
Closing the Window of Vulnerability in

Multiphase Memory Transactions:

The Alewife Transaction Store

by

John David Kubiatowicz

Submitted to the Department of Electrical Engineering and

Computer Science

in partial ful�llment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1993

c
 Massachusetts Institute of Technology, 1993

The author hereby grants to MIT permission to reproduce and

to distribute copies of this thesis document in whole or in part.

Signature of Author :

Department of Electrical Engineering and Computer Science

February 1, 1993

Certi�ed by :

Anant Agarwal

Associate Professor of Computer Science and Electrical Engineering

Thesis Supervisor

Accepted by :

Campbell L. Searle

Chairman, Departmental Committee on Graduate Students

Closing the Window of Vulnerability in

Multiphase Memory Transactions:

The Alewife Transaction Store

by

John David Kubiatowicz

Submitted to the Department of Electrical Engineering and Computer Science
on February 1, 1993, in partial ful�llment of the

requirements for the degree of
Master of Science

Abstract

Multiprocessor architects have begun to explore several mechanisms such as prefetch-
ing, context-switching and software-assisted dynamic cache-coherence, which trans-
form single-phase memory transactions in conventional memory systems into multi-
phase operations. Multiphase operations introduce a window of vulnerability in which
data can be invalidated before it is used. Losing data due to invalidations introduces
damaging livelock situations. This thesis discusses the origins of the window of vul-
nerability and proposes an architectural framework that closes it. The framework em-
ploys fully-associative transaction-bu�ers and an algorithm called thrashlock. It has
been implemented as one facet of the Alewife machine, a large-scale cache-coherent
multiprocessor.

Keywords: multiprocessor, context-switching, cache-coherence, multi-phase mem-
ory transaction, transaction-bu�er, victim caching, Alewife machine

Thesis Supervisor: Anant Agarwal
Title: Associate Professor of Computer Science and Electrical Engineering

2

Acknowledgments

Much of the act of writing academic papers and theses is an exercise in revisionist his-

tory. I hope that the motivations, interfaces, mechanisms, and justi�cations given in

the following pages give the impression that the Alewife cache controller was designed

from �rst principles. I, of course, know better : : :

I would like to acknowledge Pizzeria Uno for being open until 12:30am most

evenings. This permitted me to spend long hours designing the hardware described

within. I have never designed a system as large (and some would stress as complicated)

as the Alewife cache controller. Many mistakes and false starts are forever burned

into my memory.

Many thanks to my advisor, Anant Agarwal, for giving me the chance to design

my �rst machine. It has been a learning experience, to say the least.

Also, many thanks to the members of the Alewife team. Their opinions, sometimes

voiced loudly, led me to develop better arguments in support of my design choices.

Occasionally, they even led to the development of better solutions. A project as large

as the Alewife machine is certainly a team e�ort. Without the support of simulators

and other software systems written by them, I would not as close as I am to a working

A-1000 cache controller. The next few months should be an exciting period.

Finally, special thanks to David Chaiken for groveling though early implementa-

tions of the cache controller. He has all but suspended his academic career for the

last year and a half to write a high-level simulation of the A-1000. When all is said

and done, we make a good team.

3

Contents

1 Introduction 10

1.1 Multi-phase Memory Transactions : 11

1.2 High-Availability Interrupts : 13

1.3 The Framework : 13

2 Hardware Mechanisms for Shared Memory Support 15

2.1 Coherent Caches with Multiple Outstanding Requests : : : : : : : : : 16

2.2 Atomicity and Context Switching : 16

2.3 High-Availability Interrupts : 17

3 The Window of Vulnerability 19

3.1 Preliminaries : 19

3.1.1 Forward Progress : 19

3.1.2 Primary and Secondary Transactions : : : : : : : : : : : : : : 20

3.1.3 Forward Progress and the Window of Vulnerability : : : : : : 21

3.2 Four Di�erent Livelock Scenarios : 22

3.2.1 Invalidation Thrashing : 22

3.2.2 Replacement Thrashing : 23

3.2.3 High-Availability Interrupt Thrashing : : : : : : : : : : : : : : 24

3.2.4 Instruction-Data Thrashing : : : : : : : : : : : : : : : : : : : 25

3.2.5 Completeness : 26

3.3 Severity of the Window of Vulnerability : : : : : : : : : : : : : : : : : 27

4

4 Closing the Window 30

4.1 Locking (Partial Solution) : 31

4.1.1 The Transaction-In-Progress State : : : : : : : : : : : : : : : 32

4.1.2 Premature Lock Release : 32

4.1.3 Deadlock Problems : 32

4.2 Associative Locking : 35

4.3 Thrashwait : 36

4.3.1 Multiple Primary Transactions : : : : : : : : : : : : : : : : : : 38

4.3.2 Elimination of Thrashing : 40

4.3.3 Freedom From Deadlock : 40

4.3.4 Thrashwait and High-Availability Interrupts : : : : : : : : : : 42

4.4 Associative Thrashwait (Partial Solution) : : : : : : : : : : : : : : : : 43

4.5 Associative Thrashlock : 43

5 Implementation of the Framework 46

5.1 Alewife and the A-1000 CMMU : 46

5.2 Transaction Store : 50

5.3 Transaction State : 53

5.3.1 The Transaction Store as a Cache : : : : : : : : : : : : : : : : 57

5.3.2 Transaction in Progress States : : : : : : : : : : : : : : : : : : 58

5.3.3 Transient States : 58

5.3.4 Insensitivity to Network Reordering : : : : : : : : : : : : : : : 60

5.4 Associative Matching Port : 65

5.5 Thrashlock Monitor : 66

5.5.1 Tracking Vectors : 67

5.5.2 Bu�er Locks : 69

5.5.3 Protection of Primary Transaction Bu�ers : : : : : : : : : : : 70

5.5.4 Thrash Detection and the Processor Interface : : : : : : : : : 71

5.5.5 Pipeline Reordering : 73

5.6 Transaction Monitor : 75

5

5.6.1 Bu�er Allocation Constraints : : : : : : : : : : : : : : : : : : 76

5.6.2 Allocation of Empty Bu�ers : : : : : : : : : : : : : : : : : : : 78

5.6.3 Identi�cation of Bu�ers for Garbage Collection : : : : : : : : : 78

5.6.4 Scheduling of Transient States : : : : : : : : : : : : : : : : : : 79

5.7 Transaction Data : 80

6 Closing the Window of Vulnerability: The Signaling Approach 81

6.1 Retaining Invalidated Read Data : 81

6.2 Signaling with Block Multithreading : : : : : : : : : : : : : : : : : : 83

6.3 Signaling With Interleaved Multithreading : : : : : : : : : : : : : : : 86

7 Conclusion or \To Poll or Not To Poll" 88

6

List of Figures

1-1 Multiple outstanding requests. : 12

2-1 The need for high-availability interrupts. : : : : : : : : : : : : : : : : : 17

3-1 Treat the memory system (complete with network, coherence protocol, and

other nodes) as a \black box". : 20

3-2 Time-line illustration of invalidation thrashing. The shaded area is the

window of vulnerability. : 24

3-3 Diagram of cache coherence invalidation. : : : : : : : : : : : : : : : : : 24

3-4 Time-line illustration of replacement thrashing. : : : : : : : : : : : : 24

3-5 Diagram of cache replacement. : 25

3-6 Time-line illustration of high-availability interrupt thrashing. : : : : : 25

3-7 Time-line illustration of instruction-data thrashing. : : : : : : : : : : 26

3-8 Window of vulnerability: 64 processors, 4 contexts. : : : : : : : : : : : : 28

4-1 Deadlocks that result from pure locking. (X � Y , X 6= Z) : : : : : : : : 33

4-2 Elimination of instruction-data thrashing through Thrashwait. At the point

marked with (y), Thrashwait is invoked since Data TO[0] is set. : : : : : : 39

5-1 An Alewife Processing Node. : 47

5-2 Internals of the A-1000 Communications and Memory Management Unit : 48

5-3 The transaction store. : 52

5-4 The state of a transaction bu�er. : 54

5-5 The e�ect of network reordering on an uncompensated protocol. : : : : : 60

5-6 Tracking vectors for implementing the thrashlock mechanism. : : : : : : 67

7

5-7 Pipeline reordering of memory accesses. Primary bus accesses are shaded.

Pipeline stages are Fetch, Decode, Execute, Memory, andWriteback. : : 74

8

List of Tables

4.1 Window of Vulnerability closure techniques. Multi represents coherent

caches and multiple requests. Disable represents disabling of context switch-

ing. HAI represents high-availability interrupts. : : : : : : : : : : : : : 30

4.2 Properties of window of vulnerability closure techniques with respect to

the complete set of features. : 31

5.1 Legal combinations of bu�er state bits. Missing states are illegal. : : 56

9

Chapter 1

Introduction

One of the major thrusts of multiprocessor research has been the exploration of mech-

anisms that provide ease of programming, yet are amenable to cost-e�ective imple-

mentation. To this end, a substantial e�ort has been expended in providing e�cient

shared memory for systems with large numbers of processors. Many of the mecha-

nisms that have been proposed for use with shared memory, such as rapid-context

switching, software prefetch, fast message-handling, and software-assisted dynamic

cache-coherence enhance di�erent aspects of multiprocessor performance; thus, com-

bining them into a single architectural framework is a desirable goal. Unfortunately,

this combination of features introduces a window of vulnerability in which data re-

quested by a processor can be lost before it is consumed, either through remote

invalidation or through cache con
icts.

This thesis investigates several methods of closing the window of vulnerability,

culminating in a unifying architectural framework, the transaction store. As described

in Chapter 5, the complete framework has been implemented in the MIT Alewife

machine [3]; however, other multiprocessor architects may choose to implement a

subset of this framework. To this end, Chapter 4 discusses several partial solutions,

each of which are appropriate to a di�erent subset of mechanisms.

10

1.1 Multi-phase Memory Transactions

Many of the mechanisms associated with shared memory attempt to address a central

problem: access to global memory may require a large number of cycles. To fetch

data through the interconnection network, the processor transmits a request, then

waits for a response. The request may be satis�ed by a single memory node, or may

require the interaction of several nodes in the system. In either case, many processor

cycles may be lost waiting for a response.

In a traditional shared-memory multiprocessor, remote memory requests can be

viewed as split-phase transactions, consisting of a request and a response. The time

between request and response may be composed of a number of factors, including

communication delay, protocol delay, and queueing delay. Since a simple single-

threaded processor can typically make no forward progress until its requested data

word arrives, it spins while waiting. When the data word arrives, the processor

consumes the data immediately, possibly placing it in a local cache.

Rather than spinning, a processor might choose to do other useful work. To

tolerate long access latencies, architects have proposed a number of mechanisms such

as prefetching, weak ordering, multithreading, and software-enforced coherence. All

are variations on a central theme: they allow processors to have multiple outstanding

requests to the memory system. A processor launches a number of requests into the

memory system and performs other work while awaiting responses. This capability

reduces processor idle time and allows the system to increase its utilization of the

network.

The ability to handle multiple outstanding requests may be implemented with

either polling or signaling mechanisms. Polling involves retrying memory requests

until they are satis�ed. This is the behavior of simple RISC pipelines which imple-

ment non-binding prefetch or context-switching through synchronous memory faults.

Signaling involves additional hardware mechanisms that permit data to be consumed

immediately upon its arrival. Such signaling mechanisms would be similar to those

used when implementing binding prefetch or out-of-order completion of loads and

11

Processor Actions

Memory System Actions

Request 1 Request 2

Time

to Request 2
ResponseResponse

to Request 1

Access 1 Access 2Initiate 1 Initiate 2

Transaction 1

Transaction 2 Window of Vulnerability

Request Phase

WOV

Access Phase

Figure 1-1: Multiple outstanding requests.

stores. This thesis explores the problems involved in closing the window of vulnera-

bility in polled, context-switching processors. Signaling leads to related approaches;

these are touched upon in Chapter 6.

Figure 1-1 illustrates the timing involved in overlapping access latency using a

polling mechanism. The �gure shows a time-line of events for two memory transac-

tions that occur on a single processing node. Time
ows from left to right in the

diagram. Events on the lower line are associated with the processor, and events on

the upper line are associated with the memory system. In the �gure, a processor ini-

tiates a memory transaction (Initiate 1), and instead of waiting for a response from

the memory system, it continues to perform useful work. During the course of this

work, it might initiate yet another memory transaction (Initiate 2). At some later

time, the memory system responds to the original request (Response to Request 1).

Finally, the processor completes the transaction (Access 1).

Since a processor continues working while it awaits responses from the memory

system, it might not use returning data immediately. Such is the case in the scenario in

Figure 1-1. When the processor receives the response to its second request (Response

to Request 2), it is busy with some (possibly unrelated) computation. Eventually,

the processor completes the memory transaction (Access 2).

Thus, we can identify three distinct phases of a transaction:

1. Request Phase { The time between the transmission of a request for data and

the arrival of this data from memory.

12

2. Window of Vulnerability { The time between the arrival of data from memory

and the initiation of a successful access of this data by the processor.

3. Access Phase { The period during which the processor atomically accesses and

commits the data.

The window of vulnerability results from the fact that the processor does not consume

data immediately upon its arrival. During this period, the data must be placed

somewhere, perhaps in the cache or a temporary bu�er. Note that a simple split-

phase transaction can be seen as a degenerate multiphase transaction with zero cycles

between response and access. The period between the response and access phases of

a transaction is crucial to forward progress. Should the data be invalidated or lost

due to cache con
icts during this period, the transaction is terminated before the

requesting thread can make forward progress.

1.2 High-Availability Interrupts

The window of vulnerability is also opened by another class of mechanisms. This

class contains a number of mechanisms including fast I/O, interprocessor messages,

synchronization primitives, and extensions of the memory system through software.

When implementing such mechanisms, the successful completion of a spinning load

or store to memory may depend on the execution of network interrupts. These asyn-

chronous events must be able to fault an instruction which is in progress, thereby

opening a window of vulnerability. The term high-availability interrupt is applied to

such externally initiated pipeline interruptions.

1.3 The Framework

Closing the window of vulnerability involves ensuring forward progress for multiphase

memory transactions. The consequences of lost data are more subtle and perilous

than simple squandering of memory resources. The window of vulnerability allows

scenarios in which processors repeatedly attempt to initiate transactions only to have

13

them canceled during the window of vulnerability. In certain pathological cases,

individual processors are prevented from making forward progress by cyclic thrashing

situations. While such situations may be rare, they are as fatal as any other livelock

or deadlock situation.

This thesis describes a framework that eliminates livelock problems associated

with the window of vulnerability for systems with multiple outstanding requests and

high-availability interrupts. The system keeps track of pending memory transactions

in such a way that it can dynamically detect and eliminate pathological thrashing

behavior. The framework consists of three major components: a small, associative set

of transaction bu�ers that keep track of outstanding memory requests, an algorithm

called thrashwait that detects and eliminates livelock scenarios that are caused by

the window of vulnerability, and a bu�er locking scheme that prevents livelock in the

presence of high-availability interrupts.

Not all architects will need to implement the full gamut of mechanisms described

in this thesis. For this reason, we describe the di�erent subsets of the framework and

the mechanisms that each subset will support. In order to motivate the architectural

framework that we propose, Chapter 2 presents examples of shared memory mecha-

nisms. Chapter 3 then shows how the window of vulnerability can impede a system's

forward progress. Chapter 4 explores several components of the framework, each

of which provides part of the solution for ensuring forward progress. Chapter 4 con-

cludes with a hybrid architecture, called ThrashLock, that combines these components

to implement all of the mechanisms. Chapter 5 describes how the issues discussed in

earlier sections of this paper are re
ected in the actual implementation of Alewife. As

is shown in that chapter, the principle component of the implementation, the transac-

tion store, is an important centralized resource and has many bene�ts over and above

those which are developed by the earlier chapters. Chapter 6 discusses alternatives

to the ThrashLock architecture which would be possible with more signi�cant mod-

i�cations to the processor pipeline. Finally, Chapter 7 concludes by examining the

implications of the window of vulnerability on the design of shared memory systems.

14

Chapter 2

Hardware Mechanisms for Shared

Memory Support

Three general classes of hardware support for e�cient implementation of distributed

shared memory are:

1. Coherent caches to automatically replicate data close to where it is needed, and

a mechanism to allow multiple outstanding requests to memory.

2. Atomic operations on critical system resources.

3. High-availability interrupts for response to high-priority asynchronous events,

such as message arrival.

This section presents examples of some of the mechanisms that belong to these classes

and makes a case for incorporating them into distributed shared memory machines.

