol creates an or-surrogate only after the owner confirms the creation of an OR
table entry. The OR table entry isdeleted only after the or-surrogate is deleted and a trim message
is sent that does not contain a corresponding outlist entry. The timestamp protocol ensures the
orderly delivery of insert and trim messages.

5.2.2 TheParalld Scheme

The situation here is complicated by the fact that the insert messages are sent by the coordinator
to the owner (on behaf of the receiver), while the trim messages are sent by the receiver itsalf.
Thereforeitistricky to synchronizetheinsert and trim messages. Figure 5-5illustratesthe possible
race condition described below:

1. Thereceiver sendsits outlist for the owner in atrim message (Figure 5-5(A)).

2. The coordinator sends a prepare message to the receiver that resultsin the creation of anew
(unconfirmed) or-surrogate pointing to an object, say x, in the owner. Also, the coordinator
sends the owner an insert message on behalf of the receiver. The owner makes an entry for
x inits OR table for the receiver (Figure 5-5(B)).

3. Theoldtrim messagesent by thereceiver reachestheowner. Sincethe contained outlist does
not have an entry for z, the owner deletes = from its OR table for the receiver (Figure 5-
5(C)).

The aim isto design a protocol such that a trim message does not result in deletion of OR table
entries that were created on behalf of a transaction whose effects are not captured by the outlist
contained in the trim message. A timestamp protocol like the one designed for the serial scheme
cannot be applied here because theinsert and trim messagesare sent by two different nodeswithout
any prior communication between those two nodes.

To resolve the problem, we exploit two attributes of the distributed commit protocol in Thor
[Ady93]:

1. Eachtransactionisassigned atid by itscoordinator that isuniqueacrossthe Thor world. The
tid consistsof atimestamp generated locally by the clock at the coordinator’s node, whichis
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Figure 5-5: Race condition between insert and trim messagesin the paralld insert scheme

augmented with the OR-id of the coordinator for distinctness. All messages sent on behalf
of the transaction includeits tid. The tids are used to seridize the distributed transactions.

2. A participant OR accepts to prepare atransaction only if itstid is above a certain threshold,
called the prepare threshold, maintained by that OR. Otherwise, the participant asks the
coordinator to retry the commit protocol with alarger timestamp.

The clocks used to generate the timestamps at different nodes need not be synchronized, but they
should be loosely synchronized for good performance, for instance, to minimize the retries of the
commit protocol.

The timestamp protocol given below makes use of the total ordering of the tids to synchronize
insert and trim messages sent by different ORs:

1. The coordinator includes the transaction’s tid in al prepare and insert messages.

2. Each entry in the OR tables includes the largest tid of any transaction that created it or
reaffirmed it. We say an entry is reaffirmed when it would have been created if it did not
aready exist.

When the owner gets an insert message, it checks for theindicated reference inits OR table
for thereceiver. If an entry does not exist, it creates one with the timestamp included in the
message. Otherwise, it simply updates the timestamp of the existing entry to the larger of
the existing timestamp and the one in the message.

3. Whenthereceiver sends atrim message, it timestampsthe message with the current prepare
threshold, or more precisely, with the value of the prepare threshold just before it gathered
the outlist. The outlist accounts for both confirmed and unconfirmed surrogates at the re-
ceiver.
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4. When the owner receives a trim message, instead of replacing its old OR table for the re-
ceiver with the outlist contained in the message, it scans the OR table and removes an entry
if:

(@) thereference does not exist in the outlist, and

(b) thetimestamp of thetrim message is at least as large as that of the entry.

Admittedly, this protocol requires more time to process the trim message, and al so more space to
keep the timestamps with each OR table entry. In Section 5.2.3, we discuss why this protocol is
safe, and in Section 5.2.4, we discuss why it is effective in collecting garbage. Before that, we
providethe protocol to be employed if atranglist at the sender is used to avoid synchronousinsert
messages to the owner (Section 5.1.4):

1. Each entry inthetranglist istimestamped with the largest tid of any transaction that created
it or reaffirmed it.

2. When the owner receives atranglist from the sender, it treats each tranglist entry asit would
a similar insert message directly from the coordinator; that is, it either creates a new entry
in its OR table with the timestamp included in the translist entry, or merely updates the
timestamp of the entry if it exists.

