
Function-Based Indexing

for Object-Oriented Databases

by

Deborah Jing-Hwa Hwang

February 1994

c
 1994 Massachusetts Institute of Technology
All rights reserved

This research was supported in part by the Advanced Research Projects Agency of the Depart-
ment of Defense, monitored by the O�ce of Naval Research under contract N00014-91-J-4136
and in part by the National Science Foundation under Grant CCR-8822158.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

1



2



Function-Based Indexing
for Object-Oriented Databases

by

Deborah Jing-Hwa Hwang

Submitted to the Department of
Electrical Engineering and Computer Science on February 9, 1994

in partial ful�llment of the requirements for the Degree of
Doctor of Philosophy in Computer Science

Abstract

Object-oriented databases have been developed to allow applications to store persistent data
in the form of objects. As in conventional databases, object-oriented databases need to support
queries that allow associative access to data by describing a property of the data of interest. In
particular, they should support queries over user-de�ned sets based on user-de�ned functions
that compute the property of interest. To make such function-based queries run faster, we must
support function-based indexes where the keys are these computed properties. Function-based
indexes are harder to maintain than indexes in conventional databases because mutations that
a�ect keys can be done without accessing an element of the indexed set.

This dissertation presents a new function-based indexing scheme for object-oriented data-
bases. The indexes are maintained by recording registration information for objects that in-
dicate when index entries are a�ected and having operations that modify objects check for
registrations to determine if an index needs to be updated. Our approach uses a combina-
tion of declared information that indicates how object methods a�ect each other and runtime
information gathered during key computation, so that we register only the objects whose mod-
i�cations can a�ect an index and only the operations that might a�ect an index entry check for
registration information.

Recomputing index entries only when there is a modi�cation that might a�ect an index
comes at the cost of extra space for the registration information and extra time to check
registration information during modi�cations. To quantify these costs, we simulated three
implementations of our scheme on various performance benchmarks and analyzed several others.
We show that function-based indexes are very useful in object-oriented databases and do not
adversely a�ect system performance, but they do have a high space cost.

This work is being done in the context of the Thor distributed, object-oriented database
system[42, 43]. Thor has features that complicate index use and maintenance. It has a client-
server architecture with caching at both clients and servers. It also uses an optimistic con-
currency control scheme. This dissertation presents a design for integrating index use and
maintenance into Thor. We discuss the impact of adding indexes on Thor's system architecture
and the impact that Thor's system architecture has on the performance of our indexing scheme,
and we present predicate validation, a new optimistic concurrency control scheme.

Thesis supervisor: Barbara H. Liskov
Title: NEC Professor of Software Science and Engineering

Keywords: function-based indexing, function-based queries, object-oriented databases, regis-
tration, distributed systems, predicate validation

3



4



Acknowledgments

This dissertation would not have been possible without the support of many people through-
out my graduate school career. First, I would like to thank my advisor Barbara Liskov for guid-
ing my research and making sure I presented the work in a clear and concise manner. Next, I
would like to thank my readers Bill Weihl and Dave Gi�ord who provided excellent feedback
despite having very little time to review my work.

The people in the Programming Methodology group have been invaluable in providing
support for this research. Special thanks to Mark Day, Umesh Maheshwari, and Atul Adya
for building the TH pre-prototype that allowed me to explore the ideas in this thesis without
building the whole system myself. Special thanks also to Dorothy Curtis for keeping Argus
running even though we kept trying to break it, �xing bugs in the Alpha pclu compiler and
debugger promptly, and helping me speed up my simulator.

I thank my MIT friends for understanding what graduate school at MIT is like, and I thank
my non-MIT friends for making sure I ventured out into the \real world" occasionally.

I thank my family for the love and support that has been a source of strength throughout
my life. And I thank Mike's family for welcoming me into their family.

My deepest appreciation goes to my husband Mike Ciholas who has been waiting patiently
for me to �nish and always said that I would �nish even when I wasn't sure I could �nish. This
dissertation is dedicated to him.

5



6



Contents

1 Introduction 11

1.1 Queries and Indexes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12
1.2 Distributed Databases : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15
1.3 Roadmap : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

2 Function-Based Indexing 17

2.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17
2.2 Object Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20
2.3 Transactional Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23
2.4 Index Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26
2.5 Registration Information : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27
2.6 Registration Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30
2.7 Creation, Insertion, and Deletion : : : : : : : : : : : : : : : : : : : : : : : : : : : 31
2.8 Mutations and Updates : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32
2.9 Correctness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

3 Performance Evaluation 37

3.1 Simulation Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38
3.1.1 Objects : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38
3.1.2 Registration Implementations : : : : : : : : : : : : : : : : : : : : : : : : : 39
3.1.3 System Architecture : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41

3.2 Simulation Database : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42
3.3 Benchmarks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45

3.3.1 Queries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45
3.3.2 Navigation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48
3.3.3 Updates : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49

3.4 Experiments : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51
3.4.1 Database Con�gurations : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52
3.4.2 System Con�gurations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53
3.4.3 Hypotheses : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55

3.5 Bene�t of Indexes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57
3.6 E�ects of Segment Size and Clustering : : : : : : : : : : : : : : : : : : : : : : : : 61

3.6.1 Queries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61
3.6.2 Navigation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63
3.6.3 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

3.7 Comparison of Implementation Schemes : : : : : : : : : : : : : : : : : : : : : : : 65
3.7.1 Queries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

7



8 CONTENTS

3.7.2 Navigation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67
3.7.3 Updates : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70

3.8 Space Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

4 Related Work 91

4.1 Path-based Indexing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92
4.1.1 Multi-indexes (GemStone) : : : : : : : : : : : : : : : : : : : : : : : : : : : 94
4.1.2 Nested indexes and path indexes : : : : : : : : : : : : : : : : : : : : : : : 104
4.1.3 Join indexes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 107

4.2 Function-based Indexing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 108
4.2.1 Function materialization : : : : : : : : : : : : : : : : : : : : : : : : : : : : 108
4.2.2 Method pre-computation : : : : : : : : : : : : : : : : : : : : : : : : : : : 113
4.2.3 Cactis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 120

5 Optimizations 123

5.1 Contained Subobjects : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 123
5.1.1 Containment Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : 125
5.1.2 Using Containment Information : : : : : : : : : : : : : : : : : : : : : : : : 129
5.1.3 GOM : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 130

5.2 Lazy updates : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 131
5.3 Deregistration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 132

6 Indexes in Thor 135

6.1 Thor System Architecture : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 136
6.2 Adding Indexes to Thor : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 141

6.2.1 Queries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 142
6.2.2 Updates : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 144
6.2.3 Predicate Validation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 145
6.2.4 Incremental Index Creation : : : : : : : : : : : : : : : : : : : : : : : : : : 152

6.3 Performance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 155
6.3.1 Very Large Segments : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 155
6.3.2 Two-level Cache Structure : : : : : : : : : : : : : : : : : : : : : : : : : : : 157

7 Conclusion 161

7.1 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 163
7.1.1 Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 163
7.1.2 Expressive Power : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 164
7.1.3 Miscellaneous : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 166

References 167



List of Figures

2.1 Example modi�cation that a�ects an index. : : : : : : : : : : : : : : : : : : : : : 19
2.2 Speci�cation of the employee type. : : : : : : : : : : : : : : : : : : : : : : : : : : 21
2.3 Speci�cations of other methods used in the example. : : : : : : : : : : : : : : : : 22
2.4 Class implementing the employee type. : : : : : : : : : : : : : : : : : : : : : : : 24
2.5 Class implementing the employee type, continued. : : : : : : : : : : : : : : : : : 25
2.6 An example index function. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25
2.7 Reachability and f-reachability from object � : : : : : : : : : : : : : : : : : : : : 28
2.8 Speci�cation of employee with dependency information. : : : : : : : : : : : : : : 29
2.9 Registration table after computing project manager income(�) for index I. : : : : 31
2.10 Registration table after recomputing project manager income(�) for index I. : : 33

3.1 Example objects. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38
3.2 Three implementation schemes. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40
3.3 A composite part object with its document header and the root of its atomic

part graph in the small DB3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43
3.4 OO7 design tree. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43
3.5 Object sizes in the OO7 database. : : : : : : : : : : : : : : : : : : : : : : : : : : 44
3.6 Average size of an object in each database. : : : : : : : : : : : : : : : : : : : : : 44
3.7 Summary of simulation benchmarks. : : : : : : : : : : : : : : : : : : : : : : : : : 46
3.8 Trace sizes. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49
3.9 Total database size and percentage increase in size. : : : : : : : : : : : : : : : : : 52
3.10 E�ect of disk speed on embedded scheme query benchmark results. : : : : : : : : 54
3.11 Size and breakdown of space overhead. : : : : : : : : : : : : : : : : : : : : : : : : 56
3.12 Results of Queries 1{4 with a cold cache. : : : : : : : : : : : : : : : : : : : : : : 58
3.13 Results of Queries 1{4 with a warm cache. : : : : : : : : : : : : : : : : : : : : : : 58
3.14 Results of Queries 5{7 with a cold cache : : : : : : : : : : : : : : : : : : : : : : : 59
3.15 Results of Queries 5{7 with a warm cache : : : : : : : : : : : : : : : : : : : : : : 60
3.16 Execution time of Query 1 using the bit scheme. : : : : : : : : : : : : : : : : : : 62
3.17 Query 4 versus Query 1 crossover percentages for bit scheme. : : : : : : : : : : : 62
3.18 Execution times for Query 5 and Query 6. : : : : : : : : : : : : : : : : : : : : : : 63
3.19 Execution time of Navigation 1 and Navigation 2 on the full traversal. : : : : : : 64
3.20 Execution time of Navigation 1 and Navigation 2 on the path1 traversal. : : : : : 64
3.21 Comparison of results of Query 1 and Query 2. : : : : : : : : : : : : : : : : : : : 66
3.22 Comparison of results of Query 3. : : : : : : : : : : : : : : : : : : : : : : : : : : : 66
3.23 Detail of the results of Query 4. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68
3.24 Comparison of results of Query 7. : : : : : : : : : : : : : : : : : : : : : : : : : : : 69
3.25 Comparison of results of Navigation 1 and Navigation 3 on full traversal. : : : : 69
3.26 Comparison of results of Update 1 and Update 2. : : : : : : : : : : : : : : : : : : 71

9



10 LIST OF FIGURES

3.27 Comparison of results of Update 3. : : : : : : : : : : : : : : : : : : : : : : : : : : 72
3.28 Results of Updates 3{5 on full traversal. : : : : : : : : : : : : : : : : : : : : : : : 73
3.29 Results of update benchmark on full traversal for the medium DB9. : : : : : : : 74
3.30 Results of update benchmark on path1 traversal for the small DB3. : : : : : : : : 76
3.31 Level graph for project manager income. : : : : : : : : : : : : : : : : : : : : : : : 79
3.32 Three new implementation schemes. : : : : : : : : : : : : : : : : : : : : : : : : : 83
3.33 Comparison of space overhead with sharing at the second level. : : : : : : : : : : 86
3.34 Comparison of space overhead with sharing at the third level. : : : : : : : : : : : 87
3.35 Example of a heavily shared f-reachable object. : : : : : : : : : : : : : : : : : : : 90

4.1 Set of employee objects : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 93
4.2 Single GemStone index : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96
4.3 Two GemStone indexes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 97
4.4 Comparison of GemStone space overhead with sharing at the second level. : : : : 101
4.5 Comparison of GemStone space overhead with sharing at the third level. : : : : : 102
4.6 Comparison of GemStone space overhead with sharing at the fourth level. : : : : 102
4.7 Nested and path indexes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 105
4.8 Example GOM type extent for employee objects with one precomputed method. 110
4.9 Example GOM registration table. : : : : : : : : : : : : : : : : : : : : : : : : : : : 111
4.10 Example where a parent is a set element and is part of a path used to precompute

the method result for another set element. : : : : : : : : : : : : : : : : : : : : : : 116
4.11 Comparison of the number of registrations in our scheme and Bertino's scheme

in three sharing scenarios. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 118

5.1 Example with registrations from project manager income(�). : : : : : : : : : : : 124
5.2 An example of how aliasing can happen. : : : : : : : : : : : : : : : : : : : : : : : 126
5.3 Example class with aliasing from one method a�ecting another method. : : : : : 128
5.4 An example mutator with multiple parts. : : : : : : : : : : : : : : : : : : : : : : 131

6.1 A representative Thor con�guration. : : : : : : : : : : : : : : : : : : : : : : : : : 136
6.2 Objects at Thor servers. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 137
6.3 Objects at a Thor FE. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 139
6.4 Execution time of Query 1 using the bit scheme including 64K segments. : : : : : 156
6.5 Execution time of Query 5 and Query 6 including 64K segments. : : : : : : : : : 156



Chapter 1

Introduction

Databases are used to manage large amounts of information that may be accessed by many

di�erent applications. They provide persistent and reliable storage, a uniform access model, and

convenient retrieval facilities in the form of queries. They have proved to be particularly useful

for various business applications such as inventory control and banking. The data generated

by these applications tend to be regular and easily grouped into sets of records; thus the data

can be stored in conventional databases.

Object-oriented databases have been developed to manage the data of applications such as

CAD/CASE or o�ce automation systems. These applications create data that are related in

arbitrary and complex ways that do not �t well into �xed-size records. Instead of using records,

the data in these applications are represented as objects. Objects encapsulate state and are

declared to be of a particular type. The type of an object speci�es the abstract methods that can

be used to observe and modify the state of an object. Objects can contain an arbitrary number

of direct references to other objects, and many objects can have references to the same object.

In general, the object-oriented paradigm captures more semantically meaningful behavior and

�ts more naturally with the way the data in these applications are accessed. In addition, data

from \traditional" database applications can be cast easily into the object-oriented paradigm.

Much of the success of conventional database systems is due to their support for queries.

Queries provide users with a convenient way of identifying information of interest from a large

collection using associative descriptions rather than identifying the data of interest exactly. For

example, a query might be: \Select the employees from department E with a project manager

whose yearly income is greater than $60,000." In a conventional database, this query would

operate over a set of employee records by �nding the records for the employees of department E

and returning the ones that have project managers that make more than $60,000. To become

as successful as conventional databases, object-oriented databases must also support queries[3].

11



12 1. Introduction

Since queries are an important part of database use, indexes are used in conventional data-

bases to make them run faster. This dissertation focuses on providing indexes in object-oriented

databases. It makes two contributions. The �rst contribution is a very general function-based

indexing scheme with more expressive power than previous schemes. We show through simula-

tions that these indexes do make function-based queries run faster. We propose several di�erent

implementations and characterize the costs of maintenance for each one through simulation and

analysis. We also propose several optimizations to our basic scheme.

The second contribution is a design for implementing function-based indexing in distributed

systems where clients of a database are at di�erent nodes from the database. We describe how

to integrate index use and maintenance in these systems and analyze the performance impact of

this system architecture on function-based indexing. To handle concurrent use and maintenance

of indexes, we have developed predicate validation, an optimistic concurrency control algorithm

suitable for integrating index use into optimistic concurrency control schemes. We have also

developed an incremental index creation scheme.

The next two sections of this chapter discusses these contributions in more detail. The �nal

section provides a roadmap for the rest of this dissertation.

1.1 Queries and Indexes

In a conventional database, the records representing a particular kind of information are

grouped together into a single �le or table. This is the only grouping supported directly by

the system and is the basis for queries in these systems. By contrast, some object-oriented

databases support user-de�ned sets that group together speci�c objects of the same type (for

example, GemStone[12, 47, 48]), and we would like to support queries over these user-de�ned

sets. In such a system, an object can be an element of more than one user-de�ned set. For

example, consider a database containing objects representing employees and departments. Each

department could contain a set of employees and if an employee worked for two departments,

the sets for the two departments each would contain that employee.

In addition, to take the most advantage of the object-oriented paradigm, we want to provide

function-based queries. In a function-based query, the property of interest is described as the

result returned by a user-de�ned function on a set element. (I.e., for a function f , the value

of the property of interest for a set element x is f(x).) A user-de�ned function for such a

query may perform arbitrary computation involving one or more parts of the state of the set

element including calling methods of subobjects. For example, to answer the query, \Select the

employees from set E with a project manager whose yearly income is greater than $60,000,"



1.1. Queries and Indexes 13

we would write a function f that computes an employee's project manager's income by �rst

calling a method of an employee object to get a project object, then calling a method of the

project object to get the manager employee object, and so forth.

We could compute a function-based query result by computing the function of interest for

every element in a set and testing the function result to determine if the element should be

included in the query result. However, this is very time-consuming for large sets. If we are going

to compute many queries using the same function f , it would be useful to have a function-based

index on E based on f . An index is a memoizing device that makes queries more e�cient by

mapping a property of interest (called the key) to the entities that have particular values for

the property. In a function-based index, the properties of interest are the results of the index

function computed for the set elements; thus an index I on set E using function f is a mapping

of < f(x); x > pairs, for each set element x in E. When a function-based query is computed

using a function-based index, the property of interest does not have to be computed and the

set elements that do not have property values of interest are not accessed, so queries run faster.

To maintain a function-based index, the database system must recognize when changes

to objects a�ect the information stored in the index and recompute keys for the entries that

have changed. Some changes are to elements of the indexed set (for example, an employee in

E might change projects), but others are not (for example, the project manager of a project

might change). In the object world, since an object may contain references to other objects and

an object may be referenced by multiple objects, mutations that a�ect set indexes can occur

without accessing the set element itself. Thus, index maintenance becomes more complex than

in a conventional database.

This dissertation presents a new function-based indexing scheme that supports indexes over

user-de�ned sets using user-de�ned functions. In our scheme, we try to minimizes the cost of

index maintenance by only recomputing a key when a modi�cation that can a�ect the key has

been done. This is accomplished by registering any object that can be modi�ed in a way that

a�ects a key. That is, some information is associated with an object that indicates which keys

are a�ected and when these keys need to be recomputed. When an object is modi�ed, its regis-

tration information is checked and key recomputations are performed, if needed. Determining

which objects should be registered is done using a combination of information declared in type

speci�cations and information gathered while keys are being computed.

Providing indexes is a space/time tradeo� to make queries run faster in return for the

space for the index. In addition, there is the cost of maintaining an index. We use space for

the registration information and time to update the index when there is a modi�cation that



14 1. Introduction

a�ects the index. To characterize the bene�ts of indexes and the cost of index maintenance, we

simulated three implementations and analyze several others. Our results show that indexes are

very useful in object-oriented databases and do not adversely e�ect system performance. We

also �nd there are tradeo�s in the cost of maintaining function-based indexes stemming from

the amount of registration information needed in each of the implementations and where it is

stored, thus we have developed a framework for comparing space overhead of di�erent indexing

schemes.

Several schemes have been proposed for indexes in object-oriented databases. Compared

to these schemes, our indexing scheme supports more expressive queries; it has the following

desirable properties:

� It preserves abstraction and encapsulation. It supports queries that are expressed in terms

of objects' methods, not in terms of objects' representations. Furthermore, the methods

can do general computations, for example, the method that provides an employee's yearly

income might compute it based on stored information about monthly income.

� It allows indexes to be based on user-de�ned functions. For example, employee objects

probably do not have a method that returns an employee's project manager's income, but

we can still maintain an index based on a function that computes this result.

� It allows indexes to be maintained for user-de�ned sets of objects. For example, we might

maintain an index only for the set of employees in the engineering department and not

for other departments in a business. Thus applications can incur the expense of index

maintenance only when necessary.

� It supports multiple representations per type. Each set being indexed contains objects of

some declared type. However, objects of a type need not have the same representation;

there may be objects of the same type that have di�erent representations. Furthermore,

new implementations of types can be added to the database system dynamically.

Schemes that base queries on path expressions (for example, GemStone[47]) violate abstraction

and encapsulation. They require knowledge of the implementation of a type to name the path

of interest, constrain types to one representation, and require that the key values of interest

be represented directly in the type's implementation. Method precomputation schemes[8, 10,

35, 34] allow queries based on method results, but they do not support indexes based on other

functions and the only sets that can be indexed are type extents, sets that contains all the

objects of a particular type.



1.2. Distributed Databases 15

1.2 Distributed Databases

We expect object-oriented databases of the future will be used in systems comprised of a

network of computational nodes. In this environment, the database is a collection of server

nodes storing the data, and there can be multiple clients (i.e., applications) accessing the

data from other distinct client nodes. We expect that client nodes will cache data from the

servers and do client computations locally, so that clients do not have to incur a network delay

whenever they want to access their data. This also reduces the load at the servers. However,

client caches are usually not large, so it is important that only the \interesting" data be cached

at the client node. In such an environment, queries become an important tool in increasing

client cache utilization and reducing the amount of network bandwidth wasted on transferring

uninteresting objects by allowing clients to specify that only certain elements in a set are of

interest; the system only transfers those elements rather than all of a set's elements.

Additional complexity in index use and maintenance arises when databases are distributed

and clients cache data. There are questions about where computations associated with indexes

take place. To answer a query, we may transfer an index to the client node. But an index may

be a large object, and may cause more interesting data to be thrown out of the client's cache.

The index may only be used once, so this is space ine�cient. On the other hand, running queries

at a server places additional load on the server. Likewise, key recomputation and index updates

after modi�cations to registered objects can be done at the client or the server. Finally, there

are questions about how concurrent use and maintenance of indexes interacts with concurrent

access and modi�cation of regular data objects.

One such object-oriented database system is Thor[42, 43], the context for our work. Thor

performs all user computations at client nodes on cached copies and uses an optimistic con-

currency control scheme. In addition, it transfers its objects from disk to the server cache in

very large units. This dissertation describes how index use and maintenance can be integrated

into the Thor system. Queries using indexes are run at the server. Key (re)computations are

done at the client node, but actual updates to the index structure are also done at the server.

Predicate validation is used to handle concurrent index use and maintenance. Predicate val-

idation is a new optimistic concurrency control scheme that allows concurrent index use and

maintenance with concurrent access and modi�cation of regular data objects. In this scheme,

index operations are represented by predicates and con
ict detection is done on these predicates

at transaction commit along with the regular con
ict detection done on regular data objects.

We also present a scheme for creating indexes incrementally. Incremental index creation is



16 1. Introduction

needed because long-running transactions may have di�culty committing due to the backward

validation protocol used by Thor.

In addition, we discuss the impact of the Thor's system architecture on our performance

evaluation. We extend our simulations to include transferring objects from disk in very large

units. We conclude from the results that when objects are transferred in very large units,

how objects are clustered on disk matters more than when they are transferred from disk in

smaller units. We also evaluated the e�ect of the two-level architecture on our implementation

schemes, and we conclude that the two-level architecture does not a�ect the relative merits or

disadvantages of our implementation schemes.

1.3 Roadmap

Chapter 2 presents the design of our indexing scheme. We give a precise characterization of

which objects need to be registered, describe the basic registration algorithm, describe the basic

update algorithm to handle modi�cations that a�ect indexes, and give an informal argument

of the correctness of this scheme.

In Chapter 3, we evaluate the performance of our indexing scheme. We describe several

ways of organizing registration information. We present the results of simulating three of the

schemes on various performance benchmarks and an analysis of the other schemes. We present

a framework for comparing the space costs of indexing schemes, and we characterize the space

cost of our scheme and discuss ways of reducing it.

We discuss work related to indexing in object-oriented databases in Chapter 4. We compare

the expressive power of our function-based indexing scheme with path-based indexes and other

function-based indexes and also analyze the costs of providing and maintaining these other

indexes.

In Chapter 5, we present several optimizations to the basic algorithms. Contained subobject

analysis allows the scheme to register fewer objects, while lazy updates and deregistration allow

the scheme to do fewer index updates.

Chapter 6 discusses how indexes can be used and maintained in the Thor system. We

describe where computations are done, how predicate validation works, and how to do incre-

mental index creation. In addition, we discuss the impact of the Thor system architecture on

the conclusions of our performance study.

We conclude with a summary of our work and a discussion of future work in Chapter 7.



Chapter 2

Function-Based Indexing

An index is a memoizing device. It maps keys which represent properties of interest to

the entities that have those properties. Since we are concerned with function-based indexes,

our keys are the result of computing a function f(x) and the index stores a collection of pairs

< f(x); x >, one for each element x in the indexed set. To maintain a function-based index,

we must be able to detect when a modi�cation to an object may a�ect the index. Our scheme

is based on registering the objects that may a�ect an index. We determine which objects to

register using a combination of static information that is declared and run-time information that

is collected during key computation. Registration information is consulted during modi�cations

to determine if it a�ects an index, and if so, the key for the a�ected entry is recomputed.

In this chapter, we present the basic design for our function-based indexing scheme. We

begin the chapter by giving an example of the problem we are trying to solve and an overview of

our solution to this problem. Then we present our object model followed by a brief description

of our transactional model. We de�ne the properties that a function must have to be useful as

an index function in Section 2.4. We give a precise characterization of which objects need to

be registered in Section 2.5 and describe the basic registration algorithm that registers these

objects in Section 2.6. Section 2.7 discusses how registration happens during index creation

and insertions, and the e�ect of deletions on registration information. Section 2.8 explains how

modi�cations are handled in our scheme. Finally, we give an informal correctness argument

that our scheme registers all the objects that it is suppose to register and that updates maintain

indexes and registration information correctly.

2.1 Overview

Let us introduce the problem we are trying to solve with an example that we will use

throughout this dissertation. Suppose we have a set of employee objects. Figure 2.1(a) shows

17



18 2. Function-Based Indexing

part of this set. There are three kinds of objects in the �gure:

1. Employee objects, e.g., objects � and �, contain two variables proj and income that

refer to a project object and an income info object, respectively.

2. Project objects, e.g., object �, contain a variable manager that refers to a employee

object.

3. Income info objects, e.g., 
, contain variables rate and bonus that refer to integers.

Suppose we want to create an index on this set using a function project manager income that

computes an employee's project manager's income. In creating the index, we run the function

over every set element. When we compute project manager income(�), we access objects �,

�, �, and 
. Now suppose later we modify � to refer to �, as shown in Figure 2.1(b). Obviously,

the entry in the index for � is no longer correct and project manager income(�) needs to be

recomputed, but the problem is how do we determine when a recomputation is necessary.

An obviously correct way of handling index maintenance is to recompute all indexes every

time any object is modi�ed. This is also obviously ine�cient. To make indexing work well,

maintenance should be done only when necessary. That is, if a modi�cation does not a�ect any

indexes, then do nothing. If a modi�cation does a�ect an index, only recompute the part of

the index that has changed in an automatic and e�cient manner.

Our approach is to register the objects that if modi�ed would cause an index entry to

change. That is, we identify which objects can be modi�ed in a way that causes index updates

and maintain that information. Then index maintenance work is done only when a registered

object is modi�ed. The key to making the system work well is to register as few objects as

possible. There are two aspects to minimizing the number of objects that are registered:

1. Recognizing the objects that (might) a�ect an index.

2. Recognizing the methods that (might) a�ect an index.

Clearly, the only objects that can a�ect an index are the ones that are accessed during key

computations. However, not all of these objects need to be registered. For example, a local

object holding temporary results does not need to be registered, nor does an object that cannot

be modi�ed. Our scheme uses two types of information to determine which objects need to

be registered. First, we add dependency declarations that how object methods a�ect each

other and using this information we only register objects that are accessed using methods that

can be a�ected by other methods. Second, we create registration versions of the methods and



2.1. Overview 19

proj_income_

rate_ bonus_ manager_

proj_income_

rate_ bonus_ manager_

α β

π γ

(a) Objects before modi�cation.

proj_income_

rate_ bonus_ manager_

proj_income_

rate_ bonus_ manager_

α β

π γ

proj_income_

δ

rate_ bonus_

ε

(b) Objects after � is modi�ed to refer to �.

Figure 2.1: Example modi�cation that a�ects an index. (Greek letters are OIDs.)



20 2. Function-Based Indexing

functions invoked during key computations that enter registration information into the system

when necessary. We also create checking versions of the methods that do modi�cations that can

a�ect the methods used in key computations. These checking versions consult the registration

information and cause index updates if needed. Using these techniques, we try to minimize the

number of registered objects and recomputations done in our scheme.

2.2 Object Model

Our object model is based on the Thor object model[42, 43]. Thor is a distributed, object-

oriented database being developed by the Programming Methodology Group at the MIT Labo-

ratory for Computer Science. Objects in Thor are speci�ed and implemented in an application-

independent language called Theta[22]. In the Thor model, there is a universe of persistent

objects. Every object has a unique identity (an OID), an encapsulated state, and a set of

methods that can be used to observe and modify the state. Objects can refer to other objects,

allowing general data structures, such as lists, trees, and graphs, to be de�ned. Also, objects

can be shared, i.e., many objects can refer to the same object.

Each object belongs to a type. A type is described by a speci�cation. A speci�cation de�nes

the names and signatures of the methods for objects of that type. A speci�cation also de�nes

the meaning of a type. This includes a description of the behavior associated with calling

each of the methods of the type. This semantic information is generally uninterpreted (and

currently exists as comments). We will be augmenting speci�cations with information that

will be interpreted by our indexing scheme. Information from type speci�cations is maintained

online so that it is available when code is compiled.

We classify the methods of a type into two kinds: observers, which access but do not

modify the state of their object, and mutators, which modify the state of their object. If all of

an object's methods are observers, the object is immutable since there is no way to change it;

in this case we also say that the type is immutable, since all of its objects are.

A speci�cation for the employee type written in Theta is shown in Figure 2.2. The ob-

servers shown are id, name, address, city, zip, yearly income, and project. The mutators

shown are set name, set monthly rate, set bonus, and set project. The address info, project,

income info, and medical info types have similar speci�cations. For our example, we are only

interested in a few of the methods of the project and income info types; the speci�cations

for these methods are shown in Figure 2.3.

A type can be a subtype of zero or more other types. Its speci�cation lists these supertypes.

(Our employee type does not have any supertypes.) A subtype must have all the methods of its



2.2. Object Model 21

employee = type

% e refers to the receiver

id () returns (int)
% returns the id of e

name () returns (string)
% returns the name of e

address () returns (address info)
% returns the home address of e

city () returns (string)
% returns the city that e lives in

zip () returns (string)
% returns the zip code of e's address

yearly income () returns (int)
% returns the yearly income of e

project () returns (project)
% returns the project e works on

set name (new name: string)
% sets the name of e to new name

set monthly rate (new rate: int)
% sets the monthly rate paid to e to new rate

set bonus (new bonus: int)
% sets the bonus paid to e to new bonus

set project (new project: project)
% sets the project e works on to new project

:
end employee

Figure 2.2: Speci�cation of the employee type.



22 2. Function-Based Indexing

project = type

% p refers to the receiver

manager () returns (employee)
% returns the manager of p

set manager (new manager: employee)
% sets the manager of p to new manager

:
end project

income info = type

% i refers to the receiver

rate () returns (int)
% returns the rate of i

bonus () returns (int)
% returns the bonus of i

set rate (new rate: int)
% sets the rate of i to new rate

set bonus (new bonus: int)
% sets the bonus of i to new bonus

:
end income info

Figure 2.3: Speci�cations of other methods used in the example.



2.3. Transactional Model 23

supertypes (with signatures adjusted according to Cardelli's contra/covariance rules[13]), plus

it may have additional methods.

A type is implemented by a class. The class de�nes a representation consisting of a set of

instance variables and provides code to implement the type's methods and creators in terms of

that representation. The instance variables may be data like integers or booleans that are stored

within the object, or they may be references to other objects. Objects are encapsulated; only

the object's methods have access to its instance variables. A type may be implemented by more

than one class. Figures 2.4 and 2.5 show a class implementing the employee type and a creator

for the class. This implementation has six instance variables. Note that the implementation

makes method calls on some of the objects referenced by its instance variables, but the compiler

does not need to know what class is being used to implement these objects, only what type they

are. A class can be a subclass of another class, its superclass. (Our employee impl class does

not have a superclass.) A subclass can inherit instance variables and code from its superclass

so that programmers can reuse code without duplicating it.

In addition to methods of user-de�ned types, there are stand-alone routines. Stand-alone

routines are useful for de�ning computations that are not provided by methods. For example,

an index using an employee's project manager's yearly income as a key requires a function that

is not a method of employee objects. Figure 2.6 shows how this routine would be implemented.

Set is a built-in type in Theta. Set objects have the usual methods, for example, to insert

and delete elements and to test for membership. The set type is parameterized by the element

type, for example, set[employee] contains employee objects as elements. There can be many

set[T] objects, for example, both the engineering department and the personnel department

have set[employee] objects. Also, a T object might be an element in more than one set[T]

object. Set objects are de�ned and maintained explicitly by users. Type \extents" (implicit

sets containing all objects of a type) are not maintained; an application can maintain an extent

explicitly using an ordinary set if desired.

2.3 Transactional Model

In our computational model, every interaction with the database occurs within an atomic

transaction. Clients start a transaction, call methods of objects and other operations and

routines, then try to commit any changes. Transactions provide serializability and atomicity.

That is, the computational steps executed in a transaction appear to run in some serial order

with respect to the computational steps done by other transactions, and either all changes done

by a transaction to persistent objects are re
ected in the database upon transaction commit or



24 2. Function-Based Indexing

employee impl = class employee ops

id : int
name : string
address : address info
income : income info
proj : project
med : med info

id () returns (int)
return (id )
end id

name () returns (string)
return (name )
end name

address () returns (address info)
return (address )
end address

city () returns (string)
return (address .get city ())
end city

zip () returns (string)
return (address .get zip())
end zip

yearly income () returns (int)
return (income .monthly rate() � 12 + income .bonus())
end get yearly income

project () returns (project)
return (proj )
end get project

% continued in next �gure

Figure 2.4: Class implementing the employee type.



2.3. Transactional Model 25

% continued from previous �gure

set name (new name: string)
name := new name
end set name

set monthly rate (new rate: int)
income .set monthly rate (new rate)
end set monthly rate

set bonus (new bonus: int)
income .set bonus (new bonus)
end set bonus

set project (new project: project)
proj := new project
end set project

:

create (id: int, name: string, address: address info,
rate, bonus: int, proj: project) returns (employee)

inc: income info := income info impl.create(rate, bonus)
med: med info := med info impl.create()
init fid := id, name := name, address := address, income := inc,

proj := proj, med := medg
end create

end employee impl

Figure 2.5: Class implementing the employee type, continued. The init statement assigns
values to the instance variables of a newly created object of the class and automatically forces
a return of the new object.

project manager income (e: employee) returns (int)

p: project := e.project ()
m: employee := p.manager ()
return (m.yearly income ())
end project manager income

Figure 2.6: An example index function.



26 2. Function-Based Indexing

the attempt to commit may fail, in which case the transaction aborts and none of the changes

are re
ected in the database. We assume that index use and maintenance also take place within

this transactional framework. Thus any series of computational steps taken by our scheme is

completed atomically; the steps are not interleaved with other concurrent transactions.

Indexes are created explicitly by a client in our model. The client must specify the set S

and a function f that generates the keys when creating an index over S. For each element x of

S, the system computes f(x) and associates the result as the key for x in the index. For now,

we will assume that the entire process runs within a single transaction. (We discuss incremental

index creation in Chapter 6.) After transaction commit, the index will contain a entry for every

element x of S.

