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Abstract

The shared-memory data-parallel model presents an attractive interface for programming
multiprocessors by allowing for easy management of parallel tasks while hiding details
of the underlying machine architecture. Unfortunately, the shared-memory abstraction
requires synchronization in order to maintain data consistency. Present compilers pro-
vide consistency between parallel code sections by enforcing a global point of synchrony
with a barrier synchronization. Such a simple mechanism possesses several disadvan-
tages. First, the required global collection of information generates significant overhead
which leads machine designers to employ special hardware to support barriers. Second,
global synchronization reduces parallelism by requiring needless serialization of inde-
pendent tasks. This work aims to reduce the costs associated with these disadvantages
by generating pairwise point-to-point synchronization between specific tasks.

Implementation of point-to-point synchronization demands extensive analysis of pro-
gram dependences. A compiler must perform flow analysis and dependence testing in
order to compute lexical dependences between program statements. In addition, dynamic
dependences between processors must be computed by examining array references and
statement contexts. The final synchronization scheme must support any dependences
that arise in the program while ensuring that no deadlock scenarios can occur. This
work proposes algorithms that satisfy such requirements and presents some encourag-
ing results from a preliminary implementation.
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Chapter 1

Introduction

The concept of devoting many processing elements to one task in order to increase

performance has existed for several decades. Implementations of this concept vary from

early array processors such as the Illiac IV [Bou72] to the more decoupled MIMD ma-

chines of today [Smi78][Sei85][Thi91]. Early array processors and SIMD machines allow

parallelism through repeated application of a single computation or instruction to differ-

ent data. Though this sort of concurrency is effective for certain program domains, the

inability to follow different instructions and control paths in parallel reduces its gener-

ality. On the other hand, MIMD machines allow each processor to follow independent

asynchronous programs with a data communication network forming the only link be-

tween processors. However, this independence comes at a price: Explicit synchronization

must be performed to ensure correct ordering of accesses to shared memory.

This thesis focuses on the domain of programs that make extensive use of parallel

loops and arrays to express data parallelism. The common model for invoking such

programs on multiprocessors involves two modes of execution: sequential and parallel.

Sequential code segments are executed on a single processor or host, while parallel code

can be executed on all processors. Sections of code containing parallel instructions can be

represented as DOALL loop statements which specify that all iterations can be executed

in parallel. On array and SIMD machines, the transition between parallel and sequential

sections comes at no additional cost since all processors execute in lock-step. On MIMD

machines, a barrier synchronization is typically performed between parallel and sequen-

tial sections to ensure correctness of results. When a barrier synchronization appears in

a program, no processors can proceed past the barrier point until all processors have

reached that point.

The barrier synchronization allows MIMD machines to follow the SIMD model of

program execution by requiring all processors to wait at the barrier point until all other

processors have arrived at that point. On machines with many processors, this global

propagation of information can require a significant amount of time to execute. Equally

importantly, barrier synchronizations can force serialization of operations on different
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processors even when no dependences exist between them. If parallel loop iterations

possess fairly dynamic control flow, this can result in unnecessary idling and imply

that the time required to execute each loop is equal to the maximum time required

by any processor [DH88]. With a more decoupled synchronization scheme, consecutive

loops can be allowed to stagger, thus providing higher processor utilization. The above

disadvantages can be addressed by employing a point-to-point synchronization scheme

in which processors synchronize individually with other processors.

1.1 Related work

Barrier synchronization has become popular as a necessary tool for implementing

the SPMD (Single Program Multiple Data) model on MIMD machines. Consequently,

many efforts have been made to reduce the potentially high expense of this operation

[Pol88][AJ87]. However, many of these schemes still rely on global propagation and do

not address the problem of processor idling at barrier points.

‘‘Fuzzy’’ barriers [Gup89] reduce idling by breaking barrier synchronization into

two phases: signaling and waiting. In conventional execution, a processor arrives at

the barrier point, signals that it has arrived at that point, then waits until all other

processors have signaled their arrival. In the fuzzy barrier scheme, a processor can

signal ahead of its arrival at the barrier point, thus allowing it to execute instructions

before waiting. A compiler can schedule signals at the earliest possible point in order

to maximize processor utilization. Although fuzzy barriers offer improved performance,

they still suffer from some of the same disadvantages of barrier synchronization. The

overhead of accumulating and transmitting information globally still scales as the log of

the number of processors. In addition, the number of instructions that can be scheduled

between signaling and waiting is dependent on the particular program. If accesses that

require the barrier cannot be moved very far apart at compilation, then processors still

spend a large amount of time idle.

A point-to-point synchronization scheme for DOACROSS loops is presented in [MP87].

Even though all iterations of a DOACROSS loop can be executed in parallel, dependences

can exist between iterations. In Figure 1-1a, the definition and use of elements of array

a in different iterations imply that synchronization must be performed between those

iterations. A compiler can automatically insert synchronization primitives (represented

as boldface pseudocode) for any such dependences and thereby allow all loop iterations
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to be executed in parallel without implicit scheduling constraints. The same dependence

patterns that exist between iterations of DOACROSS loops can also occur with DOALL

loops as shown in Figure 1-1b. Before reading an element of the array a, a processor must

synchronize with the write event of that element which occurs in a previous iteration

of i. Consequently, the analysis done in this thesis must deal with all the issues that

arise in synchronization within DOACROSS loops. In addition, synchronization across

DOALL loops requires consideration of dependences between separate loops, which is

not considered in [MP87].

doacross (i=1,100) {
a[i] = ...;
synch with iteration i-5
... = a[i-5];

}

(a)

do (i=1,100) {
doall (j=1,50)
a[i,j] = ...;

doall (j=1,50) {
synch with iteration i-5,j
... = a[i-5,j];

}
}

(b)

Figure 1-1

While synchronization for DOACROSS loops requires study of dependences across

loop iterations, dependences within a loop iteration or within a general sequence of

statements are considered in [CHH89]. A sequence of statements can be mapped into

a directed acyclic graph of code blocks with edges representing dependences between

blocks. Since each block can be executed by a different processor, synchronization must

be performed for each edge in the graph. In Figure 1-2a, the definition and use of

variable a by different processors requires synchronization between the writing and

reading statement blocks. Such dependences between different statements in a sequence

also arise when one considers DOALL loops. As shown in Figure 1-2b, the definition

and use of array a also requires synchronization between two different statements in a

sequence. In general, for any situation that arises in DAG dependences, an equivalent

scenario exists in the context of DOALL loops. In addition, synchronization between

DOALL loops must be concerned with groups of processors that execute each loop rather

than merely synchronizing between single processors that execute each node in a DAG.
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cobegin
block 1

a = ...;
...
block 5
synch with block 1
... = a;

end

(a)

doall (j=1,100)
a[j] = ...;

...
synch with first loop
doall (j=1,100)
... = a[j];

(b)

Figure 1-2

1.2 Problem identification

Despite its disadvantages, the barrier synchronization is the simplest and most gen-

eral method of forcing correct ordering of execution in parallel programs. However,

many loop-based programs contain array references that are generally linear functions

of loop indices, thus providing statically-obtainable dependence information between

individual elements [SLY89]. This thesis aims to use that dependence information to im-

plement point-to-point synchronization schemes which can reduce the costs associated

with barrier synchronization.

do (i=1,100) {
doall (j=1,256)
b[j] = a[j]; /* S1 */

Barrier synch #1
doall (j=1,256)
a[j] = (b[j-1] + b[j+1]) * .5; /* S2 */

Barrier synch #2
}

Figure 1-3

Consider the code fragment in Figure 1-3. Let us assume that each DOALL iteration

j is performed on a separate processor Pj on a shared-memory machine and arrays A

and B are partitioned similarly. If no synchronization is performed, one can imagine the

scenario where processor P1 assigns to B[1], then assigns to A[1], then assigns to B[1]

again before processor P2 can read the first value of B[1]. Consequently, the result of

a program can be incorrect due to data dependence violations. To rectify this problem,

a barrier synchronization is typically inserted after each DOALL loop as indicated in the

above example. This solution has the effect of serializing the execution of DOALL loops,
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thus providing correct if not efficient execution. In order to place synchronizations more

strategically, data dependence analysis must be performed.

A data dependence arises when the order of two accesses to a memory location must

be preserved in order to ensure correctness. Since two read accesses do not require an

ordering, a dependence only occurs when one of the accesses is a write to memory.

Dependences can be classified into three types:

� Flow dependence: a write must be performed before a read.

� Anti-dependence: a read must be performed before a write.

� Output dependence: a write must be performed before another write.

In order to specify exact iterations of the program, invocations of statements will

be labeled by the value of loop indices. For example, the invocation of statement S1 in

Figure 1-3 with I=5 and J=6 will be labeled as S1(5; 6). A statement invocation S1(i)

that is flow-dependent on S2(i0) is written as S1(i) �f S2(i0), an output dependence

is indicated as S1(i) �o S2(i0), while S1(i) � S2(i0) represents an anti-dependence. The

following dependences exist for Figure 1-3 and are illustrated in Figure 1-4.

S2(i;j) �f S1(i + 1;j) (�1)

S1(i;j) �f S2(i;j + 1) (�2)

S1(i;j) �f S2(i;j� 1) (�3)

S1(i;j) �o S1(i + 1;j) (�4)

S2(i;j) �o S2(i + 1;j) (�5)

S1(i;j) � S2(i;j) (�6)

S2(i;j) � S1(i + 1;j + 1) (�7)

S2(i;j) � S1(i + 1;j� 1) (�8)

For a particular processor partitioning scheme, there exists an ordering on the ex-

ecution of some statement invocations. When two statement invocations are assigned

to the same processor, the order of their execution is predetermined. Let S1(i,j) <

S2(i’,j’) denote the fact that S1(i,j) must execute before S2(i’,j’). Note that

the < relation is anti-reflexive and transitive. If we assume that each DOALL iteration j
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Figure 1-4: Dependence graph for Figure 1-3

of the current example is assigned to processor Pj , then the following ordering arises:

S1(i;j) < S2(i;j)

S2(i;j) < S1(i + 1;j)

When processor execution obeys this ordering, some dependences are automatically

satisfied, such as �1, �4, �5, and �6 in the current example. The remaining dependences

�2 and �3 are satisfied by barrier #1 and �7 and �8 are satisfied by barrier #2. If

point-to-point synchronization can be performed for those dependences, then the barrier

synchronizations can be eliminated.

Figure 1-5

shows execution profiles of the above example on a 16-processor machine. The

barrier-synchronization profile uses a tree-based software barrier which requires around

450 cycles. Dark areas represent non-synchronization processing while light areas repre-

sent idle time waiting for or performing synchronization. One can see that the 450-cycle

overhead for global propagation adds significantly to the overall running time of the

application. Moreover, one can also observe that the point-to-point scheme allows for

more computation skew among processors which can improve performance in other

applications.

1.3 Approach

In order to reduce synchronization costs in loop-based parallel programs, this thesis

proposes replacing barrier synchronizations with point-to-point synchronization schemes.

The realization of this goal involves careful study of the topics outlined below.
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Figure 1-5: Execution of 5 iterations of Figure 1-3

1.3.1 Synchronization variables

Point-to-point synchronization can be implemented by the use of a shared variable

which indicates the current loop iteration of each processor as in [MP87]. Before fully

completing each DOALL iteration in the previous example, each processor updates a

synchronization variable to indicate that it has finished that particular iteration.

do (i=1,100) {
doall (j=1,256) {
wait until sync2[j-1] = i-1 and sync2[j+1] = i-1
b[j] = a[j]; /* S1 */
sync1[j] = i;

}
doall (j=1,256) {
wait until sync1[j-1] = i and sync1[j+1] = i
a[j] = (b[j-1] + b[j+1]) * .5; /* S2 */
sync2[j] = i;

}
}

Figure 1-6

In Figure 1-6, the synchronization arrays sync1 and sync2 are partitioned like the

arrays a and b, so for example, processor Pj ‘‘owns’’ element sync1[j]. For any

dependence, a processor executing the statement that is on the right of the dependence

must wait until a processor has executed the statement on the left of the dependence.

This is accomplished by setting and waiting for appropriate values in the sync arrays.

Although there is a spin-locking action on elements of the sync arrays, no extra network
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traffic is induced on machines with caching schemes that allow shared copies of variables.

1.3.2 Computing statement dependences

In order to determine processor synchronization requirements, dependences between

statements of a program need to be computed. The calculation of such data dependence

information can be adapted primarily from two areas of research: sequential data-flow

analysis and array-dependence analysis for parallelizing DO loops.

Standard data-flow analysis techniques [ASU86] can provide definition-use chains

for computing flow dependences. The algorithms can also be adapted to generate in-

formation necessary for calculating output and anti-dependences. Unfortunately, these

techniques are primarily concerned with scalar variables and pay little attention to flow

information on individual array elements. In order to effectively compute dependence

information for point-to-point synchronizations, the scalar flow analysis framework must

be augmented to operate on arrays and subsets of arrays as specified by linear index

functions. Although questions involving relations on such sets requires the application

of linear diophantine equation theory, previous work in the field of array-dependence

analysis can be used to provide the answers.

A large amount of work has been done on calculating dependences between arrays

for loop parallelization [Ban88][Wol89]. However, such works are primarily concerned

with dependences within a loop body rather than dependences between separate loops

that require more detailed attention to program control flow. In addition, these works

are only concerned with the question of whether a dependence exists between two state-

ments. In order to compute point-to-point synchronizations, this question needs to be

extended to include the calculation of the exact data elements that are involved in a

dependence, as discussed in the following section.

1.3.3 Computing processor dependences

Point-to-point synchronization can replace barrier synchronization effectively in cases

where data dependences can be determined at compile time. In other words, synchro-

nization should only be inserted when the source and sink processors can be computed

efficiently. Although the above array data flow analysis provides the information on

dependences between statements, it does not yield information on dependences between
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processors. In order to compute interprocessor dependence relations, more analysis must

be done on array access patterns.

In the examples presented thus far, dependence relations between processor can be

derived in a straightforward manner from the array accesses. Indeed, when two array

indices contain linear functions of the same loop index, dependence relations can be

computed easily from the linear functions. However, more difficult cases exist. Array

access patterns can relate loop indices that occur at different nesting levels and in differ-

ent loop nests. Loop indices can occur multiply in some array references and not at all

in others. Some of these situations are illustrated in Figure 1-7.

do (i=1,100) {
do (j=1,100) {
doall (k=1,100)
a[i,i,k+1] = ...;

...
doall (k=1,100)
... = a[i-3,k,x];

}
}

Figure 1-7

1.3.4 Optimizing point-to-point synchronization

Point-to-point synchronization can be inserted once dependence information is ob-

tained. However, this insertion process must be done intelligently to maintain the ul-

timate goal of faster program execution. Since testing of synchronization variables can

result in additional network traffic and increased latency, synchronizations produced by

redundant dependences must be eliminated.

To reduce execution time, the checking of synchronizations must result in as little

delay as possible. Consequently, setting the values of synchronization variables should

be done at the earliest possible point. With straight-line code, this problem seems trivial

since one could easily enforce the constraint that synchronizations be set immediately

after the source of the dependence is satisfied. However, in the presence of conditionals,

each synchronization variable must be set in every control path to any check of that

variable. In other words, if the source of a dependence does not dominate the sink, then
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the corresponding synchronization variable must be set in other paths to the sink. Any

scheme to reduce idle time must obey this condition for correctness.

In previous examples, synchronization is performed for every dependence that exists

in the program. Several steps can be taken to reduce the number of synchronization

operations required. In typical programs, many dependences are automatically satisfied

by synchronization provided for other dependences. As an example, assume that S1, S2,

S3, and S4 are statements in a straight-line program such that each Si precedes Si+1. If

a dependence �1 exists between S2 and S3 and another dependence �2 exists between

S1 and S4, and �1 and �2 have the same processor relationships, then there is no need

to support �2 with synchronization since the processors are already synchronized due

to �1. Thus when two processors are already synchronized due to other dependences,

then a dependence between the two processors is redundant and can be eliminated.

Reduction of redundant synchronization has been studied in the context of DOACROSS

loops in [MP87] and [KS91]. In these works, redundant dependences can be defined as

duplicate edges in the transitive closure of the dependence graph. Again, as applied

to this thesis, the analysis is required to be more complex due to interactions between

data dependences and control flow. In this context, calculating the minimum number of

dependences for a given program is a problem of both theoretical and practical interest.

A related optimization to the above involves replicating variables to cause output and

anti-dependences to become redundant, as discussed in the following section.

1.3.5 Variable replication

In a single-assignment language, output and anti-dependences cannot occur because

variables can hold only one value. In an imperative language, variables can be renamed

or replicated to avoid these dependences in certain circumstances, although at a cost in

memory usage [Kum87].

An example is presented here to illustrate variable replication as well as removal

of redundant dependences. Consider a transformation of the program of Figure 1-3 as

illustrated by Figure 1-8. In this version, a different version of each array is kept for each

outer iteration, thus resulting in each array element being assigned a value only once.

The anti-dependences from S2 to S1 (�7 and �8) no longer appear since each update

of the array b changes a different location. Therefore the second barrier synchronization

can be eliminated altogether. In addition, if the target machine supports full/empty bit
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synchronization, then the flow dependences from S1 to S2 (�2 and �3) also do not

require additional synchronization.

do (i=1,100) {
doall (j=1,256)
b[j][i] = a[j][i-1]; /* S1 */

doall (j=1,256)
a[j][i] = (b[j-1][i] + b[j+1][i]) * .5; /* S2 */

}

Figure 1-8

Instead of maintaining many different versions of the arrays, consider now the pos-

sibility of obtaining the same benefits from a smaller number of replicated arrays. With

the current example, the same result can be achieved by using only two different copies

of each array, as illustrated by Figure 1-9.

do (i=1,100) {
lastk = k;
k = i mod 2;
doall (j=1,256)
b[j][k] = a[j][lastk]; /* S1 */

doall (j=1,256)
a[j][k] = (b[j-1][k] + b[j+1][k]) * .5; /* S2 */

}

Figure 1-9

The following dependences are introduced:

S1(i;j) �o S1(i + 2;j) (�4)

S2(i;j) �o S2(i + 2;j) (�5)

S1(i;j) � S2(i + 1;j) (�6)

S2(i;j) � S1(i + 2;j + 1) (�7)

S2(i;j) � S1(i + 2;j� 1) (�8)

Dependences �1, �2, and �3 remain unchanged from the original version. And once

again, dependences �4, �5, and �6 are satisfied by sequential execution of statements
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on each processor. However, dependence �7 is redundant as illustrated by Figure 1-10.

S2(i;j) < S1(i + 1;j) due to execution ordering, S1(i + 1;j) < S2(i + 1;j + 1) because

�2 is satisfied, and S2(i+ 1;j+ 1) < S1(i+ 2;j+ 1) due to execution ordering. Therefore,

S2(i;j) < S1(i + 2;j + 1) and �7 is automatically satisfied. Intuitively, it is impossible

for S2(i;j) to execute after S1(i + 2;j + 1) because an earlier statement in processor Pj
depends on output from S2(i;j). Likewise, �8 is satisfied, and synchronization only

needs to be performed for dependences �2 and �3. Therefore, doubling the storage

requirements of the arrays results in the elimination of the anti-dependences in this

example. Note that the same results can be obtained by only replicating array b since

elements of array a are never shared.

Flow dependence

Anti−dependence

Processor j

Processor j+1

Processor j

Processor j+1
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Transformed
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Figure 1-10: Eliminating anti-dependences

1.4 Thesis outline

The remainder of the thesis is organized as follows: Chapter 2 presents the back-

ground and assumptions used in the rest of the thesis. Chapter 3 shows how array flow

analysis and dependence testing can be used to compute dependences between state-

ments. Chapter 4 then presents schemes for detecting dependences between processors
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and deriving synchronization to support such dependences. Chapter 5 discusses several

optimizations to remove redundant dependences through dynamic programming tech-

niques and eliminating false dependences by array replication. Finally, some results of

an implementation are presented in Chapter 6, followed by a discussion of future topics

and the conclusion.





Chapter 2

Background

2.1 Language description

In order to illustrate the optimizations presented in this thesis, a skeletal language is

now introduced. However, it is important to note that these optimizations are applicable

to the general array-based data-parallel programming style rather than any particular

language. Indeed, a program using such a style in any language can probably benefit

from these synchronization-reduction techniques if the proper compilation mechanisms

are added to support salient features of the particular language.

S ::= V = E;

j if (V ) S else S

j while (V ) S

j do (V = K;K;K) S

j doall (V = K;K;K) S

j { S S }

Figure 2-1: Language syntax

The syntax of the language is shown in Figure 2-1. The terminal V is assumed to

be a variable, K is an integer variable or constant, and E is an expression. Although

the sequential looping constructs DO and WHILE are semantically very similar, they are

both included since a large amount of analysis is done on indices of DO loops. On the

other hand, the WHILE statement represents a more general looping construct with a

terminating condition and without explicitly specified indices. The sequence operator

{ S S } is restricted to contain two statements for ease of proofs in later chapters. A

general sequence of many statements can be viewed as a cascade of many two-statement

sequences.

In addition to standard control-flow constructs, the DOALL construct is provided for
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specification of explicit parallelism. The use of a DOALL statement is a declaration that

all iterations of the loop can be executed in parallel. Semantically, DOALL execution

behaves as if barrier synchronizations existed before and after the DOALL. Furthermore,

the body of each DOALL is not assumed to be atomic. All iterations can be invoked

simultaneously and can compete for the same resources. Consequently, the program

shown in Figure 2-2 is incorrect since other iterations can be started and finished between

the fetch and assignment of sum in a particular iteration. Although alternate models

of executing DOALL loops exist in the literature which allow atomicity of iterations or

copy-in/copy-out semantics [CHH89], this thesis focuses only on the simpler semantics

presented above. For simplicity of presentation, the DOACROSS construct is omitted in

most of the discussion of this thesis.

sum = 0;
doall (i=1,100,1)
sum = sum + a[i];

Figure 2-2: Sum the elements of an array

In this thesis, DOALL loops are assumed to be partitioned at compile time. Thus for

a particular loop with index variable i, it is assumed that the mapping from the value

domain of i to the processor space has been done either by the programmer or by an

earlier phase of the compiler. The automatic partitioning of loop iterations into processors

is a topic of active research [Sar87][AH91]. In certain situations including those where

the index set of a loop cannot be determined statically, a dynamic scheduling scheme

must be used. However, such cases are not considered here. A detailed specification of

the execution of statically-scheduled DOALL loops is given in Chapter 4.

2.2 Control flow graph

The control flow graph of a program can be defined to form a framework for managing

relationships between statements. Each node in the graph represents a statement in the

program. If it is possible that execution of statement S1 can be followed by statement

S2, then a directed edge exists from S1 to S2. Figure 2-3 shows how a flow graph can be

constructed from sequential constructs in the language.

From [ASU86], an edge in the control-flow graph is a forward edge if it is part of a

spanning tree formed from a particular depth-first traversal of the graph. Forward edges
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1 2 3do (V=K ,K ,K ) S 1 2 3doall (V=K ,K ,K ) S

Figure 2-3: Control flow graph for language constructs

are represented by solid arrows in the figure. A statement S precedes or is a predecessor

another statement S0 if there is a path composed of forward edges from S to S0. The

statement S0 is said to be a successor of S. A back edge is an edge from a statement S to

a predecessor of S. The back edges are represented by highlighted arrows in the figure.

Since forward edges form a tree, no forward edge can be a back edge. In a general

program, cross edges also exist that are neither forward nor back edges, but they do not

occur in programs that use the above syntax. A cross edge can be produced by a forward

jump such as a non-local loop exit.

A statement S dominates or is a dominator of S0 if any path from the start of the

program to S0 must pass through S. If S dominates S0, then S precedes S0. Likewise,

S post-dominates S0 if any path from S0 to the end of the program must pass through

S. If S post-dominates S0, then S is a successor of S0. We introduce the concept of

relative dominance , a more general notion of dominance. A statement S dominates S0

relative to S00 if any path from S00 to S0 must pass through S. A statement S post-

dominates S0 relative to S00 if any path from S0 to S00 must pass through S. Thus S

dominates S0 if it dominates S0 relative to the start of the program and S post-dominates

S0 if it post-dominates S0 relative to the end of the program.

A DOALL statement can be viewed as specifying a collection of statements with

an entry node S and an exit node S0 such that the collection is composed of exactly

the statements that are dominated by S and post-dominated by S 0. Clearly, S is a

predecessor and S0 is a successor of all other nodes in the collection. The collection of

nodes is executed once for each iteration value of the loop. Note that there is not a back

edge from S0 to S since all iterations of a DOALL can be all executed in parallel.



32 CHAPTER 2: BACKGROUND

Using the structure of the program, we define the child of a statement as the inner

statement of conditional, loop, or sequence statements. Each of those statements in turn is

a parent of the inner statement. A statement S is an ancestor of S0 if there are statements

fS1; : : : ; Sng such that S = S1, each Si+1 is a child of Si, and S0 = Sn. Each statement S

is also an ancestor of itself. S is a descendant of S 0 if S0 is an ancestor of S. Note that

if S is a parent of S0, then S dominates S0 and S precedes S0 since the predicates of

conditionals and loops are executed before the body. We also use the term S encloses S 0

if S is an ancestor of S0.

The above definitions can be used to show that if two statements do not precede

each other, then there must be a conditional that encloses them:

Lemma 2.1: If S1 and S2 are statements such that S1 6= S2, S1 does not precede S2

and S2 does not precede S1, then there exists a statement S such that S1 and S2 are

descendants of S and S is a conditional.

Proof: Let fSk1 ; : : : ; Sknkg be ancestors of Sk such that Ski is a parent of Ski+1. Then S1
1 = S2

1

since they are both equal to the outermost program statement. Let j be the highest integer

such that S1
j = S2

j . Let S = S1
j . Then S1 and S2 are both descendants of S. If S = S1, then

S 6= S2 and S precedes S2, which implies a contradiction. Likewise, S 6= S2. Therefore

S1
j+1 and S2

j+1 are distinct statements that are children of S, which implies that S is either

a conditional or a sequence. If S is a sequence, then a precedence relationship exists

between S1
j+1 and S2

j+1, which implies that one exists between S1 and S2. Therefore S is

a conditional. ut

A partial ordering is a relation < on a set A with the following properties on set

elements:

a 6< a (anti-reflexive)

a < b) b 6< a (anti-symmetric)

a < b and b < c) a < c (transitive)

This relation is sometimes known as a strict partial ordering. As an example, the prece-

dence of statements above is a partial ordering: It is anti-reflexive because there are no

forward edges from a node to itself, anti-symmetric because there are no cycles in the

tree of forward edges, and transitive because the concatenation of two paths of forward

edges is itself a path.
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2.3 Machine model

This thesis assumes a cache-coherent shared-memory interface found on machines

such as Alewife [Aga91] and Dash [Len92]. Such a multiprocessor can be modeled as

a collection of processors P = fp1; : : : png and a shared pool of memory units that can

be accessed through a network. In addition, each processor is associated with a data

cache to reduce memory-access latency. The resolution and maintenance of multiply-

cached copies of data is performed by a cache-coherence protocol [CFKA90]. Processors

are completely independent from each other in the sense that they are able to execute

completely different programs from each other. However, the execution model assumed

here is one in which all processors execute the same program, although on different

data. This is commonly called the Single-Program-Multiple-Data (SPMD) model in the

literature.





Chapter 3

Statement dependences

3.1 Introduction

Pursuing the goal of replacing barrier synchronizations with point-to-point synchro-

nizations requires that detailed information about data dependences be computed. This

knowledge can be derived from array data flow analysis, an adaptation of conventional

scalar data flow analysis. Since this thesis focuses primarily on the domain of array

and loop-based data-parallel programs, it is very important that accurate information on

array usage be obtained. Conventional data flow analysis techniques [ASU86] tend to

treat arrays as single variables. A reference to any element of an array is considered a

reference to the entire array. Clearly, such conservative analysis cannot be used to de-

rive dependences needed for point-to-point synchronization. Instead, the array data flow

analysis technique can be used to monitor accesses to individual elements of an array.

Accurate approximations of values of array indices must be available to yield needed in-

formation on array usage. Consequently, the important topic of deducing values of array

indices is outlined in the first section. Subsequent sections discuss array flow analysis

and its potential uses, as well as its application to dependence detection.

3.2 Propagation of linear induction variables

The flow analysis technique outlined in this chapter focuses on arrays whose indices

are linear loop induction variables. In other words, relevant array accesses are those

whose indices can be represented by linear functions of loop indices. A constant array

index can be viewed as a linear function with a multiplicative factor of zero. However,

detecting whether an expression is a linear function of a loop index is not a trivial prob-

lem. Consider the program in Figure 3-1. It is obvious in this case that the assignment

to array b in statement S1 uses an array index that is linear with respect to the loop

index i. Furthermore, the value of the array index k is always equal to 2i+5. However,

it is not clear how this information can be deduced in a general manner. Fortunately,

existing value propagation algorithms can be adapted to propagate linear loop induction

variables. In the literature [PW86], this optimization is known as forward substitution .
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for (i=1,100) {
j=2i+1;
if (a[i]>0)
k=2i+5;

else
k=j+4;

b[k] = c[i]; /* S1 */
}

Figure 3-1

3.2.1 Value lattices

For each lexical expression in a program, let the value set of the expression be the set

of values that it can take on during program execution. Since we are primarily interested

in deducing information on array indices that are linear functions of loop indices, value

sets are subsets of the integer space and are derived only for scalar variables. A value set

can be viewed as an approximation A(E) of the value of an expression E and represented

as an element on a value lattice. Propagation of both constants and linear induction

variables can then be viewed as propagation of value sets using different lattices.

A lattice is defined as a partial ordering on a set such that there exists an element

that is greater than all others (>) and an element that is less than all others (?). In the

current context, lattice elements correspond to value sets and each lattice represents a

partial ordering on the set of value sets. A value set e1 is greater than another set e2 if

e1 is a superset of e2. In constant propagation, >c can be viewed as the set of all integers

and ?c can be viewed as the empty set.

As illustrated in Figure 3-2a, the single integer lattice for conventional constant prop-

agation consists of three levels: a bottom element (?c) which indicates that no approx-

imation exists for an expression, a top element (>c) which indicates that the expression

can take on any possible value, and sets of single integers that correspond to constant

values. Conventionally, constant propagation is performed in order to avoid computing

and fetching values that are known to be constants at compilation. If a value is not con-

stant, then the compiler does not benefit from any additional information and the value

approximation can be set to >c . However, the optimizations presented in this thesis can

make use of approximations that represent the union of several values. Consider the

following code segment:
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if (p)
a = 1;

else
a = 2;

In conventional constant propagation, the value of a after the conditional is deduced

to be >c since it is neither always 1 nor always 2. By allowing unions of constants in

the lattice, the value of a can be deduced to be ‘‘1 or 2’’ which is a much more accurate

approximation than >c . A multiple integer lattice is a single integer lattice augmented with

unions of constants and is shown in Figure 3-2b. The height of this lattice can be forced

to be finite by imposing the restriction that the size of each set cannot exceed some limit

H . Any expression whose value set requires more than H integers can be approximated

as >c . This restriction enables propagation algorithms that use the lattice to terminate

after each variable has gone through O(H) approximations.