3. Asbefore, the ack from the owner containsthe trangdlist it just processed. When the sender
receives the ack, it scans the tranglist for the owner and removes an entry if:
(&) theentry adso existsin the ack, and

(b) the timestamp of the entry in the ack is as large as that of the entry in the sender’s
tranglist.

523 TheParallel Scheme: Safety

In this section, we show that the protocol for the paralel scheme is safe. Ignoring the use of
tranglists for the time being, the safety requirement is: if a transaction creates a remote reference
a an OR, an entry in the owner’s OR table for that OR must protect the referenced object from
the point of commit until whenever the OR holds the reference.

The parallel scheme maintains two invariants which together guarantee the safety requirement:

1. A transaction commits only after the or-surrogates it created (or made use of, if aready
existing) have been confirmed.

2. For every or-surrogate that was confirmed by a committed transaction, there exists amatch-
ing entry in the owner’s OR table (for as long as the or-surrogate exists).
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Invariant 1 is maintained because the coordinator sends out insert messages for al references that
the receivers might not have confirmed surrogates for, and commits the transaction only after
receiving acks from the owners.

Invariant 2 requires that trim messages not remove an OR table entry for which there exists an
or-surrogate at the receiver that was confirmed by a committed transaction. An informal proof
that the given protocol has this property is provided at the end of this subsection; before that, we
provide some insights on the interaction of trim messages with other events.

Given that a trim message is timestamped with the prepare threshold at the receiver, it accounts
for the or-surrogates created by al transactions that will ever be prepared at the receiver with a
lower or equal timestamp. This claim is based on the subtle assumption that the unconfirmed or-
surrogates created by atransaction are visiblein the outlist as soon as the transaction is prepared,
and that if atransaction is in the process of being prepared, the prepare threshold is not raised
above the transaction’s tid until after it is prepared.

Now consider an entry for the object o in the owner’s OR table for the receiver, which is time-
stamped withthetid of transaction X . A trim message sent by thereceiver canresultinthedeletion
of thisentry only if it does not contain areference to o, and if itstimestamp is as large as the tid
of X . This condition can arise from two different kinds of situations, which are discussed bel ow.

Thefirst kind of situation arises when the trim message was sent after transaction X was prepared
at thereceiver. It represents the normal course of eventsleading to the removal of a useless entry
inan OR table. It develops as follows (Figure 5-6):

1. During the prepare phase of X, an or-surrogate pointing to object o was created at the re-
ceiver, and an OR table entry for o was created at the owner (Figure 5-6(A)).

2. Since the trim message from the receiver did not contain a reference to o, the or-surrogate
must have been collected by thelocal GC before the trim message was sent (Figure 5-6(B)).
(For instance, this could happen if another transaction, Y, which was seridized after X,
made the the or-surrogate unreachable.)

3. Later, when the trim message was sent, the prepare threshold at the receiver happened to be
higher than the tid of X, so it was effective in removing the OR table entry at the owner
(Figure 5-6(C)).

The second kind of situation arises when the trim message was sent before transaction X was
prepared at the receiver. In this case, the entry removed from the OR table was created by a
transaction the receiver had not accounted for when it sent the trim message. Nonetheless, the
removal is safe because the distributed commit protocol will not allow the transaction to prepare
at the receiver. The situation develops as follows (Figure 5-7):

1. Theinsert message sent on behalf of transaction X resulted in the creation of an OR table
entry for o (Figure 5-7(B)).
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Figure 5-6: The trim message deletes a useless OR table entry.
2. The receiver sent a trim message while its prepare threshold was greater than the tid of

transaction X . The trim message resulted in the removal of the OR table entry for o.

3. Theprepare message sent on behalf of transaction X reached thereceiver. Sincethe prepare
threshold of the receiver is above thetid of X, the receiver refused to prepare X and sent
back aretry message (Figure 5-7(C)).