The following section describes how each of these mechanisms leads to the same

window of vulnerability problem. A given systemmight implement only a small subset

of these mechanisms, in which case only a portion of our architectural framework

would need to be implemented.

15

2.1 Coherent Caches with Multiple Outstanding

Requests

Coherent caches are widely recognized as a promising approach to reducing the band-

width requirements of the shared-memory programming model. Because they au-

tomatically replicate data close to where it is being used, caches convert temporal

locality of access into physical locality. That is, after a �rst-time fetch of data from

a remote node, subsequent accesses of the data are satis�ed entirely within the node.

The resulting cache coherence problem can be solved using a variety of directory

based schemes [15, 23, 9].

In a cache-based system, memory and processor resources are wasted if no pro-

cessing is done while waiting for memory transactions to complete. Such transactions

include �rst-time data fetches and invalidations required to enforce coherence. Apply-

ing basic pipelining ideas, resource utilization can be improved by allowing a processor

to transmit more than one memory request at a time. Multiple outstanding transac-

tions can be supported using software prefetch [7, 24], rapid context switching [28, 4],

or weak ordering [1]. Studies have shown that the utilization of the network, pro-

cessor, and memory systems can be improved almost in proportion to the number of

outstanding transactions allowed [22, 16].

Allowing multiple outstanding transactions in a cache-based multiprocessor opens

the window of vulnerability and leads to situations involving livelock.

2.2 Atomicity and Context Switching

In a system that supports multiple outstanding requests through context switching,

the ability to perform complex atomic actions e�ciently requires the occasional dis-

abling of context switching. For example, we have observed that disabling is essential

for performance in the presence of critical sections in a non-preemptive task scheduler.

Furthermore, if a thread locks a critical system resource and then is forced to switch

out, then performance su�ers because many other tasks must wait for the context to

16

To Interconnect From Interconnect

Request

Request

Request

Response

Message

Message

Message

Response

Processor
Waiting for response

to request for data
from shared memory

Figure 2-1: The need for high-availability interrupts.

release the lock. Thus, software on a context-switching machine should be able to

disable context-switching temporarily. However, as explained in Section 4, this ability

places a serious constraint on mechanisms that can be used to prevent livelock.

2.3 High-Availability Interrupts

The third class of mechanisms provides the ability to handle asynchronous, time-

critical events under circumstances in which normal interrupts would be ignored.

Such high-availability interrupts violate instruction atomicity by faulting loads or

stores which are in progress. This class of interrupts allows migration of hardware

functionality into software.

Figure 2-1 illustrates the need for high-availability interrupts in an architecture

that supports fast message handling. In the �gure, the processor is spinning while

waiting to access a remote memory block. Several messages have entered the proces-

sor's input queue before the desired memory response. Consequently, the processor

will not make forward progress unless a high-availability interrupt is invoked to pro-

cess these messages.

In Alewife, for example, high-availability interrupts are used to implement the

LimitLESS coherence protocol [9], a fast user and system-level messaging facility,

and network deadlock recovery. LimitLESS interrupts must be able to occur under

17

most circumstances, because they can a�ect forward progress in the machine, both

by deadlocking the protocol and by blocking the network. Since the message passing

interface relies on software for queueing, network queueing interrupts must be able

to run under most circumstances. The network over
ow interrupt relieves potential

deadlock situations by redirecting input packets into local memory and relaunching

them when the situation has abated.

18

Chapter 3

The Window of Vulnerability

This chapter examines the window of vulnerability in more detail. It �rst de�nes

several terms, then introduces four distinct types of thrashing which can arise. Finally,

it explores the severity of this problem through simulation.

3.1 Preliminaries

As shown in Figure 3-1, we will consider the memory system, complete with inter-

connection network, to be a black-box that satis�es memory requests. While this

abstracts away the details of the memory-side of the cache-coherence protocol and

ignores the fact that memory is physically distributed with the processors, it permits

us to focus on the processor-side of the system, where the window of vulnerability

arises. Let us assume, for the sake of discussion, that all requests which are made

to the memory-system are eventually satis�ed. Note that this stipulation is di�cult

to guarantee in practice and is an interesting topic in its own right; it is, however,

outside the scope of the current discussion.

3.1.1 Forward Progress

Consequently, when we say that a processor (or hardware thread) does or does not

make forward progress, we are referring to properties of its local hardware and soft-

ware, assuming that the remote memory system always satis�es requests.

19

Memory System

Processor
and

Cache

Figure 3-1: Treat the memory system (complete with network, coherence protocol, and

other nodes) as a \black box".

To be more precise, a processor thread makes forward progress whenever it com-

mits an instruction. Given a processor with precise interrupts, we can think of this

as advancing the instruction pointer. A load or store instruction can be said to make

forward progress if the instruction pointer is advanced beyond it.

3.1.2 Primary and Secondary Transactions

Given this de�nition of forward progress, we can identify two distinct classes of trans-

actions, primary and secondary. Primary transactions are those which must complete

before some hardware thread in the system can make forward progress. Secondary

transactions, on the other hand, are not essential to the forward progress of any

thread in the system.

The categories of primary and secondary transactions distinguish between binding

memory operations (normal loads and stores) and non-binding memory operations

(prefetches). Non-binding prefetches are hints to the memory-system; they specify

data items which may be needed in the future. As hints, they can be ignored without

a�ecting the correctness of the computation.

Thus, when handling a prefetch, the memory system may initiate a secondary

transaction. Should this transaction be aborted prematurely, it will not a�ect the

forward progress of the processor. However, if the processor later attempts to access

20

prefetched data via a binding load or store, one of two things can happen:

1. The original transaction has been aborted. In this case the memory system will

initiate a new, primary transaction. This is as if the prefetch never occurred.

2. The secondary transaction is still in progress. Since the forward progress of

the processor now depends on the successful completion of the transaction, it

is e�ectively \upgraded" to primary status.

This primary-secondary distinction will appear in later discussion.

3.1.3 Forward Progress and the Window of Vulnerability

Memory models di�er in the degree to which they require primary transactions to

complete before the associated loads or stores commit. Sequentially consistent ma-

chines, for instance, require write transactions (associated with store instructions)

to advance beyond the request phase before their associated threads make forward

progress. Weakly-ordered machines, on the other hand, permit store instructions to

commit before the end of the request phase. In a sense, the cache system promises to

ensure that store accesses complete. Therefore, for weakly-ordered machines, write

transactions have no window of vulnerability. In contrast, most memory models re-

quire a read transaction to receive a response from memory before committing the

associated load instruction.

As an example, the Alewife multiprocessor uses memory exception traps to cause

context switches. Consequently, data instructions are restarted by \returning from

trap," or refetching the faulted instruction. If this instruction has been lost due to

cache con
icts, then the context may need to fetch it again before making forward

progress. Thus, each context can have both a primary instruction transaction and

a primary data transaction1. In contrast, a processor that saves its pipeline state

when context-switching (thereby saving its faulting instruction) would retry only the

1Note that factoring instructions into this situation also has some interesting pipeline conse-
quences which will be examined in Chapter 5.

21

faulted data access. Each context in such a processor would have at most one primary

transaction at a time.

Unless otherwise noted, this thesis will assume that a hardware context can have

no more than one primary data transaction. This assumption has two implications.

First, any weakly ordered writes that have not yet been seen by the memory system are

committed from the standpoint of the processor. Second, a single context cannot have

multiple uncommitted load instructions (as in a processor with register reservation

bits). Similarly, we allow no more than one primary instruction transaction at a time.

In actuality, these restrictions are not necessary for one of our more important results,

the thrashwait algorithm of Section 4.3, but they are required for the thrashlock

mechanism of Section 4.5.

3.2 Four Di�erent Livelock Scenarios

This section introduces the four distinct types of livelock or data thrashing which

can occur in the processor's cache system. One of these, invalidation thrashing,

arises from protocol invalidation for highly contended memory lines. The remaining

three result from replacement in a direct-mapped cache. In intercontext thrashing,

di�erent contexts on the same processor can invalidate each ether's data. High-

availability interrupt thrashing occurs when interrupt handlers replace a context's

data in the cache. The last, instruction-data thrashing, appears for processors that

context-switch by polling and which must refetch load or store instructions before

checking for the arrival of data. Chapter 4 will discuss methods of eliminating these

livelock situations.

3.2.1 Invalidation Thrashing

Figure 3-2 illustrates the interaction between the window of vulnerability and cache

coherence that leads to livelock. The �gure gives the currently enabled context in the

bar shown under the time-line. The scenario may be interpreted as follows: First,

context A of the processor attempts to access memory block X (Read X). Since

22

the data word is not currently in the processor's cache, the memory system issues

a request (Read Req. X) and causes the processor to switch contexts. When the

response to the request (Read Data X) returns to the processing node, context C is

active. The shaded region indicates the window of vulnerability between the memory

system response and the instant that context A is reenabled. During the window, the

memory system causes block X to be invalidated from the processor's cache.

Figure 3-3 shows the multi-node scenario that causes this invalidation. There are

three processing nodes in the �gure: node 1 is the node associated with the time-line

in Figure 3-2; node 2 is the home node for block X; and node 3 is the node that

causes the interference. Some time after the home node has serviced the request,

node 3 issues a write request for block X to node 2. In response, node 2 transmits an

invalidation message to node 1, waits for an acknowledgment message, and eventually

transmits write permission to node 3. As a result, node 1 must repeat its read request

when it reenables context A at the end of the time-line in Figure 3-2.

There is no reason to expect that node 3 will actually complete the write to block

X before node 1 repeats its read request! If this is the case, it is possible for node

2 to invalidate block X in node 3 before the write is �nished. Given an unfortunate

coincidence in timing, this vicious cycle of invalidation or internode thrashing can

continue forever. Our simulations indicate that this thrashing is an infrequent event,

but it does happen at some point during the execution of most programs. Without a

solution to the thrashing scenario, the system would livelock (e�ectively causing the

machine to crash).

3.2.2 Replacement Thrashing

Due to the limited set-associativity of a processor's cache, di�erent contexts on the

same processor can interfere with each other. Figure 3-4 uses a time-line to illustrate

this thrashing scenario. Contexts A and C try to access blocks X and Y, respectively.

Since blocks X and Y are congruent with respect to the cache mapping (see Figure 3-

5), when the data for block Y arrives, it knocks the data for block X out of the cache.

Each context prevents the other from making forward progress by replacing cached

23

Read Req.
X

Read Data
X

Invalidate
X

Ack.
X

Read Req.
X

Read X Read X (Retry)Time

Window of Vulnerability

A AB BC D

Figure 3-2: Time-line illustration of invalidation thrashing. The shaded area is the window

of vulnerability.

Write Req.

Write Data

Invalidate

1 2 3

X

X

X

X

X:

X:
Write XAck.

1

43

2

Figure 3-3: Diagram of cache coherence invalidation.

data during the window of vulnerability. As a consequence of this replacement or

intercontext thrashing, a context-switching processor can livelock itself.

3.2.3 High-Availability Interrupt Thrashing

Figure 3-6 demonstrates a special case of replacement thrashing that is caused by

high-availability interrupt handlers, rather than by a context-switching processor.

The �gure shows user code attempting to access memory block X and interrupt code

accessing block Y, which maps to the same cache line as X. During a normal memory

access, the user code would spin-wait until it received the data associated with block

CA

Read Req. Read Req.Read Data Read Data

Time

Read Req. Read Data Read Req.
X X Y Y X X Y

A B C D B D

Read X Read Y Read X (Retry) Read Y (Retry)

Figure 3-4: Time-line illustration of replacement thrashing.

24

Before After

1 1
W:

Y:

X:
Z:

W:

Z:
Y:

Figure 3-5: Diagram of cache replacement.

User

Read Req. Read Req.Read Data Read Data

Time

Read Req.

User Trap

Semi−Sync

X X Y Y X

Read X Read Y Read X (Retry)

Figure 3-6: Time-line illustration of high-availability interrupt thrashing.

X. However in this pathological scenario, the user code is interrupted by a high-

availability interrupt and forced to execute an interrupt handler. While the processor

is handling the interrupt, data block X arrives, but is subsequently replaced when an

instruction in the handler references block Y.

Note that all interrupt code can cause this type of thrashing. High-availability

interrupt thrashing is particularly important because it can occur even when context-

switching has been disabled. This will be revisited in Chapter 4.

3.2.4 Instruction-Data Thrashing

As discussed in Section 3.1.3, instructions may need to be refetched whenever the

processor reenables a context. Figure 3-7 shows a replacement scenario caused by

a cache con
ict between a load instruction and its data. Here, both the instruction

and its data are congruent in the cache. Initial fetching of the instruction proceeds

normally. However, when the processor subsequently requests data (Read Data D),

it contexts switches, later returning to �nd that the data has displaced the instruc-

25

AA

Time

Read Req.
I

Read Req.
D

Fetch I Read D

Read Data
I

Read Data
D

Fetch I Fetch I

Read Req.
I

A B C D B C D B

Figure 3-7: Time-line illustration of instruction-data thrashing.

tion. The re-requested instruction, in turn, displaces the data, and a thrashing cycle

commences.

Note that instruction-data thrashing is independent of timing, since a single con-

text is competing with itself for resources. Consequently, if an instruction and its data

are congruent in the cache and context-switching is permitted on all cache-misses,

then instruction-data thrashing will cause deadlock. This is in marked contrast to

uniprocessor instruction-data thrashing, which does not cause deadlock but rather

degrades performance.

3.2.5 Completeness

The four types of thrashing presented above represent interference to the forward

progress of a given context from four di�erent sources:

� A remote processor (invalidation thrashing)

� Another context (intercontext thrashing)

� Interrupt-code (high-availability interrupt thrashing)

� Itself (instruction-data thrashing).

The later three represent all possible instruction-stream related interference on a

context-switching processor. Assuming that invalidation is the only vehicle for ex-

ternal interference, our four types of thrashing represent a complete set. Should we

discover ways of limiting each of these types of thrashing, then we will be able to

guarantee that each processor context is able to make forward progress (assuming

that all available cycles are not consumed by interrupt code).

26

3.3 Severity of the Window of Vulnerability

This section supports the claim that the window of vulnerability poses a signi�cant

problem in shared memory architectures. To evaluate our proposed architecture, the

Alewife research group constructed a cycle-by-cycle simulation of the processor, net-

work, and cache controller (now called the communications and memorymanagement

unit). This simulation environment, called ASIM2 permits parallel programs that are

written in C or LISP (and soon FORTRAN) to be compiled, linked, and executed

on a virtual Alewife machine. A copious set of statistics-gathering facilities permit

post-mortem analysis of the behavior of the program and machine.

As an example of one of the statistics, the Alewife simulator calculates the time

between the instant that a data block becomes valid in a cache due to a response

from memory and the �rst subsequent access to the cached data. The simulator

measures this period of time only for the fraction of memory accesses that generate

network tra�c and are thus susceptible to the window of vulnerability. Figure 3-8

shows typical measurements of the window of vulnerability. The graph is a histogram

of window of vulnerability sizes, with the size on the horizontal axis and the number

of occurrences on the vertical axis. The graph was produced by a simulation of a

64 processor machine (with 4 contexts per processor) running 1,415,308 cycles of a

numerical integration program.

For the most part, memory accesses are delayed for only a short period of time

between cache �ll and cache access: 90% of memory accesses that generate network

tra�c have windows that are less than 65 cycles long. However, a small number of

accesses encounter pathologically long windows of vulnerability. To make the inter-

esting features of the graph visible, it was necessary to plot the data on a logarithmic

scale and to eliminate events having a frequency of less than 30 occurrences. Due to

a few extremely long context run-lengths, the tail of this particular graph actually

runs out to 543,219 cycles! The high standard deviation provides another measure of

2For Alewife SIMulator. This simulator has now be supplanted by a simulator which is more
faithful to implementation details. ASIM remains a good research tool, however.

27

|

0
|

20
|

40
|

60
|

80
|

100
|

120
|

140
|

160
|

180

|10

|
|

|
|

|
|

|
|

|100

|
|

|
|

|
|

|
|

|1000

|
|

|
|

|
|

|
|

|10000

|
|

|
|

|
|

|
|

|100000

| | | | | | | | | | |

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Size of Window of Vulnerability in Cycles

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Range: 0 - 543219

Average: 161

Standard Deviation: 1047

Figure 3-8: Window of vulnerability: 64 processors, 4 contexts.

the importance of the graph's tail.