. . .. . . . . .

. . .. . . . . .

. . .

.

.

.
.
.

.
.
.

.

{1,2,8}

{1,8}{1,2}

{1} {2} {8}

{1} {2} {8}

(a) Single integer lattice (b) Multiple integer lattice

Figure 3-2: Constant propagation lattices

For typical programs, the representation of value sets as sets of integers can quickly

become unwieldy for expressions that take on many values. Since multiple executions of

a single array reference can access a region of an array, it may be possible to abbreviate

a value set as an integer range. Indeed, this sort of analysis has been studied in the

context of eliminating unnecessary array-bounds checking [Har77][MCM82][Gup90]. If

an array index can be approximated by a range that is within the array bounds, there

is no need to perform a bounds check. Using integer ranges as lattice elements is ideal
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for this kind of optimization since the only information required are the minimum and

maximum values of each array index.

Although integer ranges can form an effective representation of lattice elements, such

approximations do not model effectively the case when an array is being accessed with

a stride greater than 1. If an array reference accesses odd indices in an array and another

accesses even indices, the two accesses do not interfere with each other. In addition, two

accesses with stride 1 may not interfere even if their ranges intersect. Consider the code

fragment in Figure 3-3. Since statement S2 uses an old element of array a and not the

one that is defined in S1, there are no flow dependences from S1 to S2 even though

the ranges corresponding to j and j+2 intersect. Clearly, information about loop indices

must be stored to detect these dependences.

do (i=4,100) {
j = i-3;
a[j] = b[i]; /* statement S1 */
c[i] = a[j+2]; /* statement S2 */

}

Figure 3-3

A linear induction variable lattice can be defined with a structure that is similar to

the multiple integer lattice. Parts of such a lattice are shown in Figure 3-4. Immediately

above ?iv are single linear functions of various loop indices and above those linear

induction variables are sets of multiple induction variables. The element >iv can be

viewed as the collection of all linear induction variables. From this point on, linear

induction variables will form the basic elements in a value set. Note that for a value set

e1 to be a strict superset of another lattice element e2 and thus be higher in the lattice

than e2, e1 must have more induction variables than e2. Again, we can put a limit H on

the number of induction variables allowed in a value set, thus forming a lattice of height

H + 2.

Note that functions of only one loop index are present in the linear induction variable

lattice. Linear functions of multiple loop indices are not supported. Also, detection of

induction variables that are not defined directly from loop indices [Wol92] is not done.

These topics are viewed as somewhat orthogonal to the approach outlined here. Thus

their inclusion in these algorithms can be made in a real system by incorporating relevant
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techniques in the literature.

. . .

{i,2i+1,2i+2}

{i,2i+1} {2i+1,2i+2}

{i} {2i+1} {2i+2} {k−3} {3k}

{k−3,3k}

.

.

. .
.
.

Figure 3-4: Linear induction variable lattice

3.2.2 Propagation of linear induction variables

The algorithm presented here for the propagation of linear induction variables is

based on previous work on symbolic value propagation done by Reif and Lewis [RL86].

Wegman and Zadeck [WZ91] show that in the context of constant propagation, derived

constant information can aid in the flow analysis as well. In this section, an algorithm is

shown for propagation of linear induction variables on scalars using a sparse flow graph

representation.

Compiler analysis to discover linear relationships among variables was first studied

by Karr [Kar76]. Linear relationships among variables can also be shown to be derivable

in the general framework of abstract interpretation [CH78][CC77]. These approaches

focus towards a general treatment of the problem rather than developing an efficient

algorithm for the language features used here.
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3.2.2.1 SSA form

Value propagation can be done efficiently on a sparse flow graph representation using

static single assignment form. The term single assignment is typically used to represent an

execution model where only one assignment is done for each variable during the entire

program execution. Similarly, a program is in static single assignment form when each

variable is assigned by only one statement [Cyt91]. Note that each variable can still be

assigned many times dynamically due to the presence of loops. However, each of those

assignments is done in the same statement.

A program in SSA form has at most one assignment statement for each variable.

Any program can be transformed into SSA form by observing the following rules:

1. At the beginning of the program, assignments are inserted for each variable to ini-

tialize the variable to its default value at program startup.

2. Each assignment to a variable v is replaced by an assignment to a renamed variable

vi where i is different for every assignment to v.

3. For each join point in a program flow graph, if several different names vi and vj of

the same variable reach the join point, then a new assignment is inserted after the

join point of the form vk = �(vi,vj). Again, k is distinct from all other renamings

of v in the program. The � form can be viewed as a merge of variable definitions.

4. Each use of a variable is renamed to the name of the definition of the variable that

reaches it. This definition is unique since � assignments are inserted at every join

point where multiple reaching definitions can arise.

Algorithms for computing SSA form in general are given in [Cyt91] and for struc-

tured programs in [RWZ88]. An illustration of the SSA transformation is shown in

Figure 3-5.

A definition-use graph can be defined as a directed graph with statements as vertices

and edges from definitions of variables to their uses. For N occurrences of a variable in

a general program, there can be potentially O(N 2) definition-use edges corresponding to

that variable. In a program transformed to SSA form, definition-use edges can be easily

computed by matching each use of a variable with its corresponding definition. The

number of def-use edges for each variable in an SSA program is at most E + N where
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doall (i = 1,99,2) {
j = i * 2;
if (a[i] > 0)
j = j + 1;

b[j] = b[j] / 3;
}
doall (i = 2,100,2)
c[i] = b[i*2];

Original program

doall (i1 = 1,99,2) {
j1 = i1 * 2;
if (a[i1] > 0)
j2 = j1 + 1;

j3 = �(j1, j2);
b[j3] = b[j3] / 3;

}
doall (i2 = 2,100,2)
c[i2] = b[i2*2];

Transformed program

Figure 3-5

E is the number of edges in the program control flow graph [RL86]. The def-use graph

of a program in SSA form can thus be viewed as a sparse representation of the general

definition-use graph.

3.2.2.2 Propagation algorithm

After a program has been transformed into SSA form, linear induction variables can

be propagated over the definition-use graph. Throughout the execution of the algorithm,

outstanding propagation values are maintained in a work-list of def-use edges. An edge

is in the work-list if its definition variable v has approximation A(v) 6= ?iv and if the

definition has been changed since the last examination of the edge. Associated with each

expression E in the program is its lattice element approximation A(E) which traverses up

the lattice as the algorithm proceeds and new values are discovered for the expression.

Recall that a value set is the set of values that an expression may have at run time

and that value sets are represented as linear functions of loop indices. Through the

propagation process, calculations are performed on these linear functions according to

the program text. For a linear function of a loop index of the form (�i + �), a list of

rules for linear function calculations is given in Figure 3-6. Constant expressions (
) can

also be viewed as linear functions with � = 0. All arithmetic operations with >iv yield

>iv and all arithmetic operations with ?iv yield ?iv .

At initialization, the approximation A(E) of each expression E is set to the lattice

element that can be derived immediately from its text. Thus constant expressions and

loop index variables are approximated to be the respective constant or loop index. If

the value set of the expression text is inconclusive, then A(E) is set to ?iv . If the value
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(�1i + �1) ‘‘+’’ (�1i + �2) = ((�1 + �2) i + �1 + �2) (1)

(�1i + �1) ‘‘-’’ (�1i + �2) = ((�1 � �2) i + �1 � �2) (2)

(�i + �) ‘‘*’’ 
 = �
 i + �
 (3)

(�i + �) ‘‘/’’ 
 = �=
 i + �=
 (4)

�(e;?iv ) = e (5)

�(?iv ; e) = e (6)

�(e1; e2) =
�
>iv if je1j + je2j > H
e1 [ e2 otherwise (7)

Figure 3-6: Rules for operations on linear index functions

set cannot be represented by any lattice element, then the expression is approximated

as >iv . Note that if E contains no free variables, then A(E) cannot be ?iv since its

approximation can be determined at compile time. The work-list is then initialized to

contain all def-use edges with definition variable v such that A(v) 6= ?iv . The algorithm

then proceeds as follows:

1. Remove a def-use edge from the work-list. If the work-list is empty, then terminate.

2. Let V be the variable corresponding to the removed edge. Let S be the statement

where V is used (pointed to by the def-use edge). For each expression E in S, a new

approximation of the value of E can be made using the approximation of V at the

definition.

3. If S is an assignment statement to a variable V 0 and its right-hand-side approxima-

tion changes in step 2, then all def-use edges for which V 0 is a definition are added

to the work-list.

The following statement proves that the propagation algorithm is correct by showing

that any value that can occur at run time for an expression is included in the approxi-

mation for that expression.

Claim 3.1: For each expression E, if !(E) is the set of values that E can take on at run

time, then !(E) � A(E).
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Proof: By contradiction, suppose that for some expression E0, !(E0) 6� A(E0) during

program execution. Then there some earliest execution of an expression E such that

!(E) 6� A(E). Let V1; : : : ; Vn be free variables in V . Then each previous definition of

each Vi produces a value that is in A(Vi) since E is the earliest execution that violates

the subset relation. But then the value of E is in A(E) because the rules in Figure 3-6

preserve the subset relation. ut

Corollary 3.2: At algorithm termination, there can be no executable expression E such

that A(E) = ?iv .

Proof: Since E has a run-time value, !(E) 6= ; and thus A(E) 6= ?iv due to Claim 3.1. ut

The running-time analysis of this algorithm makes use of the height of the lattice.

Recall that for a lattice element e1 to be higher in the lattice than another element e2,

e1 must have more linear functions than e2. The key to studying running time involves

examining the number of times that each statement is invoked by step 3. For each

assignment statement with variable V , step 3 can generate new edges at most H + 2

times since each change in the approximation of the � expression involves moving up

one level in the lattice. Overall, the number of times that an edge can be placed in

the work-list corresponds to the number of def-use edges in the SSA graph times H .

From [RL86], there are at most E def-use edges for each variable in an SSA graph where

E is the number of edges in the control flow graph. Hence, the worst-case running time

for the propagation algorithm is O(H � N � E) where N is the number of variables in

a program. From [WZ91], empirical evidence suggests that constant propagation runs

in time linear to program size. The typical running time of linear induction variable

propagation is expected to also be linear but with an additional multiplicative factor

of H .

After all induction variables have been propagated, most expressions that are linear

functions of loop indices can be detected. The next compiler phase can then use this

information to perform data flow analysis on sections of arrays.

3.3 Flow analysis on arrays

Data flow analysis involves the study of data interaction between different points in

a program. In the context of data dependence detection, interactions between definitions

and uses of variables are analyzed to determine whether dependences exist. Flow de-
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pendences and output dependences arise when previous definitions conflict with current

uses and current definitions, respectively. Anti-dependences arise from conflicts between

previous uses and current definitions. Consequently, accurate information on the previ-

ous uses and definitions that reach a statement is needed to generate useful dependence

information. An algorithm is presented in the following section to determine the set of

reaching uses and definitions for each statement in a program.

3.3.1 Linear integer sequences

When array flow analysis is performed, there are many operations that need to

be performed on value sets such as union, intersection, subtraction, and comparison.

Unfortunately, the linear induction variable representation presented in the previous

section is unwieldy for certain operations. In Figure 3-7, the definition of a in statement

S1 should not progress past the second loop since it is killed by the definitions of a in

statements S2 and S3. Intuitively, statement S2 modifies odd indices of a and statement

S3 modifies even indices of a. However, it is hard to extrapolate the fact that the two

definitions cover all indices of a from the linear induction variable representation.

doall (i=1,200)
a[i] = b[i]; /* S1 */

do (k=1,10) {
doall (j=1,100)
a[2*j-1] = c[j]; /* S2 */

doall (j=2,200,2)
a[j] = d[j]; /* S3 */

}

Figure 3-7

An alternate representation for linear induction variables is needed to manage array

subsets to support cases similar to the previous example. Although dependence analysis

requires the preservation of linear induction variables, such a representation is not nec-

essary for the purposes of strictly performing flow analysis. Instead, each array index

expression can be approximated by a less specific linear sequence of integers with an

associated range. A linear integer sequence can be represented as a 3-tuple hhnlo ; nhi ; nstepii
where nlo and nhi are the low and high limits of the sequence and nstep is the stride of

the sequence. Such a tuple represents the set of all integers n of the form nlo + knstep

such that k � 0 and n � nhi . For example, the 3-tuple hh10; 98; 2ii represents all even
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2-digit integers. Note that the high value of the tuple must itself be in the representative

set. In Figure 3-7, the tuples for statements S2 and S3 are hh1; 199; 2ii and hh2; 200; 2ii,
respectively. Their union forms the tuple hh1; 200; 1ii which is a superset of the tuple in

statement S1.

A set-inclusion ordering on linear integer sequences can be defined as follows:

hhmlo;mhi ;mstepii � hhnlo ; nhi ; nstepii ()
mstep = k1nstep and mlo = nlo + k2nstep and mhi � nhi for integers k1; k2 � 0

The ordering defines a lattice with >is as all integers and ?is as the empty set.

In order to convert value sets that consist of linear induction variables into linear

integer sequences, mappings need to be introduced between the two domains. For sin-

gleton linear induction variables whose loop index bounds are known statically, the

mapping L0 from a linear induction variable to a linear integer sequence can be defined

as:

L0(�i + �) = hh�k1 + �; �k2 + �; �k3ii for loop index bounds (i=k1,k2,k3)

Additionally, a straightforward modification needs to be performed to ensure that the

high bound for the tuple is an element of the integer sequence.

The complication of mapping value sets into integer sequences arises either when

the loop bounds are not known or when multiple linear induction variables occur in

a value set. In these cases, it is important to keep in mind the question one is asking

when performing the comparison. Since the eventual optimizations that use array flow

analysis do not require exact answers, an approximation can be used as long as it is

inaccurate in the right direction. Consider the case where a response of ‘‘yes’’ causes an

optimization to be performed and a response of ‘‘no’’ results in no transformations to

the program. Then answering ‘‘no’’ all the time would produce a correct although slow

program whereas answering ‘‘yes’’ falsely results in a fast but incorrect program. Since

the entire goal of this chapter is dependence analysis, the conservative view states that

every dependence that can exist should be detected. Even if additional false dependences

are detected, the resulting program would still work.

In consideration of the above principles, the conversion of linear induction vari-

ables into linear integer sequences requires both an under-approximation and an over-
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approximation. The two cases arise from different uses of flow elements that contain

linear induction variables as indices, and will be discussed in a later section.

In one case, we desire a linear integer sequence that is the smallest computable

superset of the integers in a value set. The superset mapping L� from value sets into

linear integer sequences is introduced for this case. For each linear induction variable

e � �i + � in the value set, the mapping L0
�

can be defined to yield an integer sequence

that is a superset of the integers represented by e. When a linear induction variable

contains a loop index whose bounds are not known, then L0
�

(e) yields L0(e) on a superset

of the loop space of i. For a value set of several linear induction variables fe1; e2; : : : ; eng,

the superset mapping is defined as:

L�(fe1; e2; : : :g) =
n[
i=1

L0
�

(ei)

Although one would prefer the smallest possible superset from this mapping, a very

conservative implementation of L� can always return >is and still produce a correct

result. Indeed, one can view the treatment of arrays in conventional scalar flow analysis

as using such an approximation function.

In the other case, we desire a linear integer sequence that is the largest computable

subset of the value set. Likewise, for a linear induction variable e � �i+ �, the mapping

L0
�

can be introduced to yield L0(e) on a subset of the loop space of i. The subset

mapping can then be defined as:

L�(fe1; e2; : : :g) =
n\
i=1

L0
�

(ei)

Again, a very conservative implementation of L� can always return ?is and still be

correct.

The above equations require union and intersection operations on linear integer se-

quences which can be defined by a set of rules. Again, it is important to note that the

union and intersection operations only need to be conservative and not absolutely cor-

rect. Thus the union operation listed above can actually return a superset of the actual

union while the intersection operation can return a subset of the actual intersection. An

ambitious implementation can trade off compiler time for execution of complex rules to

increase accuracy of dependence information. A small and by no means exhaustive set

of rules is given in Figure 3-8.
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hhm1;m2;m3ii [ hhn1; n2; n3ii = hhn1; n2; n3ii if hhm1;m2;m3ii � hhn1; n2; n3ii
hhm1;m2;m3ii [ hhn1; n2; n3ii = hhm1;m2;m3ii if hhn1; n2; n3ii � hhm1;m2;m3ii
hhm1;m2;m3ii \ hhn1; n2; n3ii = hhn1; n2; n3ii if hhn1; n2; n3ii � hhm1;m2;m3ii
hhm1;m2;m3ii \ hhn1; n2; n3ii = hhm1;m2;m3ii if hhm1;m2;m3ii � hhn1; n2; n3ii
hhm1;m2;m3ii [ hhn1; n2; n3ii = hhm1; n2;m3ii if m3 = n3 and m2 = km3 + n1 for k � 0

hhm1;m2;m3ii \ hhn1; n2; n3ii = hhn1;m2;m3ii if m3 = n3 and m2 = km3 + n1 for k � 0

hhm1;m2;m3ii [ hhn1; n2; n3ii = hhmin(m1; n1);max(n1; n2);m3=2ii
if m3 = n3 and jm1 � n1j = m3=2 and jm2 � n2j = m3=2

Figure 3-8: Rules for combining linear integer sequences

The above definitions imply that the superset mapping preserves order in the lattice

while the subset mapping causes an ordering reversal. Recall that a set of linear induction

variables e1 is higher in the lattice than another set e2 if e1 � e2. The following claim can

be made:

Lemma 3.3: If e1 and e2 are value sets and e1 � e2 then L�(e1) � L�(e2) and L�(e1) �
L�(e2).

Proof: From the set inclusion ordering on value sets, the superset and subset mappings

on e2 can be defined as:
L�(e1) = L�(e2) [ L�(e1 � e2)

L�(e1) = L�(e2) \ L�(e1 � e2)

Clearly, if e1 � e2, then L�(e1) � L�(e2) and the ordering is preserved for the superset

mapping. In addition, L�(e1) � L�(e2) and ordering is reversed for the subset mapping.

ut

For a collection of linear induction variables e, one can view the superset mapping

as an upper bound on the integers represented by e. The subset mapping can then be

viewed as the set-negation of an upper bound of the integers not in e. In particular,

observe the following mappings of > and ?:

L�(>iv ) = >is and L�(?iv ) = ?is

L�(>iv ) = ?is and L�(?iv ) = >is
Intuitively, since >iv is the collection of all linear index functions, its union produces all

integers while its intersection produces the empty set. The definition of mappings on ?iv

exists only for consistency since no executable expression has approximation ?iv from

Corollary 3.2.
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3.3.2 Summary of array index approximations

At this point, it may be helpful to summarize the various representations for value set

approximations of array indices. At the most specific level, the possible values of an array

index can be represented as a collection of integers. If the collection is too large or is not

known at compile time, then it can be approximated as >c , the collection of all integers.

For the purpose of dependence analysis, linear induction variables representing linear

functions of loop indices form a more efficient and accurate representation than sets of

integers. A single integer can be represented as a linear function with a multiplicative

factor of 0. The existence of branches in a program implies that an array index can be

defined as multiple linear induction variables. Again, the element >iv can be viewed as

the collection of all linear induction variables.

A collection of linear induction variables forms an approximation in that it is a

superset of the actual linear loop index functions that correspond to an array index at run

time. However, each linear induction variable is exact in the sense that it represents each

linear loop index function precisely. Unfortunately, that exactness produces difficulty in

comparing and combining linear induction variables. In order to perform operations on

value sets more easily, mappings are introduced to convert collections of linear induction

variables into linear integer sequences. The lack of full data knowledge at compilation

requires that the mappings be inexact. A superset mapping L� of a collection produces a

linear integer sequence that is guaranteed to include every integer that is in the collection.

A subset mapping L� produces a linear integer sequence that is guaranteed to be in every

dynamic instantiation of the collection.

3.3.3 Subarrays

In array flow analysis, the basic units to be propagated are either scalar variables or

subsets of arrays. Since scalars can be considered zero-dimensional arrays, the basic unit

of propagation in array flow analysis can be defined as a subarray{a subset of an array.

The subarray S(a[i]) of an array access a[i] is defined as the elements of array a

with indices in the value set A(i). For example, S(a[j]) = a[�1i + �1; �2i + �2] if linear

induction variable propagation yields an approximation A(j) = �1i + �1; �2i + �2. For

clarity, the flow algorithms are presented for only scalars and one-dimensional arrays.

Multi-dimensional arrays are discussed in a subsequent section.
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The subarray is an accurate but unwieldy representation. Each value set that forms a

subarray index can be comprised of several linear induction variables whose bounds are

not known. In the previous section, a mapping is described to obtain more manageable

approximations of value sets. Likewise, we can introduce mappings to form approxima-

tions of subarrays. The subset and superset mappings on subarrays can be defined as

follows:
M�(a[e]) = a[L�(e)] (elements of a with index in L�(e))

M�(a[e]) = a[L�(e)] (elements of a with index in L�(e))

Intuitively, one can view the superset mapping M� on a subarray is a portion of the

array that is guaranteed to contain all elements in the subarray. Similarly, the subset

mapping M� on a subarray is a portion of the array that is guaranteed to be contained

in the subarray.

3.3.4 Array flow analysis algorithm

An algorithm is given in detail for calculating previous reaching definitions of each

statement. Reaching uses can be computed in a similar manner and are summarized at

the end of the section.

For each statement S in a program, we associate four sets of subarrays:

defGen[S] Definitions that are generated by S

defKill[S] Definitions that are removed by S

defIn[S] Definitions that reach the beginning of S

defOut[S] Definitions that are active at the end of S

Computation of the four sets can be done in two passes. The first derives the generation

and kill sets (defGen and defKill ) in a bottom-up manner and the second derives the

flow sets (defIn and defOut). The algorithm is illustrated in Figure 3-9.

Observe that the gen sets contain over-approximations of subarrays while kill sets

contain under-approximations of subarrays. Since the information in gen sets is used for

dependence analysis, all actual generated values of a statement must be guaranteed to

exist in its gen set. On the other hand, since kill sets exist only to mask out non-reaching

definitions, the computed kill set of a statement must be a subset of the actual set of

values killed by the statement. In addition, loop index information of subarrays must

be preserved in gen sets for use in dependence testing, while no need exists for keeping

information on induction variables of each subarray index in kill sets.
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defGen[[V = E]] = M�(S(V ))

defGen[[if (V ) S1 else S2]] = defGen[S1] [ defGen[S2]

defGen[[while (V ) S]] = defGen[S]

defGen[[do (I=K1,K2,K3) S]] = defGen[S]

defGen[[doall (I=K1,K2,K3) S]] = defGen[S]

defGen[[{S1 S2}]] = (defGen[S1] n defKill[S2]) [ defGen[S2]

defKill [[V = E]] = M�(S(V ))

defKill[[if (V ) S1 else S2]] = defKill [S1] \ defKill[S2]

defKill [[while (V ) S]] = defKill [S]

defKill [[do (I=K1,K2,K3) S]] = defKill [S]

defKill[[doall (I=K1,K2,K3) S]] = defKill [S]

defKill [[{S1 S2}]] = (defKill [S1] n defGen[S2]) [ defKill[S2]

Figure 3-9: Computation of definition gen and kill sets

The following claim shows that gen and kill sets are derived correctly in the intuitive

sense: For any statement S, the set of definitions that can be generated by S at run time

is a subset of the gen set and a superset of the kill set.

Claim 3.4: For a statement S, let defReal [S] be the set of definitions that can be gener-

ated by S at run time. Then defKill[S] � defReal [S] � defGen[S].

Proof: This can be shown by structural induction on the statement S. From the defini-

tions of M� and M� and Lemma 3.3, the claim is true for assignment statements since

the propagation algorithm produces a superset of the linear induction variables that can

occur in an array index (Claim 3.1). By induction, the claim can be shown easily when

S is a loop or conditional.

For statement S as a sequence [{S1 S2}], the set of real definitions of an invocation of S

can be defined as defReal [S] = defReal [S1] [ defReal [S2].

To show that defReal [S] � defGen[S], if definition d is in defReal [S], then either d 2
defReal [S1] or d 2 defReal [S2]. If d 2 defReal [S2], then d 2 defGen[S2] by induction and

d 2 defGen[S]. If d 2 defReal [S1] and d 62 defReal [S2], then by induction d 2 defGen[S1]

and d 62 defKill [S2] which implies d 2 (defGen[S1] n defKill[S2]) and thus d 2 defGen[S].

To show that defKill [S] � defReal [S], if definition d is in defKill[S], then either d 2
defKill[S2] or d 2 (defKill [S1] n defGen[S2]). If d 2 defKill[S2], then d 2 defKill [S] by
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induction. If d 2 (defKill [S1] n defGen[S2]), then d 2 defKill[S1] and d 62 defGen[S2].

Therefore d 2 defReal [S1] and d 62 defReal [S2] by induction and d 2 defReal [S]. ut

At this point, one may argue that since kill sets are always subsets of gen sets,

there is really no need to subtract a kill set and insert a gen set of the same statement.

However, it is also important to keep in mind that dependence analysis not only requires

knowledge of which variables can reach certain points, but also which statements those

variables come from. Implicitly associated with each subarray in a set of definitions is

the statement where that subarray was defined. Kill sets thus play an important role in

that they mask definitions from particular statements as definitions from new statements

are added to the gen set.

S = [V = E] defOut[S] = (defIn[S] n defKill[S]) [ defGen[S]

S = [if (V ) S1 else S2] defIn[S1] = defIn[S2] = defIn[S]

defOut[S] = defOut[S1] [ defOut[S2]

S = [while (V ) S0] defIn[S0] = defIn[S] [ defGen[S0]

defOut[S] = defGen[S0] [ defIn[S]

S = [do (I=K1,K2,K3) S0] defIn[S0] = defIn[S] [Dec(defGen[S0]; I;K3)

defOut[S] = markExt(defGen[S0]; I) [ defIn[S]

S = [doall (I=K1,K2,K3) S0] defIn[S0] = defIn[S]

defOut[S] = markExt(defGen[S0]; I) [ defIn[S]

S = [{S1 S2}] defIn[S1] = defIn[S]

defIn[S2] = defOut[S1]

defOut[S] = defOut[S2]

Figure 3-10: Computation of definition in and out sets

After gen and kill sets are computed, in and out sets can be derived from the gen

sets as in Figure 3-11. The algorithm is generally patterned after conventional scalar

flow analysis with several notable differences. To compute the in set for a DO loop, the

Dec(G; I;K) function is used to decrement by K any linear induction variables using I

that appear in subarrays of the gen set G, where I is the loop index and K is the loop

step. When a subarray flows back into the top of a loop from the bottom, the index I
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which appears in that subarray is K less than the same index in subarrays of the current

iteration. The justification for this operation can be explained by considering the flow

dependences in the loop in Figure 3-11. Although statements S1 and S3 textually define

the same element in a, it is statement S3 that has a flow dependence to S2. Statement

S1 has no dependence to S2 since its definition is killed by S3. Using the function Dec,

the dependence can be explained by observing that Dec(a[i]; i; 1) produces the subarray

a[i� 1] which then matches the use of a in statement S2.

do (i=1,100,1) {
a[i] = ...; /* S1 */
... = a[i-1]; /* S2 */
a[i] = ...; /* S3 */

}

Figure 3-11

The second function introduced is markExt (G; I). For each subarray, we associate an

extra external field that specifies whether that subarray has been propagated outside the

loop specified by the field. By default, when a subarray is created, its external field is

set to null. The function markExt (G; I) sets the external field in all subarrays of G to

the loop specified by I . Since this field is used for improving dependence testing, its

motivation is presented in the later section on detection of dependences.

The algorithm computes the out set of a loop as the union of the gen set of its body

and the in set from its predecessor. Ideally, we would prefer to be able to subtract the

kill set of the body from the in set of the predecessor. However, the computation must

account for the case when the loop body is not executed at all. If the loop can be assured

to be executed at least once such as the case of DO loops with known bounds, then the

out set can be defined as defOut[S] = markExt(defGen[S0]; I) [ (defIn[S] n defKill [S0]).

Correctness of the computation of in and out sets is fairly immediate from correctness

of gen and kill sets and can be shown from works on data flow analysis of scalars. Note

that since in and out sets are derived from gen sets, they are supersets of the actual

definitions that enter and exit a statement. This is consistent with our conservative aim

to detect a superset of all dependences that can arise in a program.

The use sets can be defined in the same manner as def sets. Since definitions kill
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previous uses as well as previous definitions, the kill set calculation of uses is exactly

the same as that of definitions. Likewise, the propagation of in and out is identical. The

only difference appears in the computation of gen sets, where variable uses instead of

variable definitions are merged into the gen sets.

3.3.5 Flow analysis on multi-dimensional arrays

At first glance, one can imagine the above analysis extending to multi-dimensional

arrays in a straightforward manner. Since an n-dimensional array index can be repre-

sented as an n-tuple of integers, its value set consists of n-tuples of linear induction

variables. Such value sets can then be approximated as grids in n-dimensional space

rather than just linear integer sequences. At each level, approximations can be done on

individual indices in each dimension separately.

float a[100,100];
doall (i=1,100)
doall (j=1,100)
a[i,j] = ...; /* S1 */

doall (i=1,100)
a[i,i] = ...; /* S2 */

Figure 3-12

Unfortunately, the above specification produces incorrect results for cases where

indices in different dimensions are related to each other. Consider the program in

Figure 3-12. If approximations are derived on indices in each dimension separately, then

each array index in the program can be approximated as the linear integer sequence

from 1 to 100. The kill set for statement S2 is the entire array a, and the definition of

statement S2 kills the definition of statement S1. However, this is not correct since the

definition in statement S2 actually only kills 100 elements on the diagonal of array a.

Several schemes can be used to address this problem. The first and easiest involves

arguing that such array reference patterns are rare and consequently only require an in-

efficient solution. If two array indices can ever contain linear functions of the same loop

index in their respective value sets, then the subset mapping L� on each array index re-

turns ?is . Therefore, if an array access is approximated as a grid in n-dimensional space,

then none of its indices have been approximated to ?is and each index is independent
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of the other. This is the approach used in the implementation of this thesis. In the above

example, the kill set of statement S2 would be the empty set since both indices would be

approximated as ?is . The second solution involves expanding the representation of array

index approximations to include shapes other than rectangular grids in n-dimensional

space. In the above example, the kill set of statement S2 would be the diagonal of array

a. Although such an approach requires additional compiler complexity over the first, it

is not clear how much additional benefit it provides for dependence analysis.

3.3.6 Related work

The algorithms given here are adapted from well-known flow analysis algorithms

for scalars [ASU86][MJ81]. Although the basic high-level structure of the algorithms are

the same, major differences do exist between the comparison of flow units which form

the basic mechanism for managing flow information.

The topic of array flow analysis has not been explored until very recently, when it has

suddenly become somewhat popular. Initial efforts at array flow analysis focused on the

goal of detecting loop-based parallelism. Gross and Steenkiste [GS90] and Granston and

Veidenbaum [GV91] rely on the structure of scalar flow analysis, but use array regions

as flow elements. Unfortunately, as shown in the above examples, a more effective

representation is needed to compute accurate dependence information. Rau [Rau91] and

Duesterwald, et al [DGS93] use the linear induction variables themselves as indices of

flow elements. However, such an exact representation causes set operations on flow

elements to become unwieldy or almost impossible.