ORtable entry
76(1

ORtable entry
removed by trim msg. prepare refused

Receiver

Coordinator

Coordinator

Coordinator
(A) (B) ©

Figure 5-7: The trim message deletes an entry it did not account for.

However, it is possible for an unconfirmed or-surrogate to exist at the receiver while there is no
matching entry in the OR table at the owner; thisisillustrated in Figure 5-8. Suppose the pre-
pare message results in the creation of an or-surrogate at the receiver, but the insert message fails
because, say, the owner is not accessible. The coordinator times out waiting for a reply from the
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owner and aborts the transaction. As a result, the receiver is left with an or-surrogate that has
no matching OR table entry. It follows that it is possible for atrim message to contain an entry
for which there is no matching entry in the OR table at the owner. Note that thisis not problem-
atic because the entry isignored when the trim message is processed at the owner. Unconfirmed
or-surrogates are ultimately reclaimed by the local collection.

or-surrogate

owner is
inaccessible

‘ @ ‘
&

coordinator times out
_; and aborts transaction

Coordinator Coordinator

(A) (B)

Figure 5-8: An unconfirmed or-surrogate may not have amatching OR table entry.

Now we give a short, informal proof that the given protocol preserves Invariant 2, namely:

For every or-surrogate that has been confirmed by a committed transaction, there ex-
istsamatching entry in the owner’s OR table.

Proof (by contradiction):

Consider an or-surrogate at the receiver that was confirmed on behalf of transaction X . Thismeans
that an insert message timestamped with the tid of X was delivered to the owner, with the result
that an entry was created or reaffirmed in the owner’s OR table for the receiver. The protocol
ensures that the timestamp of thisentry isat least aslarge asthetid of X.

For the sake of contradiction, assumeatrim message resulted in theremoval of thisOR tableentry.
For this to be possible, the timestamp of the trim message must be as large as the timestamp of
the entry, and hence, as large as the tid of X. But the trim message was timestamped with the
prepare threshold at the receiver; therefore the prepare threshold when the outlist was collected
was as large asthetid of X. Since we know that X prepared successfully at the receiver, X must
have prepared strictly before the outlist was collected. After X is prepared, the or-surrogate in
question must be visiblein the outlist. Thus, the outlist sent to the owner must have an entry for
the referenced object. This contradicts the assumption that the trim message was successful in
removing the OR table entry for the referenced object. O
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5.24 TheParalld Scheme Liveness

Thelivenessrequirement isthat if the OR tablefor OR; at OR, hasan entry for which OR; hasno
matching or-surrogate, the entry should be removed ultimately. It is assumed that ORs do a local
collection and send trim messages to other ORs every so often.

The protocol, as described so far, does not quite have the liveness property. If the prepare thresh-
old of the receiver were to remain constant, the trim messages it sends would never remove any
entry with a greater timestamp. A simplefix to this problem is to keep the prepare threshold ad-
vancing, say, by imposing a constraint that it never lag behind the clock time by more than some
fixed interval. Advancing the prepare threshold in this manner would imply that a prepare request
arriving too late at a participant might be refused by the participant so that the commit protocol
hasto beretried. We believe that such a constraint is practically reasonable.

The distributed commit protocol in Thor sets the prepare threshold at a level that makes the GC
protocol particularly efficient. The prepare threshold at an OR is set to theinstall watermark, that
is, the highest tid of any transaction that has been installed at that OR [Ady93]*. We show below
that thisleads to an efficient removal of OR table entries.

Consider an or-surrogate at the receiver and a matching entry in the owner’s OR table that is
stamped with the tid of transaction X. As soon as transaction X isinstalled at the receiver, the
prepare threshold there is sure to be at least as large asitstid. If the or-surrogate ever becomes
unreachable, it will be collected by the next local collection, and the subsequent trim message to
the owner will not list the corresponding remote reference. Since thetrim messageistimestamped
with the then current prepare threshold, which isat least aslargeasthetid of X, it will be effective
in removing the OR table entry, which is timestamped with the tid of X. Thus, timestamping
the trim message with the prepare threshold does not hinder it from collecting any garbage that
it justifiably could. However, there might be a problem if X was never installed at the receiver
becauseit aborted. To handle such cases, we must maintainthe constraint that the prepare threshold
is advanced periodically.