The sharp spike at zero cycles illustrates the role of context switching and high

availability interrupts in causing the window of vulnerability. The spike is caused

by certain critical sections of the task scheduler that disable context switching, as

described in Section 2. When context switching is disabled, a processor will spin-

wait for memory accesses to complete, rather than attempting to tolerate the access

latency by doing other work. In this case, the processor accesses the cache on the

same cycle that the data becomes available. Such an event corresponds to a zero-size

window of vulnerability. The window becomes a problem only when context switching

is enabled or when high availability interrupts interfere with memory accesses.

The window of vulnerability histogram in Figure 3-8 is qualitatively similar to

other measurements made for a variety of programs and architectural parameters.

The time between cache �ll and cache access is usually short, but a small fraction

of memory transactions always su�er from long windows of vulnerability. In general,

both the average window size and the standard deviation increase with the number of

contexts per processor. The window size and standard deviation also grow when the

28

context switch time is increased. We have observed that high-availability interrupts

cause the same type of behavior although their e�ects are not quite as dramatic as

the e�ect of multiple contexts.

For the purposes of our argument, it does not matter whether the window of vul-

nerability is large or small, common or uncommon. Even if a window of vulnerability

is only tens or hundreds of cycles long, it introduces the possibility of livelock that can

prevent an application from making forward progress. The architectural framework

described in the next section is necessary merely because the window exists.

29

Chapter 4

Closing the Window

This section discusses a range of solutions for eliminating the livelock associated with

the window of vulnerability. Three self-contained solutions are discussed, namely

associative locking, thrashwait , and associative thrashlock . Each is appropriate for a

di�erent combination of the mechanisms of Chapter 2. As summarized in Table 4.1,

a system with coherent caches and multiple outstanding requests (Multi) is assumed

in all cases. To this is added either the ability to disable context switching (Disable),

the presence of high-availability interrupts (HAI), or a combination of both. A Yes in

Table 4.1 indicates that a given solution is appropriate for the speci�ed combination of

mechanisms. During the exposition, two partial solutions are also discussed, namely

locking and associative thrashwait .

Multi +

Multi + Multi + HAI +

Multi Disable HAI Disable

Assoc Locking Yes No Yes No

Thrashwait Yes Yes No No

Assoc Thrashlock Yes Yes Yes Yes

Table 4.1: Window of Vulnerability closure techniques. Multi represents coherent caches

and multiple requests. Disable represents disabling of context switching. HAI represents

high-availability interrupts.

30

Prevents Prevents Prevents Prevents Deadlock Free Free From

Technique Invalidation Intercontext HAI Inst-Data Context Switch Cache line

Thrashing Thrashing Thrashing Thrashing Disable Starvation

Locking Yes Yes Yes Deadlock No No

Assoc Locking Yes Yes Yes Yes No Yes

Thrashwait No Yes No Yes Yes Yes

Assoc TW No Yes Yes Yes Yes Yes

Assoc Thrashlock Yes Yes Yes Yes Yes Yes

Table 4.2: Properties of window of vulnerability closure techniques with respect to the

complete set of features.

Locking involves freezing external protocol actions during the window of vulnera-

bility by deferring invalidations. Thrashwait is a heuristic that dynamically detects

thrashing situations and selectively disables context-switching in order to prevent

livelock. Associativity can be added to each of these techniques by supplementing

the cache with an associative bu�er for transactions. This yields associative locking

and associative thrashwait. Table 4.2 summarizes the de�ciencies of each of these

mechanisms with respect to supporting the complete set of mechanisms. Associative

thrashlock is a hybrid technique, and is discussed in Section 4.5. Note that only

associative thrashlock permits the full set of mechanisms.

4.1 Locking (Partial Solution)

One approach to closing the window involves locking transactions during their window

of vulnerability. For the moment, we will assume that returning data (responses) are

placed in the cache; later, we consider the addition of an extra set of bu�ers for

memory transactions.

Locking involves two state bits for each line in the cache. To prevent intercontext

and high-availability interrupt thrashing, the system needs a lock bit to signal that

a cache line is locked and cannot be replaced. When the line is accessed, the lock

bit associated with the line is cleared. To prevent invalidation thrashing, we need a

deferred invalidate bit; invalidations to locked lines are deferred by setting this bit.

Deferred invalidation is performed (and acknowledged) when the requesting context

returns and clears the lock bit.

31

4.1.1 The Transaction-In-Progress State

One of the consequences of locking cache lines during a transaction's window of

vulnerability is that we must also restrict transactions during their request phase.

Since each cache line can store only one outstanding request at a time, multiple

requests could force the memory system to discard one locked line for another, de-

feating the purpose of locking. Thus, we supplement the state of a cache line with

a transaction-in-progress state to prevent multiple outstanding requests to this line.

The transaction-in-progress state restricts creation of new transactions, but does not

a�ect data currently in the cache in order to minimize the interference of memory

transactions in the cache. Also, the transaction-in-progress state allows a processing

node to consolidate accesses from di�erent contexts to the same memory block.

We refer to this scheme as touchwait , because data blocks are held until the

requesting context returns to \touch" it. Touchwait eliminates the livelock scenarios

of the previous section, because the cache retains data blocks until the requesting

context returns to access them.

4.1.2 Premature Lock Release

As described, the above scheme does not quite eliminate all intercontext thrashing,

because one context can unlock or touch the data requested by another context.

This is called premature lock release. Locking can, however, be supplemented with

additional bits of state to keep track of which context holds a given lock; then, only

the locking context is permitted to free this lock. This can get quite expensive with

the simple locking scheme, because these bit must be included in tags-�le. However,

for other schemes, the cost is less signi�cant; more details will be given in Chapter 5.

4.1.3 Deadlock Problems

Unfortunately, the locking mechanism can lead to four distinct types of deadlock,

illustrated in Figure 4-1. This �gure contains four di�erent waits-for graphs [6], which

represent dependencies between transactions. In these graphs, the large italic letters

32

Primary−Secondary Instruction−Data

P

1,A
(X)I D

P
(Y)

1,A

Execution

Congruence

D
P

1,A
(X) D

P
(Y)

1,B

Disable

Congruence

Intercontext

D
P

1,A
(X)

Protocol

D (Z)
P

1,B
Protocol

D
is

ab
le

D
isable

D (X)
P

2,D

D
P

(Z)
2,C

D
P

1,A
(X)

Protocol

D 1,A

S
(Z)

Protocol

E
xe

cu
tio

n

E
xecution

D (X)
S

2,C

D
P

(Z)
2,C

Internode

Figure 4-1: Deadlocks that result from pure locking. (X � Y , X 6= Z)

represent transactions: \D" for data transactions and \I " for instruction transactions.

The superscripts { either \P" or \S" { represent primary or secondary transactions,

respectively. The subscripts form a pair consisting of processor number (as an arabic

number) and context number (as a letter). The address is given in parentheses; in

these examples, X and Y are congruent in the cache (X � Y), while X and Z are

not equal (X 6= Z).

The labeled arcs represent dependencies; a transaction at the tail of an arc cannot

complete before the transaction at the head has completed (in other words, the tail

transaction waits-for the head transaction). Labels indicate the sources of dependen-

cies: A congruence arc arises from �nite associativity in the cache; the transaction

at its head is locked, preventing the transaction at its tail from being initiated. An

execution arc arises from execution order. Disable arcs arise from disabling context-

switching; the transactions at their heads belong to active contexts with context-

switching disabled; the tails are from other contexts. Finally, a protocol arc results

from the coherence protocol; the transaction at its head is locked, deferring invali-

33

dations, while the transaction at its tail awaits acknowledgment of the invalidation.

An example of such a dependence is a locked write transaction at the head of the arc

with a read transaction at the tail. Since completion of the write transaction could

result in modi�cation of the data, the read transaction cannot proceed until the write

has �nished. These arcs represent three classes of dependencies: those that prevent

launching of transactions (congruence), those that prevent completion of a transac-

tion's request phase (protocol), and those that prevent �nal completion (execution

and disable).

Now we describe these deadlocks in more detail. Note that larger cycles can be

constructed by combining the basic deadlocks.

� intercontext: The context that has entered a critical section (and disabled

context-switching) may need to use a cache line that is locked by another con-

text.

� internode: This deadlock occurs between two nodes with context-switching

disabled. Here, context A on processor 1 is spinning while waiting for variable

X, which is locked in context D on processor 2. Context C on processor 2 is

also spinning, waiting for variable Z, which is locked by context B on processor

1.

� primary-secondary: This is a variant of the internode deadlock problem that

arises if secondary transactions (software prefetches) can be locked. Data blocks

from secondary transactions are accessed after those from primary ones.

� instruction-data: Thrashing between a remote instruction and its data yields

a deadlock in the presence of locks. This occurs after a load or store instruction

has been successfully fetched for the �rst time. Then, a request is sent for the

data, causing a context-switch. When the data block �nally returns, it replaces

the instruction and becomes locked. However, the data will not be accessed

until after the processor refetches the instruction.

Primary-secondary deadlock is easily removed by recognizing that secondary trans-

34

actions are merely hints; locking them is not necessary to ensure forward progress.

Unfortunately, the remaining deadlocks have no obvious solution. Due to these dead-

lock problems, pure locking cannot be used to close the window of vulnerability.

4.2 Associative Locking

A variant of the locking scheme that does not restrict the use of the cache or launching

of congruent transactions is locking with associativity. This scheme supplements the

cache with a fully associative set of transaction bu�ers. Each of these bu�ers contains

an address, state bits, and space for a memory line's data. Locking is performed in

the transaction bu�er, rather than the cache. As discussed above, invalidations to

locked bu�ers are deferred until the data word is accessed. Bu�er allocation can be

as simple as reserving a �xed set of bu�ers for each context. More general schemes

might keep track of the context that owns each bu�er to prevent premature lock

release (see Section 4.1.2). The use of a transaction bu�er architecture has been

presented in several milieux, such as lockup-free caching [18], victim caching [17], and

the remote-access cache of the DASH multiprocessor [23].

The need for an associative match on the address stems from several factors.

First, protocol tra�c is tagged by address rather than by context number. While re-

quests and responses could be tagged with a context identi�er inexpensively, tagging

invalidations would increase the cost of the directory used to guarantee cache coher-

ence. Second, associativity removes the intercontext and instruction-data deadlocks

of Figure 4-1, because it eliminates all of the congruence arcs of Figure 4-1.

Third, the associative match permits consolidation of requests from di�erent con-

texts to the same memory-line; before launching a new request, the cache �rst checks

for outstanding transactions from any context to the desired memory line. Should a

match be detected, generation of a new request is suppressed.

Finally, the associative matching mechanism can permit contexts to access bu�ers

that are locked by other contexts. Such accesses would have to be performed directly

to and from the bu�ers in question, since placing them into the cache would e�ectively

35

unlock them. This optimization is useful in a machine with medium-grained threads,

since di�erent threads often execute similar code and access the same synchronization

variables.

The augmentation of basic locking with associativity appears to be close to a

solution for the window of vulnerability. All four thrashing scenarios of Section 3.2

are eliminated. Further, the cache is not bogged down by persistent holes. Access to

the cache is unrestricted for both user and system code. However, this approach still

su�ers from internode deadlock when context-switching is disabled. Consequently, as

shown in Table 4.1, associative locking is su�cient for systems which do not permit

context-switching to be disabled.

4.3 Thrashwait

Locking transactions prevents livelock by making data invulnerable during a trans-

action's window of vulnerability. To attack the window from another angle, we note

that the window is eliminated when the processor is spinning while waiting for data:

when the data word arrives, it can be consumed immediately. This observation does

not seem to be useful in a machine with context-switching processors, since it re-

quires spinning rather than switching. However, if the processors could context-switch

\most of the time," spinning only to prevent thrashing, the system could guarantee

forward progress. We call this strategy thrashwait (as opposed to touchwait). The

trick in implementing thrashwait lies in dynamically detecting thrashing situations.

The thrashwait detection algorithm is based on an assumption that the frequency of

thrashing is low. Thus, the recovery from a thrashing scenario need not be extremely

e�cient.

For the purpose of describing the thrashwait scheme, assume that the system has

some method for consolidating transactions from di�erent contexts. To implement

this feature, either each cache line or the transaction bu�ers needs a transaction-in-

progress state. If the transaction-in-progress state is in the cache, as in the pure

locking scheme, the system allows only one outstanding transaction per cache line.

36

Consider, for simplicity, a processor with a maximum of one outstanding primary

transaction per context; multiple primary transactions will be addressed in the next

section. Each context requires a bit of state called a tried-once bit . The memory

system sets the bit when the context initiates primary transactions and clears the

bit when the context completes a global load or store. Note that global accesses,

which involve shared locations and the cache-coherence protocol, are distinguished

here from local accesses which are unshared and do not involve the network or the

protocol. In addition, there is a single thrash-wait bit which is used to retain the

fact that thrashing has been detected on the current access. The algorithm can be

described in pseudo-code as follows1:

Do Global Processor Request(Address, Context)
1 if (data is ready for Address)) cache hit
2 then clear tried once[Context]
3 clear thrash wait

4 return READY

5 if (Transaction-in-progress[Address])) still waiting for transaction
6 then if (thrash wait or context-switching disabled)
7 then return WAIT

8 else return SWITCH

9 if (tried once[Context])) detected thrashing!
10 then send RREQ or WREQ

11 set thrash wait

12 return WAIT

13) normal cache miss
14 send RREQ or WREQ

15 set tried once[Context]
16 if (context-switching disabled)
17 then return WAIT

18 else return SWITCH

This function is executed by the cache controller each cycle. The return codes

(READY, SWITCH, and WAIT) refer to a successful cache hit, a context-switch

request, and a pipeline freeze respectively. RREQ is a read request and WREQ is

a write request.

1Adapted from Chaiken [10]. The pseudocode notation is borrowed from [11]

37

The key to the detecting of thrashing is in line 9. This says that the memory

system detects a thrashing situation when:

1. The context requests a global load or store that misses in the cache.

2. There is no associated transaction-in-progress state, because the transaction

has completed.

3. The context's tried-once bit is set.

The fact that the tried-once bit is set indicates that this context has recently launched

a primary transaction but has not successfully completed a global load or store in the

interim. Thus, the context has not made forward progress.

In particular, the current load or store request must be the same one that launched

the original transaction. The fact that transaction-in-progress is clear indicates that

the transaction had completed its request phase (data was returned). Consequently,

the fact that the access missed in the cache means that a data block has been lost.

Once thrashing has been detected, the thrashwait algorithm requests the data for a

second time and disables context-switching, causing the processor to wait for the data

to arrive.

4.3.1 Multiple Primary Transactions

Systems requiring two primary transactions can be accommodated by providing two

tried-once bits per context, one for instructions and the other for data. Only a single

thrash-wait bit is required. To see why a single tried-once bit is not su�cient, consider

an instruction-data thrashing situation. Assuming that a processor has successfully

fetched the load or store instruction, it proceeds to send a request for the data, sets the

tried-once bit, and switches contexts. When the data block �nally arrives, it displaces

the instruction; consequently, when the context returns to retry the instruction, it

concludes that it is thrashing on the instruction fetch. Context-switching will be

disabled until the instruction returns, at which point the tried-once bit is cleared.

Thus, the algorithm fails to detect thrashing on the data line.

38

Context Processor Request Cache Response Cache Actions

0 Fetch Load Inst(A) SWITCH set Inst TO[0], Send Request (RREQ[A]).

Other
...

...
... Cache[A] Instruction

Other
...

0 Fetch Load Inst[A] READY clear Inst TO[0]
0 Read Data (B � A) SWITCH set Data TO[0], Send Request (RREQ[A])

Other
...

...
... Cache[B] Read Data (Displace Instruction)

Other
...

0 Fetch Load Inst(A) SWITCH set Inst TO[0], Send Request (RREQ[A])

Other
...

...
... Cache[B] Instruction (Displace Data)

Other
...

0 Fetch Load Inst(A) READY clear Inst TO[0]
0 Read Data (B) WAITy Send Request (RREQ[A])

0
... WAIT

0 Read Data (B) WAIT Cache[B] Read Data (Displace Instruction)
0 Read Data (B) READY clear Data TO[0]

0
...

...

Figure 4-2: Elimination of instruction-data thrashing through Thrashwait. At the point

marked with (y), Thrashwait is invoked since Data TO[0] is set.

As shown in Figure 4-2, the presence of two separate tried-once bits per context

(Inst TO and Data TO) solves this problem. This �gure shows cache requests from

context zero (0) during the fetching and execution of a load instruction which is

subject to instruction-data thrashing. Note that this ignores pipeline reordering,

which will be considered in Chapter 5. The instruction and data accesses are handled

independently, according to the above algorithm. In fact, this two-bit solution can be

generalized to a system with an arbitrary number of primary transactions. The only

requirement for multiple transactions is that each primary transaction must have a

unique tried-once bit that can be associated with it each time the context returns to

begin reexecution. (This can become somewhat complex in the face of deep pipelining

or multiple-issue architectures.)