3.4 Detection of dependences

As stated previously, dependences can be computed from interactions between defi-

nitions and uses in the current statement and definitions and uses in previous statements.

A dependence arises when a subarray from a previous statement intersects with a subar-

ray in the current statement. Determining whether two subarrays intersect requires tests

on array subscripts that indicate whether the two subscripts can ever have the same

value.

In every dependence between two statements, one statement is the source that per-

forms some action and the other statement is the sink that must wait until that action is
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completed. For example, in a flow dependence, the source statement writes some value

to some memory location and the sink statement can only read that memory location

after waiting for the writer to finish.

In order to specify how dependences are derived from array flow analysis results,

several other subarray sets need to be defined. Let Def [S] be the set of definitions and

Use[S] be the set of uses in statement S. Then dependences can be computed for each

statement S as follows:

Flow dependences of S = f(d; d0) : d 2 defIn[S] and d0 2 Use[S] and d � d0g
Anti-dependences of S = f(d; d0) : d 2 useIn[S] and d0 2 Def [S] and d � d0g

Output dependences of S = f(d; d0) : d 2 defIn[S] and d0 2 Def [S] and d � d0g

The above definitions require the computation of dependences (�) between subarrays,

which is defined below. Let subarray a[e1] correspond to the source statement and a[e2]

correspond to the sink. If a dependence arises (a[e1] � a[e2]), then it is possible during

program execution for the sink statement to access some memory location after the

source accesses it. Since it is assumed that there is no aliasing of variables, the two

subarrays must refer to the same array for there to be a dependence. Dependence testing

of subarrays thus can be accomplished by testing whether dependences exist between

linear induction variables. For now, we consider dependence testing on one-dimensional

arrays.

To determine dependences between linear induction variables, we can apply well-

known tests for detecting array dependences in nested DO loops [Wol89][Ban88]. Al-

though these tests are normally used to recognize whether different iterations of a DO

loop can be executed in parallel, the same dependence-testing mechanism can be used

to detect dependences for synchronization. In general, dependence testing can be re-

duced to determining whether two array references can ever represent the same array

element at the same time. For two array references a[f1(i1)] and a[f2(i2)] to intersect,

there must be some point in the program where f1(i1) = f2(i2). Let f1(i1) = �1i1 + �1 and

f2(i2) = �2i2 + �2. For each index variable ij , let the loop statement corresponding to

it be do (ij=lj,hj,sj). Clearly, if the index ranges of the two references do not over-

lap, then no dependences can exist. However, overlapping ranges do necessarily imply

dependence. One needs to study the linear index functions themselves in order to deter-

mine whether two array indices can possess the same value at the same time. Although
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more complex and effective dependence tests exist, the GCD test shall be used here for

simplicity. If there is an intersection and a solution exists for the equality f1(i1) = f2(i2),

then from linear diophantine equation theory, the following must be true:

gcd(�1s1; �2s2) divides �1l1 � �2l2 + �1 � �2

In adapting the GCD test to subarrays, first consider the case where e1 and e2 are

each approximated by only one linear induction variable, so that e1 = f�1i1 + �1g and

e2 = f�2i2 + �2g. Typically, the GCD test can be used to determine whether the linear

induction variables intersect. However, when the two loop indices are equal (i1 = i2)

and is the index of a sequential DO loop, then another condition needs to be true for

a dependence to exist. Consider the test for flow dependence between statements S1

and S2 in Figure 3-13. Although the GCD test returns true in this case (1 divides -1 for

the index j), no flow dependence actually exists since each element should be read one

iteration of j before the write.

do (j=1,100) {
doall (k=1,100) a[j-1,k-1] = ...; /* S1 */
doall (k=1,100) ... = a[j,k]; /* S2 */

}

Figure 3-13

In the case of DO loops, a simple GCD test for intersection of linear induction vari-

ables can produce many false dependences. The test must take into account the sequential

nature of DO loop indices. Once again, although more complex and effective tests exists,

we present a more straightforward test for simplicity: For a source subarray a1[e1] and

sink subarray a2[e2] with e1 = f�1i + �1g and e2 = f�2i + �2g where i is the index of a DO

loop, then a1[e1] � a2[e2] if the GCD test is true and

�1 6= �2 or �1�1 � �2�2

In the above example, �1 = �2 and �1 < �2, so no flow dependence exists.

Unfortunately, the above condition is not sufficient for activating this more accurate

test. Consider the program in Figure 3-14, an augmented version of Figure 3-13. Even

though a flow dependence does not exist from S1 to S2 through the j loop, a flow
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dependence does exist through the i loop. At the end of the j loop, the entire array a has

been written by statement S1. Thus any reads done by S2 in the next iteration of i cannot

be done before the write in the previous iteration of i. There are actually two entries in

the defIn set that reaches S2, one from the definition of a in the current i iteration and

one from the previous iteration. In a sense, the j index from the previous iteration is

different from the one in the current iteration. The markExt function introduced earlier

can be used to mark the fact that the subarray propagated from the previous iteration

of i is external to the loop j. In the terminology of [AK87], this field is equivalent to

specifying that the dependence is loop-independent rather than loop-carried with respect

to an outer loop. The application of this external field also corresponds to the different

cases of dependence checking for different data direction vectors of [BC86] and [Wol89]. In

summary, the above test can be done only if sequential loop index variables are identical

and the source subarray is external with respect to the relevant loop.

do (i=1,10)
do (j=1,100) {
doall (k=1,100) a[j-1,k-1] = ...; /* S1 */
doall (k=1,100) ... = a[j,k]; /* S2 */

}

Figure 3-14

In order to detect dependences between two linear induction variables with identical

DOALL loop indices, an even simpler test can be used. If the source subarray is not

external to the DOALL loop, then a dependence can only arise if the linear functions

can ever produce the same result for a particular value of the loop index. We use

the following simple test: For a source subarray a1[e1] and sink subarray a2[e2] with

e1 = f�1i + �1g and e2 = f�2i + �2g and i as the index of a DOALL loop, a dependence

exists if the GCD test is true and

�1 6= �2 or �1 = �2

Observe that when a source subarray a[e] is external with respect to a loop, then

any loop indices in e are in effect different from loop indices in the sink subarray. In

summary, the following table can be used to specify tests for different scenarios of source

and sink loop induction variables. We assume once again that source and sink subarrays
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are a1[e1] and a2[e2] with e1 = f�1i1 + �1g and e2 = f�2i2 + �2g. Then a1[e1] � a2[e2] under

the following condition:

i = i1 = i2
i1 6= i2

i = DO index i = DOALL index

(�1 6= �2 or �1�1 � �2�2) (�1 6= �2 or �1 = �2)
a1[e1] not extern of i

and GCD and GCDGCD

a1[e1] extern of i GCD GCD

In general, the value set that is a subarray index consists of several linear induction

variables. A dependence test must be done for every pair of linear induction variables

of two subarray indices. Since any of the linear induction variables can be the actual

array index, the final result is true if any of the pairwise tests were true. In addition, any

dependence test involving array indices with approximation >iv always returns true.

For subarrays of multiple dimensions, two approaches can be used. The first involves

doing dependence testing dimension-by-dimension and deducing a dependence only if

every dimension deduces a dependence. The second involves linearization of the array

reference by using known array bounds to map the multiple-dimensional index space

into a one-dimensional space. Unfortunately, each approach has cases in which the

other approach produces a more accurate answer [Wol89]. For the best solution, both

approaches can be used to test each dependence. However, the implementation in this

thesis only performs dimension-by-dimension testing.

3.4.1 Invariant expressions

In addition to linear functions of loop indices, one can also imagine propagating

and performing dependence analysis on linear functions of invariant variables as well.

Consider the example in Figure 3-15. Although nothing is known about the value of the

variable x, we do know that it is invariant in the context of the two statements. Thus

the values x and x+1 cannot possibly be equal, and no flow dependence exists between

the two statements. One can thus perform dependence analysis on linear functions of

general variables as well by applying the same test as the case of linear functions with
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identical DOALL indices. In the literature [AK87][PW86], propagation and dependence

analysis are specified with respect to these general linear functions rather than only loop

induction variables.

doall (i=1,100) a[x,i] = ...;
doall (i=1,100) ... = a[x+1,i];

Figure 3-15

Note that the restriction that the unknown variable be invariant is very important. In

our example, if an assignment to x appears between the two statements, then the same

dependence test cannot be applied. Likewise, if the two statements appear in a sequential

loop and x is modified anywhere in the loop, then one must also use a different test for

dependences across different iterations of the outer loop. As a rule, for a source subarray

that is external with respect to a loop L, the above test can be applied only when the

unknown variable is invariant in the body of L.

3.5 Interprocedural support

The analysis presented thus far has only focused on performing flow analysis within

a procedure. When fully general user-defined functions are allowed, provisions must be

made to analyze the flow of data into and out of procedure calls. This section presents a

practical but by no means thorough discussion of the interprocedural array flow analysis

approach used in the implementation of this thesis.

Constants and linear induction variables can be propagated across procedures by

allowing the algorithm to propagate functions of integer procedure parameters as well

as loop indices. In the function of Figure 3-16a, although the algorithm knows nothing

about x, it can speculate and assume that x is a loop induction variable. The value of

y can then be determined to be x + 1. The question of whether x is a loop induction

variable is not resolved until one applies flow analysis.

The algorithm which computes reaching information assumes that interprocedural

dependences are not detected at the level of the procedure being called, but instead at

the level of the caller. Thus any statement that invokes the procedure f above must

ensure that any dependences to f are supported before the call and any dependences
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void f(int x)
{
y = x+1;
doall (i=1,100)
a[i,y] = ...;

}

(a)

f(5); /* S1 */
do (j=10,100)
f(j); /* S2 */

f(z); /* S3 */

(b)

Figure 3-16

from f are supported immediately after the call. This allows the compiler to generate

only one version of the function f instead of potentially creating a different copy of

the procedure for each call. Of course, any dependences occurring within f would be

supported inside its body. With this assumption, correct reaching information can be

derived by separately computing the gen sets for each call to f. For instance, the call to

f in statement S1 of Figure 3-16b produces the gen set containing the subarray a[i,6],

while the call in statement S2 produces the subarray a[i,j+1]. In both cases, the

results are derived from resolving the gen set produced by the body f, which contains

a[i,x+1], with the arguments passed to f. For the call in statement S3, if nothing is

known about the value of z, then the subarray returned is a[i,>]

Note that much potentially derivable information is ignored by the above scheme.

In particular, the lack of specialization of procedure calls requires one to be overly

pessimistic when generating code for the procedure. For example, if the procedure

makes use of two integer parameters, analysis within the procedure must assume that

their values are unknown and that any dependence tests involving them return true.

One can easily imagine scenarios where some calls to such a procedure are made with

arguments that cause the dependences to not exist. For those cases, it can be beneficial

to make two versions of the procedure, one that supports the dependence and one that

does not. At the call site, analysis can be done to determine which procedure should be

invoked.

3.6 Other applications of array flow analysis

Array flow analysis provides information on data usage relationships between state-

ments. In addition to using this information for deriving point-to-point synchronization,

other optimizations for parallel programs can benefit from results of flow analysis. Such

optimizations include parallelism detection, private variable detection, data and loop
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partitioning, and static data routing. Other optimizations that can benefit from array

flow analysis are shown in [DGS93].

3.6.1 Parallelism detection

In compiling programs for multiprocessors, a very useful optimization involves the

detection of parallelism in sequential DO loops [AK87][Wol89]. When a statement in a DO

loop body does not depend on other statements in the body, then it can be vectorized by

being moved out of the loop and placed in a DOALL loop. Array flow analysis provides

more accurate information for determining whether a loop can be vectorized.

do (i=1,100) {
a[i-1] = f1(b[i]); /* S1 */
c[i] = f2(a[i-1]); /* S2 */
a[i] = f3(c[i]); /* S3 */
d[i] = f4(a[i-2]); /* S4 */

}

Figure 3-17

Without array flow analysis, dependence testing is done on all definitions and uses

in loop, thus possibly producing some false dependences. Consider dependence testing

on all definitions and uses of the loop in Figure 3-17. We must conclude that the loop

cannot be vectorized since there seems to be a cyclic dependence involving statements

S2 and S3 generating the equation

c[i] = f2(f3(c[i-1]))

However, using array flow analysis, we can deduce that the definition of a in S1 actually

kills the definition in S3. Thus there is no cyclic dependence, and each statement can be

vectorized.

3.6.2 Private variable detection

When detecting parallelism from sequential DO loops, certain transformations can be

performed on a loop to make it more easily parallelized. One of these transformations is

the introduction of private variables to remove output and anti-dependences across loop

iterations. A variable is private in some loop if every iteration of the loop can be viewed

as possessing a private copy of that variable. Consider the programs for exchanging
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two arrays in Figure 3-18. In both cases, if the variable temp is privatized, then all

iterations can be executed in parallel. The topic of privatizing arrays has only recently

been discussed in the literature [EHLP91][MAL93].

do (i=1,100) do (i=1,100)
do (j=1,100) { do (j=1,100) {
temp = a[i,j]; temp[j] = a[i,j];
a[i,j] = b[i,j]; a[i,j] = b[i,j];
b[i,j] = temp; b[i,j] = temp[j];

} }

(a) (b)

Figure 3-18

A variable v is a candidate for privatization within some loop l when certain condi-

tions can be satisfied. First, any flow dependences involving v must only occur within

single iterations of l. If one were to allow for copying, then flow dependences can also

occur to statements outside of the loop, but never across iterations of a loop. Second,

v must appear in some output and anti-dependences across loop iterations, otherwise

there is no need for it to be privatized. While scalar flow analysis can verify these condi-

tions for scalars, array flow analysis allows verification for arrays as well. In Figure 3-18,

the variable temp can be privatized with respect to both loops in case (a) and can be

privatized with respect to loop i in case (b).

3.6.3 Data and loop partitioning

Even when all potential parallelism is detected in a program, its performance can

still be heavily affected by communication costs. In many cases, effective static allocation

of tasks and data to processors can reduce these costs significantly. Data partitioning

involves splitting and aligning data to minimize communication distance between pro-

cessors and the data they access [KLS90][LC91][GB92][RS91]. In loop partitioning, nested

loops can be mapped to processors to minimize non-local memory accesses [AH91]. In

these techniques, constraints between arrays are formed from flow dependences and oc-

currences in common statements. A partitioning algorithm then performs heuristics to

resolve cyclic constraints and produce a partitioning scheme. Using array flow analy-

sis, more accurate flow dependences can be computed to produce improved partitioning

results.
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3.6.4 Static routing of data

In most multiprocessors, interprocessor communication is accomplished by send-

ing messages through a network. In the conventional scheme of dynamic routing, a

message is routed by examining its header which identifies the destination processor

for the message. In situations where two messages need to access the same resource,

one message must be either blocked or buffered. Architectures such as iWarp [Bor90]

or NuMesh [War93] seek to alleviate contention costs by introducing the idea of static

routing. When destinations of messages are known at compilation, then routing can be

scheduled statically to avoid unnecessary contentions [SA91]. Furthermore, hardware

which supports static routing can avoid the latency associated with examining headers

as in dynamic routing.

In loop-based parallel programs, communication between processors arises primar-

ily from flow dependences between different processors. When these flow dependences

involve arrays whose indices are constants or linear functions of loop indices, then static

routing can be applied. In the program of Figure 3-17, let us assume a machine topology

of 100 processors in a line where each processor is responsible for one loop iteration.

Since statement S4 requires a read of a[i-2] and statement S3 writes a[i], each pro-

cessor must send its result from S3 two processors to the right. Since the communication

destination for each processor is known at compile time, static routing can be applied.

Compilation for systolic arrays is a particular approach towards static routing and has

been heavily studied [Kun82][Che86][Cap87]. These works focus on the optimal execu-

tion of a set of nested DO loops without dynamic control flow such as conditionals. Since

static routing allows very high network bandwidths to be available, one solution allows

conditionals to be supported by performing all communication that can exist on any path

through the program. Some of the ideas used computing processor dependences in the

next chapter can be used to support a scheme for static routing in general programs.

3.7 Summary

In order to provide intelligent support for synchronization, one must first be able to

detect dependences between statements in a program. Although one can define depen-

dences by searching the program text for any accesses that can overlap, more effective

results can be obtained by performing flow analysis to detect the reaching span of each

data access. In order to manage references to array elements effectively, we focus on
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array indices that are linear functions of loop indices. The task of deducing this infor-

mation can be performed by an adaptation of known value propagation algorithms to

the linear function lattice.

Because some data accesses can completely mask others, array flow analysis can be

used to determine the region over which each array access is active. Rather than op-

erating on array regions, the flow analysis done here preserves the index function and

traversal path of the flow element to allow for accurate dependence testing. Depen-

dences can then be computed between reaching accesses and current accesses for each

statement. Since dependence testing has been thoroughly studied in the literature, this

thesis proposes only using the simple GCD test to detect dependences. The result of this

analysis yields dependence information between statements as well as array accesses that

generate those dependences.



Chapter 4

Processor dependences and synchronization

4.1 Introduction

In the previous chapter, it was shown how dependences between statements can

be derived from array flow analysis. Given a program, the algorithms of the previous

chapter provide dependence relationships between pairs of statements along with the

array accesses that cause those dependences. When a dependence exists between two

statements, synchronization must be inserted to maintain the proper execution order.

However, producing point-to-point synchronization requires additional analysis to de-

rive the pairwise synchronization relationships between processors. In this chapter, we

present a scheme for computing and implementing point-to-point synchronization for

general array-based programs. First, some examples are discussed for motivation, fol-

lowed by an overview of the problem of deriving processor dependences. Then the

concept of statement instances is introduced along with preliminary computation of

relationships between instances. An execution model is then presented, followed by

techniques for computing processor synchronization relationships and avoiding dead-

lock scenarios. Finally, we address efficiency and present an algorithm for computing

point-to-point synchronization statically.

4.2 Motivation

When implementing point-to-point synchronization for a data dependence between

two statements involving a processor p, two questions arise:

1. What are the processors p0 with which p needs to synchronize?

2. Which dynamic activities of p and p0 should be synchronized with each other?

Question 2 arises out of the fact that data dependences really exist in the realm

of dynamic program execution. Although it may be clear where dependences exist in

the text of a program, these lexical locations may actually be executed many times.

Thus provisions must be made for recognizing which dynamic invocations of the lexical
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locations are actually dependent on each other. Question 1 can be viewed as the spatial

relationship while question 2 can be viewed as the temporal relationship between the

source and sink statements of a data dependence.

The transformation from a program with barrier synchronization semantics to one

with point-to-point synchronization must satisfy several conditions. First, it must pro-

duce a program that is still correct. Any dependence that exists in a program with

barrier semantics must be satisfied in the transformed program by the insertion of a

synchronization. Second, the resulting program must terminate in all cases where the

original program terminates. In other words, no deadlocks can be introduced by the

transformation. In a sense, the first criterion requires that enough synchronizations are

produced, while the second requires that not too many synchronizations are produced.

4.2.1 Synchronization model

The synchronization scheme presented in this chapter assumes a shared-memory

execution model. To invoke a point-to-point synchronization, the source processor writes

a value to some memory location and the sink processor spin-locks until the memory

location reaches that particular value. Only one memory location is needed to support

multiple synchronizations involving the same processors if synchronization values are

restricted to be monotonically increasing. The sink processor then spin-locks until the

memory location contains a value greater than or equal to the desired value.

On cache-coherent shared-memory machines, the costs of reading and writing to

memory are influenced by the cache coherence scheme. A write involves a cache access

as well as possible invalidations of matching cache entries in other processors. A read

corresponds minimally to a cache read. However, if the address is not found in the

cache, then a memory or network access is needed. Spin-locking on a read does not

necessarily incur a large amount of network traffic since each read request can typically

be serviced by a cache read. When a write is performed by the source processor, the

cache entry in the sink processor is eventually invalidated. The subsequent read then

causes a new cache value to be loaded from the source processor. By using memory

accesses to support synchronization, we require that the cache protocol be sequentially

consistent. In other words, the order of any two accesses by the same processor must be

preserved by the memory hierarchy.



SECTION 4.2: MOTIVATION 67

do (i=1,100) {
do (k=1,10) {
doall (j=1,1000) {
a[i,j] = ...; /* S1 */
sync[j] = i; /* S3 */

}
}
do (l=1,5) {
doall (j=1,1000) {
while (sync[j-1] < i); /* S4 */
... = f(a[i-3,j-1]); /* S2 */

}
}

}

Figure 4-1

The program in Figure 4-1 shows how the above scheme can be used to support the

flow dependence between S1 and S2 without resorting to barrier synchronizations. After

a value is written to an element of a, the synchronization variable for that array element

is also updated in statement S3. Before the same element a is read, statement S4 ensures

that its synchronization variable has the proper value. Although this approach produces

a correct program, it suffers from various inefficiencies which are addressed in the next

section.

4.2.2 Implementation issues

Consider the execution of the program in Figure 4-1 on a machine with 10 proces-

sors. Assume that each of the DOALL loops is distributed 100 consecutive iterations per

processor so that processor pj is responsible for iterations 100j � 99 to 100j. As im-

plemented in the example, each processor needs to check 100 values of the sync array

before it proceeds. Instead, the partitioning information can be used to observe that each

processor pj needs data written by iterations 100j� 100 to 100j� 1 of the DOALL loop

for S1. Therefore, processor pj only needs to synchronize with processor pj�1 and syn-

chronization can be accomplished by checking one value rather than 100. One can view

the difference of j indices of the array accesses as inducing a spatial relationship on the

statements. Although the above case seems straightforward, this problem can be more

complex when loop partitions are not uniform and multiple array dimensions involve

multiple DOALL loops.
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do (i=1,100) {
do (k=1,10) {
doall (j=1,1000) {
a[i,j] = ...; /* S1 */

}
}
sync[p] = i;
while (sync[p-1] < i-3);
do (l=1,5) {
doall (j=1,1000) {
... = f(a[i-3,j-1]); /* S2 */

}
}

}

Figure 4-2

In addition to a spatial relationship between statements, a temporal relationship

exists as well. In the above example of Figure 4-1, while it is certainly correct to syn-

chronize with the current iteration of i, each definition of array a is not actually used

until 3 iterations of i later. Consequently, rather than checking the sync variable for

the current index of i, one can check for the value i-3 and allow for more variance

in execution among the processors. The iteration distance can be viewed as a temporal

relationship between the statements. In addition, observe that synchronization is unnec-

essarily performed for every iteration of the inner DO loops. Since the dependence really

exists from the last iteration of the k loop to the first iteration of the l loop, synchro-

nization calls can be moved outside of the loops. The improved program is shown in

Figure 4-2 with the variable p representing the current processor number.

Another example can be used to illustrate the difference between temporal and spa-

tial relationships. In Figure 4-3, an anti-dependence exists between the use of the variable

x and its definition. Here, we follow an assumption that iterations of sequential loops

are not partitioned among different processors. In case (a), synchronization only needs

to be done with the last iteration of the sequential loop, while in case (b), synchroniza-

tion must be done with every iteration of the parallel loop. This can be explained by

the observation that sequential loop iterations are ordered in time while parallel loop

iterations are not.

The simple examples described above become much more complex upon examina-

tion of Figure 4-4a. The first index of the array a corresponds to a sequential loop in S1
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do (i=1,100)
... = x;

...
x = ...;

(a)

doall (i=1,100)
... = x;

...
x = ...;

(b)

Figure 4-3

but corresponds to a parallel loop in S2. Conversely, the second array index is a parallel

loop index in S1 but is a sequential one in S2. In addition, the last index corresponds to

an unknown variable t in S1 and a sequential loop in S2 and it is not clear whether the

parallel loop index k influences the value of t. If t can be shown to be invariant with

respect to certain loops, then provisions can perhaps be made to treat t as a constant for

those loops. Although synchronizing one array element at a time can still be made to

work in this case, it is not clear which of the above improvements can be incorporated.

In particular, note that since the second index of array a in S2 is a sequential loop index,

moving the synchronization checking out of that loop implies that all 100 indices of j

in S1 must still be checked. In Figure 4-4b, the complexity comes from the fact that

loop indices i and k are used multiply in array indices while index j is not used at

all. As evident in these examples, spatial and temporal relationships are not necessarily

straightforward and must be defined more clearly.

do (i=1,100) do (i=1,100) {
doall (j=1,100) do (j=1,100) {
doall (k=1,20) { doall (k=1,100)
... a[i,i,k+1] = ...;
a[i,j,t] = ...; /* S1 */ ...

} doall (k=1,100)
doall (i=1,100) ... = a[i-3,k,k-1];
do (k=1,85) }

do (j=1,100) }
... = f(a[i,j,k]); /* S2 */

(a) (b)

Figure 4-4

The above examples illustrate the fact that general and efficient implementation

of point-to-point synchronization cannot be accomplished through an ad-hoc method.

Rather, a formal treatment of synchronization relationships as well as a parallel-loop
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execution model must be introduced to provide the proper background for considering

algorithms which compute synchronization targets.

Throughout this chapter, synchronization relationships are computed with respect to

the sink of the dependence rather than the source. As shown in the above examples,

each synchronization is implemented using an array of values with one element for each

processor. At the source, each processor asserts a synchronization by setting its own

array element to some value to indicate that it has reached the source statement. At

the sink processor, the synchronization check requires the computation of array elements

to check and values to use for the check. These computations correspond to the two

questions posed earlier in this chapter.

4.2.3 Termination issues

Implementing point-to-point synchronization involves transforming a program so

that its parallel execution is accurate without always relying on barrier synchronizations.

If point-to-point synchronizations are added wherever dependences exist, then the pro-

gram is guaranteed to produce results that are correct. However, correctness is not the

only important criterion. The transformations also must not introduce any deadlock con-

ditions into the program. Unfortunately, a straightforward implementation of synchro-

nization insertion can easily introduce deadlock when conditionals are present. Consider

the program in Figure 4-5. If any iteration of i results in a false value for f(i), then

deadlock occurs since no synchronization variables are set to i and all processors would

wait forever at statement S4.

do (i=1,100) {
if (f(i)) {
doall (j=1,1000)
a[i,j] = ...; /* S1 */

sync[p] = i; /* S3 */
...

}
while (sync[p-1] < i); /* S4 */
doall (j=1,1000)
... = f(a[i,j-1]); /* S2 */

}

Figure 4-5

The above example can be rectified by either moving the synchronization assertion
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out of the conditional or inserting another assertion in the else clause of the condi-

tional. For this case, synchronization by individual array elements can be prohibitively

expensive to support since every possible array element that is accessed in the body of

a conditional requires an update to the respective synchronization location. On the other

hand, synchronization by processor only requires updates to locations of processors that

may have executed the conditional. Although the given solution is fairly convincing

for the above example, its correctness as a general solution is not readily apparent for

cases involving more complex control flow. A more formal model of execution and syn-

chronization must be introduced to allow for construction of a scheme that is provably

deadlock-free.

4.3 Overview of processor dependences

The problem of deriving synchronization relationships requires detailed analysis of

array references in order to compute dependences between processors. Given a depen-

dence between two lexical statements, many dependences can actually arise between the

different run-time invocations of the two statements. Figure 4-6 illustrates an example

with arrows representing such dependences. For two invocations, a dependence exists

between them if their array indices evaluate to the same value. In cases where depen-

dences cannot be completely determined, one can over-approximate towards having too

many dependences. Thus arrows can be drawn between two invocations when there is

a chance that their array indices can represent the same value.

source instances sink instances

Figure 4-6: Dependences between invocations
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Once dependences between invocations of statements are determined, one can use

the information to derive dependences between processors. Since the domain of invoca-

tions for a statement can be represented by its enclosing loop indices, the results of loop

partitioning can be used to provide partitioning functions from statement invocations to

processors. As shown in Figure 4-7, a mapping from sink processors to source processors

can be obtained by applying the partitioning functions and the dependence relationship

between invocations.

source instances sink instances

F

G

d

Processor p synchronizes with F (d�1(G�1(p)))

Figure 4-7: Dependences between processors

Within each processor, its statement invocations are executed in a particular order

according to the language semantics. Furthermore, the barrier semantics of DOALL loops

define an ordering on invocations across processors. If two invocations are separated

by a barrier, then one must be executed before the other even if they are partitioned to

different processors. This ordering of execution must be obeyed when computing syn-

chronization relationships by ensuring that no synchronization is done for dependences

that traverse forward in the execution order. In other words, a sink statement invocation

cannot synchronize with a source invocation that is executed after it according to barrier

semantics. Thus for each source processor, the sink processor must synchronize only

with the source invocations that are executed before the relevant sink invocations.

The above discussion sketches a strategy for computing synchronization relationships

between processors. The following few sections focus on a more detailed derivation of
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this strategy.

4.4 Dynamic instances of statements

In order to more precisely specify relationships between different invocations of

statements, we introduce the notion of a statement instance. Each dynamic invocation

of a statement is called an instance of the statement and is determined by values of

loop indices that enclose the statement. Components of an instance that correspond

to sequential loops are executed in a particular order and can be considered temporal

coordinates. Those that correspond to parallel loops are partitioned to processors and

can be viewed as spatial coordinates.

An instance S~! = Sh!1 : : : ; !ni of a statement S is defined as an n-tuple where n is

the number of loops that enclose S. Specifically, these correspond to parallel DOALL loops

as well as sequential DO and WHILE loops. The i-th integer in the n-tuple corresponds

to an iteration value of the i-th outermost loop. In the case of WHILE loops, we insert

a counter to the loop header which can be used for the iteration value.y Although

provisions can be made for loop increments that are negative, we assume here that loop

indices increase monotonically. In the program of Figure 4-2, valid statement instances

are S1h1; 1; 1i, S1h100; 10; 1000i, S2h1; 1; 1i, and S2h100; 5; 1000i.

In some cases, it is useful to be able to specify an ordering on when statement

instances are executed in a program. Since sequential loop iterations are ordered, an

ordering can be defined in terms of the value of sequential loop indices in the instance.

For two instances of a statement, the respective temporal coordinates can be compared

integer-by-integer from the leftmost position. A timestamp can be defined as a tuple

that is derived from the temporal coordinates of a statement instance with the function

Tem(h!1; : : : ; !ni) = h!i1 ; : : : ; !in0 i where each ij-th outermost loop is sequential and n0

is the number of sequential loops that enclose the statement. Tuple comparison can be

defined as follows:

hk1; : : : ; km; : : : ; kni < hl1; : : : ; lm; : : : ; lni () (8 i < m ki = li) and km < lm

This definition corresponds to comparing sequential loop index values from the outer-

most loop inward and can be viewed as an ordering on the sequential loop iteration space

y In the unlikely event that the counter overflows, point-to-point synchronization can be abandoned
for barrier synchronization in the iteration where the counter is reset.
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of a statement. Generally, for two instances of statements S1 and S2, comparison must

only be done on tuple values that correspond to common loops of the two statements.