2.4 Index Functions

Since an index is a memoizing device, not all functions can be used as index functions. We

impose three requirements on index functions:

1. f must be a function of its argument: it must return the same result if called with the

same argument in the same state.

2. f must be side-e�ect free: it must not modify any of the objects it uses in a way that

would be detectable later. Note that this constraint is at the abstract type level. f could

still perform benevolent side e�ects (that is, side e�ects that do not a�ect the abstract

state of an object).

3. f must have a deterministic implementation: it must access the same objects each time

it is computed between mutations that a�ect its result.

The �rst two requirements are necessary for indexes to make sense as a memoizing device. If f

were not a function of its argument or side-e�ect free, then the result from one invocation would

not be equivalent to the result from another invocation with the same argument. The third

requirement is needed for our technique to work, as will be explained later. We do not believe it

represents a signi�cant loss of expressive power. (All other indexing schemes for object-oriented

databases have the same restriction as explained in Chapter 4.)

To simplify the discussion, we will only consider index functions of the form:

f : T ! b

That is, we limit f to have only one argument of the set element type T. The type b must be

immutable and must have the methods needed to maintain an index (for example, less than,



2.5. Registration Information 27

equal), but we will assume b to be one of the built-in types (for example, int or string).

We will also assume that f to be a total function. We discuss the impact of relaxing these

limitations in our discussion of future work in Chapter 7.

We will use the following notation in the rest of this dissertation: for an index I, we will refer

to its index function as I:f , the set being indexed as I:set, and the collection of < I:f(x); x >

pairs as I:data.

2.5 Registration Information

Our approach to determining which objects to register is based on the reachability of an

object from an element of an indexed set and knowing which observer was used in computing

a key. Using this information, we register only those objects that if mutated might cause the

index to change and do index maintenance only when a registered object is mutated in a way

that may cause an index to change. More precisely, we only register objects that meet the

following conditions:

1. They are accessed in computing the index function I:f .

2. They are reachable from the elements of the indexed set.

3. They have mutators that can a�ect the result of I:f .

The objects reachable from a set element are those that can be accessed by following refer-

ences starting at the set element. For example, all objects shown in Figure 2.7 are reachable

from employee object �. An index function I:f might access additional, unreachable objects

but these cannot a�ect the index because of our requirement that I:f be a function. (The addi-

tional objects must either not have mutators that a�ect the results of I:f or be temporary and

local to I:f and the routines it calls, for example, an array that holds some temporary infor-

mation during a computation, or a global integer that is never changed.) Thus, only reachable

objects can a�ect the index.

However, a particular index function probably does not access all reachable objects from

a set element. I:f accesses object y if it calls a method of y, directly or indirectly, during its

computation. We will say that objects accessed by I:f and reachable from x are f-reachable from

x using index function I:f . The shaded objects in Figure 2.7 are f-reachable from employee

object � where I:f = project manager income. Only the f-reachable objects of a set element x

can a�ect the entry in I for x: objects I:f does not access cannot a�ect its result either now, or

in a future computation because of our requirement that I:f 's implementation be deterministic.



28 2. Function-Based Indexing

projincome

rate bonus manager

projincome

rate bonus manager

α β

π γ

Figure 2.7: All objects shown are reachable from �. The shaded objects are f-reachable from �
where f = project manager income. (Greek letters are OIDs.)

Stopping the analysis here would still register more objects than necessary. Immutable

objects that are f-reachable do not have to be registered since there are no mutators to change

their state. More generally, an object need not be registered if it is accessed only via observers

that are not a�ected by any mutators.

We acquire this dependency information by adding declarations to a type's speci�cation.

These declarations indicate which observers are a�ected by which mutators; we declare that

the observer depends on the mutator in this case. Figure 2.8 shows the speci�cation of the

employee type with these new dependency declarations. The speci�cation indicates that the

yearly income method (which returns the current yearly income of the employee) depends on

the set monthly rate and set bonus methods (since these cause the yearly income to change)

and the project method depends on the set project method. In addition, the project type

has dependencies between project and set project, and the income info type has dependencies

between bonus and set bonus, and rate and set rate. We believe that these dependency declara-

tions will not be hard to write. The e�ects that mutators have on observers are an important

part of a type's meaning and should be obvious to the type de�ner.

Conceptually, whenever an object y is registered, a registration tuple of the form:

< y;m; x; i >

is added to a registration table. (We discuss various implementations of registration information

in Chapter 3.) When such a tuple is contained in the registration table, it means that when

mutator m of object y is invoked, m might a�ect the key paired with set element x in index

i. It is worth noting that all of the information in the registration tuple helps us to avoid



2.5. Registration Information 29

employee = type

% e refers to the receiver

id () returns (int)
% returns the id of e

name () returns (string)
% returns the name of e
depends on set name

address () returns (address info)
% returns the home address of e

city () returns (string)
% returns the city that e lives in

zip () returns (string)
% returns the zip code of e's address

yearly income () returns (int)
% returns the yearly income of e
depends on set monthly rate, set bonus

project () returns (project)
% returns the project e works on
depends on set project

:

set name (new name: string)
% sets the name of e to new name

set monthly rate (new rate: int)
% sets the monthly rate paid to e to new rate

set bonus (new bonus: int)
% sets the bonus paid to e to new bonus

set project (new project: project)
% sets the project e works on to new project

:
end employee

Figure 2.8: Speci�cation of employee with dependency information.



30 2. Function-Based Indexing

doing unnecessary recomputations. Without the index i, we would not know which index to

recompute; without the set element object x, we would have to recompute the whole index,

rather than just one entry in it; and without the mutator, m, we would sometimes do a recom-

putation that was not needed. For example, this information allows us to avoid recomputing

project manager income index entries when the set bonus method modi�es an employee object

that is not a manager.

2.6 Registration Algorithm

Our registration algorithm works by keeping extra information as a key is computed. This

extra information keeps track of f-reachability so that only f-reachable objects are considered for

registrations. In our scheme, every observer O invoked by an index function has a registration

version Or. (Or is produced by the compiler either at normal compile time or dynamically,

upon creation of an index.) Or takes the same arguments as O plus some extra ones: the set

element x whose key is being computed, the index I that is being computed, and a set of objects

R that contains all objects reached from x so far (this will be explained in more detail below).

Each stand-alone function p also has a registration version pr, if it is called in computing an

index.

Or (the registration version of observer or function O) does the following (with extra argu-

ments x, I, and R):

1. If O is a method for some object y 2 R,

(a) For all mutators m 2 depends on(O), add a tuple < y;m; x; I > to the registration

table.

(b) Add all objects referenced by the instance variables of y to R.

2. Run the body of O. For all observer or function calls p in O, call registration version pr,

passing x, I, and R as extra arguments. (If O does benevolent side e�ects, the mutators

that it calls will also need registration versions.)

3. Return the same result as O.

Note that x and I are known because they are arguments to each Or. A method's object is also

known. (In Theta, the pseudo-variable self refers to this object.) Depends on(O) is extracted

from the dependency information given in the speci�cation of y's type and is a set containing

all the mutators O depends on. For example, depends on(yearly income) = fset monthly rate,

set bonusg for employee objects.



2.7. Creation, Insertion, and Deletion 31

y m x i

� set project � I

� set manager � I

� set monthly rate � I

� set bonus � I


 set rate � I


 set bonus � I

Figure 2.9: Registration table after computing project manager income(�) for index I.

For our example, to use project manager income as an index function, we would need reg-

istration versions of the project manager income function, the employee observers project and

yearly income, the project observer manager, and the income info observers monthly rate

and bonus. Figure 2.9 shows the registration tuples that are added to the registration table

after computing I:fr(�). Note that since object � is not a project manager, I:fr(�) does not

cause � to be registered for its set monthly rate or set bonus methods.

2.7 Creation, Insertion, and Deletion

When a client creates an index, the system must compute I:f(x) for every set element

in creating I:data. In our scheme, the system uses I:fr (the registration version of I:f) for

computing the key for each set element x; it passes in x, I, and R = fxg. The result of I:fr(x)

is the key paired with x in I:data. After the creation transaction commits, all of the objects

that can be mutated in a way that a�ects I will be registered.

When an object x is inserted into an indexed set, a key has to be computed for x and an

entry added to I; if the indexed set has several indexes, we must do this for each index. In our

scheme, we use I:fr to compute the key for x, passing in x, I, and R = fxg, so that after the

transaction commits, the appropriate f-reachable objects from x are registered for I.

When an object x is deleted from an indexed set, for all indexes I on the set, < I:f(x); x > is

deleted from I:data and all tuples of the form < x;m?; x; I >1 are removed from the registration

table. When a registration tuple < y;m; x; I > is removed from the registration table, we

say that y has been deregistered for m, x, and I. We deregister x when it is deleted from

an indexed set because its keys no longer have to be maintained. However, note that not

all of the obsolete registration information is being removed (for example, objects reachable

1The ? notation indicates a pattern variable.



32 2. Function-Based Indexing

from x may still be registered). Conceptually, we could specify that all tuples of the form

< y?;m?; x; I > are removed from the registration table, but as we will see in the next chapter,

some implementations would make this di�cult to achieve. Extra registrations do not a�ect

correctness, but they do cause unnecessary index updates when mutations happen; we discuss

deregistration in more detail in Chapter 5.

2.8 Mutations and Updates

Registration information is maintained so that when mutations occur, we can modify the

a�ected indexes. Mutators that can a�ect an index should check the registration table for

entries involving the object being mutated and the mutator being executed. If there is such an

entry, the mutator should cause an index update. In addition, mutations may cause changes

in the reachability graph, so we might need to update the registration table after mutations as

well.

In our scheme, when an object y is registered for a mutator m, y's method dispatch vector

entry form is replaced with a checking versionmc that checks the registration set of y whenever

mc is invoked. (Mutator mc is also produced by the compiler, either at the original compile

time or when an object is registered). The checking version mc looks for registration tuples of

the form < y;m; x?; I? >. If there are any, and if the mutator is actually going to modify the

object, the following is done:

1. Remove all tuples < y;m; x?; I? > from the registration table. For each such tuple, if

x? 2 I?:set, < key; x? > is removed from I?:data, where key is the current key value

paired with x? in I?:data, and the tuple is added to a list L of \a�ected indexes."

2. mc does the actual mutation to its object.

3. For each tuple < y;m; x; I > in L, call I:fr(x), passing it x, I, and R = fxg as ex-

tra arguments, and then insert < key0; x > in I:data, where key0 is the result of the

computation.

The case of x? 62 I?:set (in step 1) may happen since we are not removing all registration

information related to x when an object is deleted from a set. This can happen two ways: some

other mutator changes the reachability graph and the objects below the point of mutation still

have registrations for x, but are no longer reachable from x, or x has been deleted from I:set.

Note that if m itself changes the reachability graph, step 3 will register any newly f-reachable

objects. Also note that by removing all < y;m; x?; I? > tuples that we are deregistering y, so



2.8. Mutations and Updates 33

y m x I

� set project � I

� set manager � I

� set monthly rate � I

� set bonus � I


 set rate � I


 set bonus � I

� set monthly rate � I

� set bonus � I

� set rate � I

� set bonus � I

Figure 2.10: Registration table after recomputing project manager income(�) for index I.

if it turns out that y is no longer f-reachable from x?, it will not be reregistered and will not

cause another unnecessary update. If y is still f-reachable from x, the recomputation of the key

for x will reregister y.

In our example, suppose we invoke �:set manager(�) that causes the example mutation that

was shown in Figure 2.1(b). Since there is a registration tuple < �; set manager; �; I >, the

system would determine the current key value for � in I, remove the I:data pair for �, do the

mutation (setting �'s manager instance variable to refer to �), compute I:fr(�), and insert

the appropriate new data pair into I:data. Figure 2.10 shows the registration table after this

mutation. There are new registration tuples for � and � involving � from recomputing �'s key

after the mutation. Also, there are still registrations for � and 
 involving � even though they

no longer can a�ect �'s key.

This scheme works well if computing x? 62 I?:set and determining the current key are

e�cient. One way to achieve this is to maintain a hash table for a set that maps the OID of

each element in the set to its key. In the absence of such a structure, we might like to remove

obsolete registration tuples to prevent unneeded work (deregistration is discussed in Chapter

5), or we might keep a copy of the key in the registration tuple.

As an aside, we note that we try to maintain the method dispatch vector of a registered

object so that it refers to checking versions for the mutators named in its registration tuples but

to regular versions for other mutators so that no overhead is incurred for mutators that cannot

a�ect an index. When there are no registrations, all of the objects of a particular class share

the same method dispatch vector; thus when an object is registered for mutator m, it will need

a copy of the dispatch vector that is the same as the original except that the entry for m will



34 2. Function-Based Indexing

refer to mc instead. If we are not careful, there will be a proliferation of dispatch vectors, so

we will want to keep track of these new dispatch vectors and share them when possible. Also,

when an object is deregistered for a mutator m and we want to convert back to the regular

version of m, we need to �nd an already existing dispatch vector with the appropriate entries

instead of creating a new one, if possible.

2.9 Correctness

For our scheme to be correct, at the end of any transaction, for a particular set and index

there must be a single entry in the index for every element of the set that has a key that is

equal to the result we would get if we executed the index function on the associated set element

at transaction commit. We assume the function used to compute the index keys meets our

requirements for an index function (that is, it is function of its argument, it is does not cause

side e�ects, and it has a deterministic implementation) and that the dependency information in

the speci�cations of the types used by the index function is correct (that is, all of the mutators

that can a�ect an observer are listed in an observer's depends on declaration).

Our index maintenance scheme is based on registration, so �rst we argue that I:fr(x)

registers all the objects that can a�ect x's entry in I. The basic correctness condition is that the

set of objects registered for x and I at any given time is a superset of the set of objects that a�ect

x's entry in I at that time. This is true because when I:fr(x) is computed, all objects reachable

from x that I:f could access are in R, and every object in R will be registered if necessary.

R is constructed inductively. Initially it contains x, the set element. Whenever a registration

version of an observer of x is called, it will add all objects referenced by the instance variables

of x to R; also, if the observer depends on any mutators, it will register x. If any observers

of objects referenced by the instance variables are called, the call will go to the registration

version of these observers and the subobjects will also be registered, if necessary, since they

were added to R by the caller. The objects referenced by the subobjects' instance variables

will be added to R, and so forth. Thus every f-reachable object from x that can be mutated

in a way that a�ects an observer called in computing I:f will be present in R and registered,

if necessary. In addition, our restriction that I:f have a deterministic implementation means

that there cannot be any objects that a�ect the index function that are not accessed during

this computation of I:f . Therefore, all objects that can a�ect the entry for x in the index are

registered when I:f(x) is computed.

Now we use an inductive argument to show that our scheme maintains indexes correctly.

For the basis step of the argument, we must show that index creation is correct. Whenever we



2.9. Correctness 35

create an index, we begin with an empty index and then add to it a pair < I:f(x); x > for each

element x. The key is actually computed using I:fr(x). Since this computes the same result

as I:f , the proper key is computed, and in addition, the appropriate objects are registered as

argued above.

For the inductive step we must consider insertions, deletions, and mutations. We assume

that when one of these occur, the index entries have the correct keys and all the necessary

objects are registered. Insertion of x to the set simply adds the pair < I:fr(x); x > to the

index; since the index entries were correct before and since we add the correct pair, the index

is correct after the insertion. Furthermore, all the appropriate objects are registered since the

necessary ones were registered before the insertion and the computation of the key using I:fr

causes the appropriate additional registrations.

When an object x is deleted from a set we remove its index entry and deregister it (for

itself as the set element). After deletion, the remaining entries in the index have correct keys

since they were correct before the deletion, and all f-reachable objects from the set elements

are registered since they were before; the only registration that has been removed is no longer

needed.

When an f-reachable object y is mutated in a way that can a�ect x's entry I, it will be

registered for x and I by the induction hypothesis that all objects have been registered correctly.

Then e�ectively we delete x, and after the mutation we insert it. The net e�ect is correct because

deletion and insertion are correct as shown above.

Objects that do not a�ect the index may also be registered. There are two ways in which

excess registrations happen. First, there may be obsolete registrations, since we do not remove

them, for example, when an element x is deleted from a set. In this case, the f-reachable

subobjects of x are not deregistered, even though they can no longer a�ect an index entry.

We discuss how to remove these obsolete registrations in Chapter 5. Second, even though an

observer depends on a mutator in general, it may not depend on that mutator given the current

state of the object. For example, suppose a counter object could only be incremented, and

its observer over 100 returns true if its value is over 100. In general, over 100 depends on the

increment mutator, but not if the current value of the counter is greater than 100. To determine

this case, we would need to be able to prove this property and also monitor the object's state to

know when the property's precondition was met. This type of program veri�cation is beyond

the scope of this dissertation.

Extra registrations in an object are not harmful, but they may cause unnecessary work.

When the registered object is mutated the mutator �rst checks whether the \element" it is



36 2. Function-Based Indexing

registered for is still in the set and if it is not, no change is made to the index. If the element

is in the set, any recomputations will use the current state of the element and will compute the

correct key for that element.



Chapter 3

Performance Evaluation

Support for indexes involves a time/space tradeo�: We trade space for the index in exchange

for making queries run faster. In our scheme, we need extra space to store the registration

tuples in addition to the index itself; these tuples also a�ect running time because of the time

needed to move them between disk and primary storage and the extra time needed to perform

registration checks and updates. To evaluate our indexing scheme, we need to get a sense of the

tradeo�s involved between the bene�ts of using indexes and the cost of maintaining them. Our

approach is to simulate three possible implementations on a variety of performance benchmarks

and analyze several others. This chapter presents the results of the simulations and analysis.1

We begin by explaining our simulation model including what objects look like, the three

implementation schemes to be simulated, and a system architecture. Next we present the

database used in our simulations; it is based on the OO7 benchmark database[14]. In Section

3.3, we describe the benchmarks used to measure the bene�t or overhead of our scheme on

queries, navigation, and updates. In Section 3.4, we present our experimental framework. We

discuss our hypotheses about the performance of function-based indexes in general and the

performance of three implementations and present the database and con�gurations used in our

simulations. The results of our simulations are presented in three parts. Section 3.5 shows

the bene�t of indexes to queries. Section 3.6 presents the results and our conclusions about

the e�ect of disk organization on our benchmarks. Section 3.7 compares three implementation

schemes on each of the benchmarks. The simulations are primarily concerned with the running

time of our benchmarks. We observed that the space overhead for registration information is

fairly high and how it is implemented a�ects each benchmark in di�erent ways. In Section 3.8,

we present a framework for analyzing the space overhead of indexing schemes, suggest several

1The simulator used in these experiments is written in CLU compiled using pclu, the portable CLU compiler,
and was run on DEC Alpha machines.

37



38 3. Performance Evaluation

header

header

header

10001

false

‘c’

3

true

10

325

Figure 3.1: Example objects.

other implementations for our scheme with less space overhead than those simulated, and make

some general conclusions about our indexing scheme.

3.1 Simulation Model

In this section, we present our simulation model. We begin by explaining how we model

objects and indexes. Then we present three possible implementations for our scheme. Finally,

we give a description of the system architecture that we simulated.

3.1.1 Objects

An object consists of some number of references and some amount of non-reference data

(for example, integers and booleans). We are modeling a system with 64-bit addresses, so a

reference takes 8 bytes. An object has a header of 16 bytes that contain information such as the

object's unique id (OID) and a reference to its method dispatch vector. Some example objects

are shown in Figure 3.1.

An index is modeled as a balanced tree of node objects. Each node of the tree has keys

(assumed to �t into 8 bytes) alternating with values (which are references, also 8 bytes). We

�xed the number of keys per node at 125, a number chosen to make each node have 2000 bytes

of data. We compute the number of nodes in an index in the following manner:

1. The height of the tree is computed as dlog125(number of values)e

2. Starting at the leaves of the tree, for each level of the tree, the number of nodes at the

current level is ((total nodes at previous lower level - 1) div 125) + 1

The leaf nodes contain the < key; x > pairs (where x is a reference to a set element) of an index



3.1. Simulation Model 39

data part. The \values" in higher-level nodes are references to index nodes at the next lower

level.

3.1.2 Registration Implementations

We simulate three implementation schemes. These schemes represent three points in the

tradeo� between speeding up queries and slowing down updates. In all three schemes, we assume

that there is a bit in the header of an object that indicates whether the object is registered or

not. We believe this will not add any space cost since objects have unused bits in their headers.

We also assume in the schemes that store registration information inside registered objects that

there is no space overhead when objects are not registered.

The �rst implementation scheme is the bit scheme. This is a straightforward implementation

of our design. The registration tuples for an object y (i.e., all tuples with y in the �rst �eld) are

stored in a separate registration object as triples < m;x; I > and this information is accessed by

calling methods of the registration object. The registration table is a mapping of the registered

objects' OIDs to their registration objects and is modeled as a regular index. Figure 3.2(a)

shows this scheme pictorially; y is the registered object as indicated by the black box in the

corner representing the header bit, r is the registration object for y, and rt is the registration

table. Note that since the registration tuples are stored in an object, each registration object

also carries a 16-byte header as extra space overhead.

The second implementation scheme is the pointer scheme. In this scheme, as in the bit

scheme, the registration tuples for a registered object are stored in a separate registration object.

However, instead of a registration table, each registered object contains an extra (hidden)

instance variable that refers to its registration object. This scheme is shown in Figure 3.2(b);

y is the registered object and it stores a reference to its registration object. This scheme

is interesting because it trades o� an 8-byte reference in a data object to avoid storing a

registration table, and allows us to �nd a registration object directly rather than doing a

lookup in the registration table �rst.

The third implementation scheme is the embedded scheme. In this scheme, registration

tuples < m;x; I > are stored (directly) inside the registered object. Figure 3.2(c) shows this

scheme; the registration tuples are stored as part of y. This scheme is attractive because there

is no extra time overhead to �nd the registration tuples and there is no extra space overhead

other than for the registration tuples.

We pack the contents of a registration tuple < m; I; x > into 12 bytes. (The most straight-

forward representation, one reference to each ofm, I, and x, would take 24 bytes.) The reference



40 3. Performance Evaluation

y r rt

<m1, x, I >

<m2, x, I >

< y, r >

(a) Bit scheme

y

<m1, x, I >

<m2, x, I >

(b) Pointer scheme

y

<m1, x, I >

<m2, x, I >

(c) Embedded scheme

Figure 3.2: Three implementation schemes.



3.1. Simulation Model 41

to x will be a full 8 bytes, but the mutator m can be a very small integer (an object probably

does not have more than 256 mutators, so this information can be encoded into a 1-byte inte-

ger), and the index I can be encoded as well (for example, as an entry in an \index table" for

the system).

3.1.3 System Architecture

The system we are simulating consists of a single client accessing a database on a single

server with a disk and a primary memory cache; the server has 64-bit addresses. The server

stores is objects on disk in units we call segments. Segments are fetched into the cache on

demand and are removed using an LRU policy. We assume that the space taken up by a

segment in the cache is the same as that taken up on disk. The size of the primary memory

cache and the size of a segment are parameters to the simulation.

Note that in the pointer and embedded schemes where registration objects are separate

from registered objects, we have a choice of whether to store a registration object in the same

segment as the registered object or in a di�erent segment. (This choice does not arise in

the embedded scheme, since the registration information is being stored inside the registered

object.) Our preliminary results showed that both the pointer and bit schemes with same

segment storage performed worse than any of the remaining schemes. They exhibited worse

space characteristics than the embedded scheme by spreading out the data objects among even

more segments without the bene�t to updates that the embedded scheme shows. This was

especially true of the bit scheme with same segment storage as each access to a registration

object still required a registration table lookup. As a result, we dismissed these cases and only

modeled the pointer and bit schemes with registration objects stored in separate segments.

For execution time, we count the number of simulated time steps needed to complete a

benchmark. The simulated time steps are meant to approximate machine cycles. We model

disk access using two parameters, disk overhead, representing the average latency and seek time

incurred during a disk access, and disk transfer rate. Disk overhead is expressed in milliseconds

and disk transfer rate in megabytes per second. These real time parameters are converted to

simulated time steps assuming some processor speed. Every disk access incurs both the disk

overhead and the transfer time for one segment.

Each benchmark consists of a trace, a series of steps (OIDs) representing a series of method

calls to objects in the database. The exact nature of these traces is described in Section 3.3.

The time cost for a method call is modeled in the following manner:

1. Access to the cache is \free." That is, we assume that there is hardware support to



42 3. Performance Evaluation

determine if an object is in the cache that essentially makes it free.

2. If the object is not in the cache, the segment that contains the object is brought into

the cache, incurring a disk access. This may throw out a segment from the cache. If the

victim segment has modi�ed objects on it, it needs to be written to a \backing store"

that is not part of the database storage.

3. Dispatching on an object's method dispatch table and executing a method body that

accesses non-reference data is modeled as some �xed time cost. The default is 10 cycles,

but this number can be set. (Note that methods that call methods of other objects are

modeled by steps in the trace.)

3.2 Simulation Database

The simulated database is based on the OO7 benchmark database[14]. We model the small

and medium versions of this database. (The large OO7 database is meant for multi-user tests;

we did not do these tests, since we are interested in the basic performance of our scheme.) The

OO7 database contains a part library of 500 composite part objects, each of which contains some

information (like the part's id and build date), and references to a document object and the

root of a graph of unshared atomic part objects. Each atomic part contains some information

(like the part's id and build date), and 3, 6, or 9 references to other atomic parts. One reference

per atomic part is used to connect the atomic parts into a ring. The other references are chosen

randomly. Figure 3.3 shows a pictorial view of a composite part with the root of its atomic part

graph and its document header. (The combination of small and medium sizes, and the number

of references per atomic part create 6 di�erent databases. We will refer to these databases as

\small DB3," \medium DB9," etc. When the number of references per atomic part does not

matter, we will just use \small DBs" and \medium DBs.")

In the small DBs, there are 20 atomic parts per composite part, while in the medium DBs,

there are 200 atomic parts per composite part. For our simulation, we broke down document

objects into a document header object that contains some information (like the document's id

and date) and references to document part objects each containing 2000-byte pieces of text.

In the small DBs, the document has 2000 bytes of text, so a document header refers to one

document part, while in the medium DBs, a document has 20000 bytes of text, so a document

header refers to 10 document parts. We did this to simplify our simulation; otherwise we would

have had to simulate how the system deals with objects that are larger than a segment.

In addition to the part library, there is a design tree of assembly objects. At every level



3.2. Simulation Database 43

composite part document header atomic part

Figure 3.3: A composite part object with its document header and the root of its atomic part
graph in the small DB3.

composite parts

assemblies

Figure 3.4: OO7 design tree.



44 3. Performance Evaluation

Size (bytes)
atomic atomic composite assembly

part (3 refs) part (9 refs) part

Object header 16 16 16 16
Non-reference data 24 24 16 8
Reference data 24 72 16 8

Total size 64 112 48 32

Size (bytes)
document document document

header (small) header (medium) part

Object header 16 16 16
Non-reference data 8 8 2000
Reference data 8 80 0

Total size 32 104 2016

Figure 3.5: Object sizes in the OO7 database.

Average object size (bytes)
excluding document parts

Small DB3 61

Small DB9 101

Medium DB3 64

Medium DB9 111

Figure 3.6: Average size of an object in each database excluding document parts.

of the tree except the base level, each assembly refers to 3 other (unshared) assemblies. An

assembly at the base level refers to 3 randomly chosen composite parts (these can be shared

among assemblies). The tree is 7 levels in the both the small and medium databases. Figure

3.4 shows a pictorial view of this assembly tree with only 3 levels; the full tree is much larger.

Figure 3.5 shows the sizes of various objects in the OO7 database in our model. Figure 3.6 shows

the average size of an object in each of the databases excluding the document part objects. We

exclude the document part objects because they are never registered and are stored separately

from the rest of the database in our simulations.

In most of the benchmarks, we model one index over a set containing all of the data objects

(except document parts) based on the date method. For the small DBs, this index is 2 levels



3.3. Benchmarks 45

with one node for the root and 97 nodes at the leaf level for a total of 98 nodes. For the medium

DBs, this index has 3 levels with one node for the root, 7 nodes at the middle level, and 817

nodes at the leaf level for a total of 825 nodes.

The objects in the database (except document parts) are clustered into segments in one of

two ways. OID order models clustering based on reachability. In this clustering, objects are

assigned to segments in the order they are created since we create them based on reachability.

This ordering is bene�cial to navigation since objects that refer to each other are closer together.

Date index order models clustering based on the date index. In this ordering, objects are

assigned to segments in the order of their placement in the date index. This ordering is bene�cial

to queries using the date index.

3.3 Benchmarks

Our goal is to measure the bene�t or overhead of our scheme on queries, navigation, and

updates. For queries, we measure the bene�ts and costs of having indexes on various kinds

of queries. In navigation, there is only the cost of the space used by registration information

when accessing registered object. Update costs include both the space used by registration

information as well as the time needed to do one or more of the following steps: check that

an object is registered, access registration information, compute the new key value and update

the index, and update registration information. In this section, we describe the benchmarks

we simulated to measure these bene�ts and costs. Figure 3.7 shows a summary of the our

benchmarks.

3.3.1 Queries

The query benchmarks model various kinds of queries computed both with and without

indexes. In these benchmarks, the keys are distributed uniformly over the set being indexed.

Space for the result set is pre-allocated out of the cache to simulate it being kept in the cache

for the duration of the run. Its size is proportional to the number of matches expected. There

are two query benchmarks to measure the e�ect of function-based indexes in two situations.

In the �rst query benchmark, we model queries over a set that contains most of the database

and use an index function that accesses data present in the set element. We are interested in

the cost of registration information when indexes are not used and the e�ectiveness of primary

and secondary indexes for these types of queries. (A primary index is one that determines the

clustering of the objects into segments. All other indexes are secondary indexes.) In the second

query benchmark, we model queries over a set that contains relatively few objects of the total



46 3. Performance Evaluation

1st Query Benchmark All data objects (except document parts) are set elements

Query 1 Scanning without registrations

Query 2 Scanning in the presence of registrations

Query 3 Primary index use

Query 4 Secondary index use

2nd Query Benchmark Small, unclustered set of composite parts

Query 5 Scanning with \�eld access" function

Query 6 Scanning with complex function

Query 7 Secondary index use

Navigation Benchmark Read-only traversal of design tree

Navigation 1 No registrations, clustered in OID order

Navigation 2 No registrations, clustered in date index order

Navigation 3 With registrations, clustered in OID order

Update Benchmark Traversal of design tree with writes

Update 1 No registration checking

Update 2 Only checking registration bit

Update 3 With checking and registration tuple access

Update 4 With checking, registration tuple access, and index updates

Update 5 With checking, registration tuple access, index updates,
and registration tuple updates

Traversal types

Full Depth-�rst traversal of entire design tree

Path1 Depth-�rst traversal of one reference per level

Path2 Depth-�rst traversal of two references per level

Figure 3.7: Summary of simulation benchmarks.



3.3. Benchmarks 47

database using an index function that accesses other objects in addition to the set element

during its computation. This measures e�ectiveness of secondary indexes for these types of

queries.

In the �rst query benchmark, all of the data objects except document parts are elements

of the indexed set. The elements of the set are clustered in date index order. In the �rst three

queries, the query is to �nd the elements that match a range of dates. In the fourth query, the

query is to �nd the elements with a range of particular OIDs. These queries are run several

times varying the percentage of matches. Measurements are taken for the following situations:

1. (Query 1) A query with no registered objects and using no indexes. Each object in the

set is accessed in clustered order (i.e., the set elements are scanned) and a computation

is done to determine inclusion.

2. (Query 2) A query using no indexes, but with registered objects. The computation is the

same as Query 1.

3. (Query 3) A query using the date index. All set elements are registered. The index is

consulted and the matches are accessed.

4. (Query 4) A query using the \OID index". All set elements are registered. We simulate

an OID index to �nd matching OIDs. Then we sort the OIDs in segment order before

accessing the matches.

Query 1 is the base case. There is no index, and there are no registrations. Query 2 measures

the e�ect of registration tuples on queries not using indexes. Query 3 measures the utility of

primary indexes. Query 4 measures the utility of secondary indexes. We sort the OIDs of the

matches in segment order so that all of the matches in a segment will be accessed at the same

time. Otherwise, if the cache is smaller than the total number of segments that need to be

accessed, there could be thrashing when the query goes back to previous segments to access the

additional elements.

The �rst query benchmark models a very \relational" sort of operation. Most of the database

belongs to the set and the information is one of the \�elds" of the set elements. We expect

that many queries in object-oriented databases will di�er in two ways: many sets will contain

only a small percentage of the database and query functions will be complex computations

involving other objects in addition to the set elements. To explore the utility of indexes for

these types of queries, we run a second type of query benchmark. In this benchmark, we are

interested in an analysis of a best-case scenario for function-based secondary indexes. We model



48 3. Performance Evaluation

the following scenario. There is a set containing the composite parts. We are interested in a

function that takes a composite part as an argument and computes the number of `e' characters

in the document associated with a composite part by accessing each of the document's parts and

counting the `e' characters in the document part. (A character is 1 byte, but data is accessed

in 4-byte words. Thus this function is modeled as 6500 cycles: one cycle each for a shift, mask,

and comparison performed per byte over 2000 bytes plus one cycle for each increment when a

byte matches; we assume on average one-fourth of the bytes checked match.) We run this query

with and without an index. As a basis for comparison, we also run a query over the same set

using the composite part's date method to model the \�eld" access type of function on a small

set. The data objects are clustered in date order, so the composite parts and their documents

are not clustered together. Except in the last query, there are no registrations. Measurements

are taken for the following situations:

5. (Query 5) A query on a function that only accesses the date of a composite part without

an index or registered objects.

6. (Query 6) A query on a function that accesses all of the document parts of the document

contained in a composite part without an index or registered objects.

7. (Query 7) Query 6 using an index with registration tuples in the composite parts and

document headers.

Query 5 is the used as a basis for comparison. It represents queries using the simplest kind of

function. Query 6 is the base case for our complex function. Query 7 measures the utility of

secondary indexes for queries over small sets using complex functions. The di�erence between

Query 6 and Query 7 is the bene�t that secondary indexes give to queries using complex

functions.

3.3.2 Navigation

The navigation benchmark models non-query access to data that executes methods of an

object and follows the references returned by methods. The traces in the navigation benchmarks

are read-only traversals of the design tree of the OO7 database. The �rst traversal is a full

traversal that starts with the root of the design tree and visits each object in the tree in a

depth-�rst manner. When a composite part is reached, a depth-�rst search of its atomic part

graph is done. (Since there are 729 base level assemblies and they each contain 3 references to

composite parts, a composite part may be visited more than once. However, since the composite

parts are assigned to base level assemblies randomly, not all of them may have been assigned;



3.3. Benchmarks 49

Trace sizes
Small DB3 Small DB9 Medium DB3 Medium DB9
# # Objs. # # Objs. # # Objs. # # Objs.