39

4.3.2 Elimination of Thrashing

The thrashwait algorithm identi�es primary transactions that are likely to be ter-

minated prematurely; that is, before the requesting thread makes forward progress.

Assuming that there are no high-availability interrupts, thrashwait removes livelock

by breaking the thrashing cycle. Thrashwait permits each primary transaction to be

aborted only once before it disables the context-switching mechanism and closes the

window of vulnerability.

In a system with multiple primary transactions, livelock removal occurs because

primary transactions are ordered by the processor pipeline. A context begins execu-

tion by requesting data from the cache system in a deterministic order. Consequently,

under worst-case conditions { when all transactions are thrashing, the processor will

work its way through the implicit order, invoking thrashwait on each primary trans-

action in turn. Although a context-switch may
ush its pipeline state, the tried-once

bits remain, forcing a pipeline freeze (rather than a switch) when thrashing occurs.

An example of this would be seen in Figure 4-2 by replacing the �rst twoREADY

responses (both on instructions) into WAITs by causing the instruction data to be

lost do to con
ict with another context. In this absolute worst-case scenario, the

instruction would be requested four times and the data would be requested twice; the

context would make forward progress, however.

4.3.3 Freedom From Deadlock

In this section, we prove that the thrashwait algorithm does not su�er from any of the

deadlocks illustrated in Figure 4-1. We assume (for now) that a processor launches

only one primary transaction at a time. Multiple primary transactions, which must

complete to make forward progress, are allowed; multiple simultaneous transactions,

which are caused by a system that presents several addresses to the memory system

at once, are not allowed. At the end of the proof, we discuss a modi�cation to the

thrashwait algorithm that is necessary for handling multiple functional units and

address buses.

40

The proof of the deadlock-free property proceeds by contradiction. We assume

that the thrashwait algorithm can result in a deadlock. Such a deadlock must be

caused by a cycle of primary transactions, linked by the dependencies de�ned in

Section 4.1.3: disable, execution, congruence, and protocol arcs. Since the memory

transactions involved in the deadlock loop are frozen, it is correct to view the state of

transactions simultaneously, even if they reside on di�erent processors. By examining

the types of arcs and the associated transactions, we show that such a cycle cannot

exist, thereby contradicting the assumption that thrashwait can result in a deadlock.

Disable and execution arcs cannot participate in a deadlock cycle because these

dependencies occur only in systems that use a locking scheme. Since thrashwait

avoids locking, it immediately eliminates two forms of dependency arcs. This is the

key property that gives thrashwait its deadlock-free property. To complete the proof,

we only need to show that congruence and protocol arcs cannot couple to form a

deadlock.

A deadlock cycle consisting of congruence and protocol arcs can take only one of

three possible forms: a loop consisting only of congruence arcs, a loop consisting of

both congruence arcs and protocol arcs, or a loop consisting of only protocol arcs. The

next three paragraphs show that none of these types of loops are possible. Congruence

and protocol arcs cannot be linked together, due to type con
icts between the head

and tail of congruence and protocol arcs.

First, we show that cycles consisting only of congruence arcs cannot occur. Recall

that a congruence arc arises when an existing transaction blocks the initiation of

a new transaction due to limited cache associativity. A congruence arc requires an

existing transaction at its head and a new transaction at its tail. It is therefore

impossible for the tail of a congruence arc (a new transaction) to also be the head of

a di�erent congruence arc (an existing transaction). Thus, it is impossible to have a

loop consisting only of congruence arcs, because the types of a congruence arc's head

and tail do not match.

Second, a cycle consisting only of protocol arcs cannot exist. By de�nition, the

head of a protocol arc is a transaction in its window of vulnerability, which is locked

41

so that invalidations are deferred. The tail of a protocol arc is a transaction in its

request phase, waiting for the invalidation to complete. Since a transaction in its

request phase cannot be at the head of a protocol arc, protocol arcs cannot be linked

together, thereby preventing a loop of protocol arcs.

Finally, the tail of a congruence arc cannot be linked to the head of a protocol arc

due to another type con
ict: the tail of a congruence arc must be a new transaction,

while the head of a protocol arc is an existing transaction in its window of vulnerabil-

ity. Thus, deadlock loops cannot be constructed from combinations of protocol and

congruence loops. The fact that congruence arcs and protocol arcs cannot combine to

produce a loop contradicts the assumption that thrashwait can result in a deadlock,

completing the proof.

The above proof of the deadlock-free property allows only one primary transaction

to be transmitted simultaneously. In order to permit multiple functional units to issue

several memory transactions at a time, the memory system must provide su�cient

associativity to permit all such transactions to be launched. Also, if the memory

system stalls the processor pipeline while multiple transactions are requested, then the

processor must access a data word as soon as it arrives. These modi�cations prevent

dependencies between simultaneous transactions and make sure that the window of

vulnerability remains closed.

4.3.4 Thrashwait and High-Availability Interrupts

Despite its success in detecting thrashing in systems without high-availability in-

terrupts, thrashwait fails to guarantee forward progress in the presence of such in-

terrupts. This is a result of the method by which thrashwait closes the window of

vulnerability: by causing the processor to spin. This corresponds to asserting the

memory-hold line and freezing the pipeline. High-availability interrupts defeat this

interlock by faulting the load or store in progress so that interrupt code can be exe-

cuted. Viewing the execution of high-availability interrupt handlers as occurring in

an independent \context" reveals that the presence of such interrupts reintroduces

three of the four types of thrashing mentioned in Section 3.2. Instruction-data and

42

high-availability interrupt thrashing arise from interactions between the thrashwait-

ing context and interrupt code. Invalidation thrashing arises because high-availability

interrupts open the window of vulnerability, even for transactions that are targeted

for thrashwaiting. Only intercontext thrashing is avoided, since software conventions

can require high-availability interrupt handlers to return to the interrupted context.

Consequently, a system with high-availability interrupts must implement more than

the simple thrashwait scheme.

4.4 Associative Thrashwait (Partial Solution)

In an attempt to solve the problems introduced by high-availability interrupts, we

supplement the thrashwait scheme with associative transaction bu�ers. As described

in Section 4.2, transaction bu�ers eliminate restrictions on transaction launches. Fur-

ther, instruction-data and high-availability interrupt thrashing are eliminated. This

e�ect is produced entirely by increased associativity: since transactions are not placed

in the cache during their window of vulnerability, they cannot be lost through con-

ict. Thus, the associative thrashwait scheme with high-availability interrupts is only

vulnerable to invalidation thrashing. The framework proposed in the next section

solves this last remaining problem.

4.5 Associative Thrashlock

Now that we have analyzed the bene�ts and de�ciencies of the components of our

architectural framework, we are ready to present a hybrid approach, called associative

thrashlock . This framework solves the problems inherent in each of the independent

components.

Assume, for the moment, that we have a single primary transaction per context.

As discussed above, thrashwait with associativity has a
aw. Once the processor

has begun thrashwaiting on a particular transaction, it is unable to protect this

transaction from invalidation during high-availability interrupts. To prevent high-

43

availability interrupts from breaking the thrashwait scheme, associative thrashlock

augments associative thrashwait with a single bu�er lock. This lock is invoked when

the processor begins thrashwaiting, and is released when the processor completes any

global access. Should the processor respond to a high-availability interrupt in the

interim, the data will be protected from invalidation.

It is important to stress that this solution provides one lock per processor. The

scheme avoids deadlock by requiring that all high-availability interrupt handlers:

1. Make no references to global memory locations, and

2. Return to the interrupted context.

These two software conventions guarantee that the processor will always return to

access this bu�er, and that no additional dependencies are introduced2. Thus, asso-

ciative thrashlock has the same transaction dependency graph as thrashwait without

high-availability interrupts (as in Section 4.3.3). Processor access to the locked bu�er

is delayed { but not impeded { by the execution of high-availability interrupts.

Application of the above solution in the face of multiple primary transactions

(such as instruction and data) is not as straightforward as it might seem. We provide

a lock for both instructions and data (in addition to the two tried-once bits speci�ed

in Section 4.3.1). When thrashing is detected, the appropriate lock is invoked.

This locking scheme reintroduces a deadlock loop similar to the primary-secondary

problem discussed earlier. Fortunately, in this case the loop is rather unnatural:

it corresponds to two processors, each trying to fetch instruction words that are

locked as data in the other node. To prevent this particular kind of deadlock, a

software convention disallows the execution of instructions that are simultaneously

being written. Prohibiting modi�cations to code segments is a common restriction

in RISC architectures. Another method for preventing this type of deadlock is to

make instruction accesses incoherent. Since invalidations are never generated for

instructions, the e�ect of the lock is nulli�ed (no protocol arcs).

2As will be shown in Chapter 5, the �rst condition can be relaxed somewhat, easing the burden
of the runtime system.

44

The complexity of the argument for associative thrashlock might seem to indicate

that the architectural framework is hard to implement. It is important to emphasize

that even though the issues involved in closing the window of vulnerability are com-

plicated, the end product is relatively straightforward. The next chapter examines an

actual implementation of associative thrashlock in the Alewife communications and

memory-management unit.

45

Chapter 5

Implementation of the Framework

The Alewife machine employs associative thrashlock to close the window of vulner-

ability. This chapter presents details about the implementation of the transaction

store, including slight alterations in the thrashlock algorithm for programmability, the

state of the transaction bu�ers, pipeline concerns, and transaction-bu�er allocation.

It also discusses a few added bene�ts of the transaction-bu�er architecture, namely

independence from network ordering, victim-caching, and non-binding prefetch.

5.1 Alewife and the A-1000 CMMU

Alewife is a large-scale multiprocessor with distributed shared memory. As shown

in Figure 5-1, an Alewife processing node consists of a 33 MHz Sparcle processor,

64K bytes of direct-mapped cache, a 4Mbyte portion of globally-shared main mem-

ory, and a
oating-point coprocessor. The Sparcle processor is a modi�ed SPARC

processor [19, 2], utilizing register-windows for rapid context-switching and block mul-

tithreading [4]. The current implementation provides four distinct hardware contexts.

Both the cache and
oating-point units are SPARC compatible. The nodes commu-

nicate via messages through a cost-e�ective direct network with a mesh topology. A

single-chip communications and memory management unit (CMMU) on each node

holds the cache tags and transaction bu�ers (described below), implements a variant

of the cache coherence protocol described in [9], and provides a direct message-passing

46

Cache

DataX:

Distributed Shared Memory

ProcessorFPU

X: C

Distributed Directory

Network
Router DataX:

X:
Cache

Controller
(CMMU)

Figure 5-1: An Alewife Processing Node.

interface to the underlying network [20]. A block-diagram of this chip is shown in

Figure 5-2.

This diagram, which is not to scale, illustrates the major components of the

CMMU, namely, cache management, memory management, transaction store, remote

transaction machine, and network interface. In addition, the cache tags-�le consists

of two banks of static RAM and comprises roughly one third of the chip area.

The cache management block is responsible for handling cache �lls and invalida-

tions, as well as full/empty bit synchronization [14, 26]; it is responsible for process-

ing all control (non-data) messages for the processor-side of the LimitLESS cache-

coherence protocol [9]. The memory management block handles the memory-side of

the LimitLESS protocol, as well as memory requests from the local processor and

DMA requests from the Network Interface; in addition, it handles DRAM refresh and

error-correction (ECC). The network interface is responsible for Alewife's message-

passing facilities as described in [21]; it provides e�cient support for two distinct

classes of message tra�c: Remote Procedure Invocation involving short messages with

47

Transaction
Buffer
Store

(16 entries)

Network
Interface

and
DMA Control

Network Queues
and

Control

Registers
and

Statistics

Processor

Glue

Logic

Invalidation

Cache

and

Management

Control

Remote
Transaction

Machine

(2 x 2048 x 22)

Memory

and

DRAM

Control

Management

Cache Tags Directory
Cache

(2 entries)

Figure 5-2: Internals of the A-1000 Communications and Memory Management Unit

48

values that are derived from processor registers, and Block Data Transport, involving

the transfer of large blocks of data directly from memory via direct-memory access

(DMA). The remote transaction machine handles protocol transitions for returning

data (both from the network and the local memory), and supervises the transport

of data between the network and the transaction store. It is also responsible for

garbage-collecting reclaimable bu�ers when resources are low.

The transaction store provides a fully associative set of 16 transaction bu�ers to

implement a variant of the associative thrashlock mechanism. Each of the transaction

bu�ers can track one outstanding memory transaction and contains storage for an

address, data, and state bits. A new transaction bu�er is allocated for each memory

request. At the beginning of a transaction (during the request phase), the data

portions of the bu�er are empty. Later, when a response returns from memory, the

data portions of the bu�er are used to hold the response until it is requested again

by the processor or invalidated.

Chapter 4 mentioned that architectures with mechanisms akin to transaction

bu�ers have appeared in several of machines for a number of reasons. This is not ac-

cidental. The explicit tracking of outstanding memory transactions has implications

beyond closing the window of vulnerability. It permits reconstruction of an appro-

priate packet order in the face of network reordering. It also allows forward-progress

guarantees to be made about the machine during periods of scarce or non-existent

resources. And as multiprocessor architectures move beyond a single point of failure

and into fault-tolerance, transaction bu�er architectures will likely emerge again, as

a vehicle for detecting and correcting transmission failures. Details of the transaction

store of the A-1000 CMMU forms the primary topic of the remaining sections of this

chapter.

Most of the A-1000 CMMU is implemented in a hardware description language

called LES, for Logic Expression Synthesis. This language is included in LSI Logic's

MDE and C-MDE1 tool sets for the design of applications-speci�c integrated circuits

(ASICs). At this point in time, the state of the art in hardware synthesis is not

1Both LES, MDE, and C-MDE are trademarks of LSI Logic Corporation.

49

yet capable of matching the speed and density of other design techniques (such as

the explicit entry of circuits via schematic CAD tools). For the A-1000, this cost was

particularly evident in the transaction store, which could have bene�tted signi�cantly

from custom cell design. However, the ease of design a�orded by hardware synthesis

far outweighed the cost in cycle-time and area.

The resulting chip, which is 12mm�12mm, will be fabricated by LSI Logic with

their 300K, 0:6� hybrid gate-array process. The design is in its �nal stages of testing.

5.2 Transaction Store

The transaction store lies at the heart of the Alewife CMMU. This centralized module

keeps track of all outstanding data transactions, both local and remote. In doing this,

it combines several related functions:

� Window of vulnerability closure. The A-1000 employs a modi�ed form of the

thrashlock mechanism of Chapter 4.

� Reordering of network packets. The explicit recording of each outstanding trans-

action permits the Alewife coherence protocol to be insensitive to network order.

� Flush queue to local memory. When dirty lines are replaced from the cache,

they are written to transaction bu�ers for later processing by the memory man-

agement hardware. This has an important advantage over a FIFO replacement

queue: since the A-1000 recovers from network over
ow2 by interrupting to

software, it is imperative that replacements to unshared variables can bypass

replacements to shared variables; the latter may require network resources.

� Small, fully-associative cache. Under normal circumstances, the \access" phase

of a transaction includes transferring a complete cache line from a transaction

2By their very nature, cache-coherence protocols introduce a dependence between the input and
output queues of a memory controller: they process read and write requests by returning data. This
leads to a possibility for protocol deadlock, since it introduces a circular dependence between the
network queues of two or more nodes. Network over
ow is a condition in which the output queue
to the network has been clogged for a \long" period of time and is a good indicator that something
is amiss [21]

50

bu�er to the cache. It is also possible, however, to perform \uncached" reads

and writes which access data directly in the transaction store rather than �ll-

ing the cache; afterwards, the corresponding transaction bu�ers remain in the

transaction store for future access. Such lines remain under complete control of

the cache-coherence protocol.

� Repository for prefetched data. This is a simple extension of the previous item:

non-binding prefetch operations return data to the transaction store.

The transaction store thus provides an important centralized resource. To permit this

single interface to be used for all data movement between processor, network, and

memory, the transaction store is fully bypassed and contains provisions for pipelining

of data directly through transaction bu�ers.

As shown in Figure 5-3, the transaction store is is composed of two major blocks,

the transaction state and the transaction data. Together, these modules comprise six-

teen transaction bu�ers. The transaction state module consists of dual-ported storage

for the state bits, an arbitrated associative match for locating data, a thrashlock mon-

itor which implements the thrashlock mechanism from Chapter 4, and a transaction

monitor for managing the pool of bu�ers. The transaction data module contains suf-

�cient storage for one complete, four-word memory-line for each transaction bu�er.