We introduce the notation hk1; : : : ; kni"c to indicate the subtuple corresponding to the

first c elements of a tuple. A temporal ordering on statement instances can be defined

formally as follows:

S1~!
1 � S2~!

2 () ~� 1"c < ~� 2"c or

~� 1"c = ~� 2"c and S1 precedes S2

where ~� 1 = Tem(~!1) and ~� 2 = Tem(~!2)

and c is the number of sequential loops that enclose both S1 and S2

From Chapter 2, a partial ordering is a relation that is anti-symmetric, anti-reflexive, and

transitive. The following lemma shows that the temporal ordering relation on statement

instances is a true partial ordering:

Lemma 4.1: The relation S1~!
1 � S2~!

2 is a partial ordering.

Proof: Clearly, the relation � is anti-reflexive and anti-symmetric since the precedence

relationship is anti-reflexive and anti-symmetric. Although it seems intuitively that tran-

sitivity is also obvious, its proof is complicated by the fact that statements can appear

at different loop nestings. To show transitivity, let S1~!
1, S2~!

2, and S3~!
3 be instances

such that S1~!
1 � S2~!

2 and S2~!
2 � S3~!

3. We need to show that S1~!
1 � S3~!

3. Let ci;j
be the number of common sequential loops that enclose statements Si and Sj . Let Li;j
be the innermost sequential loop that encloses Si and Sj . Let ~� i = Tem(~!i). Suppose by

contradiction that S1~!
1 6� S3~!

3. There are two cases:

For the first case where S2 is not a descendant of L1;3, then c1;2 = c2;3 < c1;3. Further,

either S1 does not precede S2 or S2 does not precede S3. Without loss of generality,

assume that S1 does not precede S2. If ~� 1"c1;2 = ~� 2"c1;2, then S1~!
1 6� S2~!

2 and a

contradiction arises. Therefore ~� 1"c1;2 < ~� 2"c1;2. Since ~� 2"c2;3 � ~� 3"c2;3, ~� 1"c1;2 < ~� 3"c1;2.

Thus ~� 1"c1;3 < ~� 3"c1;3 and S1~!
1 � S3~!

3.

For the second case where S2 is a descendant of L1;3, then there are three subcases: (a)

c1;2 > c2;3 (S3 is outside of L1;2), (b) c2;3 > c1;2 (S1 is outside of L2;3), and (c) c1;2 = c2;3

(all 3 statements have the same number of common loops). The cases (a) and (b) are

similar and the proof is given only for (a): We have c1;2 > c2;3 = c1;3. We know that

if S2 precedes S3, then S1 precedes S3 and S1~!
1 � S3~!

3 since ~� 1"c1;3 � ~� 3"c1;3. If S2

does not precede S3, then ~� 2"c2;3 < ~� 3"c2;3 which implies that ~� 2"c1;3 < ~� 3"c1;3. Since

~� 1"c1;3 � ~� 2"c1;3, we have ~� 1"c1;3 < ~� 3"c1;3. For case (c), let c = c1;2 = c2;3 = c1;3. If either
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~� 1"c < ~� 2"c or ~� 2"c < ~� 3"c, then ~� 1"c < ~� 3"c. Otherwise, S1 precedes S2 and S2 precedes

S3 which implies that S1 precedes S3 and ~� 1"c = ~� 3"c. ut

In Figure 4-2, the following temporal ordering exists between statements S1 and S2:

S1hi1; k1; j1i � S2hi2; l2; j2i () i1 � i2

Note that the temporal ordering does not exactly correspond to the ordering imposed

on the instances by the execution semantics. Such an ordering will be defined later.

Instead, the temporal ordering specifies in some sense an execution order that is stricter

than that defined by the semantics. This is the actual ordering that is obeyed by the

synchronization scheme that will be introduced, and can be used to prove that the

resulting programs are deadlock-free.

Observe also that the temporal ordering relation does not depend on the spatial co-

ordinates of the instances. Thus if S1~!
1 � S2~!

2, then S1~!
3 � S2~!

4 if Tem(~!1) = Tem(~!3)

and Tem(~!2) = Tem(~!4). Consequently, it makes sense to abbreviate temporal order-

ing relations to just the timestamps that represent temporal coordinates of statements:

S1Tem(~!1) � S2Tem(~!2).

4.5 Deriving synchronization relationships

In general, a dependence involves two array accesses, one at a source statement

S1 and one at a sink statement S2. By studying the array indices together with the

lexical contexts of the statements, one can derive synchronization relationships for the

dependence. This information can in turn be used to implement efficient point-to-point

synchronization to ensure that the dependence is obeyed at run time.

4.5.1 The problem

The synchronization model presented here assumes that synchronization is per-

formed through a processor writing a value to a memory location at the source which is

then checked by another processor at the sink. In order to implement this mechanism,

we need to find the dependence relationship between instances of the source and sink

statements for a given dependence. We first focus on the simpler problem of deriving the

set of source instances that have a dependence with a particular sink instance. Formally,

for each instance S2~!
2 of a sink statement S2, we wish to derive the set of instances
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S1~!
1 of the source S1 that need to be executed before executing S2~!

2. In other words,

we wish to find the set of instances of the source such that a dependence S1~!
1 � S2~!

2

exists between those instances and the sink instance.

As in the previous chapter, the optimizations here require analysis that can be con-

servative. The task of finding an exact answer for the above problem is certainly un-

decidable when a program has conditional statements. Therefore we must approximate

towards having too many synchronizations rather than having too few to assure cor-

rect execution. Furthermore, approximations also allow many synchronization targets

to be computed statically to reduce execution costs. Although additional information is

available at run time to allow more accurate computation of synchronization targets, the

cost of such computation can overshadow any potential benefits. Consequently, the pri-

mary goal here involves deriving synchronization targets statically as much as possible

to minimize run-time overhead.

4.5.2 Orthogonal derivation of instance relationships

The problem of deriving the source instances for a given sink instance relies on the

following inputs: The sink instance S2~!
2, the sink array reference a[~e 2], and the source

array reference a[~e 1]. Each array reference ~e is a collection of expressions ei each of

which can be approximated by a value set A(ei) as shown in the previous chapter. For

simplicity, we assume that each value set can contain only one linear induction variable.

Multiple linear induction variables in a value set need to be analyzed one at a time with

the final result being the union of each single analysis. We use the notation ejS~! to

indicate the value of the expression e at a particular statement instance. For particular

source and sink instances, a dependence exists between them if the array reference values

at the respective instances are equal. For an instance Si~!
i, we use the notation !ij to

represent the coordinates of ~!i.

Rather than deriving the set of complete instances for a source statement, the problem

can be simplified by deriving each instance coordinate separately. The cartesian product

of computations of the problem on individual instance coordinates represents a superset

of the set of desired instances, as shown in the following lemma:

Lemma 4.2: Let S2~!
2 be a particular sink instance and 


0 =
Y
j


j

where 
j = f!1
j : 9 !01; : : : ; !0n1

S1h!01; : : : ; !1
j ; : : : ; !

0
n1
i � S2~!

2g
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then 
0 � 
 where 
 = f~!1 : S1~!
1 � S2~!

2g.

Proof: We can show the superset relation by showing that ~! 2 
) ~! 2 
0. From above,

if ~! 2 
 then S1~! � S2~!
2. Let ~! = h!1

1 ; : : : ; !
1
n1
i. Then each !1

j 2 
j , and ~! 2 
0. ut

The above lemma allows the computation of source instances for a given sink in-

stance to be divided into the smaller problem of computing individual coordinates of

source instances separately. However, this separation comes at a price in that any cor-

relations between coordinates are discarded. The set of computed source instances can

thus contain some instances that are not involved in any dependences with the sink

instance.

4.5.3 Instance relationships

The set of source instances can be derived one coordinate at a time by analyzing

the array references of the source and sink statements. Let the expanded sink instance

be S2h!2
1 ; : : : ; !

2
n2
i. Recall that a dependence exists between the source and sink instances

if the evaluation of array references at those instances are equal. In other words, a

dependence exists if the following holds:

~e 1jS1~!
1 = ~e 2jS2~!

2

To derive individual instance coordinates, a dependence exists for a coordinate value !1
j

under the following condition:

!1
j 2 
j () ~e 1jS1h�; : : : ; !1

j ; : : : ; �i = ~e 2jS2h!2
1 ; : : : ; !

2
n2
i

The notation � is used to represent any possible value at a particular location and can

be viewed as the variable of an existential quantifier.

For particular array references ~e 1 = (e1
1; : : : ; e

1
n) and ~e 2 = (e2

1; : : : ; e
2
n), the above or-

thogonality principle can be applied across each array index to derive the following

condition:

!1
j 2 
j () 8 i 1 � i � n e1

i jS1h�; : : : ; !1
j ; : : : ; �i = e2

i jS2h!2
1; : : : ; !

2
n2
i

For a particular instance coordinate !kj , let Lkj be the loop associated with that coor-

dinate and let Ikj be the loop index of Lkj . The above relation can be specialized to the
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following cases:

!1
j 2 
j () 8 i 1 � i � n

8><
>:
e1
i = f1(I1

j ), e2
i = f2(I2

k) and !1
j = f�1

1 (f2(!2
k)) for some k

e1
i = f1(I1

j ) and !1
j = f�1

1 (e2
i jS2~!

2)

e1
i jS1h�; : : : ; !1

j ; : : : ; �i = e2
i jS2~!

2

where each f is a linear function of a loop index. In cases where an expression is known

to be a linear function of a loop index, specific computations can be applied to derive

synchronization information.

The set of source instances fS1~!
1 : ~!1 2 
0g that are dependent on a sink instance

S2~!
2 can thus be derived as follows:



0 =
Y
j


j

where 
j = Dom(!1
j ) \

\
�ij and

�ij =

8>>>>>><
>>>>>>:

f�1
1 (f2(!2

k)) if e1
i = f1(I1

j ) and 9 k e2
i = f2(I2

k)

f�1
1 (e2

i jS2~!
2) if e1

i = f1(I1
j ) and e2

i is not a linear induction var.

; if e1
i = C constant and e2

i = f2(I2
k) and C 6= f2(!2

k)

Dom(!1
j ) if e1

i is not a linear induction var.

where Dom(!1
j) represents the domain of each source instance coordinate. The above

derivation implies that the source instance coordinates are determined completely by

source array index expressions that are linear induction variables. The sets �ij can be

viewed as filters on the domain of each source instance coordinate. When a source array

index is a linear function of a loop index, then the corresponding sink array index is

examined to determine the range of the filter, as shown in Figure 4-8. If nothing is

known about the source array index, then no filtering is done.

I
K

J

i−1

9

a[...,i,...,j,...]

a[...,i−1,...,9,...]

source:

sink:

Figure 4-8: Filtering on a 3-dimensional source instance space
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For a particular sink instance S2~!
2, the above equations show how to derive the

set of source instances that have a dependence with S2~!
2. If run-time efficiency were

not a concern, then synchronization can be supported by using an array of size equal

to the source instance space, initialized to 0. After each source statement instance is

executed, the corresponding element in the array can be set to 1. Before executing each

sink statement instance, the set of source elements can be computed by applying the

above equations, and synchronization is performed by ensuring that each element in

that set is equal to 1.

Unfortunately, realistic memory requirements dictate that we conserve space by

maintaining a synchronization array whose size is proportional to the number of pro-

cessors. One must then consider the mapping from the instance spaces into the smaller

space of processors. Since spatial coordinates are partitioned into processors, they are

implicitly represented by the processor space. However, one must also account for tem-

poral coordinates, which do not correspond to processors. Fortunately, timestamps that

represent temporal coordinates are ordered in that the execution of a particular instance

on a processor implies that any instance for that processor with lower timestamps have

been executed. Thus they can be represented by only retaining the highest timestamp

that have been executed on each processor. Rather than storing a boolean value in the

synchronization array, the elements instead contain a tuple representing the greatest

timestamp that have been executed. This value along with the source processor com-

pletely represents the source instances that are required to perform synchronization. The

problem now becomes one of computing the source processors as well as the tuple val-

ues that are used by the sink to perform synchronization checking. In order to delve

much further into this question, a formal execution model of parallel loops and processor

partitioning must be introduced.

4.5.4 Related work

Analysis to compute dependence relationships between instances have been intro-

duced with the goal of privatizing arrays to improve parallelization. Feautrier [Fea91]

uses a method which computes constraints on the set of source instances to form a

bounded polyhedron. Finding the maximum coordinate in the polyhedron can then be

viewed as a parametric integer programming problem. Unfortunately, this general ap-

proach produces algorithms that are not efficient enough to be used in practice due to

its exponential order of growth. The approach used here can be viewed as solving the
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problem posed by Feautrier, but for the particular case where all constraint surfaces

are orthogonal to axes in the iteration space. Recently, Maydan, et al [MAL93] have

introduced a new scheme which solves problems that are almost as general as those

of Feautrier, but promises to be more efficient. Although their approach incurs more

overhead than the specialized solution presented here, it can be adapted to more general

problems, in particular when array indices can be functions of more than one loop index.

4.6 Execution model of parallel loops

Let us first consider the execution model for cases where there are no multiply-nested

DOALL loops. For each DOALL loop, every processor can be assigned a subset of the loop

iteration space. Formally, let L represent the loop iteration space and P represent the

set of all processors. We can associate with each DOALL loop a loop partitioning function

� : L ! P which maps loop index values into processors. Although loop iterations can

in theory be partitioned into processors in many ways, we focus on the case where each

processor is responsible for a contiguous block of loop iterations. A loop partitioning

also designates a sequential processor pseq in P which is responsible for the execution of

sequential code outside of DOALL loops. The execution semantics can be defined for a

statement S on a processor p as follows:

1. Before execution of any statement, synchronize with all other processors.

2. If S is an assignment, then execute if p = pseq .

3. If S is a DOALL loop with index variable i and partitioning function �, then for

every value in ��1(p), execute the body with i bound to that value.

4. If S is a sequential loop or conditional or sequence, then execute S and execute its

body according to the rules.

a = b; /* S1 */
if (a) {
z = 5; /* S2 */
a = x; /* S3 */
doall (i=1,128,1)
c[i] = d[i]; /* S4 */

}

Figure 4-9
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In the program of Figure 4-9, the scalar assignments S1, S2, and S3 appear outside

the DOALL statement and are executed by only one processor. Therefore only processor

pseq executes S1, all processors execute the conditional, only processor pseq executes S2

and S3, and each processor executes its portion of the DOALL loop. Synchronization must

be done before execution of the conditional to prevent other processors from reading the

value of a before it is written by pseq in S1. Likewise, all processors are synchronized

before executing the body of the conditional to prevent the value from being written too

early in S3.

In alternate execution models, only one processor executes predicates of conditionals

and WHILE loops. Other processors must then check the result of that test to decide

whether to execute the body of the conditional. Such a dependence between the sequen-

tial processors and all other processors is called a control dependence. Instead of following

such semantics, the current model allows all processors to execute the predicates. Since

there can be no side-effects in the predicates, any extra assignments needed to compute

the predicate are done by a sequential processor before the conditional. Therefore control

dependences between the sequential processor and other processors are translated into

flow dependences between the same processors.

When DOALL loops can be nested, then the processor space must be divided into

multiple dimensions. As an example, consider the case where each of 64 processors is

assigned a 6-bit address. If there are 2 nested DOALL loops, then the processor space

must be divided into 2 dimensions. One partitioning scheme views the first 3 bits of the

processor address as the address in the first dimension and the last 3 bits as the address

in the second dimension. An equally valid scheme involves using all 6 bits of address

as the first-dimension address and no bits in the second-dimension address.

doall (i=1,128,1) {
b[i] = ...; /* S1 */
doall (j=1,64,1)
a[i,j] = ...;

}

Figure 4-10

The motivation for partitioning the processor space can be illustrated by considering

Figure 4-10. Once again suppose that there are 64 processors with 6-bit addresses. There
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exists many options in mapping the loop iteration space into the processor space. In

one case, each processor can be responsible for 2 iterations of the outer loop and all 64

iterations of the inner loop. In another case, each processor is responsible for all 128

outer iterations and 1 inner iteration. Many other alternatives exist between the two

extremes. Consider the case where the first 3 bits of the processor address is used for

the first-dimension address and the second 3 bits of the processor address is used for

the second-dimension address. Each loop can then be divided into 8 equal sections, each

corresponding to a dimension coordinate. Each processor is then responsible for 16 outer

iterations and 8 inner iterations.

Formally, one can view the separation of the processor addresses into dimensions as

the partitioning of the processor space for each dimension. Given a dimension, two pro-

cessors are in the same partition if they belong to the same coordinate in that dimension.

We define a partitioning set K of a set S as a set of non-empty subsets of S such that each

value of S appears in exactly one element, or partition , of K. For each loop in a set of

nested DOALL loops, we can associate with it a processor partitioning function  : P ! K

such that  (p) = � for p 2 �. In considering the previous example, the following are valid

partitioning functions for two nested DOALL loops where the symbol ‘‘&’’ represents the

‘‘logical AND’’ operation:
 1(p) = address(p) & 111000

 2(p) = address(p) & 000111

In the case of a single DOALL loop with no nesting, the most obvious processor

partitioning function maps each processor into the singleton set containing itself. From

the above definition, the processor partitioning function is onto since partitioning sets can

only contain non-empty subsets of P . This fact becomes important when loop iterations

are mapped into partitions because processors must exist to do the work of each partition.

For a set of n nested loops, there exists partitioning functions f 1; : : : ;  ng that divide

the processor space for partitioning sets fK1; : : : ;Kng. A composite partitioning function 	

can be defined as the product of the partitioning function of each loop as follows:

	(p) =  1(p) \ : : : \  n(p)

The function 	 maps P into a composite partitioning set K where K = K1 \
 : : : \
 Kn and

\
 is defined as:

A \
 B = fa \ b : a 2 A and b 2 Bg



SECTION 4.6: EXECUTION MODEL OF PARALLEL LOOPS 83

If the partitioning function 	 is valid, then the composite partitioning set K can be

viewed as any other partitioning set. Each composite partition is thus required to be

non-empty since 	 is itself onto. Therefore for any representative selection of parti-

tions (�1; : : : ; �n) 2 K1 \
 : : : \
 Kn, there must exist a processor p such that  1(p) =

�1; : : : ;  n(p) = �n or equivalently, 8 i p 2 �i. At the outermost level, all processors are

in the same partition, while at the innermost loop level, each processor typically belongs

to its own partition.
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Figure 4-11: Composite processor partitioning

Composite partitioning functions can be viewed as a division of the processor space

into an n-dimensional grid as shown in Figure 4-11. The requirement that each partition

be non-empty implies that each grid point must contain at least one processor. As an

example, the following can be shown to be an invalid partitioning for two nested loops:

 1(p) = address(p) & 111000

 2(p) = address(p) & 001111

By selecting �1 as processor addresses matching the pattern 001XXX and �2 as processors

matching the pattern XX0000, there exists no processor that belongs to both partitions

since they require non-matching third-bit values.

To complete the specification of parallel loop execution, the loop partitioning function

� is modified to map the loop index space into processor partitions. Associated with each

loop is a processor partitioning set K, a processor partitioning function  : P ! K, and

a loop index space partitioning function � : L ! K. For any statement with n outer

loops, let  1; : : : ;  n be the processor partitioning functions and �1; : : : ; �n be the loop
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partitioning functions of its outer loops. Its relevant processor and loop partitioning

functions can be computed as:

	(p) =  1(p) \ : : : \  n(p)

�(h!1; : : : ; !ni) = �1(!1) \ : : : \ �n(!n)

Note that the loop partitioning functions maps the set of statement instances into a

composite processor partition. There is also a representative processor p�seq of each com-

posite processor partition � which is responsible for invoking sequential code inside the

loops. Execution for processor p proceeds can be defined within the context of an active

partition �. The initial partition � includes all processors. The execution rules from above

can be modified as follows:

1. Before execution of any statement, synchronize with all other processors in parti-

tion �.

2. If S is an assignment, then execute if p = p�seq .

3. If S is a loop with index variable i, loop partitioning function �, and processor

partitioning function  , then for every value in ��1( (p)), execute the body with i

bound to that value and the new partition �0 = � \  (p).

4. If S is a conditional or sequence, then execute S and execute its body according to

the rules.

In this thesis, we restrict the partition set of sequential loops to contain only one

element:

8 p  i(p) = P if the i-th loop is sequential

Consequently, every iteration of a sequential loop is executed on the same processor

partition. By making this assumption, the partition functions for sequential loops can be

ignored, and composite partitioning functions can be viewed as being defined entirely

by DOALL loop partitioning functions. Thus spatial coordinates of the instance space are

encapsulated by the partitioning functions � and  . Temporal coordinates correspond

to sequential loop indices and are captured by the Tem function. As we will see, this

division has significant implications towards how source processors and timestamps are

computed.
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Let us once again consider the program in Figure 4-11 with the following processor

partitioning:
 1(p) = address(p) & 111000

 2(p) = address(p) & 000111
Processors are partitioned in the outer loop according to  1 and in the inner loop ac-

cording to  2. For each partition of  1, the statement S1 should be invoked by only one

processor. That sequential processor for each partition of  1 can be the one whose ad-

dress matches the pattern XXX000. Thus the program can be converted as in Figure 4-12

for each processor. Note that since there is only one processor for each composite parti-

tion of the two loops, the value of seq2 is always true.

partition1 = processor_number & 0b111000;
partition2 = processor_number & 0b000111;
lo1 = 16 * partition1 + 1;
lo2 = 8 * partition2 + 1;
seq1 = (processor_number & 0b000111) == 0;
seq2 = (processor_number & 0b000111 & 0b111000) == 0;

do (i=lo1,lo1+15,1) {
if (seq1)
b[i] = ...; /* S1 */

do (j=lo2,lo2+7,1)
if (seq2)
a[i,j] = ...;

}

Figure 4-12

4.7 Execution order of statement instances

With the execution model of parallel loops specified, an execution ordering can be

defined on statement instances. An instance is less than another if it must be executed

before the other according to the execution model. The execution ordering on statement

instances can be defined as follows:
S1~!

1 < S2~!
2 () 9 c0 �c0(~!1"c0) = �c0(~!2"c0) and Tem(~!1"c0) < Tem(~!2"c0) or

�c(~!1"c) = �c(~!2"c) and Tem(~!1"c) = Tem(~!2"c) and S1 precedes S2

where 1 � c0 � c and c is the number of DOALL loops that enclose S1 and S2

The functions �i represent the composite processor partitioning function at the i-th out-

ermost loop. Intuitively, the above definition allows comparison of temporal tuple coor-

dinates until processors belong to different composite partitions. At the extreme when
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~!1"c and ~!2"c are mapped to the same processors, then comparisons can be made on

all common temporal tuple coordinates.

Similar to the temporal ordering, the execution ordering also satisfies the anti-

symmetry, anti-reflexivity, and transitivity properties:

Lemma 4.3: The execution ordering relation S1~!
1 < S2~!

2 is a partial ordering.

Proof: The proof can be adapted from that of Lemma 4.1 and is omitted. ut

The execution ordering of statement instances can be used to infer the order in

which instances must be executed according to the rules described by the loop execution

semantics. Formally, we can define the notion that an instance A is executed before another

instance B when one or more barriers are invoked between their executions involving

the respective processors. If A is less than B in the execution ordering, then the semantics

of the execution model guarantee that A is executed before B. The following shows that

the execution ordering on instances implies semantic execution order.

Lemma 4.4: For two statements S1 and S2 with instances ~!1 and ~!2, if S1~!
1 < S2~!

2

then S1~!
1 is executed before S2~!

2.

Proof: In the following proof, let Lj be the j-th outermost loop. There are two cases

that can satisfy S1~!
1 < S2~!

2:

(a) 9 c0 �c0(~!1"c0) = �c0(~!2"c0) and Tem(~!1"c0) < Tem(~!2"c0)
(b) �c(~!1"c) = �c(~!2"c) and Tem(~!1"c) = Tem(~!2"c) and S1 precedes S2.

For case (a), if Tem(~!1"c0) < Tem(~!2"c0), then there exists j � c0 such that !1
j < !2

j ,

Lj is a sequential loop index, and 8 i < j !1
i = !2

i if Li is a sequential loop. This

implies that the index values of the outermost sequential loops are equal up to loop

Lj . If j = 1, then all processors are synchronized between different iterations of Lj and

the execution order holds. Otherwise, let �j�1 be the processor partitioning function at

loop Lj�1. Since j � c0, �c0(~!1"c0) = �c0(~!2"c0) ) �j�1(~!1"j � 1) = �j�1(~!2"j � 1) and

�c0(~!1"c0) � �j�1(~!1"j�1) by the definition of processor partitioning functions. Thus all

processors in �j�1(~!1"j�1) are synchronized between iterations of Lj and the execution

order holds.

In case (b), for all i < c, !1
i = !2

i . Let S3 be the innermost sequence that is a common

ancestor of S1 and S2. Let S01 be the child of S3 that is an ancestor of S1 and S02 be

the child of S3 that is an ancestor of S2. Then the c-th loop is the innermost loop
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that encloses S3. Let � = �c(~!1"c). Since �c(~!1"c) = �c(~!2"c), all processors in � are

synchronized between executions of S01 and S02 and S1 is executed before S2 within the

same temporal instance and partition. ut

In addition, we can show that if instance A is executed before instance B, then

A < B:

Lemma 4.5: If S1~!
1 is executed before S2~!

2, then S1~!
1 < S2~!

2.

Proof: This proof relies on many of the same mechanisms as the proof of the previous

lemma. Hence only an intuitive sketch is given. By contradiction, assume that S1~!
1 is

executed before S2~!
2, but S1~!

1 6< S2~!
2. Then we know that both the following are true:

8 c0 � c �c0(~!1"c0) 6= �c0(~!2"c0) or Tem(~!1"c0) 6< Tem(~!2"c0)
�c(~!1"c) 6= �c(~!2"c) or Tem(~!1"c) 6= Tem(~!2"c) or S1 does not precede S2

Recall that a barrier is executed only among instances whose processor partitioning func-

tions are equal. Thus the first line implies that there are no barriers executed in inner

loop levels between the execution of the two instances. The second line implies that

conditions do not exist for barriers at the outermost level between processors that exe-

cute the two instances. Therefore, S1~!
1 is not necessarily executed before S2~!

2, and a

contradiction exists. ut

The execution ordering on statements is included in the temporal ordering, but the

converse is not true, as shown by the following lemma.

Lemma 4.6: S1~!
1 < S2~!

2 ) S1~!
1 � S2~!

2, but S1~!
1 � S2~!

2 6) S1~!
1 < S2~!

2.

Proof: We first show S1~!
1 < S2~!

2 ) S1~!
1 � S2~!

2. If S1~!
1 < S2~!

2, there are two cases.

For the first case, if Tem(~!1"c0) < Tem(~!2"c0), then Tem(~!1"c) < Tem(~!2"c) since c0 � c.

For the second case, Tem(~!1"c) = Tem(~!2"c) and S1 precedes S2. In both cases, we get

S1~!
1 � S2~!

2 6) S1~!
1 < S2~!

2

In order to show that the converse is not true, we only need to observe that there exists

a scenario where �1(~!1"1) 6= �1(~!2"1) which implies that 8 c0 �c0(~!1"c0) 6= �c0(~!2"c0)
and S1~!

1 6< S2~!
2, but it is also possible that Tem(~!1"c) < Tem(~!2"c), in which case

S1~!
1 � S2~!

2. ut

4.8 Computation of synchronization targets

By inserting point-to-point synchronization for each dependence, a program can be
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executed without requiring barrier synchronizations between every statement as speci-

fied by the execution semantics. This section presents a general scheme for generating

point-to-point synchronization to support dependences that contain certain types of ar-

ray index expressions. For a given dependence, information about spatial and temporal

relationships of statement instances can be merged with partitioning functions to allow

implementation of processor-to-processor synchronization. Recalling the problem state-

ment from Section 4.2, we need to derive for each processor p the set of processors

with which it needs to synchronize and the dynamic relationship between synchronized

statements.

4.8.1 Motivation

Consider the example in Figure 4-13. The vertical axis represents spatial coordinates

1 to 6 and the horizontal axis represents temporal coordinates 1 to 5. The spatial coor-

dinates are partitioned into three processors p1 through p3. For sink instance h1; 5i, the

source instances that result in a dependence are indicated by the arrows. To support the

dependences, processor p1 only needs to synchronize with processor p2. Furthermore,

processor p1 only needs to synchronize with temporal coordinate 3 of processor p2 since

the instance h3; 2i is executed before instance h4; 3i.

1

2

3

1

2

3

4

5

6

1 2 3 4 5

p

p

p

Figure 4-13: Dependence relationships across instances

As mentioned previously, the coordinates of statement instances can be separated

into spatial and temporal components. The partitioning functions map the spatial com-

ponents into processors, while the function Tem maps an instance into a timestamp by

selecting its temporal coordinates. Synchronization relationships can then be computed

for processors and timestamp values separately. The above subproblems can be for-

malized by introducing processor and temporal target functions. Before executing an
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instance ~!2 of the sink statement with timestamp ~� 2 = Tem(~!2), the sink processor p

must ensure that the source processors have executed particular instances of the source

statement. For a dependence �, the processor target function P�(p; bT) yields the set of

source processors for that dependence. The temporal target function T�(p; bT) yields the

upper bound timestamp of the source statement instances required for synchronization.

The argument p represents the sink processor and bT represents a set of sink timestamps.

This set depends on the lexical location of the respective synchronization check and is

specified in the following section.

4.8.2 Static computation of synchronization targets

To effectively implement point-to-point synchronization, it is important that the pos-

sibly expensive process of computing spatial and temporal targets be avoided as much as

possible at run time. If the computation of synchronization targets is too expensive, then

the resulting code may perform no better or even worse than that of barrier synchroniza-

tion schemes. To reduce the cost of deriving synchronization targets, the computations

are performed statically and outside of loops whenever possible.

When implementing point-to-point synchronization, checks should clearly be placed

before the sink statement and assertions should be placed after the source statement.

Nevertheless, an open question remains on which loop level to place the primitives. In

a general dependence � involving two statements S1 and S2, a barrier synchronization

would normally be inserted at the innermost sequential loop level that encloses S1 and S2.

In other words, the barrier is inserted inside any loops that enclose both S1 and S2 and

outside any loops that are not shared by the statements. Point-to-point synchronization

can either be inserted at the same loop level as barriers or in lower levels. One can

imagine placing a synchronization check immediately before the sink statement to ensure

that synchronization is not invoked until the data is truly needed. However, at such

lower loop levels, the repeated execution of point-to-point synchronization is almost

always more expensive than barriers. Thus we impose the requirement that point-to-

point synchronization be inserted at the innermost loop level that encloses both S1 and

S2. A synchronization can then be computed relatively inexpensively if its targets are

independent of the inner loop levels that surround S2.