Traversal Steps Accessed Steps Accessed Steps Accessed Steps Accessed

Full 49207 11983 49207 11983 442867 100477 442867 101487
Path1 29 29 29 29 209 209 209 209
Path2 2943 2503 2943 2569 25983 23559 25983 23115

Figure 3.8: Trace sizes.

thus, those that are not assigned are not visited.) This benchmark also contains two path

traversals. In the �rst path traversal (referred to as path1), we start at the root of the design

tree and randomly pick one reference at each level of the tree to follow. When the base level is

reached, one composite part is picked at random, and a depth-�rst search is done on its atomic

part graph. The second path traversal (referred to as path2) is the same as the path1 traversal

except that at each level two references are randomly chosen to be followed. The number of

steps in each trace and the number of objects they access are shown in Figure 3.8.

For this benchmark, we run each traversal several times with a varying number of regis-

tration tuples per registered object. When objects are registered, all data objects (except the

document parts) in the database are registered. For each run, three types of measurements

were computed:

1. (Navigation 1) Traversal with no registered objects and clustered in OID order.

2. (Navigation 2) Traversal with no registered objects and clustered in date index order.

3. (Navigation 3) Traversal with registered objects and clustered in OID order.

Navigation 1 is the base case. Navigation 2 is used to measure the e�ect of clustering on

navigation. Since objects that reference each other are stored closer to each other, OID order

should make Navigation 1 faster (fewer disk accesses) than Navigation 2 where objects are stored

in date index order. Navigation 3 measures the e�ect of registration tuples on navigation.

3.3.3 Updates

The update benchmark models a client that changes a �eld of a set element while navigating

through the database. Writes are modeled in the following way. Checking the bit in the object

header to determine if the object is registered has a cost of 2 cycles. In the embedded scheme, we



50 3. Performance Evaluation

assume that registration information is accessed as regular data and cost the same as executing

a method body. In the pointer scheme, accessing a registration object is a normal object access

and method call. (That is, we add a step to access the registration object into the trace.)

For the bit scheme, the registration table must be accessed �rst to �nd the registration object

associated with the object being written. This is modeled as an access to a node at every level

of the registration table index to simulate walking down the tree to �nd the appropriate leaf.

Then the registration object is accessed as in the pointer scheme.

Writes are recorded in a log that must be written to disk (during transaction commit) and

applied in place after commit. We ignore reclustering problems; we assume that modi�cations

do not a�ect object size, and model applying writes as simply writing the new information

back to the old object location. (We will come back to this point in the comparison of the

simulated schemes.) We assume that the writes from the log are sorted so that all the writes

for a segment are applied together. We model new-value logging; the log record for a modi�ed

object is the same size as the object, since we assume modi�cations do not a�ect object size.

(Change-value logging would reduce the size of the log, but the objects we are modeling are

fairly small, so the di�erence would be minor. Also, in the system we are modeling, the time to

write the log is dominated by disk accesses during computation, so the incremental savings of

writing a smaller log would be relatively small.) In addition, if a write causes an index update,

we have to write a log record for that update as well. We assume the log record for an index

update is 32 bytes, 8 bytes each for the old key value, the new key value, the reference to the

index I, and the reference to the set element x. We assume that a key value will �t into 8

bytes. We may be able to pack this information into fewer bytes, but this is less clear than

with the registration tuple. Changes to registration information causes another log record if it

is stored in a registration object as in the pointer and bit schemes. (Updates in the bit and

pointer schemes may also require new registration objects to be created for data objects that

are newly reachable and need to be registered. However, since we are not modeling new objects

or objects that change size, we only model the case of registration information being modi�ed

and written back in place.)

The update benchmark uses the same traversals as the navigation benchmark (i.e., full,

path1, and path2 traversals), and in addition, each step may be randomly chosen to be a write.

As explained earlier, a write causes an access to the registration information of the accessed

object if the object is registered. This access may result in no action taken (the write does not

a�ect any indexes) or an update to an index (the write a�ects a key). In the case where the

index is to be modi�ed, there may also be changes in the registration information (the write



3.4. Experiments 51

changes the reachability graph).

We run each traversal several times varying the percentage of writes in the trace. In each

case, the writes are uniformly distributed over the trace and larger percentages of writes include

all writes done in smaller percentages of writes. The objects are clustered in OID order. For

each run, �ve types of measurements are made:

1. (Update 1) Modi�cations in a system with no indexing.

2. (Update 2) Modi�cations done in our system, but with no registered objects.

3. (Update 3) Modi�cations on registered objects, but no index changes.

4. (Update 4) Modi�cations on registered objects that cause index updates.

5. (Update 5) Modi�cations on registered objects that cause index updates and registration

updates.

All measurements include the time to write back the log and the segments with modi�ed objects

at transaction commit. In Update 1 and Update 2 there are no registrations. Update 1 measures

the base case where a write does not check to see if an object is registered because there are

no registered objects. Update 2 measures the incremental cost of checking for the registration

bit in an object's header in our scheme. (Our scheme often avoids this cost since unregistered

objects can use mutators that do not do checking.)

For Update 3, Update 4, and Update 5, all data objects (except document parts) are

registered with one registration tuple each. Update 3 measures the incremental cost of accessing

registration information even when there are no index updates. (Our scheme often avoids

this cost since mutators that cannot a�ect an index generally do not check for registration

information in the �rst place.) Update 4 measures the incremental time to compute the new

key(s), write index update log records, and write back the segments containing the index nodes

that have been updated. Update 5 measures the incremental time used in Update 4, as well

as the time to write the registration object log records, if any, and the time to write back the

segments containing the modi�ed registration objects, if any.

3.4 Experiments

We are interested in answering three questions:

1. Are function-based indexes useful in an object-oriented database?



52 3. Performance Evaluation

Number of registration tuples per registered object
0 1 2 3

Size Size % Size % Size %
(bytes) (bytes) Inc. (bytes) Inc. (bytes) Inc.

Emb. Sm. DB3 1946776 2091892 7.5 2237008 14.9 2382124 22.4
Sm. DB9 2425776 2571892 6.0 2717008 12.0 2862124 18.0
Med. DB3 18280408 19505524 6.7 20730640 13.4 21955756 20.1
Med. DB9 23080408 24305524 5.3 25530640 10.6 26755756 15.9

Ptr. Sm. DB3 1946776 2382124 22.4 2527240 29.8 2672356 37.3
Sm. DB9 2425776 2862124 18.0 3007240 24.0 3152356 30.0
Med. DB3 18280408 21955756 20.1 23180872 26.8 24405988 33.5
Med. DB9 23080408 26755756 15.9 27980872 21.3 29205988 26.5

Bit Sm. DB3 1946776 2482948 27.5 2628364 35.0 2773180 42.4
Sm. DB9 2425776 2962948 22.1 3108064 28.1 3253180 34.1
Med. DB9 18280408 22802212 24.7 24027328 31.4 25252444 38.1
Med. DB9 23080408 27602212 19.6 28827328 24.9 30052444 30.2

Figure 3.9: Total database size and percentage increase in size for databases, including 1 index,
when all data objects (except document parts) are registered.

2. What is the e�ect of di�erent segment sizes on our scheme?

3. How should function-based indexing be implemented?

In this section, we present our experimental framework. we describe the database con�gurations

and system con�gurations that we chose to simulate. Then we discuss our hypotheses about

each of these questions.

3.4.1 Database Con�gurations

We wanted to explore several points in the design space to test our hypotheses. We created

four databases: small DB3, small DB9, medium DB3, and medium DB9. We did not run

simulations on the DB6 databases because we could interpolate the results between the DB3

and DB9 databases.

Figure 3.9 shows the total number of bytes required for our databases, including one index,

when all data objects (except document parts) are registered with varying numbers of regis-

trations. We note that the pointer and bit schemes have fairly high space overhead, due to

the object header overhead that every registration object incurs. In Section 3.8, we discuss

other implementations with lower space overhead. However, we expect that disk space costs

will continue to decrease making it feasible to cover our space overhead in return for the bene�t



3.4. Experiments 53

that indexes provide. We also expect that in real systems many objects will not be registered

at all, so that the average number of registrations tuples per object will be small. Also, as the

average size of an object becomes larger, the space overhead of registering an object becomes a

smaller percentage of the total database size as shown for the medium DBs where the atomic

parts and documents are larger. In general, we simulated systems with one registration per

registered object.

We con�gured the database so that data objects (except document parts) are clustered

into data segments according to whatever clustering order (OID or data index) is chosen. The

document parts are clustered together in separate document segments. The index nodes are

clustered together in separate index segments. Registration objects in the pointer and bit

schemes are clustered together in separate registration segments. The registration table nodes

in the bit scheme are clustered together in separate registration table segments as well.

3.4.2 System Con�gurations

Processor speed is unlikely to have a qualitative e�ect on the results of our benchmarks,

since they are I/O bound. In order to equalize the computational and I/O portions of our

benchmarks, a processor would have to be much slower than what is currently available. A

very fast processor would make the computational portions of the benchmarks faster relative to

the I/O portions exacerbating the problem. We chose to simulate a 125Mhz processor. (That is,

1 millisecond = 12,500 simulated time steps.) This approximates a DEC Alpha, the hardware

being used by the Thor project.

For disk speed, we chose three settings: slow, corresponding to a 30 millisecond overhead and

a 2 megabytes per second transfer rate (this corresponds to mid-1992 o�-the-shelf speeds[17]);

medium, corresponding to a 15 millisecond overhead and a 5 megabytes per second transfer rate;

and fast, corresponding to a 5 millisecond overhead and a 10 megabyte per second transfer rate.

For segment sizes, we chose 2, 8, and 16 kilobytes (2K, 8K, and 16K segments, respectively).

For cache size, we chose 2 megabytes. This is large enough that the objects accessed in the

small DBs will �t into the cache. Although we can simulate a cache that is large enough to

contain the medium DBs (20 megabytes), we chose not to do so, because there will always be

databases that do not �t into memory, and we wanted to run some experiments in this region

of the design space.

We ran all benchmarks for each combination of parameters on the small DB3 and the small

DB9 with a cold cache. After looking at the results, we concluded that disk speed did not

a�ect the relative performances of the di�erent implementation schemes in the system we are



54 3. Performance Evaluation

0 5 10 15 20 25

Percentage of objects that matched

0

100

200

300

400

500

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

(a) Slow disk

0 5 10 15 20 25

Percentage of objects that matched

0

100

200

300

400

500

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

(b) Medium disk

0 5 10 15 20 25

Percentage of objects that matched

0

100

200

300

400

500

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

(c) Fast disk

Query 1
Query 2
Query 3
Query 4

Figure 3.10: E�ect of disk speed on embedded scheme query benchmark results.



3.4. Experiments 55

modeling, since in all cases the computations are I/O bound. That is, the benchmarks completed

in fewer simulated time steps and the graphs were 
atter when simulating faster disk speeds,

but the various crossover points were the same since the same number of segments needed to

be accessed in each case. For example, Figure 3.10 shows the results for the embedded scheme

on one of the query benchmarks for the di�erent disk speeds. The results themselves will be

explained in Section 3.5, but the point to note here is that the curve for Query 4 crosses over

the curves for Query 1 and Query 2 at the same place along the x-axis in all three graphs. Since

disk speed was no longer signi�cant for our study, we did not run benchmarks with medium

and fast disk speed settings for the medium DBs. All of the data we present in the rest of this

dissertation are the results of using the slow disk speed setting.

We note that there are high performance disk systems (e.g., RAID systems) that can trans-

fer data faster than we modeled. However, such systems also require that data be organized

carefully to take advantage of this transfer rate, since otherwise the cache will be �lled with

uninteresting data. This dissertation is concerned with the general characteristics of our index-

ing scheme, and modeling how our simulated database could be arranged on one of these disk

systems is outside the scope of this dissertation.

Our results showed that segment size does not a�ect the relative performance of our imple-

mentations. We discuss the e�ect of segment size on overall performance on our benchmarks

in Section 3.6. In all other discussions, we will present only the results for 8K segments.

Additionally, we ran the benchmarks for the small DB3 with 8K segments on a warm cache

to measure the performance of our scheme when the entire database �ts into memory and is

preloaded into the cache. This was done to simulate our scheme for main memory databases.

3.4.3 Hypotheses

Our main hypothesis is that function-based indexing is very bene�cial for queries in object-

oriented databases. We expect that running function-based queries without the bene�t of

indexes will be very expensive, especially if the function accesses many objects.

Since for any particular disk, average latency is the same regardless of segment size (up to

some maximum), the average time to read a byte o� a disk depends on the segment size. Larger

segments mean the latency overhead is amortized over more bytes so the average time per byte

is lower than with smaller segment. We hypothesize that this makes larger segments better

when we expect to read large amounts of data that are likely to be stored together, but if we

are interested in small amounts of data spread out over many segments, then smaller segments

are better since we do not waste time reading in large amounts of unusable data.



56 3. Performance Evaluation

# registered Reg. info in Reg. Reg.
objects data objects objects table

Emb. Sm. DB 12093 145116 0 0
Med. DB 102093 1225116 0 0

Ptr. Sm. DB 12093 96744 338604 0
Med. DB 102093 816744 2858604 0

Bit Sm. DB 12093 0 338604 197568
Med. DB 102093 0 2858604 1663200

Figure 3.11: Size (bytes) and breakdown of overhead for databases when all of the data objects
(except document parts) are registered with one tuple.

For the comparison of the three implementation schemes, our hypothesis is that each of

the implementation schemes is better for di�erent types of computations due to the amount

and placement of registration information in each of the schemes. The space overhead incurred

by each scheme can be broken down into three categories: space taken up by registration

information stored in a data object, space taken up by registration objects, and space taken up

by a registration table. Figure 3.11 shows a breakdown of the space overhead for the small and

medium DBs, including one index, when all data objects (except document parts) are registered

with one registration tuple each.

Since all of the space overhead in the embedded scheme is stored inside data objects, we

expect that it will perform poorly on queries and navigation. The registration tuples causes

the database to be spread out over more segments, requiring more disk accesses to read in the

same amount of data. In addition, as more registration tuples are added, the cost increases.

On the other hand, we expect the embedded scheme to perform the best on updates, since the

registration tuples are always available when a write occurs.

Likewise, we expect the bit scheme will add no overhead to queries and navigation, since the

data objects are exactly the same whether or not there are any indexes. However, we expect

that updates will su�er because the registration table must be accessed (which will cause one or

more extra accesses that may result in disk accesses) and a registration object must be accessed

in order to do a write.

We expect the pointer scheme to be somewhere in the middle for all types of benchmarks.

The extra reference per registered object should have an e�ect on queries and navigation not

unlike the embedded scheme with one registration tuple, but adding registration tuples to the

registration object will not increase the cost for these computations. For updates, a registration



3.5. Bene�t of Indexes 57

object must be accessed when there is a write, but since the reference is stored in the data object,

there is only one extra access rather than two or more as in the bit scheme.

3.5 Bene�t of Indexes

The bene�t of indexes can be seen in the results for the query benchmarks. For the purposes

of showing the bene�t of indexes, the graphs for the embedded and pointer schemes are nearly

the same as for the bit scheme. Therefore, we will only show the graphs for the bit scheme

in this section. Graphs including results for the pointer and embedded schemes will be shown

later when we compare the performance of the three schemes. Also database size and segment

size do not a�ect our conclusions, so we will only show the results for the small DB3 with 8K

segments in this section.

Figure 3.12 shows the results of running the �rst query benchmark for the small DB3 with

8K segments using the bit scheme on a cold cache. The curves for Query 1 and Query 2 are the

same in the bit scheme, so the result for Query 2 has been omitted from this graph. Recall that

the queried set contains all of the data objects (except document parts), Query 1 is a query

computed without an index by scanning the set, Query 3 is a query computed using a primary

index, and Query 4 is a query computed using a secondary index. We see from the results of

Query 3 that primary indexes are very useful as expected. The number of segments that need

to be read in is proportional to the percentage of matches; thus only the minimum number of

segments need to be read into the cache.

For secondary indexes, we are interested in the point at which the time to use an index

crosses over the time to scan the entire set, that is, where the curve for Query 4 crosses the

curve for Query 1. This compares using a secondary index with scanning a set (i.e., not using

an index). We see that the percentage of matches where this happens is fairly low, about 4.5%.

At this percentage of matches, there is one match per data segment, so we are reading in all of

the segments as would happen when scanning the set.

Most of the cost of running queries with a cold cache is due to the time spent reading data

segments from the disk. Figure 3.13 shows the results of running the �rst query benchmark

with a warm cache. We see that primary indexes are still bene�cial, since it allows us to avoid

computing the date method for every element of the set. We also see that that secondary

indexes are nearly as bene�cial in this situation. (The curves are not exactly the same because

the simulation still sorts the matches into segment order when using a secondary index. If we

take out this cost, primary and secondary index use would be the same.)

Figure 3.14 shows the results of the second query benchmark for the small DB3 with 8K



58 3. Performance Evaluation

0 5 10 15 20 25

Percentage of objects that matched

0

100

200

300

400

500
Si

m
ul

at
ed

 t
im

e 
st

ep
s 

(i
n 

1M
 t

im
e 

st
ep

s)

Query 1 - base case, no index
Query 3 - primary index
Query 4 - secondary index

Figure 3.12: Results of Queries 1{4 on the small DB3 with 8K segments using bit scheme with
a cold cache.

0 5 10 15 20 25

Percentage of objects that matched

0

50

100

150

200

250

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
10

00
 t

im
e 

st
ep

s)

Query 1 - base case, no index
Query 3 - primary index
Query 4 - secondary index

Figure 3.13: Results of Queries 1{4 on the small DB3 with 8K segments using bit scheme with
a warm cache.



3.5. Bene�t of Indexes 59

0 10 20 30 40 50

Percentage of objects that matched

0

1000

2000

3000

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

Query 5 - no index, simple function
Query 6 - no index, complex function
Query 7 - index

Figure 3.14: Results of Queries 5{7 for the small DB3 with 8K segments using bit scheme with
a cold cache.

segments using the bit scheme with a cold cache. Recall that the queried set contains all

composite parts, Query 5 scans the set and accesses a \�eld" of the composite part, Query 6

scans the set and computes a complex function counting the number of `e' characters in the

composite part's document, and Query 7 uses an index to compute the same query as Query 6.

The immediate thing to notice is that the curve for Query 7 will never cross the curve for

Query 6. Clearly in this situation, a secondary index is a big win even though the data objects

accessed are scattered across various segments. This is because the index avoids reading in the

document segments that are needed compute the query function.

We note that the crossover point for Query 7 with respect to Query 5 is very high in

contrast to the similar type of query in the �rst benchmark. This is because the set is small,

but (potentially) spread out over all of the segments of the entire database. At each percentage

of matches, there are many fewer objects that match than in the �rst query benchmark, thus it

takes a higher percentage of matches to reach the situation in which there is one match per data

segment. Also, the index used in Query 7 basically makes accessing the results of a complex

function equivalent to a method that accesses a \�eld" of an object, thus Query 5 represents

the upper bound on the time steps for Query 7. As we approach a match percentage of 100%,

Query 7 will have accessed the same data segments as Query 5.

Figure 3.15(a), on the left, shows the results of running the second query benchmark with

a warm cache. We see that even when all of the data is resident in the cache, computing the

complex function is signi�cantly more expensive than computing a �eld access. The results



60 3. Performance Evaluation

0 10 20 30 40 50

Percentage of objects that matched

0

1000

2000

3000

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
10

00
 t

im
e 

st
ep

s)

(a)

Query 5 - no index, simple function
Query 6 - no index, complex function
Query 7 - index

0 10 20 30 40 50

Percentage of objects that matched

0

5

10

15

20

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
10

00
 t

im
e 

st
ep

s)
(b)

Query 5 - no index, simple function
Query 7 - index

Figure 3.15: Results of Queries 5{7 for the small DB3 with 8K segments using bit scheme with
a warm cache shown in graph (a). Graph (b) shows the details of the results of Query 5 and
Query 7 on a di�erent scale.

of Query 5 and Query 7 are not distinguishable at this scale. Figure 3.15(b), on the right,

compares the results of Query 5 and Query 7 using a di�erent scale to show the area of detail.

We see that computing a query using an index is more e�cient than computing a query without

an index when the cache is warm.

From these results, we conclude that function-based indexes are useful for object-oriented

databases in the following situations:

1. As a primary index of a large set with either a cold or warm cache.

2. As a secondary index of a large set with a warm cache.

3. As a secondary index of a large set with a cold cache when the percentage of expected

matches is small.

4. As a secondary index of a small set with elements taken from a much larger set with

either a warm or cold cache. These indexes are especially e�ective in speeding up queries

using complex functions.

In addition, we note that the results of the second query benchmark show the bene�ts of

precomputing results for either warm or cold caches. If we could access the keys we have already



3.6. E�ects of Segment Size and Clustering 61

computed when the index function is invoked on a set element, the cost of that function call

will become equivalent to a method that does a �eld access. We return to this issue in our

discussion of future work in Chapter 7.

3.6 E�ects of Segment Size and Clustering

Recall that we hypothesize that larger segments are better for performance when we expect

to read large amounts of data that are likely to be stored together, but that if we are interested

in small amounts of data spread out over many segments, smaller segments are better since we

do not waste time reading in large amounts of unusable data. In this section, we compare the

results of the bit scheme on the query and navigation benchmarks for several segment sizes and

draw some general conclusions. We only consider runs with cold caches because the di�erence

in segment size is not relevant once the data is resident; the fact that it was transferred into

the cache in smaller or larger units no longer matters. As in the previous section, the results

for the pointer and embedded schemes with respect to segment size and clustering are nearly

the same as for the bit scheme and will not be shown. We did not run the benchmarks for the

medium DBs using 2K segments, because they take a long time to run, and we did not think

we would learn anything new after looking at the results for the small DBs using 2K segments.

3.6.1 Queries

For queries, di�erences in segment size are most noticeable when we compute the result by

scanning the queried set (e.g., Query 1). Figure 3.16 shows the simulated time steps taken to

complete Query 1 using the bit scheme on various segment sizes. We see that segment size is

inversely related to total running time. When the segment size is larger, fewer time steps are

taken to complete the queries than when the segment size is smaller. This e�ect is due to the

fact that we are reading nearly all of the data objects into the cache to compute Query 1. Since

every disk access incurs disk overhead time, the smaller segments mean we pay disk overhead

more often. In particular, we see that the overhead of 2K segments is severe for the small DBs

compared to 8K and 16K segments, and we see some of the same severity on the medium DBs

going from 8K to 16K segments. Of course, the number of disk accesses needed to read the

entire database could be reduced by various schemes, such as scanning multiple segments o� the

disk at each disk access. This type of disk behavior is captured somewhat by our use of larger

segments. However, modeling this behavior precisely is beyond the scope of this dissertation.

We noted in the previous section that the crossover point for using a secondary index with a

cold cache versus scanning the set (i.e., Query 4 versus Query 1) is fairly low for the small DB3



62 3. Performance Evaluation

Query 1 execution time
Seg. Time steps (millions)
size Small DB3 Small DB9 Medium DB3 Medium DB9

2K 1425 2370 { {
8K 391 642 3410 5917
16K 223 360 1899 3295

Figure 3.16: Execution time of Query 1 using the bit scheme.

Seg. Query 4 vs. Query 1 Crossover Percentages
size Small DB3 Small DB9 Medium DB3 Medium DB9

2K 24 62 { {
8K 4.5 8 61 74
16K 1.9 3.2 15 50

Figure 3.17: Query 4 versus Query 1 crossover percentages for bit scheme.

with 8K segments. Figure 3.17 shows the crossover points of Query 4 versus Query 1 using the

bit scheme for the other databases and segment sizes. We see that the crossover points depend

on the segment size and average object size. Systems with larger segments have crossover

points at lower percentages than systems with smaller segments. Again, this has to do with

the number of segments that need to be read in to answer the query. Larger segments create

a situation in which it is more likely that there will be a match in every segment, whereas the

opposite is true of smaller segments. This e�ect is also seen as objects get larger; for example,

the crossover point for the small DB3 is lower than for the small DB9.

The running times for Query 5 (scanning a set of composite parts using a \�eld" access

function) and Query 6 (scanning a set of composite parts using a complex function) are also

a�ected by the segment size. Figure 3.18 shows the running times of Query 5 and Query 6. For

the small DBs, the e�ect is the same as on the �rst query benchmark; larger segments allow

the benchmark to complete in fewer time steps than smaller segments. Larger segments makes

it more likely that there will be multiple matches per segment. However, for the medium DBs

we see a di�erent story. The benchmark takes more time steps with 16K segments than with

8K segments. This is because the larger database causes the matches to be spread out over

more data segments, so that it is unlikely that there will be multiple matches per segment in

Query 5 even if the segments are larger. As a result, more bytes are transferred into the cache



3.6. E�ects of Segment Size and Clustering 63

Comparison of Query 5 and Query 6
Time steps (millions)

Seg. Small DB3 Small DB9 Medium DB3 Medium DB9
size Qu. 5 Qu. 6 Qu. 5 Qu. 6 Qu. 5 Qu. 6 Qu. 5 Qu. 6

2K 1073 4070 1336 4593 { { { {
8K 391 2899 633 3400 1653 24527 1827 24841
16K 222 2840 360 3095 1750 27100 2078 27665

Figure 3.18: Execution times for Query 5 and Query 6.

with larger segments than with smaller segments.

3.6.2 Navigation

Figure 3.19 shows the results of Navigation 1 (data clustered in OID order) and Navigation 2

(data clustered in date index order) on the full traversal using the bit scheme with a cold cache.

The main point of this result is that navigation works �ne when all of the data objects accessed

�t in the cache. For the small DBs, it is still possible to navigate e�ciently when the data is

clustered in date index order. In this case, systems with larger segments take fewer time steps

than systems with smaller segments, since we are navigating through most of the database.

However, when the accessed data objects do not �t in the cache, the clustering scheme is the

main issue. The results for the medium DBs on Navigation 1 shows that navigation works fairly

well when objects are clustered in OID order. Results for the medium DBs on Navigation 2

show that navigation performance degrades severely when objects are clustered in date index

order. This is due to thrashing as the traversal hops to (potentially) di�erent segments on each

access and (potentially) causing segments with useful data to be thrown out before that data

is accessed. In this case, we also see that that larger segments exacerbate this phenomenon.

The results of the path2 traversal are similar to the results of the full traversal. This is

because the path2 traversal accesses enough objects for there to be objects in nearly every data

segment. Clustering becomes an issue in the path1 traversal even for the small DBs. Figure

3.20 shows the results of Navigation 1 and Navigation 2 on the path1 traversal. When the

database is clustered in date index order (Navigation 2), the performance of the path1 traversal

degrades severely compared to its performance in the database clustered in OID order. This is

because the path1 traversal accesses very few objects. They are likely to be clustered into a few

segments when the database is clustered in OID order, but are likely to be in many di�erent

segments when the database is clustered in date index order, so Navigation 2 accesses many



64 3. Performance Evaluation

Comparison of Navigation 1 and Navigation 2 (full traversal)
Time steps (millions) Time steps (billions)

Seg. Small DB3 Small DB9 Medium DB3 Medium DB9
size Nav. 1 Nav. 2 Nav. 1 Nav. 2 Nav. 1 Nav. 2 Nav. 1 Nav. 2

2K 1410 1422 2378 2366 { { { {
8K 387 387 638 638 16.1 1088 27.7 1251
16K 218 218 355 355 12.6 1395 19.8 1503

Figure 3.19: Execution time of Navigation 1 and Navigation 2 on the full traversal. Note that
time steps for the medium DBs are in billions.

Comparison of Navigation 1 and Navigation 2 (path1 traversal)
Time steps (millions)

Seg. Small DB3 Small DB9 Medium DB3 Medium DB9
size Nav. 1 Nav. 2 Nav. 1 Nav. 2 Nav. 1 Nav. 2 Nav. 1 Nav. 2

2K 15 108 19 108 { { { {
8K 13 102 17 111 21 672 26 680
16K 14 104 14 114 14 762 24 757

Figure 3.20: Execution time of Navigation 1 and Navigation 2 on the path1 traversal.

more segments than Navigation 1. We also see that larger segment sizes bene�t Navigation 1

since it is likely that the objects it accesses will be clustered into fewer segments. The opposite

is true for Navigation 2; since the objects that are accessed are spread out, they still end up in

di�erent segments and the larger segments bring more unused data into the cache.

3.6.3 Conclusion

The general conclusion we make is that segment size, clustering, and cache size are important

factors in determining the running time for various computations. Segment size a�ects the time

it takes to get accessed objects o� disk. Clustering a�ects whether the objects that are accessed

together are in the same segment. Cache size a�ects the number of segments that can be in the

cache at any given time. Most of our benchmarks are computations that access nearly all of

a database. When the cache size is large enough to hold all objects accessed, clustering is not

a factor and large segments are bene�cial by reducing disk overhead. When the cache is not

large enough, clustering becomes the dominant factor. If the objects are clustered to match the

pattern of access, large segments are again bene�cial. If the objects are not clustered to match



3.7. Comparison of Implementation Schemes 65

the pattern of access, large segments are detrimental, since they �ll the cache with more unused

objects than small segments, e�ectively making the cache smaller. Determining the optimal

segment size, clustering, and cache size is dependent on the workload expected.

3.7 Comparison of Implementation Schemes

In this section, we compare the performance of each of the implementation schemes on each

benchmark. Since segment size does not change the relative positions of the implementations,

we show only the graphs for the simulations using 8K segments. Generally, database size also

does not a�ect the relative performance our the implementations, so most of the graphs will be

the results for the small DB3 except where database size makes a di�erence.

3.7.1 Queries

In this section, we compare the performance of the three implementations schemes on our

query benchmarks. First, we note that the results of running the query benchmarks for the

small DB3 with 8K segments with a warm cache show that that once all of the data is resident in

memory, all schemes performed exactly the same, since they make the exact same computations.

For the �rst query benchmark, we begin by comparing their performance on Query 1 and

Query 2 (scanning a large set without and with registration information, respectively). Figure

3.21 shows the results for the small DB3 with 8K segments with a cold cache. The di�erences

in performance on Query 2 shows that registration information stored inside a data object has

an e�ect on scanning. This is due to the e�ect that larger data objects have on clustering. The

space overhead stored inside a data object causes the database to occupy more segments, so

that reading in the entire set takes more time. As expected, the bit scheme has no degradation

(i.e., Query 1 and Query 2 are exactly the same), since the objects continue to be clustered

exactly the same in both cases. The extra reference per object in the pointer scheme is enough

to disturb the clustering, but is slightly better than the embedded scheme with one registration

tuple. There is a 13.0% increase in running time in the pointer scheme and a 16.4% increase

in the embedded scheme. The pointer and bit schemes will not be a�ected by additional

registration tuples. However, the embedded scheme will perform worse as more registration

tuples are added since this increases the size of the data objects and will cause more disk

accesses during scanning

Figure 3.22 shows a comparison of the results for Query 3 (primary index use) for the small

DB3 with 8K segments with a cold cache. We note that the bit scheme is better than the

pointer scheme which is slightly better than the embedded scheme with one registration tuple.



66 3. Performance Evaluation

0 5 10 15 20 25

Percentage of objects that matched

0

100

200

300

400

500

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

Query 1 - base case, scan without registrations 
- all schemes
Query 2 - scan with registrations 
- embedded scheme
Query 2 - scan with registrations 
- pointer scheme
Query 2 - scan with registrations 
- bit scheme

Figure 3.21: Comparison of results of Query 1 and Query 2 for the small DB3 with 8K segments
with a cold cache.

0 5 10 15 20 25

Percentage of objects that matched

0

50

100

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

Embedded scheme
Pointer scheme
Bit scheme

Figure 3.22: Comparison of results of Query 3 on the small DB3 with 8K segments with a cold
cache.



3.7. Comparison of Implementation Schemes 67

Again, this is due to the e�ect that the pointer and embedded schemes have on the clustering

of the data objects. Fewer objects �t into a segment than in the bit scheme, so both the pointer

and embedded schemes have to read a few more data segments to get the same number of

matches. Note that as we add more registrations per registered object, the performance of the

embedded scheme will degrade whereas the pointer and bit schemes will not.

When we compare the schemes on Query 4 (secondary index use), we see that there are two

meaningful crossover points. One is where the curve for Query 4 crosses the curve for Query 1;

the other is where the curve for Query 4 crosses the curve for Query 2. In the �rst case, we

are comparing secondary index use with not using indexes at all. In the second case, we are

comparing secondary index use with scanning when there are registration tuples for another

index, or with scanning instead of using the index. Figure 3.23 shows the area of interest in

detail for each of the schemes for the small DB3 using 8K segments. In both cases, the main

time cost for completing the query is from disk accesses and at the crossover points there are

matches in every data segment. We �nd that the crossover points for secondary index use

depend on the implementation scheme. We see that crossover is at about 1.5% with respect

to Query 1 for the embedded and pointer schemes. With respect to Query 2, the embedded

scheme crosses over at about 4.5% and the pointer scheme at about 5.5%. The crossover points

in the bit scheme are the same, since Queries 1 and 2 are the same, at about 4.5%.

For the second query benchmark, we do not have to compare the results for Query 5 and

Query 6 (scanning a small set with \�eld" access and complex functions, respectively); since

there are no registrations, the schemes perform exactly the same for these queries. Figure 3.24

compares the performances on Query 7. We see that there is very little di�erence between

the schemes. The reason for this is that there are relatively few registrations and the matches

are not clustered together, so the registration information stored inside the data objects in

each scheme has only a slight e�ect on the layout of the data compared to when there are no

registrations.

3.7.2 Navigation

For navigation, we are interested in the e�ect of registration information on running time

in each of the implementations. First, we note that running the benchmark with a warm cache

shows that there is no di�erence in any of the schemes. Again, this is because all data is resident

at the start of the traversals and all scheme do the exact same computations, so there is no

di�erence whether or not there are any registrations.

Figure 3.25 shows the results of Navigation 1 and Navigation 3 (traversal without and with



68 3. Performance Evaluation

0 2 4 6 8 10

Percentage of objects that matched

300

350

400

450

500

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

(a) Embedded scheme.

0 2 4 6 8 10

Percentage of objects that matched

300

350

400

450

500

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

(b) Pointer scheme.

0 2 4 6 8 10

Percentage of objects that matched

300

350

400

450

500

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

(c) Bit scheme.

Query 1 - base case, 
scan without registrations
Query 2 - scan with 
registrations
Query 4 - index, with
registrations, not clustered

Figure 3.23: Detail of the results of Query 4 on the small DB3 with 8K segments with a cold
cache.



3.7. Comparison of Implementation Schemes 69

0 5 10 15 20 25

Percentage of objects that matched

0

100

200

300

400
Si

m
ul

at
ed

 t
im

e 
st

ep
s 

(i
n 

1M
 t

im
e 

st
ep

s)

Query 7 - index - embedded scheme
Query 7 - index - pointer scheme
Query 7 - index - bit scheme

Figure 3.24: Comparison of results of Query 7 for the small DB3 with 8K segments.

0 1 2 3

Number of registrations per object

0

200

400

600

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

Navigation 1 - base case, no registrations
Navigation 3 - registrations - embedded scheme
Navigation 3 - registrations - pointer scheme
Navigation 3 - registrations - bit scheme

Figure 3.25: Comparison of results of Navigation 1 and Navigation 3 on the full traversal for
small DB3 with 8K segments with a cold cache.



70 3. Performance Evaluation

registration information, respectively) on the full traversal for the small DB3 with 8K segments

with a cold cache. (Navigation 2 is only interesting with respect to segment size, so we omit

the results for it in our comparison.) We see that the e�ect of registration information in

Navigation 3 relative to Navigation 1 on the full traversal is the same as for Query 2 relative to

Query 1. This is not surprising, since the full traversal accesses nearly the same data objects

as the query.