Each memory-line is physically divided into two 64-bit sub-lines.

The choice to implement sixteen transaction bu�ers arose from su�ciency ar-

guments and space limitations. Each of the four hardware contexts can have two

outstanding primary transactions; consequently, at least eight bu�ers are necessary.

Then, since the transaction store serves as a
ush queue to local memory, a few

additional entries are necessary. Finally, to guarantee access to interrupt code and

unshared variables (for network over
ow recovery), another bu�er is required. Thus

approximately eleven bu�ers are su�cient for minimal operation. Remaining bu�ers

are targeted for uncached accesses, prefetched data, and victim cached memory lines.

Note that in code which is amenable to software prefetching, fewer primary trans-

actions will be necessary (since the compiler is orchestrating communications). The

51

A
ssociative
M

atch

Transaction

Buffer

State

(16 entries)

A
rb

itra
to

r
Transaction

Monitor

HaveEmpty

TransFull

HaveRemoteFlush

HaveCachedEntries

MemBusyInterlock

HaveLocalFlush

RemoteBusyInterlock

Memory
Read/Write

Current Context

UpdateThrashInfo

ClearThrashInfo

ThrashingDetected

Transaction

Data

Buffer

(16 x 64bits x 2)Read/Write

Processor
Read/Write

Read/Write
Memory

Remote
Transaction

AccessType(Inst/Data)

ContextSwitchEnable

MatchedBufferLocked

FlushBufferNumber

(Not associative)

Processor
Read/Write

Remote
Transaction
Read/Write

(64 bits+ctrl)

(64 bits+ctrl)

(64 bits+ctrl)

MatchedBuffer

Thrashlock
Monitor

GlobFull

Figure 5-3: The transaction store.

52

ability to trade bu�er usage between primary transactions and software prefetching

is discussed in Section 5.6.

We will now proceed to examine each of the major blocks of Figure 5-3. Section 5.3

discusses the transaction state bits and ways in which they can be combined to form

valid transaction bu�er states. This includes a discussion of the way in which the

transaction store allows the Alewife coherence protocol to be insensitive to reordering

in the network. Then, Section 5.4 discusses the associative matching operation which

can be performed on these bu�ers. This operation takes an address as input, and re-

turns a non-empty transaction bu�er with a matching address. Section 5.5 discusses

the thrashlock monitor and introduces tracking vectors as a mechanism for imple-

menting associative thrashlock with general bu�er allocation. Each of these vectors

associate a primary transaction with the transaction bu�er that currently holds its

state. This section proceeds with issues of thrashlock implementation, including the

reordering of requests by the processor pipeline. Finally, Section 5.6 discusses the

transaction monitor and its relationship to bu�er allocation, garbage-collection, and

ush processing.

5.3 Transaction State

Figure 5-4 illustrates the state of a transaction bu�er. Several of its components

were discussed in Chapter 4. The address �eld is 28 bits3. An address which has

its top bit set belongs to the global shared address space; consequently, bu�ers with

such global addresses are referred to as global bu�ers. The four full/empty bits are for

synchronization on the four data words. Finally, the eight state bits are divided into 6

di�erent �elds. Some of these �elds encode stable states indicating that transactions

are in progress or that data is valid. Others encode transient states which are entered

for short periods of time during the processing of a request. Brie
y, these six �elds

are as follows:

3Sparcle addresses are 32 bits and memory-lines are 16 bytes long.

53

Valid (2 bits)
Transaction Type (2 bits)
Flush (1 bit)
Invalidate (1 bit)
Transaction In Progress (1 bit)
Local (1 bit)

Full/Empty (4 bits)

Line Address (28 bits)

Figure 5-4: The state of a transaction bu�er.

� The Local(LOC) bit caches information on whether the address is local (either

shared or unshared) or remote. This bit is computed once, when the bu�er is

allocated.

� The Transaction-In-Progress(TIP) bit indicates that this transaction bu�er rep-

resents a transaction which is in the request phase, i.e. one for which a request

has been sent but a response has not yet been received.

� The Flush(F) bit indicates that this bu�er is logically part of the
ush queue.

Any data which is present is invisible to the processor. If TIP is clear, then

this bu�er is transient and scheduled for processing by either the local Memory

Machine or the Remote Transaction Machine.

� The Invalidate(INV) bit indicates that this address has an outstanding pro-

tocol invalidation. It corresponds directly to the deferred invalidate bit that

was discussed in Chapter 4. Thus, it is used to delay invalidations to locked

bu�ers until after the requesting contexts return for their data. As shown in

Section 5.3.4, it is also used to defer premature invalidations which result from

reordering in the network.

� The Transaction-Type(TT) �eld consists of two bits. It has three primary states,

READ ONLY (00), READ WRITE (10), and READ WRITE DIRTY (11). These will be

abbreviated RO, RW, and RWD in the following. When TIP is set, this �eld indi-

cates the type of request which was sent to memory and is restricted to RO or

54

RW. When TIP is clear (and data present), then all three states are legal. RWD

indicates that the bu�er contains data which is dirty with respect to memory.

A �nal state, BUSY (01), is only valid with an empty bu�er; it indicates that a

transaction has been terminated by a BUSY message from memory4.

� The Valid(VAL) �eld contains a two-bit Gray code which indicates the degree

to which bu�er data is valid: INVALID(00), ARRIVING(01), HALF VALID(11),

and VALID(10). The INVALID and VALID states are stable, indicating that the

transaction bu�er has either no data or valid data respectively. The remaining

two states are transient. Recall that transaction data is divided into two 64-bit

pieces. ARRIVING indicates that protocol transitions have occurred, but no data

has yet been placed in the transaction bu�er. HALF VALID indicates that the

�rst 64-bit chunk of data has been written into the transaction bu�er. These

two states permit pipelining of data through a transaction bu�er. Coupled with

data bypassing, the transaction store can be used e�ciently as an intermediate

storage area for all data transactions, including local cache �lls.

Table 5.1 illustrates how combinations of these bits form transaction bu�er states.

This table shows legal combinations only; states which are not shown are illegal. For

simplicity, the Valid �eld is shown with two values, VALID and INVALID. The transient

states of ARRIVING and HALF VALID are logically grouped with VALID. Also, note that

the BUSY transaction type is only valid in the Empty state.

Before exploring Table 5.1 in more detail, let us examine a simple transaction of the

type introduced in the �rst few chapters. Assume that the processor requests a remote

data item which is not in the local cache. This causes the cache management machine

to allocate an empty transaction bu�er. It sets the transaction-type �eld to either RO

or RW, depending on whether the processor has executed a load or store respectively.

It also sets the TIP bit to re
ect the fact that a request is in progress. Finally, it

sends a context-switch fault to the processor while simultaneously transmitting a read

request (RREQ) or write request (WREQ) to the remote node.

4This message is a negative acknowledgment on the request. It indicates that the memory was
unable to satisfy the request. See [10] for more information.

55

Bu�er State

TIP F INV TT Val Description Note

0 0 0 | no Empty and available for allocation. A, G

RO yes Read-Only data present A

RW yes Read-Write data present (clean) A

RWD yes Read-Write data present (dirty) A

0 0 1 RO yes Read-Only data/pending invalidate B

RW yes Read-Write data (clean)/pending invalidate B

RWD yes Read-Write data (dirty)/pending invalidate B

0 1 0 RWD yes Flush dirty data (no protocol action). C, H

0 1 1 RO no Send Acknowledgment. C

RW no Send Acknowledgment. C

RWD no Flush F/E bits and write permission. C, H

RWD yes Flush dirty data and write permission. C

1 0 0 RO no Read transaction. D

RW no Write transaction. D

RW yes Write transaction/read data valid. D

1 0 1 RO no Read trans/premature read INV. E

RW no Write trans/premature write INV. E

RW yes Write trans/read data valid/prem write. E

1 1 0 RO no Read trans/
ush on arrival F

RW no Write trans/
ush on arrival F

1 1 1 RO no Read trans/
ush on arrival/prem read INV. E

RW no Write trans/
ush on arrival/prem write INV. E

Note Comment

A These correspond directly to states of a full-associative cache.

B If unlocked, these states are transient and scheduled for
ushing.

C Transient and scheduled for
ushing.

D These states are entered at the beginning of transactions.

E Entered by rare protocol actions and network reordering.

F Only entered by execution of a
ush instruction during a transaction.

G If TT=BUSY, then the previous transaction was terminated by a BUSY message.

H For local memory tra�c only.

Table 5.1: Legal combinations of bu�er state bits. Missing states are illegal.

56

When data returns from memory, the remote transaction machine gives the ad-

dress from the returning packet to the associative matching facilities in order to locate

the appropriate transaction bu�er. Then, this machine clears the TIP bit, places the

data into the transaction bu�er, and sets the Valid �eld to VALID. This data will now

be available the next time that the processor requests it.

The following subsections explore di�erent classes of states and their uses. These

include states for caching data items, states for tracking transactions in progress,

transient states, and states which permit insensitivity to network reordering.

5.3.1 The Transaction Store as a Cache

States in Table 5.1 that are marked with note A correspond directly to states of

a fully-associative cache. For this reason, we refer to these as cached states. In the

simple transaction model of Chapters 1{4, these states can be used to hold data which

has just returned from memory, i.e. during the window of vulnerability. When the

original requesting context returns to look for this data, it can be transferred to the

primary cache and its bu�er emptied.

However, cached states are far more versatile. Since cache-coherence is fully in-

tegrated with the transaction store, this data is kept coherent in the same way as

the primary cache. Thus, cached states can persist outside of primary transactions

causing the Transaction Store to act much like a small second-level cache. Conse-

quently, non-binding prefetches simply return their data to the transaction store5.

Further, cache-lines can be victim cached [17] in the transaction store. This means

that the last few lines that have been replaced from the primary cache are placed

into the transaction bu�er and can be transferred back to the primary cache without

a long access latency should they be re-requested by the processor. Finally, special

\uncached" loads and stores can access data directly in the transaction store without

�rst transferring it to the primary cache.

Use of the transaction store as a generic cache has two consequences. First, it

5In fact, the only di�erence between transaction bu�ers used for primary and secondary trans-
actions is that primary transactions have live tracking vectors pointing at them. See next section.

57

requires some form of garbage-collection or replacement algorithm, since bu�ers which

are in the cached state can accumulate, leaving no bu�ers for primary transactions.

The A-1000 employs the following solution to this problem: all bu�ers that are in

the cached state and not part of a primary transaction are considered reclaimable

and may be
ushed at any time. Garbage collection is scheduled by the transaction

monitor (Section 5.6) and performed by the remote transaction machine.

Second, the issue of duplicate data in the cache and transaction bu�er must be

addressed. The A-1000 uses as a policy that the only duplication which is allowed

is the simultaneous existence of a read-only copy in the primary cache and a clean

read-write copy in the transaction bu�er. Since the protocol guarantees that these

two memory-lines will have identical data, no coherence problem ensues6. As soon as

the data is written by the processor, the read-only copy will be either invalidated or

overwritten.

5.3.2 Transaction in Progress States

States in Table 5.1 which have their TIP bits set indicate transactions which are

in the request phase. These are transactions for which requests have been sent but

data has not yet been received. The presence of these transaction bu�ers prevents

duplicate requests from being sent either by the original context (when it returns to

check for data) or by other contexts. States marked with note D are the ones which

are entered when the transaction is �rst initiated. Others can be entered upon the

execution of flush instructions or by reordering in the network.

5.3.3 Transient States

States in Table 5.1 which are marked with notes B and C are transient, i.e. scheduled

to be processed and emptied by either the memory management machine or the

remote transaction machine, depending on whether the Local bit is set or clear.

6This situation is allowed because the memory-side of the coherence protocol explicitly checks to
see if the requester of write permission is also one of the readers. In this case, it doesn't invalidate
the requester's copy before granting write permission.

58

Section 5.6 discusses the mechanism behind this scheduling. The one exception to

immediate scheduling is that bu�ers in states marked with B can be protected by

bu�er locks (in the sense of Chapter 4). Such bu�ers remain unmolested in the

transaction store until their locks are released, at which point they become scheduled

for processing. Bu�er locks are discussed in Section 5.5.

Transient bu�ers which have their INV bits set are implicit protocol messages.

Since protocol action occurs only on shared memory lines, these bu�ers must have

global addresses. Those with types RO and RW are invalidation acknowledgments, while

those with type RWD are updates. Thus, when a bu�er of this nature is processed by

the memorymanagement hardware, it invokes protocol actions as if the local processor

had marshaled a protocol packet and sent it through the network to the local memory.

Similarly, when the remote transaction machine processes such a bu�er, it generates

an appropriate protocol message, destined for the home node of the bu�er's address,

and sends it into the network.

As mentioned earlier, the transaction store serves as the \
ush queue" to local

memory. The cache managementmachine replaces local data items from the processor

cache by writing them into transaction bu�ers with their Flush bits set. Additionally,

replacements which require protocol action (i.e. global addresses) have their INV bits

set. A similar function is performed by the remote transaction machine for remote

data items7. The use of transient states in this way has two advantages over employing

a more conventional FIFO queue. First, memory can process
ushed cache-lines out

of order during network over
ow recovery. In particular, since network blockage

may prevent the processing of global data items, it can process local unshared data

replacements and thus guarantee that the over
ow recovery handler can execute.

Second, the di�erence between transaction bu�ers which are on the
ush queue and

those which are not is a matter of state; in fact, locked transient items become

scheduled for
ushing at the time that their locks are released. Consequently, items

which are cached in the transaction bu�er can be discarded by setting their Flush

7When remote data items are replaced from the cache, they can either be placed into the transac-
tion bu�er or sent directly into the network. This choice depends on whether or not victim caching
is enabled.

59

N
etw

ork

INVR

RDATA

N
etw

ork

INVR

RDATA

N
etw

ork

RDATA

N
etw

ork
ACK

RDATA

Memory Memory Memory Memory

Cache Cache Cache Cache

Figure 5-5: The e�ect of network reordering on an uncompensated protocol.

bits. The garbage collector discards bu�ers in this way.

5.3.4 Insensitivity to Network Reordering

One advantage to maintaining explicit state for all outstanding memory transactions

is that the coherence protocol can be insensitive to reordering in the network. What

this statement means is that the Alewife coherence protocol does not rely upon the

preservation of order for messages sent from a speci�c source node and received by a

speci�c destination node8. Such independence has a number of advantages. It permits

the use of adaptive or fault-tolerant networks. It relaxes the design of the processor

side of the coherence protocol, since invalidations and data from local memory can

be handled independently9. It also a�ords some
exibility in choosing the algorithm

which is used for network over
ow recovery[21].

A simple example, shown in Figure 5-5, illustrates the danger of reordering in

8Machines which use a general interconnect, such as Alewife and DASH[23] support networks
with bidirectional channels and nondeterministic packet scheduling. Ordering between disparate
source/destination pairs has never been assumed for protocols on such networks.

9Protocol invalidations require the examination of the cache tags-�le, while returning data re-
quires only the transaction bu�er. Consequently, in the A-1000, invalidations are handled by the
cache management machine while data is handled by the remote transaction machine.

60

the network. This example shows read-only data (RDATA) returning from a remote

memory module to the cache. While this data is still in transit, the memory issues a

read-invalidation message (INVR) to the same cache. Because the INVR was transmit-

ted after the RDATA, an invalidation acknowledgment should not be sent to memory

until after the RDATA has been discarded. However, as illustrated by the third and

fourth panels, this does not happen. For whatever reason (network contention, per-

haps), the INVR arrives before the RDATA, even though it was originally transmitted

after the RDATA. As a result, the cache sends an invalidation acknowledgment (ACK)

without discarding the read-only data. When this data �nally arrives, it would be

blithely placed in the cache. Meanwhile, the memory would receive the ACK message

and grant write permission to another node. Cache incoherence would result.

The Alewife transaction store plays a fundamental role in handling reordering

in the network. While independence from network ordering can always be gained

by restricting the number of simultaneous messages to one, this restriction requires

explicit acknowledgments for every message reception, and this requirement in turn

increases required network bandwidth (more messages) and increases memory access

time (more serialization). Thus, we prefer a solution which has far less communica-

tion overhead with respect to a similar protocol that relies on order. To this end, the

A-1000 carefully restricts the number and type of protocol messages which can be

simultaneously present in the network and maintains su�cient state at message des-

tinations so that misordering events can be recognized and dealt with appropriately.

The transaction store assists by providing state at the cache side of the protocol.

There are two possible destinations for protocol packets: memory and cache.