An additional subtle factor involves the lexical placement of synchronization prim-

itives. In Figure 4-14, two flow dependences exist between definitions and uses of a
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in statement S1. The first dependence S1hi; j � 1; k � 1i �f S1hi; j; ki is propagated

from one iteration of j to the next. Thus it needs to be supported by point-to-point

synchronization inside the loop j as illustrated. However, the second dependence

S1hi; j + 1; k � 1i �f S1hi; j; ki is not propagated between iterations of j, but between

iterations of i. Although we can still try to support the dependence between iterations

of j, this would merely produce unnecessary assertions and checks. Instead, the syn-

chronization primitives can be moved to the outer loop i to improve efficiency. The

external field computed by the markExt function of Chapter 3 can be used to determine

where source subarrays are propagated. In the first dependence, the subarray a[j,k] is

not external to any loop, while the same subarray is external to the j loop in the second

dependence. Thus rather than inserting synchronization primitives at the c-th innermost

loop where c is the number of loops that enclose both source and sink statements, the

definition of c can be modified to be the minimum of the number of loops that enclose

both source and sink and the number of loops that enclose the loop specified by the

source subarray external field.

do (i=1,100) {
while (sync1[p+1] < i-1);
do (j=1,100) {
while (sync2[p-1] < <i,j-1>);
doall (k=1,100)
a[j,k] = a[j-1,k-1] + a[j+1,k-1]; /* S1 */

sync2[p] = <i,j>;
}
sync1[p] = i;

}

Figure 4-14

With the lexical location of synchronization assertions and checks specified, we can

compute the set of timestamps bT to use for deriving synchronization targets. Let c be

the sequential loop level of the synchronization primitives and let c0 be the number of

sequential loops that enclose S2 so that c0 � c. The synchronization check performed

at level c must satisfy all dependences involving any instances at level c0. In other

words, for each instance S2~!
2 of the sink statement, any source instance producing a

dependence must be represented in the functions P�(p; bT) and T�(p; bT). Therefore, the

variable bT must contain all timestamps ~� such that ~�"c = h�2
1 ; : : : ; �

2
c i where each �2

i

represents the index value at the i-th outermost sequential loop.
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A trade-off exists between the costs of point-to-point synchronization and barrier

synchronization. While point-to-point synchronization is effective for dependences in-

volving small numbers of processors, barrier synchronizations are much more efficient

in cases where many processors need to be synchronized with each other. For each

dependence, if the number of source processors for a particular processor p exceeds a

certain threshold �, i.e. jP�(p; bT)j > �, then barrier synchronization can be used rather

than point-to-point synchronization. This threshold is dependent on the speed of barrier

synchronization on a particular machine as well as the amount of variance in execution

times of code sections in a program.

In many cases, the computation of spatial synchronization targets can be done stat-

ically. If a spatial target P�(p; bT) can be derived at compile time, then its value is com-

pletely independent of any possible set of sink timestamps bT. This property holds when

source array indices that are DOALL loop indices correspond only to sink array indices

that are also DOALL indices or constants. This scenario occurs in programs where certain

array dimensions are accessed primarily in parallel while others are accessed primarily

sequentially. Although static computation of targets allows very efficient implementation

of synchronization, it is not absolutely necessary. Point-to-point synchronization can be

used as long as their computation and execution can be done in less time than barrier

synchronizations. Instead of requiring expressions to be linear functions of DOALL in-

dices or constants, one can also allow expressions that are invariant with respect to bT.

Invariance of an expression e can be defined as 9 C 8 ~!2 Tem(~!2) 2 bT ) ejS2~!
2 = C .

Indices of sequential loops that enclose the synchronization check can be viewed as such

invariant expressions.

4.8.3 Framework for deducing processor targets

For a given processor p, the processor target function P�(p; ~� 2) can be computed

from relationships of the dependence and partitioning functions of the relevant loops.

The instance relationships of Section 4.5.3 can be developed further and combined with

partitioning information to derive processor targets.

As before, let a[~e 1] and a[~e 2] be the array references of the source and sink state-

ments of the dependence. Let ~e 1 = (e1
1; : : : ; e

1
n) and ~e 2 = (e2

1; : : : ; e
2
n). Recall that for a

particular sink instance S2~!
2, source instance coordinates can be computed separately.

For a particular instance coordinate !kj , let Lkj be the loop associated with that coordinate
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and let Ikj be the loop index of Lkj . From Section 4.5.3, the set of source instances 
 that

are dependent on a sink instance ~� 2 can be defined as follows:



0 =
Y
j


j

where 
j = Dom(!1
j ) \

\
�ij and

�ij =

8>>>>>><
>>>>>>:

f�1
1 (f2(!2

k)) if e1
i = f1(I1

j ) and 9 k e2
i = f2(I2

k)

f�1
1 (e2

i jS2~!
2) if e1

i = f1(I1
j ) and e2

i is not a linear induction var.

; if e1
i = C constant and e2

i = f2(I2
k) and C 6= f2(!2

k)

Dom(!1
j ) if e1

i is not a linear induction var.

In order to derive processor-to-processor relations from instance relations, we incor-

porate partitioning functions into the computation. Let the loop partitioning functions

�1 = �1
1�: : :��1

m1
and �2 = �2

1�: : :��2
m2

map instances of the source and sink statements

into processor partitions. Let the processor partitioning functions 	1 =  1
1 � : : :� 1

m1
and

	2 =  2
1 � : : : �  2

m2
map processors into partitions for the source and sink statements.

Let K1
1; : : : ;K

1
m1

and K
2
1; : : : ;K

2
m2

represent the processor partitioning sets for each loop.

A dependence exists if the source and sink array references can evaluate to the same

value. By using the partitioning functions, the set of source processors p0 that can exist

in a dependence with a sink instance ~!2 can be written as:

fp0 : ~e 1jS1�
�1
1 (	1(p0)) = ~e 2jS2~!

2g

Since the result of ��1
1 (	1(p0)) actually represent a set of instances, the above statement

really means that a dependence exists if the equality holds for any instance in the set.

For a particular sink processor p and timestamp ~� 2, then set of source processors

that can exist in a dependence is thus:

P�(p; f~� 2g) = fp0 : ~e 1jS1�
�1
1 (	1(p0)) = ~e 2jS2(��1

2 (	2(p)) \ Tem�1(~� 2))g

Again, the above statement really means that a dependence exists if the equality holds

for any pair of instances in the sets. Naturally, the above equation only holds if statement

S2 is executable by processor p. If S2 is an assignment statement and p 6= p
	2(p)
seq , then

S2 is not executed by p and no dependence exists between p and any other processors.

Likewise, the processors derived by P�(p; f~� 2g) should be limited to those that can
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execute statement S2. These restrictions are straightforward and are not considered in

the following derivation.

For cases where source array indices are linear functions of loop indices, the desired

source processors p0 can be accurately computed. If an array index expression is of the

form f (I) where f is a linear function and I is the index of a loop, then the set of possible

values of that expression for a processor p is equal to f (��1( (p))). For a particular sink

processor p, a set of partitions K0
j can be derived for each source loop. The set of source

processors P�(p; bT) are exactly those that belong to a partition corresponding to each

loop:

P�(p; bT) = fp0 : 8 j 1 � j � m1 9 �0j 2 K0
j p0 2 �0jg

where K0j = K1
j \

n\
i=1

�
j
i and

�
j
i =

8>>>>>>>>><
>>>>>>>>>:

�1
j(f�1

1 (f2(�2
k

�1( 2
k(p))))) if e1

i = f1(I1
j ) and e2

i = f2(I2
k) and L2

k is parallel (4.1)

�1
j(f�1

1 (e2
i jS2Tem

�1(bT))) if e1
i = f1(I1

j ) and e2
i is invariant w.r.t bT (4.2)

�1
j(f�1

1 (f2(Dom(!2
k)))) if e1

i = f1(I1
j ) and e2

i = f2(I2
k) and L2

k is sequential (4.3)

; if e1
i = C and e2

i = f2(I2
k) and C =2 f2(�2

k

�1
( 2

k(p))) (4.4)

K
1
j otherwise (4.5)

The sets �
j
i and K

0
j are subsets of the partitioning set K1

j and can again be viewed

as filters on K
1
j . The set �ji filters out processor partitions that cannot be part of the

dependence due to array accesses e1
i and e2

i . The intersection of filters
T
�
j
i yields the set

of partitions that can be part of the dependence for the j-th source loop. Note that since

all sequential loops are mapped to the same partitions, the above filters do not really

affect any source sequential loop coordinates. Consequently, the set of source processors

contain those processors that belong to a resulting partition for each DOALL loop.

The following lemma shows that the processor target function P�(p; bT) is correct. If

a dependence exists between two instances where the sink instance has a timestamp in
bT, then any processor that can execute the source instance is included in the processor

target function of any sink processor that can execute the sink instance.

Lemma 4.7: If a dependence exists between two instances � = S1~!
1 � S2~!

2 and

Tem(~!2) 2 bT, then for every sink processor p 2 	
�1
2 (�2(~!2)), the source processors

are included in the processor target function: 	�1
1 (�1(~!1)) � P�(p; bT).
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Proof: We introduce the notation 2
 to denote the following:

x 2
 S () 9 R 2 S x 2 R

For source and sink array accesses a[~e 1] and a[~e 2], a dependence exists if and only if for

every i, e1
i jS1~!

1 = e2
i jS2~!

2. We can show inductively for each i that p0 2 	�1
1 (�1(~!1)) )

8 i0 � i 8 j p0 2
 K
1
j \ T

�
j
i0 and hence p0 2 P�(p; bT). For the case where a is a scalar

and i = 0, the above is trivially true.

Inductively, assume that the above is true for i � 1. We need to show that for all j,

p0 2
 �
j
i . For the case where e1

i is not constant and not of the form f1(I1
j ), then �

j
i = K1

j

by case (4.5) and p0 2
 �
j
i . If e1

i is of the form f1(I1
j ), there are four cases:

If e2
i = f2(I2

k) and L2
k is parallel, then e1

i jS1~!
1 = e2

i jS2~!
2 when f1(!1

j ) = f2(!2
k) or !1

j 2
f�1

1 (f2(!2
k)). Since !2

k 2 �2
k

�1( 2
k(p)) and p0 2  1

j

�1(�j1(!1
j )), we have p0 2
 �

j
i by case (4.1).

If e2
i is invariant with respect to bT, then 9 C 8 ~!2 Tem(~!2) 2 bT ) ejS2~!

2 = C . Thus

e1
i jS1~!

1 = e2
i jS2~!

2 implies that f1(!1
j) = C . Since e2

i jS2Tem
�1(bT) = fCg and !1

j = f�1
1 (C)

and p0 2  1
j

�1(�j1(!1
j )), we have p0 2
 �

j
i by case (4.2).

If e2
i = f2(I2

k) and L2
k is sequential, then e1

i jS1~!
1 = e2

i jS2~!
2 when f1(!1

j ) = f2(!2
k) or

!1
j 2 f�1

1 (f2(!2
k)). Since p0 2  1

j

�1
(�j1(!1

j )), we have p0 2
 �
j
i by case (4.3).

If e1
i = C where C is constant and e2

i = f2(I2
k), then e1

i jS1~!
1 = e2

i jS2~!
2 when C = f2(!2

k).

Since !2
k 2 �2

k

�1( 2
k(p)), the above is true only if C 2 f2(�2

k

�1( 2
k(p))). Case (4.4) is thus

not satisfied and �
j
i = K1

j by case (4.5) which implies that p0 2
 �
j
i .

Therefore, p0 2
 K
0
j for every j, and p0 2 P�(p; bT). ut

4.8.4 Computation of processor targets

A more concrete algorithm can be presented for deducing processor targets when

partitioning functions are more clearly specified. Let the processor partitioning functions

be defined as masks of processor address bits  (p) = address(p) & mask . Each processor

partition can then be referred by the value of its masked bits. Let loop indices be

partitioned contiguously into processor partitions with a loop partition stride of �. For a

DOALL loop from lo to hi , the loop partitioning function is defined as �(c) = b(c� lo)=�c.
In other words, each processor partition y executes indices ��1(y) = [�y+lo; �(y+1)+lo�1]

where the notation [c1; c2] represents the set of integers from c1 to c2.
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When both source and sink array indices are linear functions of DOALL loops as in

case (4.1) above, relevant source processor partitions can be computed at compile time

for each sink processor partition. In other words, when the two array indices at position

i in the source and sink array reference are linear functions of loop indices, then the

set of filtered partitions �
j
i can be statically computed for each sink partition. For a

particular dependence �, let the source and sink array references be a[: : : ; f1(I1); : : :] and

a[: : : ; f2(I2); : : :] where linear functions f1(I1) = �1I1 + �1 and f2(I2) = �2I2 + �2 appear at

the i-th array index of both references. Let j be the nesting level of the source DOALL

loop corresponding to I1 and let k be the nesting level of the sink loop corresponding to

I2. Let lo1 and hi 1 be the loop bounds for the source loop and lo2 and hi 2 be the loop

bounds for the sink loop. Let �1 and �2 be the loop partition strides for the source and

sink loops, respectively.

For a sink processor partition y, the loop indices managed by y are

�2
k

�1
(y) = [�2y + lo2; �2(y + 1) + lo2 � 1]

The array indices managed by y at position i are thus

f2(�2
k

�1
(y)) = [�2�2y + �2lo2 + �2; �2�2(y + 1) + �2lo2 � �2 + �2]

Since we are interested in the cases where expressions f1(I1) and f2(I2) evaluate to the

same value, the set of indices I1 such that I1 2 f�1
1 (f2((I2)) can be computed as:

f�1
1 (f2(�2

k

�1
(y))) =

�
�2

�1
�2y + 
 ;

�2

�1
�2y + 
 +

�2

�1
(�2 � 1)

�

where 
 =
�2

�1
lo2 +

�2 � �1

�1

Using the source loop partition stride �1, the set of source partitions x that can affect the

above set of I1 indices can then be defined as:

�1
j(f

�1
1 (f2(�2

k

�1
(y)))) =

�
�2

�1

�2

�1
y +


 � lo1

�1
;
�2

�1

�2

�1
y +


 � lo1

�1
+
�2

�1

�
�2 � 1
�1

� �

For a particular sink processor partition y, the set of source processor partitions that

can generate references to array a for dependence � can be specified as:

�1
j(f

�1
1 (f2(�2

k

�1
(y)))) =

�
x : x 2

� �
mult y + addlo

div

�
;

�
mult y + addhi

div

� ��
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with the following parameters:

mult = �2�2

div = �1�1

addlo = �2 � �1 + �2lo2 � �1lo1

addhi = �2 � �1 + �2lo2 � �1lo1 + �2(�2 � 1)

Typically, the upper and lower bounds of the source partition range can be computed

at compile time and be used as run-time constants.

The above computation solves the processor partition relationships for the situation

where both array indices are linear functions of DOALL loop indices. We wish to also

derive processor partition sets for invariant expressions as in case (4.2) above. For a sink

array index of value C and a source array index f1(I1) = �1I1 + �1, the relevant source

processor partition can be computed as:

f�1
1 (C) =

C � �1

�1

and

�1
j(f

�1
1 (C)) =

�
C � �1 � �1lo1

�1�1

�

Note that this computation differs from the DOALL to DOALL computation in that the

value C may change dynamically. Thus the calculation of source partitions must be

performed at run time immediately before the synchronization check.

If processor partitioning functions are represented as masks of processor address

bits, then each resulting partition can be represented by a sequence of bits. The resulting

processor address can then be specified by performing a logical OR operation on the

bits. When relationships involve only DOALL loop indices and constants, then the entire

processor target function P�(p; bT) can be computed statically for each processor.

4.8.5 Computation of temporal targets

For a sink processor p, the temporal target function T�(p; bT) returns the timestamp

~� 1 of source statement S1 with which p needs to synchronize before executing instances

with timestamp ~� 2 of S2. Unlike the processor target function, the temporal target func-

tion only needs to return one value. Only the upper bound of the timestamps that
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produce dependences is needed since the execution of an instance with the upper bound

timestamp implies that all lower instances have been executed.

Before the upper-bound source timestamp is computed, the set of all source times-

tamps needs to be derived. As with processor targets, individual timestamps can be

computed separately as follows:

T 0
�

(p; bT) =
Y

j : L1
j

sequential

T
0
j

where T0j = Tj \
n\
i=1

�
j
i and

�
j
i =

8>>>>>><
>>>>>>:

f�1
1 (f2(�2

k

�1( 2
k(p)))) if e1

i = f1(I1
j ) and e2

i = f2(I2
k) and L2

k is parallel (4.6)

f�1
1 (e2

i jS2Tem
�1(bT)) if e1

i = f1(I1
j ) and e2

i is invariant w.r.t bT (4.7)

f�1
1 (f2(Dom(!2

k))) if e1
i = f1(I1

j ) and e2
i = f2(I2

k) and L2
k is sequential (4.8)

Dom(!1
k) otherwise (4.9)

The following lemma shows that the intermediate temporal target function T 0
�

(p; bT)

is correct. If a dependence exists between two instances where the sink timestamp is

equal to ~� 2, then the timestamp of the source instance is included in the temporal target

function of any processor that can execute the sink instance.

Lemma 4.8: If a dependence exists between two instances � = S1~!
1 � S2~!

2 and

Tem(~!2) 2 bT, then for every p 2 	�1
2 (�2(~!2)), Tem(~!1) 2 T 0

�
(p; bT).

Proof: The proof strategy is very similar to that of Lemma 4.7 and is omitted. ut

The product of the temporal coordinate sets T0j represent the timestamps in which the

source can access the same array elements as the given sink instances, with one exception:

The source instances cannot be greater than or equal to the sink instances. Intuitively,

synchronization should not have to be done for accesses that have not occurred. For a

sink instance S2~!
2, the temporal target function can be defined as the upper bound of

the set of past timestamps:

T�(p; bT) = upper bound of f~� : ~� 2 T 0
�(p; bT) and S1~� < S2~�

2g

Given each coordinate set T0j , the algorithm in Figure 4-15 shows how to derive

an upper bound of the product of coordinates that is not greater than the sink times-

tamps. The idea involves taking upper bounds of the coordinate sets from the outermost
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loop inward. From the definition of tuple comparison, this corresponds to taking upper

bounds starting with the most significant coordinates. As long as all previous derived

coordinates are equal to the sink coordinates, we must ensure that the current source

coordinate does not exceed the sink coordinate. This is represented by the equalFlag vari-

able. The argument ~� 2 represents the lower bound of the sink timestamp set bT and can

be computed by observing that for all c outer sequential loops, the respective coordinate

value of each ~� 2 bT is equal to the current loop index value. For inner sequential loops,

the coordinate in ~� 2 is not used and can be set to �1.

Finally, the source timestamp result can be represented as:

T�(p; bT) = h� 01; : : : ; � 0n1
i

Algorithm maxTem(S1; S2; ~�
2; ~T0):

Let c be the sequential loop level of the synchronization check.

equalFlag = True

for j from 1 to n1 do

if (not equalFlag) or j > c then

� 0j = upper bound of T0j
else

� 0j = upper bound of f� 2 T0j : � � � 2
j g

if � 0j < � 2
j then equalFlag = False

if h� 01; : : : ; � 0ci = ~� 2"c and S1 does not precede S2 then

� 0c = � 0c � 1

Figure 4-15: Computation of temporal instance upper bound

Note that this algorithm actually derives timestamps ~� 1 that are less than ~� 2 in the

temporal ordering �. Since the ordering on instances implies the ordering on times-

tamps, any source instances S1~!
1 such that S1~!

1 < S2~!
2 implies that S1~�

1 � S2~�
2 and

~� 1 is included in T�(p; bT). All that remains is to show that the function T�(p; bT) pro-

duces all timestamps that are less than the lower-bound sink timestamp ~� 2. The first

lemma shows that the temporal target function returns an upper bound of the set of all

source timestamps that are less than the sink timestamps, and the second shows that the

function returns the least upper bound of that set.
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Lemma 4.9: If ~� 1 2 T 0
�

(p; bT) and S1~�
1 � S2~�

2, then ~� 1 � T�(p; bT).

Proof: By contradiction, assume that ~� 1 2 T 0
�

(p; bT) but ~� 1 > T�(p; bT). This implies that

for some j, �1
j > � 0j and 8 i < j � 1

i = � 0i . Let k be the iteration in the algorithm

where equalFlag is set to False . Then 8 i < k � 0i = �2
i . If j > k or j > c, then � 0j =

upper bound of T0j and � 1
j > � 0j cannot occur. If j � k, � 0j = upper bound of f� 2 T0j :

� � � 2
j g. Since S1~�

1 � S2~�
2 ) � 1

j � � 2
j , the condition � 1

j > � 0j cannot occur. ut

In order to show that T�(p; bT) is the least upper bound of source timestamps that

are less than the sink timestamp, one only needs to show that T�(p; bT) itself is less than

the sink timestamp.

Lemma 4.10: For sink processor p, the following holds:

8 ~!1; ~!2 Tem(~!1) = T�(p; bT) and Tem(~!2) 2 bT) S1~!
1 � S2~!

2

Proof: Let ~� 1 = Tem(~!1) = T�(p; bT). If we can show that S1~�
1 � S2~�

2, then S1~!
1 � S2~!

2

since ~� 2 is a lower bound of bT. By contradiction, suppose that S1~�
1 6� S2~�

2. There are

two cases:

(a) There exists j � c such that � 0j > � 2
j and 8 i < j � 0i = �2

i . Then equalFlag is true

for all iterations before j. Therefore, the algorithm forces � 0j � � 2
j , which produces a

contradiction.

(b) For all j < c, � 0j = �2
j and S1 doesn’t precede S2. Then the final clause of the algorithm

is invoked and the result produces � 0c < � 2
c . ut

We can now show that the above derivations of P�(p; bT) and T�(p; bT) are correct: If

a dependence exists between two instances and if the source instance is executed before

the sink instance, then synchronization is provided for them.

Claim 4.11: If � = S1~!
1 � S2~!

2 and S1~!
1 is executed before S2~!

2, then for each

processor p0 that executes S1~!
1 and each processor p that executes S2~!

2, synchronization

is performed between p0 and p.

Proof: From Lemma 4.5, S1~!
1 is executed before S2~!

2 implies that S1~!
1 < S2~!

2 and

S1~!
1 � S2~!

2. We need to show that for each p 2 	�1
2 (�2(~!2)), the following are true:

(a) 	�1
1 (�1(~!1)) 2 P�(p; bT)
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(b) Tem(~!1) � T�(p; bT)

where bT is defined as above so that Tem(~!2) 2 bT. The first requirement is immediate

from Lemma 4.7. The second can be satisfied by applying Lemma 4.8 and Lemma 4.9.

ut

In order to improve efficiency, the source timestamp ~� 1 can be restricted to be

a constant offset from the lower-bound sink timestamp ~� 2. This can be expressed as

follows:

T�(p; bT) = [~� 2"c� ~d(p)] k h1; : : : ;1i

where c is the number of outermost common sequential loops of S1 and S2. The no-

tation k applied to the 1 terms represent the concatenation of sequential loop indices

surrounding S1 that do not enclose S2. Condition (4.8)above is then modified as follows:

The multiplicative factors of both linear functions must be the same and the two loop

indices must be the same (j = k).

4.8.6 An example

The above derivations can be illustrated by considering their application to the code

in Figure 4-16, a variant of Figure 4-4b. Although other dependences exist, we focus

our attention on the flow dependence � involving array a from S1 to S2. For both

assignment statements, the instance can be represented as a 3-tuple hi; j; ki. The relation

S1hi1; j1; k1i < S2hi2; j2; k2i holds if and only if i1 < i2 or i1 = i2 and j1 < j2. By assuming

that the target machine has 100 processors, each DOALL loop is partitioned one iteration

per processor and the processor number is interchangeable with the spatial instance.

Since there are no nested DOALL loops, processor partitions are interchangeable with

processors and spatial instances. Assume that the variable X has an unknown value.

do (i=1,100) {
do (j=1,100) {
doall (k=1,100)
a[i,i,k+1] = ...; /* S1 */

...
doall (k=1,100)
... = a[i-3,x,k-1]; /* S2 */

}
}

Figure 4-16
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The processor target of the dependence P�(p; hi2; j2i) can be computed by considering

each instance S2(hi2; j2; pi). For each array reference coordinate i, the filters �ji are defined

as follows:
�1

1 = all processors

�1
2 = all processors

�1
3 = p� 2

Since the intersection of the filters yields p� 2, the spatial target is thus P�(p; hi2; j2i) =

p� 2. Each processor p needs to synchronize with processor p� 2.

The temporal target T�(p; hi2; j2i) can be computed by considering the temporal filters

�
j
i for each array reference coordinate i and each sequential loop coordinate j:

�1
1 = i2 � 3

�1
2 = all integers

�1
3 = all integers

�2
1 = all integers

�2
2 = all integers

�2
3 = all integers

The temporal target can be computed by taking intersections of the filters for each se-

quential loop, yielding T�(p; hi2; j2i) = hi2 � 3;1i. This implies that before executing

statement S2 of iteration i and j, one must wait for the completion of the entire loop j

of iteration i-3. As an interesting observation, note that if the above access of a in S2

were a[i,x,k-1] instead of a[i-3,x,k-1], then the temporal target function would

yield hi2; j2i. Also note that if x = k, then synchronization needs to be performed only

when the first two array indices of S2 are equal, which implies that i2 � 3 = p. However,

the separate computation of source instance coordinates does not allow us to readily

take advantage of this fact.

4.9 Implementation issues

Recall that point-to-point synchronization is performed by the source processor writ-

ing a value to a synchronization variable and the sink processor spin-locking until the

variable reaches a certain value. For a dependence � and a source processor p, the

value written to the synchronization variable sync[p] is the timestamp ~� 1 of the source

statement. For a sink processor p, the set of source processors with which to synchronize

is represented by the set P�(p; bT). For each processor p0 in that set, the sink processor

spin-locks until sync[p0] � T�(p; bT). In this section, we first give an example of an al-

gorithm to compute static synchronizations, followed by a discussion on implementation

of timestamps.
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4.9.1 An algorithm

Following the above derivations, an algorithm can be presented for static computa-

tion of processor synchronization targets. To keep the presentation simple, the algorithm

as given makes the assumption that processor targets are derived completely statically.

For each processor at a dependence, the set of processors with which to synchronize

is computed entire at compilation. Thus expressions are required to be functions of

loop indices or compile-time constants. No allowance is presented here for non-constant

loop-invariant expressions. In a real implementation, such constraints would of course

be relaxed to allow for greater range of point-to-point synchronization support. We also

assume that the value of � is small and impose the constraint that the index of each par-

allel loop that encloses S1 appear in at least one array index and is filtered by a parallel

loop index or a constant. If this condition is not met, then some array location can be

accessed by many partitions of the unrepresented loops. As a consequence, each sink

processor would be required to synchronize with most processors in the partitions and

likely exceed the limit � of processors. This can be viewed as only providing support for

the above cases (4.1) and (4.2) with constants.

The algorithm staticSync(p;�) in Figure 4-17 aims to compute the set of processors

with which the sink processor p needs to synchronize for dependence �. Note that the

entire algorithm can be run statically to produce a collection of source processors. If one

were to allow for loop-invariant expressions, then some parts of the calculation would

need to be performed dynamically, and provisions must be made for merging the static

and dynamic results.

Observe that as long as each source parallel loop index is represented once in the

source array reference, it does not matter how many other expressions in the array

reference are unknown. This can be explained by pointing out that the expressions in

each array dimension can be viewed as filters on the space of source instances with

which to synchronize. Unknown expressions merely imply that the respective array

dimension does not filter out any source instances. As long as other dimensions have

filtered out enough source instances to allow point-to-point synchronization to be done,

the unknown dimensions can be ignored. This feature can prove to be very effective in

applications where much is known about some array dimensions while little is known

about other dimensions.
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Algorithm staticSync(p;�):

Let ~� be the partitions for p at S2.

Initialize ~K(p) to be the product of partitioning sets for S1.

for each source and sink array index expression e1
i and e2

i do

if e1
i = f1(Ij) and Ij is parallel then

if e2
i = f2(Ik) and Ik is parallel then

Kj(p) = Kj(p) \ �1
j(f

�1
1 (f2(�2

k

�1(�k))))

else if e2
i = C where C is constant then

Kj(p) = Kj(p) \ �1
j(f

�1
1 (A))

else if e1
i = C where C is constant then

if e2
i = f2(Ik) and Ik is parallel and C =2 f2(�2

k

�1(�k)) then

return ;
if any source parallel loop index is not filtered then

implement barrier

return fp0 : p0 has partitions in ~K(p)g

Figure 4-17: Static computation of processor targets

4.9.2 Implementation of synchronization primitives

The actual implementation of a point-to-point synchronization involves writing and

reading timestamp tuples. Although supporting tuples requires the allocation of several

words of memory for each synchronization variable, tuples are not the only reason for

this requirement. On cache-coherent machines, the synchronization variables themselves

need to occupy separate cache lines to avoid thrashing when other variables are written.

Since cache lines on many machines are 4 to 8 words long, supporting timestamp tuples

may not incur much additional memory costs.

Even though tuples may not require much extra memory, writing and reading the

words that correspond to tuple values can require a large amount of additional time.

However, tuple values can be written and read one coordinate at a time. In the critical

innermost loops, tuple values can be written and checked by accessing only one word,

as demonstrated by the sample code in Figure 4-18. When performing a tuple write,

it is important that the value stored in memory never exceeds the actual tuple value.

Hence the less significant coordinates are zeroed before a coordinate value is updated.
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To check a tuple, one must ensure that spin-locking is done only on cases where the

stored value is less than the desired tuple. In the example code, checks in outer loops

ensure that tuple values of more significant coordinates are at least equal to the desired

value. Therefore, it is only necessary to check for the current coordinate and for higher

coordinates being higher than their values. In the typical case of a synchronization being

satisfied, only the first test is required before the WHILE loop is exited. Further tests are

done only during spin-locking or in the relatively rare case that a higher coordinate has

been updated by processor p� 1.

do (i=1,100) {
sync[p][3] = 0;
sync[p][2] = 0;
sync[p][1] = i;
while (sync[p-1][1]<i);
...
do (j=1,100) {
sync[p][3] = 0;
sync[p][2] = j;
while (sync[p-1][2]<j && sync[p-1][1]==i);
...
do (k=1,100) {
sync[p][3] = k;
while (sync[p-1][3]<k && sync[p-1][2]==j && sync[p-1][1]==i);
...

}
}

}

Figure 4-18: Code to assert and check for tuple hi;j;ki of processor p�1

When overhead for tuple support becomes significant, one can abandon the entire

tuple scheme in some cases. When all relevant loop bounds are constants or equal

across all processors, then all processors always execute the same number of iterations.

In such cases, the iteration space can be flattened to one dimension, and one can per-

form synchronization merely by maintaining a counter on each processor to represent

the one-dimensional iteration number. A synchronization check then involves merely

checking that the synchronization array value of other processors are not less than the

current counter. Of course, this technique does not allow for synchronization with past

timestamps since one is in effect always synchronizing with the most recent timestamp.

Despite its disadvantages, this scheme is used for the current implementation of this
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thesis due to its efficiency and ease.

4.10 Deadlock avoidance

By inserting synchronization assertions and checks for every dependence in a pro-

gram, its execution can be carried without performing barrier synchronizations between

every statement as specified in the semantics. However, we need to ensure that no dead-

locks are introduced due to point-to-point synchronization. This can be done by adding

additional assertions in cases involving conditional execution.