There is another issue regarding the liveness property. If the outlist for OR, at OR1 becomes
empty, when can OR; stop sending trim messagesto OR,? It isnot sufficient for OR4 to send only
one trim message containing an empty outlist and stop, because the trim message may be lost, or
because it might not result in the removal of &l entriesin the OR table a OR;, (if the timestamp
of the trim message is not high enough). Therefore, OR1 must keep sending the trim message
periodically, until it receives an ack from the OR; indicating that its OR tableis indeed empty. In
addition, if OR> has not received atrim message from OR; for along time and has a hon-empty
OR tablefor it, OR, can send a query message to OR; to prompt it to send its outlist.

1This claim is speculative because the research on this issue was still in progressat the time this thesis was written.
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5.3 Stability of OR Tablesand Outlists

If OR tables are not stable, an OR recovering from a crash must reconstruct its OR tables by
sending query messages to other ORs, prompting them to send their outlists. The problem hereis
that an OR cannot perform alocal collection until it hasall the OR tables (althoughit can start other
work, such as servicing fetch requests). If even a single other OR isinaccessible, the recovering
OR will be held up from doing aloca collection. The problem can be mitigated to some extent if
each OR kept stable information as to which ORs it has non-empty OR tables for. (This scheme
issimilar to that proposed for FE tablesin Section 4.5.2.) Then arecovering OR need depend on
only those ORs for their OR tables. A solution based on leases, like the one used for inaccessible
front ends (Section 4.5.3), cannot be applied here because it is unacceptable to shut down an OR
if the lease runs out. We conclude that the OR tables should be stable indeed.

To maintain OR tables stably, the owner must log updates due to insert messages. Thisdelaysthe
prepare phase, but if the parallel schemeisused, the stable-storage write at the ownersis expected
to be masked by that at the participants. Further, if the owner is aso a participant of the commit
protocol, the updates can be merged with the prepare record so that only one stable-storage write
isinvolved. OR table updates arising from trim messages are less of a concern because they occur
in the background.

Outlists, on the other hand, need not be “that stable.” A recovering OR can compute its outlists
by collecting information from the or-surrogates it has. Thus, the recovery of outlists does not
depend on other ORs, but scanning the entire repository for or-surrogatesisaproblem in itself. If
the OR does not have its outlists ready soon enough, the collection of distributed garbage at other
ORs might be delayed.

Actually, it is cheap to maintain stable outlists. An outlist entry is created at a participant when a
transaction being prepared there creates an or-surrogate. Therefore, additions to the outlists can
always be logged together with the prepare record, thus causing only an insignificant overhead.
Entries are deleted from outlist when the corresponding or-surrogate is collected by the local col-
lection. This happensin the background, so additional stable storage writes are acceptable.

5.4 Summary

Each OR maintains OR tables for other ORs that contain references to its objects. The OR table
for OR1 a OR; records a conservative estimate of the references OR; holdsto objectsin OR».

Entries are madein OR tables as a part of the commit protocol. In the serial insert scheme, when
the receiver receives aremote reference in the prepare message, it sends an insert message to the
owner if it does not already have an or-surrogate for that reference. In the parallel insert scheme,
the coordinator sends insert messages to the owners in paralel with the prepare messages to the
participants. Further, if the owner happens to be a participant, the prepare and the insert messages
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can be merged, and so can be the stable logging of the prepare record and the OR table update.

However, in the parallel scheme, the coordinator sends an insert message for a reference even if
thereceiver aready hasan or-surrogatefor it. Many of these redundant messages can be avoided if
the front end tracks the senders of references by maintaining information regarding or-surrogates
in the unswizzle table. Further, if asender of the reference is a participant of the commit protocol
while the owner is not, a synchronous message to the owner can be avoided by creating atranglist
entry at the sender. Thereis another benefit in tracking the senders: if the owner is unavailable at
the time of the commit, the coordinator can instead contact the sender and use the translist scheme.