Each must deal with reordering. At the memory side, two types of messages can

arrive from the processor: requests for data (RREQ and WREQ) and \returns" (i.e.

acknowledgments or updates). Acknowledgments (ACK) are generated in response

to an invalidation request. Update messages (UPDATE) contain dirty data and may

be returned to memory during replacement of read-write data in the cache or in

response to an invalidation request. The ability to deal with reordering depends on

two invariants:

61

� Transaction bu�ers at the processor side guarantee that no more than one si-

multaneous request will be issued from a given processor to a given memory

line.

� The protocol guarantees that at any one time there is at most one return mes-

sage that might arrive from a remote cache. Examples of periods in which return

messages \might arrive" include (1) the period after an invalidation is sent but

before an acknowledgment has arrived, and (2) the entire period beginning with

the issuing of a read-write copy to a remote cache and ending with the return

of dirty data in the form of an UPDATE message.

Thus, only the ordering between requests and returns is at issue. This is addressed by

an essential feature of the coherence protocol: during periods in which a return mes-

sage might arrive, no new requests are processed; they are either deferred or aborted.

As an example, suppose that a node transmits an acknowledgment in response to

an invalidation from memory, then proceeds to issue another request to the same

memory-line. If that request reaches memory �rst, then the memory will abort the

request by returning a BUSYmessage (the memory is currently busy performing an in-

validation at the behest of a di�erent node). The original node will reissue its request

at a later time. Consequently, an explicit processing order is enforced, regardless of

network order.

At the cache side, two types of messages can arrive: data and invalidations. Cor-

rectly handling reordering between these types of messages hinges on several things.

First, the explicit recording of transactions guarantees that there is no more than one

simultaneous request for a given memory line; consequently, there can be no more

than one data item in
ight from memory to the processor10. Furthermore, data

for a given address can arrive from memory only during those periods in which the

transaction store contains a matching transaction bu�er with TIP set.

In addition, the memory management hardware will generate no more than one

10In particular, this restriction means that Alewife does not support an update-style protocol.
Such a protocol can send update messages at any time; unfortunately, no analog of \transaction-in-
progress" would be available at the processor side.

62

invalidation for each piece of data that it sends to the processor. Invalidations are

divided into two distinct varieties:

1. Read invalidations (INVR), which invalidate read copies and generate acknowl-

edgments.

2. Write invalidations (INVW), which invalidate write copies (if they exist) and

generate updates. If they encounter no data, then they are ignored.

These two varieties re
ect two distinct types of cache replacement and are necessary

to maintain the \at most one" property of return messages to memory. When replaced

from the cache, read copies are simply discarded; thus, INVR messages must return

explicit acknowledgments. After an INVR has been transmitted by the memory, no

further messages (either invalidations or data) will be sent by the memory until an

acknowledgment has been received. In contrast, dirty read-write copies generate

update messages when they are replaced from the cache; since this can happen at

any time, INVW messages can only be used to accelerate the process and \dislodge"

read-write copies. They are otherwise ignored by the cache.

Thus, we have three types of misordering which may occur between messages

destined for the cache (reordering between two data messages cannot occur, since

only one data item can be in
ight at once):

� Between two invalidations: At least one of the two invalidations must be an

INVW messages, since no more than one INVR can be in
ight at once. If both of

them are INVW messages, then reordering is irrelevant. If one is an INVR, then

this must have been for a read copy. Consequently, there are no write copies

for the INVW message to invalidate and it will be ignored. Again reordering is

irrelevant.

� Between an invalidation and a data item, where the invalidation is transmitted

�rst but arrives second: The invalidation must be an INVW message, since all

INVR messages must be explicitly acknowledged before the memory will start

processing a new request. Consequently, if the data item is a read copy, then

63

the INVW message will be ignored. If the data item is a write copy, then the

INVW message might invalidate the data prematurely, but will not violate cache

consistency11.

� Between an invalidation and a data item, where the invalidation is transmitted

second but arrives �rst: This was the example given in Figure 5-5 and can lead

to incoherence if not dealt with properly. Memory will be incorrectly noti�ed

that an invalidation has occurred.

Consequently, of the three possible types of reordering, only the last must be rec-

ognized and corrected. The heuristic that is employed in Alewife is called deferred

invalidation: invalidation requests that arrive while a transaction is in progress and

that are of the same type as this transaction are deferred until the data is received by

setting the INV bit in the transaction bu�er. When the data arrives, it is discarded

and an acknowledgment is returned to the memory12. Invalidations that are not of

the same type as the transaction cannot be destined for the expected data; they are

processed normally. States entered as a result of premature invalidation are marked

with an E in Table 5.1.

The policy of deferring invalidations is only a heuristic: although it successfully

untangles the third type of reordering, it can cause invalidations to be held even when

reordering has not occurred. This delay occurs when data has been replaced in the

cache and re-requested. Invalidations which arrive for the old data are deferred rather

than being processed immediately. Only a returning data or BUSYmessage terminates

the transaction and performs the invalidation13.

11This is a situation in which reordering causes a slight loss in performance
12If the bu�er is locked (See Section 5.5.2), then returning data will be placed into the bu�er and

the TIP bit will be cleared. This places the bu�er in a transient state (of type B). Consequently,
the invalidation will be further deferred until the data is accessed by the processor and the lock is
released.

13This is an example in which the existence of a mechanism for reordering can impact performance
under normal circumstances.

64

5.4 Associative Matching Port

The associative matching port of the transaction store supports a parallel search for

bu�ers. It takes an address as input and returns a transaction bu�er with a matching

address. This port is arbitrated for each cycle by the cache management hardware

and the remote transaction machine14. The matching address satis�es one of the

following conditions (in order of precedence):

1a) TIP = 1

1b) (TIP = 0) ^ (Flush = 0) ^ (Valid 6= 0)

2) (TIP = 0) ^ (Flush = 1)

If multiple bu�ers match, the one with the highest priority is the one which is

returned15. Bu�ers of type (1a), with TIP = 1, correspond to active transactions

in progress. Bu�ers of type (1b) are cached bu�ers with valid data which is visible to

the processor. Bu�ers of type (2) are transient and represent return messages (either

ACK or UPDATE messages).

The cache management machine and coherence protocol maintain two invariants

which permit a unique bu�er to be located for each address. The �rst invariant is

that there can be no more than one bu�er which falls in the combined categories of

(1a) and (1b). Such bu�ers hold processor-side state for transactions which are either

in the request phase (1a) or window of vulnerability (1b). The second invariant is

that there will be no more than one bu�er in category (2). Such bu�ers are implicit

return messages (acknowledgments or updates); consequently, this second invariant

is merely the at most one invariant for return messages discussed in Section 5.3.4.

14Note that the satisfaction of a data request by local memory is partially handled by the remote
transaction machine. The remote transaction machine takes an address from the memory machine
and uses the associative matching port to locate the appropriate transaction bu�er. It also modi�es
the bu�er state by lowering TIP and setting the Valid �eld to ARRIVING, just before passing the
bu�er identi�er back to memory. Memory then proceeds to �ll it with data.

15An associative matching option which is provided by the A-1000 but not discussed above, is
the ability to ignore bu�ers which have TIP set but do not have data. This is useful for \locally
coherent" DMA operations [21] which coexist with the protocol but which are exclusively interested
in dirty data.

65

Matches of type (2) correspond to the associative matching facilities often included in

uniprocessor write-bu�ers. They facilitate the location of unshared dirty data during

the initiation of new requests to local memory; without this ability, local memory

operations could return incorrect results and local shared-memory operations might

have to invoke unnecessary invalidations16.

Given these two invariants, associative matching is straightforward. Each transac-

tion bu�er has an associated comparator which is used to compare its address with the

requested address. Then, the result of this match is combined with a small amount

of logic to produce two signals per bu�er: one that indicates a match of type (1a) or

(1b) and one that indicates a match of type (2). These two match signals are then

combined with signals from other bu�ers to produce a unique matched bu�er.

On each cycle, the machine which has successfully arbitrated for the associative

matcher may also choose to modify state in the transaction store. It may select one of

two bu�er destinations: either the next empty bu�er or the current matched bu�er.

The transaction monitor, described in Section 5.6 manages empty bu�ers.

5.5 Thrashlock Monitor

The function of the Thrashlockmonitor is to provide support for the thrashlock mech-

anism. Its keeps track of per-context state information which aids in the recognition

and resolution of thrashing scenarios. As shown in Figure 5-3, the thrashlock monitor

takes as input the current context number (0 { 3), the current access type (instruction

or data), and whether or not context switching is enabled. It combines these pieces

of information with internal state and the current associative match to produce the

ThrashingDetected signal, which is used to freeze the processor pipeline. Fur-

ther, two control signals, ClearThrashInfo and UpdateThrashInfo are used

by the cache management hardware to alter the state of the Thrashlock monitor.

This interface will be described later, after the introduction of tracking vectors.

16The result of such a match is sent with requests to local memory.

66

Instruction Data

TOTW Buffer ID
(4 bits) TW TO Buffer ID

(4 bits)

TOTW Buffer ID
(4 bits) TW TO Buffer ID

(4 bits)

TOTW Buffer ID
(4 bits) TW TO Buffer ID

(4 bits)

TOTW Buffer ID
(4 bits) TW TO Buffer ID

(4 bits)

Context 0:

Context 1:

Context 2:

Context 3:

Figure 5-6: Tracking vectors for implementing the thrashlock mechanism.

5.5.1 Tracking Vectors

Figure 5-6 shows the state which is maintained by the thrashlock monitor. It consists

of eight tracking vectors, corresponding to one primary instruction transaction and

one primary data transaction for each of four hardware contexts. These tracking

vectors are responsible for associating speci�c primary transactions with transaction

bu�ers. In a sense, tracking vectors re
ect the pipeline state of the processor by

tracking the state of its primary accesses. It is because of this close coupling between

tracking vectors and the pipeline that care must be taken to interpret the stream of

access requests from the processor in a fashion which guarantees forward progress.

This is discussed in Section 5.5.5.

Each tracking vector has two control bits and one four-bit pointer. The two con-

trol bits are the tried-once bit (TO) and the thrash-wait bit (TW). Both of these were

introduced in Section 4.3, during the discussion of the Thrashwait mechanism. When

a tracking vector has its tried-once bit set, this state indicates that a primary trans-

action has been initiated and that the identity of the associated transaction bu�er

resides in its four-bit pointer. Such vectors are considered live and the transaction

bu�ers which they point at are denoted primary transaction bu�ers. The thrash-

wait bit indicates that thrashing has been detected on this primary transaction. It is

set whenever thrashing is detected and cleared whenever the corresponding primary

transaction completes successfully.

67

Thus, to initiate a new primary transaction, the following operations must be

performed (these happen in parallel in the A-1000):

1. Allocate an empty transaction bu�er from the pool of free bu�ers.

2. Set the address and state of this bu�er to re
ect the transaction. This involves

setting the TIP bit and the transaction type.

3. Perform any external action (such as sending a request message).

4. Record the transaction bu�er number in the appropriate tracking vector. Also,

set its TO bit.

5. Finally, if thrashing was detected on a previous incarnation of this primary

transaction, set the TW bit.

To permit thrash detection across interrupts, tracking vectors must not be altered by

accesses to local, unshared memory locations.

If either of the TW bits for the current context is asserted, then the processor

pipeline is frozen with context-switching disabled. This policy makes thrash-detection

persistent across the servicing of high-availability interrupts. Since primary transac-

tions are initiated in a unique order (e.g. instruction then data), thrashing on primary

transactions which are later in this ordering will force context-switching to remain

disabled even when transactions which are earlier in the ordering have to be retried.

For example, when the processor is spinning on a thrashing data access and is inter-

rupted to service a high-availability interrupt, it will return to refetch the interrupted

instruction with context-switching disabled. This, behavior, along with the bu�er locks

described below, guarantee that the latest thrashing transaction will eventually com-

plete. Since completion of a given primary transaction permits the initiation of the

next primary transaction, all primary transactions eventually complete and forward

progress follows.

68

5.5.2 Bu�er Locks

The Thrashlock mechanism requires as many bu�er locks as simultaneous primary

transactions. Recall from Section 4.5 that a bu�er is locked during the thrashwait

phase to prevent it from being lost to invalidation. These locks are activated whenever

thrashing is detected on a primary transaction and are deactivated whenever the

transaction is successfully completed by the processor. However, the thrash-wait bits

behave in exactly this way. From these bits, the A-1000 generates a 16-bit vector of

locks, called the No Invalidate vector. A bit in this vector is set if the corresponding

transaction bu�er is pointed at by a live tracking vector whose TW bit is asserted.

The No Invalidate vector has two functions. First, it causes invalidation requests

for locked bu�ers to be deferred. This deferral is accomplished by returning an ap-

propriate lock bit with the results of an associative match, so that the state machines

which are processing invalidation messages can make the appropriate state transitions.

Second, the No Invalidate vector is used to prevent bu�ers with deferred invali-

dations from being visible to those machines which would normally dispose of them.

As shown in Table 5-4, there are three transient states in which INV is set and both

TIP and Flush are clear. These states are for bu�ers which have data (in their win-

dows of vulnerability) and which also have pending invalidations. Normally, they

are transient, i.e. they immediately generate acknowledgments or updates and be-

come empty. If locked, however, they must remain as they are, waiting for an access

from the requesting context. The transaction monitor, described in Section 5.6, is

responsible for scheduling transient states in accordance with current bu�er locks.

Finally, a brief discussion of the number of bu�er locks is in order. As discussed

in Chapter 4, multiple bu�er locks can lead to deadlock. However, the Thrashlock

Monitor described herein has eight bu�er locks! This large number of locks is not a

problem as long as interrupt handlers adhere to the following constraints:

1. Interrupt handlers must return to the same context which they interrupted.

2. All accesses to global memory must be from a context which di�ers from inter-

rupted context.

69

3. All accesses to global memory in trap handlers must be restricted to variables

which will not thrash.

The second condition ensures that the tracking vectors of the interrupted context are

not a�ected by the interrupt handler. This occurs naturally if the software reserves

a hardware context for rapid processing of messages. The �rst and third conditions

restrict bu�er locks to a single context, since context switching is disabled when locks

are active. Note, in particular, that this is a relaxed form of the constraints presented

in Section 4.5, which simply disallowed global accesses in the trap handler (automat-

ically satisfying conditions (2) and (3) above). The additional freedom a�orded by

conditions (2) and (3) is particularly advantageous for operating-systems variables

which are part of global structures but are accessed only by the local processor.

5.5.3 Protection of Primary Transaction Bu�ers

During the period in which a tracking vector is live, the bu�er which it points to is an

integral part of the ongoing primary transaction. Consequently, this bu�er must be

protected against garbage-collection and reallocation, even if it should become empty

before the requesting context returns to examine it. This protection is accomplished

through the 16-bit No Reclaim vector, which is derived from the set of tracking bu�ers:

a bit in this vector is set if the corresponding transaction bu�er is pointed at by a live

tracking vector. The No Reclaim vector is passed to the transaction monitor, which

invokes garbage-collections and chooses empty bu�ers for reallocation.

Protection of primary transactions in this way has a number of advantages. First,

transactions which have entered their window of vulnerability (i.e. have data cached

in a transaction bu�er) are not aborted by the garbage collector. Without this pro-

tection, important cached bu�ers would be considered reclaimable.

Second, premature lock release can be detected. Premature lock release was in-

troduced in another guise in Section 4.1.2. Here it refers to a particular thrashing

scenario in which a context (which we will call the requesting context) initiates a

transaction to a memory-line, which is subsequently satis�ed and invalidated. Later,

70

a new transaction is started for the same memory-line by another context. From the

standpoint of the requesting context, this is a thrashing situation, since the data has

come and gone. Unfortunately, when the requesting context returns, it performs an

associative lookup and discovers a transaction bu�er for the desired address with TIP

set. Without some additional mechanism, there would be no way to distinguish this

situation from the one in which the original transaction was long-lived. However, by

protecting the original primary transaction bu�er from reallocation, we can ensure

that the new transaction resides in a di�erent bu�er. Consequently, this situation

can be detected.

Finally, protection of primary transaction bu�ers allows us to
ag transactions

which are aborted by BUSYmessages: we simply mark them as empty, with the special

transaction type of BUSY. Such transactions are not considered to be thrashed. This

is advantageous because BUSY messages are generated during periods in which the

memory is sending or waiting for invalidations. Such periods can last for a number

of cycles. Consequently, if thrashing is detected on busied transactions (and context-

switching disabled), it is possible for the cache system and memory system to get

locked into a cycle of sending requests and BUSY messages17. It is much better to

conserve memory and network bandwidth by making a single request and context-

switching.