As noted in Section 3.6.2, cache size and clustering are important for good navigation

performance. Thus the main di�erence for each scheme is that a larger cache size is needed

to store the data objects with registration overhead stored inside the registered object. As

expected, the bit scheme is neutral since it adds no space overhead to the data objects, and the

pointer scheme shows some degradation due to the extra reference per registered data object.

The embedded scheme has the largest e�ect on cache size, and it is the only scheme where

having more registration tuples per registration set a�ects the running of the traversal. This is

because each additional registration tuple causes the registered data objects to become larger.

The results of the path1 traversal also show that the e�ect of registration information on

running time is minimal for this type of query. Since so few objects are accessed, in many cases,

there is no di�erence between Navigation 1 and Navigation 3. In some cases for the embedded

and pointer schemes, Navigation 3 performs better than Navigation 1 due to the e�ect these

schemes have on clustering combined with the fact that very few objects are being accessed.

The change in clustering sometimes results in an object that was not in the same segment with

the objects it references in Navigation 1, being pushed into the segment with the objects it

references so that following these references does not cause a disk access in Navigation 3 that

is present in Navigation 1.

3.7.3 Updates

For the previous benchmarks, the only di�erences in the schemes were due to the e�ect

of registration information on clustering. In the update benchmarks, we expect many more

di�erences due to extra computation and possible disk accesses to �nd the registration infor-

mation during a write. Figure 3.26 shows the results of Update 1 and Update 2 on the full

traversal for the small DB3 with 8K segments with a cold cache. Update 1 represents a system

without indexes and measures the base cost of doing the update traversal. Update 2 measures

the incremental cost in our scheme for checking the registration bit in object headers and is the

same for all three schemes since there are no registrations. As expected, there is little di�erence

between Update 1 and Update 2 as the cost of checking is totally dominated by the costs of



3.7. Comparison of Implementation Schemes 71

0 10 20 30 40 50

Percentage of writes in traversal

0

500

1000

1500
Si

m
ul

at
ed

 t
im

e 
st

ep
s 

(i
n 

1M
 t

im
e 

st
ep

s)

Update 1 - no checking
Update 2 - checking only, no registrations 
- all schemes

Figure 3.26: Comparison of results of Update 1 and Update 2 for the small DB3 with 8K
segments with a cold cache.

bringing the objects into the cache in the �rst place.

For Update 3, Update 4, and Update 5, recall that all data objects (except document

objects) are set elements are registered with one registration tuple each. For these updates, it

is necessary to read an object's registration tuples when it is written. Update 3 measures the

incremental e�ect of reading the registration tuples. Figure 3.27 shows a comparison of the

three schemes and Update 1. For the embedded scheme, reading registration tuples is trivial,

since they are part of the registered object. However, since the data objects are spread out

among more segments, reading all of the data objects into the cache takes longer in Update 3

than in Update 2. The incremental increase in running time is about 21%. For the pointer

and bit schemes, the registration object for a written registered object must be accessed as a

regular object to bring it into the cache. This causes more overhead than in the embedded

scheme, but is mitigated somewhat by the fact that the data objects are clustered more tightly

in these schemes. In addition, the bit scheme requires the registration table to be read into

the cache. However, since the data objects themselves cluster into fewer segments than in the

pointer scheme and the registration table is likely to stay in the cache, the e�ect is about the

same as in the pointer scheme (about a 35% increase).

Figure 3.28 shows the results of Update 3, Update 4, and Update 5 for the small DB3

with 8K segments with a cold cache for each of the schemes. The di�erence between Update 3

and Update 4 is due to updating the index (i.e., writing update records into the log and



72 3. Performance Evaluation

0 10 20 30 40 50

Percentage of writes in traversal

0

500

1000

1500

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

Update 1 - no checking
Update 3 - checking, registration access 
- embedded scheme
Update 3 - checking, registration access 
- pointer scheme
Update 3 - checking, registration access 
- bit scheme

Figure 3.27: Comparison of results of Update 3 for the small DB3 with 8K segments with a
cold cache.

writing back the segments that hold the modi�ed index nodes), which has the same cost for

any of the schemes. The di�erences between Update 4 and Update 5 measures the incremental

e�ect of having to update registration tuples. Here the embedded scheme has a much smaller

incremental cost with respect to the other schemes. Since registration tuples are already part

of the registered object the log entry for the registered object already contains the new version

of the registration tuples (since we are using new-value logging). As a result, there is no

discernible di�erence between Update 4 and Update 5 for the embedded scheme. The results

for the pointer and bit schemes show the incremental cost of writing the log records for the

modi�ed registration objects and then writing the segments containing these objects. For these

schemes, there is about a 15% incremental increase in running time between Update 4 and

Update 5.

Other than the advantage that the embedded scheme has on Update 5, the schemes perform

comparably for the small DB3 con�guration. This is because everything �ts into the cache (the

data objects, the registration sets, and the registration table, if any), so there is only one disk

access per segment accessed. Figure 3.29 shows the results of the update benchmark on the full

traversal for the medium DB9. This database does not �t into the cache, thus some accesses

cause segments to be thrown out of the cache. We observe two interesting phenomena. First,

we note that the incremental increase of doing index updates and registration updates over just

checking the registration tuples as a percentage of total running time has diminished to a small

amount (a few percent) when the database is this large. This is because the cost of doing index



3.7. Comparison of Implementation Schemes 73

0 10 20 30 40 50

Percentage of writes in traversal

0

500

1000

1500

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

(a) Embedded scheme.

0 10 20 30 40 50

Percentage of writes in traversal

0

500

1000

1500

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

(b) Pointer scheme.

0 10 20 30 40 50

Percentage of writes in traversal

0

500

1000

1500

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

(c) Bit scheme.

Update 3 - checking, access
Update 4 - checking, access, 
index updates
Update 5 - checking, access, 
index updates, registration updates

Figure 3.28: Results of Updates 3{5 on full traversal for the small DB3 with 8K segments.



74 3. Performance Evaluation

0 10 20 30 40 50

Percentage of writes in traversal

0

20

40

60

80

100

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1B

 t
im

e 
st

ep
s)

(a) Embedded scheme.

0 10 20 30 40 50

Percentage of writes in traversal

0

20

40

60

80

100

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1B

 t
im

e 
st

ep
s)

(b) Pointer scheme.

0 10 20 30 40 50

Percentage of writes in traversal

0

20

40

60

80

100

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1B

 t
im

e 
st

ep
s)

(c) Bit scheme.

Update 1 - no checking
Update 2 - checking only
Update 3 - checking, access
Update 4 - checking, access, 
index updates
Update 5 - checking, access, 
index updates, registration updates

Figure 3.29: Results of update benchmark on full traversal for the medium DB9 with 8K
segments. Note that the y-axis is in billions of time steps.



3.7. Comparison of Implementation Schemes 75

updates and registration updates (writing update log records, writing index segments, and in

the pointer and bit schemes, writing registration object log records, and registration segments)

is dominated by the I/O costs of doing the traversal.

Second, we see greater di�erences between the three schemes on Update 3 (writes to reg-

istered objects). The embedded scheme performs the best, followed by the pointer scheme,

then the bit scheme. The embedded scheme has an incremental increase in running time from

Update 2 to Update 3 of only 12% percent while the pointer scheme has an increase of 35%,

and the bit scheme has a very large increase of 50%. This is due to the di�erence in sizes that

each of the schemes require for this database. The embedded scheme increase is due to having

more data segments to access, but as we saw in the small DB3 case, this is the primary cost

for updates in the embedded scheme. In the pointer and bit schemes registration objects take

up more space than the equivalent registration tuples in the embedded scheme, so that a larger

cache would be necessary to hold the same amount of data objects and registrations than in

the embedded scheme. In addition, the bit scheme needs extra space for the registration table.

Also, since there are many registration objects per registration segment, the registration seg-

ments tend to stay in the cache (as does the registration table segments) since there are many

accesses to them, causing data segments to be thrown out earlier and more often than in the

embedded scheme.

We note that the curves for these results are basically 
at. This is due to two factors:

reading in the entire database over the course of the traversal and the long length of the full

traversal. Even when only 1% of the steps are writes, this translates to 506 writes to 497 objects

in the small DBs and 4364 writes to 4270 objects in the medium DBs. Thus there are enough

modi�ed objects to have nearly one modi�ed object per data segment read. The results for the

path2 traversal are similar since the traversal accesses multiple objects per data segment. The

path1 traversal accesses very few objects. Figure 3.30 shows the results of the path1 traversal

on the small DB3 with 8K segments with a cold cache. Here we see a situation where each

write has an incremental cost, but otherwise the results are about the same as for the full and

path2 traversals. As expected, the embedded scheme performs the best, followed the pointer

scheme, then the bit scheme.

Running the update benchmark for the small DB3 with 8K segments with a warm cache

does not signi�cantly alter the relative performance of our schemes. The reason for this is that

we cannot avoid the cost of writing back data segments, registration segments, and the log.

Thus disk I/O still dominates the update benchmark even when the cache is warm.

A type of update benchmark that we did not model is when a client modi�es objects that



76 3. Performance Evaluation

0 20 40 60 80 100

Percentage of writes in traversal

0

50

100

150

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

(a) Embedded scheme.

0 20 40 60 80 100

Percentage of writes in traversal

0

50

100

150

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

(b) Pointer scheme.

0 20 40 60 80 100

Percentage of writes in traversal

0

50

100

150

Si
m

ul
at

ed
 t

im
e 

st
ep

s 
(i

n 
1M

 t
im

e 
st

ep
s)

(c) Bit scheme.

Update 1 - no checking
Update 2 - checking only
Update 3 - checking, access
Update 4 - checking, access, 
index updates
Update 5 - checking, access, 
index updates, registration updates

Figure 3.30: Results of update benchmark on path1 traversal for the small DB3 with 8K
segments with a cold cache.



3.7. Comparison of Implementation Schemes 77

cause index updates, but the modi�ed objects are not set elements. We expect that the results

from such a benchmark would be similar to those above, since the dominant cost for these

updates is the disk I/O. The cost of �nding registration information is the same as in the

simulated update benchmark. Computing the old key and recomputing the new key for the

a�ected index entries will require accessing the set elements, but this can only increase the disk

access overhead and will happen in all three schemes equally.

Another situation that we did not model was updates that add (or delete) registration tuples.

In the system we are modeling, changes in object size might be handled by trying to reallocate

the object into space left in its current segment and failing that, allocating the object into a

di�erent segment with su�cient space. We can discuss what happens in our schemes when

new registration objects are created or when registration tuples are added in such a scheme.

In the bit scheme, when a new registration object is created the system must allocate the new

registration object and update the registration table. Updating the table might cause a node

to split, but this is not likely. When a registration tuple is added to a registration object, the

registration object increases in size and may have to be written to another segment.

In the pointer scheme, the initial registration causes the registered object to become larger

and this could cause the registered object to be moved from its current segment, destroying

any clustering that might be present. But once the reference has been added, the object will

not become larger; thus we could recluster the objects after an update and they would stay

clustered (assuming that the data object does not have operations that change its size). As

in the bit scheme, when a new registration object is created, the system must allocate the

new registration object, and when a registration tuple is added to a registration object, the

registration object increases in size and may have to be written to another segment.

In the embedded scheme, registration tuples are added directly into the registered object.

As pointed out before, this changes the size of the registered object and can cause the clustering

to be destroyed. Again, we could recluster the objects after an update, but unlike the pointer

scheme, this may happen every time a registration tuple is added rather than just the �rst time

an object is registered. Thus there is a down-side to the embedded scheme during updates.

Index maintenance is costly in all systems. We are concerned with the additional expense

associated with using and maintaining registration information in our scheme. In the embedded

scheme, the main cost to updates is having to read and write larger data objects, and as we can

see from our results, this cost is relatively modest. The pointer and bit scheme are substantially

more expensive than the embedded scheme on updates, but there is little di�erence between

them provided the cache is large enough in the case of the bit scheme to accommodate its



78 3. Performance Evaluation

additional registration table.

3.8 Space Analysis

We begin this section by summarizing the results of our simulation experiments. The query

benchmarks show that indexes are an important optimization for queries in an object-oriented

database, especially in the cases of primary indexes and complex index functions. If the overall

workload is mostly queries, indexing will be a great bene�t. Index maintenance adds some

cost to updates, but unless updates are a very high percentage of overall workload, the bene�ts

of indexes outweigh the cost of updates. Indexes may not be very useful when updates are

common in any system, so perhaps indexes should not be created in these situations in the �rst

place. Traditionally, databases have been used primarily to read information through queries

with few updates. We expect this to continue in object-oriented databases with navigation

added into the workloads as another way of reading information.

Recall that our hypothesis about our implementations schemes is that the di�erent im-

plementations would perform well in di�erent situations. In particular, we expected that the

embedded scheme would be best for updates but the worst for navigation and queries, and the

bit scheme would be best for queries and navigation, but worst for updates, with the pointer

scheme in the middle for all three benchmarks. This relative ordering is borne out by our

experiments.

In the rest of this section we present a framework for analyzing the space requirements of

indexing schemes, and we suggest other implementations for our scheme that are more space

e�cient than the implementations we simulated. In this analysis, we are only interested in the

space overhead due to registration tuples and associated overhead for �nding and maintaining

them. We ignore the space overhead of the index since it is the same for all schemes.

The space overhead of the registration information in our indexing scheme (RS) is charac-

terized by the following formula:

RS = R + O

where R is the total space taken up by registration tuples and O is the total space taken up by

overhead needed for �nding the registration tuples.

R is the same for all implementations schemes:

R = (N � L) � T � d

where



3.8. Space Analysis 79

Level 1 - set element employee objects

Level 2 - project objects

Level 3 - project manager employee objects

Level 4 - income_info objects

Figure 3.31: Level graph for project manager income.

N = number of set elements.

L = number of objects registered per set element.

T = size of a registration tuple.

d = average number of mutators that a�ect the observers used in key computation.

L can also be thought of as the number of levels in the object graph representing each access done

by the index function. Figure 3.31 shows that project manager income has four levels, since

it accesses a set element employee object, a project object, a project manager employee

object, and an income info object. For our analysis, we assume that all objects have the same

structure, so that L is a constant for a particular index.

The (N �L) factor comes from the fact that each object that is registered must have informa-

tion about the set element that it is registered for. For example, for our project manager income

index, if three employee objects, �, �, and �, in the indexed set refer to the same project

object �, then there will be three registrations for �, namely < �, set manager, �; I >, < �,

set manager, �; I >, and < �, set manager, �; I >. In addition, the project manager employee

object and the income info object will also each have three registrations.

O depends on the implementation scheme. For the embedded scheme, Oemb = 0, since there

is no overhead. In the pointer and bit schemes, O depends on the number of accessed objects,

since each registered object has a reference or registration table entry, and a registration object.

To describe the overhead of the pointer and bit schemes, we introduce the following notation:



80 3. Performance Evaluation

M = number of non-set elements that are accessed during key computations.

H = size of object header

P = size of a reference

B = size of registration table entry

Thus, Optr = (N +M) � (P +H), i.e., each registered object incurs overhead for a reference

and a registration object header), and Obit = (N +M) � (B +H), i.e., each registered object

incurs overhead for a registration table entry and a registration object header.

We would like to minimize RS, but not at the expense of making updates very expensive.

(Thus eliminating registration information altogether and recomputing all indexes whenever

there is a mutation is not acceptable.) To reduce the space overhead of registration information

RS, we can try to reduce both terms, R and O. For R, we cannot change the (N � L) factor

except by registering fewer objects. We already avoid registering immutable objects, or objects

that are accessed by observers that do not depend on any mutators. For example, for the

project manager income index, if project objects were immutable or did not have a set manager

mutator, they would not be registered. We discuss another way of avoiding registrations in

Chapter 5.

We can change the d and T factor of R. We assumed in our simulations that a registration

tuple was a < m;x; I > triple. Storing m in each registration tuple means d can be greater

than one. For example, in the project manager income index, both project manager employee

objects and their income info objects have two registrations per set element since they each

have two mutators that can a�ect the index function. We might ask if it worth storing m in a

registration tuple. Suppose instead that we kept a table for each index I that mapped classes

to the mutators of the class that could a�ect the index. The checking versions of mutators

could look at this information to see if they need to cause an update. (I.e., when a checking

version of a mutator runs, it �rst checks if it is in the mapping for its class for the indexes

named in the registration tuples of its object.) In our example, the project manager income

index would have a mapping < employee impl, f set project, set monthly rate, set bonus g >

indicating there are three mutators of the employee impl class that can a�ect the result of the

project manager income function. This scheme would allow us to always store one < x; I >

pair for each registered object and drop the d factor from our formula.

Note that we lose some precision with this scheme and may cause unnecessary updates. For

example, suppose employee object � is registered for the project manager income because it is

in the indexed set, but it is not a project manager. When we store m, the only time a mutation



3.8. Space Analysis 81

of � causes an update is when its set project mutator is called. Using the new scheme, suppose

that we call the set bonus mutator on �. Since we only change the method dispatch vector to

the checking version of mutators that can a�ect an index, if the project manager income index

is the only index being maintained on the set, � will be using the regular version of set bonus

and will not check, so this will not cause updates. However, if the set also has an index for the

yearly income observer, � will be registered for the yearly income index, since yearly income

depends on set bonus, and its method dispatch will point to the checking version of set bonus as

well. In this case, when set bonus on � is called, the checking version looks up information for

both the project manager income and yearly income indexes and determines that entries in both

indexes need to be recomputed. However, the recomputation for the project manager income

index is unnecessary, since � is not a project manager. Depending on how many indexes have

overlapping mutator sets, the space savings in registration information from using this scheme

may or may not be worth the extra recomputations.

Let us assume that we will use the above scheme. In addition to removing the d factor

from R, moving mutator information to the index also allows us to have smaller registration

tuples that are just < x; I > pairs, thus reducing the T factor of R. Originally, T = 12 in our

simulations. The reference for x still takes 8 bytes, but we expect in a 64-bit address system

that not all bits of a reference will be signi�cant (e.g., 48 bits should be su�cient), so we can

store the index id using some of the bits of the reference to x, creating a registration tuple that

is 8 bytes.

We can further reduce T for the common case when a registration is for the set element

itself. That is, x in the registration tuple is the registered object. In this case, we can store just

< I > and know that the set element is the implicit x for this registration tuple. We can store

< I > in 4 bytes (assuming that data needs to be stored on a word boundary). A data object

might have both 4-byte and 8-byte registration tuples, so we use one bit in the registration

tuple to indicate if a registration tuple is the short version (with size Tshort = 4) or the long

version (with size Tlong = 8).

Using all of these techniques, we can now express R with the following formula:

R = N � Tshort + N � (L� 1) � Tlong

That is, there one short registration tuple for the top-level registration in each of the N set

elements and one long registration tuple for every other registration.

Now we consider the O term of RS. One component of O in both the pointer and bit

schemes is the object header for each registration object. To reduce this cost, we can combine

the registration tuples from many objects into one registration object so that the amortized



82 3. Performance Evaluation

cost of the registration object header is small enough for us to ignore it. However, we must

add some overhead back into the equation in order to �nd the registration tuples for a speci�c

registered object. For the pointer scheme, one possible implementation would be to store a

small \table" at the top of each registration object that keeps track of where the registration

tuples for a particular data object starts. The table would be indexed directly and each entry

would be 2 bytes. An entry would indicate an o�set into the registration object. (We assume

that the o�sets in the registration object tables are for word boundaries, so that 2 bytes can

encode enough locations in the registration object.) Since we expect that changes that a�ect the

number of registrations will be rare, we assume that all of the space between the o�set mapped

in table entry i and the o�set in table entry i+ 1 contain registration tuples for the registered

object that uses table entry i, and whenever registration tuples are added to or removed from

the registration object, we repack and rewrite the entire registration object. When accessing

a registration object, a \table ID" needs to be supplied to �nd the correct table entry, so we

need to store or calculate a table ID for each registered object. We expect that we can store

the table ID directly within the reference to the registration object. Figure 3.32(a) shows this

scheme pictorially. The registered object is y, and its reference to a registration object contains

bits that are interpreted as y's table ID into the registration object's table. The overhead of

the pointer scheme is now: Optr = (N +M) � P 0, where P 0 = 10, 8 bytes for the reference and

2 bytes for the registration object table entry.

We can use the same kind of special reference in the registration table entries of the bit

scheme to point to registration objects. However, we might like to reduce the size of the

registration table itself. One way is store the registration tuples for data objects in one segment

in one registration object and use segment IDs to index directly into the registration table.

That is, object references are really <segment id, address> pairs, and we use the segment ID to

map directly to an entry in the registration table that contains the reference to the registration

object for that segment. As in the pointer scheme, we need a way to �nd the registration

tuples for the speci�c registered object when accessing a registration object. However, there

is no place to store a table ID, so we will keep a table at the top of a registration object that

maps the address portion of the registered object's reference to an o�set into the registration

object. As in the pointer scheme, we assume that registration objects rarely change size so

when they do, we repack and rewrite them. We keep the table in sorted order by address and

also keep the registration tuples packed in order according to the table. To �nd a registered

object's registration tuples, the registration object table is searched using binary search to �nd

the table entry for the registered object's address and then the o�set is followed to �nd the



3.8. Space Analysis 83

y

<x1, I >

<x2, I >

000001

table

table ID

(a) New pointer scheme

rt

<x1, I >

<x2, I >

000001

y

y = <000010, 000001>

(b) New bit scheme

y

<x1, I >

<x2, I >

000001

z

< x, I >

(c) Hybrid scheme

Figure 3.32: Three new implementation schemes.



84 3. Performance Evaluation

registration tuples.

Figure 3.32(b) shows this scheme. Reference y is shown as a <seg id, addr> pair. Seg id is

used to index the registration table rt to �nd a registration object. Addr is then used to �nd

the o�set of y's registration tuples in this registration object. The space cost of the registration

table for this scheme is amortized, so we will ignore it in our overhead calculations. Each

registered object has an entry in a registration object table for an address and an o�set. The

address is 4 bytes and the o�set is 2 bytes, so the new overhead for each registered object, B0,

is 6 bytes, and Obit = (N +M) �B0

We observe in the pointer scheme that paying the overhead factor for one registration tuple

is costly; we might as well store the registration tuple in the space taken up by the reference.

Thus, we devise a hybrid scheme where if a data object only has one registration, the registration

tuple is stored directly in the object, and if a data object has more than one registration, it

stores a reference to a registration object. Since we need to distinguish whether a registered

object is storing a registration tuple or a reference, we use another bit in the object's header to

indicate this. Figure 3.32(c) shows both kinds of registered objects. Both objects y and z are

registered. Object y has two registrations so both bits in its header are set and it has a special

reference as in the pointer scheme. Object z has only one long registration, so it has only one

bit set in its header and stores the registration tuple directly. The overhead for this scheme is

Ohyb = S � P 0, where S is the number of objects that have more than one registration.

In these new implementation schemes, we assume that if a registration object becomes larger

than a segment that it is marked as special and there is code to handle the over
ow (into another

registration object). Over
ow can happen if too many objects' registrations are put into one

registration object, or if one registered object has more registrations than will �t into a segment.

The latter case probably will be rare and can happen equally in either scheme. Over
ow from

putting too many objects' registrations into a registration object is less likely to happen in the

pointer and hybrid schemes than in the bit scheme, since we have explicit control over how

many objects' registration tuples go into one registration object in these schemes, whereas in

the bit scheme, the clustering in a segment determines where registrations are stored.

Now we can compare the space used by our new implementation schemes. We note that S

� (N +M), so that the hybrid scheme is never worse than the pointer scheme; therefore, we

will not consider the pointer scheme any longer and will consider only the embedded, bit, and

hybrid schemes. The formulas for the registration space overhead of each scheme is:

RSemb = N � Tshort + N � (L� 1) � Tlong



3.8. Space Analysis 85

RSbit = N � Tshort + N � (L� 1) � Tlong + (M +N) � B0

RShyb = N � Tshort + N � (L� 1) � Tlong + S � P 0

If the index function uses only data in the set element, the hybrid scheme clearly uses less

space than the bit scheme and is the same as the embedded scheme, since each set element will

have only one registration tuple, so S = 0. For more complex functions, the space costs for

the hybrid and bit schemes depend on the sharing structure of the objects accessed during key

computations.

By proposing a hypothetical set, plugging in numbers for sizes, and modeling sharing in

di�erent amounts at di�erent points in the key computation, we can graph the registration

overhead space functions for each scheme to compare them. Our graphs will be for a set with

1024 elements (i.e., N = 1024). To make the modeling tractable, we assume that the index

function accesses �ve objects in a linear path with the key being an integer in the last accessed

object. We assume that no object appears in more than one level. That is, objects can be

shared at the same level (e.g., many employee objects in the indexed set can share the same

project object), but the objects are not shared between levels. (e.g., a set element x never

appears as an object at a lower level when a key is computed for another set element z; note

that this can happen in our project manager income function if the project manager is also an

element of the indexed set). We introduce the following notation:

L1, L2, : : := number of distinct objects at each level of the index function; for example.,

for project manager income, L1 would be the number of set elements, L2 would be the

number of project objects accessed, etc.

For the index function under consideration, there are �ve levels and M =
P

L1; : : : ; L5. In

general, M �
P

L1; : : : ; Ln , since objects that are used in more than one level would be

counted at each level.

The x-axis in our graphs represents the sharing factor at the speci�ed level. We use the

notation \Li = n" to mean that n objects at level i� 1 refer to the same object at level i. For

example, if L2 = 1, each set element refers to a distinct object at level 2, while if L2 = 2, two

set elements refer to the same object at level 2. By de�nition, L1 = 1, since there is no level

zero.

Figure 3.33 shows the amount of space overhead required by each implementation for various

sharing factors at the second level (L2) assuming that there is no sharing at lower levels (i.e.,

L3 = L4 = L5 = 1). Thus at each lower level, there are the same number of objects as at the



86 3. Performance Evaluation

1 2 4 8 16 32 64 128 256 512

Sharing at second level (L2)

0

20000

40000

60000

80000

100000

Si
ze

 o
f 

ov
er

he
ad

 (
in

 b
yt

es
)

Embedded scheme
Bit scheme
Hybrid scheme

Figure 3.33: Comparison of space overhead on a 5-level path function with sharing at the second
level for a set with 1024 elements (L1 = L3 = L4 = L5 = 1).

�rst level (i.e., L2 = L3 = L4 = L5). The embedded scheme is not a�ected by sharing. For the

hybrid scheme, when L2 = 1, there is no sharing at all, so S = 0; when L2 6= 1, all of the objects

at the second level are shared, so all objects at lower levels will also be accessed during multiple

key computations and have more than one registration, thus S =
P

L2, : : : , L5. The results

show that the hybrid scheme is like the embedded scheme when there is no sharing, since each

object has just one registration tuple. When there is a little sharing, the hybrid scheme costs

increase until L2 = 2, since there are increasing numbers of registered objects with more than

one registration. Since we are modeling even distribution of sharing, L2 = 2 is the worst case for

the hybrid scheme, since it is the minimum amount of sharing to cause every non-set element

to have two registration tuples, which results in the maximum number of registration objects.

As sharing increases beyond a factor of 2, the hybrid scheme asymptotically approaches the

embedded scheme, because there are fewer and fewer registration objects and the overhead Optr

is being amortized over many registration tuples. The bit scheme bene�ts from sharing since

there are fewer registration objects, but it takes up more space than the hybrid scheme in this

scenario, except when L2 = 2, though not signi�cantly more except when there is no sharing

at all.



3.8. Space Analysis 87

1 2 4 8 16 32 64 128 256 512

Sharing at third level (L3)

0

20000

40000

60000

80000

100000

Si
ze

 o
f 

ov
er

he
ad

 (
in

 b
yt

es
)

Embedded scheme
Bit scheme
Hybrid scheme

Figure 3.34: Comparison of space overhead on a 5-level path function with sharing at the third
level for a set with 1024 elements (L1 = L2 = L4 = L5 = 1).

Figure 3.34 shows the amount of space overhead required by each of the new implementations

when there is no sharing at the second level (i.e., L2 = 1) for various sharing factors at the third

level (L3), assuming that there is no sharing at lower levels (i.e., L4 = L5 = 1). Thus at the

second level, there are N objects (i.e., L2 = N), and at the fourth and lower levels there are the

same number of objects as at the third level (i.e., L3 = L4 = L5). For the hybrid scheme, since

L2 = 1, the objects at the second level are not shared, and when L3 = 1 there is no sharing

at all and S = 0; when L3 6= 1, all of the objects starting at the third level are shared, thus S

=
P

L3, : : : , L5. The results here show that the hybrid scheme takes advantage of the lack of

sharing at the second level by storing the registration tuple directly in the registered objects

at this level as in the embedded scheme. The bit scheme cannot do this, since it must store a

registered object's registration tuples in a registration object, even if there is only one. Thus,

the bit scheme incurs more overhead than in the previous graph, since there are more registered

objects, while the hybrid scheme incurs less overhead, and at this level of sharing, the hybrid

scheme always incurs less overhead than the bit scheme. If we do not introduce sharing until

even lower levels, the gap between the bit scheme and the hybrid scheme becomes even larger,

since there are more objects with only one registration when sharing is introduced at lower

levels.



88 3. Performance Evaluation

We note that in both graphs, the hybrid scheme has a signi�cant jump in space overhead

whenever we move from no sharing (a sharing factor of 1) to a sharing factor 2 and then as

sharing increases the overhead approaches that of the embedded scheme again. As we pointed

out above, a sharing factor of two is the worst case for the hybrid scheme. If we feel that this

case is a likely scenario, we might 
atten the curve by storing two registration tuples directly

in a registered object and only switching to a registration object if there are three or more

registrations for a data object. We would expect curves for this scheme to be similar to the

hybrid scheme curves shown, but with peaks at a sharing factor of three that are lower.

We can extrapolate the e�ect of these schemes on the time performance of our benchmarks

from our simulations. The bit scheme would continue to show no e�ect on the query and

navigation benchmarks. Since a short registration tuple is 4 bytes, and a long registration tuple

or a reference is 8 bytes, we would expect the hybrid scheme to perform better than the original

pointer scheme on the queries and navigation. The performance of the embedded scheme would

be similar.

Judging the e�ect of the new implementations on updates is more di�cult. We note that we

have reduced the registration space overhead for our scheme by trading o� time to do updates

for this reduction in space. The mutator check now has to access the index class-to-mutator

map, and every registration tuple must have a bit checked to see if it long or short. In the

hybrid scheme, we also have to check a second bit in the header to determine if a registered

object has an embedded registration tuple or a reference. In the reference case, we have to mask

the table ID bits before accessing the registration object and then access the registration object

table entry before �nding the registration tuples. In the bit scheme, there is still an access

to a registration table (albeit a smaller one) plus searching for a table entry for the registered

object's address before accessing the registration tuples.

On the other hand, in the new implementations there is less data to read in (and possibly

write out). The savings in disk I/O might be substantial and mitigate the extra computation

to �nd and process registration information. The bit scheme nearly always requires more space

than the hybrid scheme, but the cost of �nding and processing registration information is well-

bounded, and if sharing is high in the level graph, the additional space in not too large. The

hybrid scheme usually requires less space than the bit scheme, but the actual cost is sensitive

to the sharing structure of the accessed objects. It costs the most space when sharing is high in

the level graph but the sharing factor is low and evenly distributed. However, we might expect

that the common case is that most objects have one registration, thus update performance of

the hybrid scheme might be close to the embedded scheme.



3.8. Space Analysis 89

We have shown that the embedded scheme has the minimal amount of space overhead.

However, whenever an index is added to the system in the embedded scheme, data objects

become larger. As we saw in our results, storing registration information inside an object has a

negative a�ect on query and navigation performance. In general, we may be willing to accept a

small performance degradation due to larger data objects for the bene�ts of indexing. However,

there is no bound on the number of registrations that an object may have, so in the embedded

scheme, queries and navigation become slower and slower as more indexes are added. Thus, we

conclude that an embedded scheme is not a suitable implementation for our indexing scheme.

The bit scheme has superior performance on queries and navigation, but has greater overall

space requirements and poorer update performance. The hybrid scheme is a good compromise

between the embedded and bit schemes. It is not quite as good as the bit scheme on queries

and navigation, but may often give update performance like the embedded scheme, and it takes

up less space than the bit scheme in most cases. If an application can accept slightly more

cost to queries and navigation, switching to a registration object after two registrations rather

than one registration will make the cost of an index in the hybrid scheme more predictable.

Thus we conclude that either implementation scheme is suitable for our indexes. The hybrid

scheme is a suitable implementation scheme if space is tight. If maximum query and navigation

performance is needed and space is not tight, the bit scheme may be worth its cost in poorer

update performance.

As a �nal note, we stated in Chapter 2 that the set element x in our registration tuple

< x; I > was used to avoid having to recompute the entire index rather than just the index

entry for x. Figure 3.35 shows an example of where it might be more e�cient to only record

the registration for I rather than a registration tuple for each individual set element. Suppose

object � is f-reachable using index function I:f (as indicated by the dashed arrows from the

set elements to �) and accessed using an observer that depends on mutator m. This will add

a registration tuple < x; I > for every set element for �. When m is run on � every index

entry in I will have to be recomputed, thus the fact that we keep information for every set

element has not saved us any work. In this case, it is clear that registering � only for I would

be more e�cient. Of course, it is fairly rare for one object to be f-reachable from all set

elements. However, one object might be f-reachable from many set elements, and it might still

be reasonable to only record I in the object's registration tuple. To determine when this might

be useful, we would need to trade o� the space for the multiple registrations (and the time to

process the registration information) with the time spent recomputing the index entries that

were not a�ected by the mutation.



90 3. Performance Evaluation

α δ

φ

Figure 3.35: Example of a heavily shared f-reachable object. (Greek letters are OIDs.)



Chapter 4

Related Work

Indexing is an integral part of how a database functions. As databases have been extended

beyond the traditional relational model, new systems have tried to extend indexing to accom-

modate the new extensions. There are two major lines of research into extending databases:

traditional relational databases extended to incorporate objects and object references, and ob-

ject systems extended to support database-style queries on collections.

Extended relational databases are relational database systems that have added constructs

to handle more complex data types than can be modeled with records of built-in base types.

Some representative systems are POSTGRES[53, 55, 56, 57, 58, 59], Starburst[28, 29, 45, 54,

61], Genesis[5, 6, 7], and Exodus[15, 16]. In general, these systems allow users to de�ne new

\base" types with richer sets of operations than the built-in types. For example, a user could

de�ne a box type with operations that compute and compare the areas of boxes. However, the

goal of these systems is to retain the relational model and theory. This leads to user-de�ned

base types that are immutable and the record continuing to be the only mutable entity. (That

is, one can mutate a record with a box �eld to have a di�erent box value, but one cannot

mutate the box itself.) Thus, the question of mutating an object below the level of a set

element does not arise. Sometimes these systems allow more general types of record �elds, but

do not allow indexing on these �elds. For example, POSTGRES allows mutable �elds in the

form of collections of records as a �eld value, but does not allow indexes on these �elds. So

even with a more complex data model, indexing in these extended systems is largely the same

as in traditional relational databases.