As shown in section 4.2.3, naively inserting synchronization primitives can result in

deadlock conditions when conditionals are present. If an assertion is done in a condi-

tional, any checks of that assertion may deadlock if the assertion is not invoked. Intu-

itively, deadlocks can be avoided by ensuring that for any synchronization, if a control

flow path between two points contain an assertion, then every control flow path between

the two points must contain the assertion.

Branches in structured control flow occur due to two types of statements: condition-

als and sequential loops. Thus assertions need to be inserted to account for branches

due to these statements. The transformation Z[S] can be applied to all statements S in

a program in a bottom-up fashion according to the following rules:

1. In a sequential loop, if an assertion of the timestamp h�1; : : : ; �ni appears in the loop

body, then the assertion of timestamp h�1; : : : ; �m;1; : : : ;1i is added at the end of

the loop where m is the number of sequential loops that enclose S.

2. In a conditional statement if (V ) S1 else S2, if an assertion of the timestamp

h�1; : : : ; �ni appears in S1, then an assertion of h�1; : : : ; �m;1; : : : ;1i is inserted at

the beginning of the body of S2 where m is the number of sequential loops that

enclose S. Assertions in S2 are added to the beginning of S1 in the same manner.

The first rule accounts for the case when the loop body is not executed at all or when

loop limits are not known statically. The second rule specifies that any assertions that

occur on one branch of the conditional must also be done before any code in the other

branch of the conditional is executed. Note that the monotonicity of assertions is still

maintained in both cases since any future assertions of the same synchronization is done

in the context of a greater timestamp than the one asserted.
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When applied to all statements in a program, the above rules serve to satisfy the

requirement that any control flow path between two points contain the same asser-

tions. In order to prove that the application of these rules produces a program with

no synchronization-induced deadlocks, an ordering on statement instances is needed.

However, the execution ordering is inappropriate in this case due to the fact that syn-

chronization between two instances does not always imply that the source instance is less

than the sink instance in the execution ordering. Instead, the temporal ordering satisfies

the above characteristic as shown in Lemma 4.10. Its definition is repeated below:

S1~!
1 � S2~!

2 () ~� 1"c < ~� 2"c or

~� 1"c = ~� 2"c and S1 precedes S2

where ~� 1 = Tem(~!1) and ~� 2 = Tem(~!2)

and c is the number of sequential loops that enclose S1 and S2

The following lemma shows that if an assertion appears in the text of a statement,

then an equivalent or greater assertion is done on any execution of the transformed

statement.

Lemma 4.12: For a statement S and a statement S0 that is a descendant of S, if an

assertion of ~� 0 appears after statement S0 for instance S~!, then any execution of Z[S]~!

produces an assertion of ~� 00 � ~� 0.

Proof: Let Tem(~!) = ~� . For S = S0, the lemma clearly holds. The proof for S 6= S0 is

by structural induction on the statement S. Let c be the number of sequential loops that

enclose S. Note that ~� 0"c = ~� .

S = [V = E]: S = S0.

S = [if (V ) Sa else Sb]: S0 is a descendant of either Sa or Sb. Without loss of gen-

erality, assume that S0 is a descendant of Sa. On any execution of Z[S]~!, if Z[Sa]~! is

executed, then the lemma is true by induction. If Z[Sb]~! is executed, then rule 2 above

specifies that an assertion of ~�kh1 : : : ;1i � ~� 0 is done.

S = [while (V ) Sa] and S = [do (I=K1,K2,K3) Sa]: S0 is a descendant of Sa. On any

execution of Z[S]~!, if Sa is executed, then the lemma holds by induction. If Sa is not

executed, then from rule 1 above, the assertion of ~�kh1 : : : ;1i � ~� 0 is done.

S = [doall (I=K1,K2,K3) Sa]: True by induction.

S = [{Sa Sb}]: S0 is a descendant of either Sa or Sb. Without loss of generality, assume
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that S0 is a descendant of Sa. Then the lemma holds by induction. ut

In deriving the proof of deadlock avoidance, we need to ensure that assertions are

done in order and before any instances that follow the asserted value. In addition,

assertions that are unordered with respect to an instance need to be accounted for. The

following lemma shows that at each statement instance, any assertion at a timestamp

that is not greater than the current timestamp has been done.

Lemma 4.13: For a processor p executing a statement instance Z[S]~! where Tem(~!) = ~� ,

for any assertion by p of ~� 0 at another statement S0 such that S0~� 0 6� S~� , an assertion of

~� 00 � ~� 0 has been done.

Proof: If S0Tem�1(~� 0) 6� S~!, then either ~� 0"c 6> ~�"c or S does not precede S0 and

~� 0"c = ~�"c. There are three cases:

(a) ~� 0"c < ~�"c: Then for some j � c, � 0j < �j . Let L be the j-th outermost sequential loop.

the assertion of ~� 0 would have been done in a previous iteration of L. By Lemma 4.12,

the previous execution of the body of L would have asserted ~� 00 � ~� 0.

(b) ~� 0"c = ~�"c and S0 precedes S: Then let S00 be the sequence { Sa Sb } such that S0 is

a descendant of Sa and S00 is a descendant of Sb. Then by Lemma 4.12, the execution of

Z[Sa]~! produces an assertion of ~� 00 � ~� 0.y

(c) ~� 0"c = ~�"c and no precedence relationship exists between S0 and S. Then there exists

a conditional statement S 00 such that S0 and S are in separate clauses of the conditional.

Without loss of generality, let S00 = if (e) Sa else Sb such that S0 is a descendant of

Sa and S is a descendant of Sb. Then by rule 2 above, an assertion of ~� 00 � ~� 0 is done

before the body of Sb is executed. Therefore an assertion of ~� 00 � ~� 0 is done before S is

executed. ut

Using the above lemmas, we can now show that the transformation Z prevents

deadlock conditions due to synchronization from occurring. By contradiction, if a dead-

lock occurs, then each processor is waiting for some synchronization variable to reach a

value. When a processor p2 waits for an assertion from processor p1, then Lemma 4.13

implies that p2 is farther along in the program than p1 in some intuitive sense. However,

this waiting relationship eventually produces a cycle of processor relationships which

then implies that some processor is farther along in the computation than itself. Hence,

a contradiction arises.

y The predicates of conditionals and loops and be viewed as being in a sequence with the statement body.



108 CHAPTER 4: PROCESSOR DEPENDENCES AND SYNCHRONIZATION

Claim 4.14: No deadlocks occur due to synchronization in a transformed program.

Formally, there does not exist a scenario such that each processor pi is at an instance

Si2~!
i
2 and waiting for the assertion of Si1~�

i
1 by some processor.

Proof: By contradiction, assume that such a scenario exists. For each processor pi, let

Tem(~!i
2) = ~� i2 . Select a processor pi0 . It is at instance Si0

2 ~!
i0
2 and waiting for the assertion

of Si0
1 ~�

i0
1 by processor pi1 . From Lemma 4.13, we know that Si0

1 ~�
i0
1 � Si1

2 ~�
i1
2 or else

processor pi1 would have asserted Si0
1 ~�

i0
1 . From Lemma 4.10, we have Si1

2 ~�
i1
2 � Si1

1 ~�
i1
1 . By

the transitive property of �, we have Si0
1 ~�

i0
1 � Si1

1 ~�
i1
1 . Continuing on as in Figure 4-19,

processor pi1 is waiting for some processor pi2 , and we get Si1
1 ~�

i1
1 � Si2

1 ~�
i2
1 . Thus for each

j, processor pij is waiting for processor pij+1 and S
ij
1 ~�

ij
1 � S

ij+1
1 ~�

ij+1
1 . Since the number of

processors is finite, there exists j and k such that j < k and ij = ik. By transitivity of �,

we have Sij1 ~�
ij
1 � Sik1 ~�

ik
1 , which is a contradiction. ut
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Figure 4-19: Deadlock scenario of Claim 4.14

In summary, the above proof implies that no cycles exist in the synchronization

relationships among processors. This relies on ensuring two important criteria. First,

processors must only wait for timestamps that are less than the current timestamp and

thereby obey the temporal ordering on instances. Second, each instance must also assert

synchronization to include other instances that are not related in the temporal ordering.

Together, these constraints can be used derive a synchronization scheme that is free of

deadlock conditions.
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4.11 DOACROSS loops

The two loop constructs shown thus far in the thesis represent the purely sequential

and purely parallel versions of loops. However, in some cases, one may wish for a

loop construct that exhibits the behavior of both types. The DOACROSS loop construct

commonly used in the literature [Cyt86] satisfies these characteristics. The semantics of

DOACROSS loop execution follows that of sequential loops, but loop iterations can be

partitioned among many processors. Consequently, data dependences can exist between

iterations on different processors. Even though synchronization for DOACROSS loops has

been studied by [MP87], a discussion is presented here to show how a synchronization

scheme for such a loop fits into the current general framework that allows for arbitrary

loop usage.

Semantically, iterations of a DOACROSS are executed in sequential order. Thus despite

being partitioned into different processors, the processor executing an iteration must

synchronize with the processor that executed the previous iteration. Within the execution

model of loops defined in this chapter, one can satisfy the semantics by performing

a barrier synchronization between each iteration of a DOACROSS loop. However, an

actual implementation can depart somewhat from this expensive semantic specification.

All iterations can be executed in parallel with point-to-point synchronization performed

where dependences exist between iterations.

Whereas DOALL loop indices are viewed as temporal coordinates and DO loop indices

as spatial coordinates, DOACROSS loop indices must be viewed as both temporal and

spatial. Thus they affect the computation of both the processor and temporal target

functions. Since DOACROSS loops are partitioned in the same manner as DOALL loops,

source instance coordinates that correspond to DOACROSS loops are used in computing

the processor target function. In addition DOACROSS instance coordinates need to be

used to compute the temporal target function since the execution order of DOACROSS

iterations on each processor must also be followed. Note that DOACROSS iterations are

ordered similar to DO loop iterations, thus the ordering of timestamps remains unaffected.

At this point, one may object to the existence of so many different loop constructs

in the language. Indeed, with an ideal compiler, there would be no need for separate

specifications of sequential and parallel loops. All loops would be specified with the

same construct, and the compiler would just optimally be able to partition the loop
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iterations onto processors. However, present-day compilers are far from ideal. The

different loop constructs allow the programmer to give some hints to the compiler about

dependence characteristics. In addition, this thesis takes the position that any dependence

analysis for parallelism has been done in a previous phase. Hence, one can imagine the

different constructs as information that has been deduced by the parallelization phase of

a compiler.

4.12 Summary

Given the dependence relationships between statements computed in the previous

chapter, we seek in this chapter to derive dependence information for processors. Un-

fortunately, the problem becomes very complex if one merely examines array indices

of the dependent accesses. Instead, it is necessary to realize that dependences actually

occur at program execution between particular invocations of statements. A statement

instance can be defined as the lexical statement and a run-time context defined by the

index values of all loops that enclose the statement. The above problem can then first be

treated as one of finding dependence relationships between statement instances.

The task of relating the source and sink statement instance spaces can be solved

by examining the source and sink array accesses. A dependence exists between two

instances if the values of the array indices at those instances are equal. One can use

each array index as a filter on the space of dependent statement instances. If nothing is

known about an array reference, then no filtering is done. If enough instances can be

filtered out, then point-to-point synchronization becomes realizable. Thus even though

nothing may be known about some array indices, point-to-point synchronization can be

used if enough instances have been filtered out by other indices.

When instance relationships are computed, one can then focus on deriving synchro-

nization relationships between processors. By applying processor partitioning functions,

one can make the transition between instances and processors. Likewise, sequential loop

indices can be treated as timestamps to indicate temporal relationships. A requirement

can then be imposed that synchronization must only be done with earlier instances to

avoid cycles of synchronization. Even with this rule, deadlocks can still occur due to

conditional execution. If a source statement is not executed, then a sink statement may

be waiting indefinitely for the synchronization assertion. Thus one must transform a

program to ensure that any control path contains a synchronization assertion. By follow-
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ing the above considerations, a provably deadlock-free synchronization scheme can be

derived.





Chapter 5

Optimizations

5.1 Introduction

The algorithms presented in the previous chapter transform a program with barrier

synchronization semantics into one that uses point-to-point synchronization wherever

possible. However, since the predominant goal of this thesis involves producing im-

proved performance over straightforward barrier synchronization schemes, optimizations

must also be included in the transformation in order to increase efficiency. Whereas the

previous chapter provided algorithms for general array references, this chapter focuses

on providing optimizations for particular usage patterns. Even with such assumptions,

the problems can be quite complex, and the task of integrating the optimizations into a

general framework is a topic of further study.

We begin with a discussion of an alternate synchronization primitive, one that uses

message-primitives rather than shared-memory accesses. The next section then focuses

on eliminating dependences that are redundant due to compositions of other depen-

dences. Finally, a novel technique for removing false dependences by replicating arrays

is discussed.

5.2 Synchronization by message-passing

Since performing synchronization to support data dependences is most applicable in

the shared-memory programming model, the point-to-point synchronization constructs

presented in the previous chapter also make use of a shared-memory model. How-

ever, communication using a cache-coherent shared-memory model incurs significant

overhead that can be alleviated by using explicit message-passing. Recall that synchro-

nization is done in the shared-memory environment with the source processor setting a

variable to some value and the sink processor spin-locking until the variable reaches a

particular value. Because of cache support, spin-locking produces no network traffic and

communication is done only after the source processor asserts the value, which causes

an invalidation of the value in the cache of the sink processor.
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Figure 5-1: Message-passing vs. shared-memory

The run-time differences of the two models are illustrated in Figure 5-1. In scenario

1, the source processor asserts the synchronization after the sink processor begins check-

ing for it. After the source asserts, four messages must be sent to update the caches

before the sink processor sees the new value. Instead, synchronization through explicit

sending of a message requires only the time for one message and additional overhead

for message processing by the sink processor. Even when the source processor asserts

much earlier than the sink begins checking as in scenario 2, using messages allows

synchronization to be done with only the message-processing overhead rather than the

request-reply round trip of the shared-memory paradigm. Figure 5-2 shows the differ-

ence between execution profiles of shared-memory and message-passing synchronization

mechanisms. Note that the gaps representing idle synchronization intervals are smaller

under the message passing scheme. However, the computation blocks also include extra

time required for processing incoming messages.

The same disadvantages caused by the request-reply protocol of the shared-memory

interface allows it to be more flexible than one-way message sends. In cases where pro-

cessor synchronization targets are not known at compilation, one-way messages cannot

be used as easily. For a particular synchronization, if the source processor is depen-

dent on a run-time variable, the sink processor can determine the source processor at

run time and then issue a memory request to check the synchronization variable. Ac-
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Figure 5-2: Execution of Figure 1-3 using different point-to-point synchronization schemes

complishing the same task using message-passing requires either the same request-reply

scheme to be followed or computation by each potential source processor of whether it is

the one that would have gotten the request. Although one can imagine cases where this

computation can be done at reasonable cost, this section only focuses on implementing

synchronization through message-passing when processor relationships can be statically

determined.

In the shared-memory model, each synchronization is done through reading and

writing to a variable that is shared by the source and sink processors. This same general

technique can be supported in the message-passing model by maintaining a copy of the

variable on the sink processor. To assert a synchronization, the source processor sends

the new variable value to the sink processor. Upon the reception of each message, the

sink processor updates its local variable to the new value stored in the message. To

check for synchronization, the sink processor spins until its local variable reaches the

desired value. These mechanisms assume a machine model where incoming messages

are handled through processor interrupts. If messages must be explicitly received, then

the sink processor merely spins until a message is received that contains the desired

value. Note that the requirements for avoiding deadlocks in the shared-memory model

also allow a message-passing scheme to be implemented without danger of deadlocks.

In the above scheme, sink processors are computed with respect to source processors

as opposed to the relationship in the shared-memory model where source processors are

computed with respect to sink processors. This is essentially equivalent to finding the

inverse of the processor target function P�(p; bT) of the last chapter. One can also imagine



116 CHAPTER 5: OPTIMIZATIONS

inverting the temporal target function T�(p; bT) to compute the sink instance at which the

synchronization is valid. Unfortunately, this inverse relationship does not completely

generalize. As motivation, consider the case where the sink processor does not perform

a synchronization in the shared-memory scheme. Even though the value asserted by the

source processor is not read, the program still operates correctly. In the message-passing

scenario, if the source processor does not send a message, but the sink processor requires

one, then deadlock occurs. To be safe, the source processor must always send if there is

a chance that the sink processor needs to check the result. Thus in cases where unknown

expressions cause processor relationships to not be known, each source processor may

be required to broadcast to all possible sink processors. Since these broadcasts may be

very inefficient, the shared-memory interface provides a better solution in those cases.

Implementing synchronization through message-passing is only applicable to ma-

chines that provide support for both the shared-memory and message-passing mod-

els such as the MIT Alewife multiprocessor [Aga91]. On machines that only support

message-passing, additional program transformations must be done to manage data shar-

ing through explicit communication. Synchronization can be accomplished implicitly in

such cases since processors are specifically aware of data sharing with other proces-

sors. Other shared-memory multiprocessors also contain mechanisms to overcome the

inefficiencies of supporting cache-coherent protocols. The Stanford Dash multiproces-

sor [Len92] allows processors to write values directly to caches of other processors.

Although it is less general, such a mechanism may support point-to-point synchroniza-

tion even better than message-passing schemes since no message-processing overhead is

required.

5.3 Redundant dependences

Whether synchronization is carried out through messages or shared-memory ac-

cesses, the execution of each synchronization primitive adds overhead to the total pro-

gram running time. In many programs, not all synchronizations derived in the previous

chapter need to be supported. An optimization phase can be included to remove redun-

dant dependences and thereby minimize the number of synchronizations invoked at run

time.
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5.3.1 Motivation

Although dependences exist between individual instances, synchronizations are per-

formed between processors. However, for simplicity, examples in the remainder of this

chapter assume a one-to-one relationship between spatial coordinates and processors.

In the program of Figure 5-3, two flow dependences exist: �1 = S1hi; j�1i �f S2hi; ji
and �2 = S1hi � 2; j � 2i �f S3hi; ji. As illustrated, the gray arrows corresponding to

dependence �2 are redundant because they can be formed from the transitive closure of

black arrows, which correspond to dependence �1 and execution ordering of statements

on each processor. In general, a dependence is redundant if it is automatically satisfied

by the execution ordering that is implied by other dependences.

do (i=1,3) {
doall (j=1,5)
a[i,j] = ...; /* S1 */

doall (j=1,5)
... = a[i-2,j-2]; /* S2 */

doall (j=1,5)
... = a[i,j-1]; /* S3 */

}

i=1 i=2 i=3

j=1

j=2

j=3

j=4

j=5

S1 S2 S3 S1 S2 S3 S1 S2 S3

Figure 5-3: Redundant dependences

5.3.2 Problem definition

Formally, a dependence � between instances S1~!
1
0 and S2~!

2
0 is redundant if it is

satisfied by a composition of other non-redundant dependences during any execution of

a program. In other words, there exists a sequence of m non-redundant dependences

f�ig between instances S1
i ~!

1
i and S2

i ~!
2
i with the following properties:

8 i S1
i+1~!

1
i+1 is executed after S2

i ~!
2
i on each processor

S1
1 ~!

1
1 is executed after S1~!

1
0 on each processor

S2
m~!

2
m is executed before S2~!

2
0 on each processor

Note that the sequence of dependences that compose to cause � to be redundant must

itself not include any redundant dependences. This condition is required when one con-

siders two lone dependences that are identical. Since only one of those two dependences

can be redundant, the determination of redundancy lies on the order of definition or
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algorithm traversal. In the algorithms that follow, dependences are checked in a well-

defined order based on dependence distance. Dependences with identical distance are

ordered arbitrarily depending on implementation.

Although dependences occur between instances of statements, this section focuses

on removing redundant dependences between lexical statements. A lexical dependence

between two statements represents the processor synchronization relationship for depen-

dences between statement instances. Thus rather than focusing on dependences between

individual instances, we instead study dependences between processors at particular

statements. A more concrete definition of lexical dependences for particular situations

will be given later. The word lexical will be omitted when the context is clear.

Unfortunately, removing all dependences that can be lexically redundant is an unde-

cidable problem because it can require the knowledge of values that are only known at

run time. As shown in Figure 5-4, the flow dependence between S1 and S2 is redundant

only if the value of x is always 10 or greater. If x is computed from some undecidable

function such as the halting problem, then establishing its value is also undecidable.

doall (j=1,100) b[j] = ...; /* S1 */
do (i=1,x) {
doall (j=1,100) a[j] = ...;
doall (j=1,100) ... = a[j-1];

}
doall (j=1,100) ... = b[j-10]; /* S2 */

Figure 5-4

Furthermore, even in straight-line code without conditionals or sequential loops,

the problem of finding redundant dependences is NP-hard, as shown in the following

claim. As a side note, the problem is NP-complete since verification that a dependence

is redundant can easily be done in polynomial time.y

Claim 5.1: Even with no sequential loops and conditionals, Finding redundant depen-

dences is NP-hard.

Proof: The proof is based on reduction from the subset-sum problem: Given a set inte-

gers U = fu1; : : : ; ung and an integer b, the question of whether a subset U 0 � U exists

y Midkiff and Padua [MP87] mention that finding redundant dependences in DOACROSS loops is NP-
hard. Their proof is probably similar to the one given here.



SECTION 5.3: REDUNDANT DEPENDENCES 119

such that
P

u2U 0 u = b is NP-hard [GJ79][Kar72]. The program of Figure 5-5 can be cre-

ated from the values of ~y and b where m =
P

i juij. Assume that the program is run on

a machine with 3m + 1 processors so that there is a one-to-one correspondence between

loop iterations and processors. The problem then becomes one of whether the depen-

dence � between statements S1 and S2 is redundant. If that is the case, then some

composition of dependences of the ai arrays must have combined to satisfy �. Conse-

quently, a solution exists to the subset-sum problem. Conversely, if no composition of

dependences exist, then no solution exists to the subset-sum problem. ut

doall (j=2m,3m) c[j] = ...; /* S1 */

doall (j=m,4m) a1[j] = ...;
doall (j=m,4m) ... = a1[j-u1];
...
doall (j=m,4m) an[j] = ...;
doall (j=m,4m) ... = an[j-un];

doall (j=2m,3m) ... = c[j-b]; /* S2 */

Figure 5-5

Fortunately, the above problem is not NP-complete in the strong sense and can be

computed in pseudo-polynomial time [GJ79]. Solutions exist for these problems whose run-

ning times are exponential in the length of the integers but polynomial in the value of

the integers. The above subset-sum problem can be solved by a dynamic-programming

algorithm that is polynomial in max(b; n; log(maxui)) [CLR90]. Furthermore, since the ex-

ponential growth in the example involves managing processor offsets, such quantities are

limited by the number of processors on a machine. This leads one to be optimistic about

the prospects of finding a polynomial-time algorithm to detect redundant dependences

in straight-line code.

5.3.3 A solution for a simple problem domain

For simplicity, we first focus on programs S that take the form of a sequence

S1; : : : ; Sn of non-nested DOALL statements. Data dependences between iterations in

different DOALL loops give rise to dependences between processors assigned to those

iterations. Since DOALL loops are not nested, the processor space can be viewed as a

one-dimensional array. Thus synchronization relationships relative to a sink processor
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can be expressed as a linear function of the sink processor. In the following presentation,

we focus on relationships that are purely integer offsets and relegate the treatment of gen-

eral linear functions to a later discussion. The illustration of NP-hardness in Figure 5-5

represents a program with such assumptions.

Unfortunately, the subset-sum solution is not generally applicable to the above for-

mulation due to the fact that address offsets can be positive as well as negative. Instead,

the problem can be viewed as one of general integer linear programming which can also

be solved in pseudo-polynomial time by dynamic programming [Sch86]. However, rather

than computing whether each individual dependence is redundant, we seek to consoli-

date the intermediate dependence computations through an algorithm which computes

redundancy information for all dependences at the same time.

With the above assumptions, a lexical dependence can be represented by the source

and sink statements Si and Sj and an integer offset d�. A lexical dependence � is re-

dundant under the following definition: For each sink processor p and source processor

p� d�, where p executes Sj and p� d� executes Si, there are m non-redundant depen-

dences f�k : 1 � k � mg from source statements Sik to sink statements Sjk with offsets

dk and processors pk such that:

p0 = p� d� and pm = p (5.1)

Each processor pk executes Sjk and Sik+1 (5.2)

8 k pk�1 � pk = dk (5.3)

8 k jk � ik+1 (5.4)

i � i1 and jm � j (5.5)

Due to some subtleties involving redundant dependences, an algorithm is first pre-

sented to find pseudo-redundant dependences, so-called because they possess only some

characteristics of truly redundant dependences. Let the dependences between two state-

ments Si and Sj be represented by the function D(Si; Sj). Each dependence � 2 D(Si; Sj)

is associated with an offset d� which is computed with respect to the sink processors.

A dependence � from Si to Sj is pseudo-redundant if there are m non-pseudo-redundant

dependences f�k 2 D(Sik ; Sjk ) : 1 � k � mg with offsets dk such that the following are

true:
X
k

dk = d� (5.6)
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8 k jk � ik+1 (5.7)

i � i1 and jm � j (5.8)

Since straight-line code implies that each ik < jk, a sequence of dependences that satisfy

property (5.7) appear in lexical order in a program and is called a cascade of dependences.

Observe that true redundancy implies pseudo-redundancy since the definition of pseudo-

redundancy is identical to that of true redundancy without rules (5.1) and (5.2).

In the following presentation, the value R(Si; Sj) represents the set of processor

offsets whose dependences are satisfied by cascades of dependences involving statements

Si through Sj . The table represented by R(Si; Sj) forms the basic update structure of the

dynamic-programming algorithm. At each step j, the algorithm in Figure 5-6 computes

R(Si; Sj) for each source statement Si. The value of R(Si; Sj) can be derived from the

previous value of R(Si; Sj�1) and any new dependences that include Sj as the sink

statement.

Algorithm delRedun1 (S;D):

Initialize all R(Si; Sj) to f0g.

for i from 1 to n do

for j from i + 1 to n do

R(Si; Sj) = R(Si; Sj�1)

for each dependence � from Sk to Sj such that k > i do

for each d0 2 R(Si; Sk) do

R(Si; Sj) = R(Si; Sj) [ fd0 + d�g
for each dependence � in D(Si; Sj) do

if d� 2 R(Si; Sj) then

� is a pseudo-redundant dependence

R(Si; Sj) = R(Si; Sj) [ fd�g

Figure 5-6: Finding pseudo-redundant dependences in straight-line code

Let d+ and d� be maximum and minimum processor offsets and define the offset

size as s = d+ � d� + 1. The above algorithm requires n2 steps for the outer two loops, b

steps for the inner loop where b is the maximum number of dependences to any vertex,
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and s steps for updating R(Si; Sj). The total running time is thus O(n2bs), which is near

O(n3) if one assumes that s is constant and that b scales as n.

The following claims show that the above algorithm deletes exactly those lexical de-

pendences that are pseudo-redundant. Since the algorithm follows an iterative structure,

the proofs make heavy use of induction and related techniques to show correctness.

Lemma 5.2: R(Si; Sj) � R(Si0 ; Sj0) if i0 � i and j0 � j.

Proof: For i0 = i and j0 � j, the above is trivial since each computation of R(Si; Sj)

begins with the value of R(Si; Sj�1). If i0 � i and j0 = j, the statement can be proven by

induction on j: For i = j, the lemma is true since R(Si; Si) = f0g. The inductive step is

also straightforward since any sets unioned to R(Si; Sj) are also unioned to R(Si0 ; Sj).

The general case can be shown by applying both of the above arguments. ut

Claim 5.3: A dependence � is detected by delRedun1 () � is pseudo-redundant.

Proof: The proof is done for each direction of the claim individually.

(() We first claim that each cascade of dependences f�1; : : : ;�mg is represented by

the set of processor offsets R(Si1 ; Sjm), or equivalently,
P

1�j�m dj 2 R(Si1 ; Sjm). By

contradiction, assume that there are cascades that are not represented by R(Si1 ; Sjm).

Let f�1; : : : ;�mg be the shortest cascade that is not represented. If m = 1, then a

contradiction arises since d1 2 R(Si1 ; Sj1 ). If m > 1, then the cascade f�1; : : : ;�m�1g
is represented and

P
1�j�m�1 dj 2 R(Si1 ; Sjm�1 ) which also implies that

P
1�j�m�1 dj 2

R(Si1 ; Sim) by the lemma. However, at algorithm step i = i1 and j = jm, the dependence

�m is found for k = im. Therefore dm +
P

1�j�m�1 dj 2 R(Si1 ; Sjm). Also by the above

lemma, any cascade of dependences is thus found by the algorithm and all redundant

dependences are removed.

()) We need to show that each offset in R(Si; Sj) corresponds to a cascade of de-

pendences between Si and Sj . By contradiction, assume otherwise. Let i and j be the

respective loop values for the first violation of the above. Then the violation must have

happened when considering dependences from Sk to Sj . However, since this the first

violation, we know that each R(Si; Sk) is correct and consequently that the resulting

R(Si; Sj) computation is correct, which leads to a contradiction. ut

One can also imagine a different algorithm for removing redundant dependences

which views statements as nodes in a graph and dependences as edges in the graph with
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weights equal to sets of offset values. A transitive closure can be formed by applying

the Floyd-Warshall algorithm to the graph, which results in a running time of O(n3s).

However, as additional language constructs are considered, the more direct treatment of

program structure in delRedun1 allows easier incorporation of these constructs.

doall (i=1,5)
a[i] = ...; /* S1 */

doall (i=1,5)
b[i] = ...; /* S2 */

doall (i=1,5)
... = b[i-3]; /* S3 */

doall (i=1,5)
c[i] = ...; /* S4 */

doall (i=1,5)
... = c[i+2]; /* S5 */

doall (i=1,5)
... = a[i-1]; /* S6 */

i=1

i=2

i=3

i=4

i=5

S1 S2 S3 S4 S5 S6

Figure 5-7: Redundant dependences and processor bounds

The above definition of pseudo-redundant dependences cannot be used to define

redundant dependences since processor bounds have been ignored. In the program of

Figure 5-7, the lexical dependence from S1 to S6 consists of four actual dependences

between instances. However, only two of those dependences (drawn in gray) are redun-

dant since cascades that would make the other dependences redundant are outside of

the processor bounds of the loops. Consequently, the lexical dependence is not redun-

dant. To accurately compute these cases, we associate with each processor offset d in

R(Si; Sj) a range of sink processors E(d; Si; Sj) for which the offset d is effective. The

range specified by E(d; Si; Sj) cannot be outside of the processor bounds of the machine.

For each dependence �, we introduce the notation B(�) to represent sink processors

affected by the dependence. Its value can be computed from the processor range of the

sink statement intersected with the processor range of the source statement minus the

dependence offset d�. When a dependence � is added to a cascade to form a new offset,

the new range of sink processors for the cascade is formed from the old range minus

d� and intersected with the processor range for the dependence. A pseudo-redundant

dependence � is redundant only if its sink processor range B(�) is within the processor

range of the cascade. A new algorithm which incorporates the above computations is

shown in Figure 5-8. Changes from delRedun1 are denoted by the symbol ‘‘
p

’’. The
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running time of the algorithm is the same as that of delRedun1 if processor ranges are

specified efficiently.