5.5.4 Thrash Detection and the Processor Interface

We are now in a position to discuss the interface between the thrashlock monitor and

the cache management hardware of the A-1000 CMMU. The current context number

and access type are used to select an appropriate tracking vector. Call this the

active tracking vector. Then, based on this and on information from the associative

matching circuitry, the thrashlock monitor computes the ThrashDetected signal,

which is de�ned as follows:

17Note that the presence of BUSY messages is intimately linked to forward progress at the memory
side of the protocol. As discussed at the beginning of Chapter 3, this thesis assumes that all requests
to memory are eventually satis�ed.

71

ThrashDetected =
1 Context Switching Disabled _

2 Thrash WaitData _ Thrash WaitInst _

3 (Tried Once ^ :MatchedTXB ^ TT(Pointer) 6= BUSY) _
4 (Tried Once ^ MatchedTXB ^ ID(MatchedTXB) 6= Pointer)

Where MatchedTXB signals a matched transaction bu�er with TIP=1 or Valid 6=0,

ID(MatchedTXB) is the number of this bu�er, Pointer and Tried Once are �elds

from the active tracking vector, TT(Pointer) is the transaction-type of the bu�er

pointed at by Pointer, and Thrash WaitData and Thrash WaitInst are from the

current context.

The ThrashDetected signal is used only when data is not available. By way of

explanation, line (1) asserts that the disabling of context-switching causes all accesses

to behave as if they were thrashing. Line (2) illustrates the persistent thrash-detection

state discussed earlier. Line (3) contains the simple thrashwait detection mechanism,

with a simple modi�cation to prevent the detection of thrashing on busied transac-

tions. Finally, line (4) illustrates the detection of premature lock release.

Two control signals which can be used to manipulate the thrashlock monitor are

the ThrashDetected and ClearThrashInfo signals. To de�ne their behav-

ior, we introduce two additional symbols. Let Thrash Wait (with no subscript)

be either Thrash WaitData or Thrash WaitInst depending on whether the current

access is for data or for instructions respectively. Further, letWriteTXB denote the

transaction bu�er which the processor is about to modify this cycle. WriteTXB

is either an empty bu�er or the current associatively matched bu�er. Then, Up-

dateThrashInfo and ClearThrashInfo have the following behavior after the

next clock edge:

UpdateThrashInfo) Thrash Wait ThrashDetected

Tried Once 1
Pointer WriteTXB

ClearThrashInfo)Thrash Wait 0
Tried Once 0

72

Finally, an updated version of the processor-access pseudo-code of Section 4.3

can now be constructed. Let TIP(MatchedTXB) be the TIP bit from the matched

transaction bu�er. Then, a processor access is as follows:

Do Global Processor Request(Address,Context,AccessType)
1 if (cache-hit for Address of type AccessType)
2 then assert ClearThrashInfo
3 return READY
4 if (:MatchedTXB)) No matching bu�er.
5 then send RREQ or WREQ

6 allocate and initialize new transaction bu�er
7 assert UpdateThrashInfo
7 if (ThrashDetected)) thrashing signaled.
8 then return WAIT

10 else return SWITCH

12 if (TIP(MatchedTXB)=1)) Currently have active transaction.
13 then if (ThrashDetected)
14 then assert UpdateThrashInfo
15 return WAIT

16 else return SWITCH

17) Data waiting in transaction bu�er.
18 �ll cache from bu�er
19 clear transaction bu�er
20 assert ClearThrashInfo
21 return READY

5.5.5 Pipeline Reordering

Tracking vectors are an extension of the processor pipeline, because they maintain

the memory access state of ongoing instructions. Unfortunately, complications arise

because they are implemented outside this pipeline. In particular, the pipeline re-

orders memory accesses with respect to the stream of memory requests from the

processor; the fetch of a load or store instruction appears several cycles before the

data access that it invokes. Multiple instruction fetches can happen in the interim.

This is illustrated by Figure 5-7, which shows a segment of a program that contains a

load instruction followed by three single-cycle arithmetic instructions. Until the load

commits, the two primary accesses are the fetch of the load instruction and the fetch

of its data. These are shaded in the diagram.

73

Fetch
Load

Load [A]:

Inst 1:

Inst 2:

Inst 3:

F D E M W

F D E W

F D E W

F D E W

Bus Access: Fetch Fetch Fetch Fetch
Inst 1 Inst 2 Data Inst 3

Figure 5-7: Pipeline reordering of memory accesses. Primary bus accesses are shaded.

Pipeline stages are Fetch, Decode, Execute, Memory, andWriteback.

Since Inst 1 and Inst 2 are semantically after the Load instruction, two condi-

tions must be true:

� Attempts to fetch Inst 1 and Inst 2 should not alter the state of the instruc-

tion tracking vector until the Load instruction completes, or at least must not

interfere with the thrashing protection provided by it.

� Attempts to fetch Inst 1 and Inst 2 must not prevent the data access from

completing. This must be true even if context-switches are signaled on these

fetches.

The second condition is handled automatically by the pipeline: once the Load in-

struction has been fetched successfully, the data access will be attempted even if one

or both of the following instruction fetches are faulted.

The �rst requirement, however, is not as easy to satisfy. Ideally, the instruction

tracking vector would be dedicated to the instruction fetch of the Load instruction

until this has committed, at which point it would transfer its allegiance to the fetch of

the next instruction (Inst 1). An implementation which was integrated directly with

the pipeline would probably employ multiple shadow tracking vectors arranged in a

stack which reduced to two well-de�ned vectors when the pipeline was interrupted

(much like the program-counter stack).

Since pipeline modi�cations to Sparcle were not possible, however, some other

technique had to be employed. Consequently, the Alewife machine employs two

74

heuristics which yield a similar result, from the standpoint of forward progress, as if

all accesses were exactly identi�ed, but which may occasionally hold the pipeline for

longer than necessary or cause an extra context switch18. These are:

1. Never overwrite live tracking bu�ers that point to transactions in progress (i.e.

TIP set).

2. Never thrashwait requests whose associated tracking bu�ers are live and point

to transactions in progress.

Whenever an instruction fetch to shared memory is initiated, these conditions ensure

that the next few instruction fetches will be ignored by the thrashlock monitor: in the

A-1000 it is not possible for requests to be satis�ed (i.e. TIP lowered) in less than �ve

cycles. Therefore, in situations in which the Load instruction must be fetched from a

remote node, the instruction tracking vector will remain dedicated to this fetch.

The second condition forces a slight modi�cation of line (3) of the de�nition of

ThrashDetected. This condition is necessary to prevent detection of thrashing

when an instruction fetch legitimately starts a new transaction and
ags a context

switch. Since this context switch cannot be recognized until the execute state, the

next few instructions will be fetched anyway. Consequently, if one of these next few

instructions also misses in the cache and starts a new transaction, the fact that the

Tried Once bit is set (from the �rst instruction miss) causes the unmodi�ed version

of line (3) to be
agged, freezing the pipeline unnecessarily. We prevent this incorrect

detection of thrashing by recognizing that the instruction tracking vector is live and

points to a bu�er with TIP = 1.

5.6 Transaction Monitor

The transaction monitor, shown in Figure 5-3, is responsible for the allocation and

management of transaction bu�ers. It takes state information from each of the 16

18The way in which the thrash-wait bits are used can also hold the pipeline unnecessarily, since
setting a data thrash-wait bit will freeze the pipeline during the fetching of Inst 1 and Inst 2.

75

bu�ers and combines it with the No Reclaim and No Invalidate vectors (see Sec-

tion 5.5) to perform a number of supervisory tasks. These are listed below:

5.6.1 Bu�er Allocation Constraints

Since transaction bu�ers are a limited resource in the A-1000, some constraints must

be placed on their allocation. Two independent (and overlapping) counts of trans-

action bu�ers are generated. The �rst, TransactionCount, is a combined count

of outstanding transactions and cached data. Placing a limit on this count forces

a tradeo� between these two bu�er classes. The second, GlobalCount, is used

to limit the number of bu�ers which might be inde�nitely occupied during network

over
ow.

Let GlobalBuffer be true if a transaction bu�er has a global address. Let

Reclaimable be true if a bu�er is not protected by the No Reclaim vector. Then,

two allocation invariants which are maintained by the cache management machine

can be de�ned as follows:

TransactionCount � 12 (< max GlobalCount)

Where TransactionCount is the total number of bu�ers for which:

(GlobalBuffer ^ TIP = 1) _

(Flush = 0 ^ INV = 0 ^ Valid 6= 0) _

: Reclaimable

GlobalCount � 14 (< Total number of bu�ers)

Where GlobalCount is the total number of bu�ers for which:

(GlobalBuffer ^ TIP = 1) _

(GlobalBuffer ^ INV = 1) _

(GlobalBuffer ^ Flush = 0 ^ Valid 6= 0) _

: Reclaimable

Note that these invariants are di�erent from the constraints on the number of bu�ers

76

with identical addresses which were discussed in Section 5.4. These allocation invari-

ants are maintained by the cache system since:

1. The cache management machine never allocates transaction bu�ers which vio-

late them.

2. Both counts are monotonically decreasing with respect to state transitions other

than allocation19.

While the actual limits (12 and 14) are somewhat arbitrary, the important orderings

are given in parentheses. The fact that the maximumGlobalCount is larger then

the maximumTransactionCount insures that bu�ers can be available for
ushes

to global memory, even when the maximum TransactionCount has been �lled with

global bu�ers. The fact that the maximum GlobalCount is less than the total

number of bu�ers ensures that bu�ers will always be available for accesses to unshared

local memory; when the maximumGlobalCount has been reached, the remaining

bu�ers must be
ushes without protocol action (which can always be completed),

unshared cached values (which can be garbage-collected and
ushed), or unshared

transactions (which can be completed locally).

To expedite the process of maintaining the invariants, the transaction monitor

produces two boolean signals, TransFull and GlobFull which are de�ned as

follows:

TransFull) (TransactionCount � 12)

GlobFull) (GlobalCount � 14)

Thus, these signals are asserted whenever their corresponding invariants are in danger

of being violated. As an example of their use, when the cache management machine

is about to initiate a new remote transaction on behalf of the processor, it �rst checks

19Actually, the TransactionCount limit may be violated brie
y by one transition: unshared
transaction in progress! unshared cached. This causes the TransactionCount to increase, since
unshared transactions are not counted. However, unshared cached bu�ers can always be garbage-
collected; in fact, the invariant will be immediately restored by the garbage-collector.

77

to make sure that both TransFull and GlobFull are deasserted (since the new

bu�er would fall into both categories). If not, then it asserts the processor hold line

until the new transaction can be launched or until a high-availability interrupt must

be processed.

5.6.2 Allocation of Empty Bu�ers

Those bu�ers that are in the empty state and not protected by the No Reclaim

vector are candidates for allocation. The transaction monitor generates a 16-bit

vector with one bit set for each allocatable bu�er. Combining this vector with a base

pointer, it chooses the next available empty bu�er in round-robin fashion. This bu�er

may be written (allocated) by the state machine that has control of the associative

matching port. Only the cache management hardware actually allocates new bu�ers.

To indicate that free bu�ers are available, the transaction monitor generates a signal

called HaveEmpty.

5.6.3 Identi�cation of Bu�ers for Garbage Collection

As mentioned in Section 5.3, use of the transaction store as a generic cache requires

some form of garbage-collection. Otherwise, cached states quickly consume all avail-

able resources. Those bu�ers that are cached (class A) and not protected by the

No Reclaim vectors are considered reclaimable. The transaction monitor generates a

16-bit vector that has one bit set for each reclaimable bu�er. As with empty bu�er al-

location, it combines the vector of reclaimable bu�ers with a base pointer20 to choose

the next candidate for garbage-collection. This information is passed to the remote

transaction machine which will perform the actual garbage-collection when resources

are low.

Invocation of the garbage-collector is straightforward: the TransactionCount

invariant forces a trade-o� between transactions in progress and cached bu�er entries.

20This is actually the same base pointer as is used for empty bu�er allocation. Empty bu�ers are
allocated a �xed number of bu�ers ahead of where garbage-collection is occurring.

78

Thus, whenever TransFull is asserted, the remote-transaction machine checks to

see if any reclaimable bu�ers exist. If so, it takes the next candidate from the transac-

tion monitor and reclaims it. Bu�ers with transaction-type RO are discarded. Bu�ers

in states RW or RWD are transformed into transient states by setting their Flush bits;

the INV bits of global bu�ers are set as well. These bu�ers then become transient

and are scheduled as described in the next section.

5.6.4 Scheduling of Transient States

As discussed in Section 5.3, some transaction bu�er states are transient, namely those

with note C in Table 5.1 and those marked with note B which are not locked. The

transaction monitor combines the No Invalidate vector, described in Section 5.5.2,

with transaction state to produce two classes of transient bu�ers: those with their

Local bits set and those with their Local bits clear. Those with their Local bits

set have local addresses and are processed by the memory management machine.

Those with their Local bits clear are remote addresses and are processed by the

remote transaction machine. These two classes are scheduled separately, in round-

robin fashion. Each machine is informed when it has one or more transient bu�er to

process (signals HaveRemoteFlush and HaveLocalFlush in Figure 5-3) and is

informed of which is the next bu�er to process.

The transaction monitor has one addition feature which modi�es the scheduling of

local bu�ers during network over
ow. To process transient bu�ers which are implicit

protocol messages (global bu�ers), the memory machine may need to send messages.

Consequently, during periods of scarce network resources, it may be impossible to

process such bu�ers at all21. Thus, to guarantee that the processor has access to un-

shared portions of memory, the scheduling of local bu�ers is modi�ed during network

over
ow to ignore transient bu�ers with global addresses. Thus, unshared
ushes can

always proceed.

21The memory machine always veri�es that it has su�cient resources to �nish a request before

starting to process it.

79

5.7 Transaction Data

The transaction data module contains su�cient storage for one complete, four-word

memory-line per transaction bu�er. The physical memory cell supports 64-bit data

paths, dividing each 128-bit memory line into two 64-bit chunks. The memory bus

and internal network queues are also 64 bits. One of the goals which impacted the

design of the transaction store was a desire for it to serve as a conduit for all data

accesses, including unshared instruction cache misses to local memory; as such, it

should introduce little or no delay over a more direct, hard-wired path.

This goal was accomplished by pipelining data directly through transaction bu�ers.

In the A-1000, pipelining of transaction data is accomplished by three things:

� Separate read and write ports, permitting data to be read at the same time that

it is being written. In fact, the A-1000 employs a three-port memory �le for

transaction bu�er data with two read ports and one write port. One of the read

ports is dedicated to the memory management machine for processing
ushed

bu�ers.

� Bypass logic to permit data to be read on the same cycle that it is written.

� A per-bu�er Valid �eld which is a two-bit Gray code. The four Valid states,

INVALID, ARRIVING, HALF VALID, and VALID were introduced in Section 5.3.

Logic to modify and examine the Valid bits is integrated directly into the data

access ports of the transaction store.

The key to pipelining is in the Valid bits. The ARRIVING state indicates that protocol

action has completed and that data arrival is imminent. This is used to initiate

scheduling of any entity that may be sleeping in wait for data. The HALF VALID

state indicates that the �rst of the two 64-bit sub-lines has valid data, while VALID

indicates that both lines are valid. Two transitions, (ARRIVING! HALF VALID), and

(HALF VALID! VALID), are invoked directly by writes to the transaction data22.

22The Gray code makes this somewhat cheaper to implement.

80

Chapter 6

Closing the Window of

Vulnerability: The Signaling

Approach

Chapters 4 and 5 describe a method for closing the window of vulnerability which may

be employed with standard RISC pipelines. This direction was appropriate for the

Alewife machine, since the Sparcle processor was the result of a collaborative e�ort

between MIT and LSI-logic which modi�ed an existing SPARC processor without

altering the pipeline[19]. The model of context-switching which is appropriate for

such \vanilla" architectures is that of polling, i.e. retrying memory requests until

they are satis�ed.

Other approaches to closing the window are possible, however. This chapter starts

by examining a simple extension of the mechanisms of the previous chapter, then

continues with more pipeline-intrusive signaling alternatives.

6.1 Retaining Invalidated Read Data

One simple modi�cation to the mechanisms of Chapter 5 eliminates the window of

vulnerability for read operations: when the data for a read request is invalidated

before the read has committed, acknowledge the invalidation but hold on to the

81

data. At the time that the requesting context returns, pass a single word (or atomic

double-word) of data to the processor, then discard the data. Giving a single item

of invalidated data to the processor does not violate cache consistency, since the load

could have committed just before the invalidation.