The work done in object-oriented databases is more closely related to our work. Such

systems start with a general object-oriented programming language and add support for fast

associative access to collections of objects. Some representative systems are GemStone[12,

47, 48], O2[23, 24], Orion[4, 36, 37], and ObjectStore[40, 52]. Work speci�cally dealing with

91



92 4. Related Work

indexing falls into two categories:

1. Indexing schemes based on the structure of an object (that is, the values of instance

variables). We will call these path-based indexing schemes.

2. Indexing schemes based on the result of an object's operations. Like our scheme, these

are function-based indexing schemes.

In this chapter, we compare our indexing scheme with these other schemes. First, we

survey several path-based indexing schemes. Then we look at the work being done in function-

based indexing. To make our discussion more concrete, we will use the three element set of

employee objects implemented by the employee impl class shown in Figure 4.1 as an example.

This �gure shows only the objects that are f-reachable from the employee elements using

project manager income. Each object has a unique identi�er that is shown as a Greek letter.

For convenience, we have set the project manager to be one of the set elements (which would

indicate that the project manager is his or her own project manager).

4.1 Path-based Indexing

Most earlier work on index maintenance in object-oriented systems has concerned an ap-

proach in which a path expression is used as the basis for indexing. A path expression consists

of a variable V followed by one or more instance variable names using dot notation, e.g.,

V.income .bonus for our employee objects. One can think of a path expression as a limited

index function in which the only kinds of calls that can be made are get methods that return

the objects referenced by the instance variables of the object implementations. Path-based in-

dexing appeared �rst in GemStone[47] with subsequent implementations proposed by Bertino

and Kim[11] and Valduriez[60]. Note that path-based indexing guarantees that every time a

path expression is evaluated, it accesses the same objects.

There are several disadvantages in using path-based indexing. Path-based indexing violates

abstraction and encapsulation: Users must know an object's representation to state a query.

The GemStone designers rationalized this design by arguing that user-de�ned types usually

include methods for accessing the type's instance variables anyway[47], but this is not true for

many types. Path-based indexing also has limited expressive power. The \function" of a path

expression consists only of a sequence of instance variable lookups. This eliminates computed

values, like our project manager income example. Furthermore, because the instance variables

are exposed, multiple implementations are not possible; all objects of the type must have the

same instance variables. We believe that in systems of the future, these limitations will be not



4.1. Path-based Indexing 93

α β δ
income_ proj_income_ proj_ income_ proj_

E: set[employee]

manager_

π

rate_ bonus_

γ

τρ

Figure 4.1: A set of three employee objects. Only the f-reachable objects are shown, where
f = project manager income. (Greek letters are OIDs).



94 4. Related Work

be acceptable. For example, the proposed ODMG standard de�nes queries based on function

results[18].

Nevertheless, it is interesting to study the implementations of path-based indexes. We are

interested in whether the restrictions imposed by path-based indexing make e�cient implemen-

tations possible, and if so, whether these schemes can be adapted for our scheme. We will

compare both time and space requirements of these schemes with ours. However, since our

evaluation shows that our scheme has high space overhead, but not too great an impact on

performance, we are primarily interested in comparing space requirements.

Various strategies have been proposed for index maintenance for path-based indexes; a

survey can be found in [9]. Of these the multi-index is the most commonly used scheme; it was

originally proposed for GemStone[47] and is also used in the O2[24, 23] and ObjectStore[40, 52]

databases. We will cover the GemStone scheme in some detail, then brie
y cover the nested

index and path index of Bertino and Kim[11] and the join index of Valduriez[60], emphasizing

their di�erences from the GemStone scheme and each other.

4.1.1 Multi-indexes (GemStone)

In the GemStone scheme[47], the notion of a link in a path expression is introduced. A

link is conceptually a connection between parts of a path expression separated by a sin-

gle dot. A path expression of the form set el.ivar1: : : ivarn has n links in it between each

ivari�1 and ivari (where set el is considered to be ivar0). For example, the path expression

set el.proj .manager .income .rate has links between set el and proj , proj andmanager , man-

ager and income , and income and rate .

The GemStone scheme is to generate an index data part for each link mapping the objects

referred to by ivari to the objects referred to by ivari�1. This means that for any path ex-

pression of n instance variables, there are n data parts, and the ith data part would contain

pairs < ivari, ivari�1 >. (For notational convenience, we will use an instance variable name

as if it were the OID of the object it refers to.) We will refer to the index data part whose

pair values are the set elements as the top-level data part. For an index using the path ex-

pression set el.proj .manager .income .rate , GemStone would construct four index data parts

with mappings < proj , set el > (the top-level data part for this index), < manager , proj >,

< income , manager > and < rate , income >.

The index data parts are organized together by a data structure called an index entry. The

index entry is an array of component entries in the order of the links of the path expression being

indexed. Each component entry contains its index data part and the component entry of the



4.1. Path-based Indexing 95

next link. The index entry, component entries, and the data parts together comprise an index.

Figure 4.2 shows the index entry using the path expression set el.proj .manager .income .rate

after it has been created for the example set in Figure 4.1. The index entry's component entry

array has four elements, which are the component entries containing the four index data parts

described above.

Objects that are used in computing a path expression are registered. Objects have a de-

pendency list of < ivar, component entry > pairs. Each pair indicates that if instance variable

ivar changes, then the object's entry in the data part corresponding to the component entry

needs to be recomputed. A pair is added whenever an object's entry is entered into a data part

with a non-nil1 key.

Entries are added to data parts in the following manner. When an object (other than nil) is

inserted into an indexed set, for every index entry, the object is traced along the path expression

to insert pairs into the data parts when needed. A set element and its key are always inserted

into the top-level data part even if its key is nil or it is already present in the data part. This

is so every non-nil element of the set is represented in the top-level data part. (I.e., an indexed

collection can be a bag rather than a set.)

At each link, if the key is non-nil and unique (that is, it does not already exist as a key in

the data part), tracing repeats and the pair generated by the next link is inserted into the data

part of the component entry for that link. If the key is nil, the insertions stop since there is

no value for the next link. If the key is non-unique, insertions stop since the pairs generated

by the rest of the path expression are already in the later data parts. Tracing stops when the

end of the path expression is reached, if it has not stopped before. The data parts shown in

Figure 4.2 re
ect the index after all three objects in the sample set have been inserted. In

addition, each of our objects would have been registered for some of their instance variables

when their entries were entered into these data parts. For example, when object � was entered

into the set el.proj .manager .income .rate index, < proj , L1 > was entered into object �'s

dependency list.

When a new index is created that uses a path expression that shares links with a path

expression that already has an index, only the data parts for the new links are created. For

example, if we add an index using set el.proj .manager .income .bonus to our example set, only

an additional component entry with an index data part of < bonus , income > pairs would be

created along with the new index entry. Figure 4.3 shows how the new index would �t in with

1
Nil is an object of type null; it has no operations and no state. GemStone allows nil to be a valid object

for any type, thus nil can be inserted into any set. Also, any instance variable may refer to nil.



96 4. Related Work

index entry for 
set_el.proj_.manager_.income_.rate_

top-level data part containing
<proj_, set_el>

data part containing
<manager_, proj_>

data part containing
<rate_, income_>

data part containing
<income_, manager_>

L2

L1

L3

π, α
π, β
π, δ

β, π

γ, β

ρ, γ

L4

Figure 4.2: Example of a single index in GemStone using path expression
set el:proj :manager :income :rate . (Greek letters are OIDs.)



4.1. Path-based Indexing 97

index entry for 
set_el.proj_.manager_.income_.rate_

top-level data part containing
<proj_, set_el>

data part containing
<manager_, proj_>

data part containing
<rate_, income_>

index entry for 
set_el.proj_.manager_.income_.bonus_

data part containing
<bonus_, income_>

data part containing
<income_, manager_>

L2

L3

π, α
π, β
π, δ

β, π

γ, β

ρ, γ τ, γ

L4 L5

L1

Figure 4.3: Example of two indexes in GemStone that share links in their path expressions.
(Greek letters are OIDs.)



98 4. Related Work

the previous index. Note that the index entry for set el.proj .manager .income .bonus has the

same component entries as the index entry for set el.proj .manager .income .rate except for

the last component entry. Also note that L3 now has two component entries that could be the

next one in a path expression involving that link.

When an object is deleted from an indexed set, the procedure is basically reversed. First,

the pair in the top-level data part is deleted. If the pair is the last one with a particular key,

then the deletion continues to the next links as indicated by the next component entry array. If

the key of the pair that is deleted is not the last one in a data part, then deletion stops. That

is, there are still objects in the set that refer to the key object, so the rest of its structure must

remain in the later index data parts. For example, in Figure 4.3, if we were to delete object �

from the example set, only the < �, � > pair in the top-level data part would be deleted and

then the deletion would stop since there are other pairs with � as a key (namely < �, � > and

< �, � >). Although the designers of GemStone do not state so explicitly, we assume that the

objects deleted from the index are also deregistered.

Mutations are handled similarly to our scheme. It is a deletion followed by an insertion after

the mutation. However, the tracing starts at the level of the object that contains the instance

variable being changed rather than at the set element. The system can do this because it knows

exactly what pieces need to be retraced, namely the the rest of the path expression. When an

instance variable ivar of object x is changed, �rst the < y; x > pair, where y is the object that

ivar refers to, is deleted from the index data part that depends on the instance variable being

changed (as indicated by the object's dependency list), then the object is modi�ed, and then it

is reinserted into the same data parts that it was previously deleted from. (Recall that deletions

and insertions may propagate to lower levels.) If the instance variable changed was in a set

element, then all duplicate entries need to be deleted and reinserted with the new key as well.

(Duplicates are possible in the top-level index data part because GemStone allows bags to be

indexed as well as sets.)

When a query using an index is executed, a lookup is done in the data part of the last

component in the path expression to �nd the values associated with the key(s) in question. If

this is the top-level data part, the lookup is �nished since the values are the set elements. If

not, the values are sorted and then a lookup is done in the data part of the previous component

using the values as keys. This process is repeated until the top level data part is reached.

We analyze the space overhead of GemStone scheme in the same manner used in Section

3.8. We compare it with the hybrid scheme, since we concluded that the hybrid scheme was

the most suitable implementation of our scheme. Recall our notation:



4.1. Path-based Indexing 99

N = number of set elements.

M = number of non-set elements that are accessed during key computations.

L = number of objects registered per set element.

L1, L2, : : := number of distinct objects at each level of the index function.

Tshort = size of set element registration tuple < I >.

Tlong = size of registration tuple < x; I >.

S = number of objects that have more than one registration tuple in the hybrid scheme.

P 0 = size of overhead in hybrid scheme.

The registration information for the hybrid scheme is RShyb = N �Tshort + N �(L�1)�Tlong

+ S � P 0. For the GemStone scheme, we assume a dependency list entry in a registered object

is the same size as our short registration (Tshort). There is only one registration per accessed

object regardless of the number of times it is accessed during key computations, so the formula

for registration information in the GemStone scheme is (N+M)�Tshort, usually a much smaller

number than for our hybrid scheme. However, the dependency list entry is not enough to do an

update. The intermediate indexes must be accessed, so we must take the space for index(es)

into consideration in our comparison.

We assumed in our simulations that each set element had a distinct key and a key occupied

8 bytes for a total of 16 bytes per index entry. This overstates the size of an index, since often

many objects have the same key and we expect keys to be like integers, which only occupy 4

bytes in Thor. We can model an index more precisely with the following function:

B(N;K) = size of an index for N objects evenly mapped to K keys

= K � (4 + ((N=K) � 8))

That is, there areK entries in the index, each of which maps a 4-byte key to a set of N=K object

references. In GemStone, only the lowest-level index contains entries for key values mapped

to the objects. In the intermediate level indexes, the \keys" are references, so the size of an

intermediate level index is computed as follows:

E(N;M) = size of an index for N objects evenly mapped to M references

= M � (8 + ((N=M) � 8))



100 4. Related Work

We ignore the index structure overhead. The intermediate level indexes in GemStone are

likely to be hash tables. Since lookups to these tables should always succeed, we assume that

they are implemented using an algorithm like Brent's variation of open addressing with double

hashing[38] that performs well and uses almost no space overhead even when the table is full,

so that the size of the index is the sum of the sizes of the entries. Our index and the lowest-level

GemStone index are likely to be B-trees. The GemStone index may be smaller than our index

since it only has entries for the objects that directly contain the keys, but the size of the B-tree

will be dominated by the entries, so we consider only the entries.

The formula for space overhead in GemStone depends on the level p of the path expression

being indexed: (N +M) � P + E(N;L2) + E(L2; L3) + � � � + E(Lp�1; Lp) + B(Lp;K). Note

that if the path expression has only one level (i.e., the keys are in the set elements), then M =

0, the middle terms drop out, and Mp = N in the last term. For the hybrid scheme, the space

overhead for registration information and the index is: N � Tshort + N � (L� 1) � Tlong + S �O

+ B(N;K). For a path expression in the hybrid scheme, L = p.

If the path being indexed has one level, the overhead in Gemstone is the same as in our

hybrid scheme, N � Tshort + B(N;K), since S = 0. For paths with more than one level, the

the amount of sharing determines whether the GemStone scheme or the hybrid scheme require

more space. As in the previous chapter, we can graph the space overhead for the GemStone

scheme on an index function that accesses �ve objects in a linear path, i.e., a path expression

of the form V.a.b.c.d.e, and compare it with the space overhead in the hybrid scheme for the

same path. Recall that we assume that no object appears in more than one level and that there

is no sharing at the �rst level (L1 = 1). We use the same values as before (Tshort = 4, Tlong

= 8, P 0 = 10). In addition, we assume that the sharing factor of keys is 1 with respect to the

number of objects at the lowest level (i.e., K = L5).

Figure 4.4 compares the GemStone scheme and the hybrid scheme when there is sharing at

the second level (L2). We see that when there is no sharing (L2 = 1), the GemStone scheme

has much higher space overhead than the hybrid scheme, but when the sharing increases the

space overhead in the GemStone scheme is reduced rapidly. The crossover point occurs when

the L2 sharing factor is less than 2. The reason for this is that the GemStone scheme coalesces

the registration tuples for the shared objects into one tuple and the intermediate level indexes

all have many less than N entries. In contrast, in the hybrid scheme, each tuple is still present

and S = M since all non-element objects have more than one registration when the sharing is

at the second level.

Figure 4.5 is a comparison of the two schemes when there is sharing only at the third



4.1. Path-based Indexing 101

1 2 4 8 16 32 64 128 256 512

Sharing at second level (L2)

0

20000

40000

60000

80000

100000

Si
ze

 o
f 

ov
er

he
ad

 (
in

 b
yt

es
)

GemStone scheme
Hybrid scheme

Figure 4.4: Comparison of GemStone space overhead on a 5-level path function with sharing
at the second level for a set with 1024 elements (L1 = L3 = L4 = L5 = 1).

level (L3). Here we see that the crossover point at which the GemStone scheme incurs less

space overhead than the hybrid scheme is when the L3 sharing is about 2, even though the

�rst two intermediate level index have N entries. Figure 4.6 shows that if there is no sharing

until the fourth level (L4), the GemStone scheme has higher space overhead than the hybrid

scheme. The reason for this is that M has become fairly large (3 �N + L4 + L5), and the �rst

three intermediate level indexes have N entries each, thus o�setting the space savings from the

sharing at the lower levels.

A query in the GemStone scheme has a computational component proportional to the

number of levels in the path expression, since there are as many index data part lookups as there

are index data parts. This probably would not a�ect its performance on our query benchmark

with a cold cache, since these the index data parts are likely to be in memory and disk accesses

to bring in the data objects dominate the cost of the benchmark. We would expect a running

time between the original pointer scheme and the bit schemes, since each registered object has

a 4-byte registration tuple, and somewhat better than the hybrid scheme since some of the data

objects in the hybrid scheme will have 8-byte registration tuples or references. However, if the

cache is warm, the computational component is the running time of a query. In this case, the

running time of the hybrid scheme will be less than the GemStone scheme, since we only have



102 4. Related Work

1 2 4 8 16 32 64 128 256 512

Sharing at third level (L3)

0

20000

40000

60000

80000

100000

Si
ze

 o
f 

ov
er

he
ad

 (
in

 b
yt

es
)

GemStone scheme
Hybrid scheme

Figure 4.5: Comparison of GemStone space overhead on a 5-level path function with sharing
at the third level for a set with 1024 elements (L1 = L2 = L4 = L5 = 1).

1 2 4 8 16 32 64 128 256 512

Sharing at fourth level (L4)

0

20000

40000

60000

80000

100000

Si
ze

 o
f 

ov
er

he
ad

 (
in

 b
yt

es
)

Hybrid scheme
GemStone

Figure 4.6: Comparison of GemStone space overhead on a 5-level path function with sharing
at the fourth level for a set with 1024 elements (L1 = L2 = L3 = L5 = 1).



4.1. Path-based Indexing 103

to do one lookup.

For navigation, the e�ect of registrations in the GemStone scheme also would be between

the original pointer scheme and the bit schemes with a cold cache as in the query benchmark,

and would not a�ect performance when the cache is warm. For updates, there is no clear

comparison. In the hybrid scheme, we might have to access the mutated object's registration

object (if it is shared) and then access the objects used in recomputing the key starting at the

set element. Updates in GemStone only access the objects below the mutated objects rather

than starting from the set element (and only if they are not shared). However, in order to do

this, the lower-level index data parts associated with these objects must be accessed, bringing

in not just the registration information for the object being mutated but also the registration

information for all the other objects at that level. Depending on the sharing, these index data

parts could be large.

Our conclusion is that the Gemstone scheme is very good for indexing path expressions.

The implementation is especially appealing because the number of registrations is proportional

to the number of accessed objects rather than the number of set elements times the number of

registrations for each set element. In addition, limiting index updates to those parts directly

a�ected by the mutation of an object is attractive. For example, a mutation of the rate instance

variable in a income object will cause only one deletion and one insertion in the lowest index

data part of the set el.proj .manager .income .rate index. Thus, we might like to adapt this

organization for our scheme.

However, it is not clear whether we can take advantage of this organization. The index data

structure for path-based indexing is straightforward because the graph of objects accessed is a

straight line. Each object is accessed once in order from root to leaf, and the key is computed

by a series of get instance variable methods with the last one returning the key. Thus, one

can start in middle of the object graph for a path expression, �nd the new key, and update the

index in a straightforward manner. In function-based indexing, the graph of objects accessed is

a general one, so that the index data structure would be more complex than that for path-based

indexing. More importantly, the object graph can be traversed in an arbitrary manner with

the ends of the paths combined with each other in computing a key. We might be able to

determine which paths are being mutated, but the values at the ends of the paths do not tell

us anything about the e�ect of this new path value on the overall computation of the key. For

example, even if we could determine that the rate instance variable of object 
 was the one

that changed because of a mutation, we would not necessarily know what its e�ect is on the

computation of project manager income for object �. We could attach a function to the graph



104 4. Related Work

at that point that does the right recomputation using the new value, but trying to determine

the e�ect of a particular change to the result of an index function is likely to require a user to

write the needed function. This type of scheme would be similar to the compensating actions

in the GOM system[34, 35] that we will see later in this chapter.

In addition, our object model allows multiple representations of a type, thus the object

graph for a function may not be identical for each element in the indexed set; we would need

to provide an additional group of index data parts for each distinct graph structure. (Note

that it is not only the possibility that the set elements have di�erent representations, but also

the possibility that each subobject of set elements with the same representation might have

di�erent representations.) Managing this proliferation of data structures would be tricky.

Finally, we note that in our scheme, we do not necessarily register all of the objects that are

accessed. We do not register objects that are immutable or when the observer used does not

depend on any mutators, so L = p is only an upper bound on the number of objects registered

for a path expression function and N � L is the upper bound on the number of registration

tuples we must store. In the GemStone scheme, all M objects are registered whether or not

they can be mutated in a way that a�ects an index. If many of these objects are immutable

or accessed by an observer that does not depend on any mutators, the space for registration

tuples in our scheme will be closer to the space used in the GemStone scheme.

4.1.2 Nested indexes and path indexes

Since the GemStone scheme incurs extra space overhead for the lower-level index data parts,

it is an interesting question whether a di�erent index data part organization using less space

could be used to implement path-based indexes. Two di�erent index data part organizations

that would reduce the number of index data parts have been proposed by Bertino and Kim:

the nested index and the path index[11]. Bertino and Kim also compared these schemes and

the GemStone scheme using an analytical cost model for both space overhead and time of

execution[11]. We will come back to their conclusions after we present the alternate implemen-

tations.

A nested index has only one data part that maps the �nal object of a path expression to

its set element. For example, for an index using set el.proj .manager .income .rate as its path

expression, the data part consists of only < rate , set el > pairs as is the case in our scheme.

Figure 4.7(a) shows the data part for this nested index on our sample set.

Insertions and deletions are straightforward. The set element is traversed along the path

expression and the �nal object of the path expression and the set element are inserted or deleted



4.1. Path-based Indexing 105

<rate_, set_el> <rate_, {set_el, proj_, manager_, income_}>

(a) Nested index (b) Path index

ρ, α
ρ, β
ρ, δ

ρ, {α, π, β, γ}
ρ, {β, π, β, γ}
ρ, {δ, π, β, γ}

Figure 4.7: Data parts for nested and path indexes using path expression
set el:proj :manager :income :rate .

from the data part for that index.

Although registration is not discussed, we infer from the examples in [10] and [11] that

Bertino and Kim's model of the world allows dependency information to be stored with the

type rather than with each object, and it is a pair < ivar, index > that indicates index depends

on the ivar instance variable of all objects of the type. As a result, the nested index scheme is

very ine�cient during updates; it traces down the path from the mutated object to the key, but

then to �nd the set elements that are a�ected, the set elements that are associated with the key

must be examined to determine if the mutated object is a subobject in their path. (Di�erent

paths may end in the same key, so only the set elements that have the mutated object in their

paths are the ones that need to have their index entries updated.) This is especially ine�cient

if the mutated object is more than two levels down.

The update problem of the nested index stems from not having enough registration informa-

tion; thus the set elements that might be a�ected by a mutation must be searched to make sure

they are the right ones. Although this scheme would have no e�ect on queries or navigation,

its e�ect on updates is very detrimental. Thus we conclude that the nested index scheme is not

practical.

Path indexes were proposed to overcome the update ine�ciency in nested indexes. A

path index only has one data part as well, but instead of mapping the �nal object of the

path to the set element, it maps the �nal object to the set of all of the objects along the

path expression. (We will call these value sets.) For an index using the path expression

set el.proj .manager .income .rate , the data part would be < rate , fset el, proj , manager ,

income g > pairs. Figure 4.7(b) shows the data part for this path index on our example set.

Like the nested index, there is registration information on the basis of type that determines if

a mutator has a�ected an index entry.



106 4. Related Work

Insertions and deletions are straightforward here as well. The set element is traversed along

the path expression and all objects accessed are gathered into the value set that is associated

with the �nal object in the path in the data part. The appropriate data entry is inserted or

deleted, respectively.

When a mutation occurs, the key at the end of the mutated path is found by tracing the

path from the mutated object to the �nal object. Since all of the objects on a path are expressed

in the path index, this structure can be used to determine the set element without testing all

of the set elements to determine if the mutated object is a subobject by �nding the value sets

that have the �nal object as their keys. For all value sets containing the mutated object, the

path starting at the mutated object has been changed and must be updated with the result

of tracing the new path from the mutated object down to the �nal object. The higher-level

objects of the paths do not need to be accessed.

The path index also supports a di�erent type of query that Bertino calls a \projection on

path instantiation." A general example of such a query would be one that has two selection

predicates, one on the �nal object of the index path expression, and one on an instance vari-

able of an object in the same path expression. For example, \Give me all employees where

set el.proj .manager .income .rate > 10 and set el.proj .manager .name = `Smith'." This

query could be answered by looking up 10 in the set el.proj .manager .income .rate index,

then accessing all of the manager objects in the value sets associated with 10 for name =

\Smith." This is faster than normal processing since there is no need to follow references from

the set elements to �nd the manager objects of interest (though there still will be a need

to follow references from the manager object to the name object to determine if name =

\Smith"). This could be done in the multi-index scheme as well, if the lookup procedure saved

the objects gathered from the appropriate data level lookup.

The path index �xes the nested index update problem by storing the path for each set

element. Each reference can be viewed as a registration for its object. The number of references

in the path index is N �L, because it store a reference for every level for each set element, as in

our scheme. Like our scheme, if there is little sharing, a path index takes up less space than in

a GemStone index. When there is lots of sharing a path index has much higher space overhead

than a GemStone index, since the entries in a path index store the same information in their

value sets (as in our example, where all three value sets contain �, �, and 
). We observe that

this common information could have been stored separately and shared to save space, but in

general the sharing may happen at several levels, so it is not clear how to organize the common

information. For example, another project object �0 might also refer to � as its manager ,



4.1. Path-based Indexing 107

so the value sets of set elements using �0 would be f�0; �; 
g and there is now a question of

whether just � and 
 should be grouped together and referenced in each value set, or whether

there should be two groupings f�; �; 
g and f�0; �; 
g and whether these two groupings should

reference the group of � and 
 instead of naming them both explicitly.

The path index scheme is an interesting implementation because it stores the registration

information for an index inside the index's entries. Since there is no registration information

in an object, the path index scheme has no e�ect on navigation. The index entries are larger

because they store value sets instead of just a reference to an element, so a path index is larger

than an index in our scheme. This may a�ect queries if the index can no longer be kept in

memory. For updates, there is a check for the registration information in the type on every

mutation, though this information can probably be kept in memory, or the objects that need

to check can be marked with a bit in the header as in our scheme. Finding the key requires

accessing only from the mutated object down, but �nding the index entries that are a�ected

requires checking the value sets of the matches for the mutated object. Recomputing the index

entry only requires accessing from the mutated object down along the new path.

It is not clear how we might use this organization. We can store references to the objects

accessed, but the main problem is that we do not have an easy way to �nd the a�ected key in

order to lookup the registration information. Also, as in the GemStone scheme, we may not

be able to determine what the new key is without recomputing it from the top. However, if

we keep precomputed results, this organization might be useful, because the information about

which objects may be needed for recomputation is stored in one place, and the system might

be able to use this information to preload the cache with these objects to make updates run

faster.

4.1.3 Join indexes

Join indexes were originally designed for distributed relational databases to make joins of sets

on di�erent machines more e�cient[60]. Bertino generalizes this technique for object-oriented

databases[10]. A join index is basically a GemStone index with corresponding index data parts

mapping objects to each other in the opposite direction. For example, for the path expression

set el.proj .manager .income .rate , not only are there the four data parts as created in the

GemStone scheme but also data parts of < set el, proj >, < proj , manager >, < manager ,

income > and < income , rate > pairs. Though this information can be easily obtained by

traversing an object, the reverse index data parts would allow the system to go \directly" to

the �nal object rather than accessing objects along the path from the set element to the �nal



108 4. Related Work

object in order to �nd the value of the �nal object (i.e., they support path precomputation). A

claim is made that these extra index data parts would make object traversal more e�cient in

the cases where the objects along the path are not co-located on a single server. Bertino also

notes that this idea can be applied to nested indexes for similar bene�ts.

This scheme provides more expressive power to �nd the result of a path expression without

accessing the objects by using more space for the extra index data parts. However, this extra

expressive power is paid for by extra space for the reverse index data parts and in time during

updates when the extra index data parts must be updated. Otherwise the analysis of the purely

indexing aspects of this scheme would be similar to that for the GemStone scheme since we

would only be using the half of the index data parts that would be present in GemStone.

4.2 Function-based Indexing

There are two function-based indexing schemes that have been proposed: function mate-

rialization, implemented in the GOM system[34, 35], and method precomputation proposed by

Bertino[8, 10]. The idea in both schemes is that the result of a method that involves a compu-

tation can be precomputed and stored as an additional instance variable for an object. As an

added bene�t, these results are used to provide an index based on the precomputed method.

The precomputed results need to be recomputed when there are object modi�cations in the

same situations where an index entry would be recomputed in our scheme; therefore these

systems must solve the same set of problems that we have solved.

In this section, we will examine these schemes in some detail. We are interested in how

they di�er from our scheme both in their expressive power and in their implementation details.

In addition, we brie
y discuss the Cactis system[31, 32], an entity-relationship database that

maintains derived attributes.

4.2.1 Function materialization

The scheme most closely related to ours is the GOM scheme[34, 35]. The designers of

the GOM scheme are primarily interested in storing the results of invocations of an object's

method so that when the method is called again, the result is already available without any

computation. However, as they point out, one can also use this information to �nd the objects

that have a particular result for the method as well. The ability to return precomputed results

is expressive power that our scheme does not have. In addition, the GOM scheme allows the

precomputation of methods that have arguments (i.e., arguments other than the implied set

element). Both of these ideas are extensions that we would like to explore for our scheme; they



4.2. Function-based Indexing 109

will be discussed brie
y as future work in Chapter 7. To make the comparisons here easier,

we will assume GOM indexes only for methods without arguments and will ignore the space

requirements to support the precomputed results.

As an indexing scheme, the GOM scheme is not as expressive as our scheme. The only sets

that can be indexed are type extents (sets that contain all objects of a particular type). This

makes sense since the GOM designers are mainly interested in eliminating method computa-

tions. With respect to indexing for queries, this is a very \relational" view of the world where

the only sets of interest are the sets containing all of the records of a particular type. Subsets

are computed on the 
y by describing them as the records from the main set that have a cer-

tain property. We expect that users of object-oriented databases will want more 
exibility to

create user-de�ned sets that match their application domains without encoding the di�erences

as extra �elds. Typically, these sets will not encompass all the objects of a particular type, so

applications will not want to pay for indexing that they are not using. For example, to model

a business it might be useful to have several sets of employees, one for each department.

Also the only functions that can be used as index functions are (observer) methods. This a

very static view of the world; it expects that the only functions of interest are the ones thought

of by the designers of the type. However, it is unlikely that a type designer can think of all

of the computations that a client might want to do. Our project manager income function is

one example, as is the function we used in our second query benchmark that given a composite

part, counts the number of `e' characters in its associated document.

Since a precomputed method can be an arbitrary computation, a precomputed result for an

object and the corresponding index entry can be a�ected by mutations of objects other than

set elements as in our scheme. The description of the GOM implementation starts with a very

ine�cient scheme and incrementally adds \optimizations" to achieve acceptable performance.

The optimizations that bring the GOM system to a state that is roughly equivalent to our

basic scheme are incorporated in our description here. Other optimizations will be discussed in

Chapter 5 along with the optimizations to our scheme.

Conceptually, a GOM object is a tuple with �elds for its instance variables and �elds for

its precomputed method results. The tuples representing objects of the same type are stored

together in a table (i.e., the type extent), thus an index based on a method is just an index

over the �eld containing the method's precomputed result. Queries using precomputed methods

are computed using these indexes. Figure 4.8 shows our example set with one precomputed

method. (We will assume that project manager income is a method of employee objects.) The

precomputed results of a type are stored separately from the instance variables values in a table



110 4. Related Work

OID id name address income proj med project manager income

� � � � � � � � � � � � � � � � � 75000

� � � � � � � � � � 
 � � � � 75000

� � � � � � � � � � � � � � � � � 75000

Figure 4.8: Example GOM type extent for employee objects with one precomputed method.

keyed by OID.

Indexes in the GOM scheme are maintained using a registration technique like ours. Objects

are registered by collecting the set of all accessed objects during the precomputation of a method

O of a set element x and then informing an index manager of this set along with x and O. The

index manager then adds registration tuples of the form < y;O; x > for each object y in the

accessed object set. The registration table is a separate global table keyed on y. Figure 4.9

shows the registration table for our example set. In addition, each accessed object stores the

name of the precomputed method that accessed it. For our example set and index function,

all of the (f-reachable) objects shown will have project manager income in their precomputed

method lists. This information is used in index maintenance.

A static analysis determines which mutators need to check for registrations in the following

way. When an observer is to be precomputed, the system examines all the code for all the

types used in computing that observer (i.e., this includes the code of any subobjects of the set

element that it accesses) and makes a conservative approximation about what instance variables

are used in computing a method. This analysis is based on computing all the possible path

expressions that an index function function might possibly traverse. Then the system rewrites

the code of the primitive mutators of these instance variables (i.e., the set instance variable

methods) to check for registration information and notify an index manager when an object

that was used in a precomputation has been modi�ed, if necessary. This code is recompiled,

and from then on, all objects of the type run this code, whether or not they participate in any

indexes. In addition, for each primitive mutator, a list of all precomputed methods that the

mutator may a�ect is associated with the mutator. For example, the set rate mutator of the

income info type would have project manager income in its list. This list is compiled into the

new mutator code and is used in index maintenance

When a modi�ed mutator of y is executed, the registration information for y is checked if the

intersection of the mutator's list of precomputed methods and y's list of precomputed methods

that have accessed it is not empty. If the intersection is empty, y has not been accessed by a



4.2. Function-based Indexing 111

y O x

� project manager income �

� project manager income �

� project manager income �

� project manager income �

� project manager income �

� project manager income �


 project manager income �


 project manager income �


 project manager income �

Figure 4.9: Example GOM registration table.

method precomputation; therefore mutations to it cannot a�ect any indexes. If the intersection

is not empty, then y was accessed during a method precomputation and the index manager is

informed of the mutation of y. For example, if set rate is called on 
, the index manager call

will be informed because both the list for the set rate mutator of the income info type and

the list in 
 contain project manager income. However, if we mutate a \random" income info

object � in the same way, the index manager will not be informed because �'s list will not

contain project manager income.

When the index manager is noti�ed of a mutation for an object y, it looks in the registration

table for any entries for y; if there are any it marks the a�ected index entries as invalid and

arranges for recomputations. These recomputations are done lazily, that is they are only done

when the index needs to be used again. We will discuss a lazy update optimization to our

scheme in the next chapter.

The GOM scheme registers more objects than necessary. For example, immutable objects

will be registered, as will objects that are being accessed by observers that do not depend on

any mutators. In addition, the GOM scheme causes more recomputations than our scheme.

A mutator that sets an instance variable may not change the result of an observer that reads

that instance variable (e.g., rotating a square changes its coordinates, but does not change

its area; also, the observer might do a benevolent side-e�ect). The reason is that analysis

of instance variables only approximates what we get from our depends on declarations. The

instance variable analysis is computing dependency at the concrete level. At this level, get

instance variable observers depend on set instance variable mutators. Our depends on relation

is at the abstract level; we are interested in dependencies in the abstract state rather than in

the concrete implementation. The designers of GOM realized that their technique registered



112 4. Related Work

too many objects and suggested an optimization that we will discuss in the next chapter with

our subobject containment analysis optimization. In addition, they also developed the concept

of a compensating action that is run when a particular instance variable is modi�ed that takes

the old key value for the set element that has been a�ected and the new instance variable value

and computes the new key value without accessing other objects. A compensating action must

be written explicitly by a database maintainer, and this technique only applies in limited cases,

since not all modi�cations will result in a functional transformation of the old key to a new key.