Algorithm delRedun2 (S;D;B):

Initialize all R(Si; Sj) to f0g.

Initialize all E(d; Si; Sj) to ;.
p

Initialize all E(0; Si; Sj) to all processors.
p

for i from 1 to n do

for j from i + 1 to n do

R(Si; Sj) = R(Si; Sj�1)

for each dependence � from Sk to Sj such that k > i do

for each d0 2 R(Si; Sk) do

R(Si; Sj) = R(Si; Sj) [ fd0 + d�g
E(d0 + d�; Si; Sj) = E(d0 + d�; Si; Sj) [ [(E(d0; Si; Sk)� d�) \ B(�)]

p

for each dependence � in D(Si; Sj) do

if d� 2 R(Si; Sj) and B(�) � E(d�; Si; Sj) then
p

delete the redundant dependence �

R(Si; Sj) = R(Si; Sj) [ fd�g
E(d�; Si; Sj) = E(d�; Si; Sj) [ B(�)

p

Figure 5-8: Deleting redundant dependences

Claim 5.4: A lexical dependence � is removed by delRedun2 () � is redundant.

Proof: The proof is done for each direction of the claim individually. Let Si0 and Sj0 be

the source and sink statements.

(() Since redundancy implies pseudo-redundancy, � is detected by delRedun1 . Based

on the observation that the computation of R(Si; Sj) is identical in both algorithms, we

only need to show the following: For any processor p such that p executes Si0 and p�d�
executes Sj0 and there exists m dependences �k and processors pk such that rules (5.1)

through (5.5) hold, then p � d� 2 E(d�; Si0 ; Sj0). The above can be proven by showing

that each pk 2 E(
P

1�k0�k dk0 ; Si0 ; Sjk ) by induction on k. For each k, we know that

pk 2 B(�k) otherwise pk can’t execute Sjk . For k = 1, we know that at algorithm loop

iteration i = i0 and j = j1, dependence �1 is considered and p1 2 E(d1; Si0 ; Sj1 ) since

p1 = p � d1. Inductively, for loop values i = i0 and j = jk, dependence �k is considered
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and pk 2 E(
P

1�k0�k dk0 ; Si0 ; Sjk ) since pk = p�dk�
P

1�k0�k�1 dk0 and p�P1�k0�k�1 dk0 2
E(
P

1�k0�k�1 dk0 ; Si0 ; Sjk�1 ) by induction. Therefore, p � d� 2 E(d�; Si0 ; Sj0) and � is

redundant.

()) Suppose by contradiction that � is not redundant. Note that � must be pseudo-

redundant since delRedun2 only removes a subset of dependences removed by delRedun1 .

Thus there exists a source processor p such that p executes Si0 and p � d� executes Sj0

but there does not exist dependences �k and processors pk such that rules (5.1) and (5.2)

hold. Since rule (5.1) is trivially satisfiable, it must be (5.2) that does not hold. Thus

for dependences �k and processors pk that satisfy all the other rules, there exists some

k0 such that processor pk0 does not exist or cannot execute Sj
k0

or Si
k0+1

. Let k be the

smallest number such that the above is true. Then at algorithm loops i = i0 and j = jk,

dependence �k is considered. There are three cases:

(a) If pk does not exist, then it cannot possibly be in E(
P

1�k0�k dk0 ; Si0 ; Sjk ).

(b) If pk cannot execute Sjk , then pk =2 B(�k).

(c) If pk cannot execute Sik+1 , then pk+1 = pk � dk+1 =2 B(�k+1) and is detected in the next

iteration.

In all three cases, the dependence is not deleted. ut

5.3.4 General removal of redundant dependences

Support for additional language features can be presented in order of complexity of

modifications to the algorithm. First, we consider supporting synchronization relation-

ships that are general linear functions of the sink processor address. Rather than merely

adding offsets to compose the effects of two dependences, the linear functions themselves

must be composed, with certain restrictions. Since the function domains involve integers,

the composition of functions is not straightforward. For example, the composition of the

functions 2p and b1
2pc does not return p, but rather 2b1

2pc. The task of managing these

linear functions and deducing their inclusion relations can become expensive, and one

may be forced to ask if these cases arise often enough in a program to justify the cost.

In this thesis, the focus is on processor relationships that are integer offsets and absolute

source processor addresses. The latter represents cases where all processors synchronize

to one processor such as in a data broadcast, and can be supported by a straightfor-

ward extension to delRedun1 to allow for absolute processor values as well as offsets

in R(Si; Sj). A dependence that requires barrier synchronization can be viewed as a
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synchronization with all absolute processor addresses.

When DOALL loops are allowed to be nested, the processor space must be viewed as

being multi-dimensional rather than one-dimensional. In this context, dimensions refer

exactly to processor partitioning sets in the previous chapter. When considering synchro-

nization relationships between sets of loop nests with similar processor partitionings,

processor relationships specify a linear function on each sink dimension as well as the

source dimension to which the linear function maps. If linear functions are restricted

to be address offsets or absolute addresses as above, then composition and inclusion

of processor relationships can still be computed efficiently. Unfortunately, when differ-

ent loop nests have different processor partitions or different numbers of nested DOALL

loops, then finding all redundant dependences is too inefficient. Instead, a heuristic can

be used which treats the partition space of each set of nested loops separately without

regard for processor relationships that are not explicitly specified by the partition func-

tions. For example, when relating a processor space that is one-dimensional to rows

in a two-dimensional space, each row is analyzed separately without consideration for

the fact that processors in the one-dimensional space correspond to many rows in the

two-dimensional space.

Up to this point, the program structure has been assumed to be a sequence of DOALL

loops. Now we remove this assumption and consider other control flow constructs. The

presence of sequential loops extend the program flow graph to contain back edges as

well as forward edges. Consequently, any scheme to detect redundant dependences

must allow for the search path to traverse over the same node many times. In addi-

tion, temporal synchronization relationships must now be taken into account, as shown

in Figure 5-9. For simplicity, we consider only the flow dependences in the example.

Although the dependence on variable a from S1 to S2 is not redundant using forward

edges only, it is redundant when one uses the back edges from S3 to S1. Of course,

this is only possible because the dependence spans two iterations of the sequential loop,

as would be specified by the temporal target function. In the following discussion, we

assume that a reasonable lower bound can be established on the number of iterations

executed in any sequential loop. We also assume temporarily that sequential loops are

not nested.

Since the program flow graph becomes cyclic with the addition of back edges,

schemes to detect redundant dependences must now be able to guarantee termination.
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do (i=1,100) {
doall (j=1,7)

a[i][j] = f(c[i-1][j-2]); /* S1 */
doall (j=1,7)
b[i][j] = g(a[i-2][j-5]); /* S2 */

doall (j=1,7)
c[i][j] = h(b[i-1][j-3]); /* S3 */

}

i=1 i=2 i=3

j=1

j=2

j=3

j=4

j=5

S1 S2 S3 S1 S2 S3 S1 S2 S3

j=6

j=7

Figure 5-9: Redundant dependences and sequential loops

One solution can be to limit the number of back edges traversed to be equal to the

lower bound of the number of loop iterations. However, this number can be very large

in many programs, and the running time of an O(n3) algorithm where n includes the

number of sequential loop iterations can cause programmers to turn off optimizations

altogether. A second option involves fixing the number of back edges that the algorithm

can traverse and give up on the goal of finding all redundant dependences. Fortunately,

it is not always necessary to traverse such a large number of back edges to find all

redundant dependences due to the fact that synchronization relationships typically span

only a few sequential loop iterations, as shown in Figure 5-9. Since processor offsets cor-

respond to processor synchronization targets, we introduce the notion of temporal offsets

to represent temporal synchronization targets. A temporal offset t� of a dependence �

indicates the number of iterations of the sequential loop between the dependent sink and

source instances. For a particular dependence, its temporal offset specifies the maximum

number of back edges that one needs to traverse to decide whether the dependence is

redundant.

The above idea of using temporal offsets is applicable only to dependences within a

sequential loop. When a dependence � spans across a sequential loop as in Figure 5-5,

it may still be necessary to traverse a large number of back edges. However, temporal

offsets of dependences inside the loop can also be used to place an upper limit on the

number of iterations needed to make � redundant. Let d1; : : : ; dm be the processor offsets

and t1; : : : ; tm be the temporal offsets for dependences in the loop. The redundancy

problem can be stated as the following integer linear programming problem:

Find ~x to minimize f~t � ~x : xi � 0 and ~d � ~x = d�g

where ~x represents the number of times that each dependence is ‘‘used’’ in forming a
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cascade with processor offset d�. From [Sch86], each component of ~x is bound by ms

where s is the maximum absolute value of di and d�. Consequently, one only needs

to traverse m2s back edges to find all redundant dependences even with very large

sequential loop bounds.

A dynamic programming algorithm for finding pseudo-redundant dependences is

shown in Figure 5-10. The offsets resulting from cascades of dependences R(Si0 ; Si; `)

now include a third dimension to represent the number of back edges that have been

traversed. The limit of back edges L can either be set to a small constant or to the maxi-

mum value of m2s and temporal offsets for all loops to find all redundant dependences.

Note that if L = 1, then we recover the algorithm of Figure 5-6. Any dependence �

whose source and sink statements are outside of a loop is given temporal offset t� = 1.

The outer loop iterates over the number of back edges that a cascade can possess. New

cascades are formed from current dependences combined with older cascades. These

combinations take into account the temporal offsets of each dependence and uses cas-

cades of the appropriate iteration. Recalling that n is the number of statements in a

program, the running time of this algorithm is near O(Ln3).

Algorithm delRedun3 (S;D):

Initialize all R(S1; S2; `) to f0g.

for ` from 1 to L

for i from 1 to n do

for j from 1 to n do

R(Si; Sj ; `) = R(Si; Sj�1; `) [R(Si; Sj ; `� 1)

if a back edge exists from Sh to Sj then

R(Si; Sj ; `) = R(Si; Sj ; `) [R(Si; Sh; `� 1)

for each dependence � from Sk to Sj do

for each d0 2 R(Si; Sk; `� t�) do

R(Si; Sj ; `) = R(Si; Sj ; `) [ fd0 + d�g
for each dependence � in D(Si; Sj) do

if d� 2 R(Si; Sj ; `) and t� � ` then

� is a pseudo-redundant dependence

R(Si; Sj ; `) = R(Si; Sj ; `) [ fd�g

Figure 5-10: Finding pseudo-redundant dependences with sequential loops
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When sequential loops are nested, the algorithm must be modified to represent

temporal offsets as tuples rather than integers. If L is the limit of back edges that

one can traverse for each loop, then the outer loop contains �L iterations where � is the

maximum sequential loop nesting level. Temporal dependence distances contain tuples

whose length is determined by the number of outer sequential loops of the source and

sink statements. The running total of dependence offsets R(Si; Sj ; `) is extended to allow

for � additional dimensions, one for each loop nesting. The running time of such an

algorithm is thus O(�Ln3).

Unlike sequential loops with a lower bound on iterations, conditionals in a pro-

gram imply that there are some statements that may not be executed by any processor.

Consequently, an algorithm for removing redundant dependences in programs with con-

ditionals must pay more attention to program flow. Since the number of paths between

a source and sink statement can potentially be exponential in program length, inter-

mediate information must be somehow gathered at join points for later phases of the

algorithm. Although a polynomial-time algorithm can be given to remove all redundant

dependences in programs with conditionals, we instead recommend an approach based

on program structure as given in the next section.

5.3.5 Redundant dependences in structured programs

The previous section presented algorithms with the goal of eliminating all redun-

dant lexical dependences in a program. Unfortunately, the O(n3) running times of such

approaches can result in very slow compiler execution, particularly for large procedures

where n approaches 1000 or more statements. Instead, the problem can be alleviated by

applying algorithms that do not remove all dependences, but possess the potential of

being more efficient.

Consider for example the problem of removing redundant dependences in the pres-

ence of conditionals. As mentioned above, complex algorithms can be used to summa-

rize information at join points and detect all redundant dependences. However, one

can also take the view that the source and sink statements of a dependence usually ap-

pear at the same lexical level in a program. By focusing on such dependences, more

intuitive algorithms can be developed. With each statement S, we associate a list of

processor offsets F(S) that are satisfied by the statement. Redundant dependences are

computed and detected recursively in a bottom-up manner. In the case of a conditional
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S = if (P ) S1 else S2, one can check for redundant dependences on each branch of the

conditional individually. The resulting list of offsets for the conditional can be defined as

the intersection of processor offsets for each branch: F(S) = F(S1)\F(S2). Although this

scheme does not account for redundant dependences such that between S1 and S4 as

illustrated in Figure 5-11, it does exhibit a more modular structure than the ones given

previously.

doall (i=1,100) a[i] = ...; /* S1 */
if (p) {
doall (i=1,100) ... = a[i-2]; /* S2 */
doall (i=1,100) ... = a[i-3]; /* S3 */
doall (i=1,100) ... = a[i-5]; /* S4 */

}

Figure 5-11

One can begin the specification of the recursive algorithm by observing that each

sequence of statements can be analyzed as in delRedun1 and delRedun2 . An additional

feature must be added to these algorithms to allow for the fact that statements themselves

can contain processor offsets. Thus each R(S; S) is be initialized to F(S) rather than just

f0g. The resulting processor offsets is then the processor offsets of the first and last

statements in the sequence. For sequential loops, we can use the same strategy and

obtain processor offsets for a certain number of iterations of the loop. Such a recursive

algorithm is outlined in Figure 5-12. Although the order of growth in running time

is not larger than the previous algorithms, the value of n can be much smaller since

the dynamic programming is only applied to statements at the same lexical level rather

than all statements in a program. Note that some details are omitted, particularly in the

interface with previous algorithms. However, such modifications are straightforward if

one is aware of the spirit of the above algorithms.

5.4 Eliminating false dependences

Although one must provide synchronization for all dependences that arise in a pro-

gram, it is also useful to examine whether all such dependences are indeed necessary.

Flow dependences represent actual transaction of information from the writing proces-

sor to the reading processor and consequently cannot be eliminated easily. However,

output and anti-dependences are false dependences in the sense that they occur only
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Algorithm delRedun4 (S;D):

For different cases of statement S:

S = [[V = E]]

return f0g
S = [[if (P ) S1 else S2]]

t1 = delRedun4 (S1;D)

t2 = delRedun4 (S2;D)

return t1 \ t2
S = [[while (P ) S0]]

delRedun4 (S0;D)

return f0g
S = [[do (V =K,K,K) S0]]

delRedun3 (S0;D)

return result for highest `

S = [[doall (V =K,K,K) S0]]

return delRedun4 (S0;D)

S = [[{S1,: : :,Sn }]]

delRedun1 (fS1; : : : ; Sng;D)

return R(S1; Sn)

Figure 5-12: Finding pseudo-redundant dependences recursively

because memory locations are being overwritten. In a single-assignment model, these

dependences do not exist. Several works in the literature have introduced optimizations

to remove such dependences by replicating arrays for every processor or loop itera-

tion [Fea88][MAL93][Kum87]. While these techniques produce good results for the goal

of parallelization, their application to the goal of reducing synchronization is not com-

pletely appropriate. First, we review the motivation for eliminating anti-dependences

with an example.

In Chapter 1, an example is shown where anti-dependences can be eliminated by

making two versions of an array. The example given here requires that an array be

replicated into three copies before anti-dependences can be eliminated. Consider the
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do (i=1,100) {
doall (j=1,1000)
b[j] = a[j]; /* S1 */

doall (j=1,1000)
a[j] = (b[j-2]+b[j+1])*.5; /* S2 */

}

j=1

j=2

j=3

j=4

j=5

S1 S2 S1 S2S1 S2 S1 S2

i=1 i=2 i=3 i=4

Figure 5-13: A candidate for anti-dependence elimination

program in Figure 5-13. The following flow dependences exist between S1 and S2:

S1hi;j-2i �f S2hi;ji
S1hi;j+1i �f S2hi;ji

In a sequential loop with index i, if a flow dependence occurs between two instances

S1hi; j1 + d1; : : : ; jn + dni and S2hi; j1; : : : ; jni and jk are all indices of DOALL loops inside

the sequential loop and S1 and S2 operate on the same set of array elements, then an

anti-dependence exists between S2hi � 1; j1 � d1; : : : ; jn � dni and S1hi; j1; : : : ; jni. This

observation arises from the fact that both flow and anti-dependences are due to a write

access and a read access. If a write must appear before a read in one iteration, then

the read of the next iteration must appear after the write. In the example, the following

anti-dependences exist between S2 and S1 and are highlighted in the illustration:

S2hi;j+2i � S1hi;ji
S2hi;j-1i � S1hi;ji

do (i=1,100) {
k = i mod R;
doall (j=1,1000)
b[k][j] = a[j]; /* S1 */

doall (j=1,1000)
a[j] = (b[k][j-2]+b[k][j+1])*.5; /* S2 */

}

Figure 5-14

Since all dependences involving array a are trivially satisfied, we focus on replicat-

ing array b. The program of Figure 5-14 shows a modification of the previous example
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to replicate array b into R copies. By increasing the number of copies of the array, the

temporal distance of each anti-dependence is also increased. As illustrated in Figure 5-15,

a replication factor of R = 2 does not result in any redundant dependences, but a repli-

cation factor of R = 3 causes all anti-dependences between S2 and S1 to be redundant.

Thus by maintaining three copies of the array b, we have eliminated all synchronization

requirements between the execution of statement S2 and that of statement S1. The only

remaining dependences that need to be supported are those flow dependences between

S1 and S2.

j=1

j=2

j=3

j=4

j=5

S1 S2 S1 S2S1 S2 S1 S2

i=1 i=2 i=3 i=4

2 copies

j=1

j=2

j=3

j=4

j=5

S1 S2 S1 S2S1 S2 S1 S2

i=1 i=2 i=3 i=4

3 copies

Figure 5-15: Dependences from replication of array b

From the above example, we see that the replication strategy makes use of shorter-

distance dependences to eliminate anti-dependences with only a small number of array

replications. This usage forms the primary difference between the elimination of false

dependences to reduce synchronization and such elimination to increase parallelism.

When one performs array replication for parallelism, the effort is only worthwhile if

there are no other dependences across loop iterations. If that criterion is met, then an

array can be ‘‘privatized’’ by being replicated across all processors, and all iterations of

the loop can be executed in parallel. Instead, in the context of synchronization, one has no

desire to try to execute the outer sequential loop in parallel due to the existence of flow

dependences across iterations. However, it is still advantageous to try to eliminate false

dependences in order to reduce synchronization overhead and to allow less restricted

execution of iterations. When anti-dependences appear across iterations of a sequential

loop, one can make use of the flow dependences that also arise to reduce the replication

factor.

Note that although the above discussion focuses on dependences across instances,

one can also apply the observations to dependences between processors. The dependence
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distances measured in DOALL loop iterations can just as easily be represented by distances

between processor partitions. The algorithms for finding redundant dependences with

sequential loops can then be adapted to find the minimum array replication factor needed

to eliminate anti-dependences.

When detecting redundant dependences in sequential loops, cascades are formed

from all dependences. If a dependence is contained a cascade and its temporal offset

spans a range greater than the cascade, then it is redundant. This scheme can be al-

tered to suit the current task by initially only considering flow dependences. Since the

temporal offset of anti-dependences are dependent on the amount of replication, anti-

dependences are initially checked for containment in cascades without consideration of

temporal offsets. If an anti-dependence can be redundant, then its replication factor

is the increase in temporal offset needed to make the anti-dependence redundant. An

algorithm is shown in Figure 5-16 for pseudo-redundant elimination. A correct imple-

mentation must also consider processor bounds as in delRedun2 . The symbol ‘‘
p

’’ is

used to denote differences from delRedun3 .

Algorithm delAnti(S;D):

Initialize all R(S1; S2; `) to f0g.

for ` from 1 to L

for i from 1 to n do

for j from 1 to n do

R(Si; Sj ; `) = R(Si; Sj�1; `) [R(Si; Sj ; `� 1)

if a back edge exists from Sh to Sj then

R(Si; Sj ; `) = R(Si; Sj ; `) [R(Si; Sh; `� 1)

for each flow dependence � from Sk to Sj do
p

for each d0 2 R(Si; Sk; `� t�) do

R(Si; Sj ; `) = R(Si; Sj ; `) [ fd0 + d�g
for each anti-dependence � in D(Si; Sj) do

p

if d� 2 R(Si; Sj ; `) and � involves array a then
p

� is redundant if a is replicated by `� t�
p

R(Si; Sj ; `) = R(Si; Sj ; `) [ fd�g

Figure 5-16: Eliminating pseudo-redundant anti-dependences
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The total replication factor R of an array a is equal to the sum of replications for

each anti-dependence in a loop plus one for the current array copy. The loop can then

be transformed to support the replication. A new array a0 is formed from a with an ad-

ditional dimension to allow for the use of a replication index. For each assignment to a0

in the loop, the index is incremented by one modulo R. One must also supply additional

code to copy from a to a0 before the loop and from a0 to a after the loop. Unfortunately,

synchronization must be inserted to satisfy the data dependences introduced by the new

copy statements. One can argue that since the new dependences are outside of the inner

loop, barrier synchronization can be used without too much penalty. However, this ar-

gument relies on the fact that the inner loop is invoked a large number of times. In fact,

if short compilation time were not an important issue, then point-to-point synchroniza-

tion could actually be implemented by once again invoking all compiler passes on the

new program.

Observe that the above scheme can also be used to eliminate output dependences in

a loop. However, in our experience, most array elements in a loop are modified by the

same processors. Consequently, output dependences that both require synchronization

and can benefit from the above analysis are rare.

5.5 Summary

This chapter discusses several optimizations to improve efficiency of programs that

use point-to-point synchronization. First, we focus on the synchronization mechanism it-

self. Although implementing synchronization primitives through cache-coherent shared-

memory accesses is straightforward, the underlying support of cache coherence results

in many message exchanges. Instead, messages can be sent directly from one processor

to another to perform synchronization. This scheme provides a faster synchronization

mechanism for cases where synchronization targets are known statically.

When a dependence between two processors is automatically satisfied by synchro-

nization to support other dependences, then the dependence is redundant. Even though

the general problem of eliminating all redundant dependences is undecidable, most pro-

grams exhibit characteristics that allow for many redundant dependences to be detected.

Dynamic-programming algorithms can be employed to detect redundant dependences in

time O(n3) in the size of the program.
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Of the three types of data dependences, only flow dependences represent information

exchange. Output and anti-dependences only occur in a program because variables are

reused. Unlike analysis to remove false dependences to increase parallelism, the scheme

used here does not require all dependences to be eliminated. Thus we can make use of

existing flow dependences to cause false dependences to become redundant with only a

small number of replications. The same dynamic programming structure used to detect

redundant dependences can be employed to compute the number of replications needed

to eliminate false dependences.



Chapter 6

Results

The developments in this thesis rely on the premise that replacing barrier synchro-

nization with point-to-point synchronization produces an improvement in program ex-

ecution. Recall that there are two disadvantages of barrier synchronization: the cost

of propagating information globally, and the unnecessary idling of processors due to

global synchrony. The high overhead of global propagation is clearly evident in the

case of software-supported barrier schemes since 2 log(P ) messages must be sent to col-

lect and distribute information. However, hardware-assisted barrier schemes reduce this

overhead to be more similar to that of a single message. In contrast, point-to-point

synchronization often requires the transmission of several messages since each proces-

sor typically must synchronize with several other processors. Thus any advantage of

point-to-point synchronization over hardware barrier schemes must be due to unneces-

sary idling. Since deriving models that can accurately predict and use such dynamic

characteristics is very difficult, simulation results can instead be studied to evaluate the

impact of the above claims on parallel programs.

In this chapter, the simulation results of a number of applications using various

synchronization schemes are presented. First, we briefly discuss the implementation of

the compiler and its performance. A detailed discussion of a particular application is

then given, followed by results on the general set of benchmarks.

6.1 Applications

The benchmarks used here are selected due to the fact that they satisfy several im-

portant criteria. First, the parallel machine model used here is one that employs the

shared-memory semantics rather than message-passing for interprocessor communica-

tion. Rather than being a limitation, this feature actually allows easier porting of sequen-

tial code to a parallel machine. However, some available benchmark suites [Hey91] that

rely on message-passing semantics cannot be used. Second, the derivations of this thesis

assume that the input program contains fine-grained data parallelism. In other words,
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although each program is meant to be executed on a multiprocessor, its top-level orga-

nization is sequential, with parallelism occurring at lower levels. This assumption elim-

inates applications with high-level coarse-grain parallelism such as those in the Splash

benchmarks [SWG91]. Finally, since the analysis only performs optimization on array

indices that are linear functions of loop indices, applications are chosen whose array

accesses predominantly fit such characteristics. Consequently, sparse-matrix applications

with many indirect array accesses are omitted, as are algorithms such as Fast Fourier

Transform where array accesses are base-two exponential functions of loop indices. Al-

though one can execute the compiler on such examples, the resulting code would be no

different than if one were to employ a simplistic barrier scheme.

Application Description Stmts Inlined

Jacobi
Jacobi algorithm for solving Laplace’s
equation on a 48� 48 grid. [Fox88]

23

Red-black SOR
Solution to Laplace’s equation using a
checkerboard 48� 48 grid. [Fox88]

32

Gaussian Gaussian elimination on a 32�32 matrix. 25

Median
Repeated 3� 3 median filter on a 24� 24
image. [Lim90]

42

Doacross SOR
Successive over-relaxation on a 64 � 64
grid using DOACROSS loops.

19

WaTor
Ecological simulation presented by Fox,
et al on 32� 32 array. [Fox88]

219

Shallow
Weather prediction based on finite-
difference models of the shallow-water
equations [Sad75] on 32� 20 array.

155

Simple
Fluid flow simulation adapted to a 24�
24 array. [Cro78]

829 991

MICCG3D
Preconditioned conjugate gradient using
modified incomplete Cholesky factoriza-
tion on an 8� 8� 8 array. [YA93]

527 4270

A list of applications used to derive the results in this chapter is shown in the

table above. The two right-hand-side columns contain the number of statements in

the original application and the number statements in a version where procedure calls
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have been inlined. Although interprocedural support exists for array flow analysis, the

implementation of processor dependence computation does not treat procedure calls very

intelligently. Thus rather than tolerating barrier synchronizations before and after each

call to a parallel procedure, we instead inline those calls and perform the entire analysis

on the inlined program.

Of the above benchmarks, the first five are small code fragments that can form

the kernel of a real application. The last two represent real programs that have been

translated into the appropriate syntax for this thesis. Note that the problem sizes are

small due to two reasons. First, since results are obtained through simulation and not on

a real machine, small problem sizes allow data collection to be possible in a reasonable

amount of time. Second, small problem sizes per processor increase the significance

of synchronization costs since communication and synchronization overhead tends to

grow more slowly as a problem scales. Indeed, if one uses a large enough problem size

which allows large amounts of local computation, then efficiency is mostly affected only

by parallelization success, and few other compiler optimizations matter. One can also

consider future trends where many more processors are present in a machine than the

64 used here. As the machine size increases, the problem size per processor is likely to

decrease. In addition, the results obtained here are based on the simulation of somewhat

idealized hardware with very low communication costs. On a real machine, the actual

communication overhead can be much higher and can in turn affect execution time much

more drastically. This issue is discussed in more detail later in this chapter.

6.2 Simulation environment

The multiprocessor simulations for this thesis are done using Proteus [Bre91]. Al-

though this simulation tool allows varying many architectural parameters, the figures

here are obtained for a fixed hardware model. The imaginary machine is composed of

64 nodes arranged in a 8� 8 mesh with bidirectional links between nearest neighbors on

the mesh. Each node contains a processor, a memory unit, and a hardware-supported

coherent cache. The simulation uses the Alewife [Aga91] cache coherence protocol and

also allows for explicit message sending between processors. Although most communi-

cation is accomplished through the shared-memory interface, some operations such as

software-supported barrier synchronization are implemented using explicit messages.

A compiler which generates point-to-point synchronization for parallel programs has
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been implemented in C. The compiler accepts as input the syntax as given in the exam-

ples of this thesis and emits the augmented C code expected by Proteus. The different

phases of compilation are illustrated in Figure 6-1. Observe that only the top two phases

are implemented by conventional sequential compilers. Later phases correspond to anal-

ysis steps that are derived in this thesis.

Scalar flow analysis & SSA form

Propagation of linear induction vars.

Array flow analysis

Computation of statement dependences

Computation of processor dependences

Elimination of redundant dependences

Code generation

Parsing and preliminary analysis

Parallel program

Code for each processor

Figure 6-1: Compiler structure

The compilation time for several applications on a SparcStation IPC are shown in

Figure 6-2. For smaller applications, the almost instantaneous compiler response did

not allow for accurate measurement of individual phases. Illustrating the efficiency of

algorithms presented here, the compiler finishes in under 35 seconds even on very large

procedures. The expensive array flow analysis phase stems primarily from the fact that

reaching sets are represented as linked lists. Instead, if one were to use hash tables or

binary trees, then the time to search each set can be reduced from O(n) to O(log(n))

or O(1) and can significantly improve compiler running time. Note also that the time

to compute processor dependences is significant despite the simplicity of the scheme

presented here.
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0 5 10 15 20 25 30 35

Number of seconds

WaTor

Shallow

Simple

MICCG3D

Parsing & prelim.

Scalar flow & SSA

Propagation

Array flow analysis

15.8

8.7

34.3

22.3

Statement dependence

Processor dependence

Elim. redundant dep.

Code generation

Figure 6-2: Compilation time for some applications

6.3 An example

In this section, we present an application which benefits greatly from point-to-point

synchronization. Although this example is by no means representative of the bench-

marks, it can be used to illustrate some strengths as well as weaknesses of the approach.

The WaTor program is adapted from an ecological simulation that appears in [Fox88].

Given a population of predators and prey with defined behavior, we wish to simulate

the dynamics of the population in time. In this particular example, sharks form the

predators and minnows form the prey. Both species inhabit a rectangular lake which is

represented by a two-dimensional array. Each element in the array can either contain a

shark or minnow or be empty. Each fish can move in one of four possible directions.

On each time step, a minnow moves randomly to an adjacent empty array element and

leaves an offspring if the minnow is older than a specified breeding age. A shark first

searches for adjacent cells with minnows. If one exists, then it randomly moves to one

such cell and eats the minnow. Otherwise, it moves as a minnow, but can die if it has

not eaten for a certain time.