Further, holding of data in this way is straightforward to implement in the frame-

work of Chapter 5: when data from a primary transaction is invalidated during the

window of vulnerability, the transaction bu�er which contained it is protected by the

No Reclaim vector. Consequently, this data is still available, even though the bu�er is

technically \empty". Tracking vectors are necessary to detect thrashing as before and

to allow a single access to what otherwise appears to be an empty transaction bu�er.

Note that care must be taken with this approach to prevent contexts other than the

requesting context from accessing this data, since that could cause a violation of the

supported memory-model1.

For a context-switching processor, it is not entirely clear which approach to the

handling of invalidated read data is desirable, that presented in the earlier chapters

(re-requesting of invalidated data) or that presented here (using of stale data). While

this distinction is not important from a correctness standpoint, it can have perfor-

mance implications, especially for synchronization variables. Data which is retained

after invalidation is guaranteed to be stale with respect to memory. For programs

which use a test and test-and-set strategy to acquire spin locks, use of stale data can

have the unfortunate consequence of raising the frequency with which write opera-

tions are attempted for variables which are already locked. Further, for machines

that use Full/Empty bits for synchronization, the acquisition of stale data can cause

the consumer to incorrectly conclude that a value is not yet ready when in reality it

was produced during the execution of another context. Depending on the cost of the

backo� strategy which is invoked after synchronization failure, the use of stale data

may have a non-trivial performance impact. More study is called for here.

For instruction accesses, this solution is probably superior to the one given in the

previous chapters. It eliminates all concerns of deadlock which are raised by multiple

1For a discussion of memory-model issues, see [8, 12, 13, 1].

82

primary transactions with thrashlock (Section 4.5).

6.2 Signaling with Block Multithreading

With more intrusive pipeline modi�cations, other solutions become possible. Rather

than polling, a system could eliminate the window of vulnerability by consuming data

as soon as it returns. This is the signaling model of context-switching. The context

which requested a given piece of data can be noti�ed or signaled to resume execution

as soon as its data is available. At that point, the context needs to progress past the

deferred load or store. In this section, we will examine signaling in the context of

block-multithreaded processors, that is processors that context-switch only on cache

misses or synchronization faults. We will call this basic signaling. Next section will

consider processors which interleave the execution of multiple threads.

In a block-multithreaded processor such as Sparcle, only one thread of control

is active at any one time. Thus, to permit signaling, loads or stores which are in

inactive contexts must be committed in some fashion which is independent of this

main thread. Consider, for a moment, a single primary (data) transaction. Signaling

completely eliminates the problems which were discussed in the previous chapters:

� All loads and stores commit with a single network round-trip.

� No deadlocks are introduced by the disabling of context-switching, since data

is never locked.

� High-availability interrupts do not open the window of vulnerability; loads and

stores to global memory commit, even if the processor is currently executing an

interrupt handler.

Consequently, signaling is attractive; it does not require thrash detection or locking.

The implementation of basic signalling requires modi�cations to the processor

pipeline. Four mechanisms are required:

� Context management hardware which permits contexts to be put to sleep when

performing a \context-switch" and awoken when their data returns. Note that

83

this context management e�ects normal execution of the thread and is di�er-

ent from the mechanisms which commit load and store operations for inactive

contexts2.

� An extra write port in the register �le, to permit returning read data to be

placed directly in an appropriate register. Alternatively, an extra cycle or two

can be stolen from the normal write port. A variant of \tracking vectors" are

also necessary to associate primary transactions with outstanding addresses and

destination registers.

� Write-bu�ering which can merge data from the processor with returning data

from memory3

� Context-dependent fetch-bu�ers in which to place the results of global instruc-

tion fetches.

The hardware management of contexts is more complicated with signaling than

with polling. The polling model of context-switching employs synchronous traps to

signal context switches. This is appropriate, since faulted instructions are completely

retried. Further, when a context is not the active context, its only state is in the

register �le (and possibly in a context-dependent status word and program counter).

The signaling model, however, eliminates the retrying of instructions. Instead, con-

texts are allowed to advanced beyond the access on which they are waiting then

disabled. As soon as data returns, the waiting access commits and the context is

reenabled. Later, this context begins execution at the instruction after the one which

just committed. This suggests a number of implementation possibilities:

2In the Sparcle processor, the context-switch trap code uses a special instruction, nextf, to
advance the register window pointer to the next active context. The behavior of this instruction
is governed by a special software mask which allows each individual context to be enabled or dis-
abled. In a signaling system, a similar mask might be examined by hardware during context-switch
operations and modi�ed directly during the dispatching of requests and arrival of responses.

3Note that the decision to context-switch or not to context-switch after a write item is entered into
the write-bu�er depends on the memory-model which is supported. The simplest form of sequential
consistency would require that a context be disabled until an outstanding write has committed.

84

� Complete duplication of pipeline state for each context. This is probably not a

good solution, since a large amount of state may be present in various stages

of the pipeline. In fact, this eliminates the advantage a�orded by block multi-

threading.

� Duplication of fetch bu�ers. This is a better solution, since at least one fetch

bu�er per context is necessary to permit the fetching of global instructions.

Further, if extra fetch bandwidth exists, instructions from disabled contexts

can be fetched in preparation for a future context switch. When a context-

switch is forced on a data access, all instructions must be drained from the

pipeline.

� No duplication of pipeline state other program counter(s) and status words.

Here, context-switches allow the current access to advance beyond the access

in question, empty the processor pipeline of instructions following this, then

switch to the next context. The key is that some form of external instruction

bu�ering for global instructions is necessary.

The second option has intriguing possibilities for reducing the cycle-penalty of a

context switch, even in processors with multiple instruction issue. The last option

is the simplest and behaves much like a simple RISC pipeline for polled context-

switching, except for the fact that it is faulted at the instruction after the one which

is pending.

One complication arises when signaling is combined with memory operations

which have trapping behavior. For instance, certain Sparcle load and store instruc-

tions trap if the Full/Empty bit of their data has a speci�ed value. Examples include

ldt (load and trap on empty) and stt (store and trap on full). Should returning data

item need to signal a fault of the corresponding load or store, this will require addi-

tional complexity to cause a trap to a disabled context (and for an instruction which

has has already passed the execute stage). The simplest solution to this problem is to

separate the data access from the trapping behavior. Trapping loads can be replaced

by a two-instruction sequence which uses a non-trapping load followed by a test-and-

85

trap instruction. For trapping stores, an Alpha-style load-locked/store-conditional

sequence [5] is probably desirable, with a Full/Empty bit check sandwiched between

two non-trapping data operations.

6.3 Signaling With Interleaved Multithreading

Signaling is much easier to implement for processors which support multiple concur-

rent (or interleaved) hardware threads, such as HEP [27] or Monsoon [25]. This ease

stems from the fact that no extra mechanism is needed to allow accesses to commit im-

mediately on data arrival. Such pipelines are designed around a signaling philosophy.

Simply reenabling a disabled context when its data arrives is su�cient, because the

thread begins to execute concurrently with other threads. However, since it may be a

number of cycles before this execution commences, data must be temporarily bu�ered

and invalidations deferred until the action commences4. Such processors would not

su�er from the complications of faults as just discussed, since the appropriate thread

of control would be reenabled to perform the actual read or write operation. This

operation could commit or fault as appropriate.

Unfortunately, processors which support interleaved multithreading have disad-

vantages. The concurrency comes at the cost of additional hardware complexity.

Further, in the examples given above, interleaved multithreading equates to poor

single-thread performance, since instructions from individual threads are issued no

more than once every few cycles (every 8 cycles for the examples given). This is done

to simplify the task of handling pipeline hazards from multiple simultaneous threads.

Poor single-thread performance is not an intrinsic problem with interleaved multi-

threading, however. A more general pipeline scheduler could start on each cycle with a

set of runnable threads. This set of threads could be altered by both the cache hard-

ware and the operating system software. Instructions can be issued from this set,

contingent upon availability of pipeline resources, avoidance of hazards, and other

4This is, in essence, a lock on the data. Since threads are executing concurrently, deadlock is
not a problem. However, some care must be taken with context-switch disable mechanisms, so that
they allow contexts to commit data actions which are in progress although disabled.

86

constraints. Assuming that su�cient bypassing has been included in the pipeline,

such a processor should be able to maintain a high single-thread instruction issue

rate, in addition to performing multithreading.

87

Chapter 7

Conclusion or \To Poll or Not To

Poll"

This thesis has discussed the livelock and deadlock problems associated with the

window of vulnerability and speci�ed an architectural framework that solves those

problems. A combination of multiphase memory transactions and the mechanisms

associated with shared memory may be implemented using the associative thrashlock

approach. If a system only needs to support a subset of the mechanisms described

in Chapter 2, then Table 4.1 may be used to decide which of the other solutions are

su�cient.

What is the appropriate amount of hardware required to close the window of

vulnerability? As shown in Chapter 6, it is possible to construct architectures that

take completely di�erent approaches to solving the problems associated with multi-

phase memory transactions. For example, the Alewife architecture forces contexts to

poll until they complete their outstanding transactions. Alternatively, a system can

eliminate the window of vulnerability inherent in a polling model by signaling or reen-

abling a context immediately when its memory access completes. Such is the case

in data
ow or message-passing architectures. Polling has a smaller hardware cost

and optimizes for the common case when average remote access latency is shorter

than polling frequency. This is true precisely when the window of vulnerability is

long (Section 3.3). Signaling is less sensitive to remote access latency, but requires

88

more than a \vanilla" RISC pipeline. If memory operation have trapping semantics,

then signalling introduces additional complexity to handle delayed traps to disabled

contexts. System parameters or philosophy determine whether polling, signaling, or

a hybrid approach is most appropriate.

A multiprocessor could also avoid the window of vulnerability by eschewing the

use of caches. In a system without caches, all memory requests could be serviced

by distributed modules. By serializing transactions, memory modules would ensure

both coherence and forward progress. However, such a system would have to provide

extremely high bandwidth between processing nodes and memory modules in order

to achieve high performance.

The associative thrashlock framework presented in this thesis provides a solution

to the window of vulnerability problem for a polled, context-switching processor. The

framework allows the use of caches to reduce the bandwidth required from the in-

terconnect, and permits processors to store just enough information to recreate the

pipeline state of a context when necessary. Instead of closing the window of vul-

nerability by brute force, the Alewife architecture dynamically detects the situations

that can lead to deadlock and livelock. Only when these relatively rare situations

arise does the system close the window. This fundamental architectural trade-o� pits

hardware expense and complexity against exceptional events that are uncommon, but

potentially fatal. Further, this framework is more than just a mechanism for elimi-

nating livelock. The explicit tracking of transactions permits the coherence protocol

to be insensitive to network reordering, and provides an essential component in al-

lowing network-over
ow recovery in software. It also promises to be important for

fault-tolerant shared memory.

Consequently, even if (or when) context-switching processors move beyond polling

into signalling, the transaction store will remain as an important facet of shared-

memory caching systems.

89

Bibliography

[1] Sarita V. Adve and Mark D. Hill. Weak Ordering - A New De�nition. In
Proceedings 17th Annual International Symposium on Computer Architecture,
New York, June 1990.

[2] Anant Agarwal, Johnathan Babb, David Chaiken, Godfrey D'Souza, Kirk John-
son, David Kranz, John Kubiatowicz, Beng-Hong Lim, Gino Maa, Ken MacKen-
zie, Dan Nussbaum, Mike Parkin, and Donald Yeung. Sparcle: Today's Micro
for Tomorrow's Multiprocessor. In HOTCHIPS, August 1992.

[3] Anant Agarwal, David Chaiken, Godfrey D'Souza, Kirk Johnson, David Kranz,
John Kubiatowicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino Maa, Dan Nuss-
baum, Mike Parkin, and Donald Yeung. The MIT Alewife Machine: A Large-
Scale Distributed-Memory Multiprocessor. In Proceedings of Workshop on Scal-

able Shared Memory Multiprocessors. Kluwer Academic Publishers, 1991. An
extended version of this paper has been submitted for publication, and appears
as MIT/LCS Memo TM-454, 1991.

[4] Anant Agarwal, Beng-Hong Lim, David A. Kranz, and John Kubiatowicz.
APRIL: A Processor Architecture for Multiprocessing. In Proceedings 17th An-

nual International Symposium on Computer Architecture, pages 104{114, New
York, June 1990.

[5] Alpha Architecture Reference Manual. Digital Press, 1992.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley Publishing Company, Reading,
MA, 1987.

[7] David Callahan, Ken Kennedy, and Allan Porter�eld. Software Prefetching.
In Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS IV), pages 40{52. ACM, April 1991.

[8] Lucien M. Censier and Paul Feautrier. A New Solution to Coherence Problems
in Multicache Systems. IEEE Transactions on Computers, C-27(12):1112{1118,
December 1978.

[9] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS Directories:
A Scalable Cache Coherence Scheme. In Fourth International Conference on

90

Architectural Support for Programming Languages and Operating Systems (AS-

PLOS IV), pages 224{234. ACM, April 1991.

[10] David Lars Chaiken. Cache Coherence Protocols for Large-Scale Multiproces-
sors. Technical Report MIT-LCS-TM-489, Massachusetts Institute of Technol-
ogy, September 1990.

[11] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction

to Algorithms. The MIT Press, 1990.

[12] Michel Dubois, Christoph Scheurich, and Faye A. Briggs. Synchronization, co-
herence, and event ordering in multiprocessors. IEEE Computer, pages 9{21,
February 1988.

[13] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-
nessy. Memory Consistency and Event Ordering in Scalable Shared-Memory
Multiprocessors. In Proceedings 17th Annual International Symposium on Com-

puter Architecture, New York, June 1990. IEEE.

[14] Robert H. Halstead. Multilisp: A Language for Concurrent Symbolic Computa-
tion. ACM Transactions on Programming Languages and Systems, 7(4):501{538,
October 1985.

[15] David V. James, Anthony T. Laundrie, Stein Gjessing, and Gurindar S. Sohi.
Distributed-Directory Scheme: Scalable Coherent Interface. IEEE Computer,
pages 74{77, June 1990.

[16] Kirk Johnson. The impact of communication locality on large-scale multiproces-
sor performance. In 19th International Symposium on Computer Architecture,
May 1992.

[17] N.P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of
a Small Fully-Associative Cache and Prefetch Bu�ers. In Proceedings, Interna-

tional Symposium on Computer Architecture '90, pages 364{373, June 1990.

[18] David Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization. In
Proceedings of the 8th Annual Symposium on Computer Architecture, pages 81{
87, June 1981.

[19] John Kubiatowicz. The Sparcle Processor: A Modi�ed SPARC for Multiprocess-
ing. ALEWIFE Memo No. 3, Laboratory for Computer Science, Massachusetts
Institute of Technology. Revised February 1993, March 1990.

[20] John Kubiatowicz. User's Manual for the A-1000 Communications and Memory
Management Unit. ALEWIFE Memo No. 19, Laboratory for Computer Science,
Massachusetts Institute of Technology, January 1991.

[21] John Kubiatowicz and Anant Agarwal. Anatomy of a Message in the Alewife
Multiprocessor. Submitted to 1993 International Supercomputing Conference,
December 1992.

91

[22] Kiyoshi Kurihara, David Chaiken, and Anant Agarwal. Latency Tolerance
through Multithreading in Large-Scale Multiprocessors. In Proceedings Inter-

national Symposium on Shared Memory Multiprocessing, April 1991.

[23] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
Directory-Based Cache Coherence Protocol for the DASH Multiprocessor. In
Proceedings 17th Annual International Symposium on Computer Architecture,
pages 49{58, New York, June 1990.

[24] Todd Mowry and Anoop Gupta. Tolerating Latency Through Software-
Controlled Prefetching in Shared-Memory Multiprocessors. Journal of Parallel

and Distributed Computing, 12(2):87{106, June 1991.

[25] G. M. Papadopoulos and D.E. Culler. Monsoon: An Explicit Token-Store Ar-
chitecture. In Proceedings 17th Annual International Symposium on Computer

Architecture, New York, June 1990. IEEE.

[26] B.J. Smith. A Pipelined, Shared Resource MIMD Computer. In Proceedings of

the 1978 International Conference on Parallel Processing, pages 6{8, 1978.

[27] B.J. Smith. Architecture and Applications of the HEP Multiprocessor Computer
System. SPIE, 298:241{248, 1981.

[28] Wolf-DietrichWeber and Anoop Gupta. Exploring the Bene�ts of Multiple Hard-
ware Contexts in a Multiprocessor Architecture: Preliminary Results. In Pro-

ceedings 16th Annual International Symposium on Computer Architecture, pages
273{280, New York, June 1989.

92