It is instructive to compare the implementation of GOM to our scheme to see if they bene�t

from providing indexes only for type extents using methods. We will only consider the portions

that are directly related to providing indexing over functions and will not consider the portions

related to providing precomputed results. The indexes in both schemes are the same size, so

we consider only registration space overhead. Each registered data object in GOM stores the

precomputed method that accessed it, that is the registration information stored in an object

is < O >. As in our scheme, this would take 4 bytes (Tshort). As in our scheme, there are N �L

registration tuples, since each access causes a registration tuple to be stored. Since registration

tuples are stored in a separate location in a table, the entire tuple < y;O; x > must be stored.

O can be encoded in the reference for x as in our new pointer scheme, so that each tuple is

16 bytes. Thus the registration space overhead in the GOM scheme is: (N +M) � Tshort +

(N �L) � 16. For the 5-level path function example we used in our previous analyses, the GOM

scheme uses much more registration space overhead than the hybrid scheme in any situation.

Also note that to �nd the entries in the registration table for an object y e�ciently, some kind

of index would have to be provided.

Computationally, the two schemes are about the same. The 4 bytes of registration infor-

mation stored in each data object will cause query and navigation performance between the

bit schemes and the original pointer scheme. For updates, the GOM scheme compiles the list

of precomputed methods that a mutator can a�ect into the mutator's code, but it still needs

to compute the intersection of this list with the object's list of precomputed methods. This

computation is more expensive than the header bit check in our scheme, though our technique

could be used in the GOM scheme to avoid the full check during mutations of unregistered

objects as well. Note that in our scheme, we do not change a mutator of an object to the

checking version unless it is registered for that mutator. As a result, our scheme often does not

check when an object is unregistered.

In summary, the GOM scheme is a method precomputation scheme that uses precomputed

results as the keys for an index over the precomputed method. The ability to provide precom-



4.2. Function-based Indexing 113

puted results is extra expressive power that our scheme does not have. However, it requires

additional space that is not present in our scheme. As an indexing scheme, the GOM scheme

has less expressive power than our scheme, since it is limited to indexing over type extents using

methods.

The implementation of the GOM scheme is based on the same fundamental ideas as our

scheme though the details are di�erent. Objects are registered when they are accessed during

key computation. Dependency information is used to determine what mutators need to check

for registration information and when index updates are necessary.

The dependency information in the GOM scheme is not as precise as in our scheme, because

it is inferred from the concrete implementation of a type, whereas dependency information in

our scheme is declared at the abstract level. This can cause the GOM scheme to register more

objects than in our scheme. These extra registrations take up space and can cause unnecessary

updates. In addition, because the dependency information is inferred from the concrete imple-

mentation of a type, the GOM system restricts types to have only one implementation. Multiple

implementations of a type would be hard to support in the GOM scheme, since the instance

variable analysis would have to be done for each possible combination of implementations that

could be used by the index function. If many types are used and they each have many imple-

mentations, the analysis might take a long time. Also, when a new implementation is added to

the system, this analysis would have to be repeated to include the new implementation.

Another implementation di�erence is that the registration table in the GOM scheme is

stored and managed in a central location. This is reasonable in a single server system, but

Thor is distributed, and in particular, the objects that a�ect an index entry may not be stored

at the same server. In this type of system, it would be better if the registration information for

an object is stored at the same server as the registered object, so we would not use a centralized

implementation.

4.2.2 Method pre-computation

Bertino's method pre-computation scheme[8, 10] is another scheme for storing precomputed

results of methods and using these results as keys of an index. Bertino's scheme has the same

expressive power as the GOM scheme, except that it does not support methods with arguments.

It provides the expressive power to return precomputed results, but as an indexing scheme, it

can be applied only to type extents and only methods can be index functions. As we did for the

GOM scheme, we will only be concerned with the aspects of this scheme that support indexing

functionality and will not consider support for precomputed results in our comparison.



114 4. Related Work

Bertino also uses a registration scheme. Objects are registered whenever their instance

variables are used to access the subobject referred to by the instance variable. (For convenience,

we will say the computation accesses the instance variable when we mean it accesses the object

referenced by the instance variable.) Like the GOM scheme, this is analogous to assuming

dependency between get instance variable observers and set instance variable mutators. Unlike

our scheme and the GOM scheme, there is no static analysis; there is no attempt to limit

registration checking only to those mutators that can possibly a�ect a precomputed method

result, so all mutators of an object must check for registrations.

Registration information for a registered object y is stored in the following forms:

� Two 
ags, im and em, for each instance variable indicating whether it has been accessed

during a method precomputation. The im 
ag indicates that a precomputed method of

y accessed the instance variable; the em 
ag indicates that a precomputed method of a

di�erent object accessed the instance variable.

� A list M of precomputed methods records. An entry has the result of the precomputa-

tion, a 
ag indicating whether the result is valid, and information about which instance

variables of y were accessed.

� A list P of \parent" records. Parents of y are those objects that called a method of y

during a method precomputation for another object. An entry contains a pointer to the

parent, and a set of records that contain a method identi�er for the precomputed method,

a 
ag that indicates whether the entry is valid, a 
ag that indicates whether the parent

is a set element storing the precomputed result, and information about which instance

variables of y were accessed.

The 
ags im and em are set as one would expect. The initial entry for a parent gets added to

P whenever a method of y is called by the parent during a method precomputation of some

other object for the �rst time. Subsequent records are added to the entry for the parent if other

precomputed functions access the same object through the parent. Parent record entries are

marked as valid whenever the parent access y during a precomputation. The entries in P are

used during index invalidation.

Index entries are not recomputed when a mutation happens. Instead, they are only marked

as invalid. Invalidation happens as follows. Every time an instance variable ivar of object y is

changed, ivar's 
ags are checked. If neither 
ag is set, the mutation happens normally. If the

im 
ag is set, the entries in M for precomputed method O that indicate they depend on ivar

are found. The result for O in each of these entries is marked as invalid, and the corresponding



4.2. Function-based Indexing 115

index entry in the index for O is replaced with an entry for the set element associating with it

the unde�ned key, \
."

If ivar's em 
ag is set, each valid entry in P that indicates that it depends on ivar for some

precomputed method O is used to �nd set elements whose result are no longer valid. This is

done by following the parent pointers up the object graph, backtracking along the path taken

by the original precomputation. The backtracking works as follows. For each parent record

entry, do the following:

1. Access parent p.

2. Find the instance variable ivarp of p refers to y.

3. Find all valid parent record entries in p's P that depend on ivarp and invalidate them. If

entry indicates that parent is a set element x, access x, mark the result for O in x's M

as invalid, and the corresponding index entry in the index for O is replaced with an entry

associating x with the unde�ned key. Otherwise, repeat backtracking at the next level.

By invalidating the parent record entries during backtracking, the scheme cuts short invalida-

tions coming up from other branches of the f-reachability graph. We assume that if the scheme

discovers that p no longer refers to y from any of its instance variables, it terminates.

The invalidation scheme is incomplete because it assumes that a parent object is never

both a set element and part of the path in computing a key for another set element. Suppose

that project objects have a method num employees that returns the number of employees in

a project and we have an index over the function shown in Figure 4.10(a) that computes the

number of employees in the employee's project manager's project. Figure 4.10(b) shows an

example where an object's parent is a set element containing a precomputed method result and

part of a path used in precomputing the method result for another set element. The parent

record entry created for f in project object � should indicate that � is a parent that does not

contain the precomputed result because it is accessed in computing f(�), but it should also

indicate that � is a parent that contains the precomputed method result because it is accessed

along the same path in computing f(�).

The invalidation scheme is also incomplete because it assumes that there will be only one

instance variable in the parent that refers to the child. The algorithm can be easily generalized

to do a complete check of all instance variables that refer to the child and then �nd any parent

record entries that depend on any of these instance variables.

When a query using a precomputed method O is run, the index for O is consulted, and all

elements with keys that satisfy the query automatically belong to the result set of the query.



116 4. Related Work

f (e: employee) returns (int)

p: project := e.project ()
m: employee := p.manager ()
mp: project := m.project ()
return (mp.num employees ())
end f

(a) Index function

α β δ
income_ proj_income_ proj_ income_ proj_

E: set[employee]

manager_

σ
manager_

π

Path of f( )α
Path of f( )β

(b) Example set

Figure 4.10: Example where a parent is a set element that contains a precomputed method
result and is part of a path used to precompute the method result for another set element.
Object � is access from � during the computation of both f(�) and f(�), so its parent record
entry for � should indicate that � is both a parent with a precomputed method result and a
parent used in precomputing the method result of another set element.



4.2. Function-based Indexing 117

In addition, O is run on any set elements with unde�ned keys to test for inclusion. Each result

is stored in the set element's entry for O in M, and index entries are entered associating the

set elements with the result.

We can characterize the registration information space overhead in the following way. There

are 2 bits per instance variable for their 
ags. These bits can be stored in a bit vector. (We

do not want to store these bits within a reference because that would cause extra work on

every access to mask them out.) The actual size of the 
ag vector depends on the number of

instance variables, but since we assume that data is aligned on a word boundary, it would have

to be a multiple of 4 bytes. We will assume 4 bytes for the 
ag vector; this will encode the


ag bits for 16 instance variables, which seems like a reasonable number. A method record has

a method identi�er, a method result, a validity 
ag, and dependency information. (We count

the space for the method result because it is needed during updates.) Dependency information

can be represented as a bit vector, 1 bit per instance variable, so it is 2 bytes. The method

identi�er is 2 bytes (and can probably also encode the validity 
ag) and a method result is 4

bytes, so a method record can be stored in 8 bytes. A parent record has a method identi�er, a

parent pointer, a validity 
ag, and dependency information. We probably cannot encode both

a method identi�er and the dependency bit vector into the parent pointer, so parent records are

12 bytes (8 bytes for the parent pointer and 4 bytes for the method identi�er and dependency

bit vector, the validity 
ag again encoded into the method identi�er). Note that there is only

one parent record entry per parent (per index) regardless of how many times the object is

accessed from that parent during the key computations for an index. However, an object may

be accessed by more than one parent during key computation, so the number of parent records

depends on the sharing structure of the elements in the set. Thus to add an index in this

scheme, the registration space overhead is (N +M) � 4 + N � 8 + X � 12, for the 
ag vectors,

the method records in the set elements, and the parent records, where X varies depending on

the sharing structure.

Figure 4.11 shows three scenarios for which the number of registrations in Bertino's scheme

(method records plus parent records) is less, equal to, or greater than in our scheme. In each

scenario, there are N = 5 elements and L = 8 (the dotted arrows show the path of the index

function for the �rst set element), thus our scheme needs 40 registrations. For Bertino's scheme,

there is always one method record in each set element. In scenario (a), the objects at levels

2 through 8 are shared by all set elements. There are 11 parent records for this scenario, 5

in the object at level 2 and one in each of the objects at levels 3 through 8, for a total of 16

registrations. In scenario (b), the index function is a path expression. This scenario needs 35



118 4. Related Work

Level 1

Level 2

Levels 3-8

(a) Our scheme: 40 registrations, Bertino's scheme: 16 registrations

Level 1

Level 2

Levels 3-7

Level 8

(b) Our scheme: 40 registrations, Bertino's scheme: 40 registrations

Level 1

Levels 2-7

Level 8

(c) Our scheme: 40 registrations, Bertino's scheme: 65 registrations

Figure 4.11: Comparison of the number of registrations in our scheme and Bertino's scheme in
three sharing scenarios. The dotted arrows indicate the path taken by the index function in
computing the key for the �rst set element.



4.2. Function-based Indexing 119

parent records, one in each object at every level, for a total of 40 registrations. In scenario (c),

the key computation for each element traverses an unshared, complex f-reachability graph. In

particular, the object at the bottom of the f-reachability graph is accessed through 6 di�erent

parents. There are 60 parent records in this scenario, one in each of the objects at levels

2 through 7 and 6 in each object at level 8 (one for each of its parents), for a total of 65

registrations.

There are no implementations of this scheme, but we can do some rough comparisons on the

e�ect of its overhead on performance. Bertino suggests that the registration information can

be embedded directly in an object because the space overhead is not too large. Assuming the

sharing does not cause a large number of parent records, the e�ect of this implementation on

queries and navigation should be between our original pointer scheme and our original embedded

scheme, since registrations are 8 or 12 bytes. The e�ect of registration information on index

maintenance is likely to be similar to the embedded scheme since it is available directly. The

number of objects accessed during an update backtrack depends on how far down the graph

the mutation take place. If we assume, on average, a mutation takes place near a leaf, then

the di�erence between the schemes depends on how bushy the object graph traversed by the

precomputation is. Invalidation in this scheme may only visit the direct path from the leaf to

the set element while our old key computation would visit all the objects in the graph, though

if the index function accessed the mutated object from many parents, each backtracking will

access each one. Recomputing the new key will be the same in both schemes.

Bertino also suggests that this scheme could be implemented by storing all of a precomputed

method's results and parent records for an entire index into a separate object and having objects

registered for the precomputed method point to it so that the objects along the path do not

have to be accessed. (The 
ag vector would still be stored in an object.) This implementation

may cause unnecessary invalidations, since without accessing an object, we cannot determine

which of its instance variables actually refer to the child object. If the path no longer exists (e.g.

the instance variable that used to refer to the child object now refers to a di�erent object), we

may still �nd a path in the registration object and do unnecessary invalidations. In addition, if

more than one instance variable can refer to the same child object (i.e., the instance variables

have the same type), we would have to assume that any of these instance variables may refer

to the child object and any method records or parent records that depend on them must be

invalidated.

This scheme is interesting because it allows the system to backtrack up the object graph

along the path that was taken in computing the index key to �nd the set element and the old



120 4. Related Work

key rather than recomputing the old key starting at the set element. However, to do so, this

scheme may register more objects than in our scheme. It must register objects that cannot be

mutated in a way that a�ects the index since it needs to keep the entire path in order to do

the backtracking. In addition, all of an object's mutators must check a pair of instance variable


ags every time there is a change to an instance variable to determine if it was used in a method

precomputation. These ine�ciencies are due to determining dependency at the concrete level

among instance variable accesses and modi�cations rather than at the abstract level between

observers and mutators of the type. However, as we have shown, this scheme sometimes uses

less space than our scheme since in some situations it can take advantage of the sharing among

objects, and it would be interesting to see if we can combine our dependency information at

the abstract level with this scheme to provide a more GemStone-like implementation for our

scheme.

4.2.3 Cactis

The Cactis system is an entity-relationship database[31, 32]. In the entity-relationship

model, every object has a type that speci�es some number of attributes, which are values like

integers and booleans, and some number of relationships that relate two (or more) objects and

may also have attributes. Cactis supports both intrinsic attributes (i.e., a regular value) and

derived attributes, where the value is the result of an arbitrary computation that can use the

values of other (possibly derived) attributes of the object or its relationships. In addition,

each relationship attribute has a direction (also declared in the type) so that one object in the

relationship is a transmitter and may set the relationship attribute while the other other object

is a receiver and may access the attribute. Thus, the attributes of a transmitter object can be

made accessible to the receiver objects to which it is related. Likewise, attributes of an object


 can be made accessible to an object � that is not directly related to 
 if there is a path of

objects and relationships that transfer the attribute of 
 to �.

The Cactis system stores the results of computing derived attributes so that they need not

be computed on every access. Since the attributes used to compute a derived attribute may

themselves be derived, when an attribute of an object is modi�ed, any number of other attributes

in both the modi�ed object and other objects may need to be recomputed. Determining which

attributes are a�ected when an attribute changes is done in the following way. Each type keeps

a list of all the relationships its objects participate in and a dependency vector for each attribute

indicating which other attributes of the object or its relationships the attribute depends on.

When an attribute is modi�ed, all other attributes (of the object) that depend on it are marked



4.2. Function-based Indexing 121

as out-of-date. For every relationship attribute that depends on the modi�ed attribute (directly

or indirectly), the objects that are related to the modi�ed object by that relationship are found

and any of their attributes that depend on the relationship attribute are marked as out-of-date,

and so forth along the path of objects and relationships until there are no more attributes that

are a�ected by the change. Out-of-date attributes are recomputed when they are accessed or if

they are marked as \important," meaning that they should be recomputed immediately.

The Cactis scheme is similar to Bertino's method precomputation scheme. An object's

intrinsic attributes can be thought of as instance variables that contain non-reference data and

derived attributes as precomputed method results. Relationships can be thought of as a pair of

references between the related objects and a relationship attribute as an instance variable of the

receiver object. The functions that de�ne the derived attributes are the precomputed methods.

When a modi�cation is done to an \instance variable", the invalidation phase backtracks along

the paths of all computations that accessed that instance variable as in Bertino's scheme. The

main di�erence is that precomputed method results are maintained and used at every level of

the computation.

The designers of Cactis indicate that there is a 65-bit per attribute overhead stored in every

object in the system, but other implementation details are not described. Therefore, it is not

possible to evaluate the space and time performance of this scheme.



122 4. Related Work



Chapter 5

Optimizations

For function-based indexing to work well, the impact of registration and updates on the

system must be minimized. Both aspects of our scheme, registration and updates, can bene�t

from optimizations:

1. The registration algorithm still registers more objects than necessary. In particular, ob-

jects may have subobjects that can be mutated only by calling a method of the enclosing

object and therefore need not be registered.

2. Updates are ine�cient in two ways: an update may do work that will be overwritten before

the new index entry is used; and obsolete registrations cause unneeded recomputations.

In this chapter, we describe three optimizations to our indexing scheme:

1. Contained subobject analysis | statically identifying subobjects that can be mutated

only by calling a method of the enclosing object.

2. Lazy updates | doing index entry recomputation when needed or in the background

rather then immediately upon a mutation of an object that a�ects the index entry.

3. Deregistration | garbage collecting obsolete registration information to reduce unneces-

sary updates.

5.1 Contained Subobjects

One way to register fewer objects is to recognize contained subobjects. Intuitively, an ob-

ject contains a subobject if mutations to the subobject can occur only within methods of the

containing object. For example, an income info object might be contained by a containing

employee object (since it is created inside the containing employee object, and employee ob-

jects do not have methods that return the income info object). However, the project object

123



124 5. Optimizations

proj_income_

rate_ bonus_ manager_

proj_income_

rate_ bonus_

α β

π γ

, set_bonus, α , I><γ
α, set_rate, , I><γ

, set_bonus, α , I><β
, set_monthly_rate, α , I><β

, set_manager, α , I><π

, set_project, α , I><α

Figure 5.1: Example with registrations from project manager income(�). (Greek letters are
OIDs.)

referred to within an employee object is not contained, since it can be returned by the project

method and then mutated via its set manager method.

To see how we could use the knowledge of contained subobjects to register fewer objects,

consider our example in Figure 5.1, showing the registration tuples that our scheme gener-

ates after computing I:fr(�) next to each object, and suppose object 
 is contained in object

�. With the scheme described so far, both � and 
 have registrations that will cause index

maintenance work when �.set bonus runs. Index maintenance work will be done twice, once

inside 
:set bonus, and also in �.set bonus. Thus half the work is wasted; in general, there may

be even more wasted work because the mutator of the containing object may mutate several

contained subobjects.

The work done in 
.set bonus is totally unnecessary because �.set bonus does what is needed

and no other code can call 
.set bonus. This fact holds whenever there is a contained subobject.

So if we can recognize contained subobjects we can save both index maintenance work and

the space for the (unneeded) registration tuples in these subobjects. (The lazy update scheme

presented below can avoid some of this wasted work for contained subobjects, but not registering

these objects is even better.) This optimization cannot be done for subobjects that are not

contained, however, since they might be modi�ed directly (without an intervening call on a

mutator of the containing object).

In this section, we present an algorithm for computing subobject containment. Then we

show how containment information can be used to register fewer objects. Finally, we discuss

an optimization in the GOM scheme that is related to our subobject containment analysis.



5.1. Contained Subobjects 125

5.1.1 Containment Algorithm

Containment is a property of a class. All of the objects created from a particular class

have the same properties with respect to containment. In particular, containment is a property

of the subobjects reachable from the instance variables of a class. Any object y that is only

reachable from the instance variables of another object x is contained by x because only the

methods of x can call the methods of y. We capture this notion by dividing the \world" as

viewed by a class into two parts: the part that is reachable only from an object's instance

variables and the externally accessible objects reachable from the environment. In this view,

contained subobjects are those objects that are reachable only from the instance variables. Our

goal is to determine if any of a class's instance variables refer to such subobjects.

To determine if an instance variable refers to a contained subobject, we analyze the code

of a class. For languages like Theta that support a subclassing mechanism, we assume that

we can \rewrite" a class's creators and methods to include any code that is inherited from any

superclasses and their superclasses, etc., to allow us to analyze all of the code executed in a

class. We assume that the instance variables of a class are encapsulated. That is, only the

code in the class has access to the instance variables, and no other code can access the instance

variables, including the code of any subclasses of the class being analyzed. We also assume

that methods and procedures do not store any own data (i.e., data that is retained between

invocations).

Aliasing makes our job more complex. In the example shown in Figure 5.2, suppose x is

an instance variable, y is a local variable, and a is an argument variable (thus a refers to an

object that is reachable from the environment), and we execute an assignment like y := x[3]

(i.e., x is an array and now y refers to one of its elements). Figure 5.2(a) shows the result of

this assignment. Now suppose we call a method of y's object with a's object as an argument

(e.g., y:foo(a)). A possible result (shown in Figure 5.2(b)) is that a's object is now reachable

from y's object, and therefore, y's object might not be contained. But since y is an alias for a

part of x, it is also the case that a's object might now be reachable from x's object, so that x's

object also might not be contained, even though the invocation of did not mention x.

To determine when two variables may be aliases to objects that are reachable from one

another, we adapt Larus and Hil�nger's alias graph construction algorithm[41]. Brie
y, alias

graph construction is a data 
ow computation that produces a conservative approximation of the

aliases visible at any point in a program. The roots of an alias graph are variables names and the

interior nodes represent storage areas. Edges are added (or deleted) by applying transformation

rules associated with each statement or expression that causes changes in aliasing. (For example,



126 5. Optimizations

(a) (b)

x

y

a

x

y

a

Figure 5.2: An example of how aliasing can happen: (a) after executing y := x[3], (b) a possible
outcome of y:foo(a).



5.1. Contained Subobjects 127

assignments or procedure calls.) Two (or more) variables are aliased if there is a path from

each variable to a common node.

Adapting the alias graph construction algorithm for our purposes is straightforward. Alias

graph construction applies only to variables that are references, so variables of built-in im-

mutable types like int or char (i.e., those that are not represented as references) are not

considered in the analysis. In the original algorithm, a function call f(a1; : : : ; an) with un-

known aliasing e�ects causes all variables aliased to the argument variables to become aliases

for the ? node that represents a global storage area. Since there are no global variables in

Theta, a function call can only cause aliasing among local storage areas (i.e., those that are

reachable from the arguments). We adapt the algorithm by creating a node to represent the

result of the function call and all variables aliased to the arguments of the call become aliases to

this node, instead of the ? node. We also provide special transformation rules for method calls

of built-in types like array and sequence, since there is only one system-provided implementa-

tion of these types, and we know the e�ects of the methods of these types on aliasing. Method

calls of the form x:m(a1; : : : ; an) are treated as function calls of the form m(x; a1; : : : ; an) with

unknown aliasing e�ects except for method calls to self, e.g., self:m(a1; : : : ; an). Method calls to

self are treated as function calls of the form m(a1; : : : ; an) and analyzed using interprocedural

alias analysis on the code for m in the class. Calls to local routines de�ned in the class are also

analyzed using interprocedural alias analysis. Note that we do not take advantage of the power

of the algorithm to detect aliases in Lisp-like structures, since Theta does not have these data

structures.

Using the alias graph construction algorithm, we can compute what aliases are caused by a

particular creator or method. Clearly, any instance variable that becomes an alias for an object

that an argument references is no longer contained. However, analyzing each creator or method

individually is not enough, since one method or creator may cause aliasing among instance

variables and another might alias one of these instance variables to an argument variable or

return it as a result. For example, consider the class fragment in Figure 5.3. From inspection,

we can see that method combine causes aliasing between instance variables x and y, but no

other aliasing, so we conclude that x and y still refer to contained subobjects after calls to

combine. Likewise, we see that method expose x causes us to conclude that x does not refer

to a contained subobject after a call to expose x, but since y is never mentioned in the body

of expose x, we conclude that y still refers to a contained subobject after calls to expose x.

However, this is incorrect, since if we execute combine and then expose x, y is aliased to x when

we call expose x, so we should conclude that y might not refer to a contained subobject after



128 5. Optimizations

example impl = class example

x : array[employee]
y : employee
:

combine (i: int)
y := x [i]
end combine

expose x () returns (array[employee])
return (x )
end expose x

:
end example impl

Figure 5.3: Example class with aliasing from one method a�ecting another method.

calls to expose x. Thus, in addition to analyzing each creator or method, we must also compute

the transitive closure of aliasing exposed by each of the alias graphs.

We compute subobject containment in the following manner. For each creator or method

fi in the class, we analyze the body of fi using the alias graph construction algorithm. The

initial graph for each analysis is constructed as follows:

� (Reference) argument variables all point to the ? node.

� The pseudo-variable self points to the ? node.

� Each (reference) instance variable i points to its own node.

� Each local variable points to its own node.

The ? node represents the storage area of the environment and as far as we are concerned, all

arguments are aliases for it. Self also points to the ? node, since the environment has an alias

for it (otherwise, the object would be garbage). We use this initial graph to construct an alias

graph Ai that describes the aliases that exist just before the creator or method returns. If there

is a return statement, the returned result (assuming it is a reference) is represented as a node

and is aliased to the ? node.

We summarize the aliasing information from each graph in an N + 1 by N + 1 matrix M ,

where N is the number of (reference) instance variables in the class. M represents aliasing of

instance variables (1 to N) to each other and to the environment (N +1). Initially, the entries



5.1. Contained Subobjects 129

on the diagonal (i.e., entries M [i; i], for i = 1 to N + 1) are set to 1 (i.e., every variable is an

alias to itself) and all other entries in the matrix are set to 0. After each alias graph Ai is

constructed, if instance variable i is aliased to an argument variable in Ai (i.e., there is a path

from i to the ? node), then M [i;N + 1] and M [N + 1; i] are set to 1. If instance variable i

is aliased to instance variable j in Ai (i.e., there exists a path from i and a path from j to a

common node), then M [i; j] and M [j; i] are set to 1.

After processing each alias graph, M�, the transitive closure of M , is computed. (An

algorithm for computing transitive closure can be found in [20].) The last column of M�

contains the information we need. If M�[i;N + 1] = 0, then instance variable i refers to a

contained subobject, since it has not been aliased to the environment, and if M�[i;N +1] = 1,

then instance variable i does not refer to a contained subobject, since it has become aliased to

the environment. If all of a class's instance variables refer to a contained subobject, we say the

class is completely contained.

5.1.2 Using Containment Information

The compiler can take advantage of contained subobjects when producing registration ver-

sions of observers. It can avoid calling the registration versions of the contained subobject

observers altogether, since it knows that there cannot be any outside mutations that can a�ect

the state of the subobject. The basic algorithm for any registration version of observer Or

would become:

1. If O is an observer for some object y,

(a) If y 2 R, register y, if necessary, that is, if there is some mutator m that O depends

on.

(b) Add the uncontained subobjects of y to R.

2. For all calls p in O, if p is a method of a contained subobject, call the regular version of

p. Otherwise call the registration version pr, passing x, I, and R. (I.e. p is a stand-alone

routine, a method of an uncontained subobject, or a method of a local object.)

In the best case scenario, when all of a set's elements are completely contained immutable

objects, there is no registration information associated with indexes on that set at all. For set

elements that are completely contained but mutable, Or's would add registration tuples for

the set elements x only, but otherwise would be the same as the original O's, thus none of the

f-reachable objects of x would be registered.



130 5. Optimizations

More likely, only some of an object's subobjects are contained. For our employee objects

implemented by the employee impl class, project objects are obviously not contained within

the employee objects since the set project method will return them. However, the income info

objects are. Thus, we would only have to register the employee object if the yearly income

observer is used as an index function, and call regular methods on the income info object and

its subobjects, if it had any. For our example (Figure 5.1), we would no longer have registration

tuples for income-info object 
.

5.1.3 GOM

As we saw in Chapter 4, the basic GOM system[34, 35] registers more objects than neces-

sary to maintain function-based indexes. The GOM designers realized this, so they proposed

something akin to our contained subobject analysis called \strict encapsulation" to try to avoid

registering some of these objects. Strict encapsulation corresponds to complete containment in

our analysis. Under the GOM de�nition, a class that is strictly encapsulated must meet the

following properties:

1. Get and set instance variables methods of the type must not be named as methods in

type interface.

2. All subobjects must be created during the initialization of the containing object.

3. No method returns references to subobjects.

This de�nition is incomplete because it does not say anything about the types of arguments to

mutators. In particular, it does not rule out a mutator that takes an object a as an argument

and calls a subobject y's method passing in a as an argument or calls a method of a passing in

y as an argument. Either case might cause aliasing between objects reachable from an instance

variable and objects reachable from the environment. Also, it is not clear what is meant by the

third point; we are not sure if the GOM designers mean to include only the instance variables,

or any reference to objects reachable from the instance variables. As we saw in our aliasing

example, if we only look at the instance variables, a local variable can become an alias to objects

reachable from an instance variable. When such a local variable is used in a return statement,

the assumed containment property is violated.

To make use of this optimization in the GOM scheme, a database programmer examines the

code of a class and determines whether it is \strictly encapsulated" and then tells the system

explicitly that a high-level mutator only a�ects certain high-level observer results. Then the

static analysis of this code moves the recomputation decision into the high-level mutator rather



5.2. Lazy updates 131

set rate and bonus (e: employee, new rate, new bonus: int)

e.set monthly rate (new rate)
e.set bonus (new bonus)
end set rate and bonus

Figure 5.4: An example mutator with multiple parts.

than in the primitive set instance variable methods that it calls. This is more like what our

depends on speci�cation provides, but is done in an ad-hoc manner. Also note that the GOM

designers only allow this \optimization" to be done on completely contained objects. We believe

our scheme is safer; the type designers only have to worry about semantics and registration

versions of observers that take advantage of containment are produced automatically.

5.2 Lazy updates

The basic update algorithm recomputes I:f(x) whenever there is a mutation a�ecting an

index. This may cause updates that are immediately overwritten. For example, consider

the routine set rate and bonus shown in Figure 5.4. The recomputation done during the call of

set monthly rate is not necessary because of the recomputation done during the call of set bonus.

One way to avoid unnecessary updates is to do the recomputation lazily. Both the GOM

system[34, 35] and Bertino's scheme[8, 10] have lazy updates. In a lazy update scheme, an

I:data entry would be valid if key = I:f(x); otherwise it would be invalid. A mutator of a

registered object would invalidate the current index data entry for x, but not recompute it. At

some later time, the system would do the recomputation and revalidate the index data entry

for x. It could wait to do the recomputation until the next time a query tries to use the index,

but this will delay the query. Alternatively, it could do recomputations in the background.

The basic algorithm can be extended to do lazy updates in the following way. The entries

of I:data have an extra boolean �eld valid, which is true if key = I:f(x) and false otherwise.

A mutator m for an object y �nding registration < x;m; I > would behave as follows:

1. valid is set to false in I:data entry < old key, x, valid >.

2. remove the registration tuple from y.

3. m does the actual mutation to y.

Note that we still leave unspeci�ed how we would �nd old key. Some time later, the system

would do the recomputation. For an I:data entry < key; x; false >, the following is done:



132 5. Optimizations

1. Remove the data entry from I:data

2. Call I:fr(x) passing it x, I, R = fxg as arguments.

3. Add < new key, x, true > to I:data where new key is the result from step 2.

The system has some choices as to when to do the actual recomputation. It can do a

recomputation of invalid index entries whenever there is a query that tries to use an index. Both

the GOM system[35, 34] and Bertino's scheme[8, 10] do this. Since they are primarily interested

in returning results of method calls quickly, it makes sense to delay the recomputations of

invalidated results while calls are being made to other objects. However, in our scheme, queries

are the only thing we are concerned with and waiting to recompute entries until a query wants

to use the index would cause delays for queries trying to use indexes with invalidated entries.

To try to prevent such delays, the system can do recomputations in the background by keeping

a list of all invalidated entries. When the system recomputes the new index key, the entry is

removed from the list.

The list of invalidated entries could also be used to determine if a particular index entry has

already been invalidated, so that a subsequent mutator that a�ects it would not actually cause

an access to I:data. The GOM system combines lazy updates with deregistration (described

below) of the mutated object to avoid multiple accesses to an invalid I:data entry caused by

multiple mutations to the same object. Using a list of invalidated entries would be more general

by avoiding multiple accesses to an invalid I:data entry caused by subsequent mutations to any

object that a�ects the index key of an element x rather than just multiple mutations to the

same object.

5.3 Deregistration

When an object can no longer a�ect an index (because it is no longer f-reachable from a set

element), we could remove its registration tuples for that index. We will call this process dereg-

istration. Deregistering objects saves work by eliminating useless checks and recomputations,

and saves space by removing obsolete registration tuples.

Deregistration can be accomplished by calling a deregistration version of a function or

observer. The deregistration version Od takes as extra arguments a set element x and an index

I; it is also produced by the compiler and is basically the opposite of the registration version:

1. If O is a method for object y, remove all of y's registrations of the form < m?; x; I >.



5.3. Deregistration 133

2. Run the body of O. For all observer or function calls p in O, call registration version pd,

passing x and I as extra arguments.

3. Return the same result as O.

Now it is straightforward to see how we could deregister every object registered when I:fr(x)

was invoked. We simply call I:fd(x). This is guaranteed to deregister all the objects that I:fr(x)

registered because we require that I:f have a deterministic implementation. Thus I:fd(x) will

access the exact same objects that I:fr(x) did and remove the appropriate registration tuples.

Note that it would be straightforward to make use of containment information to speed up

this computation. We just make regular calls on the blue instance variables rather than the

deregistration calls.

In Section 2.8, we deregistered an object when it was mutated, and in Section 2.7, we

deregistered an object when it was deleted from an indexed set. In addition, we should call

I:fd(x) when we delete a set element x, since the registration information for I in objects f-

reachable from x is no longer needed and the subobjects of x are likely to be in the cache. We

will call this scheme partial deregistration.

An alternative scheme is to do full deregistration. In addition to running I:fd when an

object is deleted from the set, we also run it on the set element x when a registered object y is

mutated. In this scheme, when a checking mutator mc of y is executed, the following happens

(assuming we are doing lazy updates):

1. Remove all tuples < m;x?; I? > from y's registrations set. For each such tuple, call

I?:fd(x) passing it x? and I? as extra arguments and invalidate < key; x? > in I?:data.

2. Do the actual mutation to y.

The new registrations for the x's and I's will be done later, when the new key is computed for

x using I:fr. Note that it is important that I:fd be called before the mutation to y in case the

mutation changes the f-reachability graph from x. If we want to do lazy deregistration as well

(i.e., call I:fd later or in the background), we would have arrange for a copy of the old version

of y to be used when calling I:fd.

Full deregistration is attractive if key must be calculated explicitly to �nd the index data

entry < key; x > for invalidation. We would have to run I:f anyway and could run I:fd

instead. In addition, mutators no longer need to check for x 2 I:set, since there will no longer

be obsolete registrations for x. Thus, this scheme is also attractive if testing for set membership

is ine�cient.