If one were to imagine a parallel simulation of the above lake, then potential update

conflicts immediately arise. Imagine the situation where one processor p is updating an

element containing a shark and another processor p0 is updating an adjacent element
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Figure 6-3: Eliminating update conflicts for the WaTor benchmark

containing a minnow as in Figure 6-3a. If p lets the shark consume the minnow and

p0 moves the minnow to another array element, then an inconsistency arises. Thus

two processors cannot be updating two adjacent elements. Furthermore, a conflict also

occurs when two processors try to deposit a fish into the same array element, as shown

in Figure 6-3b. Consequently, a correct solution must ensure that at no time can two

processors be updating two array elements that are separated by a Manhattan distance

of 2 or less. The implementation considered here satisfies this constraint by tiling the

array with a 6-color pattern as shown in Figure 6-3c.y On each phase of the update

routine, only cells with a particular color are updated. In a 6-color scheme, an update

iteration must contain six phases. Semantically, a barrier synchronization occurs between

each color phase, ensuring that all updates are free of conflicts. Of course, the nearest-

neighbor array usage of the application makes it a prime candidate for implementing

point-to-point synchronization.

Using a block partitioning scheme, each processor is responsible for updating a

block of the array. Array elements are shared at the boundary points of these blocks,

and synchronization must be done to ensure that the accesses are performed in the

correct order. If one imagines executing the code in Figure 6-4 on a 8 � 8 processor

array, then the loop space can be partitioned into processors as illustrated. In order to

ensure correct execution order, synchronization must be performed between each set of

y A 5-coloring can also be used to satisfy the constraints, but requires a larger tile pattern.
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nested DOALL loops. Focusing on the dependences between colors 1 and 2, one observes

that each processor (y; x) executing color 2 must synchronize with processors (y; x � 1),

(y; x + 1), (y + 1; x), and (y + 1; x� 1). Note that this analysis must be done between every

set of loops and not just between consecutive loops. Fortunately, the farther apart the

color phases are, the more likely it is that the dependences become redundant due to

other dependences between the phases. From this example, one can see that the task

of computing point-to-point synchronization can be very tedious and is best done by a

compiler rather than a programmer.

doall (i=1,32,4)
doall (j=1,32,3) { /* color 1 */
update(i, j);
if (j<=30)
update(i+2, j+2);

}

doall (i=1,32,4)
doall (j=2,32,3) { /* color 2 */
update(i, j);
update(i+2, j-1);

}

doall (i=1,32,4)
doall (j=3,32,3) { /* color 3 */
update(i, j);
update(i+2, j-1);

}

...
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Figure 6-4: Partitioning a 32�32 WaTor array on a 8�8 processor array

In the actual code produced by the compiler, each processor must synchronize with

4 to 6 other processors before each color phase. In comparison against a software barrier

scheme, the more local synchronization approach would clearly perform better. Instead,

if one were to employ a hardware barrier scheme, then the cost of reading 4 remote mem-

ory locations is probably similar to that of executing a hardware barrier. At first glance,

one may not expect any difference in performance between the two implementations.

However, one has not considered the second disadvantage of barrier synchronization:

unnecessary idling. In this particular example, the variance in execution of each iteration

can be very large. Much more processing must be done for array elements that contain
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fish than those that are empty. This unbalanced loading also varies dynamically as fish

move and regenerate. If global synchronization is performed between each phase, then

the time to execute each phase is equal to the time of the busiest processor during the

phase. Instead, if point-to-point synchronization were implemented, then the execution

of different phases can overlap in time and the effects of busy processors can be mini-

mized. This effect can be seen by comparing the execution profiles of the two schemes,

as shown in Figure 6-5. In the no-cost barrier scheme, no time elapses between the

last processor entering a barrier and the barrier exit by all processors. Even with such

an ideal barrier, the illustration shows that the point-to-point synchronization scheme

provides superior performance.

No-cost barrier

Time x 1000

P
ro

ce
ss

o
r

Idle
Busy

0 6 12 18 24 30 36 42
0

8

16

24

32

40

48

56

64

Point-to-point synchronization

Time x 1000

P
ro

ce
ss

o
r

Idle
Busy

0 6 12 18 24 30 36 42
0

8

16

24

32

40

48

56

64

Figure 6-5: A comparison of synchronization schemes on the WaTor benchmark

One may wonder how the disadvantages of barrier synchronization are affected by

problem size. As a problem becomes larger and each processor spends more time in

each phase on computation, the constant overhead of software barriers becomes less

significant. With very large problem sizes, one would also expect the variance in load

on individual processors to decrease. In this particular example, the fish population

on each processor can be represented by a binomial of n coefficients where n is the

number of elements per processor. As n increases, the variance of the fish population

decreases, which in turn reduces the penalty for global synchronization. Indeed, for

any distribution, the standard deviation of the average of n identical events scales as

1=
p
n [Fel68]. One would expect the relative overhead due to unnecessary idling to be

related to this ratio.

Figure 6-6
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shows the effects of different synchronization schemes on varying problem size.

Software barrier synchronization is accomplished by using a message-passing spanning

tree which requires around 450 processor cycles to execute on a 64-processor machine.

For both barrier schemes, synchronization is inserted only where necessary as computed

by the flow analysis. No-cost point-to-point synchronization implies that no time elapses

from a synchronization assertion by the source processor and the observation of that

assertion by the sink processor. In studying the graph, one can view the difference

between the software and no-cost barriers as the penalty due to global propagation. The

difference between no-cost barriers and no-cost point-to-point synchronization can be

viewed as the penalty due to unnecessary idling. All times are normalized with respect

to the software barrier time. From the graph, we see that as problem size increases, the

penalties due to both inefficiencies decrease when compared with overall execution time.
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Figure 6-6: WaTor performance for varying problem sizes

Although the WaTor application possesses characteristics that enable point-to-point

synchronization to be advantageous, such characteristics cannot be readily extracted from

every representation of the program. In order to allow the compiler to provide signifi-

cant results, the application had to be written in a particular way. As the first of several

examples, consider the code in Figure 6-4. Each color phase is separated into its own
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set of nested loops, thus allowing for the compiler to be explicitly aware of the ar-

ray elements that are active for each phase. This knowledge in turn enables processor

synchronization targets to be computed intelligently and results in each processor only

requiring synchronization with a few other processors between phases. Instead, if each

phase is not represented by its own loop, but simply by an outer loop as in Figure 6-7a,

then the phases are no longer lexically distinguished. Any knowledge about the struc-

ture of the colors within the array are hidden. The compiler must treat the loop body as

executable by any phase and conclude that each processor must synchronize with all 8

of its neighbors.

do (c=1,6)
do (i=1,32)
do (j=1,32)
if (color[i,j]==c)
update(i,j);

(a)

if (dir==0)
a[i-1,j] = ...;

if (dir==1)
a[i+1,j] = ...;

if (dir==2)
a[i,j-1] = ...;

if (dir==3)
a[i,j+1] = ...;

(b)

i1 = i+dy[dir];
j1 = j+dx[dir];
a[i1,j1] = ...;

(c)

Figure 6-7

As another example, consider the code fragment in Figure 6-8b. For each of the four

directions that a fish can move, a statement exists to modify the particular array element

in that direction. This allows the compiler to deduce that the set of elements of a that

can be changed for coordinate (i;j) are: f(i � 1;j); (i + 1;j); (i;j� 1); (i;j + 1)g. Now

consider the more cleanly written version in Figure 6-8c where the update is done by

one statement and arrays dx and dy represent the changes in i and j for each direction.

In the current compiler, nothing is deduced about array values and the compiler must

consequently assume that the update can happen to any possible array element. Any

dependences with this statement can then only be satisfied by a barrier synchronization

since the relationship between the processor and data spaces has been lost. Even if one

makes the reasonable assumption that the compiler can deduce that every element in

x and y are in the range [�1; 1], this information only allows one to limit the range of

updates to one of nine elements. In order to recover fully what the separate treatment

of directions provided, the compiler must somehow realize the coupled relationship

between elements of x and y. It must be able to infer that whenever the arrays are
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accessed together, only four possible values can result. However, this is too much to

expect out of the analysis tools of today.

6.4 General application study

In a sense, the WaTor application is an ideal application for point-to-point syn-

chronization. It contains regular array accesses which allow the proposed analysis to

be effective and also possesses dynamic run-time behavior which penalizes global syn-

chronization schemes. Unfortunately, such characteristics may not be representative of

many other applications. In this section, we seek to compare the performance of various

synchronization schemes on the benchmark applications.

The first comparison involves the same schemes used for the WaTor application. One

would like to isolate the significance of each of the two disadvantages of global barriers.

The cost to propagate information globally can be viewed as the difference between a

software-implemented barrier and a no-cost barrier. The cost due to unnecessary proces-

sor idling can then be measured as the difference between a no-cost barrier scheme and

that of a no-cost point-to-point scheme. First, we define the synchronization schemes

more precisely.

Flow software barrier: A tree-based message-passing barrier is inserted only when syn-

chronization is required between processors. The time elapsed between the last entrance

into the barrier and the first exit is near 450 cycles. In addition, redundant barriers are

removed whenever more than one barrier satisfy the required dependences. In a sense,

this scheme represents the best performance that one can achieve with a global barrier

mechanism.

Flow no-cost barrier: This technique is similar to the above, but the barrier synchroniza-

tion does not incur any cost. In other words, no cycles elapse between the last entrance

and the first exit from the barrier.

No-cost point-to-point: A no-cost point-to-point synchronization primitive is used wher-

ever possible. However, when not enough information is available to compute synchro-

nization targets, a no-cost barrier is invoked.

Real point-to-point: A shared-memory point-to-point synchronization primitive is used

wherever possible. A software barrier is used when not enough information is available
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to compute synchronization targets.
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Figure 6-8: Comparing flow-analyzed synchronization schemes

Figure 6-8

illustrates the execution times of such synchronization schemes normalized with re-

spect to the software barrier scheme. Observe that the cost due to information propaga-

tion is significant in almost every application. For larger problem sizes, this overhead is

expected to become less important as computation costs begin to dominate.

The difference in execution time due to unnecessary idling appears to be insignificant

in most applications other than WaTor and Doacross SOR. As discussed previously, the

idling in WaTor stems from processors having varying loads on different coloring phases.

In the case of Doacross SOR, idling is instead due to skewed execution among processors.

Because of the nature of DOACROSS loops, processors responsible for later iterations of

the loop are required to execute after previous iterations have been completed. As shown

in Figure 6-9, this feature produces a skew in finishing times. If the DOACROSS loop is

then re-invoked due to an outer DO loop, then using a barrier requires all processors to

wait for the last processor to finish the DOACROSS loop. Instead, using point-to-point

synchronization allows the first processors to begin the next iteration before the last

processors finish the previous iteration. Similar to the load variance of WaTor, the skew

effect in Doacross SOR does become less significant as problem size increases. With a
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cyclic distribution, as more points in the iteration space are assigned to each processor,

the amount of time each processor must wait only increases by the the square root of

those number of points. This factor can be further decreased by employing a cyclic

distribution. However, such an approach results in additional communication due to

poor locality.
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Figure 6-9: Synchronization schemes on the Doacross SOR benchmark

As one may assume from the discussion, the above results are obtained while al-

ways performing point-to-point synchronization between DOACROSS loop iterations, even

for the software and no-cost barrier cases. Two explanations can be given for this ap-

proach. First, since this thesis focuses on providing synchronization support for depen-

dences between parallel loops, any advantages due to providing point-to-point support

for DOACROSS loops should be eliminated. Hence, all results presented in this chapter use

the same scheme to synchronization between DOACROSS iterations. Second, if DOACROSS

synchronization were not available, then the loops would be written differently to allow

for iterating over hyperplanes instead of array axes. This requires representing array

indices as functions of multiple loop indices, which cannot be recognized by the tech-

niques of this thesis. From the perspective of barrier-based synchronization, there should

be no real difference in execution performance. However, the point-to-point derivations

presented here would not be able to take advantage of such a program.

Of the above benchmarks, the two that rely heavily on DOACROSS loops are Doacross

SOR and MICCG3D. As shown above, Doacross SOR benefits greatly from point-to-point

synchronization due to its skewed execution. MICCG3D, however, does not exhibit such

improvements. This can be explained by studying a vital set of loops in the application
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where a matrix is being solved by forward and backward substitution. In the forward-

substitution phase, values are propagated from one corner of the three-dimensional ma-

trix towards the opposite corner. Immediately afterwards, the backward-substitution

phase propagates values from that opposite corner back to the original corner. Proces-

sors responsible for the first corner cannot proceed until the last corner has finished and

propagated its values through most of the matrix. Consequently, the skew introduced

by DOACROSS loops cannot be exploited in this portion of the program.

The reader may be tempted to make comparisons between the no-cost barrier times

and those of real point-to-point synchronization. However, one must remember that

the no-cost barrier is an idealized version that does not exist in physical machines. To

derive an estimate for performance on a machine with a more realistic hardware barrier,

one merely needs to interpolate between the no-cost barrier and the 450-cycle software

barrier. If one were interested in the figures for a 50-cycle barrier, then the additional

barrier overhead can be viewed as 1=9 of the difference between no-cost and software

barriers.

At this point, one may be interested in the performance comparison between point-

to-point synchronization and that of a more naive barrier synchronization scheme. After

all, if one were willing to perform all the flow analysis to insert barriers intelligently, one

may as well use point-to-point synchronization to obtain an even higher improvement

in performance. Shown in Figure 6-10 are the results for point-to-point synchronization

compared to naive barrier schemes. Specifications of the schemes are given below:

Naive software barrier: Software barriers are inserted at the beginning and end of every

set of nested parallel loops.

Naive no-cost barrier: No-cost barriers are inserted at the beginning and end of every

set of nested parallel loops.

Point-to-point: A shared-memory point-to-point synchronization primitive is used wher-

ever possible. A software barrier is used when not enough information is available to

compute synchronization targets. Optimizations are performed to remove redundant

dependences. This is the ‘‘real point-to-point’’ result of the previous figure.

Unoptimized point-to-point: This scheme is similar to the point-to-point scheme, but no

optimizations are invoked to remove redundant synchronizations.
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Figure 6-10: Comparing naive barrier and point-to-point schemes

By using the naive approach, the overhead for global propagation is magnified, as

verified by analyzing the difference between software and no-cost barriers. Note that it

may be possible to follow some simple heuristics to reduce the number of barrier syn-

chronizations performed, especially when parallel loops immediately follow each other.

However, this thesis does not explore such heuristics.

One can also observe from the graph that the performance of point-to-point synchro-

nization approaches or exceeds that of the no-cost barrier for the given benchmarks. For

the most part, the comparison of point-to-point synchronization to naive no-cost barriers

is very similar to the comparison with intelligent no-cost barriers. If additional barriers

do not increase overhead, then any additional cost can only be due to unnecessary idling

introduced by barriers at new locations in the program. For the above applications, such

situations do not arise, and the execution time of naive no-cost barriers is similar to that

of intelligent no-cost barriers.

The above graph also illustrates the difference in performance when optimizations

are performed to remove redundant dependences. Unfortunately, for some of the more

significant cases, the program complexity due to redundant dependences exceeds the

limits of the host compiler. Hence, pre-elimination simulation figures were not obtain-

able for the Shallow and Simple benchmarks. However, a lexical count of redundant
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dependences can be acquired. Figure 6-11 shows the percentage of dependences that are

found to be redundant by the recursive algorithm presented in Chapter 5. For the larger

applications, the high percentages represent a significant reduction in communication

required for synchronization.
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Figure 6-11: Percentage of redundant lexical dependences

6.5 Summary

The above results show that compiler analysis to support point-to-point synchro-

nization can be done efficiently. The performance of resulting code display significant

improvements over that of software barrier schemes, particularly when software barriers

are naively inserted for all parallel loops. For programs with regular array usage such

as the above benchmarks, these results illustrate that hardware support for barriers are

unnecessary and in certain cases even inferior to point-to-point synchronization.



Chapter 7

Future work

7.1 Introduction

This thesis focuses on obtaining efficient algorithms to implement point-to-point

synchronization for a large set of programs. However, with limited sources, one cannot

possibly hope to provide optimally efficient algorithms for the set of all programs. Hence,

many possibilities remain for improvements to be made to the current work. Some of

these focus on providing support for more general programs such as performing analysis

on multiple loop indices and computing dependence relationships across procedures.

Others involve techniques to improve efficiency such as using synchronization groups

and increasing awareness of synchronization in partitioning decisions.

7.2 Multiple loop indices

The analysis done in this thesis is limited to array elements that are linear functions

of a single loop index. Although this restriction allows optimizations to be performed

efficiently on a large class of programs, some array reference patterns that are typically

supported in state-of-the-art compilers are not considered here. One such type of usage

involves linear functions of multiple variables.

do (i=1,100)
doall (j=1,i)
a[j,i-j+1] = a[j-1,i-j+1]+a[j,i-j];

Figure 7-1

More general support for array references also implies that one consider array indices

that are functions of multiple loop indices. The program of Figure 7-1 represents a wave-

front computation which possesses dependence relationships similar to the Doacross SOR

example in the previous chapter. If one assumes the constraint that each value of j is

executed on processor j, then a processor j executes instances hk; i� k + 1i for all values
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of i. The array access a[j-1,i-j+1] is then executed by processor j � 1, and the array

access a[j,i-j] is executed by processor j. Thus each processor j must synchronize

with processor j � 1.

One can observe from the above example that the derivations to compute synchro-

nization relationships must be changed to support such array references. In particular,

the space of filtered instances is no longer necessarily orthogonal to the loop index axes.

One can apply the more general algorithms of Feautrier [Fea91] or Maydan [MAL93] to

compute the needed results. In adapting these algorithms, however, it is important to

remember the desired goal. To perform synchronization, we only need to compute the

processors represented by the filtered space and some reasonable estimate of the upper

bound of its timestamps. Deriving any extra information that requires more complex

algorithms is merely a waste of compiler effort.

7.3 Interprocedural analysis

As mentioned in the chapter on flow analysis, some simple interprocedural anal-

ysis is performed in the implementation of this thesis to support dependences across

procedures. However, such a simple approach produces many inefficiencies that can be

addressed by more intelligent schemes.

Fundamental to the simple technique is the assumption that the output program

contains only one version of each procedure. As shown in Chapter 3, this assumption

requires one to be overly pessimistic in generating code for the procedure. Any possible

dependences that can arise within the procedure body must be supported without any

attention to the actual values that are passed in as arguments. In addition, such an as-

sumption also does not permit specialization of procedures for synchronization between

the caller and the procedure.

In the program of Figure 7-2, both uses of a in statements S1 and S2 require syn-

chronization with any definitions of a that occur before the call to f. By requiring only

one version of f, the caller must be pessimistic and assume that either statement may

be executed and synchronize accordingly. In this case, since nothing is known about the

index g(i), the dependence must be satisfied by a barrier synchronization. One can

argue that the dependence can be supported by performing an assertion before the call

to f and execution the checks inside the body of f in either branch of the conditional.
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void f(int x)
{
if (p(x))
doall (i=1,100)
... = a[i]; /* S1 */

else
doall (i=1,100)
... = a[g(i)]; /* S2 */

}

Figure 7-2

However, the processor targets in the checks can vary depending on the definitions

preceding the call to f. Thus such an approach can be accomplished only by allowing

several different versions of the procedure to co-exist. As a side note, it should be men-

tioned that the above scenarios are supported in the current implementation by inlining

the procedure call. However, a more intelligent mechanism should be provided than

merely specializing every call to a procedure.

7.4 Synchronization groups

Although most of this thesis focuses on the distinction between the extremes of global

barrier synchronization and local point-to-point synchronization, one should also observe

that intermediate schemes do exist. For some cases, the lack of absolute information

on processor relationships does not necessarily imply that one must rely on barrier

synchronizations. Rather, techniques used to improve the performance of barriers can be

applied to such cases to allow synchronization on groups of processors.

doall (i=1,100)
doall (j=1,100)
a[j,i] = ...; /* S1 */

...
doall (i=1,100)
doall (j=1,100) {
... = a[j,f(i)]; /* S2 */
... = a[j-1,g(i)]; /* S3 */

}

Figure 7-3

Consider the dependence between S1 and S2 in Figure 7-3. Assume that the behavior
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of the functions f and g are unknown. Although the first array indices match exactly, the

second provides no filtering information on the loop index i. Thus each processor must

synchronize with all other processors in the same partition of j. In other words, if the

i loop partitions the processors into rows and the j loop partitions the processors into

columns, then each processor must synchronize with all other processors in its column.

If one were restricted to either pairwise point-to-point synchronization or barriers, then a

barrier synchronization is probably more efficient than many pairwise synchronizations.

However, a global barrier represents much more serialization than the dependences

require. Ideally, only the processors within each column should be synchronized with

each other. Consequently, one can introduce a ‘‘mini-barrier’’ which synchronizes only

certain groups of processors. In this case, each column of the processor space forms such

a group.

While the concept of a mini-barrier forms an effective solution for the above example,

a more general mechanism is needed to support other cases. Consider the dependence

between S1 and S3 in Figure 7-3. Assume that there are 100 columns in the processor

space so that each iteration of j is partitioned to a separate column. The filters imply

that processors in column j must synchronize with processors in column j�1 to preserve

the dependences. Such a requirement cannot be satisfied by performing a mini-barrier

on each column. Instead, one needs to divide the barrier mechanism into two phases:

collection and distribution. The collection phase gathers signals from each processor that

it has arrived at the barrier. Only after all processors have arrived does the distribution

phase begin, which signals each processor that it can proceed with the execution. As

applied to this example, one needs to collect signals from processors in column j�1 and

then distribute that barrier signal to processors in column j. In general, the collection of

barrier signals from processors in a group G can be distributed to several groups which

may include G itself. Note that this decoupling of collection and distribution also allows

the two phases to be done at different points in the program. In the above example,

collection can be done immediately after the first loop nest, while distribution is not

required until the beginning of the second loop nest. This separation forms the exact

mechanism touted by the fuzzy barrier schemes [Gup89].

In summary, the above discussion shows that synchronization mechanisms other

than purely global or local schemes may be useful. By viewing synchronization as a

collection phase followed by a distribution phase among possibly different groups of
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processors, one can introduce a scheme that encompasses both barriers and point-to-

point synchronization. Moreover, this scheme allows one to implement more efficient

mechanisms for cases that are too ambiguous for point-to-point synchronization.

7.5 Partitioning

Processor partitioning can be defined as an optimization which maps computations

to processors in order to maximize performance. Traditionally, such optimizations aim

for this goal by striving to minimize communication across processors. In the language

of this thesis, conventional partitioning schemes map statement instances to processors

while minimizing flow dependences between instances on different processors. How-

ever, when synchronization costs are also considered, then other dependences become

important as well.

doall (i=2,100)
... = a[i-1]; /* S1 */

doall (i=2,100)
a[i] = ...; /* S2 */

Figure 7-4

Consider the program in Figure 7-4. Although no communication exists between

statements S1 and S2 as shown, there does exist an anti-dependence between the state-

ments. If the two loops are partitioned identically, then synchronization is required to

support the anti-dependence. Instead, if the partitioning function for the second loop is

offset by 1 from that of the first loop, then no anti-dependences exist across processors,

and no synchronization is required. Thus with all other factors being equal, a partition-

ing scheme that also pays attention to synchronization costs can produce better results.

However, such partitioning and alignment decisions must frequently be weighed against

other factors such as load-balancing. In this particular example, the synchronization

cost would certainly be higher if one were forced to perform a software barrier rather

than point-to-point synchronization, and partitioning algorithms must be aware of such

details.

The use of point-to-point synchronization creates small changes in program behavior

which in turn increases the factors that must be considered by partitioning algorithms. In

particular, the existence of large skews between loop iterations imply that decisions that
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do (j=1,10) {
doacross (i=1,100) {
a[i] = ...;
...

}
amax = max of array a

}

Figure 7-5

were made arbitrarily under barrier semantics become very important when skews are

preserved across loops. In the program of Figure 7-5, each iteration of the outer DO loop

consists of a DOACROSS loop followed by a reduction operation. A reduction operation

typically maps a binary tree onto the processor space and propagates the results of an

associative operation up the tree. When synchronization is performed using barriers, the

skews at the end of the DOACROSS loop are eliminated and all processors begin executing

the reduction simultaneously. With such semantics, the mapping of the reduction tree

to processors does not have many implications. Specifically, the program performance

is not drastically affected by whether the root of the tree is assigned to the first or last

processor. However, with point-to-point synchronization, the preservation of skew across

the outer sequential loop allows the execution of those loop iterations to be pipelined,

as shown by the Doacross SOR application in the previous chapter. The assignment of

reduction tree nodes to processors becomes very important since the root node cannot

be computed until all processors have completed. As shown in Figure 7-6, if the root of

the reduction tree is assigned to the first processor, then the skews are lost across the

sequential iterations. Instead, if the root is assigned to the last processor, then the skews

are preserved.

Root at first processor Root at last processor

Figure 7-6: Alternate partitionings of a reduction

The issues involved in partitioning can become quite complex, and this discussion
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has no intention of solving them. Rather, these examples only serve to point out new

factors that can arise when one considers synchronization in conjunction with partition-

ing.





Chapter 8

Conclusion

8.1 Summary

The shared-memory programming model requires that synchronization be performed

in order to preserve data consistency. Traditionally, consistency is ensured by performing

a global barrier synchronization between parallel sections of code. Although it provides

a simple interface for the compiler or programmer, the barrier synchronization possesses

several disadvantages. In order to synchronize globally, information must be collected

from every processor which implies a latency of O(logn) on the number of processors.

Furthermore, global synchronization forces the serialization of many tasks that do not

contain dependences to each other and can thus increase total idle time. Instead of using

global synchronization, this thesis seeks to reduce the above costs by performing local

point-to-point synchronization between pairs of processors.

Compiler analysis to implement point-to-point synchronization requires that some

assumptions be made about the input program. In this thesis, we focus on programs

with explicitly-parallel loops and array references that are linear functions of loop indices.

In addition, we assume that partitioning decisions have been made by a previous phase

of the compiler and specified as mappings from the loop iteration spaces to the processor

space.

The first analysis task involves deducing whether an array reference is a function

of a loop index. By viewing this task as a propagation problem on a particular lattice,

efficient existing propagation algorithms can be employed to generate a solution. The

algorithm used here performs constant propagation by propagating over the static-single-

assignment graph. While constant propagation makes use of a flat lattice, propagation of

linear functions can be represented best by a lattice that allows for unions of functions.

By limiting the height of this lattice, the propagation algorithm can be guaranteed to

terminate.

Once array indices are determined, dependences between statements can be com-
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puted. Accurate dependence information requires that flow analysis be performed to

compute reaching definitions and uses at each lexical point. Unfortunately, conventional

scalar analysis is not sufficient due to their treatment of arrays as monolithic objects. In-

stead, array flow analysis must be employed to track the flow of individual elements of

an array. A mapping from linear functions to array subsets enables efficient management

of flow elements. However, such a mapping involves forming approximations and must

be carefully designed to ensure that a superset of the real dependences will be detected.

After the completion of array flow analysis, well-known dependence tests can be used

to compute dependences between statements.

Statement dependences yield lexical dependence information which can be used to

compute where synchronization primitives are placed in a program. However, nothing is

as yet derived on dependence relationships between processors. Since such relationships

require dynamic dependence information, we focus on dependences between dynamic

statement instances rather than lexical statements. A statement instance is defined as the

combination of the lexical statement and the values of loop indices of surrounding loops.

A dependence exists between two statement instances if a dependence exists between the

two lexical statements and if the array indices of each statements evaluate to the same

values for the given instances. From this definition, dependences between statement

instances can be computed.

In order to derive dependences between processors, one must consider the loop par-

titioning functions. For a given sink processor, the set of source processors with which

it must synchronize can be computed from the source statement instances with depen-

dences to the sink statement instances represented by the sink processor. In addition,

one can focus on timestamps represented by sequential loop indices in each instance to

compute temporal dependence information. Whereas each sink processor must synchro-

nize with all dependent source processors, synchronization must only be performed with

the highest timestamp since the timestamp ordering follows that of execution order.

Although one can show that the above derivations provide synchronization for ev-

ery dependence, such claims are not enough to ensure correctness. In the presence of

dynamic control flow, one must prove that each synchronization check can eventually

be satisfied by an assertion on the proper processor. If a scenario can exist where all

processors are checking for synchronization, then a deadlock condition arises. To avoid

deadlock, the program must be transformed so that either branch of a conditional con-
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tains assertions that are equivalent to those of the other branch. By following this simple

condition, a provably deadlock-free synchronization scheme can be derived.

Improving execution time of a parallel program represents the ultimate goal of these

optimizations. However, a scheme derived from the above discussion can contain many

redundant synchronizations that are automatically satisfied by combinations of other syn-

chronizations. Since each synchronization operation incurs a certain cost, optimizations

to eliminate redundant dependences can significantly improve running time. Unfortu-

nately, removing all redundant dependences is an undecidable problem due to the lack

of static knowledge of control flow. Even without the presence of dynamic control flow,

the problem can be shown to be NP-hard. However, its integer-based characteristics

allow it to be solvable by the application of dynamic programming techniques.

If one were to limit programs to sequences of non-nested parallel loops with offset-

based array indices, then an algorithm can be introduced which removes all redundant

dependences. The idea involves propagating the satisfied synchronization relationships

from a source node to a sink node. If any synchronization between the two nodes is

already satisfied, then it is redundant. Although this algorithm eliminates all redundant

dependences and exhibits polynomial running time, its scope remains limited. As more

general constructs are allowed in the problem domain, one must relax the constraint that

the algorithm find all redundant dependences. This thesis employs a recursive algorithm

which follows the program structure to eliminate redundant dependences.

The algorithms presented in this thesis have been implemented in a compiler which

translates the source language into code for the Proteus simulator. Even on very large

programs with up to 4000 statements, efficient algorithms enable the compiler to per-

form all optimizations in well under a minute. The simulated results on several bench-

marks show that point-to-point synchronization produces significantly better running

times than a naive scheme which insert software barriers before and after every parallel

section. When compared to a no-cost hardware barrier, the performance of point-to-point

synchronization approaches that of the no-cost scheme for most applications and even

surpasses it for some applications.

8.2 Contributions of this thesis

The primary contribution of this thesis involves the creation of a scheme which auto-
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matically generates point-to-point synchronization to satisfy data dependences between

parallel loops. However, in the course of pursuing such a goal, solutions to many other

problems have required either the adaptation of known approaches or the invention of

new ones. The principal contributions of this thesis include the following:

� The adaptation of existing constant propagation algorithms to enable propagation of

symbolic functions by using a different lattice. In this thesis, the propagation lattice

consists of linear functions of loop indices.

� A lattice-based treatment of array flow analysis which allows the preservation of

linear functions for accurate dependence testing. Flow algorithms are presented for

explicitly-parallel DOALL loops as well as common language constructs.

� The recognition that synchronization should be computed by considering depen-

dences between dynamic statement instances. By using array references to derive

filters, a general algorithm can be given for computing such dependence relation-

ships.

� The use of a formal definition of loop partitioning functions to derive dependence

relationships between processors.

� The employment of timestamps to support accurate synchronization relationships.

In addition, transformations to maintain consistent timestamp assertions allow the

derivation of a deadlock-free synchronization scheme.

� The separation of the task of computing dependence relationships between instances

into two phases. The array flow analysis and dependence testing phase computes de-

pendences between lexical statements, and the filtering phase computes dependences

between dynamic instances of those statements.

� The introduction of a dynamic programming algorithm to eliminate redundant de-

pendences. By reducing the problem to that of integer programming, limits can

be placed on the answers in order to efficiently remove redundant dependences in

similar domains.
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