Entriesin the OR tables are removed by trim messages sent in the background. Late trim messages
must be prevented from removing OR table entries created by recent insert messages. Thisis
simpleto ensureinthe serial scheme, becausethereceiver itself sendstheinsert and trim messages
to the owner.

Intheparallel scheme, however, aninsert messageissent by the coordinator, whileatrim messages
issent by thereceiver itself. Our protocol solvesthis problem by exploiting some features of the
distributed commit protocol in Thor. First, transactions are assighed unique timestamps, or tids,
which are totally ordered. Second, each OR maintains atimestamp, called the prepare threshold,
such that it will accept to prepare a transaction only if itstid is above this threshold; otherwise,
the coordinator must retry the transaction with alarger timestamp. In our protocol, each OR table
entry is timestamped with the tid of the transaction that created it, and a trim message sent by an
OR istimestamped with the prepare threshold at the OR. A trim message can result in the removal

of an entry only if the timestamp of the messageis at least as large as that of the entry.

Updates to OR tables are logged on stable storage so that the tables may be reconstructed when
an OR recovers from a crash. Outlists, on the other hand can be computed from the stably stored
or-surrogates. Nonethel ess, we maintain the outlists stably becauseit is cheap to do so.
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Chapter 6

Conclusions

This thesis has presented a design for distributed GC in a new object-oriented database system
called Thor [LDS92]. In Thor, afront end (FE) running on behalf of a client invokes operations
on copies of objects fetched from multiple object repositories (ORs). Our design accounts for
caching and prefetching of objects done by the front end. It also accounts for the distributed
commit protocol, which involves the transfer of modified and new objects from the front end to
the coordinator OR and then to the participant ORs. In addition to this design, Chapter 2 of the
thesis provides a novel analysis of awide range of distributed GC techniques.

6.1 Summary

The task of the overall garbage collection in Thor is to reclaim abjects that are neither reachable
from theroot directory object at any OR, nor from the handles given out by the front ends to their
clients.

We rejected global tracing as a means for distributed GC in Thor because it does not scale well
to large systems. Instead, our design is based on each OR maintaining a conservative record
of existing remote references to its objects. However, conventional techniques to track remote
references are not applicable to Thor because the transfer of references between ORs occursin a
roundabout way. Asillustrated in Figure 1-3, the transfer of areference from the sender OR to the
receiver OR involvesafetch by the front end and the distributed commit protocol executed by the
coordinator OR.

The performance goal for distributed GC in Thor isto minimizethe delay it adds to the execution
of fetches and commits, which liein the critical path of operationsinvoked by the client.

Our design uses aform of reference tracking we call reference listing. Each OR maintains an FE
tablefor every front end it has sent objectsto; the FE tabl e tracks the references the front end holds
to objectsin that OR. The OR also maintains OR tables to track incoming references from other
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ORs; if OR4 has an or-surrogate pointing to an object in OR;, the OR table for OR; a OR>» has
an entry for the referenced object. Asdiscussed in Section 2.4.4, the advantage of using reference
listing isthat the removal of entriesfrom FE tables and OR tables can be carried out by unreliable
messages, called trim messages, sent in the background.

Theloca GC at the OR reclaims abjectsthat are not reachable from any of thelocal root directory,
the FE tables, or the OR tables. Thelocal GC at thefront end reclaims cached objects not reachable
from the handle table. The distributed GC protocol isdivided into two parts: the FE-OR protocol
and the OR-OR protocol.

6.1.1 FE-OR GC Protocol

Chapter 4 described the FE-OR protocol, which isresponsible for inserting and deleting entriesin
the FE tables. Entries are made in an FE table of an OR when the OR sends a block of objectsto
the front end. Our desigh employs the following strategies to expedite the fetch:

¢ When OR1 sendsto thefront end an or-surrogate containing areference to an object at OR»,
no insert message need be sent to OR». Thisis because the or-surrogate at OR1 is protected
by the FE table, which in turn protects the referenced object through the OR table for OR1
at OR,. Thisschemeis conceptually similar to the strong-wesk pointers scheme [SDP92].