134 5. Optimizations

If it is easy to �nd key and test for x 2 I:set, partial deregistration is probably more e�cient

than full deregistration. For partial deregistration, the main problem is the unnecessary inval-

idations caused by obsolete registrations. However, if a mutation does not a�ect reachability,

which is true quite often, there are no obsolete registration tuples. Also, if a mutation causes

objects to become totally inaccessible, partial deregistration would not waste time removing

registrations from objects that will be garbage collected anyway.



Chapter 6

Indexes in Thor

This research is being done in the context of Thor, an object-oriented database system[42,

43]. Thor is designed to support heterogeneous applications that concurrently share objects over

a heterogeneous distributed system. Thor is still under development, so its system architecture

changes from time to time, and study of alternative designs in several areas is an important part

of our research. The research in this dissertation is being used as part of our on-going evaluation

of the implementation. Part of this evaluation includes determining if design decisions made

earlier continue to be reasonable as we add queries and indexes to the system.

In this chapter, we explore issues related to index use and maintenance in the Thor system

architecture. We will not address the question of query processing, that is, how queries are

described and processed into execution plans. We assume that query descriptions in Thor will

be in some standard notation (e.g., OQL[18]), and many others have done research in generating

(optimized) execution plans both for databases in general[33] and speci�cally for distributed

databases[2, 19, 62]. Also, we will not address how to handle indexes for sets that have elements

on more than one server (i.e., distributed sets). We leave this issue as an area for future research.

We begin by describing the current Thor system architecture to provide some background.

We concentrate on those areas that have an impact on indexing or where indexing has an

impact on a design decision. Some of the areas are still under investigation and in these places

we describe some of the alternatives.

There are many issues that arise in using and maintaining indexes in the Thor system.

These issues can be divided into two broad categories: those that arise from adding indexes to

Thor and those that arise from the impact of the Thor system architecture on the performance

of index use and maintenance. In Sections 6.2 and 6.3, we enumerate some of these issues and

look at them in more detail.

135



136 6. Indexes in Thor

Client1 FE1

Client2 FE2

Client3 FE3

Server1

Server2

Figure 6.1: A representative Thor con�guration. The arrows represent communication between
nodes.

6.1 Thor System Architecture

Thor is an object-oriented database system. It supports sharing of objects by clients (ap-

plications) written in di�erent languages. Clients of the database access objects by calling the

methods of the objects within transactions. Thor transactions are serializable and atomic. That

is, transactions in the system appear to run in some serial order and either all changes done by

a transaction to persistent objects are re
ected in the database upon transaction commit, or

none of the changes are re
ected in the database upon transaction abort. Persistence in Thor

is based on reachability from designated persistent roots.

The Thor system is intended to run in a distributed environment. It is implemented using

clients and servers. Servers provide persistent storage for objects. Front-ends (FEs) process

client requests for operations to be run on persistent objects. An FE is created each time a

client opens a session to the database; there is one FE for each client. When the session ends,

the FE is destroyed. The servers and FEs are not generally co-located on the same physical

node, though they may be; an FE is usually co-located with its client, though it may not be.

We will assume that servers and FEs are on di�erent nodes, and an FE and its client are on

the same node for the rest of our discussion. Figure 6.1 shows a representative con�guration.



6.1. Thor System Architecture 137

Server1 Server2

Figure 6.2: Objects at Thor servers. The triangle is a server-surrogate for the shaded object.

Every persistent object resides at one server. Persistent objects refer to each other using

an \external reference" (called an xref). An xref consists of the identity of the server that

(may) store the object and the object's \local" address at that server. An object that has

moved leaves behind a surrogate containing its new xref. An example is shown in Figure 6.2.

Server surrogates are eventually removed during server garbage collection after all objects that

referred to the moved object by its old xref have been modi�ed to contain its new xref[46].

Since objects can move from server to server, a persistent object also has a system-wide unique

identi�er (OID) assigned to it.

The servers store their persistent objects in very large disk segments. Tentatively, we have

chosen a segment size of 64 kilobytes (64K), though this is a subject of current research[26].

The segments are fetched into the server cache on demand and are removed using an LRU

policy. The server cache is assumed to be very large (perhaps up to 1 gigabyte in size); thus we

use large segments for more e�cient use of the disk. However, since multiple FEs can access

objects at a server, the server cache space devoted to any given FE may still be fairly small.

Although persistent objects reside at the servers, client requests are carried out at the FE

on copies of the objects. These copies are cached in primary memory at the FE. The FE cache



138 6. Indexes in Thor

is assumed to be much smaller than at a server. If the FE does not already have a copy of

an object when a client wants to run one of its methods, the FE sends a fetch request to the

server that stores the object and a copy of the object is sent over to the FE. The server returns

a group of objects containing the requested object and some other, prefetched objects as well.

The prefetched objects are \related" to the requested object. Currently, we are only prefetching

the objects referred to (directly) by the requested object that are in the same segment as the

requested object. This scheme might be extended to more levels of the object graph rooted at

the requested object and to objects in other segments that are already in the cache.

Objects at the FE refer to each other by local virtual memory addresses. When a persistent

object copy is brought to an FE, its references must be swizzled before being used. That is,

its xrefs must be converted into virtual memory addresses. Currently, we are looking at two

forms of swizzling[50]: object swizzling, where all of the xrefs in an object are swizzled when the

object is accessed for the �rst time, and pointer swizzling, where an individual xref is swizzled

when it is used for the �rst time to access the object it refers to. In object swizzling, a xref for

an object that is not present in the FE's cache is swizzled to refer to an empty FE-surrogate,

which contains the xref of the object it represents. Access to an empty FE-surrogate causes a

fetch request for its object, and the FE-surrogate is �lled with the requested object's virtual

memory address. Subsequent accesses to the FE-surrogate are forwarded to its object. Filled

surrogates are removed during FE garbage collection. Figure 6.3 shows an example of what

happens when an FE fetches a object in the object swizzling scheme. When FE1 fetches object

A, copy � is sent to FE1 along with prefetched copy �. After � and � have been swizzled, �

has a reference to pi, and pi has has a reference to an FE-surrogate that contains the xref of

object �. In the pointer swizzling scheme, an access to a reference that has not been swizzled

causes the FE to look for the object in its cache and if it is present, the reference is converted

to the virtual memory address of the object and marked as swizzled. If the object referred to is

not present, a fetch request for the object is made and swizzling proceeds when the requested

object is installed in the FE's cache. In either scheme, objects may be shrunk (that is, turned

into empty FE-surrogates) to reclaim space in the FE cache[21].

Clients can create new objects. Initially, new objects live only at the FE. A new object can

be made persistent only by mutating a persistent object to refer to the new object. As part

of committing the surrounding transaction, a copy of the new object is sent to a server. If the

transaction commits, the new object is stored at a server and is assigned an OID and an xref;

the FE is informed of the new object's OID and xref so that it can update its copy. If the

transaction aborts, the server discards the new object. Whether the transaction commits or



6.1. Thor System Architecture 139

Server1FE1

Α

Π

Γ

α

π

Figure 6.3: Objects at a Thor FE after object A is fetched by FE1. Uppercase Greek letters
are the OIDs of the objects. Lowercase Greek letters denote a copy of the object with the
corresponding uppercase OID. The triangle is an FE-surrogate for object �.



140 6. Indexes in Thor

aborts, the new object still exists at the FE. Objects that are not made persistent by the time

a client �nishes a session with the database are destroyed when the FE is destroyed.

Concurrent access to objects in Thor is handled using an optimistic concurrency control

mechanism[39]. In our current design[1], every persistent object has a version number (v#)

that is advanced every time a transaction that modi�es the object commits. An object's

current v# is stored with the object and is copied to an FE when the object is fetched. The FE

keeps track of what objects are read and modi�ed during a transaction. When the client tries

to commit a transaction, the FE sends the v#'s of the objects read by the transaction and the

v#'s and new versions of the objects modi�ed by the transaction to one of the servers storing

these objects to be validated.

If multiple servers are involved, the initially contacted server acts as the coordinator of a

two-phase commit protocol[27], sending the participants the v#'s of all the objects used by

the transaction; otherwise committing can be done locally. Validation is done by checking the

v#'s of the objects used in the transaction against the current v#'s of the objects. If any

do not match, the transaction must abort. This is because the transaction has read a version

of an object that \con
icts" with writes done by committed transactions. (Note that this is

a backwards validation technique favoring writers over readers.) Since Thor allows multiple

servers to commit transactions concurrently, the validation step is more complicated than just

described, but the notion of when of two transactions have done con
icting reads and writes

is the same. Details of the full protocol can be found in [1]. We will discuss our work only

in the context of a single-server system, since this case covers the basic concurrency control

mechanism and we believe validation for index operations can be added to the full protocol in

a straightforward manner.

Assuming a single-server system, if all v#'s match, the server selects a v# larger than any

of the current ones and this is written into objects when their new versions are stored stably.

After this happens, the transaction is said to have committed. When a transaction commits, the

FE is informed of the new v#'s in the commit reply; it then updates the v#'s of the modi�ed

objects it has in its cache. When a transaction aborts, the server informs the FE about the

objects that had stale v#'s, and the FE shrinks them. The FE also restores its copies of other

modi�ed objects back to their state before the transaction began.

This optimistic scheme can cause extra aborts not present in locking schemes, since FEs

may have copies that are stale. To prevent this from happening, the servers in Thor keep

track of which FEs have copies of which objects and send invalidation messages to FEs holding

copies of objects that have been modi�ed. Invalidation is done by shrinking the invalid object.



6.2. Adding Indexes to Thor 141

If an object has already been read by the current transaction, the transaction must be aborted.

Thus invalidation also has the added bene�t of causing early aborts of transactions that cannot

possibly commit, avoiding the full commit protocol for them.

Thor uses a primary copy replication scheme[51] to make the servers highly available. We

are not concerned with the exact details of the scheme except to note that modi�cations are

applied to the server cache's copies at transaction commit, and they are 
ushed to the physical

storage of a server in the background by an \apply" process as in the Harp �le system[44].

6.2 Adding Indexes to Thor

The Thor system architecture as described above is inadequate for using indexes to answer

queries. Some questions that arise include the following:

1. How do we integrate index use with two-level caching? In particular, are indexes (and

sets) fetched to FEs like regular objects?

2. How do we integrate index maintenance with two-level caching? In particular, are changes

to indexes committed like changes to regular objects?

3. How are concurrent use and maintenance of sets and indexes handled?

4. Can index creation on a very large set be assured in a system using optimistic concurrency

control?

Thor's two-level caching allows us to make choices about where these computations take place.

Currently, there is a strict division between the servers and the FEs. All user computation

happens at the FE, and servers only store their objects and perform system functions like the

transaction commit protocol. Our general philosophy in integrating indexes into Thor is to

minimize the changes we would have to make to the current system, though we will discuss

some of the other options. In particular, we will choose to perform user computations at the FE

in all cases, although we will point out cases where it might be worthwhile to make a di�erent

decision.

Query computations using an index are di�erent than method computations, because we

are using a system data structure instead of a user data structure. Section 6.2.1 focuses on how

indexes (and sets) behave di�erently from regular objects in Thor and describes how indexes

are used to answer queries.

Modi�cations to registered objects cause two additional computations: a computation to

recompute the new key and a computation to update the index entry. Key computations involve



142 6. Indexes in Thor

user computations, so we choose to perform them at the FE. Updates only involve the index,

so we choose to have them performed at the server. Section 6.2.2 discusses the issues and

reasoning behind these choices.

Concurrent use and maintenance of indexes should not cause erroneous behavior or unnec-

essary aborts. It is well-known that ordinary concurrency control mechanisms based on locking

must be extended to handle indexes[25]. To our knowledge, this has not been done for optimistic

concurrency control mechanisms. We have developed a new form of optimistic concurrency con-

trol, predicate validation, that is suitable for allowing concurrent use and maintenance of indexes

in systems using optimistic concurrency control. Like its namesake, predicate locking[25], in

predicate validation, index operations are converted to read and write predicates that describe

the objects of interest. Unlike predicate locking, predicate validation does con
ict resolution

at transaction commit. Consistent with the backward validation scheme of Thor, it aborts

a transaction if the results of its read predicates have been invalidated and if a transaction

commits, uses its write predicates to invalidate con
icting operations of active transactions.

Predicate validation is described in Section 6.2.3.

Creating an index on a very large set will take a long time. We have to access every element

of the set in order to build an index. The likelihood that another transaction will mutate one of

the set elements while the index is being built increases as a set get larger. For very large sets,

we may never be able to commit the index-creating transaction. Section 6.2.4 describes a way

to build indexes on very large sets incrementally. In this scheme, we periodically commit the

computations of I:fr(x) even though the index has not been completed and any index updates

that these registrations cause are handled specially.

6.2.1 Queries

Queries can be computed with or without using an index. We consider how to compute

queries using indexes �rst. In our discussion, we assume that an index is stored at the same

server as the indexed set and that registration information for an object is stored at the same

server as the object.

E�cient queries will be more important in Thor than in more conventional systems because

of its two-level architecture. In addition to providing associative access for clients, queries reduce

the amount of data that needs to be sent to the FE by identifying the objects of interest. To

make queries e�cient in Thor, set and index objects cannot be treated like regular objects.

The elements of set objects should not be prefetched when the set object is fetched. Similarly,

if an index is fetched, the set elements it references should not be prefetched. We envision that



6.2. Adding Indexes to Thor 143

when a set object is fetched, what is sent to the FE is a description of the set containing, for

example, the number of elements it has and a list of what indexes it has; this information is

consulted during query processing.

Even without prefetching the set elements, copying an index to the FE still may be ine�-

cient, since indexes for very large sets are themselves large objects. In addition, in the object

swizzling case, references to set elements in the index causes FE-surrogates to be created for

them, even if they are not fetched to the FE, and would increase the space cost of copying

the index to the FE. On the other hand, sometimes we might like to bring the entire index

over to the FE. For example, for a series of queries using the same index, we can trade o� the

space the index takes up with the time consumed by multiple network accesses. Thus, we may

want to answer queries using indexes at either the server or the FE. We will call index usage

at the server remote and index usage at the FE local. The question of how to determine which

mode of usage would be the most advantageous for a particular application is part of query

processing, and it is not addressed in this dissertation. However, we believe that the case for

copying an index to the FE will be uncommon, and we will implement only remote indexes for

Thor initially.

Using an index remotely requires that we enrich the interface between the servers and the

FEs. The server interface must be extended with operations that allow an FE to request a

computation using an index. These computations could involve just one use of an index (a

match request), or they could be entire query execution plans, for example, if all of the indexes

used in answering a query are stored at the same server. The server interface should be able

to handle either case. We must also add computational capability at the server to run these

index operations. We justify adding this complexity to the server by noting that index use is

a system activity and involves no user code. Also, as we will see later, special processing must

be done by the server at commit time to handle index use (either remotely or locally).

The results of remote index use can be kept at the server or sent back to the FE. A client

is likely to want to invoke methods on the elements of the result set, since generally computing

a query result set is only the �rst step in a computation. We might want to keep the result

set at the server if it is still fairly large and subsequent computations would reduce the number

of objects of real interest to the client computation. However, this would require running user

code at the server. Thus, following our general philosophy, we choose to send result sets and

their elements back to the FE in reply to remote index use.

A query that cannot be answered using an index must be computed by iteration and function

application. Under regular object processing, all of the set's elements would need to be copied



144 6. Indexes in Thor

to the FE. If only a few objects of a large set actually match, this represents a particularly

ine�cient use of network bandwidth and FE cache space. The non-matching objects need not

have been sent over in the �rst place, and they take up space in the FE cache even though

they will not be used, causing more frequent garbage collections. We might like to have the

server run this computation instead, but again, this requires user computation at the server,

so for now, we will compute queries that do not use indexes at the FEs in the straightforward

manner.

6.2.2 Updates

Thor's two-level cache structure gives us design choices of where computations related to

index maintenance take place. There are two computations: (re)computing keys and updating

indexes. We consider each computation in turn.

(Re)computing new keys requires that object methods be invoked. These are user computa-

tions, so in accordance with our general philosophy, we choose to have these computations done

at the FE. In addition, transaction semantics also requires that any modi�cations done by a

transaction be observable by later computations done by the same transaction. Indexes are no

exception; thus the system must �lter query results for a transaction against any modi�cations

done by the transaction that a�ect the result. For example, this means that if a set element x

that is registered for index I is mutated by a transaction T , the result of a subsequent query by

T on the set using I must re
ect the current state of x. For insert and update operations, this

means that the index key (I:f(x)) must be (re)computed if a subsequent query is done using

the modi�ed index. If we do not keep precomputed results, it is also necessary for the delete

operation to compute the key of the deleted set element and for the update operation to compute

the old key for the modi�ed set element. (If a query is made using I before a (re)computation

is completed, the system will have to delay returning the result until the (re)computation is

completed and the result has been �ltered.)

When an index is updated, we could copy it to the FE to do the modi�cations, or we

can have the work done at the server. We choose to this work at the server; the FE noti�es

the server of the updates to the index at transaction commit. The semantics of transactions

requires us to delay doing modi�cations to the persistent copies of an object until a transaction

has committed, so that we cannot apply index updates to the persistent index object until

the transaction actually commits. There is also a question of exactly what is the physical

representation of an index and how it is related to updates. We can imagine that what an FE

sends back at commit time for an index that has been updated is not a physical description of



6.2. Adding Indexes to Thor 145

the changes (as is done for regular objects), but rather a logical description. We choose to have

the server install the updates to the index in the background after the transaction commits as

part of the regular background apply process.

6.2.3 Predicate Validation

Indexes are used to avoid reading every element in a set in order to determine if the ele-

ment satis�es some predicate. There are two problems in trying to use and maintain indexes

concurrently with regular objects in Thor. First, not actually reading a set element leads to

problems, since regular concurrency control is done at the object level. If we do not read a set

element, we cannot detect if it has been mutated by another transaction. And if we do not

read the set structure either, we cannot detect if something has been inserted or deleted. Even

if we could know a set element was mutated, it may not matter to the query.

In particular, the problem is one of phantoms, �rst identi�ed by Eswaran, et al.[25]. Con-

ceptually, a query not only reads the elements in its result set but also all of the \elements"

that are not in its result set. A phantom is a non-existent result set element. It is important

to know what result set elements do not exist at the time of a query computation because

if one is created and committed before the query commits, and it should have been included

in the query result, the query should abort. For example, if a transaction does the example

query, \Select the employees from department E with a project manager whose yearly income

is greater than $60,000," there should be a con
ict if another transaction commits a modi�ca-

tion to a set element x such that project manager income(x) now returns $65000, rather than

$55000, since x should now be included the result set of the query. However, since x was not

fetched, x's v# was not read when the query was computed, and there is no information for

the regular concurrency control mechanism to generate a con
ict. Similarly, if a transaction

inserts a new element x into E where project manager income(x) = $65000 and commits, our

example query should be aborted.

The second problem is that treating the index structure as a regular object may lead to

undesirable behavior. Con
icts at the physical level may cause unneeded aborts. For example,

a transaction that inserts a new employee object x into E where project manager income(x) =

50000 should not con
ict with a transaction that does our example query, since the insertion

of x does not a�ect the result of the query. This should be the case even if the index entry for

x is written in one of the index nodes read to answer the query. If index nodes are treated as

regular objects, this would cause a v# con
ict and the transaction doing the query would have

to abort. Thus, indexes need to support higher concurrency than regular objects.



146 6. Indexes in Thor

We can solve both problems by doing con
ict resolution at the logical operation level. In our

case, the logical entities are predicates. The basic idea is that index operations are modeled as

predicates that describe the elements of the set that are of interest. Queries are predicates that

describe the objects that have been read (and not been read). Index maintenance operations

are predicates that describe objects that have been modi�ed. A con
ict occurs whenever the

commit an index maintenance operation would change the result computed for a query that has

not yet committed. This scheme is consistent with the Thor optimistic concurrency control:

instead of preventing predicate con
icts by preventing such accesses through locking, it identi�es

predicate con
icts after they have happened, and prevents transactions that have invalidated

results from committing. We call this scheme predicate validation because it is an optimistic

version of Eswaran, et al.'s predicate locking technique[25].

We begin our explanation of predicate validation for indexes in Thor by describing the

predicates used in indexing. Then we present two versions of the protocol. The �rst version

is for Thor when only remote match requests are allowed. It is very simple and applicable to

conventional systems as well as Thor. Although we believe that remote use will be the dominant

mode of use (and probably the only one we will implement), for completeness, we also present

a second version of predicate validation that extends the protocol to allow local index use.

Index Predicates. There is only one kind of read predicate in our indexing scheme, which

we will call a match request. Match requests are tuples of the form < I, low key, hi key > where

either or both of the keys may be in�nity. They correspond to a single use of an index and

represent the objects of I:set that have keys generated by I:f in the range low key to high key.

(Complex queries are converted to multiple match requests during query processing.)

There are three kinds of write predicates, insert, delete, and update, corresponding to the

three index maintenance operations. Insert write predicates are tuples of the form < I, insert,

key, x > and delete write predicates are tuples of the form < I, delete, key, x >, where x is

the set element that was inserted or deleted, I is the index that needs to be updated, and key

is the result of I:f(x). Update write predicates are tuples of the form < I, update, old key,

new key, x > where old key is the key paired with x before the mutation and new key is the

key to be paired with x after the mutation.

The read and write predicates con
ict in the following straightforward ways:

� An insert write predicate < I, insert, key, x > or a delete write predicate < I, delete,

key, x > con
icts with a match request < I, low key, hi key > if low key � key � hi key.

This is what one would expect. An insert or a delete con
icts with a match request



6.2. Adding Indexes to Thor 147

whenever the key of its object falls in the range of the match request.

� An update write predicate < I, update, old key, new key, x > con
icts with a match

request < I, low key, hi key > if ((old key < low key or hi key < old key) and (low key

� key � hi key)) or ((low key � old key � hi key) and (new key < low key or hi key <

new key))

Updates are a little trickier. An update con
icts with a match request whenever old key

is in the range of the match request and new key is not, or vice versa. This is because if

both keys are in the match request range or both keys are out of the match request range,

the update has no e�ect on x's status with respect to the match request result.

We assume for now that we recompute the old key whenever there is an index update. This

means that two transactions that make modi�cations that a�ect an index entry for x will always

con
ict during regular object validation, since both transactions will read all objects f-reachable

from x before any mutations. We will discuss the e�ect of using precomputed results as old

keys at the end of this section.

Simple Version. The goal of predicate validation is to detect when a transaction that has

used an index for a match request should abort because another transaction has committed a

con
icting update. To do this, the system must keep track of the order in which index operations

are done. The assumption that match requests are being answered only at the server leads to a

very simple protocol, because the server becomes the centralized point that serializes the match

requests and updates for an index.

Simple predicate validation in a single-server Thor system works as follows. The server

keeps a use-list per transaction that keeps track of all the match requests that have been

made by that transaction. The entries are of the form < m req; valid >, where m req is the

match request that was answered and valid = true if the match request result has not been

invalidated by some committed transaction. (That is, no committed transaction has done a

modi�cation that caused a con
icting update to the index used by m req.) The server adds

an entry to a use-list whenever it does a match request for a transaction; at that point, the

entry is marked as valid.

The FE keeps a modi�cation list, t-mod-list, for its transaction. The entries in t-mod-list

are write predicates < w pred > that represent index updates (to be) done by the transaction.

Entries are added to t-mod-list when the transaction does a modi�cation to a registered

object that causes an index update. The list is used by the FE to �lter queries involving that



148 6. Indexes in Thor

index. For example, if there is a t-mod-list entry with update w pred, then any query using

w pred:I1 must be �ltered.

At commit time, in addition to the v#'s of read and modi�ed regular objects and the new

versions of modi�ed regular objects, the FE sends the transaction's t-mod-list to the server.

Regular object validation is done �rst, and if any have invalid v#'s, the transaction aborts.

Otherwise, the following additional steps are taken:

1. For each entry < m req; valid > in the transaction's use-list, check if valid = true. If

all entries are valid, the transaction may commit. If any entries are invalid (i.e., valid =

false, then the transaction must abort.

2. If the transaction does commit, for each entry < w pred > in its t-mod-list, �nd all

use-list entries < m req; true > for the same index, i.e., w pred:I = m req:I. For each

such use-list entry, if w pred con
icts with m req, set valid = false.

Then the new versions of the regular objects and the transaction's t-mod-list are written to

the log to be applied later and the transaction's use-list and t-mod-list are discarded at

the server. The FE discards its t-mod-list when it learns of the transaction's outcome.

Note that we can cause early aborts of transactions that have invalid match results. When-

ever an entry in a transaction's use-list is invalidated, we can send an invalidation message

the FE managing that transaction, causing the FE to abort the transaction. (Since an FE only

manages one transaction at a time, there is a one-to-one mapping between transactions and

FEs).

Our predicate validation mechanism must satisfy the following condition to be correct:

Any use of an index I by a transaction T must re
ect all modi�cations done to I

by transactions that commit before T .

Since we are assuming a single-server system, in the backwards validation scheme of Thor,

transactions commit in the order they request to commit. We assume that when a transaction

commits, it does so in a critical section in which all of the indexes used or modi�ed by the

transaction and their associated information are locked so that other transactions cannot use

them for match requests or to commit.

To see that the simple version of predicate validation satis�es our correctness condition,

consider that when a transaction T does a match request, the current value of an index I

re
ects the modi�cations of any transactions that have committed before that point. Thus,

1The w pred:I notation means the index I of the w pred tuple. Likewise for m req:I.



6.2. Adding Indexes to Thor 149

we only need to be concerned with transactions that commit after that point and before T

commits. Such a transaction T 0 will commit while T 's match request is in the server's use-list.

Therefore, T 0's modi�cations will be compared to T 's match requests, and if any con
ict with

T 's match requests, those match requests will be marked as invalid. The modi�cations that

do not con
ict with T 's match requests do not matter, because they do not a�ect the match

results. When T attempts to commit, it will be unable to do so if any of its use-list entries

have been invalidated. Thus, if T commits, its match requests are certain to have re
ected the

modi�cations of all transactions that committed before it, because none of the modi�cations

made after its match requests con
icted with them.

Extended Version. Extending predicate validation to handle local index use makes the

protocol more complex. The server can no longer serialize uses and updates to an index because

it does not see the match requests answered at FEs. In particular, we cannot mark local match

requests as invalid when transactions commit. We could require that the FE inform the server of

any match requests it answers. Then the server could maintain the use-lists as in the simple

version and the protocol would be the same. However, this scheme has very little advantage

over just having match requests answered at the server.

Instead, we delay marking match requests: we have the server keep track of the committed

updates done to an index since a copy of the index was given out, and we compare them with

match requests made by committing transactions during the validation step of the commit

protocol. However, since di�erent FEs may have copies that re
ect di�ering numbers of updates,

we introduce a version number V# for indexes to distinguish the copies used to answer match

requests. The server gives each committing transaction a timestamp that re
ects its commit

order. (I.e., for all transactions, T1 and T2, if T1 is serialized before T2, then T2's timestamp

is later then T1's timestamp.) When a transaction succeeds in committing, its timestamp is

stored as the V# of any indexes it updates. We also keep track of the V# of an index used to

answer a match request. Since V#'s are the timestamps of committed transactions, a match

request answered using an index with a V# of v can be invalidated only by a modi�cation made

by a transaction whose timestamp is later than v.

The extended version of predicate validation for a single-server Thor system works in the

following way. FEs continue to keep their own modi�cation list, t-mod-list. As in the simple

version, the entries in t-mod-list are write predicates< w pred > that represent index updates

(to be) done by the transaction. Entries are added to t-mod-list when the transaction does

a modi�cation to a registered object that causes an index update, and the list is used to �lter



150 6. Indexes in Thor

match requests.

FEs also keep an f-use-list containing entries for every match request made (both re-

motely and locally). The entries in this f-use-list are of the form < m req; v > where m req

is the match request that was made and v is the V# of m req:I when the match request result

was computed. When an FE does a remote match request, the server computes the result and

sends it back to the FE along with the V# of m req:I at the time the result was computed.

This V# is the v associated with the match request in the transaction's f-use-list. When an

FE does a local match request, if it does not have a copy of the index, the index is fetched. The

server sends a copy of the index that contains its current V#. Any match requests answered

using this copy are associated with this V# in the transaction's f-use-list.

Servers keep a modi�cation list, mod-list, that keeps track of the modi�cations that have

been done. An entry in mod-list is a tuple < w pred; v > where w pred is the write predicate

corresponding to the index update and v is the V# of w pred:I after the update. Entries are

added to mod-list at transaction commit as explained below.

At commit time, in addition to the v#'s of read and modi�ed regular objects and the

new versions of modi�ed regular objects, the FE sends the transaction's f-use-list and

t-mod-list to the server. As in the simple version, the server does regular object valida-

tion �rst, and if there are any invalid v#'s, the transaction aborts. Otherwise, the following

additional steps are taken:

1. For each entry < m req; v > in the transaction's f-use-list, v is compared against

m req:I's current V#. If all of the V#'s are the same, the transaction may commit.

If any V# is not the same, for each such entry < m req; vm > in the transaction's

f-use-list, �nd all the entries < w req; vw > in mod-list where w pred:I = m req:I

and vw > vm. If any of these mod-list entries have write predicates w pred that con
ict

with match requestm req, the transaction aborts. If there are no con
icts, the transaction

may commit.

2. If the transaction does commit, all of the indexes appearing in its t-mod-list have their

V#'s set to the transaction's timestamp as explained above, and the entries in t-mod-list

are added to mod-list with the transaction's timestamp as well.

Then the new versions of the regular objects and the transaction's t-mod-list are written to

the log to be applied later as in the simple version. The server discards the f-mod-list, and

the FE discards its f-mod-list and t-mod-list when it is informed of the outcome of the

transaction.



6.2. Adding Indexes to Thor 151

The mod-list needs to be garbage collected periodically, since otherwise it will grow without

bound. We note that we only compare entries in mod-list that have v's greater than those of

committing match requests. Thus, if we can determine a lower bound LB on the v's of these

match requests, we can safely discard any modi�cations in mod-list whose v's are less than

or equal to LB. We can determine LB in the following way. The server maintains a V#-table

(per index) that maps FEs to V#'s. Whenever it sends V# information for a match request

using index I to an FE, it updates the entry for the FE in I's V#-table with the minimum of

the current value for the FE in V#-table and the V# being sent over. Thus, when a remote

match request using I it done, I's V#-table is updated using the current V# of I, and when a

copy of I is sent to an FE, the V# of the copy is used in updating I's V#-table. A V#-table

also keeps track of whether or not an FE has a copy of the index. When a transaction commits

(or aborts), if the FE does not have a copy of I, the FE's value in I's V#-table is advanced to

1. Entries for an FE are removed from V#-tables when it is destroyed. The lower bound of

the entries in all V#-tables serves as the LB for trimming mod-list.

If an FE keeps an index copy for a long time, it may become very out-of-date. The FE can

bring its copy up-to-date by asking the server to send any updates that have been made to the

index since the FE received the copy along with the current V# and apply the updates to the

copy. Then the FE can advance the V# of its copy to the sent V#. Or the FE can invalidate

its copy and request a new copy. Also, note that if an FE keeps an index copy for a long time,

it eventually prevents the server from garbage collecting mod-list entries, since the LB will

not advance past the V# of the copy. The server can be pro-active in this case and ask FEs to

invalidate their copies of an index.

Our correctness condition for the extended version of predicate validation is the same as for

the simple version. We must ensure that when a transaction T commits, its match results re
ect

the modi�cations done by all transactions that committed before it. When T does a match

request, the v associated with it identi�es all transactions whose modi�cations are re
ected

in the match result, namely all those with timestamps less than or equal to v, so we only

need to worry about modi�cations made by transactions with timestamps later than v. The

server checks for such modi�cations by examining mod-list. If we assume for the moment that

information is never thrown away, it is clear that any such modi�cation will be in mod-list,

since all modi�cations are added to mod-list. We guarantee that we never throw away needed

information, because we only discard modi�cations after their v's are less than the v's of the

match requests of active transactions; it is safe to discard those modi�cations because they are

already re
ected in the match results computed by active transactions.



152 6. Indexes in Thor

Using precomputed results for old keys. When we use precomputed results as old

keys, we do not recompute the old key when we need to update an index. (Of course, we need

a way of �nding the old key when given an element of the indexed set. For example, we might

keep a table that maps every element in the set to its key.) Using precomputed keys has an

interesting consequence for predicate validation.

Con
icting updates will still be detected by the regular object concurrency control mech-

anism when we use precomputed results as old keys. However, some updates that appear to

con
ict (and do con
ict when we recompute old keys) actually do not, and by using precom-

puted keys, we can allow the later transactions to commit. For example, suppose transaction

T1 mutates the f-reachability graph from x at an object y, while transaction T2 mutates the

f-reachability graph for x at an object z which is above y in the original f-reachability graph

for x. Suppose T1 commits �rst; it removes the old entry for x in index I, enters a new entry

for x in I with the new key, and enters the new key in the precomputed result table for x.

Now suppose T2 tries to commit. The recomputation done by T2 does not con
ict with T1

because it never reads y. Also, the key for x is correct with respect to the modi�cation being

committed by T2, since it does not depend on the modi�cation made by T1. So we should

allow T2 to commit. The only thing we need to ensure is that when T2 reads the precomputed

result table, it gets the new key computed by T1, so that it can remove the index entry for x

that T1 entered. (T2 must remove the entry entered by T1, since otherwise the index invariant

that there is only one and only one entry for each set element will be violated.) We can do

this by having the apply process read the table right before it applies the index update and

then immediately write the new key into the table afterwards. Since the apply process installs

modi�cations in the order that transactions commit, when it does T2's modi�cation, the table

entry for x will have the new key computed by T1.

6.2.4 Incremental Index Creation

It should be simple to create an index: iterate through the set, compute I:fr(x) for each

element x, and create the index data part. However, creating an index on a very large set is

likely to take a long time. If we run index creation as a single transaction using the regular Thor

concurrency control, the index creating transaction will read every set element and every object

f-reachable from the set elements. As the length of time that index creation takes increases,

the likelihood increases that there will be a transaction that commits a modi�cation on one of

the accessed objects, causing the index creating transaction to abort.

Thus for large sets, we would like to build indexes incrementally. As with regular index



6.2. Adding Indexes to Thor 153

maintenance, there are two kinds of events we need to detect: changes in set membership and

mutations to registered objects. These two situations are handled by our indexing scheme,

and we can take advantage of code already in place to do incremental index creation. We will

assume only one index creation is being done at any given time to a particular set, though

we allow creation processes to run concurrently on di�erent sets. Perhaps this constraint is

enforced by \locking" the set for index creation.

Algorithm. To support incremental index creation2, indexes have two states, open and

closed. An open index is a \normal" index. A closed index is just a skeleton of an index; its

data part is initially empty. It behaves like an open one except that it cannot be used to answer

queries (this is done by not listing it in the set's index list). In particular, it can be named

in registration tuples. Updates to closed indexes happen when there are set operations on the

indexed set or when objects registered for the closed index are mutated in a way that matters.

The server does special handling of these updates as we will see below.

The process for incrementally creating an index for a set S using index function I:f is as

follows.

1. Run a transaction to create an empty, closed index I on S.

2. Run a transaction, that for some number N of set elements x, computes I:fr(x), and

insert a < key; x > pair, where key = I:fr(x), and into I:data. Repeat until keys for all

of the set elements have been computed. We will call these registration transactions.

3. Run a transaction to �x up the index (explained below), install the index data part, and

open the index (i.e., the index is added to S index list).

Note that con
icts between a transaction of the index creating process and a modi�cation

by another transaction will be resolved in favor of the transaction that tries to commit �rst.

However, since the transactions of the index creating process are short, we do not expect

these con
icts to happen often. If a transaction of the index creating process does abort, the

transaction is run again.

N should be chosen to make it likely that registration transactions will not encounter any

con
icts. N = 1 certainly meets this criteria, but is likely to be too ine�cient, though we note

that registration transactions are likely to involve only one server on the assumption that, most

of the time, an f-reachable object will be stored at the same server as the set element that it can

2This scheme is similar in spirit to the ARIES system's incremental index creation scheme[49], but since
ARIES is a relational database, the details are completely di�erent.



154 6. Indexes in Thor

a�ect. Thus most of the time, the non-distributed case of the commit protocol will be run. The

groups of N objects could be chosen so that all of the objects accessed are in the same segment.

We could \lock out" access to a segment of element objects to guarantee that the registration

transaction will not encounter con
icts. This might cause other transactions to wait, but the

waiting would not be as long as if we locked the segment during the entire creation process.

Concurrent modi�cations to the set or mutations to registered objects for an closed index

are handled like operations that a�ect normal indexes. Even though the index is closed, since

we committed the transaction to add the closed index, the system knows about the index. Thus,

updates to a closed index arrive at the server in the transaction's t-mod-list as described in

Section 6.2.3. When the apply process encounters an update to a closed index, it adds the entry

to a special i-mod-list for the index. Fixing up the newly-created index before opening it is

straightforward; we just apply the updates in the i-mod-list for the index.

Thor Implementation. Various parts of the index creating process can be run at either

the FE or the server. As with index maintenance, the keys (I:fr(x)) are computed at the FE.

Although this scheme will require all of the set elements to be copied to the FE, we note that

fetching can be overlapped with computation (e.g., by streaming the elements to the FE) and

that once a registration transaction computing the key for a set element x commits, the FE

can shrink x. Thus the index creating process only sees the initial network delay for the �rst

elements to arrive at the FE, and the FE does not have to store many objects even if the set is

large as long as we set N to an appropriate value.

We can minimize disk costs at the server by sending the set elements to the FE in clustered

order where possible. This maximizes the numbers of elements that are brought into the server

cache with each disk read.

The creation of the index data part is done at the server. The server already knows how

to apply index modi�cations for regular index maintenance, so we format the results of the

registration transactions as insert entries for the new index, but we need to keep them separate

from the t-mod-list since we do not want them to be added to the closed index's i-mod-list).

Creating the index at the server avoids having to send the index's i-mod-list to the FE when

it is time to �x it up. In addition, the index is likely to become large, so the space overhead of

keeping it in the FE cache and the cost of copying it back to the server may be quite high.



6.3. Performance 155

6.3 Performance

The Thor system architecture is novel. It has many features that can a�ect the performance

our indexing scheme. This section addresses the following questions about performance:

1. What is the e�ect of very large segments?

2. What is the e�ect of two-level caching? In particular, what is the impact of swizzling and

prefetching on the proposed implementation schemes?

We are interested both in the general e�ect these features have on computations and any speci�c

e�ects they have on our proposed implementation schemes. Section 6.3.1 describes the results

of extending our performance evaluation to 64K segments. Section 6.3.2 explores the e�ects

that two-level caching may have on our implementations.

6.3.1 Very Large Segments

As we saw in Chapter 3, segment size has an impact on the performance of our benchmarks.

Recall that our general conclusion was that for computations accessing the entire database,

large segments were bene�cial unless the cache was not large enough to hold all of the accessed

segments. In this case, clustering mattered and when clustering did not match the pattern of

access, large segments were detrimental. The segments in Thor are much larger than in con-

ventional systems. To explore the e�ect of very large segments, we ran each of our benchmarks

using 64K segments. This section reports our results.

For the �rst query benchmark (queries over a large portion of the database), the results for a

system using 64K segments with a cold cache continued the trends reported earlier. Figure 6.4

extends our previous results for Query 1 (scanning without registrations) using the bit scheme

with entries for 64K segments, and it shows that 64K segments are very bene�cial when reading

the entire database. Similarly, the trend for the crossover points for secondary index use (Query

4) to become lower as segment sizes increase continued since the likelihood of one match per

data segment is much higher with very large segments. The crossover points for 64K segments

are very low relative to the other segment sizes studied (about 0.5% for the small DB3).

On the second query benchmark (queries over a small, unclustered subset of the database),

the results for 64K segments continue all of the trends reported earlier except for one. The

di�erence can be seen in Figure 6.5. We see that the trend for larger segments to make Query 6

complete in fewer time steps is no longer true, although it should be more likely that there are

multiple composite parts per segment since there are only 32 segments holding the data objects,



156 6. Indexes in Thor

Query 1 execution time
Seg. Time steps (millions)
size Small DB3 Small DB9 Medium DB3 Medium DB9

2K 1425 2370 { {
8K 391 642 3410 5917
16K 223 360 1899 3295

64K 100 154 777 1346

Figure 6.4: Execution time of Query 1 using the bit scheme including 64K segments.

Comparison of Query 5 and Query 6
Time steps (millions)

Seg. Small DB3 Small DB9 Medium DB3 Medium DB9
size Qu. 5 Qu. 6 Qu. 5 Qu. 6 Qu. 5 Qu. 6 Qu. 5 Qu. 6

2K 1073 4070 1336 4593 { { { {
8K 391 2899 633 3400 1653 24527 1827 24841
16K 222 2840 360 3095 1750 27100 2078 27665

64K 100 4041 154 4087 2788 43803 3234 44700

Figure 6.5: Execution time of Query 5 and Query 6 including 64K segments.

and the 2-megabyte cache holds 32 segments. However, it turns out the cache is too small. It

can hold only 31 data segments because the result set also takes up some space, e�ectively the

size of one segment. This is an arti�cial situation that can be remedied by having a slightly

larger cache, but it does point out the impact that very large segments have on cache size. If

the data accessed is not clustered very well, each disk access will bring in many unused data

objects and may cause segments with useful objects to be thrown out when this might not

happen with smaller segment sizes.

The results of the navigation benchmarks using 64K segments followed the trends reported

earlier. In particular, when all of the accessed objects do not �t into the cache, traversals where

the database is clustered in OID order continue to perform well, while traversals where the

database is clustered in date index order perform worse.

We conclude from our results that 64K segments make clustering issues even more important

due to the large number of objects that can �t into a segment. We would like it to be the case

that most of the objects in a segment are \related" in some way, but as we have seen, it is not

usually possible to have them clustered so that both queries and navigation are e�cient. The



6.3. Performance 157

optimal clustering of a set depends on the expected workload. In addition, we conclude that

indexes are very important for queries over small, unclustered subsets of the database using

complex functions when segments are very large, especially in large databases. The objects

used in computing the function are unlikely to be clustered in any meaningful way and actually

accessing them will �ll the cache with many unused objects. Using an index to answer such a

query is much more e�cient.

6.3.2 Two-level Cache Structure

Since the Thor system is still under development, its architecture changes radically from

time to time. We felt it was not interesting to simulate a version of Thor that may never exist.

However, the two-level cache structure is an integral part of the Thor architecture that will not

be changed, so we discuss the likely e�ect of this structure on how computations are run in the

(new) embedded, (new) bit, and hybrid implementation schemes in this section.

For queries and navigation, we are interested in the incremental increase in space needed at

the FE cache that is caused by the two-level cache structure for each implementation scheme.

The �rst thing we note is that since we expect workloads to be mostly queries and navigation,

we do not want registration information to be prefetched. Since registration information needs

to be interpreted di�erently than regular data (e.g., checking if a tuple is long or short, or

masking the table ID out of a reference to a registration object), both the server and the FE

can handle them specially. In particular, we do not want the server to send any of the objects

that are referenced in registration tuples in the prefetch group of a data object, and we do not

want to swizzle these references into FE-surrogates at the FE.

Given this special handling, the relative performance of our implementation schemes on

queries and navigation will be the same as before. The bit scheme will perform the best since

the data objects take up less space than in the embedded and hybrid schemes. Having smaller

data objects results in both less network delay to transfer the objects of interest to the FE

cache and less space used in the FE cache.

In addition, the performance of navigation also depends on our ability to prefetch the right

\related" objects. Di�erent prefetching policies will have di�erent e�ects on each implementa-

tion scheme. Under the current scheme where we only prefetch from the same segment as the

requested object, the e�ect each implementation scheme has on clustering will have the most

e�ect on performance. We would expect that since there are fewer objects in a segment in the

embedded and hybrid schemes that fewer objects will be candidates for prefetching; thus their

performance might be worse than the bit scheme. On the other hand, since segments are very



158 6. Indexes in Thor

large relative to object size, this may not be noticeable. In any case, a more permissive policy

that took objects from many segments might cancel this e�ect by allowing the prefetch group

in the embedded and hybrid schemes to include all objects that would have been part of the

prefetch group in the bit scheme under the current policy.

For updates, we are interested in the number of extra fetches that are necessary to �nd

registration information and �nding the set elements of the a�ected entries. Updates in all

three schemes incur an access to the table for an index that maps a class to the mutators that

a�ect the index. These maps are likely to be small, so we can fetch them to the FE and keep

them in the FE cache. This will happen only once per index, so they will probably have little

impact on overall performance, and their e�ect is the same for all three schemes.

In the embedded scheme, the registration tuples are already present in a registered object,

so there are no extra fetches for �nding them. In some cases, there may not be any extra fetches

to �nd a set element, e.g., if the registered object being modi�ed is the set element or the set

element is already at the FE. In the case where a set element is not already at the FE, we have

to fetch it, and of course, we would like the prefetch group to contain the objects that the set

element references, and so forth. If there are several registration tuples, we would like to fetch

all of the a�ected set elements at the same time rather than one at a time, so we would need

a way of indicating a group fetch to the server. Note that the embedded scheme avoids extra

fetches at the cost of wasted space in the FE cache for registration information in registered

objects that are not being modi�ed.

When registrations are embedded in the hybrid scheme, it performs like the embedded

scheme on updates. When the registered object has a reference, we need to access a registration

object (to check for registrations) and then the set element. We have two choices for the access

to a registration object. We can fetch the registration object to the FE cache, or we can avoid

caching registration objects at the FE by adding an operation to the server that checks for

registrations. If we cache the registration object at the FE, we might avoid some fetches as in

the embedded scheme, e.g., when another object uses the same registration object and the set

element(s) in its registration tuple(s) are already at the FE. However, registration objects may

be large, and it is not clear if we will be able to cluster registration information into them in

a way that will avoid the extra fetches for other registration objects. In addition, even if the

registration object is present, we may still have to fetch the set element(s). Having a server

operation to do registration checks saves space in the FE cache, but it means that an extra

fetch is always needed. However, since the FE is doing a mutation (otherwise it would not have

requested a registration check), we can prefetch the set elements named in the tuples of interest



6.3. Performance 159

and some of their \related" objects, if they are at the same server, and not already at the FE,

in the reply, thus avoiding the possible extra fetch for the set element. Therefore, there is just

one fetch per update.

Hopefully, in the hybrid scheme, many objects will have embedded registration tuples, so

that most of the time it will perform like the embedded scheme on updates. In particular, we

believe set elements are more likely to have embedded registration tuples, since they probably

are not shared as much as the lower-level objects. For other registered objects, the embedded

registrations still may cause an extra fetch for the set element anyway, so having the server

do registration checks when there is a reference to a registration object is probably a better

tradeo� than caching registration objects at the FE.

For the bit scheme, we have the same tradeo� of space in the FE cache versus extra fetches

that we have in the hybrid scheme when registered objects have a reference to a registration

object. We would not want to cache the entire registration table, but we can cache parts of it

(e.g., the entries for segments that have been accessed recently). Note that registration objects

in this scheme are likely to be larger than in the hybrid scheme, so more space is potentially

wasted if we cache registration objects. Also note that we must cache both registration table

entries and registration objects to avoid any extra fetches, because there is no information

in a registered object that will tell us which registration object is the one that contains its

registration tuples, unlike the direct reference in the hybrid scheme. On the other hand, data

objects in the bit scheme are smaller than in the hybrid scheme, so perhaps we can a�ord

space to cache registration information. Then again, smaller data objects allow more data to

be cached and as a result computations go faster, so perhaps it is better to use this extra space

to cache more useful objects.

Our analysis does not change our evaluation of our implementation schemes. The bit scheme

is still better for navigation and queries, so if the greater space requirement can be met, it is

a very attractive choice. However, the hybrid scheme's performance on queries and navigation

is not too far behind the bit scheme, and it probably performs better on updates. As we saw

in Chapter 3, if there is moderate amount of sharing, the hybrid scheme requires less space

than the bit scheme, thus it might be the best all-around choice. However, we do not have any

experience with real situations, so it is hard to be certain that our assumptions are valid. These

schemes should be evaluated more carefully with simulation studies like those done in Chapter

3 when the Thor architecture is stable.



160 6. Indexes in Thor



Chapter 7

Conclusion

Associative access to data is an important service that databases provide to clients. Queries

provide clients a way of identifying the data of interest by describing a property that the data

must have. In object-oriented databases, we expect as clients become more sophisticated, they

will want to compute function-based queries using user-de�ned functions over user-de�ned sets

that are maintained by the client. A function-based query is one that expresses the property

of interest as the result of applying a function to the elements of the set. Indexes are used to

optimize query computations by providing a mapping of property values (keys) to the objects

that have those property values.

This dissertation has presented a new function-based indexing scheme for object-oriented

databases. Our indexing scheme supports more expressive queries than other schemes proposed

for object-oriented databases. It preserves abstraction and encapsulation, so that set elements

can have more than one implementation. It supports indexes over user-de�ned sets. And it

supports indexes using user-de�ned index functions that are not observer methods of the set

elements.

When an index is created over a set, the key associated with a set element is computed by

invoking the index function on the set element. We register objects during key computation

by recording the information needed to do index maintenance. This information is a tuple

< y;m; I; x > that indicates that mutator m of object y can a�ect the entry in index I for set

element x. During a mutation, registration information is checked and appropriate updates are

made to a�ected indexes. Registrations are limited to just the objects that if modi�ed might

cause the index to change, and updates to indexes happen only when changes that may a�ect

the index occur. We try to minimize the number of registered objects and recomputations done

by our scheme by requiring that type speci�cations declare dependency information between

mutators and observers. If an object is accessed during key computation using an observer that

161



162 7. Conclusion

does not depend on any mutators, it is not registered, and only the objects that have been

registered have mutators that check for registration information.

In Chapter 3, we simulated three possible implementations of the registration information:

a bit scheme where a registration table maps a data object to a registration object containing

its registration tuples; a pointer scheme where each registered data object contains a refer-

ence to a registration object containing its registration tuples; and an embedded scheme where

registration tuples are stored directly inside the registered object. Our results showed that

function-based indexes allow function-based queries to be computed more e�ciently than with-

out an index. Indexes are especially useful when the index is a primary index, when is is a

secondary index and the query is expected to have a low percentage of matches, and when is is

a secondary index over a small set.

Our simulations showed that registration information stored inside data objects a�ects query

and navigation performance when the cache is cold, because it causes data objects to become

larger. This results in more disk accesses to bring in the same number of data objects. Thus,

the bit scheme has superior performance to the pointer and embedded schemes on queries and

navigation. Update performance is a�ected by the placement and overall size of registration

information. The embedded scheme has superior performance on updates, since registration

information is readily available and is of minimum size. However, the embedded scheme has

unpredictable e�ects on system performance since the increase in size of the data objects cannot

be bounded, so we concluded that an embedded scheme is an unsuitable implementation.

The number of registration tuples that must be kept for an index in our basic scheme is

proportional to the number of set elements times the number of registrations per set element.

In addition, if we do not store registrations tuples directly in a data object, there is space

overhead for organizing the registration information elsewhere. We developed a framework

for characterizing the space overhead in indexing schemes and analyzed each implementation.

We proposed ways of reducing the size of registration information and suggested alternate

implementations that reduce the overhead associated with keeping registration information

outside of data objects. We concluded that a hybrid scheme where a data object stores either

a small (�xed) number of registration tuples or a reference to a registration object is a suitable

implementation when space is tight, and that the bit scheme can be used if maximum query

and navigation performance is needed, and its greater space requirement can be met.

We proposed three optimizations to our basic scheme. The number of registrations are re-

duced by our contained subobject analysis, which allows us to avoid registering objects that can

only be accessed inside some other object. When many mutations a�ect the same index entry,



7.1. Future Work 163

lazy updates avoid recomputations that overwrite new key values before they are used. And we

can remove obsolete registrations through deregistration, reducing the number of unnecessary

recomputations.

Finally, we presented a design for integrating function-based indexes into the Thor object-

oriented database system. Thor is distributed with a two-level architecture of FEs and servers.

Our design tries to minimize the changes to the current Thor system. We enriched the Thor

server interface so that queries computed using indexes can be run at the server. For updates,

key (re)computations are performed at the FE, while modi�cations to the index itself are done at

the server. We developed predicate validation, a new optimistic concurrency control mechanism,

to integrate concurrent index use and maintenance with the regular Thor optimistic concurrency

control protocol. In predicate validation, index operations are represented as predicates and

con
ict detection is done in terms of these predicates. The backwards validation technique used

by Thor makes it di�cult for long transactions to commit, so we also developed an incremental

index creation algorithm.

We also discussed the impact that Thor's system architecture has on our performance evalu-

ation. Thor uses very large segments, so we extended our simulation study to include very large

segments. We found that clustering is more important in systems with very large segments,

since much more data is brought into the cache with each disk access. We also evaluated the

e�ect of the two-level architecture on our proposed index implementations. We concluded that

the two-level architecture does not change the conclusion of our performance evaluation: the

hybrid scheme is still a reasonable choice, and the bit scheme can be used if the space required

is worth the maximum performance on queries and navigation.

7.1 Future Work

These are several areas where this work can be extended. They can be divided into three cat-

egories: implementation issues, support for increased expressive power, and other miscellaneous

ideas. We discuss them brie
y in this section.

7.1.1 Implementation

Registration information. As we showed in Chapter 3, our scheme has a high space

requirement that is proportional the number of set elements times the number of registrations

needed for each set element. The GemStone implementation[47] only uses space proportional

to the number of accessed objects, but it works only for path expressions. Bertino's method

precomputation scheme[8, 10] attempts to provide a path-based implementation of a function-



164 7. Conclusion

based indexing scheme, but registers too many objects because dependency is determined at

the concrete level of instance variables rather than at the abstract level of methods. It would be

interesting to see if we could combine our technique of using dependency at the abstract level

to register fewer objects with Bertino's scheme to produce a GemStone-like implementation for

our indexing scheme.

More declarative information. It would also be interesting to explore the question of

whether other kinds of declarative information can be included in type speci�cations to reduce

the number of registered objects. For example, if aliasing information were available for all

types, we could do a better job of subobject containment analysis.

Simulating Thor. The analysis of our indexing scheme for Thor in Chapter 6 is based on

assumptions that we have not tested. It would be interesting to simulate our indexing scheme

under various workloads in the Thor architecture.

Distributed sets. In a distributed database like Thor, all of a set's elements may not be

stored at the same server. There will always be a set object that refers to all of the elements,

so we could still use the basic scheme and store an index at the same node as the set object.

However, an interesting question is whether an index for a distributed set could be distributed

across the servers that store the elements of the set, for example, if the index is very large and

would take up too much space at one server. We also might be able speed up query processing,

because partial match requests could be done in parallel. The major issues are how to partition

indexes for distributed sets and how to keep these indexes up-to-date in the presence of the

partitioning.

7.1.2 Expressive Power

Precomputed results. As we pointed out in Chapter 4, the GOM scheme[34, 35] and

Bertino's method precomputation scheme[8, 10] have additional expressive power to return

precomputed method results. As we saw in Chapter 3, this can be very bene�cial for compu-

tations that call a complex function that accesses many objects. Thus we might like to provide

the same functionality for elements of an indexed set. In addition, precomputed results would

reduce the cost of updates in our index scheme, since we would not have to recompute the old

key.

The main cost of providing precomputed results is the overhead of storing the results in

a way that makes them easy to access. If this were not so, then computing the result would



7.1. Future Work 165

be just as e�cient as looking it up. Storing the results inside the data object avoids an extra

access to �nd the precomputed result, but as we have noted before, this has an impact on query

and navigation performance by making data objects larger. If results are stored outside a data

object, we would have to analyze the cost of accessing the result versus computing the result

again, to determine if remembering the result is worthwhile. For example, for a very complex

function that accesses many objects, it still may be more e�cient to access the precomputed

result rather than compute the function. In addition, if a precomputed result is not stored with

the data object, some form of predicate validation may be necessary to allow concurrent use

and maintenance of the precomputed result.

Generalized index functions. In this dissertation, we assumed index functions are total,

only take one argument, the set element, and return a result of a built-in type. We might like

to relax these assumptions. The GemStone scheme[47] allows path expressions that return keys

of user-de�ned type. The keys of the index are OIDs, and the only queries allowed are ones

that select on the identity of a key. However, some user-de�ned types have \natural" ordering

properties, for example, a type representing complex numbers. We might like to support range

queries for keys of these types, but that would require running user code during index creation,

queries, and updates to determine how two objects compare. Our design for Thor would have

to be reevaluated, since index construction, queries, and updates are done at the server.

We might like to allow index functions that are not total. In Theta, this would allow index

functions that can signaled an exception. For example, the manager method of a project

object may signal no manager if there is no current manager of the project. We can use

Bertino's idea of an \unde�ned" key[8, 10] and associate it with any set elements whose key

computations signal an exception. Entries with unde�ned keys would not match any query.

To extend the registration algorithm to support functions with multiple arguments, we

would add any arguments to the initial reachability set R. However, as in the GOM scheme[34,

35], support for additional arguments would require that we remember the arguments that are

used to compute a key as part of our registration information. This would increase the size of

registration information, and it is not clear if the bene�t of saving these results will be enough

to warrant the extra space overhead. It is also not clear if the results of these types of functions

make sense as index keys, or if they are only useful as precomputed results.



166 7. Conclusion

7.1.3 Miscellaneous

Views and constraints. Indexes are system-de�ned derived data. We believe that our

registration technique can be used to support user-de�ned derived data such as views and

constraints. A view is a result set of a query that tracks changes in the base sets used to

compute the query. To maintain a view e�ciently, we do not want to recompute the entire query

whenever there are mutations, but rather just the part that has been a�ected. A constraint is

a computed property of some particular objects that must always hold. We only want to check

that the constraint is maintained if there is reason to believe that the objects involved have

changed in a way that might a�ect the property. Views and constraints could be maintained by

registering objects as the derived data is computed; when registered objects change, the derived

data is invalidated or recomputed. As in index maintenance, the main issues are determining

what information should be in a registration tuple and when it needs to be checked.

Predicate validation for user-de�ned types. User-de�ned types may be able to provide

more concurrency in an optimistic scheme if con
icts are determined on the basis of semantic

information rather than on the reading and writing of physical versions[30]. It would be in-

teresting to explore whether predicates and con
ict rules between predicates can capture this

semantic information in a compact way.



References

[1] Atul Adya. Transaction management for mobile objects using optimistic concurrency
control. Master's thesis, Massachusetts Institute of Technology, February 1994.

[2] P. M. G. Apers, A. R. Hevner, and S. B. Yao. Optimization algorithms for distributed
queries. IEEE Transactions on Software Engineering, SE-9(1):57{68, January 1983.

[3] M. Atkinson et al. The object-oriented database system manifesto. In Proceedings of the

First International Conference on Deductive and Object-Oriented Databases, pages 40{57,
1989.

[4] Jay Banerjee et al. Data model issues for object-oriented applications. ACM Transactions

on O�ce Information Systems, 5(1):3{26, January 1987. Also in S. Zdonik and D. Maier,
eds., Readings in Object-Oriented Database Systems.

[5] D. S. Batory et al. Genesis: An extensible database management system. IEEE Transac-

tions on Software Engineering, 14(11):1711{1729, November 1988. Also in S. Zdonik and
D. Maier, eds., Readings in Object-Oriented Database Systems.

[6] D. S. Batory and C. C. Gotleib. A unifying model of physical databases. ACM Transac-

tions on Database Systems, 7(4):509{539, December 1982.

[7] D. S. Batory, T. Y. Leung, and T. E. Wise. Implementation concepts for an extensible
data model and data language. ACM Transactions on Database Systems, 13(3):231{262,
September 1988. Also University of Texas at Austin Techreport TR-86-24.

[8] E. Bertino. Method precomputation in object-oriented databases. In Proceedings of the

ACM-SIOIS and IEEE-TC-OA International Conference on Organizational Computing

Systems, pages 199{212, Atlanta, Georgia, November 1991.

[9] E. Bertino. A survey of indexing techniques for object-oriented databases. In J. C. Freytag,
G. Vossen, and D. Maier, editors, Query Processing for Advanced Database Applications.
Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1993. Forthcoming.

[10] E. Bertino and A. Quarati. An approach to support method invocations in object-oriented
queries. In Proceedings of the 2nd IEEE International Workshop on Research Issues on

Data Engineering: Transaction and Query Processing, pages 163{168, Tempe, Arizona,
February 1992.

[11] Elisa Bertino and Won Kim. Indexing techniques for queries on nested objects. IEEE

Transactions on Knowledge and Data Engineering, 1(2):196{214, June 1989.

167



168 References

[12] Paul Butterworth, Allen Otis, and Jacob Stein. The GemStone database management
system. Communications of the ACM, 34(10):64{77, October 1991.

[13] Luca Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138{
164, 1988.

[14] Michael J. Carey, David J. DeWitt, and Je�rey F. Naughton. The OO7 benchmark. In
Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data,
pages 12{21, Washington, DC, May 1993.

[15] Michael J. Carey et al. Object and �le management in the EXODUS extensible database
system. In Proceedings of the Twelfth International Conference on Very Large Data Bases,
pages 91{100, Kyoto, Japan, August 1986.

[16] Michael J. Carey et al. The EXODUS extensible DBMS project: An overview. Technical
Report 808, Computer Science Department, University of Wisconsin - Madison, 1988. Also
in S. Zdonik and D. Maier, eds., Readings in Object-Oriented Database Systems.

[17] Scott Carson and Sanjeev Setia. Optimal write batch size in log-structured �le systems.
In Proceedings of the USENIX File Systems Workshop, pages 79{91, 1992.

[18] R. G. G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan Kaufmann
Publishers, Inc., San Mateo, CA, 1993.

[19] W. W. Chu and P. Hurley. Optimal query processing for distributed database systems.
IEEE Transactions on Computers, C-31(9):835{850, September 1982.

[20] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-

rithms. The MIT Press and McGraw-Hill Book Company, Cambridge, MA and New York,
1990.

[21] Mark Day. Managing a Cache of Swizzled Persistent Objects. PhD thesis, Massachusetts
Institute of Technology, 1994. Forthcoming.

[22] Mark Day et al. Theta Reference Manual. Programming Methodology Group, MIT Lab-
oratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, 1994.

[23] O. Deux et al. The story of O2. IEEE Transactions on Knowledge and Data Engineering,
2(1):91{108, March 1990.

[24] O. Deux et al. The O2 system. Communications of the ACM, 34(10):34{48, October 1991.

[25] K. P. Eswaran et al. The notions of consistency and predicate locks in a database system.
Communications of the ACM, 11(11):624{633, 1976.

[26] Sanjay Ghemawat. Disk Management for Object-Oriented Databases. PhD thesis, Mas-
sachusetts Institute of Technology, 1994. Forthcoming.

[27] J. N. Gray. Notes on Database Operating Systems, volume 60 of Lecture Notes in Computer

Science, pages 393{481. Springer-Verlag, New York, 1978.



References 169

[28] Laura M. Haas et al. Extensible query processing in Starburst. In Proceedings of the

1989 ACM SIGMOD International Conference on Management of Data, pages 377{388,
Portland, OR, June 1989. Also IBM Almaden Research Center Research Report RJ 6610
(63921).

[29] Laura M. Haas et al. Starburst mid-
ight: As the dust clears. IEEE Transactions on

Knowledge and Data Engineering, 2(1):143{160, March 1990. Also IBM Almaden Research
Center Research Report RJ 7278 (68535).

[30] Maurice Herlihy. Optimistic concurrency control for abstract data types. In Fifth ACM

Principles of Distributed Computing Conference, 1986.

[31] Scott E. Hudson and Roger King. CACTIS: A database system for specifying functionally-
de�ned data. In Proceedings of 1986 International Workshop on Object-Oriented Database

Systems, pages 26{37, Asilomar Conference Center, Paci�c Grove, CA, September 1986.

[32] Scott E. Hudson and Roger King. Cactis: A self-adaptive, concurrent implementation of an
object-oriented database management system. ACM Transactions on Database Systems,
14(3):291{321, September 1989.

[33] Mathias Jarke and J�urgen Koch. Query optimization in database systems. ACM Comput-

ing Surveys, 16(2):111{152, June 1984.

[34] Alfons Kemper, Christoph Kilger, and Guido Moerkotte. Function materialization in ob-
ject bases. Technical Report 28/90, Universit�at Karlsruhe, October 1990.

[35] Alfons Kemper, Christoph Kilger, and Guido Moerkotte. Function materialization in ob-
ject bases. In Proceedings of the 1991 ACM SIGMOD International Conference on Man-

agement of Data, pages 258{267, Denver, Colorado, May 1991.

[36] Won Kim et al. Integrating an object-oriented programming system with a database
system. In Proceedings of the 1988 ACM Conference on Object-Oriented Programming

Systems, Languages, and Applications, pages 142{152, San Diego, CA, September 1988.

[37] Won Kim et al. Architecture of the ORION next-generation database system. IEEE

Transactions on Knowledge and Data Engineering, 2(1):109{124, June 1989.

[38] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley Publishing Company, Reading, MA, 1973.

[39] H. T. Kung and J. T. Robinson. On optimistic methods of concurrency control. ACM

Transactions on Database Systems, 6(2):213{226, June 1981.

[40] Charles Lamb et al. The ObjectStore database system. Communications of the ACM,
34(10):50{63, October 1991.

[41] James R. Larus and Paul N. Hil�nger. Detecting con
icts between structure accesses.
In Proceedings of the SIGPLAN '88 Conference on Programming Language Design and

Implementation, pages 21{34, Atlanta, GA, June 1988.

[42] Barbara Liskov. Preliminary design of the Thor object-oriented database system, March
1992. Available as Programming Methodology Group Memo 74, MIT Laboratory for
Computer Science.



170 References

[43] Barbara Liskov et al. A highly available object repository for use in a heterogeneous
distributed system. In Proceedings of the Fourth International Workshop on Persistent

Object Systems Design, Implementation, and Use, pages 255{266, Martha's Vineyard, MA,
September 1990.

[44] Barbara Liskov et al. Replication in the harp �le system. In Proceedings of the Thirteenth

ACM Symposium on Operating Systems Principles, pages 226{238, Asilomar Conference
Center, Paci�c Grove, CA, 1991.

[45] Guy M. Lohman et al. Extensions to Starburst: Objects, types, functions, and rules.
Communications of the ACM, 34(10):94{109, October 1991.

[46] Umesh Maheshwari. Distributed garbage collection in a client-server, transactional, persis-
tent object store. Technical Report MIT/LCS/TR-574, Massachusetts Institute of Tech-
nology, Laboratory for Computer Science, October 1993. Master's thesis.

[47] David Maier and Jacob Stein. Indexing in an object-oriented DBMS. In Proceedings

of 1986 International Workshop on Object-Oriented Database Systems, pages 171{182,
Asilomar Conference Center, Paci�c Grove, CA, September 1986.

[48] David Maier and Jacob Stein. Development and implementation of an object-oriented
DBMS. In B. Shriver and P. Wegner, editors, Research Directions in Object-Oriented

Programming. MIT Press, 1987. Also in S. Zdonik and D. Maier, eds., Readings in Object-

Oriented Database Systems.

[49] C. Mohan and Inderpal Narang. Algorithms for creating indexes for very large tables with-
out quiescing updates. In Proceedings of the 1992 ACM SIGMOD International Conference

on Management of Data, pages 361{370, San Diego, California, June 1992.

[50] J. E. B. Moss. Working with persistent objects: To swizzle or not to swizzle. IEEE

Transactions on Software Engineering, 18(3), August 1992.

[51] Brian M. Oki and Barbara Liskov. Viewstamped replication: A new primary copy method
to support highly-available distributed systems. In Proceedings of the 7th ACM Symposium

on Principles of Distributed Computing, pages 8{17, Toronto, Ontario, Canada, 1988.

[52] Jack Orenstein et al. Query processing in the ObjectStore database system. In Proceedings
of the 1992 ACM SIGMOD International Conference on Management of Data, pages 403{
412, San Diego, CA, June 1992.

[53] Lawrence A. Rowe and Michael R. Stonebraker. The POSTGRES data model. In Proceed-
ings of the Thirteenth International Conference on Very Large Data Bases, pages 83{96,
Brighton, England, September 1987. Also in S. Zdonik and D. Maier, eds., Readings in

Object-Oriented Database Systems.

[54] P. Schwarz et al. Extensibility in the Starburst database system. In Proceedings of 1986

International Workshop on Object-Oriented Database Systems, pages 85{92, Asilomar Con-
ference Center, Paci�c Grove, CA, September 1986.

[55] Michael Stonebraker. Inclusion of new types in relational data base systems. In Proceedings
of the Second International Conference on Data Engineering, pages 262{269, Los Angeles,
CA, February 1986.



References 171

[56] Michael Stonebraker. Object management in Postgres using procedures. In Proceedings of

1986 International Workshop on Object-Oriented Database Systems, pages 66{72, Asilomar
Conference Center, Paci�c Grove, CA, September 1986.

[57] Michael Stonebraker et al. Application of abstract data types and abstract indices to CAD
data bases. In Engineering Design Applications, Proceedings from SIGMOD Database

Week, pages 107{113, San Jose, CA, May 1983.

[58] Michael Stonebraker and Greg Kemnitz. The POSTGRES next-generation database man-
agement system. Communications of the ACM, 34(10):78{92, October 1991.

[59] Michael Stonebraker, Lawrence A. Rowe, and Michael Hirohama. The implementation
of POSTGRES. IEEE Transactions on Knowledge and Data Engineering, 2(1):125{142,
March 1990.

[60] P. Valduriez. Join indices. ACM Transactions on Database Systems, 12(2):218{246, Octo-
ber 1987.

[61] P. F. Wilms et al. Incorporating data types in an extensible database architecture. In
Proceedings of the Third International Conference on Data and Knowledge Bases, pages
180{192, Jerusalem, Israel, June 1988.

[62] C. T. Yu and C. C. Chang. Distributed query processing. ACM Computing Surveys,
16(4):399{433, December 1984.



172 References