¢ Recording all references contained in the block into the FE table would delay the fetch
request and inflatethe FE table. The scan-on-need scheme describedin Section 4.3.2 records
only the objects composing the block. Thereferences contained inthese objectsare included
in the FE table only when the stable copy of the object is about to be modified.

¢ The FE tablesare maintained on alease basis[GC89]; that is, an OR guaranteesto maintain
an FE table only until its lease expires. When the OR recovers from a crash, it only needs
to wait for the lease period to pass before doing a local GC. Then there is no danger of
reclaiming an object accessible from an active front end. This scheme avoids the need to
maintain FE tables stably, thus eliminating a stabl e-storage write from the fetch operation.

Entries are removed from the FE table when the front end closes its session with the OR or sends
atrim message containing alist of references it continues to hold to objectsin that OR. Late trim
messages are handled using a simple timestamp protocol; the protocol accounts for the blocks
streamed to thefront end in the background. Further, thelease mechanism allowsthe OR to safely
reclaim an FE tablein the event a network partition disconnectsit from the front end.

6.1.2 OR-OR GC Protocol

Chapter 5 described the OR-OR GC protocol, which is responsible for inserting and deleting en-
triesin the OR tables. Entries are made in OR tables as a part of the commit protocol. Figure 4-3
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depicts the operation of the overall GC protocol when a reference to an object at the owner OR
makesitsway from the sender OR to thereceiver OR. Before the commit, the referenced object is
protected by the combination of the FE table at the sender and the owner’s OR table for the sender.
After the commit, the front end might discard the reference, thus withdrawing the protection pro-
vided by the FE table. Therefore, an entry for the referenced object is made in the owner’s OR
table for the receiver; this necessitates sending a message to the owner.

Conventional distributed systems using reference tracking for distributed GC are ableto eliminate
synchronous insert messages by using techniques discussed in Section 2.4, which include the use
of atranslist [LL86] and strong-weak pointers [SDP92].1 These techniques could not be applied
in Thor because of the following:

1. When the sender sendsareference to the front end, it does not know which ORs will finally
receive a copy. This precludes the use of conventional techniques at the time of fetch to
account for the transfer of the reference to the receiver.

2. After the commit, the front end cannot be relied upon to retain the reference (say, until
the owner has been notified), because it is a temporary entity and cannot be made to wait
indefinitely. This precludes the use of conventional techniques at the front end at commit
time.

Thestraightforward way to send aninsert messageisto usethe serial scheme (Section 5.1.1): when
a participant receives aremote reference in the prepare message, it sends an insert messageto the
owner if it does not already have an or-surrogate for that reference. This scheme adds a message
round trip and a stable storage update to the commit latency. (Updatesto OR tables are logged on
stable storage so that the tables may be reconstructed when an OR recovers from a crash.)

Therefore, we suggested the parallel insert scheme (Section 5.1.2): the coordinator sends insert
messages to the ownersin parallel with the prepare messages to the participants. This masks the
latency due to the GC protocol with that due to normal prepare-phase work. Further, if the owner
happens to be a participant, the prepare and the insert messages can be merged, and so can the
stable logging of the prepare record and the OR table update. A drawback of this schemeis that
the coordinator sends an insert message for a reference even if the receiver already has an or-
surrogate for it. Section 5.1.4 describes how most of these redundant messages can be avoided if
the front end maintai ns extra information regarding the or-surrogates it has fetched.

Entriesin the OR tables are removed by trim messages sent in the background, which contain alist
of references one OR continuesto holdto objectsin another. Latetrim messagesmust be prevented
from removing OR table entries created by recent insert messages. In the parallel scheme, arace
condition between the two messages cannot be avoided using simpletimestamp protocol s, because

1The use of reference listing preempts the use of some other techniques, like weighted reference counting [Wen79,
Bev87]. Asdiscussed in Section 2.4.3, weighted reference counting requires the use of reliable decrement messages,
and suffers from the weight-underflow problem.

88



the insert message is sent by the coordinator while the trim message is sent by the receiver itsalf.
In Section 5.2.2 we described a timestamp protocol that solves this problem by exploiting some
features of the distributed commit protocol in Thor. The protocol is comparableto theoneusedin
[SDP92].

6.2 FutureWork

6.2.1 A Formal Proof

In this thesis we presented informal and operational arguments to validate parts of the proposed
design. It isdesirable to have aformal proof that covers the entire design — the FE-OR protocol
aswell asthe OR-OR protocol. Besides serving an academic interest, such a proof might unearth
oversights and redundancies in the current design.

6.2.2 Performance Evaluation

At thetimethisthesiswaswritten, we had implemented the FE-OR protocol and part of the OR-OR
protocol in asystem called TH, a prototype of Thor. Th isimplemented in a high level language
called Argus, which supports abstract data types, garbage collection, remote procedure calls, and
transactions [Lis88]. However, the layer of abstraction introduced by Argus makes Th unsuitable
as atest bed for evaluating performance in terms of real time. For instance, Argus forces the use
of reliable remote procedure calls where unreliable messages could have been used.

We plan to build asimulator that will allow usto better evaluate the trade-offs between some of the
aternatives considered in thisthesis. We are particul arly interested in comparing the performance
of three schemes for OR-OR garbage collection:

1. the serial scheme (Section 5.1.1)
2. theparalel scheme (Section 5.1.2 and 5.1.3)

3. the pardldl scheme with the front end storing extra information regarding or-surrogates
(Section 5.1.4)

The parallel scheme sends insert messages and updates OR tables in paralel with other commit
time work, but it might send more messages than the serial scheme. The aim of our simulations
will beto seeif the cost of sending redundant messages outweighsthe advantage from parallelism.
The answer is difficult to obtain analytically because it depends upon the characteristics of the
workload. For instance, if the creation of new inter-OR references israre, the serial scheme will
send insert messages only rarely. At the sametime, if it is not so rare for modified objects sent
to the coordinator to contain inter-OR references, the parallel scheme will send many redundant
insert messages. The answer aso depends upon the relative measures of the computational cost
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of preparing and accepting messages (the cost incurred in the parallel scheme) and the latency of
around trip delivery (the cost incurred in the serial scheme).

As pointed out earlier, many of the redundant messages sent by the parallel scheme can be avoided
if the front end maintains extra information. Equipped with this extension, the parallel schemeis
likely to beat the serial scheme. We shall estimate whether maintaining thisinformation has any
significant impact on the space and computational overhead at the front end.

6.2.3 Collection of Distributed Circular Garbage

Tracking inter-nodereferences doesnot, by itself, collect distributed circular garbage (Section 1.2).
Sincethe ORsin Thor arelonglived entities, itisimportant that all garbage ultimately be coll ected;
otherwise, the uncollected garbage might accumulate over time and waste a significant fraction
of the storage space. Section 2.5 analyzed a number of techniques that can be used to augment
reference tracking to collect all garbage. At present, we are considering two candidate techniques
for Thor:

¢ Migration of remotely referenced objectsthat are not reachable from thelocal root directory
to the ORs from which they are referenced [SGP90]; thisis discussed in Section 2.5.1. The
virtue of this technique isthat it makes progress by pairwise communication between the
ORs on which the cycle resides. The drawback is that the strategy might result in load-
imbalance among the ORs.

¢ Hierarchical grouping of ORs such that tracing can be performed in each group indepen-
dently of other ORs [LQP92]; thisis discussed in Section 2.5.6. Groups are made on the
basis of expected locdlity in inter-OR references; for instance, all ORs on the same local
area network could be grouped together. When a group istraced, all circular garbage lying
within the group is collected. The local tracing at each OR can be harnessed to propagate
marking on behalf of the group tracing.

Whiledistributed circular garbage in Thor must ultimately be collected, we believe that its occur-

rences are infrequent relative to non-circular garbage, and thereforeit isfeasibleto collect circular
garbage lazily.
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